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ABSTRACT: Heterogeneous materials present a mechanical resgirongly dependent on the static
kinematic phenomena occurring in the constituentsa their joints. At the mesoscopic level theratton
between the units is simulated by mean of appaséehanical devices such te zero thickness interfe
model where contact tractions and displacemenbdigswities are the primary static and kinematidatale:
respectively. In heterogeneous materials the respalso depends on jointennal stresses. The introduci
of internal stresses brings to the interphase mmdah enhancement of the classical zbiokness interfac
With the term ‘interphase’ we shall mean a laygqrasated by two lpysical interfaces from the bulk mate
or a multilayer structure with varying propertiesdsseveral interfaces. Different failure conditiaras be in-
troduced for the physical interfaces and for thetjmaterial. The interphase model has been imphéedeir
an open-source research-oriented finite elemenysiagrogram for 2D applications.

1 INTRODUCTION are formulated making use of concepts borrowed by

The mechanical response of all those structure“éﬂeory of Plasticity and Continuum Damage Me-

that are constituted by heterogeneous materials fg'a"'cS:

dependent by different static and kinematic phenomélslg orrrllailﬂtyer(r:lgses?retgge :g‘:ﬂ”;@;i;ess\?v?tﬂisﬁ tggpgnds
ena occurring in each constituent and at theirtgoin J

Material degradation due to nucleation, growth an { is sufficient to think to the fracture that appe in
coalescence of microvoids and microcracks is us he middle Qf masonry blocks caused by the horizon-
ally accompanied by plastic deformations as decoh al tangential contact stresses between the mortar
sion and sliding that cause strain softening and intarIOI the block when a masonry assembly is subjected
duced anisotropy. 0 a pure compressive load. These t_angentlal sess
The mesoscopic approach is by now the most £aof be. captured by the clasical ZT1, model
fused technique to understand this kind of matrial ickness,interface elements \?vhere the response is
because it overcomes the problems associated Wim ’ P :
the strong simplifications that have to be intraetic 30VErned by contact stress components, may require
@ correction by introducing the effect of the imiar

when the macroscopic approach is applied. In pa . . .
ticular, with the mesoscopic approach all the matestresses into the analysis. This enhancement of the

rial constituents are modelled individually andithe ZLI |§Skertljogv n(?inlr?tt)er?:anﬁ dml\(/l)(rjc‘?zl’ (fzo(got;l)e firstetim
interactions are regulated by using appropriate dé? 'IPhe inte?/ hase element has been formulated b
vices able to reproduce the inelastic phenomena tha h P | d introducad i y
usually occur at the physical interfaces. In th&t la authors as a new contact element and introducad in

decades zero-thickness interface elements (ZT cientific oriented finite element code. Patch gest
have been applied in several engineering applic 1ave been carried out in elasticity to investigate

tions due to their simple formulation and to theirnumeri%lI performance and convergence of the ele-

easiness to be implemented in finite element codes.megi'a'ra‘n”b;mecéeeslugs érglz?omn g‘rtggjlaﬂa?nerﬁﬂ'tte
The interface constitutive laws are expressed i y ) -np :

terms of contact tractions and displacement discorféecrti'vsesmévr};?g\r/l Sgﬁfg'gﬁﬁgﬁge‘zs ;\Zgu?negt;mset(rjaisne-
tinuities which are considered as generalized goint 9

strains. In order to model the nonlinear behavioanethOdS are necessary to avoid shear locking sffect

caused by plastic deformations and damage evol@' the element.

tion the constitutive laws of the interface elengent " this work the interphase element is imple-
mented for nonlinear applications by introducing



separate limit conditions for the joint bulk maatri with %, X and x; the Cartesian coordinates in the
and for the physical interfaces. The overall madel orthonormal frame(O,el,ez,eg).

thermodynamically consistent and the flow rules are Since the thickness of the joint is generally small
derived by applying the Lagrangian method. Withif compared to the characteristic dimensions of the
the aim to show the effectiveness of the model thadherents, we can assume the strain stateiform
interphase constitutive laws have been implementealong thee; direction and given by:

in an open-source research-oriented finite element

h

analysis program for 2D applications and by using 1 s s

the Selective Reduced Integration. 2(X, Xz)‘ﬁ !/D u(%, %, %) dx 3)
/2

> GENERAL ASSUMPTIONS AND Substituting the Equation 2 we have:

THERMODYNAMICS.

Let us consider, in the Euclidean spdd? referred

to the orthonormal framgO,i,,i,,is), a structure
formed by two adherent®”, Q~ connected by a
third material Q in contact with the two bodies by the interphase plane andf is the symmetric gradi-

means of the two physical interfacEs and X~ re- i 1 .
spectively, as in Figure 1. ent operator defined ds =§(D +0 )

&(X,, X2)=2—1h([u] On+n D[U])+—;Ds(u+ +u’) 4)

where[u]=u*-u", n is the unit normal vector to

Let us note that in the interphase model the joint
curvatures generated by displacement field (2) and
the related flexural effect are neglected.

Equilibrium equations are derived by applying
the principle of virtual displacements (PVD) that a
serts that the external work produced by the contac
tractions equals the internal work developed in the
joint. According to the hypothesis of a constant
strain state, by applying the divergence theoreth an
assuming thak =>* =37, the PVD leads to the fol-
lowing local equilibrium relations of the interpleas
model:

Figure 1. (a) Mechanical scheme of a third bodgrimbsed be-
tween two adherents; (b) Interphase mechanicahsehe

It is assumed that the thicknebsof the jointis | h .

small if compared with the characteristic dimension I ~0 +§d'V" =0;

of the bonded assembly. h onz, 5)
The boundary of the two adherents is divided Nt~ +¢ [ +—dive =0

the two partd™; and T}, where kinematic and load- 2

ing conditions are specified respectively. mié =0 onl . (6)
The joint interacts with the two adherents through

the following traction components: The basic kinematical hypotheses are the additive

decomposition of total strain in the interngl &nd
*=tje +tre,+tie, (1) contact €) parts and, for the contact strain only, a

) ) further decomposition in elastie)(and inelastic )
which can be considered as the external surfageyyts:

loads for the joint. ,

In Equation le,, e, and e, are the unit vectors &=g¢ +&° (7)
of the local reference system, wigh oriented along . _ . o
the normal to the middie surface and directed to- & =% *% (8)
wards the adhere®”. The joint can be regarded as with
an interphase model. It is assumed that the filbers
side the interphase and directed alagare main- & =AgA 9)
tained rectilinear during the deformation process. being A =1 -n0n the unit second order tensor.

view of this hypothesis the interphase displacement |4 order to comply with thermodynamic require-

field u can be ea_sily obtained from the displacemen,tnent& the interphase Helmholtz free energy is in-
u” andu” of the interfaces” andX™, thus troduced in the following form:

U(X11X2’X3):(%+%ju+( X Xz)+(é—%ju‘( % %) q;(silsc’acp,mfd ,fp) _ L|Ji(8i N ,gd)+. .
@ +wc(SC’SCpfp)+Wi'°(si,s°,g°p,m)’



8C+

where W' and W° represent the free energies related .  (guwi gwic) = (gwe gwic
to the internal and contact parts of the straitestex LP:(_i+ i j i _{ _+ 2T J
spectively and¥” is the mixed term of the free en- g O¢ 0g"  Oe
ergy which takes into account the co-presence®f th (gue guyic) = (i gyic
contact and internal straing andé, are the damage (@Jf 36 ]3 P +(%+ 0
and plastic internal variables, respectively.

The principle considered for developing the con- ' . gywe° .
stitutive laws is that damage occurs in the bulkema +¥Ed +¥5p
rial, therefore the damage tenser appears in the d P
two terms of the total free energy that are funio  particularizing Equation 14 for a purely elastic
of the internal strains also. In this way the ciast jncremental  deformation  process (=0,
tive model takes into account the onset of miCI’O-d): Céd = fp =0), assuming the decomposition of the
voids and fractures along the thickness of thetjoin stress state similar to that used for the straitest
On the other hand, debonding of the joint from the , ,
adherents, sliding and fractures developing on sure =¢' +¢°,  being ¢ =AcA (16)
faces parallel to the middle plane of the interghas
are modelled using elastoplasticity and the inalast
contact straing® are the related internal variables.

In this work a single scalar damage variabbe
governs the loss of stiffness of the bulk matefial. i _ 4 _ { i c_.cp i}
ranges from 0 to 1, with the inferior and superiora (1 a)) )l[tr(s )+tr(8 & )]A+2,ua (17)
limits having the meaning of a pristine and a fully

j o+ (15)

and considering the adopted expressions of the free
energy parts (Egs. 11-13), the elastic stressastrai
equations can be derived, thus

damaged bulk material, respectively. o= [(1-60) tr(e') + tr(e° —Scp)](| —A)+

The explicit expression of the components of the — (18)
free energy is given below: +2:“(5 -8 )

i_ 1 i i =h ¢ (29)
W =Z(1-w)| Atr* (e )+ 2ue € |+ Xp = Mo

h,[&,+In(1-£,)] Ly

c _ 1 ce ce. . ce 1 — 1 i (I i c C
W —E[)I tree®+2ue ¢ ]+§hpg‘§ (12) Z—E[Atrz(s )+2,us g ]+)Itr(s )tr(s —sp) (21)
W' =(1-w)A tr(ﬁl)”ﬁce (13) where x, and xq are the static variables conjugate of

the internal variableg, and & respectively, and/

where A and 4 are the Lame’s constantSy iS & {he thermodynamic force conjugate of the damage
material parameter which governs the softening reyriaple cw.

sponse associated to the damage onset and growth,\;a1ing use of the elastic strain-stress equation
andh, is a material parameter specifying iSotropiCan of the previous positions, the final expressibn
hardening/softening interface response. the instantaneous dissipation is obtained:

D=0%:6%~ )¢, ~ Xy +{@=0. (22)

In order to regulate the activation of each dissipa
e mechanism, two different yield functions aee d
ed in the space of the proper static variables,

3 STATE EQUATIONS AND FLOW RULES.

In order to derive the interphase constitutivey;,,
equations, the second principle of thermodynamics;,
taking into account also the balance equationt(firsn

principle) can be applied in the form of the Classi amely:
Duhem inequality. This inequality for isothermal <Dp(c°,)(p)so, ®,({,x)<0 (23)
purely mechanical evolutive process reads as

o where ®, is the classical plastic yield function
D=6:£-¥20 (14)

specifying the elastic contact domain assumed con-
whereD is the interphase dissipation (for unit sur-vex and @, is the damage activation function also
face) or net entropy production. assumed convex.

From the assumed form of the Helmholtz free en- The activation of each dissipation mechanism can
ergy (Eqg. 10) its general rate has the following exbe effectively described by a variational formudati

pression: which is represented by the generalized princifle o
maximum intrinsic dissipation:
max (6° &% = x,&, = Xobq+ (@) (24)

o XpXd &



subject to the constraints (Eq. 23). The Kuhn-Tucke4 NUMERICAL APPLICATIONS.
conditions of the maximum constrained problem

provide the plastic and damage evolution laws ef th The interphase model presented in Sections 2 and

3 has been implemented in an open-source research-

interphase: oriented finite element analysis program for 2D ap-
0 0o, o= 0P, (25) pIica_ltions. With the aim to run a st_ep-by-step inte

P 96° Ve gration, flow rules have been rewritten as discrete
a0 TS laws. The implicit backward-Euler difference
~¢,= A, b =é,=A d (26) method was applied to obtain results within theetim

d
0Xp ¢ step[t,, t..]O[0, T].In particular the nonlinear
o, (Gc’Xp) <0, 4,20, A ® p("c ’Xp) =C (27)  solution at timet_,, has been calculated by means of
®,({ x4)<0, 4420, A@,(¢ xs)=0 (28) an elastic prediction — plastic and/or damaging cor
rection procedure. The interphase element has four

being A,and A, the plastic and damage multiplier, nodes and zero-thickness. The integration of the

respectively. _ stiffness matrix has been solved by applying the Re
In the present study the elasto-plastic convex dog ceqd Selective Integration method, that is two

main is defined I_oy the Intersection of the .Clags'caGauss are used for the integration in the direction
Mohr-Coulomb bilinear function with a tension cut- : .
normal to the interphase plane while one Gauss

off: o . .
point is used in the tangential one.
q;pl(cc,)(p): ¢ +U°tan¢‘00(1—)(p) (29) The numerical applications presented in this work
. . regard diagonal compression test on a cylindrical
chZ(G ,)(p) =0 —Uo(l—)(p) (30)  masonry specimen and a masonry vault loaded by a

monotonic increasing load. All numerical examples

where t° ando® are the tangential stress vector andhaye been carried out under the hypothesis of plane
the normal stress component of the contact stresse§ress state.

@ is the friction anglecy, and g, the cohesion and
tensile strength of the virgin interfaces. . .
The two yield functions are depicted in Figure 2.4.1 Diagonal compression test on masonry.

The following four zones can be distinguished: A diagonal compression numerical test has been car-
| elastic zone® <0, ,<0 ried out on a masonry panel and compared with the

_ o experimental results obtained in laboratory. With
Il plastic activation in shea® ;, =0,® , <0 reference to Figure 3, the specimen is made of four

Il plastic activation in tensior® , <0,® , =0 courses of sandstone blocks vv_ith calcium-cement
IV plastic activation in tension and shearmortar' It h_as a sqgared shapg with a length @i 7
for each side. A single block is 33 cm long and 16
(corner): @, =0,®, = 0. cm high. The mortar layer has a thickness of 1A&m.
The damage activation function is linear and thdotal number of 256 plane stress 2D solid elements
first activation occurs when the thermodynamicand 72 interphase elements has been used to creats

force reaches the relative threshold vajyie the finite element model.
ch(Z’/Yd):Z_ZO(l_Xd) (31)
¢P1 AT
-_ 9 )
-~ — 7{4//
G (1%,) A ¥p2
o f '
60(17Xp)
|- -

Figure 2. Plastic yield conditions representechngtress space Figure 3. Diagonal compression test on a masonmglpéinite

element model.



Table 1. Parameters used for diagonal compression The mechanical variables for blocks and mortar

test.
Parameter Brick Mortar
E (MPa) 11141.67 37000
\ 0.25 0.14
Co (MPa) - 5.0
0o (MPa) - 1.0
o (MPa) - 16
o () - 35
hp = 0.04
hy - 0.001
16000 /‘
12000 N / L
© i 7
= 8000 X
g \ o o exper V1
3 7 exper V2
numeric §,*+3,"
4000 exper H1
i exper H2
numeric §,+3,*
0 T T T | T T i T i T i T |

-03 02 01 O 01 02 03 04 05
displacement [mm]

Figure 4. Load-displacement curves: comparison éetw
numerical and experimental results.
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Time = 4.00E+02

Figure 5. Comparison between numerical and expeitizhe
collapse configurations.

and the parameters used for the finite element mode
are reported in Table 1.

The test has been run with 400 steps under dis-
placement control. At each step the values of dhe t
tal vertical load F and the displacement discominu
ties JSh=oh"+dh and Jdv=9JVv +Jv, in
horizontal and vertical direction respectively, dav
been evaluated and reported in the load-
displacement curves of Figure 4. A good agreement
has been obtained with experimental results.

Figure 5 finally shows a comparison between the
collapse experimental and numerical configurations.
A very good agreement can be observed, even if the
numerical model is not able to simulate the fraetur
inside the blocks because an elastic behavior was
chosen for bricks.

4.2 Cylindrical masonry vault.

The second example evaluates the structural re-
sponse of a cylindrical masonry vault.

The results of the numerical analysis have been
compared to the experimental work of Failla et al.
(2004) who tested a vault made of 24 courses ef cal
carenite ashlars stones (21 x 36 x 16%)crach
course is separated by a mortar layer of average
thickness h equal to 2.5 cm. The vault is 118 cm
long, 16 cm thick and of internal radius equal &® 2
cm. The imposts form an angle of 30° with the hori-
zontal plane (Fig. 6). The vault has been subjeited
a uniform load applied onto the seventh course of
stones. The test has been performed under displace-
ment control until the formation of four hinges has
been reached.

The structure has been numerically implemented
as a bi-dimensional arch, 118 cm wide. Each stone
has been discretized with a 4 x 8 plane stresd soli
elastic elements (4-noded). The radial joints have
been modeled using eight interface elements (4-
noded).

Y X
Figure 6. Tridimensional view of the vault.



To adhere to the experimental protocol, the nu- Ongoing and future efforts are devoted to the in-
merical analysis has been carried out in displacdgroduction of plastic activation functions on the
ment control. physical interfaces between mortar and block, and t

The load-displacement curve, in comparison witithe possibility to introduce a new damage model to
experimental one, is reported in Figure 7. It isacl catch horizontal fractures also.
as the numerical model is able to catch the same
stiffness, peak load and residual force of the Bxpe
mental test. Figure 8 shows instead the final gonfi 6 ACKNOWLEDGEMENTS.
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