
1 INTRODUCTION 

The mechanical response of all those structures 
that are constituted by heterogeneous materials is 
dependent by different static and kinematic phenom-
ena occurring in each constituent and at their joints. 
Material degradation due to nucleation, growth and 
coalescence of microvoids and microcracks is usu-
ally accompanied by plastic deformations as decohe-
sion and sliding that cause strain softening and in-
duced anisotropy. 

The mesoscopic approach is by now the most dif-
fused technique to understand this kind of materials, 
because it overcomes the problems associated with 
the strong simplifications that have to be introduced 
when the macroscopic approach is applied. In par-
ticular, with the mesoscopic approach all the mate-
rial constituents are modelled individually and their 
interactions are regulated by using appropriate de-
vices able to reproduce the inelastic phenomena that 
usually occur at the physical interfaces. In the last 
decades zero-thickness interface elements (ZTI) 
have been applied in several engineering applica-
tions due to their simple formulation and to their 
easiness to be implemented in finite element codes.  

The interface constitutive laws are expressed in 
terms of contact tractions and displacement discon-
tinuities which are considered as generalized joints 
strains. In order to model the nonlinear behaviour 
caused by plastic deformations and damage evolu-
tion the constitutive laws of the interface elements 

are formulated making use of concepts borrowed by 
theory of Plasticity and Continuum Damage Me-
chanics.  

In many cases the structural response depends 
also on internal stresses and strains within the joint. 
It is sufficient to think to the fracture that appears in 
the middle of masonry blocks caused by the horizon-
tal tangential contact stresses between the mortar 
and the block when a masonry assembly is subjected 
to a pure compressive load. These tangential stresses 
cannot be captured by the classical ZTI model. 
Therefore, the usual assumption used in zero-
thickness interface elements, where the response is 
governed by contact stress components, may require 
a correction by introducing the effect of the internal 
stresses into the analysis. This enhancement of the 
ZTI is known as interphase model, for the first time 
proposed by Giambanco and Mròz (2001). 

The interphase element has been formulated by 
authors as a new contact element and introduced in a 
scientific oriented finite element code. Patch tests 
have been carried out in elasticity to investigate the 
numerical performance and convergence of the ele-
ment. All the results are shown in the paper written 
by Giambanco el al. (2012). In particular, in that pa-
per is shown how strategies such as the Reduced Se-
lective Integration or the Enhanced Assumed Strain 
methods are necessary to avoid shear locking effects 
of the element. 

In this work the interphase element is imple-
mented for nonlinear applications by introducing 
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separate limit conditions for the joint bulk material 
and for the physical interfaces. The overall model is 
thermodynamically consistent and the flow rules are 
derived by applying the Lagrangian method. With 
the aim to show the effectiveness of the model the 
interphase constitutive laws have been implemented 
in an open-source research-oriented finite element 
analysis program for 2D applications and by using 
the Selective Reduced Integration. 

2 GENERAL ASSUMPTIONS AND 
THERMODYNAMICS. 

Let us consider, in the Euclidean space 3ℜ  referred 
to the orthonormal frame ( ), , ,O 1 2 3i i i , a structure 
formed by two adherents +Ω , −Ω  connected by a 
third material Ω  in contact with the two bodies by 
means of the two physical interfaces +Σ  and −Σ  re-
spectively, as in Figure 1. 
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Figure 1. (a) Mechanical scheme of a third body interposed be-
tween two adherents; (b) Interphase mechanical scheme.  
 
 

It is assumed that the thickness h  of the joint is 
small if compared with the characteristic dimensions 
of the bonded assembly. 

The boundary of the two adherents is divided in 
the two parts u

±Γ  and t
±Γ , where kinematic and load-

ing conditions are specified respectively.  
The joint interacts with the two adherents through 

the following traction components: 

1 1 2 2 3 3t t t± ± ± ±= + +t e e e  (1) 

which can be considered as the external surface 
loads for the joint. 

In Equation 1 1e , 2e  and 3e  are the unit vectors 
of the local reference system, with 3e  oriented along 
the normal to the middle surface Σ  and directed to-
wards the adherent +Ω . The joint can be regarded as 
an interphase model. It is assumed that the fibers in-
side the interphase and directed along 3e  are main-
tained rectilinear during the deformation process. In 
view of this hypothesis the interphase displacement 
field u  can be easily obtained from the displacement 

+u  and −u  of the interfaces +Σ  and −Σ , thus 

( ) ( )3 3
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1 1
( , , ) , ,

2 2

x x
x x x x x x x

h h
+ −   = + + −   

   
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with 1x , 2x  and 3x  the Cartesian coordinates in the 
orthonormal frame ( )1 2 3, , ,O e e e . 

Since the thickness of the joint is generally small 
if compared to the characteristic dimensions of the 
adherents, we can assume the strain state ε  uniform 
along the 3e  direction and given by: 

( )
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Substituting the Equation 2 we have: 

[ ] [ ]( ) ( )1 2

1 1
( , )

2 2
sx x

h
+ −= ⊗ + ⊗ + ∇ +ε u n n u u u  (4) 

where [ ] + −= −u u u , n  is the unit normal vector to 

the interphase plane and s∇  is the symmetric gradi-

ent operator defined as ( )1

2
s T∇ = ∇ + ∇ . 

Let us note that in the interphase model the joint 
curvatures generated by displacement field (2) and 
the related flexural effect are neglected. 

Equilibrium equations are derived by applying 
the principle of virtual displacements (PVD) that as-
serts that the external work produced by the contact 
tractions equals the internal work developed in the 
joint. According to the hypothesis of a constant 
strain state, by applying the divergence theorem and 
assuming that + −Σ = Σ = Σ , the PVD leads to the fol-
lowing local equilibrium relations of the interphase 
model: 
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on⋅ = Γm σ 0 . (6) 

The basic kinematical hypotheses are the additive 
decomposition of total strain in the internal (i) and 
contact (c) parts and, for the contact strain only, a 
further decomposition in elastic (e) and inelastic (p) 
parts: 

i c= +ε ε ε  (7) 
c ce cp= +ε ε ε  (8) 

with 
i =ε AεA  (9) 

being = − ⊗A I n n  the unit second order tensor. 
In order to comply with thermodynamic require-

ments, the interphase Helmholtz free energy is in-
troduced in the following form: 
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where iΨ  and cΨ  represent the free energies related 
to the internal and contact parts of the strain state re-
spectively and icΨ  is the mixed term of the free en-
ergy which takes into account the co-presence of the 
contact and internal strains. ξd and ξp are the damage 
and plastic internal variables, respectively. 

The principle considered for developing the con-
stitutive laws is that damage occurs in the bulk mate-
rial, therefore the damage tensor ω  appears in the 
two terms of the total free energy that are functions 
of the internal strains also. In this way the constitu-
tive model takes into account the onset of micro-
voids and fractures along the thickness of the joint. 
On the other hand, debonding of the joint from the 
adherents, sliding and fractures developing on sur-
faces parallel to the middle plane of the interphase 
are modelled using elastoplasticity and the inelastic 
contact strains cp

ε  are the related internal variables. 
In this work a single scalar damage variable ω  

governs the loss of stiffness of the bulk material. It 
ranges from 0 to 1, with the inferior and superior 
limits having the meaning of a pristine and a fully 
damaged bulk material, respectively.  

The explicit expression of the components of the 
free energy is given below: 
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( ) ( ), i ce1 tr tri c ω λΨ = − ε ε  (13)  

where λ  and µ  are the Lamè’s constants, hd is a 
material parameter which governs the softening re-
sponse associated to the damage onset and growth, 
and hp is a material parameter specifying isotropic 
hardening/softening interface response. 

3 STATE EQUATIONS AND FLOW RULES. 

In order to derive the interphase constitutive 
equations, the second principle of thermodynamics, 
taking into account also the balance equation (first 
principle) can be applied in the form of the Clausius-
Duhem inequality. This inequality for isothermal 
purely mechanical evolutive process reads as 

: 0D = − Ψ ≥σ ε ɺɺ  (14) 

where D is the interphase dissipation (for unit sur-
face) or net entropy production. 
From the assumed form of the Helmholtz free en-
ergy (Eq. 10) its general rate has the following ex-
pression: 
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Particularizing Equation 14 for a purely elastic 
incremental deformation process (cp =ε 0ɺ , 

0d pω ξ ξ= = =ɺ ɺɺ ), assuming the decomposition of the 
stress state similar to that used for the strain state 

, beingi c i= + =σ σ σ σ AσA  (16) 

and considering the adopted expressions of the free 
energy parts (Eqs. 11-13), the elastic stress-strain 
equations can be derived, thus 
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where χp and χd are the static variables conjugate of 
the internal variables ξp and ξd respectively, and ζ  
the thermodynamic force conjugate of the damage 
variable ω . 

Making use of the elastic strain-stress equation 
and of the previous positions, the final expression of 
the instantaneous dissipation is obtained: 

: 0c cp
p p d dD χ ξ χ ξ ζω= − − + ≥σ ε ɺ ɺ ɺɺ . (22) 

In order to regulate the activation of each dissipa-
tive mechanism, two different yield functions are de-
fined in the space of the proper static variables, 
namely: 

( ) ( ), 0, , 0c
p p d dχ ζ χΦ ≤ Φ ≤σ  (23) 

where pΦ  is the classical plastic yield function 
specifying the elastic contact domain assumed con-
vex and dΦ  is the damage activation function also 
assumed convex. 

The activation of each dissipation mechanism can 
be effectively described by a variational formulation 
which is represented by the generalized principle of 
maximum intrinsic dissipation: 
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subject to the constraints (Eq. 23). The Kuhn-Tucker 
conditions of the maximum constrained problem 
provide the plastic and damage evolution laws of the 
interphase: 
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( ) ( ), 0, 0, , 0d d d d d dζ χ λ λ ζ χΦ ≤ ≥ Φ =ɺ ɺ  (28) 

being pλɺ and dλɺ  the plastic and damage multiplier, 
respectively. 

In the present study the elasto-plastic convex do-
main is defined by the intersection of the classical 
Mohr-Coulomb bilinear function with a tension cut-
off: 

( ) ( )1 0, tan 1c c c
p p pcχ σ ϕ χΦ = + − −σ τ  (29) 

( ) ( )2 0, 1c c
p p pχ σ σ χΦ = − −σ  (30) 

where c
τ  and cσ  are the tangential stress vector and 

the normal stress component of the contact stresses, 
ϕ  is the friction angle, c0 and σ0 the cohesion and 
tensile strength of the virgin interfaces. 

The two yield functions are depicted in Figure 2. 
The following four zones can be distinguished: 

 I  elastic zone: 1 20, 0p pΦ < Φ <  

 II  plastic activation in shear: 1 20, 0p pΦ = Φ <   

 III plastic activation in tension: 1 20, 0p pΦ < Φ =  

 IV plastic activation in tension and shear      
(corner): 1 20, 0p pΦ = Φ = . 

The damage activation function is linear and the 
first activation occurs when the thermodynamic 
force reaches the relative threshold value ζ0: 

( ) ( )0, 1d d dζ χ ζ ζ χΦ = − −  (31) 

 
 

 
Figure 2. Plastic yield conditions represented in the stress space 

4 NUMERICAL APPLICATIONS. 

The interphase model presented in Sections 2 and 
3 has been implemented in an open-source research-
oriented finite element analysis program for 2D ap-
plications. With the aim to run a step-by-step inte-
gration, flow rules have been rewritten as discrete 
laws. The implicit backward-Euler difference 
method was applied to obtain results within the time 
step [ ] [ ]1, 0,n nt t T+ ⊂ . In particular the nonlinear 

solution at time 1nt +  has been calculated by means of 

an elastic prediction – plastic and/or damaging cor-
rection procedure. The interphase element has four 
nodes and zero-thickness. The integration of the 
stiffness matrix has been solved by applying the Re-
duced Selective Integration method, that is two 
Gauss are used for the integration in the direction 
normal to the interphase plane while one Gauss 
point is used in the tangential one. 
The numerical applications presented in this work 
regard diagonal compression test on a cylindrical 
masonry specimen and a masonry vault loaded by a 
monotonic increasing load. All numerical examples 
have been carried out under the hypothesis of plane 
stress state. 

4.1 Diagonal compression test on masonry. 

A diagonal compression numerical test has been car-
ried out on a masonry panel and compared with the 
experimental results obtained in laboratory. With 
reference to Figure 3, the specimen is made of four 
courses of sandstone blocks with calcium-cement 
mortar. It has a squared shape with a length of 67 cm 
for each side. A single block is 33 cm long and 16 
cm high. The mortar layer has a thickness of 1 cm. A 
total number of 256 plane stress 2D solid elements 
and 72 interphase elements has been used to create 
the finite element model. 
 

 

 
Figure 3. Diagonal compression test on a masonry panel: finite 
element model. 
 



Table 1.  Parameters used for diagonal compression 
test. _____________________________________________ 
Parameter     Brick                 Mortar         ____________  _____________  _____________________________________________ 
E (MPa)    11141.67    37000 
v       0.25      0.14 
c0 (MPa)    -           5.0 
σ0  (MPa)    -           1.0 
ζ0 (MPa)    -           10-5 
ϕ (°)      -           35 
hp        -           0.04 
hd                   -                 0.001 _____________________________________________ 

 
 

 
Figure 4. Load-displacement curves: comparison between     
numerical and experimental results. 
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Figure 5. Comparison between numerical and experimental   
collapse configurations. 

 

The mechanical variables for blocks and mortar 
and the parameters used for the finite element model 
are reported in Table 1. 

The test has been run with 400 steps under dis-
placement control. At each step the values of the to-
tal vertical load F and the displacement discontinui-
ties h h hδ δ δ+ −= +  and v v vδ δ δ+ −= + , in 
horizontal and vertical direction respectively, have 
been evaluated and reported in the load-
displacement curves of Figure 4. A good agreement 
has been obtained with experimental results. 

Figure 5 finally shows a comparison between the 
collapse experimental and numerical configurations. 
A very good agreement can be observed, even if the 
numerical model is not able to simulate the fracture 
inside the blocks because an elastic behavior was 
chosen for bricks. 

4.2 Cylindrical masonry vault. 

The second example evaluates the structural re-
sponse of a cylindrical masonry vault. 

The results of the numerical analysis have been  
compared to the experimental work of Failla et al. 
(2004) who tested a vault made of 24 courses of cal-
carenite ashlars stones (21 x 36 x 16 cm3). Each 
course is separated by a mortar layer of average 
thickness h equal to 2.5 cm. The vault is 118 cm 
long, 16 cm thick and of internal radius equal to 260 
cm. The imposts form an angle of 30° with the hori-
zontal plane (Fig. 6). The vault has been subjected to 
a uniform load applied onto the seventh course of 
stones. The test has been performed under displace-
ment control until the formation of four hinges has 
been reached. 

The structure has been numerically implemented 
as a bi-dimensional arch, 118 cm wide. Each stone 
has been discretized with a 4 x 8 plane stress solid 
elastic elements (4-noded). The radial joints have 
been modeled using eight interface elements (4-
noded).  

 
 

 
Figure 6. Tridimensional view of the vault. 
 



To adhere to the experimental protocol, the nu-
merical analysis has been carried out in displace-
ment control. 

The load-displacement curve, in comparison with 
experimental one, is reported in Figure 7. It is clear 
as the numerical model is able to catch the same 
stiffness, peak load and residual force of the experi-
mental test. Figure 8 shows instead the final configu-
ration of the vault after the formation of the hinges. 

 
 

 
Figure 7. Load-displacement curve of the test on the vault. 
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Figure 8. Collapse mechanism of the vault. 

5 CONCLUSIONS. 

The present paper deals with the mesomodelling of 
heterogeneous structures by means of interphase 
elements, that can be considered as an enhancement 
of the common interface elements. Separate failure 
conditions have been considered for the bulk mate-
rial and for contact tractions. An isotropic damage 
model has been used to model the nonlinear re-
sponse of the bulk material, while an elastoplastic 
bilinear domain governs the evolution of plasticity 
for contact tractions. The interphase model has been 
written in the framework of a thermodynamically 
consistent theory. State equations and flow rules 
have been derived and rewritten in a discrete form to 
be suitable to be used for finite element implementa-
tion. Two numerical applications on masonry struc-
tural elements have been conducted.  

Ongoing and future efforts are devoted to the in-
troduction of plastic activation functions on the 
physical interfaces between mortar and block, and to 
the possibility to introduce a new damage model to 
catch horizontal fractures also. 
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