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Identifying and characterizing strombolian activity from space is a challenging task for
satellite-based infrared systems. Stromboli volcano is a natural laboratory that offers a
unique opportunity for refining thermal remote-sensing applications that involve
transient phenomena and small to moderate hot-spots. A new simple and fast algorithm
gave us the opportunity to revisit the MODIS-derived thermal output at Stromboli
volcano over the last 13 years. The new algorithm includes both night-time and
daytime data and shows high performance with the detection of small-amplitude
thermal anomalies (<1 MW), as well as a low occurrence of false alerts (<4%).
Here, we show that the statistical distribution of volcanic radiative power (VRP; in
Watts) is consistent with the detection of variable activity regimes that we subdivided
into five levels of thermal activity: Very Low (VRP < 1 MW), Low (1 MW < VRP < 10
MW), Moderate (10 MW < VRP < 100 MW), High (100 MW < VRP < 1000 MW),
and Very High (VRP > 1000 MW). The ‘Low’ and ‘Moderate’ thermal levels are
associated with strombolian activity and reflect fluctuations of the magma level within
the conduit feeding the activity at the surface. The ‘High’ level of thermal output
represents the bulk thermal emissions during periods of effusive activity. The highest
level (‘Very High’) was reached only during the onset of flank eruptions (28 December
2002 and 27 February 2007). We found that the retrieved thermal regimes are in
general agreement with the explosive levels evaluated at Stromboli since 2005, and
their correlation has been shown to be dependent on the observed activity (i.e. eruption
onset, lateral flank effusion, summit overflows, strombolian activity). Our results
suggest that remotely sensed thermal data provide a reliable tool for monitoring
volcanic activity at Stromboli volcano.

1. Introduction

In the last decade thermal remote-sensing techniques have been increasingly applied for
monitoring active volcanoes. Ramsey and Harris (2013) give an overview of these
applications, discussing the limits of several satellite-based infrared sensors to detect
and track volcanic hot-spots. Actually, many of these studies are concentrated on devel-
oping near real-time automated techniques, thereby quantifying the heat released and
related mass fluxes (Ganci et al. 2012).

A variety of algorithms have been developed for detecting volcanic hot-spots using
different satellites and sensors, such as GOES (e.g. Harris et al. 1997), AVHRR (e.g.
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Harris et al. 1995; Tramutoli 2008), MODIS (e.g. Flynn et al. 2002; Wright et al. 2002),
and SEVIRI (Hirn, Di Bartola, and Ferrucci 2009; Ganci et al. 2011). A comprehensive
review of these techniques, including their performance and applicability, is given by
Steffke and Harris (2011). According to the authors, such algorithms may be subdivided
into four main groups on the basis of their detection principles.

(1) Fixed threshold, which uses the data on a single pixel to assess whether the
radiance or temperature is anomalous (i.e. Flynn et al. 2002; Wright et al. 2002).

(2) Contextual, which uses the difference between a pixel’s radiance (or temperature)
and the surrounding pixels to assess the presence of a hot-spot (i.e. Harris et al.
1995, 2001; Harris, Pilger, and Flynn 2002; Higgins and Harris 1997; Kaneko
et al. 2002; Webley et al. 2008; Galindo and Dominguez 2002).

(3) Temporal, which compares a pixel’s radiance (or temperature) with mean values
obtained for the same pixel from time-series of data (i.e. Di Bello et al. 2004;
Pergola, Marchese, and Tramutoli 2004).

(4) Hybrid, which combines two or more of the above principles (i.e. Dean et al.
1998; Dehn, Dean, and Engle 2000; Kervyn et al. 2006; Hirn, Di Bartola, and
Ferrucci 2009; Koeppen, Pilger, and Wright 2011).

In their review, Steffke and Harris (2011) concluded that each algorithm operates well
within the limits and criteria of its design requirement. For example, a global detection
system such as MODVOLC (Flynn et al. 2002; Wright et al. 2002) has a lower efficiency
in detecting hot-spots, but favours the processing of a large amount of data in near real
time. On the other hand, the algorithm based on simple temporal principles (i.e. the RST
technique of Di Bello et al. (2004)) may be more efficient in detecting local small hot-
spots, but requires more complex data processing and is somehow inefficient in providing
a continuous record of persistent, stationary thermal anomalies (Koeppen, Pilger, and
Wright 2011; Steffke and Harris 2011). The efficiency of any hot-spot detection system
may effectively change in regard to the function of the observed volcanic activity.
Effusive eruptions can more easily be detected since they represent volcanic targets
with high surface temperatures and widespread thermal anomalies (lava flows).
Conversely, hot-spot detection over active lava domes is more challenging since these
bodies have smaller planar dimensions and cooler lava surfaces (Wright, Glaze, and
Baloga 2011). Moreover, the persistence of a thermal anomaly is a further complication
for space-based hot-spot detection. For instance, short-lived phenomena (e.g. explosions
or short paroxysms) produce transient thermal signals with a small probability of being
detected. If these events are associated with small heat emitters (i.e. a volcanic vent and/or
vents), they represent critical targets. For these reasons, the detection of ‘strombolian
activity’ from space represents one of the more challenging tasks for satellite-based
infrared systems (e.g. Coppola et al. 2012).

Stromboli is an open-system volcano, located in the Aeolian islands (Southern
Tyrrhenian Sea; Figure 1), is well known for its persistent volcanic activity and is
considered as a reference case for classifying minor to intermediate volcanic eruptions
(e.g. Newhall and Self 1982). Volcanic activity is essentially strombolian, with continuous
explosions and mild eruptions of scoriae, lapilli, ash, and bombs (Rosi, Bertagnini, and
Landi 2000) at summit vents. This activity may be sporadically replaced by lava effusions
and more energetic explosions with the eruption of larger volumes of tephra, named
‘paroxysms’ (Barberi, Rosi, and Sodi 1993).

3404 D. Coppola et al.
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At Stromboli, the climate is temperate with maximum temperatures reaching 36–40°C
during the summer (July) and minimum temperatures of 0–4°C during winter time
(December and January). The rainfall is not abundant and is widely distributed over
about 50–90 days per year, with a peak in the cold season. The month with the lowest
number of rainy days is July, whereas December and January have the highest number (cf.
Laiolo et al. 2012). The sky is clear for 35% of the days in spring, 70% in summer, 50%
in the autumn, and 25% in the winter. Snow has rarely been observed at the summit of the
volcano (924 m asl). Due to its peculiar volcanic activity and temperate climate, Stromboli
volcano may be considered as a natural laboratory for refining infrared remote-sensing
applications.

In this article we describe a new algorithm, specifically developed for hot-spot
detection at Stromboli volcano. Thus, the algorithm is addressed to detect small thermal
anomalies and contains spectral (threshold), spatial (contextual), and temporal principles
compatible with the so-called ‘hybrid’ approach (e.g. Koeppen, Pilger, and Wright 2011).
Here, we analyse more than a decade of MODIS data collected on Stromboli by revisiting
and updating the earlier analyses of Coppola et al. (2012). After investigating the
algorithm performance, we will show how the long-term thermal records may be used
to define distinct thermal regimes that characterize the recent activity of Stromboli.

2. The algorithm

The algorithm uses MODIS level 1b data acquired by NASA’s Terra (launched in
December 1999) and Aqua (launched in May 2002) satellites that normally image
Stromboli volcano four times per day (since May 2002). The entire data set (from
March 2000 to March 2013), consisting of more than 19,000 images, has been analysed
following several main steps. These are: (i) data extraction, (ii) resampling, (iii) definition
of regions of interest (ROIs), (iv) hot-spot detection, and (v) calculation of volcanic
radiative power (VRP).

Figure 1. Location of Stromboli volcano in the Southern Tyrrhenian Sea.

International Journal of Remote Sensing 3405
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2.1. Data extraction from MODIS level 1b granules

The first step is dealing with the extraction of data from the MODIS level 1 granules.
These data consist of the date and time of satellite overpasses, satellite viewing geometry
(zenith and azimuth), the location of each pixel (latitude and longitude), as well as the
digital number (DN) related to the spectral bands of interest.

(1) Reflectivity of band 1 (R1), centred at 0.645 μm (for daytime image only).
(2) Reflectivity of band 2 (R2), centred at 0.858 μm (for daytime image only).
(3) Radiance of band 6 (L6), centred at 1.64 μm (for daytime image only).
(4) Radiance of band 21 (L21), centred at 3.959 μm (low-gain MIR channel).
(5) Radiance of band 22 (L22), centred at 3.959 μm (high-gain MIR channel).
(6) Radiance of band 31 (L31), centred at 11.03 μm (TIR channel).
(7) Radiance of band 32 (L32), centred at 12.02 μm (TIR channel).

The DN of each selected band is first scanned to filter out any missed or ‘corrupted’
datum. According to the MODIS Level 1B Product User’s Guide (Toller, Isaacman, and
Kuyper 2006), this is achieved by eliminating, for each band, all pixels with DN >32,768
(i.e. invalid data values), with the exception of those with DN = 65,533 (saturated values),
used in the subsequent steps.

The georeferenced data are also scanned to remove the bow-tie effect that, at the edge
of the swath, produces ‘scan to scan’ overlapping (Nishihama et al. 1997).

Once the effects of invalid and bow-tie-related pixels have been removed, we use the
conversion coefficients for each selected band (scale and offset) in order to convert the
DN into reflectivity and/or radiance data (for details regarding this step, see the MODIS
Level 1B Product User’s Guide).

Finally, we build up a corrected spectral band centred at 3.959 μm (hereby referred to
as band L21ok) by using the L21 or L22 radiance, depending on band 22 saturation (or not),
respectively.

2.2. Resampling of original data and production of NTI maps

Cropping and resampling of the original Level 1b MODIS data is necessary for two main
reasons, first because high scan angles contribute to the growth of the projected ground
spatial element (up to approximately 10 km2 for scan angles of 55°; Nishihama et al.
1997). This leads the radiance of a potential sub-pixel hot-spot to be integrated over a
variable area, thus introducing a further source of error in estimating its thermal output.
And second, because the hot-spot detection scheme described below requires an image-to-
image registration similar to the application of the RST technique (cf. Di Bello et al. 2004;
Pergola, Marchese, and Tramutoli 2004).

Thus, we cropped and resampled (into an equally spaced 1 km grid) the MODIS Level
1b data which fall within a mask (50 km × 50 km) centred over the summit of Stromboli
volcano (Figure 2(a)). This means that one hot-spot pixel, whose area is 2 km2 in the
original image, becomes two pixels with equal areas of 1 km2 in the resampled image.

Once the radiances data has been resampled we calculated the normalized thermal
index (NTI) for each pixel according to Wright et al. (2002):

NTI ¼ L21ok � L32
L21ok þ L32

: (1)

3406 D. Coppola et al.
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These NTI maps enhance the presence of any sub-pixel hot-spot and represent the
reference matrices for subsequent steps of the algorithm.

2.3. Regions of interest

A key step in the processing flow chart is the definition of three Regions of interest
(ROIs) within the resampled NTI maps. These are centred on the volcano summit (where
strombolian activity is taking place) and are normally concentric (see Figure 2(b)). ROI1
consists of an outer ring (50 km × 50 km) and includes the island of Panarea as well as the
sea surrounding Stromboli. ROI2 represents an intermediate region (15 km × 15 km),
essentially characterized by the sea surrounding the island of Stromboli. Finally, ROI3 (5
km × 5 km) samples the island of Stromboli itself, including the coastlines and small
portions of its near-shore sea.

2.4. Hot-spot detection

The algorithm is based on the characterization of the natural variation of the NTI (seasonal
effect) within each ROI. For example, in Figure 2 we plot the NTI time-series relative to
the night-time pixels of each ROI during 2006. Note that within this plot, thermally
anomalous pixels (hot-spot contaminated) tend to have increased NTI whereas the pre-
sence of thick, cold cloud has the opposite effect and tends to lower their relative values
(negative spikes).

Seasonal variation in NTI is clear in the three regions, although anomalous pixels are
consistent with the presence of hot-spots within ROI3 (Figure 3(a)).

In the following sections we describe the algorithm subdivided for night-time and
daytime data, respectively.

2.4.1. Night-time algorithm

To detect a hot-spot within the night-time images we first defined two fluctuating thresh-
olds (NTIthresh1 and NTIthresh2, respectively) that envelop the natural variation of NTI
within the whole image (including ROI1, ROI2, and ROI3; Figure 2(b)) in the absence of

(a)

50
 k

m

50 km

10 km

50 km

50
 k

m

10 km

16 June 2006 21:00:00
NTI Map

(b)

Figure 2. (a) Example of NTI Map obtained from night-time images (acquired on 16 June 2006
over Stromboli). Note the thermal anomalous pixels (bright pixels) over the summit of the volcano;
(b) Regions of interest (ROIs) defined for the hot-spot detection scheme (see text for explanation).
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thermal anomalies and/or cloud cover. These thresholds are obtained by using the form of
a typical sinusoidal function which can be described by

NTIthresh ¼ A sin
2π
P

t � αð Þ
� �

þ C; (2)

where A is the yearly amplitude of NTI variation, P is the length of each cycle (Π/days), t
is the time of satellite overpass (julian day), α is the phase shift (i.e. the day when the
curve crosses the baseline as it ascend), and C is the baseline, here represented by the
average yearly NTI value.

To set the appropriate parameters for the two thresholds (Equation (2)), it is necessary
to process at least one year of data. Hence, the operator may chose the appropriate values
of A, α, and C by excluding the pixels clearly contaminated by hot-spot and clouds (with

–0.8
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(b)
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Alert1
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Figure 3. (a) NTI time-series for the 2006 night-time data over Stromboli. Each point represents
the NTI of a single pixel. Different colours denote the three distinct ROIs (see the electronic text for
key to colours). The two sinusoidal lines envelop the fluctuations in NTI due to seasonal trends; (b)
the same NTI time-series with the alerts detected by the algorithm overlapped. Alert1 and Alert2 are
obtained using tests 1 and 2, respectively (see the text for explanation).
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NTI values that clearly deviate from the seasonal trend). The values assumed for
Stromboli volcano are summarized in Table 1 with their relative NTI thresholds plotted
in Figure 3.

These two thresholds define three fields on the NTI time-series, where the upper and
lower fields represent the sectors where hot-spot- and cloud-contaminated pixels are
surely present

At this point a pixel is considered ‘alerted’ (hot-spot contaminated) if at least one of
the following tests is successfully passed.

The first test is applied to all the pixels of an image (NTIROIS) and requires that NTI is
higher than NTIthresh1:

Alert1 ¼ NTIROIS >NTIthresh1 ðtest 1Þ:

The second test is applied for detecting exclusively the smallest thermal anomalies of
ROI3 with an NTI between NTIthresh1 and NTIthresh2. This is achieved by comparing the
NTI of each ROI3 pixel (not previously alerted by test 1), with some statistical parameters
retrieved from a selected suite of ‘reference pixels’ appertaining to ROI2. In particular,
these reference pixels (NTIRef2) are the ROI2 pixels which satisfy the following condition:

NTIRef 2¼NTIthresh1 >NTIROI2 >NTIthresh2 ðcondition 2Þ:

Hence according to condition 2, we defined reference pixels as all the pixels of ROI2
which have NTI between the two thresholds previously defined (NTIthresh1 and NTIthresh2).
In other words, NTIRef2 exclusively includes the pixels surrounding Stromboli volcano
that are not contaminated by hot-spots or clouds.

From these reference pixels we thus calculate the maximum value (NTIMax2), mean
(NTIMean2), and standard deviation (NTIstd2), which are the parameters used to define the
second test:

Alert2 ¼ NTIROI3 >NTIMax2ð Þand ½NTIROI3 > ðNTIMean2 þ 3� NTIstd2Þ� ðtest 2Þ:

Therefore, test 2 determines that a pixel of ROI3, in order to be considered hot-spot
contaminated, must have an NTI higher than that obtained by considering the natural
variability of the surrounding region (ROI2).

The total number of ‘alerted’ pixels (Alert) is finally obtained by considering all the
pixels passing test 1 (Alert 1) or test 2 (Alert 2).

Table 1. Parameters used to define the NTI thresholds (Equation (2)).

Parameter Unit NTIthresh1 NTIthresh2 NTIthresh3

A [NTI variation] adimensional 0.02 0.02 0.07
P [cycle length] day−1 π/183 π/183 π/183
α [phase shift] day 121 121 106
C [NTI baseline] adimensional −0.865 −0.915 −0.82
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2.4.2. Daytime algorithm

The detection of hot-spot during daytime overpasses is much more complicated, mainly
for two reasons, first because radiance in the MIR channel (L21ok) is particularly affected
by solar reflection effects (Wright et al. 2002). Solar reflection perturbs NTI as well,
especially for pixels sampling reflective surfaces (i.e. water, snow, sand, cloud, etc.), thus
causing an increase in its value due to the reflected solar energy (Wright et al. 2002); and
second, because during daytime solar heating may effectively enhance the contrast
between vegetated and non-vegetated areas. This will produce apparently higher NTI
values over volcanic (non-vegetated) areas when compared with the surrounding (vege-
tated) areas. These intrinsic effects may cause a problematic discrimination of genuine
volcanic hot-spots, since during daytime all pixels in non-vegetated areas have NTI values
that naturally exceed the surrounding background.

In the attempt to reduce the effects of solar reflection, we apply a correction to L21ok

radiance (on the resulting NTI) based on the co-registered radiance recorded on band 6
(L6). Following Wright et al. (2004) for daytime data, we thus corrected the radiance at 4
μm (L21ok) by subtracting 4.26% of the energy radiated at 1.6 μm (L6) (assumed to be the
solar reflected component). The corrected NTI thus becomes

NTIcorr ¼ ðL21ok � ð0:0426 � L6ÞÞ � L32
ðL21ok � ð0:0426 � L6ÞÞ þ L32

(3)

Comparison between the uncorrected and corrected NTI, relative to the 2006 daytime
data, is shown in Figure 3. In Figure 4(a), the uncorrected NTI shows an extremely noisy
signal in all ROIs, overprinted on the typical seasonal trend. The noise introduced by solar
reflection (represented by spikes) is particularly evident on ROI1 and ROI3, both related to
the reflective sea surface. On the other hand, the application of Equation (3) (solar
correction) produces a clear attenuation of these signals, enhancing the filtered seasonal
pattern. Notably, the seasonal trend and the absolute values of the NTIcorr relative to ROI1
and ROI2 (Figure 4(b)) become very similar to those recorded during night-time over-
passes (compare Figures 3(b) and 4(b)). This similarity suggests that the trend recorded by
NTIcorr is almost exclusively affected by seasonal variation in sea surface temperature
(thermal inertia of the sea makes diurnal changes in temperature less pronounced than on
land) and increases our confidence that solar contamination has been removed following
application of Equation (3).

This is also confirmed by looking at the NTIcorr trend of ROI3, which from April to
October (i.e. during the hot season) is ‘diverging’ from ROI1 and ROI2. Such a decou-
pling can be explained by increase in the temperature gradient occurring between the
summit, non-vegetated, volcanic areas (essentially affected by the solar heating), and the
surroundings.

We therefore define a single daytime NTI threshold (NTIthresh3) that allows us
to discriminate between solar heating effects and the presence of a genuine volcanic
hot-spot. As previously, we used Equation (2) to describe the seasonal NTIthresh3 trend
(Figure 4(b)). The parameters for calculating NTIthresh3 are summarized in Table 1. We
thus flag a thermal alert whenever a daytime pixel satisfies the following test:

Alert3 ¼ NTIROIS > NTIthresh3 ðtest 3Þ:

3410 D. Coppola et al.
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As will be discussed later, the capability of detecting hot-spots during daytime is much
reduced when compared with the application of the night-time algorithm. This results in
poor detection rates during periods of low strombolian activity. However, during periods
of more vigorous thermal activity, as well as during effusive eruptions, the results of the
daytime algorithm will strongly integrate the dataset recorded during night-time over-
passes (cf. Tables 2 and 3).

2.5. Volcanic radiative power

When a pixels are flagged as alert, the ‘above background’ at 4 μm radiance (ΔL4PIX) is
calculated as

ΔL4PIX ¼ L4alert � L4bk (4)
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Figure 4. (a) NTI time-series relative to the 2006 daytime data over Stromboli. Each point
represents the NTI of a pixel. The different colours denote the three distinct ROIs (see the electronic
version for colour key); (b) NTI time-series corrected for solar reflection according to Equation (3).
The alerts detected by the daytime algorithm (obtained using test 3) are overlapped.
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where L4alert is the 4 μm radiance of the alerted pixel/s and L4bk is the background
radiance at 4 μm. L4bk is estimated from the arithmetic mean of all pixels surrounding
the alerted one (or around the alerted cluster) not contaminated by clouds. Accordingly,
cloudy pixels are detected using the method described by Giglio et al. (2003):

cloud ¼ BT11 < 255½ � ðcondition 4; for night-time dataÞ

Table 2. Summary of the night-time alerts detected manually (‘Manual’) and automatically by the
Algorithm.

Overpasses Manuala Algorithma Correct1 Missed1 False2

Year no. no. (%) no. (%) no. (%) no. (%) no. (%)

2000 339 37 (10.9) 32 (9.4) 25 (67.6) 12 (32.4) 7 (21.8)
2001 406 14 (3.4) 16 (3.9) 10 (71.4) 4 (28.6) 6 (37.5)
2002 597 72 (12.1) 54 (9.0) 50 (69.4) 22 (30.6) 4 (7.4)
2003 818 386 (47.2) 370 (45.2) 364 (94.3) 22 (5.7) 6 (1.6)
2004 833 77 (9.2) 46 (5.5) 45 (58.4) 32 (41.6) 1 (2.2)
2005 836 70 (8.4) 43 (5.1) 39 (55.7) 31 (44.3) 4 (9.3)
2006 819 124 (15.1) 99 (12.1) 91 (73.4) 33 (26.6) 8 (8.1)
2007 822 197 (24.0) 179 (21.8) 175 (88.8) 22 (11.2) 4 (2.2)
2008 827 166 (20.1) 127 (15.4) 125 (75.3) 41 (24.7) 2 (1.6)
2009 835 199 (23.8) 140 (16.8) 140 (70.3) 59 (29.6) 0 (0.00)
2010 836 103 (12.3) 84 (10.0) 83 (80.6) 20 (19.4) 1 (1.2)
2011 837 179 (21.4) 142 (17.0) 138 (77.1) 41 (22.9) 4 (2.8)
2012 830 155 (18.7) 113 (13.6) 110 (71.0) 45 (29.0) 3 (2.6)
TOTAL 9635 1779 (18.5) 1445 (15.0) 1395 (78.4) 384 (21.6) 50 (3.5)

Notes: aPercentages are calculated as the number of detections over the number of the overpasses.
1Percentages are calculated from the fractions of ‘Correct’ and ‘Missed’ detections, with respect to ‘Manual’
detections.
2Percentages are calculated from the fraction of ‘False’ detections with respect to algorithm detections.

Table 3. Summary of daytime thermal alerts detected by the algorithm.

Year
Overpasses

no.

Algorithm

no. %a

2000 320 3 0.9
2001 397 2 0.5
2002 574 13 2.3
2003 809 172 21.3
2004 813 11 1.4
2005 842 5 0.6
2006 830 11 1.3
2007 836 48 5.7
2008 842 11 1.3
2009 848 27 3.2
2010 821 15 1.8
2011 823 28 3.4
2012 844 18 2.1
TOTAL 9599 364 3.8

Note: aPercentages are calculated as the number of detections over the number of
the overpasses.
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or

cloud ¼ R1 þ R2ð Þ > 0:9½ �or BT11 < 245½ �or R1 þ R2ð Þ> 0:9ð Þand BT11 < 265ð Þ½ �
ðcondition 5;  for daytime dataÞ;

where BT11 is the brightness temperature (in K) of band 11 (retrieved from L11 using
Plank’s function), and R1 and R2 are the reflectivity of bands 1 and 2, respectively.

Following Wooster, Zhukov, and Oertel (2003), we calculated the volcanic radiative
power (VRP in W) by means of the MIR method. Hence, for any individual alerted pixels,
VRPPIX is calculated as

VRPPIX ¼ 18:9� APIX � ΔL4PIX (5)

where APIX is the pixel size (1 km2 for the resampled MODIS pixels).
When two or more pixels (a cluster of pixels) are alerted, total radiative power is

finally calculated as the sum of the single VRPPIX:

VRP ¼
Xnalert
1

VRPPIX (6)

where nalert is the number of alerted pixels.

3. Algorithm performance

Due to the differences between night-time and daytime alert detection procedures, the two
algorithms must be considered separately when testing their performance.

To test the performance of the night-time algorithm, we followed the methodology of
Steffke and Harris (2011) and we visually inspected all NTI images in order to identify the
presence of a real hot-spot (‘Manual’ alerts, Table 2). These hand-picked images were
used as a reference benchmark for comparing these results with those obtained by using
the algorithm (see algorithm alerts in Table 2). This is computed in terms of how many
automatic detections are effectively consistent with those manually identified (cf.
‘Correct’ in Table 2). Hence, the difference between the ‘Manual’ and the ‘Correct’
detections represents ‘Missed’ detections (Table 2). Finally, when the algorithm detected
a hot-spot that was not validated by visual inspection, we classified it as a ‘False’
detection (cf. Table 2).

The results of this comparison are shown in Table 2, where the total number of
detections (and their relative percentage) are subdivided year by year. In addition, in
Figure 5 we also show a typical NTI map for each detection case (Correct, Missed, and
False detections).

Overall comparison suggests that the night-time algorithm performs correctly in ~79%
of ‘Manual’ detections, with ~22% of ‘Missed’ cases and less than 4% of ‘False’ alerts
(Table 2). Notably, all the ‘False’ detections consist of small-amplitude thermal anomalies
(i.e. VRP <2 MW), and they could be easily eliminated by setting a cutoff at 2 MW.
However, such a cutoff will also produce a strong reduction of the efficiency of the
algorithm, with the ‘Correct’ detections decreasing from ~79% to less than 59%. Since
most of the ‘False’ detections are low-amplitude ones, we preferred to keep some false
alerts than missing several real hot-spots.
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The excellent performance of the night-time algorithm is also evident from compar-
ison of the frequency of alerted detections retrieved both manually (falertManual = Nalert,

Manual/NOverpasses) and automatically (falert,algorithm = Nalert,,algorithm/NOverpasses) (Figure 6
(a)). The best linear fit plots close to the 1:1 ratio (with R2 = 0.97), suggesting excellent
agreement over the whole range of falert. However, the percentage of ‘Correct’ detections
seems to be affected by the level of volcanic activity (Figure 6(b)), which is basically
correlated with the frequency of detection (falert,algorithm). This means that the algorithm is
most efficient during effusive phases, whereas it is lower during periods of weak to
moderate strombolian activity. From Table 2 it is evident that the number of ‘False’
detections it is not correlated with the level of activity and remains typically around four
cases per year.

The overall effectiveness of the night-time algorithm can finally be compared with the
results obtained by Coppola et al. (2012), which analysed night-time MODIS data at
Stromboli volcano between 2000 and 2012 with a different algorithm. In our previous
article (Coppola et al. 2012), we found 743 alerts during 9635 overpasses, with an average
frequency of alert detection (falert = Nalert/NOverpasses) of 8.5%. Over the same period the
new algorithm (Section 2.4.1) detected 1332 alerts (falert = 15%; Table 2), thus doubling
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Figure 5. (a) Zoomed view of selected night-time NTI map (ROI2 and ROI3 only) recorded on 12
February 2006; any anomaly visible over Stromboli volcano and the island appears cooler than the
surrounding area. Three other examples of night-time NTI maps represent the following cases:
Correct (b), Missed (c), and False (d) detections (resulting from the night-time algorithm). The
squares mark the locations of the Correct (red), Missed (blue), and False (white) pixels.
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the detection capability (particularly for small-amplitude thermal anomalies) with respect
to our previous algorithm (Coppola et al. 2012). For comparison, during 2000–2012 at
Stromboli volcano, the MODVOLC system (which uses a simple fixed threshold)
detected 442 night-time alerts (falert = 4.5%), half of these being identified during effusive
periods of activity.

Testing the performance of the daytime algorithm is more problematic, due to the
difficulty in discriminating ‘false’ and ‘real’ hot-spots using visual inspection of each
image. As previously discussed, this difficulty arises from solar heating effects, so that
discriminating a genuine volcanic hot-spot from a pixel ‘naturally’ hotter than its sur-
roundings is somewhat challenging. This is particularly true for low-amplitude thermal
anomalies, whose radiance in the MIR channel may exceed their background values to a
moderate degree. Therefore, there are no effective benchmarks for testing the daytime
algorithm despite visual data inspection. However, this procedure is useful by visual
exclusion of the presence of evident ‘False’ detections.

An alternative approach to evaluate the daytime algorithm takes into account the
night-time detections as a reference thermal signal. We thus plotted separately the VRP
retrieved from night-time and daytime data (Figure 7). In particular, we compared the
results for a period of high thermal emissions (the first seven months of effusive activity
in 2003; Figure 7(a)) with those obtained for one year of lower thermal emissions
(characterized by low to mild strombolian activity during 2009; Figure 7(b)). In both
the cases, the trends of thermal outputs confirm an excellent agreement between the two
datasets (daytime and night-time). Notably, during the effusive phase the daytime algo-
rithm performed very well in terms of mean VRP (the average value of VRP measure-
ments), as well as in tracking the general trend of the eruptive sequence (Figure 7(a)).
However, the number of daytime detections was almost half that of night-time detections,
probably due to the lower efficiency of the algorithm in detecting small thermal
anomalies.

The lower sensitivity of the daytime algorithm is also evident by comparing the
dataset recorded during one year of typical strombolian activity (i.e. 2009; Figure 7(b)).
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Figure 6. (a) Relationship between the frequency of alert detection retrieved manually (falertManual)
and automatically (falert,algorithm); (b) percentage of ‘Correct’ detection as a function of falert,algorithm.
The algorithm performs almost optimally during the period characterized by falert,algorithm >0.5.
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The general trend of daytime data is still consistent with the fluctuations of thermal
outputs recorded during night-time. However, the number of alert detections obtained
by applying the daytime algorithm drastically decreased. Again these results demonstrate
the limits of the daytime algorithm, which is unable to detect smaller hot-spots. In fact the
daytime dataset consist of 364 alerts over a total of 9599 overpasses, which gives a mean
falert of 4% (Table 3). This compares with a frequency of alert detection of 15% for night-
time images, thus enhancing the difference in efficiency of hot-spot detection between the
two algorithms.

4. Statistical analysis of VRP and thermal regimes

We here focus our analysis on the night-time dataset for statistical reasons. This dataset
consists of a large number of observations (1445 data) and shows a higher efficiency in
detecting small thermal anomalies.

As a whole, the entire night-time dataset indicates that VRP ranges from <1 MW to
more than 3000 MW, thus spanning over three orders of magnitude. Particularly, its
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Figure 7. Comparison of thermal outputs during 2003 (a) and 2009 (b); the night-time algorithm
(blue) and the daytime algorithm (red) are reported.
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frequency distribution is extremely peaked and skewed toward higher values, as shown in
Figure 8(a). A useful way to visualize the shape and properties of such kind of positive,
asymmetric distributions consists in transforming the original data (VRP) into log-trans-
formed data (log[VRP]). This procedure was previously used to identify distinct thermal
regimes at Stromboli and Nyamuragira volcanoes (Coppola et al. 2012, Coppola and
Cigolini 2013).

Our new dataset for Stromboli volcano (log[VRP] records) reveals the presence of two
main regimes that intersect around 30 MW (logVRP = 7.5; Figure 8(b)). Similarly, Coppola
et al. (2012) found that a VRP of ~50 MW marks a change in the eruptive style of
Stromboli, basically identified by the transition from strombolian-dominated to effusive-
dominated activity. The small discrepancy between the two thresholds is probably due to the
higher sensibility of the new algorithm, which is able to detect a larger number of small
thermal anomalies. However our analysis remains consistent with those previously provided
by Coppola et al. (2012) and confirms the presence, at Stromboli volcano, of two main
thermal regimes (strombolian and effusive) overlapping at 30–50 MW.

Considering the modal value of each regime (the most frequent value), we here
estimate that strombolian and effusive activities are characterized by a typical VRP of 4
MW (log[VRP] = 6.6) and 100 MW (log[VRP] = 8), respectively. Based on this simple
relation, we may roughly infer that the energy radiated during 25 years of strombolian
activity is almost equivalent to that realized during one year of effusive activity.

A closer investigation of VRP distribution can be achieved by plotting the log-trans-
formed data (log[VRP]) within a normal probability plot (Figure 9). Here, a population of
events (or observations) log-normally distributed follows a straight line, as showed by the
black dashed line in Figure 8. Although most of the dataset follows approximately this kind
of distribution, we suggest that some minor inflection points, separating groups of data, may
be regarded as change points indicative of distinct radiating regimes. The inferred inflection
points appear around 1, 10, 100, and 1000 MW and define five main radiating regimes
hereby named Very Low, Low, Moderate, High, and Very High (Figure 9).

The ‘Very Low’ radiating regime (VRP < 1 MW) represents about 17% of the data and
includes essentially most of the false alerts detected by the algorithm. However, in 75% of

Figure 8. (a) Frequency histogram of VRP data recorded during 2000–2013 (night-time only); (b)
frequency histogram of log-transformed data log[VRP] enhancing the presence of two main regimes
associated with strombolian and effusive activity, respectively. These two regimes intersect at about
30 MW (log[VRP]= 7.5).
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cases the detection of a Very Low regime represents a genuine hot-spot which may be
associated with the presence of a single vent (with a radius of ~1 m and temperature of
950°C) within the summit area of Stromboli.

The ‘Low’ radiating regime (1 MW <VRP <10 MW) is the most represented group,
comprising over 47% of the data. This regime consists of bulk thermal emissions
associated with the ‘typical’ strombolian activity typically characterized by persistent
degassing and frequent explosive events occurring at one to 15 open vents (Harris and
Stevenson 1997).

This regime gradually shifts toward the ‘Moderate’ radiating regime (10
MW < VRP < 100 MW) that is represented by about 25% of the data. The ‘Moderate’
regime is typical of periods with more vigorous strombolian activity which may evolve
into short periods of sustained spattering and/or fountaining, or eventually summit over-
flows (Coppola et al. 2012). We regard the ‘Moderate’ regime as a transitional state
(between strombolian and effusive) characterized by the uprising of the magma column
that feeds the active vents. Eventually this regime may prelude the transition into a pure
effusive phase (flank eruption) as observed for a few days before the 2002–2003 and 2007
eruptions (Coppola et al. 2012).

The evolution from ‘Moderate’ to ‘High’ thermal regime marks a clear change in the
eruptive style of Stromboli, leading to lava effusion (Figure 9). The ‘High’ radiating
regime (100 MW < VRP < 1000 MW) is represented by 11% of the data and it has been

Figure 9. Probability plot of log[VRP]. Black dashed line represents the best fit regression by
assuming a pure log-normal distribution. The vertical lines represent the inferred inflection points
used to define five distinct thermal regimes: Very Low, Low, Moderate, High, and Very High. Note
that the two VRPs recorded during the onset of the effusive flank eruption (violet stars) are the only
‘Very High’ values detected between 2000 and 2013. The transition between strombolian- and
effusive-dominated activity probably occurs for log[VRP] of 30–50 MW in the middle of the
Moderate regime.
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observed exclusively during periods of lava effusion. Included in this regime are two
effusive flank eruptions, occurring in 2002–2003 and 2007, as well as all the major
summit overflows observed between 2008 and 2012 (black arrows in Figure 10). Periods
of mild lava effusion (i.e. <1 m3 s−1 ), as for example the second part of the 2002–2003
eruption and the short-lived summit overflows that occurred between 2008 and 2012
(Calvari et al. 2005; Ripepe et al. 2005, INGV Report 2011-08-02), were generally
characterized by VRP between 100 MW and 400 MW (Figure 10). Conversely, during
periods of more vigorous lava effusion (such as the period January to mid-February 2003
and the 2007 eruption), the recorded VRP was typically higher than 400 MW, probably in
agreement with discharge rates of 1–5 m3 s−1 (Marsella et al. 2009; Calvari et al. 2010).

Finally, the ‘Very High’ thermal regime (VRP >1000 MW) has been recorded only
twice during the last 14 years – on 28 December 2002 and 27 February 2007 (Figure 9).
In particular, these cases, representing only 0.1% of the data, were recorded a few hours
after the beginning of the two major flank eruptions and mark the onset of the main
effusive phases. In these cases, lava discharge rates were over 10 m3 s−1 (Calvari et al.
2005; Neri and Lanzafame 2008) and were accompanied the initial and very fast emplace-
ment of lava flows along the ‘Sciara del Fuoco’.

Based on this classification, we thus infer that the detection of VRP > 100 MW is a
clear evidence of ongoing effusive activity at Stromboli volcano. Nonetheless, we also
suggest that the detection of a ‘Very High’ thermal anomaly (VRP > 1000 MW) will
probably indicate the onset of a new flank eruption.

5. Thermal versus explosive levels at Stromboli

The complete time-series of VRP recorded between 2000 and 2012 is shown in Figure 10
(night-time data only), with thermal regimes denoted by horizontal dashed lines.

Coppola et al. (2012) reported that all detections above 50 MW were coeval with
major episodes of spattering and eventually lava overflows. However, the whole cross-
validation of the thermal regimes described above is challenging due to limited field
observations and systematic reports. To overcome these problems and to better understand
the thermal regimes and their bearing on volcanic activity levels, it is worth comparing
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Figure 10. VRP time-series (on log scale) recorded at Stromboli between 2000 and 2013. Different
colours denote the thermal regimes previously defined (see the text for explanation). Grey bars
denote documented periods of effusive activity. The vertical arrows correspond to major summit
overflows.
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thermal MODIS outputs with the explosive levels recorded (on a daily basis since 2005)
by the Laboratorio di Geofisica Sperimentale of the University of Florence (cf. http://lgs.
geo.unifi.it/) and sent to the Italian Civil Protection Department (DPC). The explosive
level is based on a dataset of several geophysical parameters (seismic, infrasound, number
of explosions, deformation) recorded for over a decade: it is subdivided into five levels,
representing an average assessment of the explosive intensity (i.e. 0 – Not determined; 1 –
Low; 2 – Moderate; 3 – High; 4 – Very high).

The time-series reported in Figure 11 summarizes the thermal and explosive levels
(averaged on a weekly basis) recorded between 2005 and 2012, a period that offers an
exhaustive example of the variable eruptive styles occurring recently at Stromboli
volcano.

For example, during 2005–2006 the activity was typical for Stromboli, with ejection
of incandescent ash, lapilli, and scoriae from the summit vents. Although, minor oscilla-
tion of the magmatic column has been invoked to explain fluctuating thermal levels
(Coppola et al. 2012), there are no records of effusive activity during this time. This
almost steady activity was interrupted in February 2007 when a new effusive flank
eruption took place. Rapid magma drainage, linked to the opening of a lateral, low-
altitude vent, caused the collapse of the central conduit (including the crater area Neri and
Lanzafame (2008)) and the sharp cessation of explosive activity at the summit (Ripepe
et al. 2009). Lava effusion from the flank persisted for more than one month and was
accompanied by a general deflation of the whole volcanic edifice (Bonaccorso et al.
2009). Strombolian activity resumed only 3 months after the end of lava effusion and
gradually reached pre-eruptive levels, building new scoria and spattern cones within the
collapsed crater area. Different to the pre-2007 eruptive period, between 2008 and 2012
typical strombolian activity was recurrently punctuated by episodic summit overflows,
leading to several intra- and extra-crater lava flows (Coppola et al. 2012). These episodes
were typically short-lived (from a few hours to several days at most) and were eventually
associated with pressurization of the central conduit (Nolesini et al. 2013; Intrieri et al.
2013), coupled with increasing spattering and lava fountaining at the summit vents
(Coppola et al. 2012; Smithsonian Institution 2011).

Figure 11. Thermal activity levels (left axis; red line) and explosive levels (right axis; grey bars)
recorded between 2005 and 2012. The different colour scales on the two axes denote thermal
regimes (obtained by MODIS, left hand-side) and explosive regimes (right hand-side, evaluated by
the Laboratorio di Geofisica Sperimentale of University of Florence; http://lgs.geo.unifi.it/) based on
multiparametric recordings (seismic, infrasonic, number of explosions, deformation). The black
arrows indicate the timing of major summit overflows. The occurrence of the February 2007
eruption is marked by a sharp increase in thermal levels coeval with a decrease in explosive activity.
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Although the short-term variations in activity occurring at Stromboli volcano are
clearly smoothed on a weekly basis, the comparison shown in Figure 11 suggests that
different periods, or different types of activity, show rather peculiar links between thermal
and explosive levels.

This is particularly evident by plotting thermal versus explosive levels, as shown in
Figure 12. Here, several distinct fields may be visualized: each characterizes a specific
type of volcanic activity or eruptive period. For instance, the onset of the 2007 effusive
eruption (star in Figure 12) was characterized by ‘very high’ thermal and explosive levels.
Conversely, the subsequent flank effusion (red triangles) was characterized by ‘high’
thermal levels coeval with ‘low’ explosive activity. As mentioned above, this specific
relationship may probably be attributed to the sharp cessation of explosive activity due to
the propagation of an effusive fracture down to the central part of the NE flank; this event
drained lava out of the crater area, causing high thermal emission and was accompanied
by a sharp decrease in geophysical and geochemical parameters (e.g. Ripepe et al. 2009;
Cigolini et al. 2013). Conversely, the short-lived effusions associated with summit over-
flows that occurred between 2008 and 2012 (bold grey circles in Figure 11) are char-
acterized by a different relationship. Here, the ‘high’ thermal levels, associated with the
effusion of lava, are coupled with a ‘moderate–high’ explosive activity, thus suggesting

Figure 12. Scatter-plot of explosive versus thermal levels of activity recorded at Stromboli
between 2005 and 2012. Note how different kinds of activity (shown in the legend) fall within
different fields (see text for details).
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that summit outflows are generally accompanied by explosive activity. Field observers
effectively reported that during these episodes, intra- and, less frequently, extra-crater lava
flows were often associated with increased spattering activity (Smithsonian Institution,
2011), which is in agreement with our thermal versus explosive relationship.

Finally, the whole dataset suggests that the ratio between thermal and explosive levels
was somehow different during the 2005–2006 (pre-eruption) and 2008–2012 (post-erup-
tion) periods (black squares and grey circles, respectively). Notably, after the 2007
eruption the thermal level was generally higher than before the eruption, despite the
explosive activity fluctuating almost within the same range of levels (Figure 11). In our
view, this is a clear indication that the uprising of magma, and its storage at shallow
levels, was markedly perturbed by the February 2007 eruption. We thus suggest that the
coupled analysis of thermal and explosive levels may provide new insights into the long-
term eruptive dynamic of Stromboli volcano.

6. Conclusions

We have developed a new algorithm which specifically addresses the detection of small
hot-spots associated with thermal anomalies typical of strombolian activity. In particular,
the new algorithm was developed on the basis of the constant siting of thermal anomalies
that substantially coincides with the active summit vents. Moreover, it includes principles
of contextual, temporal, and spectral hot-spot detection approaches/methods. The applica-
tion of this algorithm in analysing Stromboli activity is very efficient (up to 95% of
correct alerts) and reduces the rate of false alerts (typically around four per year),
especially when applied to night-time data. The high efficiency in tracking small hot-
spots (<1 MW), coupled with the analysis of MODIS-derived thermal records for over a
decade, gave us the opportunity to build up an exhaustive dataset of volcanic radiative
power (VRP) measurements. Notably, the frequency distribution and probability plot of
these thermal records allows the definition of distinct radiating regimes which are closely
associated with different levels of volcanic activity. We thus suggest that the implementa-
tion of a near real-time processing scheme allow us to discriminate, on the basis of
satellite-based thermal monitoring, changes in strombolian activity: such as, for instance,
the occurrence of summit overflows and the possible onset of lateral flank eruptions.
Finally, we trust that a studious comparison of retrieved thermal outputs to other geophy-
sical and geochemical parameters is an additional key factor for better understanding the
eruptive dynamics of Stromboli. Similar approaches could be taken in monitoring other
persistently active volcanoes.
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Appendix

List of parameters and specific definitions used in the algorithm

Parameter Definition Explanation

ROIs Region of Inerest (s=1,2 or 3)
NTI Normalized Thermal Index Equation (1) applied pixel per pixel on

nighttime images
NTIcorr Normalized Thermal Index corrected

for solar reflection
Equation (3) applied pixel per pixel on
daytime images

NTIROIs NTI of pixels within ROIs Equation (1) applied to the pixels of ROIs
NTIRef2 Reference pixels of ROI2 Pixels of ROI2 satisfiyng Condition 2
NTIMax2 Maximum NTI of NTIRef2
NTIMean2 Mean NTI of NTIRef2
NTIStd2 Standard deviation of NTIRef2
NTIthres1 Empirical upper NTI threshold

(nighttime algorithm)
Equation (2) with parameters settled in Table 1

NTIthres2 Empirical lower NTI threshold
(nighttime algorithm)

Equation (2) with parameters settled in Table 1

NTIthres3 Empirical upper NTI threshold (daytime
algorithm)

Equation (2) with parameters settled in Table 1

Alert1 Alerted pixel(s) Pixel(s) flagged as ‘alert’ using Test 1
(nighttime algorithm)

Alert2 Alerted pixel(s) Pixel(s) flagged as ‘alert’ using Test 2
(nighttime algorithm)

Alert3 Alerted pixel(s) Pixel(s) flagged as ‘alert’ using Test 3
(daytime algorithm)

cloud Cloudy pixel(s) Pixel(s) considered as ‘cloudy’ using
Conditions 3 and 4

L4alert MIR radiance (at 4 mm) of alerted pixel
(s)

L4bk Backgound MIR radiance (at 4 mm) of
alerted pixel(s)

arithmetic mean of all the pixels surrounding
the alerted one (or around the alerted
cluster) not contaminated by clouds

ΔL4PIX ‘Above background’ MIR radiance of
alerted pixel(s)

Equation (4)

VRPPIX Volcanic Radiative Power of alerted
pixel(s)

Equation (5)
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