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Abstract: 

Factorial graphical models have recently been proposed for inferring 
dynamic regulatory networks from high-throughput data. In the search of 
true regulatory relationships amongst the vast space of possible networks, 
these models allow to impose certain restrictions on the dynamic nature of 
these relationships, such as that Markov dependencies are of low order, i.e. 
some entries of the precision matrix are a priori zeros, or that the strength 
of the dependencies depend only on time lags, i.e. some entries of the 
precision matrix are assumed to be equal. The precision matrix is then 
estimated by $l_1$ penalised likelihood, imposing a further constraint on 
the absolute value of its entries, which results in sparse networks. The 

problem of selecting the optimal sparsity level is traditionally framed in 
terms of the Kullback-Leibler (KL) divergence. In this paper, we present 
a  KL-motivated model selection criterion for factorial graphical models, by 
taking into account the a priori structural constraints. We test the 
performance of this method on simulated data and compare it with existing 
approaches. Finally, we present an application on a detailed time-course 
microarray data from the \textit{Neisseria meningitidis} bacterium, a 
causative agent of life-threatening infections such as meningitis. 
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1 Introduction

Networks are an important paradigm to describe genomic processes. The gene-
regulatory system, for example, is a complex and dynamic process with many po-
tential and continuously interacting components. Networks untangle this system
in two constituting parts, namely substrates and functional dynamic relationships
between those substrates. Decreasing costs of genomic measurement technologies
have made it possible to be able to observe genomic systems athigh temporal res-
olution. This enables investigation into organisms different from typical model
organisms. In this paper, we focus on the gene-regulatory system ofNeisseria
meningitidis. This bacterium is often referred to asmeningococcus and can cause
meningitis (Ryan et al., 2010).Neisseria meningitidis is a major cause of illness
and death during childhood in industrialized countries andhas been responsible for
epidemics in Africa and in Asia (Genco et al., 2010).

One important direction in systems biology is to discover gene regulatory
networks from microarray data based on the observed mRNA levels of large num-
bers of genes. The main goal of gene transcription is the production of mRNA that
is translated by ribosomes to make proteins. Each mRNA can betranslated several
times by a ribosome in order to make proteins. This is done until mRNA reaches the
end of its life-span. The network of gene regulation can be very complex, with one
regulatory protein controlling genes that produce other regulators that in turn con-
trol other genes. Gene regulatory network models can be represented as directed
or undirected graphs, where nodes are the elements, such as DNA, RNA or pro-
teins, and the directed or undirected edges from one node to another represent the
corresponding interaction, such as activation, repression or translation. Dynamic
Bayesian network models (Grzegorczyk and Husmeier, 2011) have been proposed
to model gene-regulatory networks for circadian regulation (Aderhold et al., 2014).
The computational complexity of such models prevent their use in an exploratory
setting. Recent work in penalized Gaussian graphical models (Meinshausen and
Bühlmann, 2006; Friedman et al., 2008) have spurred new developments in fast
methods for large genomic network structure learning (Abegaz and Wit, 2013).

Most inference methods of graphical models do not allow for borrowing
strength across edges. Dynamic networks, however, naturally suggest various forms
of “network persistence”, which can improve network identification, particularly in
the case of small samples. One of the bottlenecks in current network identifica-
tion methods is the issue of model selection in such penalized graphical models.
Although some knowledge exist on the optimal asymptotic regime of the tuning
parameter (Bühlmann and Van De Geer, 2011), little is knownfor small numbers
of observations. Foygel and Drton (2010) proposed an extended BIC for graph-
ical models, which has nice asymptotic consistency properties, but slightly less
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known behaviour for small samples. Liu et al. (2010) developed a stability selec-
tion method for model identification by means of resampling,which is particularly
suitable for moderate numbers of variables. However, for a small number of sam-
ples the method is rather unstable, whereas for slightly larger number of variables,
it becomes computationally expensive.

In this paper, we develop a dynamic graphical model for gene expression
in Neisseria meningitidis that borrows strength across time by imposing suitable
equality constraints and whose sparsity is selected automatically via a computation-
ally efficient and accurate model selection algorithm. In section 2 we introduce the
structured dynamic gene-regulatory network model by meansof undirected graph-
ical models. In section 3 we derive an efficient estimator of the Kullback-Leibler
divergence, which can be used directly to perform model selection. In section 4, we
test the performance of this method on simulated data. Finally, in section 5, we ap-
ply the methodology to the inference of a dynamic regulatorynetwork inNeisseria
meningitidis.

2 Structured dynamic gene regulatory network model

An important issue in system biology is to understand the system of interactions
among several biological components, such as protein-protein interaction and gene
regulatory networks. Various genome-wide measurement techniques have opened
up the possibility of achieving such ambitious goals. For instance, RNA-seq chips
or microarrays measure simultaneously thousands of gene expression levels, i.e.,
concentrations of messenger RNA produced when genes are transcribed. Gene ex-
pression is a temporal process, which evolves dynamically in response to internal,
genomic, and external, environmental, cues. Even under stable conditions, mRNA
is transcribed continuously and new proteins are generated. This process is highly
regulated. In many cases, the expression program starts by activating a few tran-
scription factors, which in turn activate other genes. Transcription factors are pro-
teins that bind to specific DNA sequences, thereby controlling the flow of genetic
information from DNA to mRNA. Taking a snapshot of the expression profile fol-
lowing some intervention may reveal which genes have specifically changed. But
rather than determining the set of differentially expressed genes, such as in the early
days of microarray analysis, biologists have become more interested in determin-
ing the transcriptional program, i.e., determining the functional pathways in the
genomic network. In order to infer the temporal interactionbetween the genes, it is
necessary to perform time-course expression experiments.
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2.1 Gaussian graphical models

The presence of a link or undirected edge in a network can mean, in general, a
variety of things. In edge-based network models, it refers to a dyadic relationship
between the vertices, such as the presence of friendship relationship. In vertex-
based network model, an edge refers to a relationship between some properties of
the vertices themselves. We will define in this section the absence of a link in a
network as the conditional independence of some quantity ofinterest measured on
the vertices, when fixing all other vertex levels. This corresponds roughly to the
definition of a graphical model. For the purposes of this paper, we will consider
exclusively Gaussian graphical models. LetG = (V,E) be a graph with finite vertex
setV = {1, . . . , p} and undirected edge setE ⊂V ×V .

A Gaussian Graphical Model (GGM) with respect to an undirected graph
G = (V,E) is a random vectorY = (Y1, . . . ,Yp) with multivariate normal distribution
N(µ,Σ), such thatYi is independent fromYj when fixing the rest if and only if the
edge(i, j) is not in the edge setE,

(i, j) 6∈ E ⇔ Yi ⊥Yj | YV\{i, j}.

This property is known as the pairwise Markov property. As a Gaussian density
is strictly positive, it can be shown (Lauritzen, 1996) thatthe pairwise Markov
property is equivalent with the following two properties:

• Global Markov property : A probability distributionP is said to obey the
global Markov property relative toG, if for any triple (A,B,S) of disjoint sub-
sets ofV such that all paths fromA to B in G pass throughS, we have that the
measurements on the nodes inA are conditionally independent from those on
B, when fixing the measurements on the nodes inS, i.e.,

YA ⊥ YB|YS.

• Factorization property : A probability distributionP is said to satisfy the
factorization property relative toG, if the density functionf of the joint dis-
tributionP can be written in the form

f (y1, . . . ,yp) =
1
z ∏

c∈C

ψc(yc),

whereC is a set of cliques, i.e. the largest subsets ofV that form complete
graphs inG, the functionψc(yc) is a potential function, which is a positive
function of the variables{yi}i∈C, andz = ∑y ∏c∈C ψc(yc) is a normalization
factor.
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The reason why these various characterizations of a graphical model are relevant is
that the factorization property will enable us to write downa convenient likelihood,
whereas the global Markov property will allow for an intuitive interpretation of the
graph as a quasi-modular network. The local Markov propertycan be useful to
infer the graph structure from sparse data, although in thispaper we will pursue a
different route.

The normal density is strictly positive and it can be writtenas

f (y) = (2p)−p/2|Θ|1/2∏
i, j

−θi j(yi −µi)(y j −µ j),

whereΘ = Σ−1 is the precision matrix. From the equivalence of all the Markov and
factorization properties, one can see that

θi j = 0 ⇔ Yj ⊥ Yi|YV\{(i, j)} ⇔ (i, j) 6∈ E,

This suggests that the determination of the graphG, can be based on the set of
sample precisionŝθi j estimated from a set of observations. Of particular interest
will be the identification of zero entries in the concentration matrixΘ= {θi j}, since
a zero entryθi j = 0 indicates the absence of the link in the conditional independence
graphG.

2.2 Dynamic Gaussian graphical model

In this section, we consider a special case of the Gaussian graphical model, in order
to represent a dynamic network with particular symmetry constraints. We consider
a set of arbitrary unitsΓ = {1, . . . , p} and an ordered setT = (1, . . . ,τ}, typically
describing time points. This allows us to formally define a dynamic Gaussian graph-
ical model, in which each unit at each time point is considered a, not necessarily
independent, random variable.

ConsiderΓ a finite set of unordered units, andT is a finite set of ordered time
points. A dynamic Gaussian graphical model is a pair

(
G = (V,E),N(µ,Θ−1)

)
,

whereV = Γ×T =
{

vi j
}

i∈Γ, j∈T is a set of vertices andE ⊆V ×V is a set of pairs
of vertices. An observationY ∈ R

nΓnT from the dynamic Gaussian graphical model
is normally distributed set of observations across all units and time points,

Y ∼ N(µ,Θ−1),

such that the conditional independence relationships satisfyG, θit, js =0 ⇔ (vit,v js) 6∈
E. Links in the dynamic Gaussian graphical models represent conditional depen-
dencies between the units within the same time point or across time. This class of
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dynamic graphical models is, in principle completely, general. We will consider
various subclasses of these model. First consider the dynamic graphical model
associated with the graph in Figure 1. This represent an 8 dimensional random
vectorY , whose elements(Y11,Y21,Y31,Y41), are those associated with time point 1,
whereas the others are connected to time point 2. Edges or links within these two
groups, excluding self-links, represent the instantaneous or lag zero networks,N0.
Edges between these two groups, excluding links between thesame unit, represent
the lag 1 network, or the time-delay interactions,N1. Similarly, self-self interaction
with lag 0,S0, or lag 1,S1, can be identified. To make the concept of networks and
self-self interactions more precise, we introduce the concept of a natural partition
of the precision matrixΘ.

Figure 1: Example of a dynamic graph with four vertices measured across two time
points. The graph corresponds to the dynamic graphical model S0 ≺ 1,N0 ≺ T,S1 ≺
1,N1 ≺ 0.

For a dynamic Gaussian graphical model
(
G,N(µ,Θ−1)

)
the natural parti-

tion of Θ given by{Si}
τ−1
i=0 of self interactions and{Ni}

τ−1
i=0 of network interactions,

defined as subsets ofΘ,

Si = {θ jt, jt+i ∈ Θ | j ∈ Γ, t ∈ T},

and
Ni = {θ jt,kt+i ∈ Θ | ∀ j 6= k ∈ Γ, t = 1, . . . ,nT − i}.

Each element of the natural partition has a natural interpretation:Si are the lagi self-
self interactions of the unitsΓ, whereasNi are the time lagi interactions between
the units ofΓ. The next step is to define a set of models that can be applied toeach
of the elements of the natural partition. Consider an element B ⊂ Θ of the natural
partition ofΘ, i.e.,B = Si or B =Ni for somei, then we define the following models
with respect to the unit setΓ and time orderingT ,
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• Constant model 1: for allθit, js ∈ B, θit, js = c.
• Main time effect model T: for allθit, js ∈ B, θit, js = cts.
• Main unit effect modelΓ: for all θit, js ∈ B, θit, js = ci j.
• Interaction effect modelΓT: for all θit, js ∈ B, θit, js = cit js.

The constant model means that all the edges represent the same concentration or
partial correlation. The main effect time model means that the edge from uniti at
time pointt to unit j at time points has the same concentration or partial correlation
as the edge from unitk at time pointt to unit l at time points. Conversely, the main
effect unit model means that the edge from uniti at time pointt to unit j at time
point s has the same concentration or partial correlation as the edge from uniti at
time pointt ′ to unit j at time points′. The interaction effect model means that the
concentrations or partial correlations can vary freely across time and units.

The models provide structure to the dynamic Gaussian graphical models
with a consistent interpretation. We will informally also speak of the “zero model:
0”, which corresponds to the absence of all edges. The dynamic models can be
applied to each of the elements of the natural partition separately. For example, in
Figure 1 we consider the constant model onS1 and main effect time onN0 and the
zero model onN1, which we will write, respectively, asS1 ≺ 1, N0 ≺ T andN1 ≺ 0.
By collecting all the models on the elements of the natural partition, we can now de-
fine a dynamic graphical model as a Gaussian graphical model(G,N(µ,Θ−1)) with
respect to the equality constraints defined on the elements of the natural partition of
Θ.

3 Model selection via efficient KL estimation

In the previous section, we defined an important class of network models by con-
sidering dynamic constraints on the concentration or conditional correlation matrix.
These constraints lead to a considerable reduction of the number of parameters to be
estimated. Each sub-network can be interpreted according to its corresponding nat-
ural partition. However, dynamic genetic graphs are usually sparse, which means
that few vertices will be connected. In this section, we consider maximum likeli-
hood estimation subject to anℓ1-norm penalty on the concentration or conditional
correlation matrix to induce sparsity. The advantage of theℓ1-norm is that it is the
only convexℓq norm that induces sparsity. Exact zeros will be induced forq ≤ 1
only, while the optimization problem is convex forq ≥ 1, which makes it feasible
for high-dimensional problems (Banerjee et al., 2008).
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3.1 Penalized likelihood for dynamic graphical models

In this section, we describe the statistical inference for sparse dynamic Gaussian
graphical models with equality constraints on the concentration matrix. In the case
of high-dimensional data, such constraint is also necessary to guarantee existence of
the estimate. Theℓ1-penalized maximum likelihood estimator, therefore, is defined
as

Θ̂ρ = argmaxΘ log(Θ)− tr(ΘS)−ρ ||Θ||1, (1)

subject to dynamic constraints onΘ,

whereS ∈ R
pτ×pτ is the sample covariance matrix of the time course data. Maxi-

mization of (1) is a challenging task. One way is the LogdetPPA algorithm, which
combines a proximal point algorithm (PPA) inside a preconditioned conjugate gra-
dient solver needed for Newton’s method (Wang et al., 2010).For a single tuning
parameter, this method can be quite efficient, but solving anentire solution path for
a range of tuning parameters is non-trivial. Instead, we propose a cyclic coordinate
descent method. The main idea underlying this family of algorithms is to choose,
at each iteration, an index and then to optimize the objective function with respect
to the corresponding parameter keeping all the remaining indexes fixed.

Suppose that we have computed the estimatorψ̂ for a given value of the
tuning parameter, sayρ ′, and we want to compute a new estimate for a value of
the tuning parameter, sayρ , with ρ < ρ ′. If ρ is close enough toρ ′, the one-
dimensional log-likelihood functionℓ(θm) can be approximated by standard Taylor
expansion, with respect toθm, around the old estimatêψ . By straightforward alge-
bra, it is easy to see thatℓ(θm) can be approximated as follows

ℓp(θm) ≈ ℓ(ψ̂)−ρ
S

∑
n6=m

wn|θ̂n|+
∂ℓ(ψ̂)

∂θm
(θm− θ̂m)+

1
2

∂ 2ℓ(ψ̂)

∂θ2
m

(θm − θ̂m)
2−ρwm|θm|

= C(ψ̂)+
1
2

∂ 2ℓ(ψ̂)

∂θ2
m

(θm − ϑ̂m)
2−ρwm|θm|, (2)

whereC(ψ̂) = ℓ(ψ̂)− ρ ∑S
n6=m wn|θ̂n| −

1
2{∂ 2ℓ(ψ̂)/∂θ2

m}
−1∂mℓ(ψ̂)2 is a constant

with respect toθm and ϑ̂m = θ̂m −{∂ 2ℓ(ψ̂)/∂θ2
m}

−1∂mℓ(ψ̂). Using approxima-
tion (2), the original maximization problem can be locally substituted by the simpler
problem

min
θm∈R

1
2

Im(ψ̂)(θm− ϑ̂m)
2+ρwm|θm|, (3)

where Im(ψ̂) = −∂ 2ℓ(ψ̂)/∂θ2
m is the Fisher information forθm evaluated atψ̂ .

Problem (3) can be solved in closed form (Friedman et al., 2007), i.e. θ̂m = S(ϑ̂m;wmI−1
m (θ̂)ρ),
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whereS(x;λ ) = sign(x)(|x| −λ )+ is the soft-thresholding operator. We have im-
plemented the solver inR in our packagesglasso.

3.2 Model selection through Kullback-Leibler cross-validation

In this section we address the issue of choosing the best dynamic model, and what
should be a good compromise between a sparse and a dense graph. Having selected
the factorial model and the tuning parameter we can increasethe precision of our
estimates by using stability selection.

An information criterion such as AIC or BIC can be used to compare differ-
ent factorial graphical models. The AIC and BIC are, respectively, given by

AIC(ρ) =−n
(

log(Θ̂ρ)− tr(Θ̂ρS)
)
+2df(Θ̂ρ),

and
BIC(ρ) =−n

(
log(Θ̂ρ)− tr(Θ̂ρS)

)
+df(Θ̂ρ) logn.

There are two main issues facing the use of such methods. On the one hand, the tra-
ditional definition of the degrees of freedom as the number ofnon-zero parameters
in the model is somewhat problematic in penalized inference. Moreover, the num-
ber of observations in genomic experiments are typically sosmall that the asymp-
totic assumptions on which the AIC and BIC are based are equally suspect.

Instead, we define a computationally efficient estimator of the Kullback-
Leibler divergence based on cross-validation. This shouldbe equally suitable in
the small sample as in the large sample scenario. This socalled Kullback-Leiber
cross-validation estimator, or KLCV for short, is defined onthe same scale as the
AIC and therefore an estimate of the corresponding KL divergence can be obtained
by dividing by 2n.

KLCV (ρ) =−n
(

log(Θ̂ρ)− tr(Θ̂ρS)
)
+2

n

∑
k=1

pk(Θ̂ρ ,S),

where the cross-validated estimated of the degrees of freedom, pk, is given as

pk(ρ) =
vec[(Θ̂−1

ρ −Sk)◦ Iρ ]
tC[Ct(Θ̂−1

ρ ⊗ Θ̂−1
ρ )C]−1Ctvec[(S−Sk)◦ Iρ ]

2n−2
, (4)

whereC = ∂Θ
∂θ a q2×m matrix, for number of nodesq = pτ and number of model

parametersm, and whereIρ is the indicator matrix, whose entry is 1 if the corre-
sponding entry in the precision matrix̂Θρ is nonzero and zero if the corresponding
entry in the precision matrix is zero. The original KLCV was proposed in Vujacic
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et al. (2013) for unstructured Gaussian graphical models and we refer to this method
as KLCV(PMLE). Using the original KLCV, we can also define a fast approxima-
tion of (4), by replacing it by

pk(ρ) =
m
q
×

vec[(Θ̂−1
ρ −Sk)◦ Iρ ]

tMq(Θ̂ρ ⊗ Θ̂ρ)vec[(S−Sk)◦ Iρ ]

2n−2
. (5)

We refer to this method as the KLCV(SPMLE). In section 4 we shall show how
the KLCV works in practice. Below, we give a brief derivationof the KLCV for
structured dynamic models.

3.3 Derivation of KLCV for structured dynamic models

Consider the scaled log-likelihood for a Gaussian graphical model,

l(Θ;S) = log|Θ|− tr(SΘ).

The Kullback-Leibler divergence up to an arbitrary scale factor and constant is de-
fined as,

KL(Θ̂) =−ESl(Θ̂;S),

where the expectation is taken with respect to the sample covariance matrix. Using
the fact that cross-validation can be used to estimate this expectation, we derive

KLCV (Θ̂) = −
n

∑
i=1

l(Θ̂(−i);Si)

= −l(Θ̂;S)−
n

∑
i=1

[l(Θ̂(−i);Si)− l(Θ̂;Si)]

≈ −l(Θ̂;S)−
n

∑
i=1

[dl(Θ̂;Si)

dθ

]t
vec(θ̂ (−i)− θ̂ ).

Using matrix differential calculus we have∂ l(Θ̂;Si)
∂θ = ∂ l

∂Θ
∂Θ
∂θ = vec(Θ̂−1−Si)C. The

term vec(θ̂ (−i)− θ̂ ) is obtained via the Taylor expansion

0=
dl(Θ̂(−i);S(−i))

dθ
≈

dl(Θ̂;S)
dθ

+
d2l(Θ̂;S)

dθ2 vec(θ̂ (−i)−θ̂ )+
d2l(Θ̂;S)

dθdS
vec(S(−i)−S).

From here it follows that

vec(θ̂ (−i)− θ̂) =−

(
d2l(Θ̂;S)

dθ2

)−1
d2l(Θ̂;S)

dθdS
vec(S(−i)−S).
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We havedl(Θ̂;S)/dθ = vec(Θ̂−1−S)C, and sod2l(Θ̂;S)/dθdS =−Ct , as well as
d2l(Θ̂;S)/dθ2 =−Ct(Θ̂−1⊗ Θ̂−1)C and consequently

vec(θ̂ (−i)− θ̂) =−[Ct(Θ̂−1⊗ Θ̂−1)C]−1Ctvec(S(−i)−S).

This results into the general formula for an unpenalized estimator Θ̂ with equality
constraints,

KLCV =−l(Θ̂;S)+
n

∑
i=1

vec(Θ̂−1−Si)
tC[Ct(Θ̂−1⊗ Θ̂−1)C]−1Ctvec(S−Si)

n−1
, (6)

where we use the fact thatS(−i)−S = S−Si
n−1 . To obtain the formula for the penalized

estimatorρ > 0 we note that asymptotically the covariances between zero elements
and nonzero elements are equal to zero. Thus, to obtain the term pi for the shrinkage
estimator we do not only plug in the expressionΘ̂ρ in formula (6), but we also
set the elements of the covariance matrix[Ct(Θ̂−1

ρ ⊗ Θ̂−1
ρ )C]−1 that correspond to

covariances between zero and nonzero elements to zero.

4 Simulation study

We compare the different model selection criteria on simulated data. We simulate
multivariate Gaussian data, withn = 10, p = 40 and a precision matrix with 20%
structural zeros and about 55% of zeros (sparsity). The remaining non-zero param-
eters are drawn randomly amongst a limited number of possible values between 0.4
and 0.6. This results in a structured precision matrix, witha priori zeros, sparsity
and equality constraints. Figure 2 shows the true Kullback-Leibler loss for differ-
ent penaltiesρ , together with the KL estimates given by the different methods. In
particular, KLCV(SPMLE) is the criterion proposed in this paper for structured pe-
nalised graphical models (5). The plot shows how KLCV(SPMLE) and AIC reach
a minimum close to the true KL minimum.

To further compare the different methods, Table 1 reports the Kullback-
Leibler minimum, averaged over 50 iterations and with standard errors in brackets,
for the methods considered. We consider the case of small sample size,n = 10, and
vary the number of free parameters in the model,pmodel, between 10 and 100. In all
cases, the model selection criteria for structured graphs have a KL loss close to the
oracle value, with KLCV(SPMLE) outperforming AIC. Not considering structural
and equality constraints results in poorer selection of themodel, as shown by the
KLCV(PMLE) results.
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Figure 2: KLCV and AIC estimators on simulated data withn = 10, p = 40,
pmodel= 50, about 20% structural zeros and 55% sparsity.

Table 1: Simulated data with n=10, p=40, about 20% structural zeros and 55%
sparsity. For each method, the table reports the Kullback-Leibler loss, averaged
over 50 iterations and with standard errors in brackets. A number of cases are
considered by varying the number of model parameters,pmodel. The best results are
highlighted in bold.

pmodel Oracle KLCV(SPMLE) AIC KLCV(PMLE)
10 1.03 (0.07) 1.11 (0.17) 1.11 (0.16) 3.95 (0.65)
20 1.66 (0.07) 1.74 (0.16) 1.76 (0.17) 4.06 (0.3)
30 1.93 (0.06) 1.99 (0.13) 2.12 (0.17) 4.10 (0.34)
50 2.90 (0.08) 3.00 (0.17) 3.16 (0.17) 4.04 (0.22)
100 3.68 (0.09) 3.93 (0.23) 4.08 (0.25) 4.16 (0.28)

5 Regulatory network of Neisseria meningitidis

We apply the methodology to microarray data from a high-resolution time-course
experiment using the sequenced Neisseria meningitidis serogroup B strain MC58
(Tettelin et al., 2000). The expression of 2129 transcriptswas determined using
dendrimer labelling of the parent of the sequenced strain with established methods
(Jordan and Saunders, 2009; Saunders and Davies, 2012), in rapidly growing liquid
cultures at 10 minute intervals in the early and log phases ofgrowth (0 to 130
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minutes) and at 20 minute intervals thereafter (to 250 minutes). Two biological
replicate cultures, grown in parallel, were sampled. In this study we focus upon
60 transcripts that have been highly characterized to be within the FarR regulatory
network in highly replicated microarrays studies and validated by qPCR and gel
shift assays (NS - unpublished), and we combine two consecutive time points into
one time point, in order to increase the number of observations per time point to
four. We finally scale the data to have mean zero and variance one for each protein
(and across all time points).

0.2 0.4 0.6 0.8 1.0

10
0

20
0

30
0

40
0

50
0

Network selection on Neisseria

ρ

K
L

KLCV(SPMLE)
AIC

Figure 3: KLCV(PMLE) and AIC on real data with 60 proteins from Neisseria
meningitidis.

We consider a particular structure to the graphical model. We define the
nodes of the graph to be the genes at a particular time point. This results in a
600×600 inverse covariance matrixΘ, thus about 180,000 parameters to be esti-
mated with only 2,400 observations. However, there is good reason to impose some
constraints onΘ. In particular, we make the following two assumptions:

1. Markov assumption: we assume that except for lag zero and lag one, there
are no higher order interactions between the genes, i.e.Si,Ni ≺ 0 for all i > 1.

2. Interaction persistence:we assume that the lag zero and lag one interactions
are persistent across all ten time points, i.e.Si,Ni ≺ Γ for i = 0,1.
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This reduces the number of parameters from about 180,000 to amanageable number
less than 5,500. Furthermore, the shrinkage induced by theL1 penalty further sta-
bilizes the estimates. We use a factorial graphical model with the above constraints
on the Neisseria data.

Figure 3 shows the KLCV(SPMLE) and AIC criteria on the Neisseria gene
expression data. In contrast to AIC, which tends to favour denser networks, the
KLCV(SPMLE) criterion selects the optimal network corresponding to the value of
ρ∗ = 0.453.

We further perform a bootstrap analysis to test the robustness of the inferred
networks. For each protein, we simulate 100 boostrap samples by adding noise to
the real data at a level of variability estimated by fitting a smoothing spline to the
time series data. We then fit a factorial graphical model to the bootstrap data with
ρ = ρ∗. Effectively, this post-analysis allows us to explore the space of precision
matrices around̂Θρ∗, by showing how robust the inference is to obtaining slightly
different, but equally plausible data. Figure 4 shows the lag zero and the lag one
graphs, where links are found in at least 50% of bootstrap samples. In the lag 0
network, NMB0035, NMB0913 and NMB1636 are the most connected nodes, each
with 11 connections and all connected with each other. NMB0913 further interacts
with NMB1994 (NadA) which is known from previous studies to respond to FarA
deletion (Schielke et al., 2009). In the lag 1 network, NMB0888 is a central node,
with 7 connections. This node appears also in the lag 0 network and is connected
with 6 other proteins. These interactions will be further validated in future research.

6 Conclusions

In this paper, we have introduced structured dynamic graphical models for inferring
regulatory networks from gene expression data. Given the limited amount of data
available in typical genomic studies, we propose to borrow strength across time by
imposing suitable equality constraints and to restrict thepossible class of models
by setting many entries of the precision matrix to zero a priori. We further impose a
sparsity constraint which stabilizes the parameter estimates. A computationally ef-
ficient and accurate model selection criterion is used for choosing automatically the
level of sparsity. We show an application of this methodology to a high-resolution
time-course gene expression data ofNeisseria meningitidis.
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Figure 4: Static (lag 0) and dynamic (lag 1) regulatory network of 60 proteins in
Neisseria meningitidis. The links were found in at least 50%of bootstrap samples
with the optimalρ chosen using KLCV(SPMLE). Red links correspond to positive
partial correlations, blue links to negative partial correlations.
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