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Abstract The packaging of the eukaryotic genome into chro-
matin facilitates the storage of the genetic information within
the nucleus, but prevents the access to the underlying DNA
sequences. Structural changes in chromatin are mediated by
several mechanisms. Among them, ATP-dependent remodel-
ling complexes belonging to ISWI family provides one of the
best examples that eukaryotic cells evolved to finely regulate
these changes. ISWI-containing complexes use the energy
derived from ATP hydrolysis to rearrange nucleosomes on
chromatin in order to favour specific nuclear reactions. The
combination of regulatory nuclear factors associated with the
ATPase subunit as well as its modulation by specific histone
modifications, specializes the nuclear function of each ISWI-
containing complex. Here we review the different ways by
which ISWI enzymatic activity can be modulated and regu-
lated in the nucleus of eukaryotic cells.
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Introduction

Eukaryotic cells store their genetic information in the form of
chromatin, a complex of DNA packed with structural and
regulatory proteins. The functional repeating unit of chromatin
is the nucleosome core, consisting of 147 bp of DNAwrapped
around an octamer of histone proteins. While this packaging
provides the cell with the obvious benefit of organizing a large

and complex genome in the nucleus, it can also block the
access to DNA sequences. Nuclear reactions therefore depend
on factors that modulate the accessibility of DNA within the
context of chromatin. Indeed, ATP-dependent chromatin re-
modelling and covalent modification of histones, play central
roles in determining chromatin accessibility (Martens and
Winston 2003; Iizuka and Smith 2003; Becker and Horz
2002). These reactions are catalyzed by evolutionarily con-
served multi-subunit complexes that directly alter chromatin
structure to regulate gene expression and other nuclear func-
tions (Martens and Winston 2003; Iizuka and Smith 2003;
Becker and Horz 2002; van Vugt et al. 2007).

ISWI is a component of several ATP-dependent chromatin
remodelling complexes conserved in composition and function
across species (Dirscherl and Krebs 2004; Corona and Tamkun
2004b) (Fig. 1). In higher eukaryotes, ISWI is an abundant and
ubiquitously expressed protein that is essential for cell viability
(Deuring et al. 2000; Stopka and Skoultchi 2003). ISWI chro-
matin remodellers are involved in important nuclear functions
such as DNA replication, DNA repair, transcriptional regulation
and chromosome structure maintenance (Corona and Tamkun
2004a; Yadon and Tsukiyama 2011). In order to modulate these
essential biological processes, ISWI activity needs to be finely
regulated. To date, work conducted in several model systems
has revealed a multitude of ways by which ISWI-chromatin
remodelling activity can be regulated in the eukaryotic cell.

Due to the broad spectrum of functions played by ISWI,
many factors influence its enzymatic activity in order to
integrate nucleosome remodelling reactions in different phys-
iological contexts in vivo. Indeed, nucleosome spacing reac-
tions catalyzed by ISWI can be regulated (1) in cis , by
intrinsic ISWI domains (Fig. 2), (2) by its associated subunits
and chromatin factors (Fig. 3), (3) by ISWI post-translational
modification or by its associated nucleosomal substrate
(Fig. 4) and finally (4) by specific DNA and RNA sequence
features (Fig. 5). Here, we present a review of the different
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mechanisms by which ISWI enzymatic activity could be
modulated across species.

Regulation through structural and functional ISWI
domains

Regulation of ISWI targeting and activity on nucleosomal
substrates is essential to gain knowledge on chromatin dy-
namics. Since their discovery, different levels of regulation of
ISWI chromatin remodelling activity have emerged (Erdel
et al. 2011). Recent works have shed light into the function
of ISWI intrinsic domains. Interestingly, studies conducted
in vitro, demonstrated that the conserved ATPase domain
has autonomous nucleosome remodelling activity, while do-
mains adjacent to the ATPase module have regulatory func-
tion (Mueller-Planitz et al. 2013; Hota et al. 2013; Clapier and
Cairns 2012).

ISWI contains a highly conserved ATPase core domain
located at the N-terminal half of the protein and a character-
istic set of HAND–SANT–SLIDE (HSS) domains with DNA-
binding function, at the C-terminal portion (Fig. 2) (Boyer
et al. 2004; Grune et al. 2003b; Hota and Bartholomew 2011).
Over the past few years, in vivo and in vitro studies have led to
a broadly accepted model in which the HSS domain plays an
integral part during the remodelling reaction (Boyer et al.

2004; Grune et al. 2003a; Boyer et al. 2002). Unexpectedly,
a recent study conducted on Drosophila ISWI (d ISWI)
showed that most of the fundamental regulatory aspects of
nucleosome remodelling are contained around the compact
ATPase module (Mueller-Planitz et al. 2013). In this work the
authors found that ISWI lacking its HSS domain can still
remodel nucleosomes, with an intrinsic ability to bind nucle-
osomes and to interact with histone H4 N terminus, revealing
a positive role for the HSS domain in increasing the affinity
and specificity of ISWI ATPase for nucleosome (Fig. 2)
(Mueller-Planitz et al. 2013). Similarly, another study showed
a regulatory function for the SLIDE domain of
Saccharomyces cerevisiae Isw2 subunit to help maintaining
the directionality of DNA movement into nucleosomes (Hota
et al. 2013). Altogether, these data underline that the accessory
domains of ISWI may have evolved to optimize catalysis and
modulate the outcome of the remodelling reaction.

This idea has been recently supported by the identification
of two new conserved and separate negative regulatory re-
gions of the d ISWI ATPase, defined as AutoN and NegC
(Fig. 2) (Clapier and Cairns 2012). The AutoN is located
within the N terminus of ISWI ATPase and its conserved
sequence resembles the basic patch of histone H4 tail. On
the other hand, the NegC module is located between the
ATPase core and the HSS DNA-binding domain. AutoN
inhibits the ATP hydrolysis rate, working as a brake that

Fig. 1 ISWI containing
complexes and their associated
subunits. The ISWI (Imitation
SWItch) chromatin remodelling
ATPase, identified for the first
time in Drosophila , exists in all
eukaryotes and constitutes an
important subfamily within the
SNF2 superfamily of ATPase.
The ISWI protein is represented
by orange ovals while the
accessory subunits are shown as
pentagons. Homologous proteins
belonging to different complexes
in different species are all
indicated with the same color
code
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constrains the catalytic activity of ISWI by making contact
with the ATPase lobes. Instead, NegC locks the ATPase lobes
in a conformation that inhibits ATPase coupling to DNA
translocation. Mutation of AutoN and NegC enables marked
nucleosome sliding without the H4 basic patch, DNA linker,
or the HSS domain, confirming that the ISWI ATPase core is
an intrinsically active DNA translocase, flanked by spe-
cific regulatory modules that ensure remodelling only in
the presence of proper nucleosomal epitopes (Clapier
and Cairns 2012).

An integrated view of the above mentioned and other
structural data obtained so far, imply that the chromatin-
remodelling activity of ISWI is regulated by conformational
changes, triggered by nucleosomal epitopes, which stabilize a
permissive conformation of ISWI for DNA translocation. In
particular, ATPase kinetic studies indicate that ISWI is present
in two distinct conformations in absence of DNA. Indeed, the
addition of DNA causes a dramatic ISWI protease hypersen-
sitivity at level of residues adjacent to NegC and AutoN
(Mueller-Planitz et al. 2013). On the basis of the characteriza-
tion of AutoN and NegC inhibitory function, the conforma-
tional change triggered by nucleosomal epitopes binding
probably involves the removal of both of these ATPase brakes
(Manning and Peterson 2013).

Very recently, a novel role in the regulation of the nuclear
import process of chromatin remodelling enzymes has
emerged (Fig. 2). While it has been previously shown that

the import of human ISWI (hSNF2H) (Yadon and Tsukiyama
2011) to the nucleus is controlled by the accessory subunits of
the complex (Lan et al. 2010; Sheu et al. 2008), in a very
recent study it has been highlighted that the nuclear import of
S. cerevisiae Isw1 is mediated by a specific nuclear localiza-
tion signal (NLS) located at the end of the C-terminal portion
(a. a10079-1105) (Vasicova et al. 2013). Indeed, in vitro bind-
ing assay of y Isw1-NLS to importin-α revealed that the
nuclear translocation of y Isw1 is mediated by the classical
import pathway.Moreover, this mechanismwas recognized as
the unique regulator of chromatin remodeller nuclear translo-
cation in vivo. Interestingly, similar nuclear localization mo-
tifs were identified in silico in ISWI higher eukaryote
orthologues, suggesting that the C termini of the ISWI
family proteins play a role in their nuclear import
(Vasicova et al. 2013).

ISWI chromatin remodellers regulation
by protein–protein interaction

Since the discovery that ISWI, out of the context of its asso-
ciated subunits, has nucleosome remodelling activity (Corona
et al. 1999) at least two principal roles have been recognized
for the complex subunits: (1) the modulation of nucleosome
remodelling reactions and (2) the targeting of the remodelling
complex to specific chromatin regions (Fig. 3).

Fig. 2 Structure and function of
ISWI domains. ISWI domains are
showed as rectangles . The ISWI
ATPase domain (orange color)
with an intrinsic ability to bind
nucleosomes, is flanked by two
functional domains Auto N (dark
blue) and Neg C (light blue) with
inhibitory roles. ISWI C-terminal
portion contains the HAND (dark
green), SANT (light green),
SLIDE (yellow) with DNA-
binding function and the NLS
(purple) domain important for
nuclear localization
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The first identified subunits able to regulate ISWI nucleo-
some remodelling activity were Drosophila ACF1 and
NURF301. Both ACF1 and NURF301 can modulate ISWI
enzymatic functions via their Plant Homeo Domains (PHD).
This protein domain provide an anchor point on the nucleo-
some substrate that enables efficient conversion of the force
generated by ATP hydrolysis into disruption of DNA–histone
interactions (Fig. 3a) (Aasland et al. 1995; Eberharter et al.
2004; Strohner et al. 2005; Wysocka et al. 2006). The ACF1
subunit of both ACF and CHRAC complexes strongly in-
creases nucleosome sliding efficiency (Eberharter et al.
2001, 2004) and the ability of ISWI to assemble chromatin
(Fig. 3b) (Ito et al. 1999). hCHRAC complex contains two
additional histone-fold proteins which enhance sliding activity
mediated by ACF, probably by binding and bending the DNA
emerging from the nucleosome (Hartlepp et al. 2005;
Kukimoto et al. 2004; McConnell et al. 2004). These func-
tional interactions are conserved also in the Drosophila
CHRAC complex wherein the histone-fold protein subunits,
CHRAC 14 and CHRAC 16, acting as DNA chaperones,
enhance nucleosome sliding, in striking analogy to what ob-
served for HMGB1(Hartlepp et al. 2005) (Bonaldi et al.
2002). The high mobility group (HMG) proteins indeed,
cooperate with ISWI chromatin remodelling complexes to
increase their capacity to bind nucleosomal DNA thus enhanc-
ing their sliding activity (Bonaldi et al. 2002; Xiao et al. 2001).

The association of ISWI with ACF1 or NURF301 subunits
can also influence the biochemical properties of the ACF/
CHRAC and NURF complexes (Fig. 3b). In particular, while

ISWI alone catalyses the movement of a nucleosome toward
the end of a short DNA fragment, the ACF complex pushes
the nucleosome toward the central portion of the same DNA
fragment (Brehm et al. 2000; Eberharter et al. 2001; Langst
et al. 1999). Similarly, in the NURF complex, the NURF301
subunit modifies the intrinsic nucleosome mobilization pro-
prieties of ISWI and interacts with sequence-specific tran-
scription factors, targeting NURF complex to specific genes
(Xiao et al. 2001). In a similar way, the non-catalytic subunits
associated with human hSNF2H complexes (hACF, hRSF,
hCHRAC and WHICH) regulate hSNF2H ATPase ability to
interact and to remodel nucleosomes through their interaction
with the linker DNA (Fig. 3c) (He et al. 2008).

The regulatory role played by the accessory subunit of
ISWI complexes was recently also described for the evolu-
tionary conserved Drosophila Toutatis-containing chromatin
Remodelling Complex (ToRC). ToRC remodeller consists of
three different subunits TIP5/tou, ISWI and CtBP (Fig. 1) that
are required to stimulate the intrinsic weak chromatin assem-
bly activity of ISWI (Emelyanov et al. 2012). The Emelyanov
work not only supports the regulatory role of the ISWI asso-
ciated subunit in ToRC, but also provides evidence for a
NoRC complex in Drosophila . Emylyanov and colleagues
identified, in dNoRC, a TIP5/tou C-terminally truncated pro-
tein that forms a CtBP-free complex localized in the nucleolus
(Fig. 1). As in mammals, dNoRC complex is a nucleolar-
specific SN2H-containing chromatin remodelling factor in-
volved in the transcriptional silencing of rDNA repeats
(Mayer et al. 2008).

Fig. 3 Regulation of ISWI
activity by its non catalytic
subunits. The associated ISWI
subunits (pentagons) interacting
with ISWI protein (orange
sphere) are able to positively
regulate ISWI chromatin
assembly activity and
nucleosome directionality. a The
targeting of ISWI to DNA can be
mediated by PHD motif (yellow
rectangle) present in ISWI
associated subunit, such as Acf1.
b The association of ISWI with
Acf1 subunit is able to increase
the nucleosome assembly and
sliding ability of ISWI. c The
accessory subunits of hSNF2H
complexes influence the ability of
the remodeller to interact and
remodel nucleosomes
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Regulation by histones and post-translational
modifications

Histone modifications

Histone modifying enzymes not only directly regulate chro-
matin structure by changing the interactions between the
octamer and the DNA, but most importantly they also regulate

remodelling enzymes targeting (Strahl and Allis 2000)
(Bannister and Kouzarides 2011; Berger 2002; Wu and
Grunstein 2000). The ability to recognize histone modifica-
tions constitutes an integral part of all ATP-dependent chro-
matin complexes that may either help the targeting of the
enzymes to particular genomic sites and/or modulate their
activities. In particular, the ISWI ATPase and its regulatory
subunits posses dedicated domains that specifically interact

Fig. 4 Regulation of ISWI chromatin remodellers by histones and post-
translational modifications. a Histone proteins are indicated as pale pink
spheres, from which H3 and H4 N-terminal tails are protruding. Colored
dots indicate specific post translational modifications regulating ISWI
activity. H4K16ac. (blue dot) is able to inhibit the catalytic activity of
ISWI as well as H4K12ac. (green dot) in association with H4K16ac.
H3K10p, indicated with a purple dot , was shown to interact with
xWHICH and xACF during mitosis. H3K4me3 (red dot) can act as a
platform to recruit the NURF complex, by the PHD finger. b Regulation
by histone variants. Non-canonical forms of H2A known to influence the
remodelling, spacing and targeting reaction of ISWI remodellers are
represented by colored spheres within the histone octamer. H2A.Z (light

blue sphere) increases the remodelling activity of NURF and RSF com-
plexes in mammals. The same histone variant is able to positively affect
both the remodelling and spacing reactions of the Drosophila counterpart
of the human Rsf-1 subunit, while H2A.X (pink sphere) has been shown
to bind strongly than canonical histones to ISWI subunit of WHICH
complex. c Regulation by post-translational modifications of remodeller.
The histone acetyl transferase GCN5 is represented as a purple octagon .
This enzyme mediates the specific acetylation of K753 of Drosophila
ISWI (dISWI), probably regulating gene expression during development.
The enzyme PARP, indicated as a light blue triangle, is known to mediate
the ADP ribosylation of dISWI. This modification was shown to coun-
teract all ISWI functions in Drosophila
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with unmodified and modified histone tails. One of the pecu-
liarities of ISWI remodelling enzymes is that they require the
binding of H4 tail for substrate recognition and efficient
remodelling activity. Many studies in flies highlighted that
the DNA-bound basic patch of H4 is an epitope specifically
bound by ISWI SANT domain and that the state of acetylation
of adjacent K12 and K16 lysine residues, can negatively
influence the remodeller functions (Fig. 4a) (Clapier et al.
2001; Clapier et al. 2002; Corona et al. 2002; Hamiche et al.
2001). Moreover, in yeast it has been demonstrated that the
remodelling activity of Iswi2 is influenced by the acetylation
of H4K16. Indeed, this modification decreases the catalytic
rate of ATP hydrolysis of ISWI, confirming that unmodified

H4 tail acts as an allosteric activator (Ferreira et al. 2007a)
important for both chromatin compaction as well as nucleo-
some remodelling activity (Zhou et al. 2012).

Furthermore, ISWI containing complexes can also recog-
nize methylated histones, thanks to the PHD finger domain
harboured in some ISWI associated subunits. For example, the
trimethylation of H3K4 is a post-translational modification
with a regulatory role in the recruitment of ISWI complexes
(Fig. 4a). In particular, this modification recruits the PHD
finger domain of the BPTF subunit of NURF complex
(Wysocka et al. 2006). Also in yeast , it has been shown that
di- or tri-methylation of the histone H3K4 is specifically
required for the recruitment of Isw1 and for the correct

Fig. 5 Regulation of ISWI by
DNA and RNA. a ISWI ATPase
hydrolysis rate can be directly
influenced by specific DNA
sequences and curvature. b The
interaction between the accessory
subunit Itc1 of the yIsw2 complex
with linker DNA is able to orient
the remodeller on nucleosomes,
thus driving the nucleosome
sliding reaction. c The interaction
between a specific ncRNA (red
structure) with the TIP5 subunit
(green pentagon) of hNorC is
sufficient to target the remodeller
on specific target genes. d The
ncRNA hsrω-containing omega
speckles (yellow and green ovals
associated with red structure)
interaction with ISWI subunit is
able to stimulate ISWI ATPase
activity, thus triggering omega
speckles remodelling
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repositioning of RNA pol II in the coding regions (Santos-
Rosa et al. 2003). In addition, regulatory roles regarding the
phosphorylation of histones were also highlighted. In
Xenopus laevis , there are evidences showing that x ISWI
complexes regulation during mitosis is under the control of
the INCENP-aurora B kinase through the phosphorylation of
serine 10 of histone H3 (MacCallum et al. 2002) (Fig. 4a).

Histone variants

ISWI chromatin remodelling reactions can be influenced not
only by covalent modifications of histones, but also by their
non-allelic isoforms, named histone variants (Konev et al.
2007; Mizuguchi et al. 2004; Okada et al. 2009; Perpelescu
et al. 2009). To date, the majority of histone variants acting as
regulators of chromatin remodellers are members of H2A
family.

Many of the H2Avariants are involved in the formation of
higher-order chromatin structure (Pusarla and Bhargava
2005). H2A.Z proteins are essential for establishing proper
chromatin structure in many organisms (Raisner and Madhani
2006). Mammalian H2A.Z contributes to the unique structure
of centromere (Greaves et al. 2007) as well as to maintain
genome integrity (Rangasamy et al. 2004). In plants, H2A.Z
has been shown to be enriched in nucleosomes localized at
transcriptional control regions and to regulate both silencing
and activation (Coleman-Derr and Zilberman 2012). This non
canonical form of H2A was found to generally increase,
in vitro, the remodelling activity of all the human h ISWI
complexes, either containing SNF2H or SNF2L subunits,
probably influencing transcriptional control (Goldman et al.
2010) (Fig. 4b). A recent evidence supporting a mechanism of
regulation of the human RSF chromatin remodeller by H2A.Z
was provided in the paper of Hanai and colleagues. In this
work, it is shown that theDrosophila orthologue of the human
Rsf-1 subunit (dRsf-1 ) promotes histone H2A.Z replacement
by physically interacting with the histone variant and its
exchange machinery, known as Tip60, thus suggesting that
RSF remodeller is involved in the pathway of silent chromatin
formation (Hanai et al. 2008) (Fig. 4b).

Contradictory data exist about the regulation of chromatin
remodelling activity by macroH2A histone proteins.
macroH2A is found in diverse animal phyla with subtypes
and splice variants present in ancestral animals and
vertabrates, altrough lost in Drosophila and Caenohabditis .
This protein, which is nearly three times the size of canonical
histone H2A (Chadwick and Willard 2001), has been sug-
gested to negatively influence the binding of chromatin re-
modelling complexes. Whereas some works demonstrated
that this variant specifically interferes with ACF and SWI/
SNF nucleosome remodelling (Angelov et al. 2003; Doyen
et al. 2006), in a recent study it was shown that macroH2A has
a negative effect on the recruitment and remodelling activity

of only the SWI/SNF complex (Chang et al. 2008). An addi-
tional example of how histone variants can regulate ISWI
activity is represented by H2A.X. This non-canonical histone,
which is important for genome integrity maintenance, was
shown to bind strongly the ISWI-containing complex
WHICH (Fig. 1), thus regulating DNA damage response in
mammalian cells (Xiao et al. 2009) (Fig. 4b).

ISWI post-translational modifications

A further regulatory strategy of ISWI-containing chromatin
remodelling complexes implies the direct post-translational
modification of the catalytic subunit by specific enzymatic
activities. It has been extensive documented that the Gcn5
protein acts as a histone acetyltransferase on H3K14 (Wang
et al. 1997). The pioneering work of Ferreira and colleagues
identified and characterized for the first time in vitro and
in vivo the acetylation of d ISWI ATPase by Gcn5 at the
conserved lysine 753 located in the HAND domain (Fig. 4c).
This study and other unpublished observations mentioned
within, suggested that the acetylation of ISWI is an early-
development regulated process, probably linked to the expres-
sion of selected Drosophila genes (Ferreira et al. 2007b).

Interestingly, in vivo and in vitro studies demonstrated that
d ISWI is also target of the PARP enzyme, an abundant
nuclear protein that transfers ADP-ribose units to regulate
proteins involved in DNA transcription, repair and chromatin
structure. ISWI–PARP interaction was detected for the first
time in an unbiased genetic screening aimed at the identifica-
tion of factors modifying phenotypes caused by loss of ISWI
function in flies. This screening provided the first genetic
interaction map of potential regulators of ISWI in the higher
eukaryote Drosophila melanogaster (Arancio et al. 2010;
Burgio et al. 2008). Poly-ADP-ribosylated d ISWI displays a
reduction in both nucleosome binding affinity as well as
ATPase activity (Fig. 4c). Furthermore, poly-ADP-
ribosylated ISWI tends to dissociate from its chromatin target
sites, suggesting that poly-ADP-ribosylation counteracts
ISWI functions, in vitro and in vivo (Sala et al. 2008).

While the phosphorylation of ATPase subunit of the hSWI/
SNF remodelling complex was the first example of phospho-
regulation of a remodeller to have been documented, a regu-
lation of ISWI-type chromatin remodelling complex by phos-
phorylation has not yet been highlighted.

Regulation of ISWI chromatin remodelling activity
by nucleic acids

DNA

As highlighted earlier in this review (Fig. 2), the interaction
between remodeller and chromatin is mediated by DNA-
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binding domains harboured either in the ATPase or in the
accessory subunits (Figs. 2 and 3), such as the SANT-
SLIDE region of d ISWI and the WAC domain of Acf1,
respectively (Clapier and Cairns 2009; Grune et al. 2003b;
Fyodorov and Kadonaga 2002). Straightforward evidences of
the fact that DNA can regulate ISWI activity are reported in a
recent work wherein it is highlighted that DNA binding to the
ISWI ATPase domain is sufficient to trigger a conformational
change that activates ATP hydrolysis (Mueller-Planitz et al.
2013). Indeed, remodellers interaction with both nucleosomal
and extranucleosomal DNA influences the remodelling reac-
tion at various levels, including the overall distribution of the
remodeller, its target affinity and the outcome of the remod-
elling reaction.

A general principle is that DNA features (i.e., GC/AT
content, flexibility, intrinsic bending, curvature) determine
nucleosome occupancy, thus influencing remodellers distribu-
tion along chromatin (Fig. 5a). The work of Moshkin et al.
(2012)) extended this concept, demonstrating that although
ISWI target sites are predicted to be favourable for nucleo-
some formation because of an high GC content, ISWI
remodellers tend to remove nucleosomes from the target loci,
thus antagonizing in vivo and in vitro the DNA sequence
driven nucleosome placement. ChIP-on-chip experiments
suggested that d ISWI preferentially binds nucleosome free
regions located in close proximity to Transcriptional Start Site
of genes, supporting the potential regulatory role played by
the DNA sequence underlying the remodeller target site in the
recruitment and the biological functions of d ISWI (Sala et al.
2011). Moreover, it has been shown that DNA sequence
characteristic of remodeller enriched loci are strictly connect-
ed with their functional role. Indeed, remodeller target site on
DNA could be located differently with respect to the histone
octamer. While the translocase domain of y Isw2 interacts with
the external face of nucleosomal DNA, the hSnf2 binds with
high affinity the DNA gyre towards the octamer (Hota
and Bartholomew 2011). Interestingly, structural studies
of yeast Isw1a suggest that ISWI remodellers can es-
tablish additional contacts with the DNA, allowing them
to bind di-nucleosomes and to sense the length of the
linker DNA (Yamada et al. 2011).

The site of interaction between nucleosome and
remodellers is not restricted to DNA directly wrapped with
histones, but also to extranucleosomal DNA (Fig. 5b). The
ISWI subfamily remodellers were the first to have shown a
strong dependence on linker DNA length (Zofall et al. 2004).
As demonstrated by in vitro studies, shortened linker DNA
results in a strong reduction of ISWI catalytic activity and
nucleosome binding affinity (Dang et al. 2006; Kagalwala
et al. 2004; Stockdale et al. 2006; Yang et al. 2006; Zofall
et al. 2004). Linker DNA is usually bound by the SANT-
SLIDE modules. As discussed above, this binding increase
the affinity and the specificity to the target site and most of all,

contribute to anchor the remodeller to the nucleosome (Dang
and Bartholomew 2007). A recent work of Zenter and
collegues demonstrated that in yeast , a short flanking nucle-
osome DNA hampers interactions of ISWI and CHD
remodellers with chromatin. The obstacle created by nucleo-
some array can be, however, overcome by interaction of linker
DNAwith transcription factors that generate free linker DNA
stretches which enables an efficient association between
remodellers and its binding site on chromatin (Zentner et al.
2013). Several subunits of ISWI complexes also interact with
linker DNA. These interactions serve to properly orient
the remodeller on nucleosomes, as in the case of the
accessory subunit y Itc1 (Fig. 5b). In y Isw2, this subunit
targets an extranucleosomal DNA sequence of 53 bp,
thus giving an orientation to the multiprotein remodel-
ling complex and driving the extension of nucleosome
sliding reaction (Kagalwala et al. 2004).

Structural conformations of remodeller target DNA could
also impact the outcome of the remodelling reaction (Rippe
et al. 2007; Stockdale et al. 2006). For instance, nucleosome
remodelling by dACF seems to be dependent on a short DNA
element with high intrinsic curvature. This specific conforma-
tion, indeed, has been shown to influence dACF-dependent
nucleosome position after the remodelling occurred, thus af-
fecting a new chromatin state (Rippe et al. 2007). Moreover, a
recent work suggested a mechanism by which a highly curved
40 bp DNA element, specifically recognized by human Acf-1,
thermodynamically affects the preferred local positions
adopted by yet remodelled nucleosomes (Partensky and
Narlikar 2009). Taken together, these data support the idea
that DNA local properties at the target site modulate both the
remodeller recognition step and the final outcome of the
remodelling reaction.

RNA

A substantial fraction of the mammalian genome is tran-
scribed in the form of non-protein-coding RNAs (ncRNAs)
that have important regulatory functions in development, dif-
ferentiation and diseases (Birney et al. 2007). Cell type-
specific ncRNAs interact with ubiquitously expressed regula-
tory proteins to form RNA–protein complexes that can inter-
act with histones DNA, other RNAs and chromatin-modifying
complexes, thus contributing to the acquisition of a specific
chromatin state. Particularly, the ability of long ncRNAs to act
as scaffold for the recruitment of different chromatin-
modifying enzymes has highlighted the regulatory role of
ncRNAs to guide chromatin remodelling (Ma et al. 2012).
Although numerous examples of ncRNAs in epigenetic regu-
lation were described, to date their contribution to the regula-
tion and targeting of ATP-dependent chromatin remodelling
enzymes still remains largely unknown.
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An example of such regulation has been shown in the work
of Mayer et al. (2008), wherein the authors demonstrated that
the ATP-dependent chromatin remodelling complex NoRC
(Fig. 1) can be targeted to chromatin by an RNA-dependent
mechanism. As previously cited, the authors show that the
interaction of TIP5 with a small ncRNA of 150–250 nucleo-
tide facilitates the targeting of NoRC to ribosomal gene pro-
moter thus triggering heterochromatin formation and tran-
scriptional silencing of rDNA repeats (Fig. 5c) (Mayer et al.
2008), suggesting a pivotal role for ncRNA in orchestrating
the function of NoRC complex.

ncRNAs also exist in association with proteins to form
ribonucleoprotein (RNP) complexes crucial for epigenetic
signalling (Prasanth et al. 2000). In Drosophila , the activity
of the ISWI ATPase was recently found to be regulated by
hsrω, a class of functionally conserved developmentally reg-
ulated long ncRNA responsible for the assembly and organi-
zation of the hnRNP-containing omega speckles (Onorati
et al. 2011). Omega speckles are specialized nuclear compart-
ments localized in the nucleoplasm close to chromatin edges,
containing diverse hnRNPs (Lakhotia 2011). The nucleoplas-
mic omega speckles play essential roles in storage and seques-
tration of hnRNP family members and other proteins involved
in RNA processing and maturation in normal as well as
stressed cells. Using in vivo and in vitro approaches it has
been shown that hsrω binds the N-terminal portion of ISWI
stimulating its ATPase activity to remodel and structurally
organize omega speckles (Fig. 5d) (Onorati et al. 2011),
providing the first example of chromatin remodeller able to
functionally organize a nucleoplasmic nuclear compartment.

Conclusions

Despite the simplicity of nucleosome remodelling reaction
catalyzed by ISWI complexes, that imply the sliding of nu-
cleosomes over a stretch of DNA fragment, this activity is
highly regulated and essential to support a variety of nuclear
reactions that need nucleosomal accessibility. Genetic and
biochemical studies have provided a wealth of data
concerning the mechanisms of regulation of ISWI in different
model systems. Indeed, ISWI activity is regulated by a com-
plex network of cellular and nuclear factors discussed in this
review, explaining and supporting the participation of ISWI in
the variety of essential biological processes in which it has
been so far implicated.
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