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Abstract  Heterogeneous materials present a mechanical response strongly dependent on the static and 
kinematic phenomena occurring in the constituents and at their joints. In order to analyze this kind of 
materials it is a common practice to distinguish a macroscopic length scale of interest from a mesoscopic one, 
where the mesoscopic length scale is of the order of the typical dimensions of the constituents. At the 
mesoscopic level the interaction between the units is simulated by mean of apposite mechanical devices. 
Among these devices is popular the zero thickness interface model where contact tractions and displacement 
discontinuities are the primary static and kinematic variables respectively. However, in heterogeneous 
materials the response also depends on joint internal stresses as much as on contact stresses. The introduction 
of internal stresses brings to the interphase model or an enhancement of the classical zero-thickness interface. 
With the term ‘interphase’ we shall mean a layer separated by two physical interfaces from the bulk material 
or a multilayer structure with varying properties and several interfaces. Different failure conditions can be 
introduced for the physical interfaces and for the joint material. The interphase model has been implemented 
in an open-source research-oriented finite element analysis program for 2D applications. Numerical 
simulations are provided to show the main features of the model. 
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1. Introduction 
 
The mechanical response of all those structures that are constituted by heterogeneous materials is 
dependent by different static and kinematic phenomena occurring in each constituent and at their 
joints. Material degradation due to nucleation, growth and coalescence of microvoids and 
microcracks is usually accompanied by plastic deformations as decohesion and sliding that cause 
strain softening and induced anisotropy. 
The mesoscopic approach is by now the most diffused technique to understand this kind of 
materials, because it overcomes the problems associated with the strong simplifications that have to 
be introduced when the macroscopic approach is applied. In particular, with the mesoscopic 
approach all the material constituents are modelled individually and their interactions are regulated 
by using appropriate devices able to reproduce the inelastic phenomena that usually occur at the 
physical interfaces. In literature, these mechanical devices are generally called contact elements, 
normally distinguished between link elements, thin layer elements and zero-thickness interface 
elements (ZTI). In the last decades interface elements have been applied in several engineering 
applications due to their simple formulation and to their easiness to be implemented in finite 
element codes [1-10]. 
The interface constitutive laws are expressed in terms of contact tractions and displacement 
discontinuities which are considered as generalized joints strains. In order to model the nonlinear 
behaviour caused by plastic deformations and damage evolution the constitutive laws of the 
interface elements are formulated making use of concepts borrowed by theory of Plasticity and 
Continuum Damage Mechanics.  
In many cases the structural response depends also on internal stresses and strains within the joint. 
It is sufficient to think to the fracture that appears in the middle of masonry blocks caused by the 
horizontal tangential contact stresses between the mortar and the block when a masonry assembly is 
subjected to a pure compressive load. These tangential stresses cannot be captured by the classical 
ZTI model. Therefore, the usual assumption used in zero-thickness interface elements, where the 
response is governed by contact stress components, may require a correction by introducing the 
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effect of the internal stresses into the analysis. This enhancement of the ZTI is known as interphase 
model, for the first time proposed by Giambanco and Mròz [11]. 
The interphase element has been formulated by authors as a new contact element and introduced in 
a scientific oriented finite element code. Patch tests have been carried out in elasticity to investigate 
the numerical performance and convergence of the element. All the results are shown in the paper 
written by Giambanco el al. [12]. In particular, in that paper is shown how strategies such as the 
Reduced Selective Integration or the Enhanced Assumed Strain methods are necessary to avoid 
shear locking effects of the element. 
In this work the interphase element is implemented for nonlinear applications by introducing 
separate limit conditions for the joint bulk material and for the physical interfaces. In particular the 
damage mechanics theory is used to simulate the formation and propagation of fractures in the bulk 
material. The elastoplastic limit condition of Mohr-Coulomb type with a tensile cut-off is adopted to 
describe the decohesion process of the interfaces. The contact strains are subdivided in an elastic 
and a plastic part. The overall model is thermodynamically consistent and the flow rules are derived 
by applying the Lagrangian method. With the aim to show the effectiveness of the model the 
interphase constitutive laws have been implemented in an open-source research-oriented finite 
element analysis program for 2D applications and by using the Selective Reduced Integration. 
The paper is organized as follows. In Section 2 the general assumptions of the model are reported 
and the expression of the Helmholtz free energy is furnished. In Section 3 the state equations and 
the flow rules are determined on the base of the thermodynamically consistent theory. Section 4 is 
finally dedicated to numerical applications in order to show the effectiveness of the proposed 
model. 
 
2. General assumptions and Thermodynamics. 
 
Let us consider, in the Euclidean space 3ℜ  referred to the orthonormal frame ( ), , ,O 1 2 3i i i , a 

structure formed by two adherents +Ω , −Ω  connected by a third material Ω  in contact with the 
two bodies by means of the two physical interfaces +Σ  and −Σ  respectively, as in Fig. 1. 
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Figure 1. (a) Mechanical scheme of a third body interposed between two adherents;  

(b) Interphase mechanical scheme. 
 

It is assumed that the thickness h  of the joint is small if compared with the characteristic 
dimensions of the bonded assembly. 
The boundary of the two adherents is divided in the two parts u

±Γ  and t
±Γ , where kinematic and 

loading conditions are specified respectively.  
The joint interacts with the two adherents through the following traction components: 

 1 1 2 2 3 3t t t± ± ± ±= + +t e e e  (1) 

which can be considered as the external surface loads for the joint. 
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In Eq. (1) 1e , 2e  and 3e  are the unit vectors of the local reference system, with 3e  oriented 

along the normal to the middle surface Σ  and directed towards the adherent +Ω . 
The joint can be regarded as an interphase model. It is assumed that the fibers inside the interphase 
and directed along 3e  are maintained rectilinear during the deformation process. In view of this 

hypothesis the interphase displacement field u  can be easily obtained from the displacement +u  
and −u  of the interfaces +Σ  and −Σ , thus 

 ( ) ( )3 3
1 2 3 1 2 1 2

1 1
( , , ) , ,

2 2

x x
x x x x x x x

h h
+ −   = + + −   

   
u u u  (2) 

with 1x , 2x  and 3x  the Cartesian coordinates in the orthonormal frame ( )1 2 3, , ,O e e e . 

Since the thickness of the joint is generally small if compared to the characteristic dimensions of the 
adherents, we can assume the strain state ε  uniform along the 3e  direction and given by: 

 ( )
2

1 2 1 2 3 3

2

1
( , ) , ,

h

s

h

x x x x x dx
h

−

= ∇∫ε u  (3)  

Substituting the Eq. (2) we have: 

 [ ] [ ]( ) ( )1 2

1 1
( , )

2 2
sx x

h
+ −= ⊗ + ⊗ + ∇ +ε u n n u u u  (4) 

where [ ] + −= −u u u , n  is the unit normal vector to the interphase plane and s∇  is the symmetric 

gradient operator defined as ( )1

2
s T∇ = ∇ + ∇ . 

Let us note that in the interphase model the joint curvatures generated by displacement field (2) and 
the related flexural effect are neglected. 
Equilibrium equations are derived by applying the principle of virtual displacements (PVD) that 
asserts that the external work produced by the contact tractions equals the internal work developed 
in the joint. According to the hypothesis of a constant strain state, by applying the divergence 
theorem and assuming that + −Σ = Σ = Σ , the PVD leads to the following local equilibrium relations 
of the interphase model: 

 ; ,
2 2

h h
div div on+ −− ⋅ + = + ⋅ + = Σt σ n σ 0 t σ n σ 0  (5) 

 on⋅ = Γm σ 0 . (6) 

The basic kinematical hypotheses are the additive decomposition of total strain in the internal (i) 
and contact (c) parts and, for the contact strain only, a further decomposition in elastic (e) and 
inelastic (p) parts: 

 i c= +ε ε ε  (7) 
 c ce cp= +ε ε ε  (8) 
with 

 i =ε AεA  (9) 
being = − ⊗A I n n  the unit second order tensor. 
In order to comply with thermodynamic requirements, the interphase Helmholtz free energy is 
introduced in the following form: 

 ( ) ( ) ( ) ( ),, , , , , , , , , , , ,i c cp i i c c cp i c i c cp
d p d pξ ξ ξ ξΨ = Ψ + Ψ + Ψε ε ε ω ε ω ε ε ε ε ε ω ; (10) 
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where iΨ  and cΨ  represent the free energies related to the internal and contact parts of the strain 
state respectively and icΨ  is the mixed term of the free energy which takes into account the 
co-presence of the contact and internal strains. ξd and ξp are the damage and plastic internal 
variables, respectively. 
The principle considered for developing the constitutive laws is that damage occurs in the bulk 
material, therefore the damage tensor ω  appears in the two terms of the total free energy that are 
functions of the internal strains also. In this way the constitutive model takes into account the onset 
of microvoids and fractures along the thickness of the joint. On the other hand, debonding of the 
joint from the adherents, sliding and fractures developing on surfaces parallel to the middle plane of 

the interphase are modelled using elastoplasticity and the inelastic contact strains cp
ε  are the 

related internal variables. 
In this work a single scalar damage variable ω  governs the loss of stiffness of the bulk material. It 
ranges from 0 to 1, with the inferior and superior limits having the meaning of a pristine and a fully 
damaged bulk material, respectively.  
The explicit expression of the components of the free energy is given below: 

 ( ) ( ) ( )21
1 tr 2 : ln 1

2
i i i i

d d dhω λ µ ξ ξ Ψ = − + − + −   ε ε ε  (11) 

 ( ) ( ) ( )2 21 1
tr 2 :

2 2
c c cp c cp c cp

p phλ µ ξ Ψ = − + − − + ε ε ε ε ε ε  (12) 

 ( ) ( ) ( ), i c cp1 tr tri c ω λΨ = − −ε ε ε  (13)  

where λ  and µ  are the Lamè’s constants, hd is a material parameter which governs the softening 

response associated to the damage onset and growth, and hp is a material parameter specifying 
isotropic hardening/softening interface response. 
 
3. State equations and flow rules. 
 
In order to derive the interphase constitutive equations, the second principle of thermodynamics, 
taking into account also the balance equation (first principle) can be applied in the form of the 
Clausius-Duhem inequality. This inequality for isothermal purely mechanical evolutive process 
reads as 
 : 0D = − Ψ ≥σ ε ɺɺ  (14) 
where D is the interphase dissipation (for unit surface) or net entropy production. 
From the assumed form of the Helmholtz free energy (Eq. 10) its general rate has the following 
expression: 
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 (15) 

Particularizing Eq. (14) for a purely elastic incremental deformation process 
( , 0cp

d pω ξ ξ= = = =ε 0 ɺ ɺɺɺ ), assuming the decomposition of the stress state similar to that used for the 

strain state 
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 , beingi c i= + =σ σ σ σ AσA  (16) 

and considering the adopted expressions of the free energy parts (Eq. 11-13), the elastic stress-strain 
equations can be derived, thus 

 ( ) ( ) ( ){ }1 tr tr 2i i c cp iσ ω λ µ = − + − + ε ε ε A ε  (17) 

 ( ) ( ) ( ) ( ) ( )1- tr tr 2c i c cp c cpσ λ ω µ = + − − + − ε ε ε I A ε ε  (18) 

 p p phχ ξ=  (19) 

 
1

d
d d

d

h
ξχ

ξ
=

−
 (20) 

 ( ) ( ) ( )21
tr 2 : tr tr

2
i i i i c cpζ λ µ λ = + + − ε ε ε ε ε ε  (21) 

where χp and χd are the static variables conjugate of the internal variables ξp and ξd respectively, 
and ζ  the thermodynamic force conjugate of the damage variable ω . 
Making use of the elastic strain-stress equation and of the previous positions, the final expression of 
the instantaneous dissipation is obtained: 

 : 0c cp
p p d dD χ ξ χ ξ ζω= − − + ≥σ ε ɺ ɺ ɺɺ . (22) 

In order to regulate the activation of each dissipative mechanism, two different yield functions are 
defined in the space of the proper static variables, namely: 

 ( ) ( ), 0, , 0c
p p d dχ ζ χΦ ≤ Φ ≤σ  (23) 

where Φp is the classical plastic yield function specifying the elastic contact domain assumed 
convex and Φd is the damage activation function also assumed convex. 
The activation of each dissipation mechanism can be effectively described by a variational 
formulation which is represented by the generalized principle of maximum intrinsic dissipation: 

 ( )
, , ,
max :

c
p d

c cp
p p d d

χ χ ζ
χ ξ χ ξ ζω− − +

σ

σ ε ɺ ɺ ɺɺ  (24) 

subject to the constraints (Eq. 23). The Kuhn-Tucker conditions of the maximum constrained 
problem provide the plastic and damage evolution laws of the interphase: 

 ;pcp d
p dc

λ ω λ
ζ

∂Φ ∂Φ= =
∂ ∂

ε
σ

ɺ ɺɺɺ  (25) 

 ;p d
p p d d

p d

ξ λ ξ λ
χ χ

∂Φ ∂Φ− = − =
∂ ∂

ɺ ɺ ɺ ɺ  (26)  

 ( ) ( ), 0, 0, , 0c c
p p p p p pχ λ λ χΦ ≤ ≥ Φ =σ σɺ ɺ  (27) 

 ( ) ( ), 0, 0, , 0d d d d d dζ χ λ λ ζ χΦ ≤ ≥ Φ =ɺ ɺ  (28) 

being pλɺ and dλɺ  the plastic and damage multiplier, respectively. 
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In the present study the elasto-plastic convex domain is defined by the intersection of the classical 
Mohr-Coulomb bilinear function with a tension cut-off: 

 ( ) ( )1 0, tan 1c c c
p p pcχ σ ϕ χΦ = + − −σ τ  (29) 

 ( ) ( )2 0, 1c c
p p pχ σ σ χΦ = − −σ  (30) 

where c
τ  and cσ  are the tangential stress vector and the normal stress component of the contact 

stresses, ϕ  is the friction angle, c0 and σ0 the cohesion and tensile strength of the virgin interfaces. 

The two yield functions are depicted in Fig. 2. The following four zones can be distinguished: 

 I elastic zone: 1 20, 0p pΦ < Φ <  

 II plastic activation in shear: 1 20, 0p pΦ = Φ <   

 III plastic activation in tension: 1 20, 0p pΦ < Φ =   

 IV plastic activation in tension and shear (corner): 1 20, 0p pΦ = Φ = . 

The damage activation function is linear and the first activation occurs when the thermodynamic 
force reaches the relative threshold value ζ0: 

 ( ) ( )0, 1d d dζ χ ζ ζ χΦ = − −  (31) 

 

 
Figure 2. Plastic yield conditions represented in the stress space. 

 
4. Numerical applications. 
 
The interphase model presented in Sections 2 and 3 has been implemented in an open-source 
research-oriented finite element analysis program for 2D applications. With the aim to run a 
step-by-step integration, flow rules given in rate form were rewritten as discrete laws. The implicit 
backward-Euler difference method was applied to obtain results within the time step 
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[ ] [ ]1, 0,n nt t T+ ⊂ . In particular the nonlinear solution at time 1nt +  has been calculated by means 

of an elastic prediction – plastic and/or damaging correction procedure. The interphase element has 
four nodes and zero-thickness. The integration of the stiffness matrix has been solved by applying 
the Reduced Selective Integration method, that is two Gauss are used for the integration in the 
direction normal to the interphase plane while one Gauss point is used in the tangential one. 
The numerical applications presented in this work regard uniaxial compression and diagonal 
compression tests on masonry specimens. All numerical examples have been carried out under the 
hypothesis of plane stress state. 
 
4.1. Uniaxial compression tests on masonry. 
 
Uniaxial compression tests have been carried out to assess the performance of the interphase 
element. A brick-mortar-brick system uniformly compressed (Fig. 3) has been considered with the 
aim to show the formation of damage in the bulk material when the stiffness of the bricks is lower 
than that one of mortar. In this case, in fact, the bricks tend to expand more than the mortar in the 
horizontal direction because of the Poisson effect, but the higher stiffness of the mortar opposes to 
this displacement. The bricks are therefore subjected to compressive stresses while the mortar to 
tensile ones along the x-axis.   
 

 
Figure 3. Uniaxial compression test on a masonry block. 

 
The parameters used for tests are reported in Table 1, while the results are shown in Fig. 4. The 
numerical test has been performed under displacement control. In this paper the results obtained 
with a load multiplier equal to 3 and for a FE model with 80 interphase elements are reported in 
terms of stresses along the mortar layer.   
 

Table 1. Parameters used for compression test. 

Ebrick 500 MPa vbrick 0.3 
Emortar 15000 MPa vmortar 0.2 

c0 4.5 MPa ϕ 30° 
σ0 1.0 MPa hp 1 
ζ0 0.001 MPa hd 0.0025 MPa 
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The diagrams depicted in Fig. 4 clearly show the points were the damage nucleation takes place. 
The first fracture forms in the middle of the layer and grows during the following steps. As a 
consequence, a redistribution of stresses takes place in the two parts on sides of the fracture. When 
the thermodynamic force in another Gauss point or group of Gauss points overcomes the threshold 
value a new fracture appears symmetrically with respect to the middle of the mortar joint. On the 
other hand, while σx stresses suddenly fall down and tend to zero, the σz values are little influenced 
by fracture. This is due to the fact that damage affects only internal and mixed terms of the free 
energy.     
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Figure 4. Uniaxial compression test on a masonry block: results at a load multiplier equal to 3. (a) normal 

stresses along x-axis; (b) vertical stresses; (c) tangential stresses. 
 
4.2. Diagonal compression tests on masonry. 
 
Diagonal compression numerical tests have been carried out on a masonry panel and compared with 
the experimental results obtained in laboratory. With reference to Fig. 5, the specimen is made up of 
four courses of sandstone blocks with calcium-cement mortar. It has a squared shape with a length 
of 67 cm for each side. A single block is 33 cm long and 16 cm high. The mortar layer has a 
thickness of 1 cm. A total number of 256 plane stress 2D solid elements and 72 interphase elements 
has been used to create the finite element model. 
 

hinge

hydraulic jack

Load cell

  
Figure 5. Diagonal compression test on a masonry panel. Experimental setup and finite element model. 

 
The mechanical variables for blocks and mortar and the parameters used for the finite element 
model are reported in Table 2. 
 

(a) (b) (c) 
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Table 2. Parameters used for diagonal compression test. 

Ebrick 11141.67 MPa vbrick 0.25 
Emortar 37000 MPa vmortar 0.14 

c0 5.0 MPa ϕ 35° 
σ0 1.0 MPa hp 0.04 
ζ0 1·10-5 MPa hd 0.001 MPa 

 
The test has been run with 400 steps under displacement control. At each step the values of the total 
vertical load F and the displacement discontinuities h h hδ δ δ+ −= +  and v v vδ δ δ+ −= + , in 
horizontal and vertical direction respectively, have been evaluated and reported in the 
load-displacement curves of Fig. 6. A good agreement has been obtained with experimental results. 
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Figure 6. Load-displacement curves: comparison between numerical and experimental results. 

 
Fig. 7 finally shows a comparison between the collapse experimental and numerical configurations. 
A very good agreement can be observed, even if the numerical model is not able to simulate the 
fracture inside the blocks because an elastic behavior was chosen for bricks.  
 

 
Figure 7. Comparison between numerical and experimental collapse configurations. 

 
5. Conclusions. 
 
The present paper deals with the mesomodelling of heterogeneous structures by means of interphase 
elements, that can be considered as an enhancement of the common interface elements. The 
possibility to distinguish internal and external contact stresses and strains permits to introduce 
separate failure conditions for the bulk material and for contact tractions. In particular an isotropic 
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damage model has been used to model the nonlinear response of the bulk material, while an 
elastoplastic bilinear domain governs the evolution of plasticity for contact tractions. The interphase 
model has been written in the framework of a thermodynamically consistent theory. State equations 
and flow rules have been derived and rewritten in a discrete form to be suitable to be used for finite 
element implementation. Two numerical applications on masonry structural elements have been 
conducted. In particular a compression test and a diagonal test have been carried out.  
Ongoing and future efforts are devoted to the introduction of plastic activation functions on the 
physical interfaces between mortar and block, and to the possibility to introduce a new damage 
model to catch horizontal fractures also. 
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