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A complete set up of optimal process conditions for an effective colloidal lithography/catalyst assisted
MOCVD process integration is presented. It mainly focuses on the determination of the deposition

Keywords: temperature threshold for ZnO Metal-Organic Chemical Vapour Deposition (MOCVD) as well as the

Zn0 concentration of metal-organic silver (Ag) catalyst. Indeed, the optimization of such process parameters

;atalysF allows to tailor the ZnO film morphology in order to make the colloidal lithography/catalyst assisted MOCVD
anowires
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approach a valuable bottom up method to fabricate bi-dimensional ordered ZnO nanohole arrays.
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1. Introduction

ZnO is a multifunctional material having intriguing semiconduct-
ing, optical, ferroelectric, piezoelectric, chemical and biochemical
properties for a wide range of novel applications [1,2]. In particular
ZnO nanowires and nanorods represent spatially controlled, highly
functional nanostructures having remarkable physical and chemical
properties [3-6].

ZnO nanowires can be produced using different metal catalysts
and the metal selection is crucial to achieve the desired nanowire
morphology and to avoid any potential detrimental contamination
[7]. A catalyst particle deposited on a substrate acts as a preferential
site for vapour absorption of the desired source material. As the source
material is absorbed into the catalyst and the catalyst particle
becomes supersaturated, the excess source material precipitates out
and a 1D nanostructure grows [8]. Different catalysts can be used [9-11],
Au being the most used for ZnO nanowire growth [12,13]. In fact, the use
of Ag as an alternative catalyst has the drawback of temperature
limitation (up to 500 °C) related to fast Ag oxidation which results in
low-quality nanowires [8]. For this reason Ag has been much less
explored as a catalyst for the growth of ZnO nanostructures.

On the other hand, the surface nanostructuring of metal oxide
films in two-dimensional (2D) porous substrates is an intriguing
strategy for various applications including microelectronics, sensing,
catalysis, optics and biomedical science [14,15].
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In this context, nanosphere lithography is emerging as an effective
bottom up and flexible approach where self-assembled 2D colloidal
nanoparticles [16] act as template or mask for producing 2D regular
and nearly homogenous arrays of the desired materials [17]. Recently
we reported on the fabrication of two-dimensional periodic ZnO
arrays by a hybrid approach of colloidal lithography and MOCVD,
based on silver catalyst-controlled ZnO growth [18].

In this paper we focus on optimization of experimental set up with
a particular effort dedicated to study the MOCVD temperature
deposition threshold and the relationship between initial concentra-
tions of silver catalyst metal-organic precursor and ZnO deposition
process parameters (deposition temperature and time), in order to
tailor the morphology of ZnO films.

X-ray photoelectron spectroscopy and atomic force microscopy
analyses are used as valuable methods to define the ZnO deposition
temperature threshold, in terms of both thickness uniformity and film
composition. Moreover, the scanning electron microscopy analyses
integrate this study by evidencing the relationship between the silver
catalyst concentration and the ZnO morphological control. The
obtained results allow to set up the optimal experimental conditions
for an effective colloidal lithography/catalyst assisted MOCVD process
integration, in order to fabricate bi-dimensional ordered ZnO nano-
hole arrays.

2. Experimental

ZnO depositions on unpatterned or patterned (via colloidal
lithography) silicon substrates have been performed in a hot wall
tubular reactor, using a diamine (N,N,N’,N’-tetramethylethylenedia-
mine) adduct of zinc bis-2 thenoyl-trifluoroacetonate [Zn(tta),-tmeda]
[22]. Deposition conditions have been optimized through evaluation of
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Fig. 1. AFM images of bare silicon substrate, before (a) and after ZnO thin film depositions at 300 °C, 40 min (b) and 400 °C, 5 min (c).

different growth temperatures, (ranging from 250° to 600 °C) and times
(ranging from 5 min to 1 h).

Ag(hfa)-tetraglyme (Hhfa 1,1,1,5,5,5-hexafluoro-2,4-pentanedione;
tetraglyme 2,5,8,11,14-pentaoxatetradecane) precursor, whose synthe-
sis has been reported elsewhere [19,20], has been dissolved in
Tetrahydrofuran (THF). The obtained solutions, having 0.1 M and
0.01 M concentrations, have been drop casted either on unpatterned
or patterned silicon substrates, previously dipped in HF (7:1 HF/H,0
dilution, 1 min dipping time). Patterned silicon substrates have been
obtained by dewetting driven self-assembly of polystyrene (PS)
nanoparticles into close packed hexagonal arrays [21].

ZnO has been deposited by MOCVD either on silicon and
unpatterned (Ag(hfa)tetraglyme initial concentrations of 0.1 M and
0.01 M) or patterned (Ag(hfa)tetraglyme initial concentration of
0.1 M) catalyst layers. Ar (150 sccm) and O, (150 sccm) have been
used as carrier and reactive gas respectively.

The X-ray photoelectron experiments (XPS) have been carried out
with a base pressure of 2x 10~ ' Torr using a PHI ESCA/SAM 5600
Multy technique spectrometer. A monochromatic Al K, radiation
source (hv=1486.6 eV) has been used. The surface analysis of ZnO
films has been conducted by acquiring both survey and narrow region
scans at pass energies respectively of 187 eV and 11 eV, with an
incremental step size of 1eV for survey scans and 0.05 eV for the
narrow scans, and a 0.8 mm slit width. Spectra have been acquired at a
takeoff angle of 45° with respect to the samples surface. The samples
have been sufficiently conductives that it has been not necessary to
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Fig. 2. SEM image (scale bar = 1 micron) of ZnO film deposited on Si at 400 °C, 5 min.

supply electrons for charge compensation. The XPS signals have been
analysed by using a peak synthesis program in which a nonlinear
background is assumed and the fitting peaks of the experimental
curve have been defined by a combination of gaussian (80%) and
lorentzian (20%) distributions. The atomic compositions have been
evaluated using sensitivity factors as provided by F V5.4A software.

Film surface morphologies have been investigated using a LEO Supra
55VP field emission gun scanning electron microscope (FEG-SEM).

Atomic force microscopy (AFM) images have been obtained in
high amplitude tapping mode in air with an NT-MTD instrument.
Golden silicon probes (NT-MTD) with a nominal resonant frequency
of 190-325 kHz have been employed.

3. Results and discussion

In order to identify the deposition temperature threshold, ZnO thin
films have been deposited at low temperatures (below 450 °C) on
unpatterned silicon substrates. The AFM images (Fig. 1a-b) show the
film morphology of ZnO films grown respectively at 300 °C (for
40 min, Fig. 1b) and 400 °C (for 5 min, Fig. 1c) in comparison with a
bare silicon substrate (Fig. 1a). For both deposition conditions, it is
evident that, notwithstanding the low temperatures used, the ZnO
thin films are successfully grown on the substrates. The morphology
of 300 °C, 40 m (Fig. 1b) deposited films clearly presents spherical
grains, having dimensions of about 50 nm. The related overall surface
roughness (Rq) is peaked at ~15 nm. The film deposited at 400 °C,
5min (Fig. 1b) is characterised by a smoother surface (~12 nm).
Therefore, we deduce that the latter film can be likely constituted by a
continuous layer, with isolated large grains, as better visible in the
related SEM image (Fig. 2). It is worthy to note that the AFM analysis
(not shown) of ZnO deposited on silicon substrates at 250 °C, reveals
the presence of isolated ZnO islands and confirms a limited
deposition.

The AFM analysis is supported by XPS results, showing the typical
Zn 2p;,; peak centered at 1022 4-0.2 eV, that validates the presence of
the ZnO layers onto silicon substrates. The average atomic composi-
tions from XPS analysis are reported in Table 1.

It is worthy to note that the Zn content detected on the ZnO
film deposited at 400 °C (~26%) is higher than that of the films
deposited at 300 °C (~14%). However, while the latter film seems

Table 1
XPS average atomic composition of ZnO films vs deposition temperature.
Zn C (o] Si
250 °C 1.6 21.7 394 373
300 °C 14.0 52.9 33.0 NA
400 °C 25.7 23.1 48.8 7.5
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Fig. 3. SEM images (scale bar = 1 micron) of ZnO film deposited on Si substrates patterned with PS nanosphere: (a) 300 °C, 40 min, (b) and 400 °C, 5 min.
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Fig. 4. SEM images (scale bar = 1 micron) of annealed silver film deposited on Si by spin coating (a) and drop casting (b).

to completely cover the substrate (silicon signal is not detected),
on the ZnO film grown at 400 °C a silicon content of about 7% indicates
the formation of ZnO islands. These findings confirm the morpholog-
ical results of AFM and SEM analyses, i.e., the formation, working at
400 °C (5 min), of isolated large grains on a continuous film thinner
than that deposited at 300 °C (40 min). Moreover, the ZnO film
deposited at high temperature (400 °C) shows a reduced carbon
content respect with the low temperature sample (300 °C), as
expected from a smoother surface as well as from the higher
deposition temperature. As to the ZnO sample deposited at 250 °C,
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the detected amount of Zn is very small (about 2%). Therefore we can
set the MOCVD deposition threshold above the temperature of 250 °C.

By applying the above discussed deposition conditions to deposit
ZnO on silicon substrates patterned by colloidal lithography, the
formations of ZnO nanohole arrays are successfully achieved, as
shown in Fig. 3, where the ZnO nanospheres are obtained both at
300 °C, 40 min (Fig. 3a) and 400 °C, 5 min (Fig. 3b).

Finally, the effect of Ag catalyst concentrations on deposited ZnO
morphology is discussed. Ag(hfa)tetraglyme [19] ethanolic solutions
(0.1 M and 0.01 M) have been deposited either by drop casting or spin
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Fig. 5. SEM images (scale bar= 2 micron) of ZnO nanowires growth (on silver catalyst) at 600 °C after 1 hour deposition (a) and 30 min deposition (b).
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Fig. 6. SEM images (scale bar = 2 micron) of ZnO film deposited at 400 °C, 30 minutes on Ag catalyst layer at the initial concentrations of 0.01 M (a) and 0.1 M (b).
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Fig. 7. A schematic representation of the process sequence adopted to fabricate ZnO ordered nanoholes array.

coating on silicon substrates. A further annealing in air, performed at
400 °C for 30 min, is used to reduce Ag™ ions to metallic silver. The
obtained nanostructured films are composed of discrete silver grains,
whose dimensions depend on the deposition technique, spin coating
vs drop casting (Fig. 4). In fact, the spin coated layers present an
average dimensions of about 100 nm (Fig. 4a), that increase up to
300 nm, for the drop casted ones (Fig. 4b), due to grain coalescence
effects.

ZnO has been deposited by MOCVD on the substrates pre-coated
with the silver catalyst films. Different process conditions have been
used to study how the catalytic effect can tailor the ZnO film
morphology. A massive ZnO nanowire production is promoted by
high deposition temperature (600 °C, 1 h, Fig. 5a) [18], usinga 0.01 M Ag
catalyst initial concentration, despite short process deposition times
(600 °C, 30 min, Fig. 5b). Only at low deposition temperatures, not
higher than 400 °C, the ZnO film morphology changes significantly, thus
replicating the original catalyst nanostructure. Using these low
temperature conditions the overall film morphology appears sensitive
to both catalyst initial concentration and ZnO deposition time (Fig. 6). In
fact, after 30 min of ZnO deposition on silver catalyst (initial precursor
concentration of 0.01 M) the pristine Ag grains distribution is still visible

and no significant ZnO growth is observed between the grains (Fig. 6a).

On the other hand, a more extensive growth is observed when
deposition time is increased up to 60 min and/or when a higher
catalyst precursor concentration (0.1 M) is used (Fig. 6b).

These findings indicate a strong catalytic effect of the silver metal-
organic precursor on ZnO growth and suggest that a proper tuning of the
deposition process parameters (i.e., low catalyst concentrations,
deposition temperature below 400 °C, short process time) limits and
controls the high yield production of ZnO nanowires. Moreover, the
accurate matching of both catalyst precursor concentrations and ZnO
deposition process conditions is required for an effective integration of

catalyst assisted MOCVD process with colloidal lithography (Fig. 7)
driving the formation of ordered ZnO nanoholes array [18].

4. Conclusions

The presented results demonstrate an easy route to control
the morphology of ZnO films deposited by MOCVD. Indeed the
formation of ZnO nanowires can be finely tuned through the
accurate control of the initial concentration of Ag catalyst pre-
cursor as well as of the ZnO growth process parameters, such as
temperature and deposition time. This process tuning is also
required for an effective integration of the MOCVD deposition
process with colloidal lithography to obtain ordered ZnO nanoholes
array [18]. The possibility to simply modify both the concentration
of metal-organic precursor solutions, easily deposited (spin coating
or drop casting) on any kind of substrate and the ZnO MOCVD
process conditions, makes the proposed hybrid approach valuable
to fabricate nanoporous ZnO based layers with remarkable high
surface areas. Such nanostructures are promising for a wide variety
of applications including bioengineering, catalysis, environmental
engineering and sensor systems.
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