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The non-local model of heat transfer, used to describe the deviations of the temperature
field from the well-known prediction of Fourier/Cattaneo models experienced in complex
media, is framed in the context of fractional-order calculus. It has been assumed (Borino
et al., 2011 [53], Mongioví and Zingales, 2013 [54]) that thermal energy transport is due
to two phenomena: (i) A short-range heat flux ruled by a local transport equation; (ii) A
long-range thermal energy transfer proportional to a distance-decaying function, to the rel-
ative temperature and to the product of the interacting masses. The distance-decaying
function is assumed in the functional class of the power-law decay of the distance yielding
a novel temperature equation in terms of a-order Marchaud fractional-order derivative
ð0 6 a 6 1Þ. Thermodynamical consistency of the model is provided in the context of Clau-
sius–Plank inequality. The effects induced by the boundary conditions on the temperature
field are investigated for diffusive as well as ballistic local heat flux. Deviations of the tem-
perature field from the linear distributions in the neighborhood of the thermostated zones
of small-scale conductors are qualitatively predicted by the used fractional-order heat
transport model, as shown by means of molecular dynamics simulations.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The need for non-local thermodynamics in physical sciences and engineering may be traced back to the mid of the last
century in the attempt to capture the experimental effects unpredicted by Fourier diffusion theory. Indeed several experi-
mental observations of temperature field at metal interfaces as well as of the changes in conductivity parameters in the
neighborhood of thermostated regions (Kapitsa phonon-scattering) shows a localization of temperature gradients close to
the borders [1].

Similar phenomena have been observed with molecular dynamics (MD) simulations of heat transfer in nanowires show-
ing that the presence of thermostated regions involves a phonon–phonon scattering that modifies the conductivity property
of the materials [2,3].

Such studies have been further developed toward the use of advanced mathematical tools as the fractional-order calculus
[4] to capture memory [5,6] as well as non-local effects [7–9]. Indeed fractional (real) order integro-differential operators
have been introduced more and more often in several contexts of physics and engineering for their capability to interpolate
among the well-known integer-order operators of classical differential calculus [10]. In this regard some applications may be
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found in the study of temporal and spatial evolution of complex systems close to critical points [11–14] or in stochastic set-
ting [15–17]. Fractional-order differential calculus is widely used, also, to model the mechanical behavior of polymers, gels,
foams and glassy materials [18–22] but also to model the rheology of soft matter and biological tissues [23–25]. States and
free energies for non-linear geometries [26–30] in terms of fractional-order derivatives may also be formulated.

The long-tails of fractional operators have been used to formulate non-local stress–strain constitutive equations that are a
particularized version of the integral model of non-local elasticity [31,32]. The same feature has been also used by the author
and its research team to derive a mechanically-based fractional-order non-local elasticity in statics [33–36] and wave prop-
agation contexts [37,38] (see e.g. [39] for a complete review).

The presence of spatial non-local effects, observed in heat transport framework, has been introduced by means of integral
models involving, beside the local gradient of the temperature field, an integral convolution among the temperature gradient
and a real-order attenuation function [40–42]. The non-local formulation, originally proposed by Eringen and his co-workers,
has been used, recently, to model thermoelastic coupling in microelectromechanical resonators (MEMRS) [43,44]. Some gen-
eralization of this theory may be useful to the analysis of small-scale systems accounting for second-sound effects [45–47]
modeled with a first-order time derivative of the heat flux [48–50] and introducing a generalized entropy [51,52].

Very recently a non-local model of thermal energy transport has been proposed with a physical picture of heat transfer in
1D setting. It has been assumed that the non-local residual in the balance equation is due to a volume integral over the body
domain of the elementary long-range heat transport among adjacent and non-adjacent locations of the body [53]. The long-
range thermal energy contribution is modeled as two point function PðnlÞ x; y; tð Þ that depends on: (i) A decaying function
decreasing with the distance of the interacting elements; (ii) The relative temperatures among locations and (iii) The product
of the masses at locations x and y [54].

In this paper it is shown that, assuming the decaying function in the functional class of power-laws of the distance, the
balance principle involves fractional-order non-local residuals. The correspondent temperature equation is obtained in terms
of Marchaud-type fractional derivatives in unbounded domains. A different scenario appears as the thermal energy exchange
in bounded domains is considered since only the integral contributions to the Marchaud fractional derivatives defined on
bounded regions appear. It follows that the divergent algebraic contributions at the borders are not included in the formu-
lation allowing for the position of non-homogeneous Dirichlet boundary conditions straightforwardly. Moreover the Neu-
mann boundary conditions associated to the fractional-order temperature equation involve, only, the gradient of the
temperature field as in well-known local heat transport theories.

The effects induced by the non-homogeneous boundary condition is further investigated, in this paper, either for diffusive
and ballistic/diffusive thermal energy exchange. The numerical results reported in the analyses describe the temperature
field in 1D rigid conductors showing that the proposed model of fractional-order thermal energy exchange may capture
the non-uniform temperature distribution observed in Kapitsa experiments as well as in molecular dynamics simulations.
2. The fractional model of thermal energy exchange in rigid bodies: the second law of thermodynamics

In this section the fractional-order model of thermal energy exchange is derived for a diffusive heat transport. In the first
part of the section the balance equation as well as the second law of thermodynamics will be shortly recalled. The second
part of the section is dedicated to a numerical simulation of the temperature field in a 1D rigid conductor in presence of long-
range thermal energy transport. The effects of the differentiation order on the temperature field in bounded conductors have
been addressed with a numerical simulation code.

The main idea beyond the proposed model of non-local thermodynamics relies on the assumption that the energy balance
at location x 2 R3 of a rigid body, encapsulated in a subset V � R3 with boundary surface S ¼ @V , involves the following
contributions:

1. The thermal energy flux among adjacent locations, that it is related to the divergence $ � qðx; tÞ of the heat flux density
vector qðx; tÞ.

2. A non-local energy transfer, due to the contribution of the elements y 2 R3 of the body, that it is assumed proportional to
the mass densities of the interacting elements at the locations x and y as
PðnlÞ x; y; tð Þ ¼ vðnlÞ x; y; tð ÞqðxÞqðyÞdVxdVy ð1Þ
where vðnlÞ x; y; tð ÞqðyÞdVy is the long-range specific energy per unit time transferred at locations x by the element at the loca-
tion y and q is the mass density that is time-independent. Under some restriction of the functional dependence of the long-
range specific energy PðnlÞ x; y; tð Þ, a Marchaud-type, fractional-order, non-local model of thermal energy transport is obtained
in unbounded domains. In bounded domains, instead, only integral parts of fractional-order operators are involved.

This latter consideration yields two key features of the fractional model of long-range heat transport: (i) The Non-Homoge-
neous Dirichlet boundary conditions of the temperature field along the boundary Sd, namely Tðx; tÞ ¼ Tðx; tÞ with x 2 Sd may
be easily accounted for since the divergent algebraic contribution to the Marchaud fractional derivatives do not appear; (ii)
The Neumann boundary conditions on the free surface Sn involves, only, the local contribution to the heat transfer in terms of
gradients of the temperature field r � Tðx; tÞ with x 2 Sn since the overall residual reads:
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Z
Vx

Z
Vy

vðnlÞ x; y; tð ÞqðyÞqðxÞdVydVx ¼ 0 ð2Þ
for any specific class of the specific long-range heat transport vðnlÞ x; y; tð ÞqðyÞdVy [54].

2.1. The fractional-order theory of Classical Irreversible Thermodynamics (CIT)

Let us consider an isotropic solid body with u :¼ u x; tð Þ the specific internal energy at location x and time t and let us
assume that . ¼ .ðxÞ is the time-independent body density at location x as for closed thermodynamical system. The absolute
temperature of the body is denoted as Tðx; tÞ, and CV ¼ @u

@T

� �
T0

is the volume specific heat at room temperature T0 assumed
constant in the analysis.

In the context of non-local thermodynamics we assume that, at location x ¼ x1; x2; x3ð Þ of the body, the internal energy of
the body .ðxÞuðx; tÞ is composed by two contributes as:
@ .ðxÞuð Þ
@t

¼ @ .ðxÞulð Þ
@t

þ @ .ðxÞunlð Þ
@t

ð3Þ
where we denoted .ðxÞulðx; tÞ and .ðxÞunlðx; tÞ the local and the long-range overall contribution to the internal energy at
location x, respectively. In this regard the rate of change of the internal energy function in the balance equation (3) for a
closed thermodynamical system reads:
@u
@t
¼ @ul

@t
þ @unl

@t
¼ _wðx; tÞ þ _hðx; tÞ ¼ _hlðx; tÞ þ _hnlðx; tÞ ð4Þ
where _w ¼ 0 since rigid conductors are considered and _h is the rate of change of the specific thermal energy that is composed
by a local _hlðx; tÞ and a long-range _hnlðx; tÞ term, respectively. The latter equality in Eq. (4) is the local version of first principle
of thermodynamics in presence of long-range thermal energy transport yielding that the rate of change of the specific inter-
nal energy _uðx; tÞ, equates the rate of change of the thermal energy _hðx; tÞ in any subdomain dVx of the conductor.

The proposed model of thermal energy transfer involves two main assumptions about the intrinsic state functions,
namely, hlðx; tÞ and hnlðx; tÞ as:

� The rate of change of the local contribution qðxÞdVx
_hlðx; tÞ depends on the thermal energy flux across the boundaries of

the control volume dVx, namely, qðx; tÞ as:
qðxÞ _hlðx; tÞ ¼ �r � qðx; tÞ þ qðxÞrðx; tÞ ð5Þ
with rðx; tÞ a specific thermal power source at location x as it may be easily withdrawn from the balance in Fig. 1(a).
� The rate of change of the non-local thermal energy contribution qðxÞdVx

_hnlðx; tÞ is obtained as the resultant of the two-
points exchange in Eq. (1), namely, PðnlÞ x; y; tð Þ (see Fig. 1(b)) yielding an additional thermal power source for the control
volume dVx:
qðxÞdVx
_hnlðx; tÞ ¼

Z
Vy

PðnlÞ x; y; tð Þ dVy ¼ qðxÞdVx

Z
Vy

vðnlÞ x; y; tð ÞqðyÞdVy ð6Þ
The first principle of thermodynamics introduced by Eqs. (1) and (6) may be obtained substituting Eqs. (5) and (6) into the
balance equation reported in Eq. (4) yielding:
qðxÞ @uðx; tÞ
@t

¼ �r � qðx; tÞ þ qðxÞ
Z

Vy

vðnlÞ x; y; tð ÞqðyÞ dVy þ qðxÞrðx; tÞ ð7Þ
where the integral at the right-hand side is the non-local heat transfer contribute due to the interaction between the particle
located at position x and all the other particles of the body [45].

The long-range contribution, namely function vðnÞl x; y; tð Þ, is the long-range thermal energy transfer and it depends on the
relative temperature measured at locations x and y as:
vðnlÞ x; y; tð Þ ¼ jag kx� ykð Þ Tðy; tÞ � T x; tð Þ½ � ð8Þ
with ja a material dependent proportional coefficient and g kx� ykð Þ is a distance-decaying function accounting for the
decay of the long-range thermal energy transfer with the interdistance. In the following we assume that the function
g kx� ykð Þ decays as a power-law of the distance as:
g kx� ykð Þ ¼ 1
dn;l að Þ

1
kx� yknþa ð9Þ
where a 2 R; n 2 N is the dimension of the topological space of the body (in our case n ¼ 3) and the normalization coeffi-
cient dn;l að Þ is related to the decaying exponent a and to the dimension of the topological space embedding the conductor n
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Fig. 1. (a) Balance among ingoing and outgoing thermal energy fluxes; (b) Ingoing and outgoing long-range thermal energy transfer for homogeneous
conductor ðqðxÞ ¼ qðyÞ ¼ 1Þ.
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(see Appendix A). Substituting Eq. (9) into Eq. (8), and assuming an homogeneous conductor ð.ðxÞ ¼ .ðyÞ ¼ .Þ the internal
energy balance reported in Eq. (7) is written in the form:
qCV
@T
@t
¼ �r � qþ q2ja D̂a

xT
� �

þ qr ð10Þ
where D̂a
xT is the integral contribution to the Marchaud fractional derivative of order a, (see Appendix A), defined as:
D̂a
xT :¼ 1

dn;l að Þ

Z
Vy

Tðy; tÞ � T x; tð Þ
kx� yknþa dVy ð11Þ
when Fourier law for the classical local transfer of thermal energy is used, we obtain:
qCV
@T
@t
¼ kr2T þ q2ja D̂a

xT
� �

þ qr ð12Þ
where k is the (local) heat conductivity and ja is the long-range transport coefficient, that we define anomalous heat con-
ductivity. The temperature field may be obtained, in integral form, for any distributed heat sources rðx; tÞ as we obtain the
Greens’ function for a concentrated temperature distribution T0ðxÞ ¼ T0dðxÞ.

The temperature field Tðx; tÞ caused by a temperature pulse in unbounded domain is the solution of Eq. (12) replacing the
integral term with its counterpart defined in unbounded domain, namely, D̂a

xT
� �

! Da
xT

� �
that is the Marchaud fractional

derivative. The initial and the integrability conditions associated to Eq. (12) for unbounded domains read:
Tðx;0Þ ¼ T0dðxÞ;
Tð�1; tÞ ¼ Tð1; tÞ ¼ 0

ð13Þ
yielding the Greens’ function for the temperature distribution in Fourier domain, namely eT ðk; tÞ, as the solution of the ordin-
ary differential equation:
deT
dt
¼ �

kk2 þ qjakkka
� �

qCV

eT ð14Þ
whose solution may be obtained by means of the inverse Fourier transform as:
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Tðx; tÞ ¼ T0

2p

Z þ1

�1
eikxeT ðk; tÞdk ¼ T0

2p

Z þ1

�1
eikxe

�
kk2þqjakkkað Þt

qCV

� �
dk ð15Þ
The temperature field corresponding to of the Fourier integral in Eq. (15) has been obtained in closed-form under the
assumption of vanishing local contributions ðk ¼ 0Þ, for different decreasing values of the parameter a ¼ 1; 3

4 ;
1
2 ;

1
3, as

reported in (Fig. 2). It may be observed that, if a ¼ 1 then the Fourier integral in Eq. (15) reduces to a Cauchy-type temper-
ature field as: Tðx; tÞ ¼ 2t

ðt2þx2Þ (Fig. 2(a)), whereas, for a ¼ 1=2 a linear combination of Fresnel integrals, namely, SðxÞ and CðxÞ
represents the temperature distribution reported in (Fig. 2(c)) as:
Tðx; tÞ ¼

ffiffiffip
2

p
t Cos t2

4x

h i
1� 2CðxÞ tffiffiffiffi

2p
p ffiffiffiffiffi

kxk
p

� �	 

þ 1� 2SðxÞ tffiffiffiffi

2p
p ffiffiffiffiffi

kxk
p

� �	 

Sin t2

4kxk

h i	 

kxk3=2 ð16Þ
In passing it must be stressed that a closed-form analytical solution for the fractional-order differential equation in Eq. (15) is
obtained, as k ¼ 0; 8a 2 Q where Q � R is the set of rational numbers.
2.2. The Clausius–Planck relation with fractional-order heat transport

The proposed model of thermal energy transfer in rigid conductors requires the introduction of appropriate transport
relations among the state variables of the system: (i) The flux qðx; tÞ and the temperature field Tðx; tÞ; (ii) The long-range
transfer vðnlÞðx; y; tÞ and the relative temperature field DTðjx� yj; tÞ ¼ Tðy; tÞ � Tðx; tÞ.

The functional expression as well as the signs of the transport coefficients must be compliant with the second principle of
thermodynamics expressed in terms of the well-known Clausius–Planck inequality. Indeed the use of the Clausius–Planck
(or Clausius–Kelvin) inequality is equivalent to the use of the Clausius–Duhem form of the second principle of
thermodynamics as the thermodynamics restrictions among the state variables have been fulfilled.
2. Temperature distribution for diffusion of temperature pulse for (k ¼ 0; ja ¼ 1:0; T0 ¼ 400 K) for different values of the differentiation order.
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The compatibility of the proposed model is assessed in terms of the entropy state function, namely, sðx; tÞ that must obey
to Clausius–Planck inequality for a thermodynamical system evolving from state A! B at time instants tA and tB, respec-
tively, as:
MsABðxÞ ¼ sðx; tBÞ � s x; tAð Þ ¼
Z tB

tA

q_sðx; tÞdt P
Z tB

tA

dhðx; tÞ
Tðx; tÞ ð17Þ
where we introduced the specific entropy function rate _sðx; tÞ and dh is the thermal energy increment of the body subdomain
at location x. Recalling that, in a rigid body, s ¼ sðuÞ and that @s=@u ¼ 1=T , making use of the energy balance equation, the
right hand side of Eq. (17) may be written in the form:
q_sðx; tÞP �$ � qðx; tÞ
Tðx; tÞ þ

qðxÞrðx; tÞ
Tðx; tÞ þ qðxÞ

Tðx; tÞ

Z
Vy

qðyÞvðnlÞ x; y; tð ÞdVy ð18Þ
The observation of Eq. (18) for the specific entropy rate increment shows that an additional contribution at the right-hand
side is obtained with respect to the classical expression of the Clausius–Planck inequality. Eq. (18) may be recast in a more
convenient form, introducing the specific entropy rate production rðsÞðx; tÞP 0 for any thermodynamical process yielding:
q_sðx; tÞ þ $ � qðx; tÞ
Tðx; tÞ �

qðxÞrðx; tÞ
Tðx; tÞ � qðxÞ

Tðx; tÞ

Z
Vy

qðyÞvðnlÞ x; y; tð ÞdVy ¼ qrðsÞðx; tÞP 0 ð19Þ
On the other hand the entropy rate may be expressed at location x in the form of a balance among the incoming and the
outcoming entropy flux in the unitary time so that:
q_sðx; tÞ ¼ �$ � JðsÞl ðx; tÞ þ
Z

Vy

JðsÞnl x; y; tð ÞdVy þ
qðxÞrðx; tÞ

Tðx; tÞ þ qðxÞrðsÞðx; tÞ ð20Þ
where we introduced the local and non-local long-range entropy transfer, respectively, JðsÞl ðx; tÞ and JðsÞnl x; y; tð Þ related to the
local and long-range thermal energy transfer, respectively.

Eq. (20) may be substituted into Eq. (18) to yield the inequality:
�$ � qðx; tÞ
Tðx; tÞ þ

qðxÞ
Tðx; tÞ

Z
Vy

qðyÞvðnlÞ x; y; tð ÞdVy þ $ � JðsÞl ðx; tÞ �
Z

Vy

JðsÞnl x; y; tð ÞdVy P 0 ð21Þ
The entropy flux is assumed to be a function of state of the local contribution to the internal energy rate
JðsÞl ðxÞ ¼ ul ulð ÞqlðxÞ and, by similar considerations we will assume that the long-range entropy transfer is provided as
JðsÞnl x; yð Þ ¼ unl unlð Þ.2vðnlÞ x; yð Þ (assuming qðxÞ ¼ q). Under these circumstances the expression in Eq. (21), omitting the
dependence on the time variabile t, yields:
ul ulð Þ �
1

TðxÞ

	 

$ � qðxÞ þ qðxÞ � r ul ulð Þð Þ �

Z
Vy

unl unlð Þ � .2vðnlÞ x; yð Þ
TðxÞ

	 

dVy P 0 ð22Þ
The inequality restriction in Eq. (22) leads to the conclusion that the linear term involving the thermal energy flux qðx; tÞ
must vanish yielding the relation:
ul ulð Þ ¼
1

Tðx; tÞ ð23Þ
that, upon substitution into Eq. (22) it yields:
qðx; tÞ
T2ðx; tÞ

� r Tðx; tÞð Þ þ
Z

Vy

unl unlð Þ � 1
Tðx; tÞ

	 

.2vðnlÞ x; y; tð ÞdVy 6 0 ð24Þ
The inequality in Eq. (24) for the entropy production may be fulfilled if, for the first term, we assume a linear force-flux rela-
tion as:
q x; tð Þ ¼ �k$ Tðx; tÞð Þ ð25Þ
with k P 0 that corresponds to Fourier relation, whereas, the second term at right hand side must involve the inverse of a
temperature field 1=T for dimensionality sake. As we assume that the long-range entropy flux function unl unlð Þ ¼ 1=T y; tð Þ
since JðsÞnl x; y; tð Þ represents the entropy variation at location x due to a thermal source at location y, then the integral term
must satisfy the inequality:
Z

Vy

Tðx; tÞ � T y; tð Þ
Tðx; tÞT y; tð Þ

	 

vðnlÞ x; y; tð ÞdVy 6 0 ð26Þ
that is fulfilled if a linear force-flux relation for the long-range thermal energy transfer is assumed in Eq. (8):
vðnlÞ x; y; tð Þ ¼ g kx� ykð Þ T y; tð Þ � T x; tð Þ½ � and g kx� yk; tð ÞP 0 as in Eq. (9). Such restrictions for the local and non-local ther-
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mal energy exchanges are satisfied with the power-law decaying function g x; yð Þ defined in Eq. (9) that is compliant with the
second principle of thermodynamics [47].

2.3. Numerical simulation: temperature distribution in 1D rigid conductor

The field of temperature distribution Tðx; tÞ ruled by Eq. (13) in a bounded 1D domain of length L is provided by the solu-
tion of the fractional differential equation that reads (omitting arguments):
qCV
@T
@t
¼ kr2T þ qja D̂a

x T
� �

ð27Þ
where only the integral parts of the Marchaud fractional derivatives are involved. In this case the analysis of the temperature
field is obtained resorting to the fractional finite difference (FFD) discretization of fractional derivative operator. Indeed, as
we introduce a discrete grid of abscissas xj ¼ ðj� 1ÞDx, with step Mx ¼ L= N þ 1ð Þ the finite difference solution of the non-local
temperature field will be obtained at the gridpoints xj; ðj ¼ 1;2; . . . ;N þ 1Þ introducing the central finite difference operators
for the second-order gradient and the FFD approximation of the D-Riesz fractional derivative as:
@2f xj
� �

@x2 w
D2fj

Dx2 ¼
f xjþ1
� �

� 2f xj
� �
þ f xj�1
� �

Dx2 ð28Þ

D̂a
x f

� �
xj
� �
wDa

x f xj
� �
¼ a�1

C 1� að Þ
Xj�1

h¼1
xj�hþ1
� ��a � xj�h

� ��a
h i

f xhð Þ
n o

þ a�1

C 1� að Þ
XNþ1

h¼jþ1
xh�j
� ��a � xh�j�1

� ��a
h i

f xhð Þ
n o

ð29Þ
Introduction of the finite difference scheme in the governing equation of the temperature field in Eq. (28) yields a set of
ordinary differential equations in time domain in the form:
_T tð Þ þ KðlÞ þ KðnlÞ
h i

TðtÞ ¼ �r tð Þ ð30Þ
where T tð Þ ¼ T1 tð Þ T2 tð Þ . . . . . . TNþ1 tð Þ½ �T is a vector collecting the values of the temperature field at the grid points
with initial conditions in the form Tð0Þ ¼ T0 and �r tð Þ is a vector gathering the values of the heat source in the conductor
domain with elements �rjðtÞ ¼ rðxj; tÞ=CV . The N þ 1ð Þ � N þ 1ð Þ local and non-local diffusion matrices reported in Eq. (30)
read, respectively:
KðlÞ ¼ k

CV ðDxÞ2

1 �1 0 . . . . . . 0
�1 2 �1 . . . . . . 0
. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

0 . . . 0 �1 2 �1
0 0 . . . . . . �1 1

2666666664

3777777775
ð31Þ

KðnlÞ ¼ jaa
CVC 1� að Þ

KðnlÞ
11 KðnlÞ

12 KðnlÞ
13 . . . . . . KðnlÞ

1Nþ1

Sym KðnlÞ
22 KðnlÞ

23 . . . . . . KðnlÞ
2Nþ1

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

Sym . . . KðnlÞ
NN . . .

Sym . . . . . . . . . Sym KðnlÞ
Nþ1Nþ1

266666666664

377777777775
ð32Þ
where KðnlÞ
jh ¼ xj�hþ1

� ��a � xj�h
� ��a and with the diagonal terms in Eq. (32) that read KðnlÞ

jj ¼ �
PNþ1

h–j
h¼1

KðnlÞ
jh . The differential

equation reported in Eq. (30) has been solved with the approximate integration scheme provided by FFD for constant tem-
peratures at the boundaries as:
Tð�L=2; tÞ ¼ T2 ¼ 200 K TðL=2; tÞ ¼ T1 ¼ 100 K ð33Þ
with initial conditions provided as a linear distributions of temperatures among the values T2 and T1 as:
Tðx;0Þ ¼ T2 �
ð1þ 2x=LÞ T2 � T1ð Þ

2
ð34Þ
The corresponding numerical solution of the boundary value problem reported in Eq. (27) and in Eqs. (33) and (34) has been
reported in (Fig. 3) for different values of the differentiation index a. It may be observed that, introducing long-range thermal



Fig. 3. Temperature distribution for different decay of long-range thermal energy transfer (k ¼ 10:0; ja ¼ 0:1; CV ¼ 1:0).
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energy transfer, the time-evolution of the initial linear temperature field in the conductor shows high temperature gradients
at the insulated borders of the 1D conductor as observed in Kapitsa effect. This feature is very interesting in thermal energy
transport in nanowires and nanosheets since insulated and/or thermostated borders of the conductor involves propagation of
phononic carriers. The propagation of energy at the subatomic scales involves modification in the state of electron density of
the material and, henceforth, it induces a modification of the thermal conductivity of the material close to the borders [1,2].

The presence of phononic transport has been captured in this section with a diffusive equation and, henceforth, the
instantaneous perturbation of the temperature field is transferred across the conductor with unbounded speed. Therefore
there are no transitory regimes among the initial and the steady-state temperature field since no temperature waves are
involved in the analysis. Such a consideration is further investigated in the next section in the context of non-equilibrium
thermodynamics.

3. A non-equilibrium model of fractional-order thermal energy transport

The non-local model of thermal energy transfer used in previous section relies on the assumption of local thermodynamic
equilibrium conditions. This assumption is appropriate for usual engineering applications but, as thermal energy transport
involves high frequency processes with oscillation periods comparable with the relaxation times of phonons carrying ther-
mal energy, an appropriate extension of Fourier transport equations must be accounted for.

The usual representation of the memory effect due to thermal energy flux is provided by additional contributions in the
transport equations in terms of the first-order time derivative of the heat flux _q x; tð Þ as in Maxwell–Cattaneo [42] model or
resorting to more recent real-order derivatives Da

0þq
� �

t x; tð Þ (see e.g. [5]). In this section the first-order relaxation of thermal
energy transfer by means of the Cattaneo model for the local thermal energy exchange is considered as:
s _q x; tð Þ þ q x; tð Þ ¼ �k$T x; tð Þ ð35Þ
with s P 0 a material dependent relaxation time ruling the decay of the propagating thermal waves in the conductor.
Introducing the gradient operator r �½ � to both sides of Eq. (35) the following relation is obtained:
s @
@t
r � q x; tð Þ½ � þ r � q x; tð Þ½ � ¼ �k$2T x; tð Þ ð36Þ
and, as we replace the divergence of the thermal energy flux in Eq. (35) with the corresponding expression in terms of tem-
perature gradients as reported in Eq. (8) we get the 3D counterpart of the temperature equation yet obtained for the 1D case
[45], in the form:
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sqCV
@2T x; tð Þ
@t2 þ @

@t
qCV T x; tð Þ � ska D̂aT x; tð Þ

� �� �
¼ k$2T x; tð Þ þ ka D̂aT x; tð Þ

� �
þ qr x; tð Þ þ _qr x; tð Þ ð37Þ
The use of Eq. (35) for local thermal energy transfer q x; tð Þ involves non-monotonic increments of the entropy function
s ¼ sðuÞ of CIT introduced in previous section as observed in previous papers [39,40]. Previous consideration leads to assess
the thermodynamical consistency of the model in terms of the extended irreversible thermodynamics (EIT) as it is shown in
the following section.

3.1. The Clausius–Planck relation of EIT with fractional-order heat transport

The introduction of a first-order time lag in the force-flux relation (Eq. (35)), requires the introduction of a non-equilib-
rium entropy, functionally dependent on the internal energy density u and on the thermal energy flux q in the form:
s ¼ s u;qð Þ. Under this assumption the local entropy flux shows the functional dependence JðsÞl ¼ JðsÞl u;qð Þ ¼ uðuÞq [28]. In this
setting, the non-equilibrium entropy rate reads:
_s ¼ _s u;qð Þ ¼ @s
@u

	 

q

_uþ @s
@q

	 

u

_q ð38Þ
In the following we assume an isotropic body so that the functional dependence entropy function and local entropy flux may
be assumed as: s ¼ s u;q � qð Þ ¼ s u; q2

� �
and: JðsÞl ¼ JðsÞl u; q2

� �
, respectively. Under these circumstances the entropy rate func-

tion in Eq. (38) may be written as:
_s ¼ _s u; q2� �
¼ @s

@u

	 

q2

_uþ @s
@q2

	 

u
2q � _q ð39Þ
Substitution of Eq. (39) into the entropy balance equation reported in Eq. (27) yields (omitting the dependence on the time
variable):
qðxÞ @s
@u

	 

q2

_uþ q
@s
@q2

	 

u

2q � _qþ $ � JðsÞl ðxÞ �
Z

Vy

JðsÞnl x; yð ÞdVy �
qr

TðxÞ ¼ qðxÞrðsÞðx; tÞ ð40Þ
As we substitute, for the rate of internal energy, the expression in terms of the local and long-range thermal energy fluxes in
Eq. (8) and accounting for Cattaneo transport equation in Eq. (35), after straightforward manipulations we get:
@s
@u

	 

q2

�r � qþ qðxÞ
Z

Vy

qðyÞvðnlÞ x; yð ÞdVy þ qr

 !
þ q

@s
@q2

	 

u
2q � _qþ $ � JðsÞl ðxÞ �

Z
Vy

JðsÞnl x; yð ÞdVy �
qðxÞr
TðxÞ

¼ qðxÞrðsÞðx; tÞ ð41Þ
The derivative of the entropy function with respect to the internal energy, @s
@u

� �
q2 , is, dimensionally, a temperature field and

under the assumption in Eq. (38) it may be selected as the absolute temperature of the body: @s
@u

� �
q2 ¼ 1

TðxÞ yielding Eq. (41) in
the form:
�r � q
TðxÞ þ

qðxÞ
TðxÞ

Z
Vy

qðyÞvðnlÞ x; yð ÞdVy � qðxÞ @s
@q2

	 

u
2q � k

s
rT þ q

s

	 

þ $ � JðsÞl ðxÞ �

Z
Vy

JðsÞnl x; yð ÞdVy ¼ qðxÞrðsÞðx; tÞ ð42Þ
Right-hand side of Eq. (42), namely entropy production rate, must be positive, so that, after some manipulation, the follow-
ing inequality reads:
ul �
1

TðxÞ

	 

r � q�

Z
Vy

JðsÞnl x; yð Þ � qðxÞqðyÞvðnlÞ x; yð Þ
TðxÞ

	 

dVy �

2qðxÞk
s

@s
@q2

	 

2q � ðrTÞ

� 2qðxÞ
s

@s
@q2

	 

q2 þ $ulð Þ � q P 0 ð43Þ
where JðsÞl ¼ ulðuÞq. The condition in Eq. (43) may be respected as function ulðuÞ ¼ 1
TðxÞ yielding the following inequality for

the remaining terms:
Z
Vy

JðsÞnl x; yð Þ � q2vðnlÞ x; yð Þ
TðxÞ

	 

dVy þ

2qk
s

q � ðrTÞ þ 2q
s

q2
	 


@s
@q2

	 

þ $TðxÞ

TðxÞ2
� q 6 0 ð44Þ
that must be fulfilled for any thermodynamical process in the body.
The first term in Eq. (44) is analogous to Eq. (24) and assuming JðsÞnl x; yð Þ ¼ unlðuÞqðxÞqðyÞvðnlÞ x; yð Þ the condition on the

proportionality function unlðuÞ yields: unlðuÞ ¼ 1
TðyÞ to respect the Clausius–Planck inequality in Eq. (44) for any thermody-

namical process. As a consequence the decaying function g x; nð ÞP 0 as in previous section. The second term in Eq. (44) sat-
isfies the inequality sign as:
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2qk
s

@s
@q2

	 

þ 1

TðxÞ2

 !
q � ðrTÞ þ 2q

s
@s
@q2

	 

q2
6 0 ð45Þ
that may be fulfilled only as the first-order derivative of the extended entropy function s ¼ s u; q2
� �

reads:
@s
@q2

	 

¼ � s

2qk
1

TðxÞ2
ð46Þ
yielding a thermodynamical restriction upon the sign of the thermal conductivity k P 0 as in Fourier transport equation that
has been considered in previous section.

3.2. Numerical simulation: temperature distribution in 1D domain

The temperature equation for ballistic thermal energy transfer in presence of pure diffusion (Eq. (13)), or with mixed/bal-
listic diffusion thermal energy transfer (Eq. (36)) may be solved with Fourier transform method. Initially we confine the anal-
ysis to the temperature distribution in 1D unbounded domain, neglecting the presence of internal heat sources
rðx; tÞ ¼ _rðx; tÞ ¼ 0, that is ruled by the initial value problem:
CVqs @
2T x;tð Þ
@t2 þ @

@t
CVqT x;tð Þ � sja DaT x;tð Þ

� �� �
¼ k$2T x; tð Þ þ ja DaT x;tð Þ

� �
T x:0ð Þ ¼ T0e�

x2

4r2ffiffiffiffiffiffiffi
2p
p

r
; _Tðx;0Þ ¼ 0 ð47Þ
Fourier transform of Eq. (47) reads:
d2eT j; tð Þ
dt2 þ deT j; tð Þ

dt
1� sKakjak

s

	 

þ kj2 �Kakjak

s

	 
eT j; tð Þ ¼ 0 T̂ x:0ð Þ ¼ T0e�j2r2
;

_̂Tðx;0Þ ¼ 0 ð48Þ
with Cacos ap=2ð Þ=. ¼ Ka. We define the coefficients in Eq. (48) as:
A jð Þ ¼ 1� sKakjka

2s ; B jð Þ ¼ kj2 � sKakjka

s ð49Þ
yielding the reduced version of the differential equation in Eq. (48) as:
Propagation of a Gaussian temperature pulse with T0 ¼ 20 K; r ¼ 0:1 for different values of the time lag s with (k ¼ 10:0; ja ¼ 0:1; a ¼ 0:3;
0).
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d2eT j; tð Þ
dt2 þ A jð Þd

eT j; tð Þ
dt

þ B jð ÞeT j; tð Þ ¼ 0 T̂ðx;0Þ ¼ T0e�j2r2
;

_̂Tðx;0Þ ¼ 0 ð50Þ
whose solution is provided as usual linear combination of exponential functions with coefficients dependent on the initial
conditions. In this regard the temperature distribution is provided, in Fourier domain as:
T x;tð Þ ¼ T0

2p

Z þ1

�1

r2 jð Þer1 jð Þt � r1 jð Þer2 jð Þt

r1 jð Þ � r2 jð Þ e�j2r2
eijxdj ð51Þ
where r1 jð Þ and r2 jð Þ are the solution of the characteristic equation expressed in terms of the coefficients A jð Þ and B jð Þ as:
r1 jð Þ ¼ � A jð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A jð Þ2 � B jð Þ

q	 

; r2 jð Þ ¼ � A jð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A jð Þ2 � B jð Þ

q	 

ð52Þ
The presence of time lag s in thermal energy transport induces the propagation of a decaying thermal wave that is strongly
influenced by the fractional-order transport represented by integral terms in Eq. (50). The effects of the fractional differen-
tiation order in the temperature distribution is reported in (Fig. 4(a)–(d)) showing the presence of a thermal wave propagat-
ing in 1D domain with a faster decay induced by the long-range diffusive transport. The effects induced by the time lag s in
the temperature distribution of local and non-local type is showed in (Figs. 5(a)–(d)) reporting the temperatures of a 1D
domain for different values of the time lag s ¼ 0; s ¼ 0:05 s; s ¼ 0:5 s; s ¼ 5 sð Þ. It is shown that, as time lag increases, some
of the thermal energy is transferred by diffusion (smaller values of s) among adjacent and non-adjacent locations whereas
some other is transferred by ballistic motion of thermal phonons. In case of larger values of the time lags, the presence of
damped thermal waves corresponding to ballistic motion increases over classical diffusion (5(c)–(d)).

The study of the temperature field in an 1D bounded domain is ruled by the second-order integro-differential equation
containing the integral parts of the Marchaud derivatives as:
CVqs @
2T x;tð Þ
@t2 þ @

@t
CVqT x;tð Þ � sja D̂aT x;tð Þ

� �� �
¼ k$2T x; tð Þ þ ja D̂aT x;tð Þ

� �
ð53Þ
The numerical analyses reported in the paper aim to highlight the effects of the time-lag s and of the coefficient a on the
temperature field as well as on the propagation of thermal waves induced by initial disturbances. The temperature field
has been obtained resorting to the FFD scheme introducing the discretization grid with N þ 1 node and step Dx ¼ L

ðNþ1Þ the
temperature values at the nodes, namely, Tj tð Þ with j ¼ 1;2; . . . N þ 1 are provided as solution of the differential equations:
s€T tð Þ þ CðlÞ þ CðnlÞ
h i

_T tð Þ þ KðlÞ þ KðnlÞ
h i

TðtÞ ¼ �r tð Þ ð54Þ
Temperature distribution with long-range thermal energy transfer for different values of the differentiation order a (k ¼ 10:0; ja ¼ 0:1; CV ¼ 1:0).



Fig. 6. Temperature distribution with long-range thermal energy transfer for different values of the time lag (k ¼ 10:0; ja ¼ 0:1; CV ¼ 1:0).
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where the coefficient matrices KðlÞ and KðnlÞ have been reported in Eqs. (33) and (34), respectively. The local coefficient matrix
C lð Þ coincides with the ðN þ 1Þ identity matrix CðlÞ ¼ I and non-local dissipation matrices CðnlÞ, reads, respectively:
CðnlÞ ¼ sjaa
CVC 1� að Þ

CðnlÞ
11 CðnlÞ

12 CðnlÞ
13 . . . . . . CðnlÞ

1Nþ1

Sym CðnlÞ
22 CðnlÞ

23 . . . . . . CðnlÞ
2Nþ1

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

Sym . . . CðnlÞ
NN . . .

Sym . . . . . . . . . Sym CðnlÞ
Nþ1Nþ1

266666666664

377777777775
ð55Þ
where CðnlÞ
jh ¼ xj�hþ1

� ��a � xj�h
� ��a and with the diagonal terms CðnlÞ

jj ¼ �
PNþ1

h–j
h¼1

CðnlÞ
jh .

The initial condition of the considered boundary value problem is a linear temperature distribution among prescribed
temperature values at the borders T � L

2 ; t
� �

¼ T1 and T L
2 ; t
� �

¼ T2 8t P 0. The solution of the temperature equation has been
reported in Fig. 5(a)–(d) for cases of a variable and fixed s and cases of s variable and fixed a in (Fig. 6(a)–(d)) respectively.
The inspection of both set of figures shows that the presence of a time lag s in the propagation of the initial disturbance cor-
responds to an evolution of the perturbation front, starting from the borders at x ¼ �L=2 and x ¼ L=2 toward the center of the
conductor. The speed of propagation of the thermal wave increases if s decreases as it may be captured from direct obser-
vation of Fig. 6(a)–(d). Indeed it is shown that the initial distribution is maintained up to the arrival of the temperature waves
that yield high temperature gradients at the borders.
4. Conclusions

Thermal energy transfer in rigid heat conductors at nano-scales and/or for high frequency processes has been recently
modeled by suitable extension of Fourier transport equation in terms of real-order (fractional) derivatives. Such extension
relies on the long-tail properties of power-law kernels to describe the slow spatial and temporal decay of temperatures
observed at the mesoscale of complex heterogeneous materials. Indeed at these scales, the presence of the material structure
influences the thermal energy transport and the use of non-local thermodynamics has became very common to model the
scale effect as additional contributions to the transport equations.

In the paper a numerical investigation of the effects induced by non-homogeneous boundary conditions on a recent
model of non-local thermodynamics has been reported for diffusive and ballistic heat fluxes. The used model assumes that
the thermal energy transfer is due to the superposition of two contributions at the considered observation scale: (i) A phonon
collision/ballistic model of thermal energy transfer that is described by means of Fourier/Cattaneo transport equation and (ii)
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a phononic small-scale heat transport accounting for the long-range thermal energy transfer proportional to the relative
temperature among interacting locations, to the product of interacting masses and to a proper, material-type decaying func-
tion. Restrictions on the functional class of the distance-decaying function have been reported in the paper showing that any
decaying function that is strictly positive in the whole conductors’ domain is eligible in terms of the Clausius–Planck
inequality.

As we assume that the decaying function belongs to the functional class of power-laws of the interacting distances then a
fractional-order heat equation with Marchaud-type fractional derivatives of order a� 0;1½ � is obtained in unbounded
domains. A different scenario appears as bounded conductors are considered since only integral terms of Marchaud frac-
tional operator are retained in the model. This aspect is a peculiarity of the proposed long-range thermal energy transfer that
prevent for the ill-conditioning of non-homogeneous Dirichlet and Neumann boundary conditions always encountered in
integral non-local approaches.

It is shown that the proposed model yields the phonon–phonon scattering of thermal energy waves outside the thermo-
statted regions where the changes of the electron density modifies the material conduction parameters yielding a non-uni-
form temperature field. The model may be extended to coupled thermoelastic problems to highlight the effects of the non-
homogeneous temperature distribution on the stress and strain field observed in materials at the nanoscale.
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Appendix A. Remarks on fractional calculus

In this appendix the essential features of fractional calculus will be shortly discussed.
Let us consider a real-valued, Lebesgue integrable function f ðxÞ; x 2 R such that f ðxÞ 2 L1. The left and right Riemann–

Liouville (RL) fractional-order integrals are defined as:
Iaþf
� �

ðxÞ ¼ 1
C að Þ

Z x

�1

f yð Þ
x� yð Þ1�a dy

Ia�f
� �

ðxÞ ¼ 1
C að Þ

Z 1

x

f yð Þ
y� xð Þ1�a dy

ð56Þ
with a 2 0;1½ � and C �ð Þ is the Euler-Gamma function. The left and right fractional derivatives are defined as:
Da
þf

� �
ðxÞ ¼ 1

C 1� að Þ
d
dx

Z x

�1

f yð Þ
x� yð Þ1�a dy

Da
�f

� �
ðxÞ ¼ 1

C 1� að Þ
d
dx

Z 1

x

f yð Þ
y� xð Þ1�a dy

ð57Þ
As we assume that function f ðxÞ 2 C1 with C1 the class of continuous functions with continuous first derivative, then the left
and right RL fractional derivatives coalesces with the Marchaud (M) fractional operator that is defined as:
Da
þf

� �
ðxÞ ¼ a

C 1� að Þ

Z x

�1

f ðxÞ � f yð Þ
x� yð Þ1þa dy ¼ Da

þf
� �

ðxÞ ð58Þ
for the left M fractional derivative, whereas, the right M fractional derivative is related to the right RL fractional derivative as:
Da
�f

� �
ðxÞ ¼ a

C 1� að Þ

Z 1

x

f ðxÞ � f yð Þ
y� xð Þ1þa dy ¼ Da

�f
� �

ðxÞ ð59Þ
The definition of RL and M fractional derivatives operating on functions defined on bounded intervals a; b½ � � R involves
integral terms as well as algebraic contributions as:
Da
aþ f

� �
ðxÞ ¼ f að Þ

C 1� að Þ x� að Þa
þ 1

C 1� að Þ

Z x

a

f yð Þ0

x� yð Þa
dn ð60Þ

Da
b� f

� �
ðxÞ ¼ f bð Þ

C 1� að Þ b� xð Þa
� 1

C 1� að Þ

Z b

x

f yð Þ0

y� xð Þa
dn ð61Þ
where f yð Þ0 ¼ df
dy, showing divergence at the boundaries of the considered domains, unless function f ðxÞ ! 0 faster than xa as

x! 0. Similar considerations hold true also for the M fractional operators defined on bounded support, yielding:
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Da
aþ f

� �
ðxÞ ¼ af ðxÞ

C 1� að Þ x� að Þa
þ D̂a

aþ f
� �

ðxÞ ð62Þ

Da
b� f

� �
ðxÞ ¼ af ðxÞ

C 1� að Þ b� xð Þa
� D̂a

b� f
� �

ðxÞ ð63Þ
where D̂a
aþ f

� �
ðxÞ and D̂a

b� f
� �

ðxÞ are, the integral parts of the truncated M fractional operators defined as:
D̂a
aþ f

� �
ðxÞ ¼ a

C 1� að Þ

Z x

a

f ðxÞ � f yð Þ
x� yð Þ1þa dy

D̂a
b� f

� �
ðxÞ ¼ a

C 1� að Þ

Z b

x

f ðxÞ � f yð Þ
y� xð Þ1þa dy

ð64Þ
Equivalent forms to Eqs. (62) and (63) relative to the M fractional derivatives valid for cases involving a > 1 may be
obtained as we introduce the l-order finite differences of function f ðxÞ, with l ¼ af g þ 1 and l > 1 (see e.g. [48]) yielding:
Da
þ f

� �
ðxÞ ¼ � 1

C �að ÞAl að Þ

Z 1

0

M
l
�nf

� �
ðxÞ

y1þa dy ¼ 1
v l;að Þ

Z 1

0

M
l
�nf

� �
ðxÞ

y1þa dy ð65Þ
where we denoted af g the integer part of the real number a and the normalization coefficient v l;að Þ ¼ �Al að ÞC �að Þ. The
fractional finite difference M

l
�nf

� �
ðxÞ, that appears in the integral term in Eq. (65) and the normalization factor Al að Þ are

defined as:
M
l
�y f

� �
ðxÞ ¼

Xl

k¼0

�1ð Þk
l

k

	 

f x� kyð Þ; Al að Þ ¼

Xl

k¼0

�1ð Þk�1 l

k

	 

ka ð66Þ
with a 2 Rþ. The coefficient Al að Þ is identically vanishing for integer values of a ¼ 1;2; . . . ; l� 1 whereas the normalization
coefficient v l;að Þ is unbounded as a! l� and it is finite as a! lþ.

The definitions of Marchaud fractional derivatives applied to scalar functions of simple scalar variables may be extended
to scalar functions of multivariable arguments. This extension became more readable as we introduce the Riesz (R) potential
operator of function f, dubbed Iaf

� �
ðxÞ that is defined as:
Iaf
� �

ðxÞ ¼ 1
2 cos ap=2ð ÞC að Þ

Z þ1

�1

f yð Þ
kx� yk1�a dy ¼

Iaþf
� �

ðxÞ þ Ia�f
� �

ðxÞ
2 cos ap=2ð ÞC að Þ ð67Þ
where k � k is the Euclidean distance. The inverse operators, namely the D�Riesz fractional differential operator, describing
the inverse operator of the Riesz integral, reads (for 0 6 a 6 1):
Iaf
� ��1ðxÞ ¼ Daf

� �
ðxÞ ¼ m að Þ

Z þ1

�1

f x� yð Þ � f ðxÞ
kyk1þa dy ¼ m að ÞC 1� að Þ Da

þ f
� �

ðxÞ þ Da
� f

� �
ðxÞ

� �
ð68Þ
where m að Þ ¼ 2acos ap=2ð ÞC að Þ½ ��1. Mathematical expression reported in Eq. (68) shows that, with the exception of the coef-
ficient m að ÞC 1� að Þ the inverse Riesz potential operator coincide with the sum of left and right Marchaud fractional deriv-
atives. A different, but equivalent, form of the Riesz fractional operator in Eq. (68) may be written as we introduce the
fractional difference operator of order l, holding for a P 0 as:
Iaf
� ��1ðxÞ ¼ Daf

� �
ðxÞ ¼ m að ÞC 1� að Þ

aAl að ÞC �að Þ

Z 1

0

Dl
þy f

� �
ðxÞ þ Dl

�y f
� �

ðxÞ
y1þa dy ð69Þ
The expression in Eq. (69) may be easily generalized to the case of fractional generalization of multivariable functions
f ðxÞ, with x 2 Rn as the n� fold integral:
Iaf
� �

ðxÞ ¼ 1
cn að Þ

Z
Rn

f yð Þ
kx� ykn�a dy; a – n;nþ 2; . . . ð70Þ
with the normalization constant cn að Þ is defined in [28] (Eqs. (25) and (26)).
The inverse operator Iaf

� ��1ðxÞ ¼ Daf
� �

ðxÞ, termed as the multivariable Riesz fractional differential operator is provided as
the n-fold integral:
Iaf
� ��1ðxÞ ¼ Daf

� �
ðxÞ ¼ 1

dn;l að Þ

Z
Rn

M
l
yf

� �
xð Þ

kyknþa dn ð71Þ
with M
l
yf

� �
xð Þ the centered finite difference that represents the extension to higher-dimensional spaces of Eq. (69) defined

as:
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M
l
yf

� �
xð Þ ¼

Xl

k¼0

ð�1Þk
l

j

	 

f x� kyð Þ ð72Þ
and where dn;l að Þ is a proper normalization constant, that involves an explicit dependence of the fractional order a that
reads:
dn;l að Þ ¼ bn að Þ Al að Þ
sin ap=2ð Þ ; bn að Þ ¼ p1þn=2

2aC 1þ a=2ð ÞC nþ a=2ð Þ
ð73Þ
As it has been shown for the 1D case, the Riesz fractional differential operator Daf
� �

ðxÞ may be expressed as the sum of the
left and right fractional operators involving fractional differences and henceforth, as in Eq. (69), it may be expressed in terms
of the Marchaud fractional derivatives in half-spaces, defined as:
Daf
� �

ðxÞ ¼ v�l að Þ
dn;l að Þ

1
v�l að Þ

Z
Rn
þ

M
l
þy f

� �
xð Þ

y1þa
dy þ

Z
Rn
�

M
l
�y f

� �
xð Þ

ð�yÞ1þa
dy

24 35 ¼ v�l að Þ
dn;l að Þ Da

þ f
� �

xð Þ þ Da
� f

� �
xð Þ

� �
ð74Þ
with a ¼ n� 1ð Þ þ a and �l ¼ n� 1ð Þ þ l ¼ a. Eq. (74) may also be written, under the assumption 0 6 a 6 1 as (see [55, Eqs.
(25) and (26)]):
Daf
� �

ðxÞ ¼ 1
dn;l að Þ

Z
Rn

f ðyÞ � f xð Þ
kx� yknþa dn ¼ v�l að Þ

dn;l að Þ Da
þ f

� �
xð Þ þ Da

� f
� �

xð Þ
� �

ð75Þ
that corresponds, in case of multivariable function fields f ðxÞ, to a relation between the Riesz and the Marchaud differential
operators analogous to that involving scalar variable functions reported in Eq. (69).
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