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Abstract:

Factorial graphical models have recently been proposed for inferring
dynamic regulatory networks from high-throughput data. In the search of
true regulatory relationships amongst the vast space of possible networks,
these models allow to impose certain restrictions on the dynamic nature of
these relationships, such as that Markov dependencies are of low order, i.e.
some entries of the precision matrix are a priori zeros, or that the strength
of the dependencies depend only on time lags, i.e. some entries of the
precision matrix are assumed to be equal. The precision matrix is then
estimated by $l_1$ penalised likelihood, imposing a further constraint on
the absolute value of its entries, which results in sparse networks. The
problem of selecting the optimal sparsity level is traditionally framed in
terms of the Kullback-Leibler (KL) divergence. In this paper, we present

a KL-motivated model selection criterion for factorial graphical models, by
taking into account the a priori structural constraints. We test the
performance of this method on simulated data and compare it with existing
approaches. Finally, we present an application on a detailed time-course
microarray data from the \textit{Neisseria meningitidis} bacterium, a
causative agent of life-threatening infections such as meningitis.
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1 Introduction

Networks are an important paradigm to describe genomicessss. The gene-
regulatory system, for example, is a complex and dynamicgs® with many po-
tential and continuously interacting components. Netwarktangle this system
in two constituting parts, namely substrates and functidgaamic relationships
between those substrates. Decreasing costs of genomiciresant technologies
have made it possible to be able to observe genomic systenighetemporal res-
olution. This enables investigation into organisms déférfrom typical model
organisms. In this paper, we focus on the gene-regulatastesy of Neisseria
meningitidis. This bacterium is often referred to agningococcus and can cause
meningitis (Ryan et al., 2010)Neisseria meningitidis is a major cause of illness
and death during childhood in industrialized countries laaslbeen responsible for
epidemics in Africa and in Asia (Genco et al., 2010).

One important direction in systems biology is to discovanegeegulatory
networks from microarray data based on the observed mRN&d&f large num-
bers of genes. The main goal of gene transcription is theyatazh of MRNA that
is translated by ribosomes to make proteins. Each mRNA cdrabslated several
times by a ribosome in order to make proteins. This is donémRNA reaches the
end of its life-span. The network of gene regulation can byg gemplex, with one
regulatory protein controlling genes that produce othgulaors that in turn con-
trol other genes. Gene regulatory network models can besepted as directed
or undirected graphs, where nodes are the elements, sucNAsRNA or pro-
teins, and the directed or undirected edges from one nodedther represent the
corresponding interaction, such as activation, reprassidranslation. Dynamic
Bayesian network models (Grzegorczyk and Husmeier, 2049 been proposed
to model gene-regulatory networks for circadian regutaf®dderhold et al., 2014).
The computational complexity of such models prevent the& i an exploratory
setting. Recent work in penalized Gaussian graphical nsogdéinshausen and
Buhlmann, 2006; Friedman et al., 2008) have spurred newldpments in fast
methods for large genomic network structure learning (Azend Wit, 2013).

Most inference methods of graphical models do not allow fonrdwing
strength across edges. Dynamic networks, however, ngtatajgest various forms
of “network persistence”, which can improve network id&ation, particularly in
the case of small samples. One of the bottlenecks in curmemtank identifica-
tion methods is the issue of model selection in such perthlizaphical models.
Although some knowledge exist on the optimal asymptoticnegof the tuning
parameter (Buhlmann and Van De Geer, 2011), little is knéwrsmall numbers
of observations. Foygel and Drton (2010) proposed an ert&®BIC for graph-
ical models, which has nice asymptotic consistency praggerbut slightly less
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known behaviour for small samples. Liu et al. (2010) devetbp stability selec-
tion method for model identification by means of resamplimigich is particularly

suitable for moderate numbers of variables. However, fanallsnumber of sam-
ples the method is rather unstable, whereas for slightyelanumber of variables,
it becomes computationally expensive.

In this paper, we develop a dynamic graphical model for geqeession
in Neisseria meningitidis that borrows strength across time by imposing suitable
equality constraints and whose sparsity is selected auiceiig via a computation-
ally efficient and accurate model selection algorithm. Ictise 2 we introduce the
structured dynamic gene-regulatory network model by me&nsdirected graph-
ical models. In section 3 we derive an efficient estimatohef Kullback-Leibler
divergence, which can be used directly to perform modetsele. In section 4, we
test the performance of this method on simulated data. lgjmalsection 5, we ap-
ply the methodology to the inference of a dynamic regulatmtyvork inNeisseria
meningitidis.

2 Structured dynamic gene regulatory network model

An important issue in system biology is to understand theéesyf interactions
among several biological components, such as proteirejorotteraction and gene
regulatory networks. Various genome-wide measuremehniques have opened
up the possibility of achieving such ambitious goals. Fstance, RNA-seq chips
or microarrays measure simultaneously thousands of ggmession levels, i.e.,
concentrations of messenger RNA produced when genes aeetifzed. Gene ex-
pression is a temporal process, which evolves dynamiaaligsponse to internal,
genomic, and external, environmental, cues. Even undelestanditions, mRNA
is transcribed continuously and new proteins are generdteid process is highly
regulated. In many cases, the expression program startstivgtang a few tran-
scription factors, which in turn activate other genes. $caiption factors are pro-
teins that bind to specific DNA sequences, thereby comtigplihe flow of genetic
information from DNA to mRNA. Taking a snapshot of the exsies profile fol-
lowing some intervention may reveal which genes have spatiifichanged. But
rather than determining the set of differentially expresgenes, such as in the early
days of microarray analysis, biologists have become madegasted in determin-
ing the transcriptional program, i.e., determining thectional pathways in the
genomic network. In order to infer the temporal interacti@tween the genes, it is
necessary to perform time-course expression experiments.
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2.1 Gaussian graphical models

The presence of a link or undirected edge in a network can pieageneral, a
variety of things. In edge-based network models, it refera tlyadic relationship
between the vertices, such as the presence of friendslaporeship. In vertex-
based network model, an edge refers to a relationship bate@®ae properties of
the vertices themselves. We will define in this section theeabe of a link in a
network as the conditional independence of some quantitytefest measured on
the vertices, when fixing all other vertex levels. This cep@nds roughly to the
definition of a graphical model. For the purposes of this pape will consider
exclusively Gaussian graphical models. Get (V, E) be a graph with finite vertex
setV ={1,..., p} and undirected edge SEtC V x V.

A Gaussian Graphical Model (GGM) with respect to an undeeajraph
G=(V,E)is arandom vector = (Vi,...,Yp) with multivariate normal distribution
N(u,%), such thaty; is independent fronY; when fixing the rest if and only if the
edge(i, j) is not in the edge sdi,

(LD EE & Y LY [ Y-

This property is known as the pairwise Markov property. Asaussian density
is strictly positive, it can be shown (Lauritzen, 1996) thia pairwise Markov
property is equivalent with the following two properties:

e Global Markov property : A probability distributionP is said to obey the
global Markov property relative toG, if for any triple (A,B,S) of disjoint sub-
sets oV such that all paths fromA to B in G pass througls, we have that the
measurements on the nodeNiare conditionally independent from those on
B, when fixing the measurements on the nodeS ire.,

YalVYg|Ys.

e Factorization property: A probability distributionP is said to satisfy the
factorization property relative toG, if the density functionf of the joint dis-
tribution P can be written in the form

1
f(y17 s 7Yp> = E |1¢’C(yC>7
ce

whereC is a set of cliques, i.e. the largest subset¥ dhat form complete
graphs inG, the functionyi(yc) is a potential function, which is a positive
function of the variablesyi }icc, andz =y [Ncec Ye(Ye) is @ normalization
factor.
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The reason why these various characterizations of a gralphiadel are relevant is
that the factorization property will enable us to write doavoonvenient likelihood,
whereas the global Markov property will allow for an intudiinterpretation of the
graph as a quasi-modular network. The local Markov propeaty be useful to
infer the graph structure from sparse data, although inpaper we will pursue a
different route.

The normal density is strictly positive and it can be writéen

t(y) = (2p) P2O"2 [ -6 (yi — k) (y; — ),
1)

where® = >~ s the precision matrix. From the equivalence of all the Mbar&nd
factorization properties, one can see that

6 =0 < Y] LYiXijy < (1,]) €E,

This suggests that the determination of the gr@prcan be based on the set of
sample precisions;j estimated from a set of observations. Of particular interes
will be the identification of zero entries in the concenwatmatrix®© = {8}, since
azero entryg;; = O indicates the absence of the link in the conditional indeleace
graphG.

2.2 Dynamic Gaussian graphical model

In this section, we consider a special case of the Gaussauiigal model, in order
to represent a dynamic network with particular symmetryst@ints. We consider
a set of arbitrary unit§ = {1,...,p} and an ordered sét = (1,...,1}, typically
describing time points. This allows us to formally define aayic Gaussian graph-
ical model, in which each unit at each time point is considexgnot necessarily
independent, random variable.

Consider afinite set of unordered units, amds a finite set of ordered time
points. A dynamic Gaussian graphical model is a g&r= (V, E),N(u,@‘l)),
whereV =T x T = {Vij }ier.jeT is a set of vertices and CV x V is a set of pairs
of vertices. An observatiovi € R from the dynamic Gaussian graphical model
is normally distributed set of observations across allsuaitd time points,

Y ~N(u,0™h,

such that the conditional independence relationshipsfg&i 6t js=0 < (Vit, Vjs) &
E. Links in the dynamic Gaussian graphical models represemdiional depen-
dencies between the units within the same time point or admoge. This class of
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dynamic graphical models is, in principle completely, gahe We will consider
various subclasses of these model. First consider the dgngmaphical model
associated with the graph in Figure 1. This represent an &mkonal random
vectorY, whose elementéri1, Y21, Ya1, Ya1), are those associated with time point 1,
whereas the others are connected to time point 2. Edgesksrithin these two
groups, excluding self-links, represent the instantasevulag zero networks\p.
Edges between these two groups, excluding links betweeseatie unit, represent
the lag 1 network, or the time-delay interactioNs, Similarly, self-self interaction
with lag 0,S, or lag 1,S;, can be identified. To make the concept of networks and
self-self interactions more precise, we introduce the ephof a natural partition
of the precision matrix©.

Figure 1. Example of a dynamic graph with four vertices meagacross two time
points. The graph corresponds to the dynamic graphical h&de1,Ng < T, S <
1,N; <0.

For a dynamic Gaussian graphical moﬂ@L N(u,@‘l)) the natural parti-

tion of @ given by{S }/-; of self interactions andN; }'_¢ of network interactions,
defined as subsets 6f,

S={6jtjt+i €O|jelteT},

and
Ni={6jtiti €©|Vj#kelt=1...,nt—i}.

Each element of the natural partition has a natural intéaipom: S are the lag self-
self interactions of the units, wheread\; are the time lag interactions between
the units ofl . The next step is to define a set of models that can be applieatcto
of the elements of the natural partition. Consider an elérBen © of the natural
partition of®, i.e.,B=§ orB= N, for somei, then we define the following models
with respect to the unit sétand time ordering,
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Constant model 1: for ab js € B, 6 js= C.

Main time effect model T: for alB js € B, 6 js = Gs.
Main unit effect moderl: for all 6 js € B, 6 js = Gij.
Interaction effect moddI T: for all 6 js € B, 8,js = Citjs.

The constant model means that all the edges represent theecgaroentration or
partial correlation. The main effect time model means thatadge from unit at
time pointt to unit j at time points has the same concentration or partial correlation
as the edge from unitat time point to unitl at time points. Conversely, the main
effect unit model means that the edge from urat time pointt to unit j at time
point s has the same concentration or partial correlation as the #dm uniti at
time pointt’ to unit j at time points. The interaction effect model means that the
concentrations or partial correlations can vary freelypastime and units.

The models provide structure to the dynamic Gaussian grapmodels
with a consistent interpretation. We will informally alspesak of the “zero model:
0", which corresponds to the absence of all edges. The dynamdels can be
applied to each of the elements of the natural partitionrsgely. For example, in
Figure 1 we consider the constant model®rand main effect time ohp and the
zero model oN1, which we will write, respectively, aS§; < 1,Ng < T andN; < 0.

By collecting all the models on the elements of the naturgltgen, we can now de-
fine a dynamic graphical model as a Gaussian graphical niGdbl(u, ©1)) with
respect to the equality constraints defined on the elemétiie matural partition of
o.

3 Model selection via efficient KL estimation

In the previous section, we defined an important class of ordtwodels by con-
sidering dynamic constraints on the concentration or dadil correlation matrix.
These constraints lead to a considerable reduction of timauof parameters to be
estimated. Each sub-network can be interpreted accordiitg ¢orresponding nat-
ural partition. However, dynamic genetic graphs are ugusdhrse, which means
that few vertices will be connected. In this section, we adgrsmaximum likeli-
hood estimation subject to @-norm penalty on the concentration or conditional
correlation matrix to induce sparsity. The advantage of’iheorm is that it is the
only convex/q norm that induces sparsity. Exact zeros will be inducedyfer1
only, while the optimization problem is convex fqr> 1, which makes it feasible
for high-dimensional problems (Banerjee et al., 2008).
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1
2
3
4
5
? 3.1 Penalized likelihood for dynamic graphical models
8
9 In this section, we describe the statistical inference farse dynamic Gaussian
10 graphical models with equality constraints on the conegiain matrix. In the case
g of high-dimensional data, such constraint is also necgessguarantee existence of
13 the estimate. Thé;-penalized maximum likelihood estimator, therefore, iBrosl
14 as
15 ~
16 O, = argmaylog(®)—tr(0S) —p||O||1, Q)
g subject to dynamic constraints @n
;g whereS e RPT*PT s the sample covariance matrix of the time course data. Maxi
21 mization of (1) is a challenging task. One way is the LogdatBIgorithm, which
22 combines a proximal point algorithm (PPA) inside a precbaded conjugate gra-
23 dient solver needed for Newton’s method (Wang et al., 20E@).a single tuning
gg parameter, this method can be quite efficient, but solvingrdaime solution path for
26 a range of tuning parameters is non-trivial. Instead, w@@se a cyclic coordinate
27 descent method. The main idea underlying this family of algms is to choose,
28 at each iteration, an index and then to optimize the objedtimction with respect
ég to the corresponding parameter keeping all the remainidepes fixed.
31 Suppose that we have computed the estimégitdor a given value of the
32 tuning parameter, sag’, and we want to compute a new estimate for a value of
33 the tuning parameter, sgy, with p < p’. If p is close enough t@’, the one-
gg dimensional log-likelihood functiof(6y,) can be approximated by standard Taylor
36 expansion, with respect &, around the old estimatf. By straightforward alge-
37 bra, it is easy to see that6y,) can be approximated as follows
38
39 S .o s 10% A
" (o) = @) —p S Wnl6nl+ e (O B 2T (G, )2 i
00m 2 065

41 nZm
42 192 A
43 = C()+5 (;p)(em—ﬁm>2—pwm|9m|7 (2)
44 2 085
45 A
46 whereC({) = £({) — P 3 s .mWn| 6n| — 3{0%(D)/065} oml({)? is a constant
47 with respect toB, and 9 = 6 — {926(()/362} ~1oml({). Using approxima-
jg tion (2), the original maximization problem can be locallypstituted by the simpler
50 problem

1 2
g; QTGI% élm(‘l’)(em - 79m>2 + PWm|6m|, €))
53
54 where Im(() = —d%((()/367 is the Fisher information fofy evaluated atp.
55 Problem (3) can be solved in closed form (Friedman et al.7R0@. 6y = S(3m; Wil 71(0)p),
56
57
58
59
60
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whereS(x; A ) = sign(x)(|x| — A )+ is the soft-thresholding operator. We have im-
plemented the solver iRin our packageglasso.

3.2 Model selection through Kullback-Leibler cross-valication

In this section we address the issue of choosing the besthdgmaodel, and what
should be a good compromise between a sparse and a denseldaapiy selected
the factorial model and the tuning parameter we can incréssprecision of our
estimates by using stability selection.

An information criterion such as AIC or BIC can be used to canediffer-
ent factorial graphical models. The AIC and BIC are, redpelst given by

AIC(p) = —n (Iog(ép) - tr(@p8)> +2df(©p),

and
BIC(p) = —n (|og(©p) —tr(éps>) +df(@,)logn.

There are two main issues facing the use of such methods.e@mthhand, the tra-
ditional definition of the degrees of freedom as the numbewoofzero parameters
in the model is somewhat problematic in penalized infereiereover, the num-
ber of observations in genomic experiments are typicallgraall that the asymp-
totic assumptions on which the AIC and BIC are based are josiadpect.

Instead, we define a computationally efficient estimatorhef iKullback-
Leibler divergence based on cross-validation. This shbele&qually suitable in
the small sample as in the large sample scenario. This sdcilillback-Leiber
cross-validation estimator, or KLCV for short, is definedtbe same scale as the
AIC and therefore an estimate of the corresponding KL dieeog can be obtained
by dividing by .

KLCV (p) = —n (10g(8p) ~11(859)) +2 5 pi(Bp.S).
k=1

where the cross-validated estimated of the degrees ofdreggl, is given as

~ ved(0,1 -8 olp]'C[C!(6, © ©,1)C]*Clved(S— S o]

2n—2 ()

Pk(p)

whereC = g—‘g a o’ x mmatrix, for number of nodeg = pr and number of model
parametersn, and wherd, is the indicator matrix, whose entry is 1 if the corre-
sponding entry in the precision mat(Bgo is nonzero and zero if the corresponding
entry in the precision matrix is zero. The original KLCV wa®posed in Vujacic
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et al. (2013) for unstructured Gaussian graphical models\arefer to this method
as KLCV(PMLE). Using the original KLCV, we can also define atfapproxima-
tion of (4), by replacing it by

() = T Yed(©p" S0 01p]!Mq(©p © Op)ved(S— S o

MET 2n—2 '
We refer to this method as the KLCV(SPMLE). In section 4 wellsstzow how
the KLCV works in practice. Below, we give a brief derivatiohthe KLCV for
structured dynamic models.

()

3.3 Derivation of KLCV for structured dynamic models

Consider the scaled log-likelihood for a Gaussian grapnncalel,

1(©;S) =log|©| —tr(S9).

The Kullback-Leibler divergence up to an arbitrary scateddaand constant is de-
fined as, A A
KL(®) = —Edl(6;S),

where the expectation is taken with respect to the samplarimnce matrix. Using
the fact that cross-validation can be used to estimate xipisatation, we derive

KLCV(®) = _-il(é(_)

_ _|(é;5)—i{l(é“‘);S)—l(é;S)]

_|(é;3)_é[d'(§9 q vea8-) — 8.

Using matrix differential calculus we ha@éﬁ =229 —veq®1-S)C. The

term ve¢8(-) — @) is obtained via the Taylor expansion

Q

Cdi@) 8y dI(©;S)  dU(BS) a4, (S
0= 40 ~ g T ggz Ved0 ) —0)+—g5svedS™

From here it follows that

~ -1 ~
veq 8= — ) = — <d2l (© S>> (S5 veS—9).

do2 deds
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We haved! (9;S)/d6 = veq©@~1 - S)C, and s?l(;S)/dodS= —C!, as well as
d?1(©;9)/d6? = —C'(0~1® ©~1)C and consequently

ved 87— 6) = —[Ct(E e 6 )] Clveq ST - 3).

This results into the general formula for an unpenalizetdrenbré with equality
constraints,

n A-1_ e\teict(O-1 o 6-L\c1-1ct B
Kl_cv:—I(ci);S>JrZ\"aC(e S)C[C(eni@ )C]*C'veqS-S)

, (6)

where we use the fact that ") — S= 3-3. To obtain the formula for the penalized
estimatorp > 0 we note that asymptotically the covariances between zenoemnts
and nonzero elements are equal to zero. Thus, to obtainrtheptéor the shrinkage
estimator we do not only plug in the expressi®p in formula (6), but we also
set the elements of the covariance mafi\©, ® ©,1)C] ! that correspond to
covariances between zero and nonzero elements to zero.

4  Simulation study

We compare the different model selection criteria on sitedaata. We simulate
multivariate Gaussian data, with= 10, p = 40 and a precision matrix with 20%
structural zeros and about 55% of zeros (sparsity). Theirenganon-zero param-
eters are drawn randomly amongst a limited number of passéiles between 0.4
and 0.6. This results in a structured precision matrix, \&itbriori zeros, sparsity
and equality constraints. Figure 2 shows the true Kullbagikler loss for differ-
ent penaltiep, together with the KL estimates given by the different mehaoln
particular, KLCV(SPMLE) is the criterion proposed in thisger for structured pe-
nalised graphical models (5). The plot shows how KLCV(SPNREd AIC reach
a minimum close to the true KL minimum.

To further compare the different methods, Table 1 reporsKhllback-
Leibler minimum, averaged over 50 iterations and with séadarrors in brackets,
for the methods considered. We consider the case of smatlleaize,n = 10, and
vary the number of free parameters in the mogghge, between 10 and 100. In all
cases, the model selection criteria for structured grapke h KL loss close to the
oracle value, with KLCV(SPMLE) outperforming AIC. Not cadsring structural
and equality constraints results in poorer selection ofnleelel, as shown by the
KLCV(PMLE) results.

Statistical Applications in Genetics and Molecular Biology
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KLCV(SPMLE) versus AIC

©CoO~NOUTA,WNPE

o | —— KLCV (SPMLE)
--- AIC
10 — TRUEKL

Figure 2: KLCV and AIC estimators on simulated data with= 10, p = 40,
28 Pmodel = 50, about 20% structural zeros and 55% sparsity.

Table 1: Simulated data with n=10, p=40, about 20% strutzeeos and 55%
32 sparsity. For each method, the table reports the Kullbaakier loss, averaged
33 over 50 iterations and with standard errors in brackets. Mber of cases are
34 considered by varying the number of model paramef®ksqer The best results are
35 highlighted in bold.

37 Pmodel Oracle KLCV(SPMLE) AIC KLCV(PMLE)

38 10 1.03(0.07) 1.11 (0.17) 1.11(0.16) 3.95 (0.65)

39 20 1.66 (0.07) 1.74 (0.16) 1.76 (0.17) 4.06 (0.3)

40 30 1.93(0.06) 1.99 (0.13) 2.12(0.17) 4.10(0.34)

41 50 2.90 (0.08) 3.00 (0.17) 3.16 (0.17) 4.04(0.22)

42 100  3.68(0.09) 3.93(0.23) 4.08 (0.25) 4.16 (0.28)

45 5 Regulatory network of Neisseria meningitidis

48 We apply the methodology to microarray data from a high{rggm time-course
49 experiment using the sequenced Neisseria meningitidegsaup B strain MC58
50 (Tettelin et al., 2000). The expression of 2129 transcnpds determined using
dendrimer labelling of the parent of the sequenced stratin @stablished methods
53 (Jordan and Saunders, 2009; Saunders and Davies, 2012)jdityrgrowing liquid
54 cultures at 10 minute intervals in the early and log phasegrofith (0 to 130
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minutes) and at 20 minute intervals thereafter (to 250 neisiut Two biological

replicate cultures, grown in parallel, were sampled. Iis 8tudy we focus upon
60 transcripts that have been highly characterized to damihe FarR regulatory
network in highly replicated microarrays studies and \atkdl by gPCR and gel
shift assays (NS - unpublished), and we combine two conisedirne points into

one time point, in order to increase the number of obsematper time point to

four. We finally scale the data to have mean zero and varianedéas each protein
(and across all time points).

Network selection on Neisseria

— KLCV(SPMLE)

500
1

400
1

KL
300
1

200
1

100
1

0.2 0.4 0.6 0.8 1.0

Figure 3: KLCV(PMLE) and AIC on real data with 60 proteinsra\Neisseria
meningitidis.

We consider a particular structure to the graphical modet défine the
nodes of the graph to be the genes at a particular time poihts résults in a
600x 600 inverse covariance matr®, thus about 180,000 parameters to be esti-
mated with only 2,400 observations. However, there is geadon to impose some
constraints o®. In particular, we make the following two assumptions:

1. Markov assumption: we assume that except for lag zero and lag one, there
are no higher order interactions between the genes5iM. < 0 for alli > 1.

2. Interaction persistence:we assume that the lag zero and lag one interactions
are persistent across all ten time points, §elN; < I fori =0, 1.

Statistical Applications in Genetics and Molecular Biology
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This reduces the number of parameters from about 180,00®&mageable number
less than 5,500. Furthermore, the shrinkage induced bl tipenalty further sta-
bilizes the estimates. We use a factorial graphical model thie above constraints
on the Neisseria data.

Figure 3 shows the KLCV(SPMLE) and AIC criteria on the Neigsgene
expression data. In contrast to AIC, which tends to favoursde networks, the
KLCV(SPMLE) criterion selects the optimal network correading to the value of
p* =0.453.

We further perform a bootstrap analysis to test the robgstotthe inferred
networks. For each protein, we simulate 100 boostrap sanyyi@dding noise to
the real data at a level of variability estimated by fittingnaosthing spline to the
time series data. We then fit a factorial graphical model éolabotstrap data with
p = p*. Effectively, this post-analysis allows us to explore tpace of precision
matrices aroun®,+, by showing how robust the inference is to obtaining slightl
different, but equally plausible data. Figure 4 shows tlyezero and the lag one
graphs, where links are found in at least 50% of bootstragptesn In the lag 0
network, NMB0035, NMB0913 and NMB1636 are the most conrgentales, each
with 11 connections and all connected with each other. NMBO@rther interacts
with NMB1994 (NadA) which is known from previous studies &spond to FarA
deletion (Schielke et al., 2009). In the lag 1 network, NMB88s a central node,
with 7 connections. This node appears also in the lag 0 n&tawod is connected
with 6 other proteins. These interactions will be furthdrdated in future research.

6 Conclusions

In this paper, we have introduced structured dynamic gcabhmodels for inferring
regulatory networks from gene expression data. Given thigdd amount of data
available in typical genomic studies, we propose to borrvength across time by
imposing suitable equality constraints and to restrictgbssible class of models
by setting many entries of the precision matrix to zero arprive further impose a
sparsity constraint which stabilizes the parameter eséisnad computationally ef-
ficient and accurate model selection criterion is used fopsing automatically the
level of sparsity. We show an application of this methodgltmga high-resolution
time-course gene expression datdNefsseria meningitidis.
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Lag 0 Regulatory Network

Figure 4. Static (lag 0) and dynamic (lag 1) regulatory neknaf 60 proteins in
Neisseria meningitidis. The links were found in at least S@fbootstrap samples
with the optimalp chosen using KLCV(SPMLE). Red links correspond to positive
partial correlations, blue links to negative partial ctatens.
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