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Abstract Heterogeneous materials present a mechanicabnsspstrongly dependent on the static and
kinematic phenomena occurring in the constituemts at their joints. In order to analyze this kinfl o
materials it is a common practice to distinguishacroscopic length scale of interest from a megnsane,
where the mesoscopic length scale is of the orfleéhe typical dimensions of the constituents. A¢ th
mesoscopic level the interaction between the usitsimulated by mean of apposite mechanical devices
Among these devices is popular the zero thickngssface model where contact tractions and dispiece
discontinuities are the primary static and kinematariables respectively. However, in heterogeneous
materials the response also depends on joint @itstresses as much as on contact stresses. Tdauiction

of internal stresses brings to the interphase mmdah enhancement of the classical zero-thickimsdace.
With the term ‘interphase’ we shall mean a laygrasated by two physical interfaces from the bulkemal

or a multilayer structure with varying propertiesdaseveral interfaces. Different failure conditiara be
introduced for the physical interfaces and forjtiiet material. The interphase model has been implaed

in an open-source research-oriented finite elenardlysis program for 2D applications. Numerical
simulations are provided to show the main featofébe model.
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1. Introduction

The mechanical response of all those structurdsatteaconstituted by heterogeneous materials is
dependent by different static and kinematic phem@mgccurring in each constituent and at their
joints. Material degradation due to nucleation, wgto and coalescence of microvoids and
microcracks is usually accompanied by plastic defdions as decohesion and sliding that cause
strain softening and induced anisotropy.

The mesoscopic approach is by now the most diffusetinique to understand this kind of
materials, because it overcomes the problems adedawith the strong simplifications that have to
be introduced when the macroscopic approach isiegppln particular, with the mesoscopic
approach all the material constituents are modefidvidually and their interactions are regulated
by using appropriate devices able to reproducerakastic phenomena that usually occur at the
physical interfaces. In literature, these mechdnidesices are generally called contact elements,
normally distinguished between link elements, tlager elements and zero-thickness interface
elements (ZTI). In the last decades interface etesnbave been applied in several engineering
applications due to their simple formulation andtheir easiness to be implemented in finite
element codes [1-10].

The interface constitutive laws are expressed mmgeof contact tractions and displacement
discontinuities which are considered as generaljagds strains. In order to model the nonlinear
behaviour caused by plastic deformations and daneagdution the constitutive laws of the
interface elements are formulated making use otepis borrowed by theory of Plasticity and
Continuum Damage Mechanics.

In many cases the structural response depend®mlsdernal stresses and strains within the joint.
It is sufficient to think to the fracture that ajgp® in the middle of masonry blocks caused by the
horizontal tangential contact stresses betweemttréar and the block when a masonry assembly is
subjected to a pure compressive load. These taapstresses cannot be captured by the classical
ZTl model. Therefore, the usual assumption usedeno-thickness interface elements, where the
response is governed by contact stress componmalg,require a correction by introducing the
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effect of the internal stresses into the analydiss enhancement of the ZTI is known as interphase
model, for the first time proposed by Giambanco kindz [11].

The interphase element has been formulated by eu#fsoa new contact element and introduced in
a scientific oriented finite element code. Patdigdave been carried out in elasticity to inveség
the numerical performance and convergence of tmeant. All the results are shown in the paper
written by Giambanco el al. [12]. In particular, timat paper is shown how strategies such as the
Reduced Selective Integration or the Enhanced AsduBtrain methods are necessary to avoid
shear locking effects of the element.

In this work the interphase element is implemenfi@d nonlinear applications by introducing
separate limit conditions for the joint bulk mastr@nd for the physical interfaces. In particulze t
damage mechanics theory is used to simulate tineatoyn and propagation of fractures in the bulk
material. The elastoplastic limit condition of MeGioulomb type with a tensile cut-off is adopted to
describe the decohesion process of the interfades.contact strains are subdivided in an elastic
and a plastic part. The overall model is thermodyigally consistent and the flow rules are derived
by applying the Lagrangian method. With the aimstmw the effectiveness of the model the
interphase constitutive laws have been implemeimedn open-source research-oriented finite
element analysis program for 2D applications anddigg the Selective Reduced Integration.

The paper is organized as follows. In Section 2g#eeral assumptions of the model are reported
and the expression of the Helmholtz free enerdgunsished. In Section 3 the state equations and
the flow rules are determined on the base of tkentbdynamically consistent theory. Section 4 is
finally dedicated to numerical applications in arde show the effectiveness of the proposed
model.

2. General assumptions and Ther modynamics.

Let us consider, in the Euclidean spacé referred to the orthonormal fran‘(@,il,iz,ia), a

structure formed by two adherenf3”, Q~ connected by a third materidl in contact with the
two bodies by means of the two physical interfags and =~ respectively, as in Fig. 1.

M

Figure 1. (a) Mechanical scheme of a third bodgrippsed between two adherents;
(b) Interphase mechanical scheme.

It is assumed that the thicknes$s of the joint is small if compared with the chamdgtic
dimensions of the bonded assembly.

The boundary of the two adherents is divided intthe parts ', and I';, where kinematic and

loading conditions are specified respectively.
The joint interacts with the two adherents throtlgihfollowing traction components:

t* =t'e +tie, +te, (1)
which can be considered as the external surfacks lfwa the joint.
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In Eq. (1) e, e, and e, are the unit vectors of the local reference systeith e, oriented

along the normal to the middle surfag and directed towards the adhereft .
The joint can be regarded as an interphase mddslatsumed that the fibers inside the interphase

and directed alonge, are maintained rectilinear during the deformatwacess. In view of this
hypothesis the interphase displacement fialdcan be easily obtained from the displacemafit
and u- of the interfacesz” and Z°, thus

1 . 1 x) =
0,362 3428 u () 3-8 Ju () @
with x, X, and x, the Cartesian coordinates in the orthonormal fra@ee, ,e,,e;).

Since the thickness of the joint is generally sniabmpared to the characteristic dimensions ef th
adherents, we can assume the strain stateniform along thee, direction and given by:

L
a(xl,xz):E I 0°u (X, X5, X5) dX (3)
—V
2
Substituting the Eq. (2) we have:

1 (R
e(xl,xz):%([u]Dn+nD[u])+5D (u +u ) (4)
where [u] =u’-u", n is the unit normal vector to the interphase plané C° is the symmetric

gradient operator defined &s® :%(D + DT) .

Let us note that in the interphase model the joimvatures generated by displacement field (2) and
the related flexural effect are neglected.

Equilibrium equations are derived by applying thengiple of virtual displacements (PVD) that
asserts that the external work produced by theacbmtactions equals the internal work developed
in the joint. According to the hypothesis of a dans strain state, by applying the divergence

theorem and assuming that=3" =%", the PVD leads to the following local equilibrivrglations
of the interphase model:

t+—cﬁh+gdiV(r=O; t_+GEh+D2diVG:O onz, (5)

mié=0 onl. (6)
The basic kinematical hypotheses are the addite@mhposition of total strain in the interngl (
and contactd) parts and, for the contact strain only, a furtdecomposition in elastice) and
inelastic p) parts:

g=¢ +¢° (7)
e =% +g® (8)
with
g = AgA (9)
being A =1-nn the unit second order tensor.

In order to comply with thermodynamic requiremeritse interphase Helmholtz free energy is
introduced in the following form:

\P(si £%,e%,@,¢, ,5p) =y (si 0 ,5d)+ W°(3° £ ,Ep) +\1—'i'°(si £ g p)) ; (10)
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where W' and W° represent the free energies related to the intanthcontact parts of the strain
state respectively and’™® is the mixed term of the free energy which take® iaccount the
co-presence of the contact and internal strafgsand &, are the damage and plastic internal
variables, respectively.

The principle considered for developing the coustie laws is that damage occurs in the bulk
material, therefore the damage tensor appears in the two terms of the total free enéngy are
functions of the internal strains also. In this whg constitutive model takes into account the bnse
of microvoids and fractures along the thicknesshef joint. On the other hand, debonding of the
joint from the adherents, sliding and fracturesedeping on surfaces parallel to the middle plane of
the interphase are modelled using elastoplastaitgt the inelastic contact strain$® are the
related internal variables.

In this work a single scalar damage varialale governs the loss of stiffness of the bulk mateital
ranges from 0O to 1, with the inferior and supeliimits having the meaning of a pristine and a fully
damaged bulk material, respectively.

The explicit expression of the components of tlee &nergy is given below:

W= (L) (&) e’ e )b [+ n(1-4,)] (11)
e =%[/] tr? (8° —8°p) + 2,Ll(8c —8°p) :(8C —ac”)J +%hpf§ (12)
W = (1~ w) A tr(si)tr(sC —sc”) (13)

where A and y are the Lamé’s constantg,is a material parameter which governs the softgnin

response associated to the damage onset and gramdin, is a material parameter specifying
isotropic hardening/softening interface response.

3. State equations and flow rules.

In order to derive the interphase constitutive #&igua, the second principle of thermodynamics,
taking into account also the balance equationt(principle) can be applied in the form of the
Clausius-Duhem inequality. This inequality for isetmal purely mechanical evolutive process
reads as

D=¢:6-¥>0 (14)
whereD is the interphase dissipation (for unit surfacepet entropy production.
From the assumed form of the Helmholtz free endEyy. 10) its general rate has the following

expression:
. (aw‘ aw‘ﬁj r [awc awj o (awc aw‘ﬁj o
Y= T+ - e+ + e+ + et +
&

o¢' 0g®  0g° 0e®  0g®
oW ow'c) | oW . 9w
+ + Cwt &4
Jw OJw

(15)

+—¢
¢, ¢, P
Particularizing Eq. (14) for a purely elastic inoental deformation process
(¢* =0, w= éd = ép =0), assuming the decomposition of the stress statiéas to that used for the

strain state
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6=¢ +¢°, being ¢ =AcA (16)

and considering the adopted expressions of theefieggy parts (Eg. 11-13), the elastic stressrstrai
equations can be derived, thus

o :(l—a)){)l[tr(si)+tr(sc—st)]A+2,u8i} (17)
o°=A [(1-0)) tr(:ei ) + tr(aC —ac”)}(l —A) + 2,u(:~:c —sc”) (18)
X, =h¢, (19)

_h S
Xa —hdﬁ (20)
{ I%[/1tr2(si)+2,u.¢,i :si}+)ltr(si)tr(s°—£°p) (22)

where ), and yq are the static variables conjugate of the inteuaaiablesé, and & respectively,
and ¢ the thermodynamic force conjugate of the damagabla w.

Making use of the elastic strain-stress equatiahadrihe previous positions, the final expression o
the instantaneous dissipation is obtained:

D:Gc:écp_/ngp_/ngd-'-ZwZO' (22)

In order to regulate the activation of each digsheamechanism, two different yield functions are
defined in the space of the proper static varighiamely:

®, (6% x,)<0,  ®,(¢.x,)<0 (23)

where @, is the classical plastic yield function specifyitfie elastic contact domain assumed
convex and®y is the damage activation function also assumegesan
The activation of each dissipation mechanism caneffectively described by a variational
formulation which is represented by the generaliéaciple of maximum intrinsic dissipation:
CmaX (Gc :‘c.’.cp _Xpép _Xdéd +Za)) (24)
c rvaXd re
subject to the constraints (Eq. 23). The Kuhn-Tuakenditions of the maximum constrained
problem provide the plastic and damage evolutiarslaf the interphase:

. OO . P
P =) —F; =A,—2 25
€ p acc d aZ ( )
. . 0P . . 0D
=& =A== & = A (26)
P P aXp ‘ ‘ a/Yd
o, (6% x,)<0, 4,20, A® (% x,)=C (27)
(¢ xs)<0, 4,20, A, (¢ xy)=0 (28)

being )pand /1d the plastic and damage multiplier, respectively.
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In the present study the elasto-plastic convex domsadefined by the intersection of the classical
Mohr-Coulomb bilinear function with a tension cut:o

¢pl(c°,)(p): +a°tan¢—co(1—)(p) (29)

TC

o, (0% x,) =0° -0,(1-x,) (30)
where t° and o° are the tangential stress vector and the normedsstomponent of the contact

stresses,@ is the friction angleg, andgp the cohesion and tensile strength of the virgiarfiaces.

The two yield functions are depicted in Fig. 2. Tokowing four zones can be distinguished:

| elastic zone:® , <0, ® ,<0
Il plastic activation in shear® ; =0, & ,<0
Il plastic activation in tension® , <0, ® ,=0

IV plastic activation in tension and shear (coneb ;, =0, @ ,=0.

The damage activation function is linear and thst factivation occurs when the thermodynamic
force reaches the relative threshold vajgie

D, (Z’Xd):Z_ZO(l_Xd) (31)

¢p1 ATl

- \{(// T
’ ¢p2

qV

f

!
GD(I_X;J)
_ -

—
—_
—_

Figure 2. Plastic yield conditions representechandtress space.

4. Numerical applications.

The interphase model presented in Sections 2 ahds3been implemented in an open-source
research-oriented finite element analysis program 2D applications. With the aim to run a
step-by-step integration, flow rules given in rbdem were rewritten as discrete laws. The implicit
backward-Euler difference method was applied toaiobtresults within the time step
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[t,. t..]O[0, T].In particular the nonlinear solution at tintg, has been calculated by means

of an elastic prediction — plastic and/or damagiogection procedure. The interphase element has
four nodes and zero-thickness. The integratiorhefdtiffness matrix has been solved by applying

the Reduced Selective Integration method, thatwvis Gauss are used for the integration in the

direction normal to the interphase plane while Gagiss point is used in the tangential one.

The numerical applications presented in this waelgard uniaxial compression and diagonal

compression tests on masonry specimens. All nualegiamples have been carried out under the
hypothesis of plane stress state.

4.1. Uniaxial compression tests on masonry.

Uniaxial compression tests have been carried ouastess the performance of the interphase
element. A brick-mortar-brick system uniformly comagsed (Fig. 3) has been considered with the
aim to show the formation of damage in the bulkermat when the stiffness of the bricks is lower
than that one of mortar. In this case, in fact, liheks tend to expand more than the mortar in the
horizontal direction because of the Poisson effeat,the higher stiffness of the mortar opposes to
this displacement. The bricks are therefore subjetd compressive stresses while the mortar to
tensile ones along the x-axis.

el VL

|:| Brick (b) 7
_ Mortar (m) 5

vﬂ%ﬂ%ﬂ%:

A 2

20 cm
Figure 3. Uniaxial compression test on a masorwgkl

The parameters used for tests are reported in Tgbiéhile the results are shown in Fig. 4. The
numerical test has been performed under displacenmtrol. In this paper the results obtained
with a load multiplier equal to 3 and for a FE miodé&h 80 interphase elements are reported in
terms of stresses along the mortar layer.

Table 1. Parameters used for compression test.
Ebrick 500 MPa 0.3
Emotar 15000 MPa 0.2
Co 4.5 MPa 30°

0o 1.0 MPa 1
Go 0.001 MPa 0.0025 MPa
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The diagrams depicted in Fig. 4 clearly show thangsowere the damage nucleation takes place.
The first fracture forms in the middle of the laya@md grows during the following steps. As a
consequence, a redistribution of stresses takes plathe two parts on sides of the fracture. When
the thermodynamic force in another Gauss pointroug of Gauss points overcomes the threshold
valuea new fracture appears symmetrically with respedhé middle of the mortar joint. On the
other hand, whileg, stresses suddenly fall down and tend to zerogthvalues are little influenced
by fracture. This is due to the fact that damagdects only internal and mixed terms of the free
energy.

x 10 60 = X 10‘1_120 - x 10 0.6 7

a ] b T c
50 @) -100 ® 047 o

T 401 0] 02 f/\

=, 30 1 0 y

5" 50 %07 -0.2 \/
10 U H -40 -0.4

0 e 20 t+———T"——T T 17— 064+———T T 11—
0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20
d [cm] d [cm] d [cm]
Figure 4. Uniaxial compression test on a masonwglblresults at a load multiplier equal to 3. (@mal
stresses along x-axis; (b) vertical stressesaf@dntial stresses.

o, [MPa]
T [MPa]

4.2. Diagonal compression tests on masonry.

Diagonal compression numerical tests have beeredasut on a masonry panel and compared with

the experimental results obtained in laboratorythw&ference to Fig. 5, the specimen is made up of
four courses of sandstone blocks with calcium-caémeortar. It has a squared shape with a length

of 67 cm for each side. A single block is 33 cmgamnd 16 cm high. The mortar layer has a

thickness of 1 cm. A total number of 256 planesstr2D solid elements and 72 interphase elements
has been used to create the finite element model.

[] ] ]

Load cell

[] hinge [ ] ] E [
hydraulic jack

it

—rt—

Q ©
Figure 5. Diagonal compression test on a masomglp&xperimental setup and finite element model.

The mechanical variables for blocks and mortar #ed parameters used for the finite element
model are reported in Table 2.



13th International Conference on Fracture
June 16-21, 2013, Beijing, China

Table 2. Parameters used for diagonal compresssin t
Epick  11141.67 MPa ek 0.25
Emoar 37000 MPa Yortar  0.14

Co 5.0 MPa 35°

oo, 1.0 MPa 0.04
{, 1.10°MPa 0.001 MPa

The test has been run with 400 steps under dispkxcecontrol. At each step the values of the total
vertical load F and the displacement discontinsit@#h=Jh"+Jdh™ and dv=3Jv' +dv , in
horizontal and vertical direction respectively, @abeen evaluated and reported in the
load-displacement curves of Fig. 6. A good agredrnas been obtained with experimental results.

16000
__, 12000
pd
o i
= 8000
-% o o oexperViyi
3 7 exper V2
numeric §,*+9,
4000 x x  xexper H1
4 exper H2
numeric 8, +3,*
O T I T I T I T I T I T I T I T I

-03 -02 01 0 01 02 03 04 05
displacement [mm]
Figure 6. Load-displacement curves: comparison éetwiumerical and experimental results.

Fig. 7 finally shows a comparison between the pskaexperimental and numerical configurations.
A very good agreement can be observed, even ifhtimerical model is not able to simulate the
fracture inside the blocks because an elastic hehaxas chosen for bricks.

PRIN. STRESS 1

-2.48E+02
-1.55E+02
-6.31E+01
2.93E+01
1.22E+02
2.14E+02
3.07E+02
3.99E+02
Current View
Min = -2.48E+02

X =-8.75E+00
Y =-3.86E+01

Max = 3.99E+02
X =251E+00
Y =-2.69E+01

Time = 4.00E+02

Figure 7. Comparison between numerical and expetiheollapse configurations.
5. Conclusions.

The present paper deals with the mesomodellingt@rbgeneous structures by means of interphase
elements, that can be considered as an enhancevhéhe common interface elements. The
possibility to distinguish internal and externalntact stresses and strains permits to introduce
separate failure conditions for the bulk materiad #or contact tractions. In particular an isotwopi
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damage model has been used to model the nonliespomse of the bulk material, while an
elastoplastic bilinear domain governs the evolutbplasticity for contact tractions. The interpbas
model has been written in the framework of a thetymamically consistent theory. State equations
and flow rules have been derived and rewritten dinsarete form to be suitable to be used for finite
element implementation. Two numerical applicati@ms masonry structural elements have been
conducted. In particular a compression test andgodal test have been carried out.

Ongoing and future efforts are devoted to the dhimbion of plastic activation functions on the
physical interfaces between mortar and block, anthé possibility to introduce a new damage
model to catch horizontal fractures also.
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