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Abstract: We review the physics of hybrid optomechani-
cal systems consisting of a mechanical oscillator interact-
ing with both a radiation mode and an additional matter-
like system. We concentrate on the cases embodied by ei-
ther a single or a multi-atom system (a Bose-Einstein con-
densate, in particular) and discuss a wide range of physi-
cal e�ects, from passive mechanical cooling to the set-up
of multipartite entanglement, from optomechanical non-
locality to the achievement of non-classical states of a sin-
gle mechanical mode. The reviewed material showcases
the viability of hybridised cavity optomechanical systems
as basic building blocks for quantum communication net-
works and quantum state-engineering devices, possibly
empowered by the use of quantum and optimal control
techniques. The results that we discuss are instrumen-
tal to the promotion of hybrid optomechanical devices as
promising experimental platforms for the study of non-
classicality at the genuine mesoscopic level.
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The interest in delivering winning architectures for
quantum technologies has now extended well beyond the
academic domain that is more closely linked to modern
quantum mechanics to involve the industrial and policy-
making sectors [1, 2]. Major �nancial investments aimed at
the realisation of fully functioning prototypes of quantum-
empowered devices have or are about to be made to
boost the steps made so far in this area and catalyse the
paradigm shift that the implementation of a disruptive
quantum technological platform promises to embody. The
major obstacle in this respect is very well summarised by
the following question: Are we exploring the correct exper-
imental scenarios for the delivery of quantum technologies?
This is a sensible question that aims at understanding if
the current formulation of quantum information process-
ing (QIP) and the physical candidates to the implemen-
tation of a fully function quantum information process-
ing device are �t for the task. In a way, it is well possi-
ble that something similar to what triggered the birth of
the “second generation" of (classical) computers would be
needed: the discovery of a new platform (semi-conductor
transistors, in the case of classical machines) able to turn
the whole technological paradigm completely and boost
miniaturisation, scalability, and performance e�ciency.

In contrast with the so-far dominating QIP architec-
ture that makes use of homogeneous information car-
riers (ions, neutral atoms, semi- or super-conducting
chips, photonic circuits, among themost prominent exam-
ples [3]), recently the idea of hybridisation has started be-
coming increasingly popular. Indeed, the community in-
terested in QIP architectures and their implementation is
realising that the combination of information carriers and
processors of heterogeneous nature might be a winning
strategy. By putting together the strengths of di�erent in-
dividual technological platforms at the price of engineer-
ing controllable interfaces, hybrid devices would be more
�exible, adaptive andperformant than their homogeneous
counterparts [4].

This is precisely the context in which this review
will be set: we will illustrate the factual bene�ts for
QIP capabilities coming from the hybridisation of cavity-
optomechanics setups [5, 6], which are currently raising
considerable attention in light of the possibilities that they
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o�er for quantumstate engineering, quantumcontrol, and
investigations on the foundations of quantum mechanics
and its potential modi�cations [7]. In particular, we will
review some of the advantages for state preparation, ma-
nipulation and diagnostics that are provided by the co-
operation established between optically driven mechani-
cal systems (operating at the quantum level) and simple
atomic-like systems embedded into an optical cavity. We
shall showcase the rich range of relevant e�ects emerging
from such an admixture of di�erent physical information
carriers (light, atomic systems, and mechanical ones). We
will pinpointing the opportunities opened by such hybrid
structures for improved quantum control and revelation,
focusing in particular on the achievement of non-classical
features at the fullmechanical level, a goal that is currently
at the centre of much of the experimental endeavours in
the area of cavity optomechanics and that, as we will ar-
gue, might be signi�cantly “aided" by the adoption of hy-
brid setups [8–11].

In detail, the structure of this paper is as follows. In
Sec. 1 we address a protocol for quantum state engineer-
ing of a mechanical mode operated by an optical photo-
subtraction mechanism. After discussing the general fea-
tures of this scheme, we brie�y sketch how such an oper-
ation can be performed by using the hybridisation meth-
ods based on the use of atomic-like systems coupled to
the �eld of an optomechanical cavity. besides illustrating
a non-trivial example of mechanical quantum-state engi-
neering through all-optical means, this scenario provides
an interestingmotivation for studying in details the oppor-
tunities o�ered by such hybridmodels for control, sensing
and processing at the genuine quantum level.

With such motivations at hand, in Sec. 2 we introduce
and discuss a hybrid optomechanical system consisting of
a BEC interacting with the �eld of an optomechanical cav-
ity it is trapped in. We address the quantum back-action
induced on the mechanical device by the coupling of the
�eld with the collective state of the atoms in the BEC. We
show that such setup o�ers a very rich set of possibilities
for both quantum control and entanglement distribution.
Indeed, as addressed in Sec. 3, a very interesting structure
of entanglement sharing is set among the parties at hand,
including the possibility for observing genuine tripartite
entanglement set among continuous variable systems. The
analysis illustrated in Secs. 2 and 3will be conducted at the
steady-state reached by the system after a su�ciently long
interaction time. However, as Sec. 4 reveals, very impor-
tant features can be gathered from a time-resolved analy-
sis of the dynamics of the hybrid system at hand. In fact,
we will see how the short-time dynamics is characterised
by entanglement set between genuinely mesoscopic de-

grees of freedom (both atomic andmechanical) that is pre-
vented at the stationary state. By borrowing techniques
that are typical of the emerging �eld of optimal control, we
will show that a considerable improvement of the degree
of mesoscopic entanglement shared by mechanical mode
and the BEC can be achieved if one implements a rather
simple form of driving modulation, thus demonstrating
the advantage of mixing up strategies for quantum control
theory and the �exibility of a hybridised setup. The use-
fulness of a BEC-hybridized optomechanical setup will be
epitomised by the study performed in Sec. 5, where we ad-
dress the problem of the revelation of quantum coherence
in the state of a single-clamped cantilever by mapping its
state onto themagnetic behaviour of a spinorBEC. InSec. 6
we change perspective completely and address a di�erent
formof hybridisation, this timebased on the use of a single
spin system. In particular, we exploit a three-level atom,
trapped within an optomechanical cavity, to demonstrate
a dynamical regime that is able to generate a state quite
close to a Schrödinger cat state. The incorporation of a sim-
ple postselection stage allows us to prepare the mechani-
cal system in a highly non-classical state, as shown by a
criterion based on the negativity of the Wigner function.
Finally, Sec. 7 allows us to draw our conclusions.

1 Quantum state engineering
through photo-subtraction

In order to introduce the formalism thatwill be used across
a large part of the manuscript without the complications
of dealing immediately with a multipartite system, in this
Section we concentrate on the case of a purely optome-
chanical system and discuss a protocol for quantum state
engineering of a massive mechanical mode based on the
combination of radiation-pressure coupling and photon
subtraction from a light �eld [12, 13].We show a dynamical
regime where non-classical states of a mechanical oscil-
lator can be in principle achieved under non-demanding
conditions: cooling of the oscillator down to its ground-
state energy is not required as the scheme prepares non-
classical states for operating temperatures in the range of
1 K and ine�ciencies at the photon-subtraction stage do
not hinder the e�ectiveness of the method. As we will dis-
cuss in the last part of this Section, the required photon
subtraction step can indeed be realised by using ancil-
lary elements, therefore embodying a genuine case of hy-
brid optomechanics. Therefore, this study is instrumental
to illustrate an interesting instance of non-classical state-
engineering protocol that makes use of the advantages
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provided by hybridisation and also to provide the neces-
sary mathematical tools that will be used explicitly when
addressing the BEC-hybridised con�gurations presented
in Secs. 2, 3 and 4.

We consider the prototypical optomechanical setting
consisting of a cavity of lengthL driven through its steady
input mirror by an intense light �eld of frequency ωL and
endowedwith a highly re�ecting end-mirror that can oscil-
late along the cavity axis around an equilibrium position.
The vibrating mirror, which is modelled as a mechanical
harmonic oscillator at frequency ωm, is in contact with a
background of phononic modes in equilibrium at temper-
ature T. We write the Hamiltonian of the system made out
of the cavity �eld, the movable mirror and the BEC as

Ĥ = ĤM + ĤC + ĤMC (1)

where the mirror and cavity Hamiltonians are

ĤM = mω2
m q̂2/2 + p̂2/(2m), (2)

ĤC = ~(ωC−ωL)â†â−i~η(â − â†), (3)

respectively.Here q̂ (p̂) is themirror position (momentum),
m is its e�ective mass, ωC is the cavity frequency and â
(â†) is the corresponding annihilation (creation) operator.
We have included a cavity pumping term −i~η(â − â†) with
coupling parameter η =

√
2κR/~ωL (R is the laser power

and κ is the cavity decay rate). For small mirror displace-
ments and large cavity free spectral range with respect
to ωm (which allows us to neglect scattering of photons
into other mechanical modes), the mirror-cavity interac-
tion can be written as

ĤMC = −~χq̂â†â (4)

with χ = ωC/L the optomechanical coupling coe�cient.
Before addressing the full-fetched con�guration for pho-
ton subtraction-aided quantumoptomechanics, it isworth
gathering some insight into the features of the system it-
self. This analysis will justify a posteriori some of the con-
clusions that will be reached later on.

The properties of the �eld-oscillator state are well
characterized using these covariance matrix VMC having
elements (VMC)ij=〈q̂i q̂j + q̂j q̂i〉/2 (i, j = 1, .., 4) with
q̂=(q̂, p̂, x̂, ŷ) and the dimensionless �eld quadratures x̂ =
(â+â†)/

√
2, ŷ = i(â† − â)/

√
2. In such an ordered operator

basis, the covariancematrix of the simple optomechanical
system is written as

VMC =
(
M R
RT C

)
(5)

with M=Diag[m11,m22] a diagonal matrix encompassing
the local properties of the mechanical mode and J = C, R

with elements (J)ik = jik accounting for either the �eld’s
properties or the correlationsbetween the two subsystems,
respectively. In general, the dynamics encompassed by Ĥ

is made di�cult by the non-linearity inherent in ĤMC.
However, for an intense pump laser, the problem can be
linearised by introducing quantum �uctuation operators
as Ô→Os+δÔ with Ô any of the operators entering into
ĤMC,Os the correspondingmean value and δÔ the associ-
ated �rst-order quantum �uctuation operator [14]. The ex-
plicit form of the elements of VMC is found using the solu-
tions of the Langevin-like equations regulating the open-
system dynamics undergone by the mechanical and opti-
cal �uctuation operators. These can be written in the com-
pact form

∂tϕ̂MC = KMCϕ̂+N̂MC , (6)

where we have introduced the vector of �uctuation op-
erators ϕ̂T

MC = (δx̂ δŷ δq̂ δp̂), the noise vector N̂T
MC =

(
√
κ(δâ†in+âin) i

√
κδ(â†in−âin) 0 ξ̂ ) and the dynamical cou-

pling matrixKMC given, in the chosen basis, by

KMC =


0 ωm 0 0
−ωm −γ G 0

0 0 −κ ∆
G 0 −∆ −κ

 . (7)

In these expressions G = χ
√

~/(2mωm) is the e�ective op-
tomechanical coupling rate and γ is the energy decay rate
of the mechanical oscillator. Moreover, ξ̂ is a Langevin op-
erator that describes the Brownian motion of the mechan-
ical mode (induced by environmental phonon modes) at
temperature T. The statistical properties of this opera-
tor will be addressed in some detail in Sec. 2. Here it is
su�cient to mention that in the limit of small mechani-
cal damping and large enough temperature, ξ̂ describes a
delta-correlated noise of strength γ(n + 1) with n the mean
phonon number of the mechanical system. Eq. (37) can be
straightforwardly transformed into the dynamical equa-
tion for VMC [14]

V̇MC = KMCVMC + VMCK
T + DMC (8)

with DMC=diag[0, γ(2n+1), κ, κ] accounting for the noise
a�ecting the bipartite system at hand here. We will con-
sider initial conditions such that the mechanical mode is
prepared in a thermal state at temperature T and the cav-
ity �eld in a coherent state of amplitude determined by the
intensity of the pumping �eld.

A typical example of the time-behaviour of the matrix
elements of VMC is displayed in Fig. 1 for a choice of the
relevant set of parameters in our problem. The stability
of the dynamical equations is guaranteed throughout the
whole evolution. The system reaches its steady-state on a
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Fig. 1. Elements of the covariance matrix VMC plotted against the interaction time t for ∆/ωm = 0.05, T = 0.4K and m = 5×10−12Kg. We have
taken a cavity of length L = 1mm, cavity frequency ωc/2π ' 4 × 1014Hz and �nesse 104, pumped with 20mW. The mechanical damping
rate is as small as∼ 10Hz. In panel (a) we show the elements of the blockM pertaining to the mechanical mode (notice that elements m11
and m22 are almost indistinguishable, while the steady-state form of such block is diagonal). Panel (b) shows the elements of the �eld’s
block C (the inset shows a magni�cation of the plot for values of the matrix entries [0, 14]. This allows to appreciate the elements that are
not clearly visible from the main panel). Panel (c) is for the elements of the correlation block R.

timescale roughly dictated by ω−1
m . In such long-time con-

ditions, the behaviour of the system is fully captured by
the Lyapunov equation

KMCVMC + VMCK
T
MC = −DMC (9)

whose explicit solution has been given in the Supplemen-
tary Material accompanying Ref. [15]. As the correspond-
ing expressions are too lengthy to be informative, we do
not report them here.

With these tools at hand, it is straightforward to eval-
uate the entanglement within the opto-mechanical de-
vice as quanti�ed by the logarithmic negativity EMC =
max[0, − ln 2ν] [16, 17]. Here, ν is the smallest symplec-
tic eigenvalue of the the matrix V′

MC = PVMCP, where
P = diag(1, 1, 1, −1) performs momentum-inversion in
phase-space. The results are shown in Fig. 2, where only
the quantity − ln 2ν is plotted to show that no entangle-
ment is found in the optomechanical system, nor dynami-
cally neither at the steady state. Although Fig. 2 shows just
an instance of this, our extensive numerical exploration
con�rmed this result for a large range of the key parame-
ters in our problem. As we will see later on, however, the
absence of entanglement does not hinder the validity of
the state engineering scheme.

We now pass to the description of the scheme dis-
cussed in this Section. The �eld re�ected by the mechani-
cal mirror undergoes a single photon-subtraction process
(that correspondingly stops the cavity-pumping process).
A sketch of the proposed system is given in Fig. 3. The idea
behind such proposal is that the correlations (not neces-
sarily quantum) set between themechanical oscillator and
the �eld are enough to “transfer" the non-classicality in-
duced in the conditional state of the �eld by the photon-
subtractionprocess to the state of themechanicalmode. In
this respect, this proposal is along the lines of the scheme
byDakna et al. [18], where a photon-numbermeasurement

on one arm of an entangled two-mode state projects the
other one into a highly non-classical state. However, we
should remark again that no assumption on an initially
entangled optomechanical state will be necessary. While
here we are interested in the formal aspects of the mecha-
nism behind our proposal, a physical protocol will be ad-
dressed later on.

Given the covariance matrix of the bipartite
state of the system, we calculate the Weyl charac-
teristic function as χW (η, λ)=e− 1

2 q̃σq̃
T

with η=ηr+iηi,
λ=λr+iλi and q̃=(ηr , ηi , λr , λi) the vector of complex
phase-space variables. With this, the density matrix
of the joint �eld-oscillator system can be written as
ϱMC = π−2 ∫ χW (η, λ)D̂†M(η)⊗D̂†C(λ)d2η d2λ [19]. Here,
D̂j(α)= exp[αâ†j − α*âj] is the displacement operator of
mode j=m, f of amplitude α∈C. The mechanical state re-
sulting from the subtraction of a single quantum from the
�eld is then described by

ϱM = N

π2

∫
χW (η, λ)D̂†M(η) tr[âD̂†C(λ)â†]d2η d2λ (10)

with N a normalization constant. Eq. (10) can be manipu-
lated to get rid of the degrees of freedom of the cavity �eld
byusing the transformation rule of â inducedby D̂†C(λ) and
the closure relation π−1 ∫ d2α |α〉〈α|C =1̂1C, where |α〉 is a co-
herent state [19]. After some algebra, one gets

tr[âD̂†C(λ)â†]=
∫

(|α|2−|λ|2+2iIm[λ*α]+1)e−
|λ|2+2iIm[λ*α]

2

π d2α.

(11)
We now �rst perform the integration over λ, introduce the
function

C(α, η, λ)=χW (η, λ)(|α|2−|λ|2+2iIm[λ*α]+1)e−
1
2 |λ|

2
(12)

and cast the state of the mechanical mode as

ϱM = N

π3

∫
D̂†M(η)F[C(α, η, λ)]d2ηd2α (13)
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with F[C(α, η, λ)] the Fourier transform of C(α, η, λ). Such
function encompasses any e�ects that the photon subtrac-
tion might have on the state of the mechanical system. As
discussed before, the idea behind our proposal is that the
correlations (not necessarily of a quantum nature) shared
by the �eld and the mechanical mode are su�cient for
the latter to experience the e�ects of the de-Gaussi�cation
induced by the photon subtraction. In what follows, we
show that this is indeed the case.

In order to determine the features of ϱM, we address
its Wigner function

W(δr , δi)=
1
π2

∫
Ξ(γ)eγ

*δ−γδ*d2γ (δ=δr+iδi), (14)

which is calculated using the characteristic function
Ξ(µ)=tr[D̂M(µ)ϱM] evaluated at the phase-space point µ ∈
C. A lengthy yet straightforward calculation leads to

W(δr , δi) = 2πA
(detM)5/2(c22+c11−2)

e
−2

(
δ2
i

m11
+ δ2

r
m22

)
(15)

with

A = m2
22[(c11 + c22−2)m2

11 + (4δ2
i − m11)(r2

11 + r2
12)]

+ m2
11(4δ2

r − m22)(r2
22 + r2

21)
− 8m11m22(r11r21 + r12r22)δrδi .

(16)

The polynomial dependence of A on δ entails the non-
Gaussian nature of the reduced mechanical state. We now
seek evidences of non-classicality. A rather stringent cri-
terion for deviations from classicality is the negativity of
the Wigner function associated with a given state. This
embodies the failure to interpret it as a classical proba-
bility distribution, which is instead possible whenever the
Wigner function is positive [20]. Building on the so-called
Hudson theorem [21], which proves that only multi-mode
coherent and squeezed-vacuum states have non-negative
Wigner functions, measures of non-classicality based on
the negativity of the Wigner function have been formu-
lated [20]. More recently, operational criteria for inferring

-0.04

-0.03

-0.02

-0.01

Fig. 2. Logarithmic negativity of the opto-mechanical state plotted
against the interaction time t for ∆/ωm = 0.05, T=0.4K and m =
5 × 10−12Kg. We have taken a cavity of length L = 1mm, cavity
frequency ωc/2π ' 4 × 1014Hz and �nesse 104, pumped with
20mW. The mechanical damping rate is as small as∼ 10Hz.

quantumness through the negative regions in the Wigner
function have been proposed [22]. By inspection, we �nd
that Eq. (15) can indeed be non-positive and achieves its
most negative value for δr,i = 0. Assuming that none of
the variances of themechanical oscillator and the �eld are
squeezed below the vacuum limit we haveW(0, 0)<0 for

m11
m22

> (c11 + c22 − 2)m11−(r2
11 + r2

12)
(r2

22 + r2
21)

, (17)

which is quite an interesting �nding. First it shows that the
non-classicality of the mechanical mode depends on its
initial degree of squeezing given by the ratiom11/m22 [23].
Second, we remark the “plug&play" nature of Eq. (17):
by determining the matrix VMC of the two modes under
scrutiny, which can be performed as described in [14, 24,
25], one can determine the amplitude of the negative peak
ofW(δr , δi)without the necessity of reconstructing the full
Wigner function. Clearly, this is a major practical advan-
tage that allows us to bypass the demanding needs for
a tomographically complete set of data. In addition, as
the entries of a covariance matrix are determined with a
rather good precision [26], we expect a covariance matrix-
based criterion for non-classicality to be less prone to arti-
facts (such as large error bars) that would mask negativity
and thus erroneouslymake theWigner function consistent
with a classical probability distribution (the reconstruc-
tion of VMC can be performed as described in [14, 24, 25]
via all-optical procedures enjoying a rather good precision
and accuracy [26]). Finally, Eq. (17) is handy to gauge the
quality of the parameters of a given experiment with re-
spect to the achievement of a non-classical mechanical
state. Fig. 4 shows thatW(δr , δi) can take signi�cantly neg-
ative values for proper choices of the parameters and quite
a large temperature.

Fig. 3. Sketch of the thought experiment. A pulsed laser �eld (with
a set polarization) enters a cavity and drives the oscillations of an
end mirror embodying a mechanical mode. Steady-state of the opto-
mechanical system is reached on a timescale of a few multiples of
ωm. The �eld is then photon-subtracted by a high-transmittivity
beam splitter (BS) and a Geiger-like photo-detector. A click at the
latter triggers a shutter (such as an electrically driven half wave-
plate) that blocks the pumping process. Also shown are the sym-
bols for a polarizing beam splitter (PBS) and a quarter wave-plate
(QWP) used to direct the �eld to the cavity or the photo-subtraction
unit.
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Depending on the parameters being used, optome-
chanical entanglement can persist up to temperatures of
about 20 K [14, 24]. We now wonder whether the condi-
tional state-engineering scheme proposed here enjoys this
very same feature. First, we notice that by subtracting a
single photon from mode 2 of a two-mode squeezed vac-
uum |ζ 〉 = (cosh ζ )−1∑∞

n=0 λ
n |n, n〉12 with squeezing fac-

tor ζ <1 and λ= tanh ζ , the Wigner function of the unmea-
suredmode 1 is basically identical toW(δr , δi) in the limit
of small temperature (T∼1 mK). This is quantitatively il-
lustrated in Fig. 5 (a) and (b), where theWigner function of
mode1 for ζ=0.4 is shown tobe indistinguishable from the
analogous function of mode m after the application of our
scheme. Such a similarity is understood as follows: The
high-quality mechanical mode, large-�nesse cavity and
low-temperature limit used here make a unitary approach
to the time evolution of the optomechanical system quite
appropriate. The dynamics, in such case, involve two-
mode squeezing of modes M and C [27], which explains
the similarity seen in Fig. 5 and discussed here. Such an
analogy is illuminating as it is straightforward to see that
the e�ects experienced by mode 1 in the (unnormalized)
unilaterally photon subtracted state â2 |ζ 〉 〈ζ |12 â

†
2 can be

interpreted as the addition of a photon, which is the ori-
gin for non-classicality of the resulting state (as signaled
by the negativity of its Wigner function). When T is in-
creased, however, the rotational invariance of W(δr , δi)
is progressively lost. As a result of the loss of coherence,
W(δr , δi) splits into two localized peaks, which become
progressively Gaussian-shaped as the temperature grows
and represent the thermal average of displaced states in
the phase-space. This e�ect is clearly illustrated in Fig. 6,
where a snap-shot of the phase-space dynamics against T
is shown. As anticipated above, for the parameters chosen
in our analysis, quite large negative values are observed in
W(δr , δi) for T�1 K and theWigner function remains neg-

Fig. 4.Wigner function of the mechanical mode for ωm/2π =
10 MHz, ∆/ωm = 0.05, T=0.4 K and m = 5 × 10−12 Kg. We have
taken a cavity 1 mm long, frequency ωc/2π ' 4 × 1014 Hz and �-
nesse 104, pumped with 20 mW. In line with current experimental
values, the mechanical damping rate is as small as∼ 10 Hz.

(a) (b)

Fig. 5. (a) Conditional Wigner function of the mechanical mode after
photon subtraction for T = 4×10−3 K and m = 5×10−12 Kg. (b) Same
as panel (a) but assuming that modes M and C are initially in a pure
two-mode squeezed vacuum state of squeezing factor ζ = 0.4.

ative up to 1 K [see Fig. 7]. In Sec. 1.3 we will estimate the
life-time of the enforced non-classicality.

1.1 Thought experimental scheme

Our approach so far was to consider photon subtraction at
a formal level. Although, as we will demonstrate shortly,
the accuracy of the quantitative results achieved in this
way is excellent we now go beyond such an abstract de-
scription and assess a close-to-reality version of our pro-
posal. In a real experiment, the non-Hermitian opera-
tion of subtracting a photon is realized by superimpos-
ing, at a high transmittivity beam splitter (BS), mode C to
an ancilla ℵ prepared in the vacuum state [12, 28]. This
makes ours a three-body system characterized by the vari-
ance matrix VMCℵ = (11m⊕BTCℵ)(VMC⊕11ℵ)(11⊕BCℵ), where
we have introduced the symplectic BS transformation
BCℵ=11⊗(τ11ℵ)− iσy⊗(r11ℵ). Here τ is the transmittance of the
BS (r2+τ2=1). The characteristic function of such corre-
lated three-mode state is χ̃W (η, λ, ξ ) = exp[−q̃VMCℵq̃T /2],
where q̃=(ηr , ηi , λr , λi , ξr , ξi) is the vector of phase-space
variables of the threemodes and ξ=ξr+iξi. The correspond-

Fig. 6. Snap-shot of the phase-space dynamics of the Wigner func-
tion of the mechanical mode for increasing values of the tempera-
ture. We have taken T = 0.1, 0.2, 0.3, 0.4 K in going from left to
right, top to bottom panel. Other parameters as in Fig. 4.
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ing density matrix is thus given by

ϱ̃ = 1
π3

∫
χ̃W (η, λ, ξ )D̂†M(η)D̂†C(λ)D̂†ℵ(ξ )d2ηd2ξd2λ. (18)

We post-select the event where a single click is obtained
at a photo-resolving detector measuring the state of mode
ℵ, thus projecting its state onto |1〉ℵ. This gives the condi-
tional state

ϱ̃M = Ñ

π2

∫
χ̃W (η, 0, ξ )D̂†M(η)(1 − |ξ |2)e−

1
2 |ξ|

2
d2η d2ξ (19)

with Ñ the normalization factor and where the formula
ℵ〈1| D̂†ℵ(ξ ) |1〉ℵ =e−|ξ|

2/2(1−|ξ |2) has been used [19]. The
calculation of the Wigner function W̃(δr , δi) of the me-
chanical mode then proceeds along the lines sketched
above. The resulting analytic expression is however very
involved and can only be managed numerically. A thor-
ough analysis shows that already at τ2=0.8, W̃(δr , δi) re-
produces very accurately the behaviour of W(δr , δi). For
instance, at the value of ∆ used to produce the �gures
in this paper, we get |W̃(0, 0)−W(0, 0)|'10−8. Clearly, the
quality of the agreement depends crucially on the BS
transmittivity. It is enough to take τ∼0.9 to get full agree-
ment between W̃(δr , δi) and its formal counterpart over
the range ∆ ∈ [0, 0.1]ωm, where non-classicality is ob-
served.

1.2 Role of imperfections

For the sake of a practical implementation, it is important
to assess the role that imperfections play in the perfor-
mance of our scheme. The most relevant one for our tasks
is the inability of discriminating the number of photons
impinging on the detector used to subtract a single pho-
ton from f . We thus consider a �nite-e�ciency Geiger-like
detector modelled by the positive operator valued mea-
surement {Π̂nc

ℵ , 11ℵ−Π̂nc
ℵ } with Π̂nc

ℵ =
∑∞

j=0(1 − ϵ)j|j〉〈j|ℵ
the projection operator accounting for “no-click” at the

-0.1

-0.3

-0.5

0.5 1.0 1.5 2.0

Fig. 7. Negativity ofW(0, 0) against temperature for ∆/ωm = 0.05.
Other parameters as in Fig. 4.

detector. Due to the �nite e�ciency ϵ ∈ [0, 1], a pho-
tonic state with j photons has a probability (1−ϵ)j to be
missed. It is straightforward to see that the Wigner func-
tion corresponding to the state of modeM is then given by
W(δr , δi)=π−2F[Ξ(µ, ϵ)] with

Ξ(µ, ϵ) ∝ χ̃(µ, 0, 0) −
∞∑
j=0

(1−ϵ)j
π

×
∫
χ̃(µ, 0, ξ )e−

|ξ|2
2 Lj(|ξ |2)d2ξ

(20)

and Lj(|ξ |2) the Laguerre polynomial of order j. By invert-
ing the order of sum and integration and using the gener-
ating function of Laguerre polynomials [29], we have

∞∑
j=0

(1−ϵ)jLj(|ξ |2)= e
− 2−ϵ

2ϵ |ξ|
2

ϵ , (21)

so that Ξ(µ, ϵ) ∝ χ̃(µ, 0, 0) − Φ(µ, ϵ) with

Φ(µ, ϵ) = − 1
πϵ

∫
χ̃(µ, 0, ξ )e−

2−ϵ
2ϵ |ξ|

2
d2ξ . (22)

The e�ects of detection ine�ciency are thus quanti�ed by
considering that Φ(µ, ϵ) is the only term that depends on
ϵ in Ξ(µ, ϵ). Therefore, |Φ(µ, 1)−Φ(µ, ϵ)| provides a quan-
titative estimate of the di�erences due to a non-ideal de-
tector. Numerically, for ϵ ≥ 0.7 we have found negligible
values of this quantity (∼10−2), almost uniformly with re-
spect to τ: Fig. 7 is reproduced without noticeable di�er-
ences. Moreover, the performance of our scheme is not af-
fected by even smaller detection e�ciency. This is in line
with the analysis conducted on photon subtraction pro-
cesses: detection ine�ciencies only lower the probability
of success of the scheme without a�ecting the �delity of
the process itself [12, 28]. Likewise, the dark count rate of
photo-detectors can generally be neglected in photon sub-
traction experiments [12, 13].

1.3 Robustness of non-classicality

Let us suppose now that a non-classical state of the me-
chanical mode has been engineered by means of the pro-
tocol put forward in this Section. How long would the
enforced mechanical non-classicality last? A quantitative
answer to this question comes from considering that, as
soon as the a photon is revealed at the photo-detector
shown in Fig. 3, the pumping of the cavity should be
terminated. This means that, from that time on, the me-
chanical mode would evolve freely yet being subjected to
phononic damping at non-zero temperature. This, in gen-
eral,would be describedby anonMarkoviandynamics ba-
sically corresponding to quantum Brownian motion [14].
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However, we consider the experimentally relevant condi-
tion of ωm � γm that makes the Brownian damping equiv-
alent to a Markovian dissipation process such as the one
experimenced by a lossy opticalmode [14, 24]. In this case,
the density matrix ρm of the mechanical mode evolves un-
der the in�uences of a dissipative thermal bath according
to the master equation (in the interaction picture)

∂tρm = γ(n + 1)(2m̂ρmm̂† − m̂†m̂ρm − ρmm̂†m̂)
+ γn(2m̂†ρmm̂ − m̂m̂†ρm − ρmm̂m̂†).

(23)

This is written as a Fokker-Planck equation for the Wigner
function W(δr , δi , t) of the mechanical mode at time t of
the evolution as

∂tW(σr , σi , t) = γ
2

[
∂σσ + ∂σ*σ* + N∂2

σσ*
]
W(σr , σi , t)

(24)
with σ ∈ C a phase-space variable (σ* is its complex con-
jugate) and N = 2n+ 1. Eq. (24) is solved straightforwardly
by convolutingW(σr , σi , 0), i.e. theWigner function of the
prepared non-classical state, with the Wigner function of
a thermal state as

W(δr , δi , t) = 2
πτN

∫
d2σ W(σr , σi , 0)e−2 |σ−δe−γt|2

Nτ (25)

where τ = 1 − exp[−2γt]. The maximum negative am-
plitude of the Wigner function is achieved at δ = 0 and
one can study its behaviour against the evolution time t.
Typical results are shown in Fig. 8, where we address the
case of two di�erent values of T. Clearly, as the tempera-
ture rises, the time-window within which non-classicality
is preserved shrinks, in line with intuition. However, given
the small damping rates currently achievable through ac-
curate micro and nano- fabrication processes of the me-
chanical modes under scrutiny, the width t* of such win-
dow remains quite large with γt* = 0.08 → t* = 1.3 ms
in the worst case scenario shown in Fig. 8 [cfr. red squared
points].

1.4 Hybridisation for photo-subtraction

Although we have used the language of linear optics to
describe the working principles of the scheme presented
here, the required intracavity photo-subtraction process
can be implemented using alternative experimental tech-
niques. For instance, when a suitable evolution time is
chosen, a hybrid architecture incorporating an atomic
medium (consisting of either a single particle or a multi-
atom one) that interacts resonantly with the cavity �eld
achieves exactly the e�ect of subtracting excitations from
the �eld. Indeed, let us consider the Hamiltonian coupling

0.10 0.20 0.30

-0.20

-0.10

0.00

Fig. 8. Negativity ofW(0, 0) against the dimensionless time γt
for ∆/ωm = 0.1 and m = ×10−12 Kg. We have taken a cavity of
length 1 mm, cavity frequency ωc/2π ' 4×1014 Hz and �nesse 104,
pumped with 20 mW. We have considered T = 0.04 K (red squared
points) and T = 4 mK (black circle points).

the �eld to the e�ective dipole of a general spin-like sys-
tem, such as a two-level atom or a collection of them (col-
lectively coupled to the cavity �eld). Such resonant inter-
action can be generically written as

ĤC,spin = ~G(âΣ̂+
spin + h.c.) (26)

with G the Rabi frequency of the interaction and Σ̂+
spin the

raising operator of the spin-like system. A straightforward
calculation shows that the operation that is e�ectively im-
plemented on the cavity �eld when the spin (prepared in
its fundamental state) is found, at time t, in its excited one
is proportional to sin(G

√
â†ât)/

√
â†ââ. By choosing t such

that sin(G
√
â†ât)/

√
â†â ' 1 for any number of photons

in the cavity (a condition satis�ed for very small values
of the Rabi frequency), this realises the required photo-
subtraction process. Notice that the request of weak cou-
pling simply a�ects the probability to e�ectively subtract
a photon and not the quality of the resulting state.

This simple example illustrates the bene�ts of imple-
menting a reliable tripartite con�guration incorporating
an atomic subsystem into the optomechanical device ad-
dressed here. Indeed, the possibilities o�ered by such a
con�guration go well beyond the speci�c case addressed
here, as it will be argued in the remainder of this review.

On the other hand, many are the questions opened by
the demonstrated possibility to engineer the state of a me-
chanical system by conditioning optical modes through
photo subtraction stages. A particularly interesting one
would be the steering of the mechanical mode towards a
desired target state through the sequential application of
photo subtraction and addition processes.
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Fig. 9. A laser is split by an unbalanced beam splitter. The transmit-
ted part is phase-modulated and enters the cavity coupled to a BEC.
The (weak) reflected part of the pump laser probes the BEC. The sig-
nals from the cavity and the BEC go to a detection stage consisting
of a switch (selecting the signal to analyze), a photodiode and a
spectrum analyzer (SA).

2 Hybrid cavity-BEC optomechanics
We nowmove to the addressing of an explicitly hybridised
system of much theoretical and experimental appeal. We
consider the placement of a Bose-Einstein condendensate
(BEC) into an optomechanical cavity as a paradigm for a
device combining the handiness of ultra-cold atomic sys-
tems to the potential for mesoscopic non-classicality of
optomechanical ones. In this Section, we introduce the
model and study the phenomenology of mutual back-
action dynamics between macroscopic degrees of free-
dom embodied by physical systems of di�erent nature. We
show a non-trivial intertwined dynamics between collec-
tive atomic modes, coupled to the cavity �eld, and the me-
chanical one, which experiences the radiation-pressure
force.

We start by �rst focusing on the atom-induced back-
action e�ects over the mechanical device. In particular,
our aim is to cool the vibrating mechanical mode, show-
ing that the interaction with the atomic degrees of free-
dom (albeit indirect) modi�es the cooling capabilities of
an optomechanical systemquite considerablywith respect
to the performances predicted and demonstrated experi-
mentally so far [6]. In order to get a picture of the physical
situationat hand, let us address thedetails of theproposed
thought experiment.

As an addition to the general optomechanical setting
illustrated in Sec. 1, we consider a BEC con�ned in a large-
volume trap within the cavity [30, 31] [cfr. Fig. 9]. Alterna-
tively, the BEC could be sitting in a 1D optical-lattice gen-
erated by a trapping mode sustained by a bimodal cav-
ity [32]. The atom-cavity interaction is insensitive to the de-
tails of the trapping and our study holds in both cases. In
the weakly interacting regime [33], the atomic �eld opera-
tor can be split into a classical part (the condensate wave
function) and a quantum one (the �uctuations) expressed

in terms of Bogoliubov modes. Recent experiments cou-
pling a BEC to an optical resonator [31] suggest that the
Bogoliubovmodes interacting signi�cantly with the cavity
�eld are thosewithmomentum ±2kc (kc is the cavity-mode
momentum) while the condensate can be considered to be
initially at zero temperature. As a result, the cavity �eld
excites superpositions of atomicmomentummodes giving
rise to a periodic density grating sensed by the cavity.

We write the Hamiltonian of the system made out of
the cavity �eld, the movable mirror and the BEC as

Ĥ =
∑

j=A,M,C

Ĥj + ĤAC + ĤMC (27)

where ĤM , ĤC and ĤMC have been introduced in Eq. (1)
and

ĤA = ~ω̃ĉ† ĉ (28)

describes the free energy of the atomic system, described
as a collective Bogoliubov mode with bosonic operators ĉ
(ĉ†) and frequency ω̃ and ĉ (ĉ†). The atoms-cavity interac-
tion reads

ĤAC = ~g2N0
2∆a

â†â + ~
√

2ζ Q̂â†â (29)

and thus contains two contributions: the �rst one, pro-
portional to the number of condensed atoms N0, comes
from the condensate only while the second is related to
the position-like operator Q̂=(ĉ + ĉ†)/

√
2 of the Bogoli-

ubov mode (its canonically conjugated operator will be
hereafter indicated as P̂ = i(ĉ†−ĉ)/

√
2). In Eq. (29), g is

the vacuum Rabi frequency for the dipole-like transition
connecting the atomic ground and excited states, ∆a is
the detuning of the atomic transition from the cavity fre-
quency and the coupling rate ζ∝

√
N0g2/∆a. A rigorous

calculation, which we sketch here, shows that ζ also de-
pends on the Bogoliubov mode-function and can be con-
veniently tuned. We work in conditions of far-o� resonant
coupling between the atoms in the condensate and the
�eld, i.e. ∆a � {g, Γa} (with Γa the atomic spontaneous-
decay rate), so that we can adiabatically eliminate the ex-
cited state in the dipolar transition. The resulting cavity-
condensate interaction Hamiltonian is then [34]

ĤAC = ~U0â†â
∫
dx cos2(kcx)ψ̂†(x)ψ̂(x) (30)

with U0 = g2/∆a and ψ̂(x) the atomic �eld operator, ful-
�lling bosonic commutation relations. We have restricted
thedynamics of the atomsonly to thedirection x parallel to
the cavity axis by assuming tight con�nement of the atom-
ics cloud in the transverse directions.We use a Bogoliubov
expansion of ψ̂(x) [33]

ψ̂(x) =
√
N0ψ̂0(x) +

∑
k>0,σ=±

[
ukσ(x)ĉkσ − v*kσ(x)ĉ†kσ

]
(31)
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where ψ̂0(x) is the condensate wavefunction that satis-
�es the Gross-Pitaevskii equation. By assuming a homo-
geneous system (we have assumed that the condensate
wavefunction is not a�ected by the coupling to the cavity
�eld)we canwriteψ0(x) = 1/

√
V.We expand the quantum

part of the �eld operator in real Bogoliubov modes with
de�nite parity

uk+(x) = αk

√
2
V cos(kx), uk−(x) = αk

√
2
V sin(kx)

vk+(x) = βk

√
2
V cos(kx), vk−(x) = βk

√
2
V sin(kx)

(32)

and

µk =

√
1
2

(
ϵk + n0gB

Ek
+ sign(µ)

)
(µ = α, β) (33)

where n0 = N0/V is the condensate density, gB is the e�ec-
tive unidimensional atom-atom interaction and sign(α) =
−sign(β) = 1. In these expressions, ϵk = ~2k2/2m and Ek is
the Bogoliubov dispersion relation Ek =

√
2ϵkn0gB + ϵ2

k .
Therefore, the atom-cavity interaction term reads

ĤAC
~U0

= â†â
{
N0
2 +
√

2N0
V

∑
k

[αk ĉk+

∫
dx cos2(kcx) cos(kx)

+ αk ĉk−
∫
dx cos2(kcx) sin(kx)

− βk ĉ†k+

∫
dx cos2(kcx) cos(kx)

−βk ĉ†k−
∫
dx cos2(kcx) sin(kx) + h.c.]

}
,

(34)
where we have discarded the negligible quadratic terms in
the Bogoliubov expansion. Using the orthogonality of the
sinusoidal functions, only the even mode ĉ ≡ ĉ2kc+ with
momentum 2kc survives, so that we �nally get

ĤAC = ~U0â†â
{
N0
2 +

√
2N0
4 (α2kc − β2kc )(ĉ + ĉ†)

}
. (35)

The coupling constant ζ between the cavity and the Bo-
goliubov mode depends implicitly on (gB and is given by

ζ = U0

√
2N0
4 (α2kc − β2kc ). (36)

Whereas the �rst term in Eq. (29) embodies a cavity-
frequency pull, the second is formally analogous to ĤMC
and shows that, under the above working conditions, the
BEC dynamics mimics that of a mechanical mode under-
going radiation-pressure e�ects. A similar result, for a BEC
coupled to a static cavity, has been found in Ref. [31]. Our
approach can be extended to include higher-order mo-
mentummodes in the expansion above.

The dynamical equations of the coupled three-mode
system can then be cast into a compact form much along
the lines of the approach sketched for a linearised purely
optomechanical system in Sec. 1. A Langevin-like equation
for the vector of �uctuations of the system’s quadrature op-
erators ϕ̂T

MCA = (δx̂ δŷ δq̂ δp̂ δQ̂ δP̂) can be easily cast into

∂tϕ̂MCA = KMCAϕ̂MCA + N̂MCA , (37)

where we have introduced the noise vector N̂T =
(
√
κ(δâ†in+âin) i

√
κδ(â†in−âin) 0 ξ̂ 0 0) and the dynamical

coupling matrix

KMCA =



−κ ∆ 0 0 0 0
−∆ −κ 2χαs 0 −2

√
2ζαs 0

0 0 0 1
m 0 0

~χαs 0 −mω2
m −γ 0 0

0 0 0 0 0 ω̃
−
√

2ζαs 0 0 0 −ω̃ 0


.

(38)
The evolution of the system depends on a few

crucial parameters, including the total detuning
∆ = ωC−ωL−χqs+

√
2ζQs+g2N0/2∆a between the cavity

and the pump laser. This consists of the steady pull-
o� term in Eq. (29) as well as both the opto-mechanical
contributions proportional to the displaced equilibrium
positions of the mechanical and Bogoliubov modes.
These are respectively given by the stationary values
qs = ~χα2

s /mω2
m and Qs= −

√
2ζα2

s /ω̃, which are in turn
determined by the mean intra-cavity �eld amplitude
αs = η/

√
∆2 + κ2. The interlaced nature of such stationary

parameters (notice the dependence of αs on the detuning)
is at the origin of bistability and chaotic e�ects [31, 32, 35].

Di�erently from Sec. 1, here it is actually crucial to
go through the details of the noise-related part of the dy-
namics. As done before, we have introduced δâin and δâ†in
as zero-average [〈ain(t)〉 = 〈a†in(t)〉 = 0], delta-correlated
[〈ain(t)a†in(t′)〉 = δ(t−t′)] operators describing white noise
entering the cavity from the leaky mirror. Dissipation of
the mechanical mirror energy is, on the other hand, asso-
ciated with the decay rate γ and the corresponding zero-
mean Langevin-force operator ξ̂ (t) having non-Markovian
correlations (βB = ~/2kBT) [36]

〈ξ̂ (t)ξ̂ (t′)〉 = (~γm/2π)
∫
ωe−iω(t−t′)[coth(βBω)+1]dω.

(39)
Although the non-Markovianity of the mechanical Brow-
nian motion could be retained in our approach, for large
mechanical quality factors (γ→0), a condition that is met
in current experiments onmicro-mechanical systems [37],
one can take
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Fig. 10. (a)-(d): The e�ective frequency ωe� /ωm is plotted against the detuning ∆/κ ∈ [0, 5] for the parameters used in the letter. Panel (a)
corresponds to ω ' 0 and well represents the trend of this quantity up to ω/ωm ∼ 0.6. Panels (b)-(d) are for ω/ωm = 0.7, 0.8 and 0.9,
respectively. The (dashed) red curve is for a coupled BEC with ω̃ ' ωm and ζ = 100Hz. The (solid) blue line is for an empty optomechanical
cavity. (e)-(h): The e�ective damping rate γe� /ωm is plotted against the detuning ∆/κ ∈ [0, 1] for the parameters used in the letter. Panel
(e) corresponds to ω ' 0 and well represents the trend up ω/ωm ∼ 0.6. Panels (f)-(h) show are for ω/ωm = 0.7, 0.8 and 0.9, respectively.
The (dashed) red curve is for a coupled BEC with ω̃ ' ωm and ζ = 100Hz. The (solid) blue line is for an empty optomechanical cavity.

〈ξ̂ (t)ξ̂ (t′)〉'[~γm/βB+i∂t]δ(t−t′) (40)

as in Ref. [36]. As our analysis relies on symmetrized two-time correlators, the antisymmetric part in the above expres-
sion, proportional to ∂tδ(t−t′), is ine�ective, thusmaking our description fullyMarkovian. Herewe show that themodel
above results in an interesting back-action e�ect where the state of the mechanical mode is strongly intertwined with
the BEC. The physical properties of the mirror are altered by the cavity-BEC coupling. Evidences of such interaction,
strong enough to inhibit the cooling capabilities of the radiation-pressure mechanism under scrutiny, are found in the
noise properties of the mechanical mode.

We start considering the modi�cation in the mirror dynamics due to the coupling to the cavity and indirectly to the
BEC. The Langevin equations are solved in the frequency domain, where we should ensure stability of the solutions.
This implies negativity of the real part of the eigenvalues ofK. Numerically, we have found that stability is given for ∆>0
and weak coupling of the mirror and the BEC to the cavity, i.e. for {χ

√
~/mωm , ζ}�κ, which are conditions ful�lled

throughout this section. We �nd the mirror displacement

δq̂(ω) = [AM(ω)δŷin(ω) + BM(ω)δx̂in(ω) + CM(ω)ξ̂ (ω)], (41)

with
AM(ω) = B(ω)∆

κ − iω = −~χαs
√

2κ∆
dM(ω) ,

CM(ω) = − (ω2−ω̃2)[(κ−iω)2+∆2]+4ω̃∆α2
s ζ 2

dM(ω)

(42)

and dM(ω) that is related to the e�ective susceptibility function of the mechanical mode.
Let us now get into the detailed procedure for the derivation of the mechanical and atomic density noise spectra

(DNSs) and the full expressions for the associated susceptibility functions. For a generic operator Ô(ω) in the frequency
domain, the DNS is de�ned as

SO(ω) = 1
4π

∫
dΩe−i(ω+Ω)t〈Ô(ω)Ô(Ω)+Ô(Ω)Ô(ω)〉. (43)
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By transforming theLangevin equations and solving them in the frequencydomain, one canuse the correlations [38]

〈ξ̂(ω)ξ̂(Ω)〉 = 2π~γmω[1 + coth(βKω)]δ(ω + Ω),
〈δx̂in(ω)δx̂in(Ω)〉 = 〈δŷin(ω)δŷin(Ω)〉 = 2πδ(ω + Ω),
〈δx̂in(ω)δŷin(Ω)〉 = −〈δŷin(ω)δx̂in(Ω)〉 = 2πiδ(ω + Ω),

(44)

to write the DNS of the mechanical mode as

Sq(ω, ∆) =
∣∣∣∣φ(ω, ∆)
dM(ω)

∣∣∣∣2 [Srp(ω, ∆) + Sth(ω)] (45)

where Srp(ω, ∆) is the radiation-pressure contribution, modi�ed by the atomic coupling to the cavity �eld, Sth(ω, ∆) is
the thermal part of the DNS, proportional to (βBω)−1 while the ratio φ(ω)/dM(ω) is related, as we show here, to the
e�ective susceptibility of the mechanical mode. Explicitly

Srp(ω, ∆) = 2κ~2α2
s χ2(∆2 + κ2 + ω2)

∆4 + 2∆2(κ2 − ω2) + (κ2 + ω2)2 ,

Sth(ω) = ~γmω coth(βBω) ' ~γm/βB ,
dM(ω) = 2~∆α2

s χ2(ω2 − ω̃2) + m(ω2−ω2
m+ iγω)φ(ω, ∆)

(46)

with φ(ω, ∆) = 4∆α2
s ζ 2ω̃ + [∆2 + (κ − iω)2](ω2 − ω̃2). We call η(ω, ∆) = φ(ω, ∆)/dM(ω) the e�ective susceptibility func-

tion of the mechanical mode, which can thus be written as

η(ω, ∆) = −
[
m(ω2 − ω2

m + iγω) + 2~∆α2
s χ2(ω2 − ω̃2)
φ(ω, ∆)

]−1

. (47)

Our task here is to write η(ω, ∆) as the susceptibility of a �ctitious harmonic oscillator characterized by frequency ωe�
and a damping rate γe� , that is

ηe� (ω) = − 1
m(ω2 − ω2

e� + iγe�m)
. (48)

By equating real and imaginary parts of Eqs. (47) and (48), one easily gets the dependence of the e�ective frequency
and damping rate on ∆ and the opto-mechanical/atomic coupling strengths. These read

ωe� =
√
ω2
m − µr(ω, ∆), γe� = γ + µi(ω, ∆)/ω, (49)

where we have introduced

µr(ω, ∆) = 2~∆χ2α2
s (ω2 − ω̃2)[(∆2 + κ2 − ω2)(ω2 − ω̃2) + 4∆ω̃ζ 2α2

s ]
m{[∆4 + 2∆2(κ2 − ω2) + (κ2 + ω2)2](ω2 − ω̃2)2 + 8ω̃∆ζ 2α2

s [(∆2 + κ2 − ω2)(ω2 − ω̃2) + 2ω̃∆ζ 2α2
s ]}

,

µi(ω, ∆) = 4~κ∆χ2α2
s (ω2 − ω̃2)2

m{[∆4 + 2∆2(κ2 − ω2) + (κ2 + ω2)2](ω2 − ω̃2)2 + 8ω̃∆ζ 2α2
s [(∆2 + κ2 − ω2)(ω2 − ω̃2) + 2ω̃∆ζ 2α2

s ]}
.

(50)

In Figs. 10 we show the behaviour of the e�ective detuning-dependent mechanical frequency and damping rate.
A it can be appreciated from Eqs. (49) and (50), such quantities also depend on the value of the frequency ω at which
we probe the response of the system. Under the operating conditions used in our work, the coupling with the atomic
subsystem determines an enhancement of the optical spring e�ect undergone by the mechanical mode under radiation
pressure coupling. In the region of the frequency space associated with ω ≤ ωm, where the red-shift of the mechanical
frequency is expected [38], the e�ective frequency at ζ ≠ 0 is smaller than the value corresponding to an empty cavity.
On the contrary, the e�ective damping rate is much larger than for an empty cavity. This analysis provides detailed in-
formation on theway the system respond to the set of mode couplings entailed by the physical con�guration that we are
exploring and embodies a useful characterisation of the modi�cation undergone by the key features of the mechanical
mode.

We now compute the density noise spectrum of δq̂(ω). Using the correlation properties of the input and Brownian
noise operators, after a little algebra one gets

Sq(ω) =
∑

J=A,B

|JM(ω)|2 + ~γm
[
1+coth(βBω)

]
|CM(ω)|2. (51)
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Some interesting features emerge from the study of
Sq(ω). In Fig. 11 we compare the case of an empty opto-
mechanical cavity [panel (a)] and one where a weak
coupling with the atomic Bogoliubov mode of frequency
ω̃ = ωm is included [panel (b)]. For an empty cavity, the
mechanical-mode spectrum is obviously identical to what
has been found in Ref. [38] (the use of that case as a mile-
stone in our quantitative study motivates the choice of
the parameters used throughout this work). Both the op-
tical spring e�ect in a detuned optical cavity and a cool-
ing/heating mechanism are evident: height, width and
peak-frequency of Sq(ω) change with the detuning ∆. At
∆ ' κ/2 optimal cooling is achieved with a considerable
shrink in the height of the spectrum. However, as soon as
the Bogoliubov modes enter the dynamics, major modi�-
cations appear. The optical spring e�ect is magni�ed (the
red-shift of the peak frequency of Sq(ω) is larger than at
ζ = 0) and a secondary structure appears in the spectrum,
una�ected by any change of ∆. Such a structure is a sec-
ond Lorentzian peak centered in ω'ωm and is a signature
of the back-action induced by the atoms on the the mir-
ror, an e�ect that comes from a three-mode coupling and,
as discussed later, is determined by ω̃ and ζ . In fact, by
studying the dependence of Sq(ω) on the frequency of the
Bogoliubov mode, we see that the secondary peak identi-
�ed above is centered at ω̃. For ζ � χ

√
~/(mωm), i.e. for

weak back-action from the atomic mode onto the mechan-
ical one, the signature of the former in the spectrum of the
latter is small. A quantitative assessment reveals, in fact,
that it only consists of a tiny structure subjected to negligi-
ble detuning-induced changes. The picture changes for ω̃
close to the mechanical frequency. In this case, as seen in
Fig. 11 (b), the in�uence of the atomic medium is consid-
erable and present at any value of ∆. While the mechan-
ical mode experiences enhanced optical spring e�ect (as

(a) (b)

Fig. 11. (a) DNS Sq(ω, ∆) for an empty cavity against ∆ and ω for
L = 25mm, m = 15ng, ωm/2π = 275KHz, γ = ωm/Q with Q = 105

and T = 300K and κ ' 5MHz. The pumping light has wavelength
1064nm and input power R = 4mW. The DNS is rescaled to its value
at ω = ωm and ∆ = 0. (b)We include the e�ects of the atomic
coupling by taking ω̃ = ωm and ζ ' 0.7χ

√
~/(mωm).

easily seen by looking at the e�ective susceptibility of the
mechanical mode), the secondary structure persists even
at ∆∼κ/2, the working point that for our choice of param-
eters optimizes the mechanical cooling at empty cavity.
However, as demonstrated later on, here the strong optical
spring e�ect is not accompanied by an e�ective mechani-
cal cooling.

A better understanding is provided by studying
Sq(ω, ∆) against the atomic opto-mechanical rate ζ [cfr.
Fig. 12 (a)]. At the optimal empty-cavity detuning and for
ω̃ ' ωm, both the e�ects highlighted above are clearly
seen: the contribution of the secondary structure centered
at ω̃ growswith ζ due to the increasing atomic back-action
while a large red-shift and shrinking of the mechanical-
mode contribution to the DNS shows the enhanced spring
e�ect. An intuitive explanation for all this comes from tak-
ing a normal-mode description, where the diagonalization
of Ĥ passes through the introduction of new modes that
are linear combinations of themechanical andBogoliubov
one. The weight of the latter increases with ζ , thus deter-
mining a strong in�uence of the atomic part of the system
over the noise properties of the mechanical mode.

The consequences of the atomic back-action are not
restricted to the e�ects highlighted above. Strikingly, the
coupling between the atomic medium and the cavity �eld
acts as a switch for the cooling experiencedby themechan-
ical mode in an empty cavity [cfr. Fig. 12 (b)]. That is, the
coupling to the collective oscillations of the atomic den-
sity is crucial in determining the number of thermal exci-
tations in the state of themechanical mode, regulating the
mean energy of the cavity end-mirror. A way to clearly see
it is to consider the e�ective temperature Te� = 〈U〉/kB,
where

〈U〉 = 1
2mω

2
m〈δq̂2〉 + 〈δp̂

2〉
2m (52)

is the mean energy of the mechanical mode. 〈U〉 is ex-
perimentally easily determined by measuring just the
area underneath Sq(ω, ∆), as acquired by a spectrum ana-
lyzer. In fact, we have 〈δr̂2〉 =

∫
dωSr(ω, ∆) (r = q, p) with

Sp(ω, ∆) = m2ω2
mSq(ω, ∆). Such temperature-regulating

mechanism is explained in terms of a simple thermo-
dynamic argument. The exchange of excitations behind
passive mechanical cooling [38, 39] occurs at the optical
sideband centered at ωm. When the frequency of the Bo-
goliubov mode does not match this sideband, mirror and
cavity �eld interact with only minimum disturbance from
the BEC. Thus, mechanical cooling occurs as in an empty
cavity: even for relatively large values of ζ the cooling ca-
pabilities of the detuned opto-mechanical process are, for
all practical purposes, una�ected [see Fig. 12 (b)]. How-
ever, by tuning ω̃ on resonance with the relevant optical
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(a) (b) (c)

Fig. 12. (a) DNS of the mechanical mode against ω and ζ for ω̃'ωm and ∆ = κ/2. The structure centered at ωm and with amplitude growing
with ζ is due to atomic back-action. Inset: same plot for ω̃ = 0.8ωm. Similar but less important features are found away from the reso-
nance betwen mechanical and atomic mode. (b) Temperature of the mechanical mode against ∆/κ. Solid (Dashed) lines are for ω̃ = 0.1ωm
(ω̃'ωm). (c) SQ(ω, ∆) for ω̃'ωm and ζ = 50Hz.

sideband, we introduce a well-source mechanism for the
recycling of phonons extracted from themechanical mode
and transferred to the cavity �eld. TheBEC cannowabsorb
some excitations taken from the mirror by the �eld, thus
acting as a phononic well and release them into the �eld
at a frequency matched with ωm. The mirror can take the
excitations back, as in the presence of a phononic source:
thermodynamical equilibrium is established at a temper-
ature set by ζ . For strong atomic back-action, the mirror
does not experience any cooling [Fig. 12 (b)].

Analogously, one �nds the atomic DNS associated
with the position-like operator of the Bogoliubov mode,
which reads

δQ̂(ω) = AA(ω)δŷin(ω) + BA(ω)δx̂in(ω) + CA(ω)ξ̂ (ω) (53)

with

AA(ω) = ∆B(ω)
ω̃(κ−iω) = 2iαsζ∆

√
κω

dA
(iγω+ω2−ω2

m),

CA(ω) = −2
√

2iα2
s∆ζχωω̃
mdA

(54)

and dA being rather lengthy. The spectrum SQ(ω, ∆), which
is easily determined using the appropriate input-noise cor-
relation functions, is sketched in Fig. 13. Clearly, in light of
the formal equivalence of Eq. (29) with a radiation pres-
sure mechanism, by setting up the proper working point,
the BEC should undergo a cooling dynamics similar to the
one experienced by the mirror. The starting temperature
of the Bogoliubovmode depends on the values taken by ω̃
and ζ . At ζ = 0, regardless of the atomic-mode frequency,
its e�ective temperature is very low, as it should be. For a
set value of ζ , the temperature arises as ω̃ → ωm. The con-
ditions of our investigations are such that weak coupling
between the BEC and the cavity �eld are kept, in a way so
as to make the Bogoliubov expansion valid and rigorous.

The mutually-induced back-action at the center of our dis-
cussion is clearly visible in Figs. 12 (c) and 13, where fea-
tures similar to those present in the mechanical DNS ap-
pear. For χ = 0, the atomics DNS at ω̃ = ωm starts from
zero (at ζ = 0) and experiences red shifts and shrinking as
the e�ective opto-mechanical coupling rate grows. Having
switched o� the coupling between the mechanical mode
and the �eld, the spectrum is single-peaked. This is not
the case for χ ≠ 0 where a secondary structure appears,
similar to the one in themechanical DNS. The splitting be-
tween mechanical and atomic contributions to SQ(ω, κ/2)
grows with χ, a sign of the mechanically-enhanced e�ect
felt by the atomic mode.

3 Hybrid optomechanical
entanglement and its revelation

The faithful direct inferenceof quantumproperties of parts
of the device that we have addressed in the previous Sec-
tion is not a simple task to accomplish. This di�culty
indeed extends to any mescoscopic/macroscopic system
consisting of many interacting parts. Such di�culty pairs
up with the current lack of stringent and certi�able theo-
retical (and experimentally veri�able) criteria for non clas-
sicality to make the inference of quantumness at large
scales a daunting problem.

A possible way to get around the problem is the de-
sign of techniques to indirectly probing the system of in-
terest by coupling it to fully controllable detection de-
vices [24, 40]. It has spurred interest in designing tech-
niques for the extraction of information from noisy or only
partial data-sets gathered through observations of the de-
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(a) (b) (c)

Fig. 13. Panels (a) to (c): SQ(ω, κ/2) against ω and ζ for χ = kωC/2L (k = 0, 1, 2). The atomic and mechanical part of the spectrum are
clearly splitted.

tection system. The main problem in such an approach is
embodied by the set of extra assumptions that one has to
make on the mechanisms to test and the retrodictive na-
ture of the claims that can be made. In fact, one can a pos-
teriori interpret a data-set and infer the properties of a sys-
tem that is di�cult to address by post-processing the out-
comes of a few measurements. However, this requires as-
suming knowledge of the working principles of the e�ect
that we want to probe.

In this sense, it would be highly desirable to conceive
indirect detection strategies providing a faithful picture
of the property to test by, for instance, “copying” it onto
the detection device, which would then be subjected to a
direct estimate process. By focussing on the same hybrid
optomechanical device described in the previous Section,
comprising an atomic, mechanical and optical mode, we
propose a diagnostic tool for entanglement that operates
along the lines of such desiderata. We show that the en-
tanglement established between the mechanical and op-
tical modes by the means of radiation-pressure coupling
can indeed be “written" into the light-atom subsystem and
directly read from it bymeans of standard, experimentally
friendly homodyning. Our analysis goes further to reveal
that such a possibility arises from the non-trivial entangle-
ment sharing properties of the system at hand,which is in-
deed genuinely tripartite entangled. Very interestingly, we
�nd that while any bipartite entanglement is bound to dis-
appear at very low temperature, the multipartite content
persists longer against the operating conditions, as a result
of entanglementmonogamy relations. Our analytical char-
acterization considers all the relevant sources of detrimen-
tal e�ects in the system, is explicitly designed to be readily
implemented in the lab and provides a �rst step into the
assessment of multipartite entanglement in a macro-scale
quantum system of enormous experimental interest.

It is also worth stressing that, although our model
shares, at �rst sight, some similarities with the one con-
sidered in Ref. [41], it is distinctively di�erent. First, the

atomic media utilised in the two cases are di�erent,
with Ref. [41] considering the bosonised version of the
collective-spin operator of an atomic ensemble. Second,
the resulting coupling Hamiltonians are built from quite
distinct physical mechanisms. Third, the working condi-
tions to be used in the twomodels in order to achieve inter-
esting structures of shared quantum correlations are very
di�erent. We will comment on this latter point later.

In this Section we focus on the steady-state features
of the system and analyse the behaviour of stationary
entanglement. The main tool of our assessment is the
steady-state covariancematrixVMCA, which satis�es a Lya-
punov equation analogous to Eq. (9) with the replace-
ments VMC → VMCA, KMC → KMCA, and DMC → DMCA.
with

DMCA = diag[κ, κ, 0, γ(2n̄+1), 0, 0] (55)

and, as before, n themeanphononnumber of themechan-
ical state. We quantify the entanglement between any two
modes α and β (α, β = A,M, C) using the logarithmic neg-
ativity of the reduced states Eαβ = max[0, − ln 2ναβ] [16, 17]
with ναβ the smallest symplectic eigenvalue of the the ma-
trix V′

αβ = PVαβP and Vαβ the reduced covariance matrix
of modes α and β with elements (Vαβ)ij.

3.1 Bipartite entanglement

Here we analyze the stationary entanglement in the three
possible bipartitions of the system. Let us start with the
symmetric situation where Ω = ωm and where the cavity-
mirror coupling equals the cavity-atoms coupling (ζ = χ).
We always restrict ourselves to a stable regime for the lin-
ear Langevin system. In this case and for very low initial
temperature of the mechanical mode (we take T = 10µK),
we �nd that entanglement is generated in the stationary
state between the Bogoliubov mode and the cavity �eld
as well within the �eld-mechanical mode subsystem. Due
to the symmetric coupling EAC is very similar to EMC, as
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Fig. 14. (a) Logarithmic negativity EAC against ∆ (in units of ωm/2π = 3×106s−1) and the cavity-mirror coupling rate χ. (b) Same as in panel
(a) but for EMC. We have taken T = 10µK, mechanical quality factor 3×104, m = 50ng, R = 50mW, cavity �nesse F = 104 and ζ = χ. The
cavity decay rate is given by κ = πc/2LF where c is the speed of light and the cavity length is L = 1mm (c) Comparison between EAC (solid)
and EMC (dotted) against T for ∆ = 2ωm and χ = 100s−1. Other parameters are as in (a).

shown in Fig. 14 (a)-(b). This provides an interesting diag-
nostic tool: the inaccessibility of the mirror mode makes
the inference of the optomechanical entanglement a hard
task needing cleverly designed, although experimentally
challenging, indirect methods [14, 24]. However, in light of
the recent demonstration of controllability of intra-cavity
atomic systems [31, 42], we can think of inferring the pure
optomechanical entanglement simply by measuring the
more accessible correlations between the optical �eld and
the Bogoliubov mode. In the range of parameters consid-
ered here, the mirror-atoms entanglement EAM is always
zero. This is in contrast with the results in Ref. [41], where
the emergence of EAM is due to the use of an e�ective neg-
ative detuning that regulates the free evolution of the col-
lective atomic quadrature. In our case, such evolution is
ruled by the frequency Ω, which is always positive. There-
fore, the two models can access quite di�erent regions of
the parameter-space. In turn, this implies that, while our
system does not allow for hybrid atom-mirror entangle-
ment, Genes et al. in Ref. [41] did not achieve the symmet-
ric EMC = EAC situation revealed above.

We now study how EAC and EMC decay with T. The
results plotted in Fig. 14 (c) show that the two entangle-
ments are indistinguishable and therefore the BEC can still
be used as an entanglement probe. As expected the en-
tanglement decays when increasing the environment tem-
perature and disappears for T > 0.1mK. Higher critical
temperatures for the disappearance of entanglement are
found for larger cavity quality factors and more intense
pumps. We consider two di�erent regimes, where we re-
lax the symmetric conditions between the mirror and the
Bogoliubov mode. In the �rst situation, we take ωm = ω̃
and vary the coupling rates. In the second, we take sym-
metric couplings ζ = χ and change the frequencies. For
ωm = ω̃, EAC and EMC are strongly a�ected by the change
in ζ and χ. As shown in Fig. 15 (a), EAC grows continuously

for larger ζ while EMC decreases slightly. In this regime,
it is clear that small inaccuracies of the ratio ζ /χ do not
a�ect the mirror-cavity entanglement, therefore con�rm-
ing the role of the BEC as a minimal disturbance probe. A
more involved situationoccurswhenwekeepωm �xedand
change ω̃. We take T = 1µK, cavity �nesse F = 4×104 and
�nd a sharp peak at ω̃ = ωm where EMC = EAC, see [Fig. 15
(b)]. While EMC increases slowly with Ω/ωm (the Bogoli-
ubov mode goes out of resonance from the cavity and de-
couples from the rest of the system), EAC reaches its max-
imum at ω̃/ωm ≈ 2. These results show that by changing
the Bogoliubov frequency, for example varying the longi-
tudinal trapping frequency, the BEC acts as a switch for the
mirror-cavity entanglement, inhibiting or enhancing it.

3.2 Genuine multipartite entanglement

Wenow study the existence of genuinemultipartite entan-
glement in our system by looking at the logarithmic neg-
ativity in each one-vs-two-mode bipartition. According to
Ref. [43], if in a tripartite state all such bipartitions are in-
separable, genuine multipartite entanglement is shared.
For the systems at hand, we indeed �nd inseparability of
the bipartitions A|MC, M|AC and C|AM [see Fig. 15 (c)],
which strongly con�rms the presence of tripartite entan-
glement up to very high temperatures. Evidently,multipar-
tite entanglement persists up to T ∼ 0.01K,which ismuch
larger than the critical one for the disappearance of bipar-
tite entanglement (∼ 8 × 10−5K). Such a result spurs the
quantitative study of the genuine tripartite-entanglement
content of the overall state [44, 45]. For pure multipartite
states, this is based on monogamy inequalities valid for
the squared logarithmic negativity, which turns out to be
a proper entanglement monotone. For mixed states, the
convex-roof extension of such ameasure is required, albeit
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Fig. 15. (a) Logarithmic negativity EAC (solid) and EMC (dashed) against ζ /χ for ∆ = 2ωm. Other parameters are as in Fig. 14. (b)We show
EAC (line) and EMC (dashed) against ω̃/ωm. The inset shows the entanglement functions around ω̃ = ωm for T = 1µK and F = 4×104. (c)We
show Ei|jk (i, j, k = A,M, C) and the genuine tripartite entanglement Gtri against T for ω̃ = ωm and χ = ζ . We have EA|MC = EM|AC (solid),
EC|AM (dashed) and Gtri (dot-dashed). Other parameters as in panels (a) and (b).

restricted to the class of Gaussian states. More explicitly,
we aim at determining [45]

Gtri = min
Π(ijk)

[Gi|jk−Gi|j−Gi|k] (56)

with Gi|j the convex roof of the squared logarithmic neg-
ativity for the i-vs-j bipartition of a system and Π(ijk) the
permutation of indices i, j, k = A,M, C. More explicitly,
given a (generally mixed) Gaussian state with covariance
matrix σ, we have

G(σ) = inf (Epi|j)2 = inf
σp≤σ

(Epi|j)
2 (57)

with (Epi|j)
2 the squared logarithmic negativity of a pure

Gaussian state with covariance matrix σp whose eigenval-
ues are all smaller or equal than those of σ, which is the
covariance matrix of the state to assess, and z the aver-
age value of quantity z. In general, the evaluation of Gtri
is very demanding. However, for ωm = Ω and χ = ζ ,
the covariance matrix V is symmetric under the permu-
tation of A and M, which greatly simpli�es the calcula-
tions: The residual tripartite entanglement can be thus de-
termined against the e�ects of T, showing a non mono-
tonic behaviour. To understand this, we take i = C, j = M
and k = A (any other combination could be considered).
Similar to EAC and EMC, GC|A,M decays very quickly as T in-
creases, thus biasing the competition between GC|MA and
GC|A + GC|M. Analogously to EC|AM, GC|A + GC|M decreases
very slowlywith T, thus determining an overall increase of
the residual entanglement. However, as T is raised further,
the system tends toward two-mode biseparability and any
tripartite entanglement is washed out [see Fig. 15 (c)].

3.3 Probing experimentally the stationary
entanglement

We can nowdiscuss the direct observation of the entangle-
ment between the Bogoliubov mode and the cavity �eld.
The idea is to shine the BEC with a probe laser in a stand-
ingwave con�guration [46] such that the laser beam forms
a small angle with respect to the cavity axis, as sketched
in Fig. 16. For an o�-resonant probe �eld with polarization
perpendicular to that of the primary cavity �eld, the addi-
tional Hamiltonian term reads

ĤP = ~
[
∆P+UP

∫
d3r cos2(kcx+kzz)Ψ̂†Ψ̂

]
â†P âP , (58)

where ∆P is the detuning of the probe �eld from the pump-
ing laser, âP is the corresponding annihilation operator,
UP = g2

P/∆AP is the light-atom coupling constant, kz is the
wave-vector of the probing �eld along a direction orthog-
onal to the cavity axis and Ψ̂ is the condensate �eld oper-
ator. For a BEC strongly con�ned in the plane orthogonal
to the cavity axis, we can neglect excitations of transverse
modes and factorize the �eld operator as

Ψ = ψ(x)f (y)f (z), (59)

where f (y) is a function peaked around the cavity axis and
characterized by a width σ. We then expand ψ(x) as [33]

ψ(x) =
√
N0ψ0(x)+

∑
k>0,σ=±

[ukσ(x)ckσ−v*kσ(x)c†kσ]. (60)

We assume that the width of the BEC in the transverse di-
rection is much smaller than the periodicity of the probe
�eld along the z direction. This implies that transverse ex-
citations are suppressed. Neglecting terms O(k2

zσ2) we get

ĤAP ' ~
(
∆P + N0UP

2 +ζPQ̂
)
â†P âP − i~ηP(âP − â†P), (61)
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Fig. 16. Sketch of the detection scheme. The probe �eld has the
same periodicity of the cavity �eld. It impinges on a semi-reflecting
mirror, creating a standing wave. Part of the probe light is transmit-
ted and then measured with the output light of the cavity.

where ζP is the sameas ζ withU0→UP. The Langevin equa-
tion for the probe �eld reads

∂t âP = ηP−i
[
∆P+N0UP

2 + ζPQ̂
]
âP+
√

2κâPin−κâP . (62)

Assuming again an intense pump �eld, the steady inten-
sity of the probe �eld is |αP|2 = η2

P/(∆̃2
P + κ2

P), where

∆̃P = ∆P+UPN0
2 +ζPQs . (63)

We also assume that ζP � Ω, ζ and αP � αS. The equation
of motion for the �uctuations of the probe �eld is

∂tδâP = −i∆̃PδâP−iζPαpδQ̂+
√

2κδâPin−κPδâP . (64)

Inorder tomap theBogoliuobovmodeonto theprobe�eld,
following the same technique as in Ref. [14], we choose
∆̃P = Ω � κP , ζPαP. The equations ofmotion for the slowly
varying variables ˆ̃o(t) = eiΩt ô(t) thus read

∂tδ ˆ̃a = −i ζPαP√
2

ˆ̃c+
√

2κδ ˆ̃aPin−κPδ ˆ̃aP . (65)

If the decay of the probe cavity is faster than the dynam-
ics of the Bogoliubov modes, the probe �eld follows adia-
batically the dynamics of the latter. Using the cavity input-
output relations [47] we get

δ ˆ̃aPout = −i ζPαP√
κP

ˆ̃c+δ ˆ̃aPin (66)

which shows how the Bogoliubov mode is mapped onto
the output probe �eld. To measure the entanglement be-
tween the �eld of the primary cavity and the Bogoliubov
mode one can homodyne the cavity �eld and rotate the
quadrature of the probe. Analogously, one could map q̂
onto a further �eld so that the light-matter correlations are
changed into amenable light-light ones [14].

4 Embedding optimal control in
hybrid quantum optomechanics

Having proven the possibility o�ered by hybridisation for
the observation of entanglement in a BEC-assisted cavity
optomechanical setting, we now explore a route for over-
coming the limitations enforced by a steady-state analy-
sis. In particular, we are interested in discussing whether
or not it is possible to observe entanglement between the
BEC and the mechanical system during the short-time dy-
namics of the overall device.

In order to assess this problem, here we review a pro-
posal for the active driving control of the hybrid system
here at hand realized by time-modulating the intensity of
the driving �eld. Inspired by recent works on the control
of optomechanical devices [25, 48], we show that by using
amonochromaticmodulation, entanglement between two
mesoscopic systems, the mirror and the BEC, can be cre-
ated and controlled [49]. Furthermore, by borrowing ideas
from the theory of optimal control [50] we show that, with
respect to the unmodulated case, we achieve a sixfold im-
provement in the degree of generated entanglement. We
interpret such performance in terms of the occurrence of
a special resonance at which the building up of entangle-
ment is favored. This strongly suggests the viability of the
optimal control-empowered manipulation of open meso-
scopic systems for the achievement of strong quantum ef-
fects, even in the hybrid context, of which the system that
we study is a signi�cant representative.

4.1 Time-resolved entanglement in the
hybrid system

In Ref. [51] and in the previous Section, the stationary
entanglement within the hybrid optomechanical system
has been considered. Here we focus on the dynamical
regime where the evolution of the entanglement is re-
solved in time.We consider the fully symmetric regime en-
compassed by equal frequencies for the Bogoliubov and
mechanical modes (i.e. ωb = ωm) and identical coupling
strengths in the bipartite cavity-mirror and cavity-atom
subsystems (that is, we take ζ = χ). We are particularly in-
terested in the emergence of atom-mirror entanglement at
short interaction times. The analysis conducted in Sec. (3)
has shown it to be absent at the steady state [51]. How-
ever, this might not well be the case for the time-resolved
dynamics of the system, which can be assessed by using
the dynamical version of Eq. (9), much along the lines of
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Fig. 17. (a) Entanglement EMA(t) between mirror and atoms against κt and ∆/ωm. (b) Same as panel (a) for ECM(t) = ECA(t). Parameters:
ωm/2π = 3 × 106s−1; T = 10µK; Q = 3 × 104; m = 50ng, R = 50mW, cavity �nesse F = 104, and ζ = χ; cavity length is 1mm from which
κ = πc/2LF can be determined (c is the speed of light).

Eq. (8)

V̇MCA = KMCAVMCA + VMCAK
T
MCA + DMCA . (67)

Eq. (67) is solvedassuming the initial conditionsVMCA(0) =
diag[1, 1, 2n̄+1, 2n̄+1, 1, 1]/2, which describes the vac-
uum state of both the cavity �eld and the BEC mode and
the thermal state of the mechanical system. Physicality
of the covariance matrix has been thoroughly checked by
considering the ful�lment of the Heisenberg-Robinson un-
certainty principle and checking that the minimum sym-
plectic eigenvalue νMCA = min eig(iωVMCA) is such that
|νMCA| ≥ 1

2 (we have used the 6 × 6 symplectic matrix
ω = ⊕3

j=1iσy with σy the y-Pauli matrix). Using again the
logarithmic negativity we �nd that the atom-mirror entan-
glement EMA(t), whose time evolution is shown in Fig. 17
(a) for di�erent values of the e�ective detuning ∆, gradu-
ally develops and reaches its peak value as the cavity-atom
and cavity-mirror entanglement drop to a quasi-stationary
value. As no direct atom-mirror interaction exists in this
system, mediation through the cavity mode essentially re-
sults in a delay: quantum correlations between the atoms
(the mirror) and the cavity mode must build up before any
atom-mirror correlation can appear. This is clearly shown
in Fig. 17 (b), where ECM(t) = ECA(t) reach their maximum
well before EMA(t) starts to grow. The atom-mirror entan-
glement is non-zero only within a very short time window,
signalling the fragility of the entanglement resulting from
only a second-order interaction between the BEC and the
cavity end-mirror. These results go far beyond the limita-
tions of the steady-state analysis conducted in Sec. 3 and
Ref. [51], and prove the existence of a regime where all the
reductions obtained by tracing out one of the modes from
the overall system are inseparable, a situation that is typ-
ical only of a time-resolved picture.

4.2 Optimal control of the early-time
entanglement

We now consider the e�ects of time-modulating the exter-
nal pump powerR, which is now considered a function of
time. In turn, this implies that we now take η → η(t) and
study the time behaviour of the entanglement EMA set be-
tween the atoms and the mirror. We will show that a prop-
erly optimised η(t) can increase the maximum value of
EMA(t) for values of twithin the same time interval τwhere
atom-mirror entanglement has been shown to emerge in
the unmodulated case. We assume to vary η(t) slowly in
time, so that the classicalmeanvaluesϕs adiabatically fol-
low the change in η(t). This approximation is valid as long
as the number of intra-cavity photons is large enough to
retain the validity of the linearization procedure and the
time-variation of η(t) is slow compared to the time taken
by the mean values to reach their stationary values. For
all cases considered here we have veri�ed the validity of
such assumptions. The dynamics of the covariance ma-
trix is thus still governed by Eq. (67) with the replacement
K→ K(t). In the following, we use the value of ∆ = 2.7ωm
which maximises the short time entanglement EMA.

Inspiredby the techniques for dynamical optimization
proposed in [50], we call η0 the unmodulated value of η
and take

η(t) = η0 +
jmax∑
j=1

[
Aj cos(ωj t) + Bj sin(ωj t)

]
, (68)

where ωj = 2πj/τ + δj are the harmonics and δj is a
small random shift. The coe�cients Aj and Bj are cho-
sen in a way that the total energy brought in by the time-
modulated �eld is the same as the one associated with the
unmodulated case. We then set the time-window so that
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τ = 3.4κ−1, when we observe the maximum value of EMA
in the unmodulated instance. The other parameters are
as in Fig. 17. We then look for the parameters Aj and Bj
that maximise the value of EMA(τ) for a given set of ran-
dom shifts δj. We use standard optimisation routines to
�nd a (local) maximum of EMA(τ). We repeat the search of
the optimal coe�cients for di�erent values of δj and take
the overall maximum. The corresponding results are pre-
sented in Fig. 18 (a), where we show the optimal modula-
tion η(t) and the optimal EMA(t). These �ndings are also
compared to the case without modulation. The maximum
value attained in the interval [0; τ] is EMA(t) ' 0.05 which
is 2.5 times larger than the case without modulation, thus
demonstrating the e�ectiveness of our approach.

4.3 Periodic modulation: long time
entanglement

In the two situations analyzed so far [constant laser inten-
sity η and optimally modulated η(t)], the atom-mirror en-
tanglement EMA(t) is destined to disappear at long times.
A complementary approach based on a periodic modula-
tion of the laser intensity η(t)wasused in the pure optome-
chanical setting [25] to increase the long-time light-mirror
entanglement. Here we use a similar approach by assum-
ing themonochromaticmodulation of the laser-cavity cou-
pling η(t) = η′′0 + η′0

[
1 − sin(Σt)

]
, where Σ is the frequency

of the harmonic modulation, η′0 = 4η′′0 = η0/2, η0 be-
ing the same constant coupling parameter taken before.
These choices ensure that the approximations used in the
dynamical analysis are valid. After the transient dynam-
ics, the covariance matrix and, in turn, EMA(t) become pe-
riodic functions of time. In order to achieve the best possi-
ble performance at long times, we compute the maximum
of EMA(t) after the transient behaviour, scanning the val-
ues of Σ. The result is shown in Fig. 18 (b) (inset) revealing
a sharp resonance with a maximum value of EMA ' 0.12
for Σ = Σ̄ ∼ 0.79κ (no further peak appears beyond this
interval). This arises as a result of the e�ective interaction
between atoms andmirror mediated by the cavity �eld. As
shown in Fig. 17 (a) the entanglement dynamics strongly
depend on the e�ective detuning giving rise to such opti-
mal behaviour. Similar results have also been observed in
Ref. [25].

The analysis of the evolution of ECM(CA) and EMA,
shown in the main panel of Fig. 18 (b), reveals that while
ECM(CA) develops very quickly due to the direct cavity-
atoms and cavity-mirror couplings, EMA grows in a longer
time lapse, during which the cavity disentangles from the
dynamics. The quasi-asymptotic value achievedby EMA re-

veals a sixfold increase with respect to the unmodulated
case. This behaviour is worth commenting as it strength-
ens our intuition that any atom-mirror entanglement has
to result from a process that e�ectively couples such sub-
systems, bypassing any mechanism giving rise to multi-
partite entanglementwithin the overall system. Finally,we
discuss the results achieved in the long time case by adopt-
ing an optimal-control technique similar to the one used
for enhancing the short time entanglement. We have con-
sidered the periodic modulation of the intensity at the fre-
quency Σ̄ given by

η(t) = η′′0 + η′0

[
1 −

nmax∑
n=1

An sin(nΣ̄t) + Bn cos(nΣ̄t)
]
, (69)

and looked for the coe�cients {An , Bn} optimizing EMA(t)
at long times with the power constraint:

∑nmax
n=1 (A2

n + B2
n) ≤

1, ensuring that no instability is introduced in the dynam-
ics of the overall system. In our simulation, nmax = 8 has
been taken to limit the complexity of themodulated signal.
The resulting optimal coe�cients give the periodic modu-
lation shown in Fig. 18 (c) and a maximum entanglement
EMA ' 0.17 which is about 30% larger than the results
obtained for themonochromaticmodulation. This demon-
strates the powerful nature of our scheme. Our extensive
multiple-harmonic analysis is able to outperformquite sig-
ni�cantly the single-frequency driving scheme addressed
above and discussed in Ref. [25], proving strikingly the
sub-optimality of the monochromatic modulation, both at
short and, surprisingly, at long times of the systemdynam-
ics. This legitimates experimental e�orts directed towards
the use of time-modulated driving signals for the optimal
control of the hybrid mesoscopic systems addressed here
and similar ones based, for instance, on the use of a vibrat-
ing membrane [52] or a levitated nano-sphere [53] instead
of the BEC.

It should be noted that an adiabatic approach is used
in Ref. [25] to �nd an e�ective Hamiltonian. When per-
formed in our hybrid optomechnical scheme, such tech-
nique would remove the dynamics of the Bogoliubov
modes of the atomic subsystem.

4.4 Robustness to inaccuracies

We now make a last comment on this scheme, addressing
the robustness of the protocol with respect to inaccuracy
in the control of the value χ. After �nding the best peri-
odic modulation assuming χ = ξ , the simulations have
been run again using the same modulation with χ = 1.1ξ
and χ = 0.9ξ , i.e. a 10% inaccuracy in the nominal val-
ues of χ and ξ . Notwithstanding the substantial entity of

Unauthenticated
Download Date | 10/3/14 1:35 PM



Hybrid optomechanics for Quantum Technologies | 31

(a) (b) (c)

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

E
M

A

κt

0

0.5

1

1.5

2

η
/
η
0

0 50 100 150 200 250
0

0.05

0.1

tκ

 

 

0.5 0.75 1
0

0.05

0.1

E
M

A

Σ/κ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

η
/
η
0

2πt/Σ̄

Fig. 18. (a) Entanglement dynamics EMA(t) (dashed line) with the optimal laser intensity modulation η(t) (solid line). The entanglement
EMA(t) for constant η(t) = η0 is also shown (dashed-dotted line). (b) Dynamics of the cavity-mirror and cavity-atoms entanglement ECM,CA
(solid line) and atoms-mirror entanglement EMA (dashed line) for Σ = Σ̄ ∼ 0.79κ. Inset: Maximum EMA for long times with a periodic
modulation as a function of the frequency Σ. (c) Optimal periodic modulation η(t) (solid line) for one period of time 2π/Σ̄ compared to the
monochromatic modulation (dashed line).

such inaccuracy, one can see that the corresponding max-
imum entanglement is at most only 3% less than the orig-
inal value, thus con�rming the stability of the results il-
lustrated above. Notice also that if the imbalance between
χ and ξ is known, for example by a calibration measure-
ment, we can in principle run the optimization including
the actual values of χ and ξ therefore aiming at a larger
entanglement value.

5 Hybrid BEC optomechanics as a
probe of mechanical quantum
coherences

The problems addressed so far have shown that the BEC-
based hybridization of optomechanical settings enriches
considerably the range of interesting physical e�ects that
can be induced in the system. However, they have also
raised (and partially addressed) the issue of the revelation
of the quantum features of mechanical systems of di�cult
addressability. In this Section we attack this problem di-
rectly bydesigning anhybrid optomechanical setup for the
inference of quantum coherences in the state of amechan-
ical oscillator. Our method is again based on the interac-
tion with a BEC, although the regime that we adopt here is
rather di�erent from the one used in Secs. 2-4.

We consider the setup sketched in Fig. 19, which con-
sists of an on-chip single-clamped cantilever and a spinor
BEC trapped in close proximity to the chip and the can-
tilever. The latter is assumed to be manufactured so as
to accommodate at its free-standing end a single-domain
magnetic molecule (or tip). Technical details on the fabri-
cationmethods of similar devices can be found in Refs. [9,

10], which have also been found to have very large quality
factors, which guarantee a good resolution of the rich vari-
ety of modes in the cantilever’s spectrum. At room temper-
ature, thermal �uctuations are able to (incoherently) ex-
cite all �exural and torsional modes and in the following
we assume that a �ltering process is put in place, restrict-
ing our observation to a narrow frequency window, so as
to select only a single mechanical mode.

The second key element of our setup is a BEC of 87Rb
atomsheld in an (tight) optical trap andprepared in thehy-
per�ne level |F = 1〉. As we assume the trapping to be op-
tical, there is no distinction between atoms with di�erent
quantum numbers mF = 0, ±1 of the projections of the to-
tal spin along the quantization axis. Moreover, for a mod-
erate number of atoms in the condensate and a tight trap,
we can invoke the so-called single-mode approximation
(SMA) [54], which amounts to considering the same spa-
tial distribution for all spin states. These approximations
will be made rigorous and formal in the next Subsections.

5.1 Hamiltonian of the system

We now brie�y review the mapping of a spinor BEC into
a rotor [55]. The most e�ective way is to start from the
second-quantization version of the Hamiltonian of a BEC
trapped in an anisotropic potential, which reads [56]

Ĥ =
∑
α

∫
d3r ψ̂†α(r)Ĥ0

α ψ̂α(r)

+
∑
α,β,µ,ν

Gα,β,µ,ν
∫
d3r ψ̂†α(r)ψ̂†β(r)ψ̂µ(r)ψ̂ν(r),

(70)
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BEC
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Single-clamped
nano-cantilever

Magnetic tip

Fig. 19. Sketch of the setup for BEC-based probing of mechanical co-
herences. A BEC is placed in close proximity to a nano-mechanical
cantilever endowed with a magnetic tip. The coupling between the
magnetic �eld generated by the mechanical quantum antenna and
the ultra-cold atoms embodies a mechanism for the e�ective prob-
ing of coherences in the state of the mechanical system.

where the second line of equation describes the particle-
particle scattering mechanism, r = (x, y, z), and

Ĥ0
α= − ~2

2m∇2 + 1
2ma

[
ω2(x2 + y2) + ω2

z z2
]
. (71)

Here, ma is the mass of the Rb atoms and (ω, ω, ωz) is
the vector of frequencies of the trapping potential. The
subscripts α, β, µ, ν refer to di�erent z-components of the
single-atom spin states. Since the scattering between two
particles does neither change the total spin nor its z-
component,we can link the coe�cientsGα,β,µ,ν to the scat-
tering lengths for the channels with total angular momen-
tum FT = 0, 2. Thus, bymaking use of the Clebsch-Gordan
coe�cients, the full BEC Hamiltonian can be re-written as

Ĥ =
∑
α

∫
dr ψ̂†α(r)Ĥ0

α ψ̂α(r)

+ cs
2
∑
α,β

∫
dr ψ̂†α(r)ψ̂†β(r)ψ̂α(r)ψ̂β(r)

+ ca
2
∑

α,β,α′ ,β′

∫
dr ψ̂†α(r)ψ̂†β(r)(Fα,β·Fα′,β)ψ̂α′ (r)ψ̂β′ (r),

(72)
where we have set cs=(g0+2g2)/3 and ca=(g2−g0)/3 with
g2j=4π~2a2j/m (j=0, 1) (a2j is the scattering length for the
FT = 2j channel [57]). Here F is the vector of spin-1 ma-
trices obeying the commutation relation [F i , F j] = iϵijkFk

with ϵijk the Levi-Civita tensor.
If ca ≈ 0 (i.e. if g0 ≈ g2) and/or the number of atoms

is not too large, the total Hamiltonian is symmetric in the
three spin components. By assuming a strong enough op-
tical con�nement and a BEC of a few thousand atoms, one
can thus think of the condensate �eld operator as hav-
ing a constant spatial distribution for all the three species
mF = 0, ±1 and write ψ̂α(r)=ψ(r)d̂α. This is the so-called

SMA [54, 58], which leaves the Hamiltonian in the form

Ĥ =
∑
α
ĉ†α ĉα + c′s

2
∑
α,β

ĉ†α ĉ†β ĉα ĉβ

+ c′a
2
∑

α,β,α′ ,β′
(Fα,β · Fα′ ,β′ ) ĉ†α ĉ†α′ ĉβ ĉβ′ ,

(73)

where we have de�ned c′i=ci
∫
d3r|ψ(r)|4. As the distance

z0 between the BEC and the magnetic tip can be in the
range of a few µm(we take z0 = 1.5µm inwhat follow) and
the spatial dimensions of the BEC are typically between
tenths andhundredths of µm(we considered az = 0.25µm
and ar = 0.09µm), the relative correction to the mag-
netic �eld across the sample is of the order of 0.2, which
is small enough to justify the SMA. Moreover, in the con-
�guration assumed here, the system will be mounted on
an atomic chip, where the static magnetic �eld can be
tuned by addingmagnets and/or �owing currents passing
through side wires. Such a design can compensate distor-
tions to the trapping potential induced by the tip.

By introducing N̂=
∑

α ĉ
†
α ĉα and the angular momen-

tum operators L̂+=
√

2(ĉ†0 ĉ−1 + ĉ†1 ĉ0) and L̂z=(ĉ†1 ĉ−1 ĉ†−1 ĉ−1),
we can rewrite Eq. (73) as Ĥ=ĤA + ĤS, where we have ex-
plicitly identi�ed a symmetric part ĤS = µcpN̂ − c′sN̂(N̂ −1)
(with µcp the chemical potential) and an antisymmetric
one ĤA = c′a(L̂2 − 2N̂) with L̂ = (L̂x , L̂y , L̂z) and L̂± =
(L̂x ± L̂y)/2. It is important to remember that such a map-
ping is possible due to the assumptionof a commonspatial
wave function for the three spin components. As long as
the antisymmetric term is small enough, this is not a strict
constraint. By exploiting Feshbach resonances [59], it is
possible to adjust the couplings g0 and g2 in such a way
that g0 ≈ g2, which allows for the possibility to increase
the number of atoms in the BEC, still remaining within the
validity of the SMA.

We now consider the BEC interaction Hamiltonian
when an external magnetic �eld is present. Due to its mag-
netic tip, the cantilever produces a magnetic �eld and we
assume that only one mechanical mode is excited, so that
the cantilever can be modelled as a single quantum har-
monic oscillator whose annihilation (creation) operator
we call b̂ (b̂†), in line with the notation used so far. By al-
lowing the tip to have an intrinsic magnetization, we can
split the magnetic �eld into a (classical) static contribu-
tion B0 and an (operatorial) oscillating one δB̂ that arises
from the oscillatory behaviour of the mechanical mode.
The physical mechanism of interaction is Zeeman-like, i.e.
each atom experiences a torque which tends to align its
total magnetic moment to the external magnetic �eld. The
Hamiltonian for a single atom can be written as

Ĥ(1)
Z = −µ·B = gµB

~ Ŝ(1)·B, (74)
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where µB is the Bohr magneton, Ŝ(1) is the spin operator
vector for a single atom and g is the gyromagnetic ratio.
In line with Ref. [60], we adopt the convention that g and
µ have opposite signs. The total interaction Hamiltonian
is then given by the sum over all the atoms. By taking the
direction of B0 as the quantization axis (z-axis) and the x-
axis along the direction of 〈δB̂〉, themagnetic Zeeman-like
Hamiltonian is

ĤZ = gµBB0
z L̂z + gµBGcac(b̂† + b̂)L̂x , (75)

where we have used δB̂ = (δB̂x , 0, 0) with δB̂x = Gcac(b̂† +
b̂)x, Gc = 3µ0|µc|/(4πz4

0) the gradient of the magnetic
�eld produced by the tip at a distance z0, x the unit vector
along the x-axis, and ac =

√
~/(2mωm). As in the previous

Sections, we have used the symbols m and ωm to indicate
the mass of the mechanical oscillator and its frequency.
The full Hamiltonian of the BEC-cantilever system is thus
Ĥ = Ĥ0

BEC + Ĥ0
c + ĤI with

Ĥ0
BEC = µcpN̂−c′sN̂(N̂ − 1)+c′a(L̂2 − 2N̂)+gµBB0

z L̂z ,

Ĥ0
c = ~ωc b̂†c b̂c , ĤI = gµBGcac(b̂† + b̂)L̂x .

(76)

It has been shown in Refs. [56, 58] that Ĥ0
BEC with B0

z = 0
allows for an interesting dynamics of the populations of
the three spin states, which undergo Rabi-like oscillations,
thus witnessing the coherence properties of the BEC.

5.2 Mapping into a rotor

TheHamiltonian Ĥwith components as in Eqs. (76) should
be further manipulated in order to cast it in a form that �ts
with our needs. This is accomplished by implementing a
formal mapping of the BEC into a quantum rotor, in line
with Ref. [55]. As wework with a �xed number of particles,
the state of the BEC can be decomposed as∑

n′0,±1

Cn′0,±1
(ĉ†1)n

′
1 (ĉ†0)n

′
0 (ĉ†−1)n

′
−1 |0〉 , (77)

where the sum is performed over all sets of labels
{n′0,±1} such that n′0+n′−1+n′1=N. Let us now intro-
duce the Schwinger-like operators ŝx=(ĉ−1−ĉ1)/

√
2,

ŝy=(ĉ1+ĉ−1)/(i
√

2), ŝz=ĉ0 such that [ŝα , ŝβ]=0,
[ŝα , ŝ†β]=δα,β [55]. The generic state of the BEC in
Eq. (77) can now be written as |ΩN〉= 1√

N!
(Ω·ŝ†)N |0〉 with

Ω=(cosϕ sin θ, sinϕ sin θ, cos θ) a unit vector whose di-
rection is determined by the set of polar coordinates (θ, ϕ).
By varying the direction of Ω on the unit sphere it is pos-
sible to recover any superposition for the state of a single
atom among the states with mz = 0, ±1.

Any state with a �xed number of particles in the
bosonic Hilbert space can then be written as |Ψ〉 =∫
dΩ φ(Ω) |ΩN〉where φ(Ω) is the wave function of the ro-

tor we are looking for to complete the mapping. This is ac-
complished by introducing the following components of
the angular momentum operator along the x and z direc-
tions

L̂z = −i(ŝ†x ŝy − ŝ†y ŝx) = −iz · (Ω ×∇) = 1
~z · L̂ = −i∂ϕ ,

L̂x = 1
2 (ŝ†z ŝx − ŝ†x ŝz) + i

2 (ŝ†z ŝy − ŝ†y ŝz)

= −ix · (Ω ×∇) = 1
~x · L̂ = i(sinϕ ∂θ+ cot θ cosϕ∂ϕ).

(78)
After discarding an inessential constant term, the Hamil-
tonian that we will need reads Ĥ = Ĥ0

R + Ĥ0
c + ĤI with

Ĥ0
R = c′aL̂2 + gµB

~ B0
z L̂z ,

Ĥ0
c = p̂2

2m + 1
2mω

2
m q̂2, ĤI = gµBGc

~ q̂L̂x .
(79)

We are now in a position to look at the BEC-cantilever joint
dynamics. In particular we will focus on the detection of
the cantilever properties by looking at the BEC spin dy-
namics.

5.3 Probing mechanical quantum
coherences

The form of the interaction Hamiltonian ĤI allows for the
measurement of any observable whose corresponding op-
erator on the Hilbert space can be expressed as a func-
tion of q̂ and p̂ with no backaction on the cantilever dy-
namics. Moreover, when there is no magnetic �eld, the
ground state of a “ferromagnetic” (i.e. c2 < 0) spinor
BEC is such that all the atomic spins are aligned along a
direction resulting from a spontaneous symmetry break-
ing process [56]. Under the e�ects of the cantilever an-
tenna, two preferred directions are introduced in the sys-
tem: the z-direction along which we have the static mag-
netic �eld and the x-direction de�ned by the oscillatory
component. The interplay between these two competing
magnetic �elds is responsible for a “gyroscopic”motion of
the rotor about the z-axis, exactly as in a classical spin-
ning top. By looking at the way the rotor undergoes such
a gyromagnetic motion, we can gather information on the
properties of the state of the cantilever. We notice that an
approach similar to the one considered here has been used
to show the resonant coupling of an atomic sample of 87Rb
atoms with a magnetic tip [61].

In order to understand the mechanism governed by
Eqs. (79), let us look at the time evolution of the operator
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L̂x(t). We take an initial state of the form

|in〉 =
∑
n
Cn |En〉 ⊗

∫
Σ1

dΩ φ(Ω) |Ω〉 , (80)

where Σ1 is the unit sphere and |En〉 are the en-
ergy eigenstates of the mechanical oscillator (such that
Ĥ0
c |En〉=En |En〉). In thCe Heisenberg picture, the mean

value of the x-component of the angular momentum is

〈L̂x(t)〉 = 〈in|ei
Ĥ

~ tL̂x(0)e−i
Ĥ

~ t|in〉

=
∫
q

dq
∑
n,p

C*pCne−iωn,p tϕ*p(q)ϕn(q)

∫
Σ1

dΩ φ*(Ω)
(
ei

ĤI +Ĥ0
R

~ tL̂x(0)e−i
ĤI +Ĥ0

R
~ t

)
φ(Ω),

(81)

where we have used the position eigenstates |q〉
of the mechanical oscillator with associated wave-
function ϕn(q)=〈q|En〉 and ωn,p=ωm(n − p). By set-
ting Ωq=

√
(gµB/~)2[(B0

z )2 + G2
cq2], the time-evolved x-

component of the angular momentum operator is

L̂x(t) = g2µ2
B

~2Ω2
q

[
(B0

z )2 cos(Ωq t) + G2
cq2
]
L̂x(0)

+ gµBB
0
z

~Ωq
sin(Ωq t)L̂y(0)+ g

2µ2
BB0

zGcq
~2Ω2

q

[
1− cos(Ωq t)

]
L̂z(0)

= a1(q, t)L̂x(0) + a2(q, t)L̂y(0) + a3(q, t)L̂z(0).
(82)

Comparing Eqs. (81) and (82) we �nd 〈L̂x(t)〉=∑
j=x,y,z Aj(t)L

0
j , where

L0
j =
∫
Σ1

dΩ φ*(Ω)L̂j(0)φ(Ω),

Aj(t) =
∑
n,p

C*pCne−iωn,p t
∫
q

dqϕ*p(q)ϕn(q)aj(q, t).
(83)

If the cantilever is initially prepared in the general mixed
state ρc(0) =

∑
n Cn,m|En〉〈Em|, a similar expression for the

mean value of L̂x(t) is found.
As the qualitative conclusions of our analysis do not

depend upon the initial value of the angular momentum
component of the spinor, in what follows we shall concen-
trate on an illustrative example that allows us to clearly
display our results.We thus consider, without a�ecting the
generality of our discussions, 〈L̂x,y(0)〉 = 0 and 〈L̂z(0)〉 =
100. When the cantilever and the BEC are uncoupled,
we should expect 〈L̂x(t)〉 to oscillate at the Larmor fre-
quency ωL = gµBB0

z and with an amplitude indepen-
dent of 〈L̂x(0)〉. The BEC-cantilever coupling introduces a
modulation of such oscillations and in the following we

will demonstrate that the analysis of such oscillatory be-
haviour is indeed useful to extract information on the state
of the cantilever.

We �rst consider the case of a cantilever initially pre-
pared in a superposition of a few eigenstates of the free
Hamiltonian Ĥ0

c , as in Eq. (80). In Fig. 20 we show the
meanvalue of L̂x(t) as a function of the coherence between
the states with quantum number n = 0 and n = 1, i.e. a
state having C0 = C1/α = 1/

√
1 + α2 and Cn = 0 otherwise.

One can see a clearmodulation of the behaviour of 〈L̂x(t)〉:
a close inspection reveals that the carrier frequency ωL
is modulated by the frequency ω0,1. In reality, the Lar-
mor frequency is renormalized as can be seen by the ex-
pression for Ωq. However, as we have taken Gcac � B0

z ,
one can safely assume that the carrier frequency is very
close to ωL. Moreover, the maximum of the function is
found at C0,1 = 1/

√
2, which maximizes the coherence

between the two states and thus the e�ect of the modu-
lation. For symmetry reasons, the modulation described
is not visible if the cantilever is prepared in a superposi-
tion of phonon eigenstates whose quantum numbers are
all of the the same parity (such as a single-mode squeezed
state). In this case, in fact, the function entering the inte-
gral over q in A3 is antisymmetric, thus making it vanish.
In Fig. 20 (b), 〈L̂x(t)〉 is shown for an initial state of the
cantilever having C0,1 = C2/α = 1/

√
2 + α2 and Cn = 0

otherwise. It is worth noticing that one can identify two
regions of oscillations separated by the line of nodes at
α = 1 where C0 = C1 = C2. We can understand this be-
haviour by studying the amplitudes of oscillation in three
α-dependent regions. For α < 1, the main modulation fre-
quency is given by ω0,1 and the role of the third state is to
modify the amplitude of the oscillations [see Fig. 20 (b)].
At α = 1 a destructive interference takes place and the am-
plitude drops down. For α > 1 the frequency ω1,2 enters
into the evolution of 〈L̂x(t)〉 (for parity reasons, the term
with frequency ω0,2 has no role) and determines a phase
shift of the oscillation fringes. It is interesting to observe
that if the initial state of the cantilever is purely thermal,
〈L̂x(t)〉 does not oscillate: only quantum coherence in the
state of the mechanical system gives rise to oscillatory be-
haviours and their presence is well signaled by the pattern
followed by the angular momentum of the spinor-BEC.

Although the examples considered so far have been
instrumental in explaining the connections between the
properties of the cantilever and the dynamics of the
spinor’s degrees of freedom, they are unfortunately cur-
rently far from being realistic. We will therefore now con-
sider closer-to-reality example of a pure state that is likely
to be achieved soon. Given the impressive advances in
the control and state-engineering of micro and nano-
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(a) (b)

×
×

Fig. 20. (a)Mean value of L̂x(t) for a cantilever in the initial state as given by Eq. (80) with C0=C1/α=1/
√

1 + α2and Cn = 0 otherwise. The
BEC consists of N=103 87Rb atoms and 〈L̂x,y(0)〉 = 0, 〈L̂z(0)〉 = 100. We have used B0

z=3 × 10−6µT and Gc ≈ 1.8 × 103µT/µm. (b)
Mean value of L̂x(t) for a cantilever in the initial state as given by Eq. (80) with C0 = C1 = C2/α = 1/

√
2 + α2 and Cn = 0 otherwise.

The BEC parameters are the same as in Fig. 20. The inset shows that the change in |α| amounts to a shift of the oscillations [we have taken
= eiπ/6(0.5, 1, 2)].

mechanical systems, we will consider the cantilever to be
prepared in a coherent state with an average phonon num-
ber nph . In Fig. 21 we show the time evolution of 〈L̂x(t)〉 for
|α|2 = 1 [panel (a)], 5 [panel (b)], 15 [panel (c)], and 20
[panel (d)]. One can see that, dependingon themeannum-
ber of phonons initially present in the mechanical state,
new frequencies are introduced in the dynamics of the de-
vice: the larger |α|2, the larger the number of frequencies
involved due to the Poissonian nature of the occupation
probability distribution of a coherent state.

5.4 Detection scheme

To readout the information imprinted on the rotor, one can
make use of the Faraday-rotation e�ect, which allows to
measure one component of the the angular momentum of
the BEC with only a negligible back action on the conden-
sate itself. It is well-known from classical optics that the
linear polarization of an electromagnetic �eld propagat-
ing across an active medium rotates with respect to the di-
rection it had when entering the medium itself. This is the
essence of theFaraday-rotation e�ect,which canbeunder-
stood by decomposing the initial polarization in terms of
two opposite circularly polarized components experienc-
ing di�erent refractive indices [62]: by going through the
medium, the two components acquire di�erent phases,
thus tilting the resulting polarization.

In the case of an ultra-cold gas, an analogous rota-
tion of the polarization of a laser �eld propagating across
the BEC is due to the interaction of light with the atomic

spins. If the spins are randomly oriented the net e�ect is
null,while for spins organized in clusters, the e�ect can in-
deed be measured. It has been shown in Refs. [63, 64] that
the back-action on the BEC induced by this sort of mea-
surements is rather negligible. In recent experiments non
destructive measurements on a single BEC of 23Na atoms
have been used to show the dynamical transition between
two di�erent regions of the stability diagram of the sys-
tem [65]. This method can thus be e�ectively used to deter-
mine the dynamics of the angularmomentumcomponents
of the rotor BEC and thus indirectly witness the presence
of coherences in the state of the cantilever. Moreover, as
shown in Ref. [64], the signal to noise ratio is proportional
to
√
τpd/τs where τpd is the characteristic time for the re-

sponse of the photo-detector and τs is the average time
between consecutive photon-scattering events. In order to
be able to detect two distinct events on a time scale τ we
thus need τpd < τ < τs to hold. This condition states that
the number of scattered photons has to be small enough
during the time τ over which the dynamics we want to re-
solve occurs. On the other hand the detector “death time”
should be smaller than the typical evolution time. While
τs can be easily tuned by adjusting the experimental work-
ingpoint, ultrafast photo-detectors of the latest generation
have response time τpd of a few ps. As in our scheme we
have τ ∈ [10−8, 10−5]s, the proposed coherence-probing
method appears to be within reach.
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Fig. 21. Time evolution of 〈L̂x(t)〉 for a coherent initial state of the cantilever with |α|2 =
1 [panel (a)], 5 [panel (b)], 15 panel [(c)], 20 [panel (d)].

6 Single-spin aided optomechanics
for quantum non-locality

Having analysed in detail the case of a collective atomic
system embodying the element of hybridisation of an oth-
erwise pure optomechanical device, we now change per-
spective and explore the potential arising from a single-
body matter-like system. In particular, we introduce and
study a system comprising an optomechanical cavity con-
taining a single spin-like system, embodied for instance
by a three-level atom. We show how the state of the sys-
tem reveals strongnon-classical features suchasnon-local
correlations between the atom and the mirror and nega-
tive values of the Wigner function of the mirror, even in
presence of dissipative processes and non-zero temper-
ature. We focus on the correlations established between
the two systems as well as the non-classical features in-
duced on the state of the mirror. The general aim is pre-
cisely to prove how non-classical behaviours can be in-
duced in massive mesoscopic systems out of the reach of
direct addressability, even by the means of microscopic
quantum-inducing ancillae thatmight be onlyweakly cou-
pled to themechanical subsystem. The scenario addressed
in this Section deals with non-classical features (such as
non-local correlations and negative values of the Wigner
function) that are trulymesoscopic and thus di�erent from
more extensively studied nano-scale setups [66–69], well-
controllable and, although close to experimental capabil-
ities in the �elds of optomechanics and light-matter inter-
action, yet unexplored.

6.1 The Model

The system that we consider involves a three-level atom in
a Λ con�guration, coupled to a single-mode optical cavity
pumped by a laser �eld at frequency ωL and with a mov-
able mirror. The atom is driven by a second external �eld
at frequency ωi that enters the cavity radially [see Fig. 22
(a) and (b)]. We label {|0〉 , |1〉}a the states belonging to

the fundamental atomic doublet and |e〉a the excited state.
The atomic transition |0〉a ↔ |e〉a is guided, at rate Ω,
by the external �eld at frequency ωi. On the other hand,
the transition |1〉a ↔ |e〉a is coupled to the cavity �eld at
frequency ωC with coupling constant g. We call δ the de-
tuning between each transition and the respective driving
�eld, while ∆cp = ωC − ωp is the cavity-pump detuning.
The movable mirror with frequency ωm is coupled to the
cavity �eld through radiation-pressure. We assume large
single-photon Raman detuning and negligible decay rate
γe from the atomic excited state, so that δ � Ω, g � γe
and an o�-resonant two-photon Raman transition is real-
ized. Moving to an interaction picture de�ned by the oper-
ator ωp â†â + ωi |e〉〈e|a + ω10 |1〉〈1|a , the Hamiltonian of
the overall system reads

Ĥsys = Ĥa + ĤR + Ĥm + Ĥc + Ĥmc + Ĥcp (84)

with

Ĥa =~δ |e〉 〈e|a , ĤM = ~ωm b̂†b̂, ĤC = −~∆â†â,

ĤR =~Ω |e〉〈0|a + ~gei∆cp t â† |1〉〈e|a + h.c.,

ĤMC = −~χâ†â(b̂ + b̂†).

(85)

Here, Ĥa is the atomic energy, ĤR is the Raman coupling,
ĤM (ĤC) is the mirror (cavity) free Hamiltonian. Finally,
ĤMC and Ĥcp are the usual radiation-pressure and cavity-
pump terms used throughout this review. The pumping
�eld ensures that a few photons are always present in the
cavity, allowing a mediated interaction between the atom
and the mirror. On the other hand, the purpose of the ex-
ternal �eld with rate Ω is to trigger the passages between
the excited level |e〉a and the ground level |0〉a .

If we further assume suitable working conditions,
both the atomic excited state and the cavity �eld are vir-
tually populated and they can be eliminated from the dy-
namics of the system. We start from the elimination of the
excited state of the atom |e〉a and the electromagnetic �eld
inside the cavity. In order to do so, we assume ∆cp � Ω, g
and δ � Ω, g. We notice that the only terms in the Hamil-
tonian involving the atomic degrees of freedomare Ĥa and
ĤR. Hence, we perform �rst the adiabatic elimination of
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(a) (b) (c)

Fig. 22. (a) Scheme of the system. (b) Energy levels of the atom driven by an o�-resonant two-photon Raman transition. (c)Maximum vio-
lation of the Bell-CHSH inequality against the displacement d. From top to bottom, the curves correspond to V = 1, 3, 5 with Υt = 2d and
θ1 ' 3π/2 and are optimized with respect to θ. The inset shows, from top to bottom, the logarithmic negativity E against V for projected
states with p = 0, 1 and 2, for d = 2.

the exited level |e〉a of the atom. The Hamiltonian Ĥa +ĤR
can be formally written as a 3×3 matrix with respect to the
basis {|0〉, |1〉, |e〉}a

Ĥa + ĤR = ~

0 0 Ω
0 0 gei∆cp t â†

Ω ge−i∆cp t â δ

 . (86)

By writing a generic state of the atom as |λ〉a = c0|0〉a +
c1|1〉a + ce|e〉a and by setting to zero ċe in the correspond-
ing Schrödinger equation i~∂t|λ〉a = (Ĥa+ĤR)|λ〉a, we �nd
the e�ective Hamiltonian

Ĥe�
~ = − Ω

2

δ |0〉〈0| −
Ωge−i∆cp t

δ â|0〉〈1|

− Ωge
i∆cp t

δ â†|1〉〈0| − g
2

δ â
†â|1〉〈1|.

(87)

After the adiabatic elimination, we replace the terms Ĥa +
ĤR in Eq. (85) with the expression above and the total
Hamiltonian of the system reads now Ĥsys = Ĥe� + ĤC +
ĤM + ĤMC + Ĥcp.

The next step is the elimination of the cavity �eld oper-
ators â and â†. In order to do so, we consider the equations
˙̂a = − i

~ [Ĥsys, â] and ˙̂a† = − i
~ [Ĥsys, â†]. We �nd that

1
~ [Ĥsys, â] = −â

[
∆cp + χ(b̂† + b̂) − g

2

δ |1〉〈1|a
]

+ Ωg
δ ei∆cp t|1〉〈0|a .

(88)

Taking ∆cp � χ, g2/δ we can set the derivative to zero and
�nd

â = Ωg
δ∆cp

ei∆cp t|1〉〈0|, â† = Ωg
δ∆cp

e−i∆cp t|0〉〈1|. (89)

By substituting these equation in the expression for ĤMC
we �nd the e�ective atom-mirror interaction

Ĥe� = ~Υ |0〉 〈0|a (b̂† + b̂) (90)

with Υ = χg2Ω2/δ2∆2
cp . The form of the e�ective cou-

pling rate Υ shows that all the considered coupling mech-
anisms are necessary in order to achieve the atom-mirror
coupling. Through the two-photon Raman transition, the
virtual quanta resulting from the atom-cavity �eld inter-
action are transferred (by the bus embodied by the cav-
ity �eld) to the mechanical system. As a consequence, the
state of the latter experiences a displacement (in phase
space) conditioned on the state of the e�ective two-level
atomic system resulting from the elimination of the ex-
cited state. Ĥe� involves the position quadrature opera-
tor q̂ ∝ b̂ + b̂† of the movable mirror. It is worth noticing
that, if the cavity is driven by a bichromatic pumpwith fre-
quencies ωp and ωp + ωm and a relative phase ϕ, the ef-
fective coupling between the atom and the movable mir-
ror can be made �exible in the sense that q̂ is replaced by
b̂eiϕ + b̂†e−iϕ, making possible the displacement in any
direction of the phase space of the movable mirror [70–
73]. It is important to stress the underlying assumption of
tight con�nement of the atom within the cavity, which al-
lows us to neglect the e�ects of micro-motion in our anal-
ysis. In principle, micro-motion would imply the incorpo-
ration of an additional degree of freedom (the motion of
the atom) that could embody a decoherence channel for
the electronic atomic states, and thus an important phys-
ical mechanism to consider. However, a detailed analysis
of the e�ects of micro-motion goes beyond the scopes of
this review.

6.2 Atom-Mirror Entanglement

We now focus on the quanti�cation of microscopic-
macroscopic correlations between the atom and the mir-
ror. First, we assume that the initial state of the movable
mirror is a coherent state |α〉M with amplitude α ∈ C,while
the atom is assumed intially in |+〉a = (|0〉 + |1〉)a/

√
2. Un-
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der the action of the e�ective Hamiltonian in Eq. (90), the
initial state evolves into

∣∣ψ(t)
〉

= Ût |+, α〉aM, where∣∣ψ(t)
〉

= 1√
2

(|1, α〉 + e−iΦ(t)
∣∣∣0, α − iΥte−iϕ〉)aM (91)

with Φ(t) = ΥtRe[αeiϕ] and

Ût ≡ e−iĤe� t = |1〉〈1|a ⊗ 11M + |0〉〈0|a ⊗ D̂M(−iΥteiϕ), (92)

where D̂M(ζ ) is the single-mode displacement operator al-
ready introduced in Sec. 1. Eq. (91) is, in general, an entan-
gled state of a microscopic and a mesoscopic system: its
Von Neumann entropy depends on the value of Υt only.
Intuitively, the larger the phase-space distance between
|α〉a and |α − iΥt〉a, the closer the evolved state to a bal-
anced superposition of bipartite orthogonal states, thus
maximizing the entanglement. To give a �gure ofmerit, for
Υt = 0.82 the entropy is ∼ 0.8, while for Υt > 1.7 the en-
tropy is > 0.996. Interestingly, the kind of control over the
mirror state reminds of the “quantum switch” protocol for
microwave cavities [74], although here it is achieved over
a truly mesoscopic device.

Although impressiveprogresseshave recently beenac-
complished in active and passive cooling of micro- and
nano-mechanical oscillators [75], it is realistic to expect
the mirror to be a�ected by thermal randomness due to
its exposure to the driving �eld and/or to a phononic
background at temperature T. Exploiting the handiness of
Eq. (91), we write the initial state of the mirror at thermal
equilibrium (temperature T) anddisplacedby d (due to the
external pump) as

ϱth
M =

∫
d2αP(α, V) |α〉〈α|M (93)

with P(α, V) = 2e−
2|α−d|2
V−1

π(V−1) , V = coth(ωm/2KBT). Under Ût,
the state |+〉 〈+|a ⊗ ϱth

M evolves into

Ût(|+〉 〈+|a ⊗ ϱ
th
M )Û†t =

∫
d2αP(α, V)

∣∣ψ(t)
〉〈
ψ(t)

∣∣ , (94)

which reduces to the pure case of Eq. (91) for T = 0. We
proceed to show that the coupling mechanism described
above is characterized by special features, at the core of
current experimental and theoretical interests [76–78]. Let
us consider the case of ϕ = π/2, V = 1 (i.e. T = 0)
and α ∈ R, which gives

∣∣ψ(τ)
〉

(|1, α〉 + |0, α − Υt〉)aM/
√

2.
This entangled state represents a mesoscopic instance of
a pure Schrödinger-cat state. Interestingly, it has been dis-
cussed that a faithful implementation of the Schrödinger’s
cat paradox would use a mesoscopic subsystem initially
prepared in a thermal state, rather than a pure one [76–
78]. The state in Eq. (94) is a signi�cant example of such

case. Unravelling the entanglement properties of this state
is demanding due to the di�culty of �nding an analytical
tool for its undisputed revelation. In order to gain insight,
here we propose to follow two paths.

The �rst relies on the nonlocality properties of this
class of states, induced by the strong entanglement be-
tween the subsystems. Following Ref. [79, 80], the mi-
croscopic part is projected along the direction n =
(sin θ, 0, cos θ) of the single-qubit Bloch sphere while the
mesoscopic one is probedbyusing thedisplacedparity ob-
servable Π̂(β) = D̂†(β)(−1)b̂

† b̂ D̂(β), with β = βr + iβi. This
approach has been used recently to address the micro-
macro non-locality in an all-optical setting [81]. The cor-
relation function for a joint measurement is thus

C(β, θ) =
∫
d2αP(α, V)

〈
ψ(t)

∣∣ (n · σ̂)⊗ Π̂(β)
∣∣ψ(t)

〉
(95)

and a Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) in-
equality is formulated as |C(0, θ1) + C(0, θ) + C(β, θ1) −
C(β, θ)| ≤ 2 [82]. Any state satisfying this constraint can
be described by a local-realistic theory. Let us �rst discuss
the pure case of V = 1, which gives

C(β, θ) = 1
2 e

−2(d2+Υ2 t2+|β|2+βrΥt−2βrd)

× [cos θ(e4dΥt−2Υtβr −e2Υ2 t2+2Υtβr )

+2eΥt(2d+ 3
2 Υt) cos(2Υtβi) sin θ].

(96)

At Υt = 0, themicroscopic andmesoscopic subsystems are
uncorrelated and C(β, θ) can indeed be factorized. For a
set value of d and a non-zero value of Υt, we observe vio-
lation of the Bell-CHSH inequality as illustrated in Fig. 22.
Moreover, there is a range of values of θ (∼ π/2) where,
for d = ̸ 0, the local-realistic bound is violated, symmetri-
cally with respect to d = 0. When the thermal character of
the mesoscopic part is considered, the expression for the
correlation function becomes cumbersome and we omit
it. However, the strong entanglement between microscopic
and mesoscopic subsystems allows violation of Bell-CHSH
inequality also in the mixed-state case: the dotted curve in
Fig. 22 corresponds to V ' 5. Beyond this value, the in-
equality is no longer violated.

The second path we follow uses the technique put for-
ward in Ref. [83] and later reprised by Ferreira et al. in
Ref. [84]. In this approach, Eq. (94) is projected onto a bidi-
mensional subspace spanned by the microscopic states
{|0〉 , |1〉}a and the phononic ones {|p〉 , |p + 1〉}M (p ∈ Z).
The entanglement within Eq. (94) cannot be increased by
this projection, which is just a local operation. Thus, by
quantifying the entanglement for �xed p, we provide a
lower bound to the overall quantum correlations in the
state of the system. As ameasure for entanglement in each
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2 × 2 subspace we use the logarithmic negativity, formu-
lated for spin-like systems [85–87]. An example of the re-
sults achieved with this method is given in the inset of
Fig. 22, where we show the case of d = 2 and p = 0, 1, 2.
Entanglement is found in each subspace with �xed p, up
to values of V ∼ 5, strengthening our �ndings about the
resilience of non-classical correlations set by the coupling
being studied.

6.3 Non-classicality of the mirror

We now consider the e�ects of the microscopic-
mesoscopic interaction over the state of the movable
mirror. This is a hot topic in the current research of
opto and electro-mechanical systems. The grounding of
opto/electro-mechanical devices as potential candidates
for quantum information processing requires the design
of protocols for the preparation of non-classical states
of massive mechanical systems. Various attempts have
been performed in this direction, mainly at the nano-scale
level, where a cantilever can be capacitively coupled to a
superconducting two-level system [66–69].

Let us consider the case of ϕ = 0. The optomechan-
ical evolution encompassed by Ût alone is unable to give
rise to any non-classicality in the state of the mirror. This
is easy to check simply by tracing out the state of the atom
in Eq. (91), which would leave us with a statistical mix-
ture of two displaced mirror’s states. On the other hand,
a conditional process is able to project the coherence of
a quantummechanical superposition and simultaneously
get rid of the atomic degree of freedom [88–93]. In or-
der to illustrate our claim, we consider an initial state of
the system having the form ρ(0) = |φ〉〈φ| ⊗ ρM(0) where
|φ〉a = c0|0〉a + c1|1〉a is a pure state of the atom and ρM(0)
is an arbitrary state of the mechanical mode. We then
project the atomic part of the evolved state Ûtρ(0)Û†t onto
|φ〉〈φ|, thus post-selecting the mechanical state ρM(t) =
〈φ|Ût|φ〉ρM(0)〈φ|Û†t |φ〉. Therefore, the state of the mirror
undergoes an e�ective evolution driven by the operator

〈φ|Ût|φ〉 = |c1|2 1̂1 + |c0|2D̂(−iΥt). (97)

In the remainder of this paper, we consider again the case
where |φ〉a = |+〉a ≡ (|0〉 + |1〉)a/

√
2, which optimizes

the performance of our scheme terms of the degree of non-
classicality enforced in the mechanical subsystem. For an
initial coherent state of themirror, i.e. ρM(0) = |α〉〈α|M , ap-
plying the conditional time evolution operator in Eq. (97)
leads to |µ+〉M = N+(|α〉 + e−iΦ(t) |α − iΥt〉)M, where N+ is
the normalization factor. Depending on the value of Υt,
such states exhibit quantum coherences. Obviously, the

thermal convolution inherent in the preparation of mir-
ror’s state ϱM may blur them. Inwhat followswe prove that
this is not the case for quite a wide range of values of V.

The �gure of merit that we use to estimate non-
classicality is the negativity in the Wigner function
WM(µ) [µ = µr + iµi] associated with the mirror state re-
sulting from the measurement performed over the atomic
part of the system. Considering an initial thermal state of
the mirror and applying the conditional unitary evolution
operator given in Eq. (97), the Wigner function of the mir-
ror after the post-selection process is

WM(µ) = 2e−
2|µ|2+2Υtµi+Υ

2 t2

V

(1 + e− VΥ
2

2 )πV

×
[

cosh
(
Υ2t2 + 2Υtµi

V

)
+ e

Υ2 t2
2V cos(2Υtµr)

]
.

(98)

The behaviour of WM(µ) in the phase space is shown in
Fig. 23, where we clearly see the appearance of regions of
negativity, witnessing non-classicality of the correspond-
ing state as induced by our microscopic-to-mesoscopic
coupling. Interference fringes are created between two
positive Gaussian peaks (not shown in the �gure) corre-
sponding to the position, in the phase space, of mutu-
ally displaced coherent states. This reminds of the Wigner
function of a pure Schrödinger cat state although, as we
see later, the analogy cannot be pushed further. Remark-
ably, in contrast with the fragility of the nonlocality prop-
erties of the microscopic-mesoscopic state, WM(µ) has a
negative peak of −0.01 up to V ∼ 100, which implies
strong thermal nature of themirror state. For amechanical
system embodying one of themirrors of a cavity, ωm/2π ∼
5MHz is realistic. For V = 10 (100), this corresponds to
an e�ective temperature of 1mK (10mK), i.e. energies 10
(100) times larger than the ground-state energy of themir-
ror.

It is interesting to compare the mixed state resulting
from the thermal convolution to a pure state in Eq. (91)
(with ϕ = 0). As a measure of the closeness of two states,
we use quantum �delity between a mixed and a pure
state written as the overlap between the corresponding
Wigner functions FW = π

∫
d2µWPure(µ)WMix(µ), where

WPure(µ) [WMix(µ)] is the Wigner function of the pure
[mixed] state. FW is shown in Fig. 23 (d) against Υτ and
V. While the thermal e�ect reduces the value of the �delity
as V grows, the behaviour of FW against Υt is, surprisingly,
non-monotonic. At a given V, there is always a �nite value
of Υt associated with a maximum of FW . Remarkably, the
values of Υtmaximizing FW di�er from those at which the
Wigner function achieves its most negative value.
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(a) (b) (c) (d)

Fig. 23. (a)-(c)Wigner function of the conditional mirror state against ξr = Re(ξ ) and ξi = Im(ξ ), for V = 3 and d = 0. Panels (a), (b), (c)
correspond to Υt = 2, 3, 4 respectively. (d) Density plot of �delity against V and Υ. Darker regions correspond to smaller values of FW . (b)
Wigner function of the mirror under dissipation, for γ ∼ 0.1Υ and V = 5.

6.4 Finite temperature dissipative dynamics

So far, we have assumed a movable mirror of large me-
chanical quality factor. The progresses recently accom-
plished in fabrication processes guarantee very small me-
chanical dissipation rates. However, they are not yet negli-
gible and their e�ect should be considered in any proposal
for quantumness in optomechanical devices. We thus in-
clude mechanical losses in our analysis, looking for their
e�ects onto the non-classicality induced in the movable
mirror. We concentrate on the �nite-temperature dissipa-
tive mechanism described by

LV (ρ) = γ
2
[
(2b̂ρb̂†−{b̂†b̂, ρ})+(V−1)(b̂ρ−ρb̂, b̂†)

]
, (99)

which is the weak-damping limit of the Brownian-motion
master equation [47]. The density matrix ρ describes the
state of the atom-mirror system. The full master equation,
including the unitary part −i[Ĥe� , ρ], is easily translated
into a set of equations of motion for the mirror reduced
density matrix obtained by considering the projections
onto the relevant atomic states ρij = a〈i|ρ|j〉a (i, j = 0, 1).
These can then be recast as Fokker-Planck equations for
the Wigner functions Wij of such mirror’s state compo-

Fig. 24.Wigner function of the mirror under dissipation, for γ ∼
0.1Υ and V = 5.

nents. These read

∂tW(x, p, t) = MW(x, p, t) + L̃dW(x, p, t), (100)

where

W(x, p, t) =


W00(x, p, t)
W01(x, p, t)
W10(x, p, t)
W11(x, p, t)

 ,

M =
√

2ΥDiag
[
∂p , −

ix + ∂p
2 , ix + ∂p

2 , 0
]
,

L̃d =
[ γ

2 (x∂x + p∂p) + γ
4V(∂2

p2 + ∂2
x2 ) + γ

]
11,

(101)

where we have introduced the quadrature variables x =√
2Re(µ), p =

√
2Im(µ). Each of these equations preserves

the Gaussian nature of the corresponding Wigner func-
tion’s component, whose time-evolved form is taken from
the ansatz

Wij(x, p, t) ∝ [det(Dij)]−1/2e−
1
2 q

T
ijD

−1
ij qij+iΘij(t) (102)

with

qij =
(
x − xij
p − pij

)
, Dij =

(
σxij σxpij
σxpij σpij

)
(103)

parameterized by the time-dependent mean values xij , pij
and variances σx,p,xpij of the variables x, p and xp. We have
also introduced the time-dependent phases Θij’s which
account for the contributions from Φ(t) in Eq. (91). The
solution is readily found to be

∑
i,j=0,1 Wij(x, p, t) (apart

from the normalization factor), which gives back the non-
Gaussian character of the mirror’s state. The negativity of
the Wigner function can be studied at set values of γ and
T and chosing the time at which the ideal case achieves
the most negative value. The results are shown in Fig. 24,
wherewe see that non-classicality is found even for quite a
large value of γ/Υ. Clearly, this results from a subtle trade
o� between temperature and mechanical quality factor.
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Although small γ and T guarantee non-classicality, such
a behaviour is still present at γ/Υ ∼ 0.1 and for T well
above the ground-state one.

6.5 Feasibility analysis

In the proposal above, the dissipative part of the dynam-
ics induced by damping processes in themechanical oscil-
lator plays an important role, and the achievement of the
condition Υ ∼ γ is crucial. A comment about the possibil-
ity of reaching this regime is thus in order. For state-of-the-
artmechanical systems, typical values of γ are in the range
of a few Hz, as we have seen in the previous Sections of
this review. On the other hand, the e�ective coupling rate
Υ depends directly on the strength of the radiation pres-
sure interaction constant χ = (ωc/L)

√
~/2mωm . Let us

consider a mechanical modes having ωm/(2π) = 300KHz
and m ∼ 50ng placed in a cavity of L = 10mm [94–96]:
assuming g2Ω2/δ2∆2 ∼ 0.1 and ωc ∼ 1015Hz, we can
easily get Υ ∼ 1Hz. This value is indeed comparable to γ,
thus demonstrating the achievability of the conditions re-
quired by our proposal.

7 Conclusions and Outlook
This review aimed at providing an overview of some of
the possibilities for quantum-empowered tasks that can
be made possible by the adoption of a hybrid approach
to the dynamics of optically driven quantum mechanical
oscillators. We have illustrated speci�c examples of hy-
bridisation, ranging from the merging of a diluted BEC
into an optomechanical cavity to the magnetic interaction
between spinor atomic gases and mechanical cantilevers,
passing through the use of a single few-level atom as an
enforcer of mechanical non-classicality. Each of the in-
stances addressed in this paper aims at addressing an im-
portant class of problems in the area of quantum technolo-
gies: state preparation, the manipulation and control of
the inherently quantum features of an optomechanical de-
vice, and the detection of such properties. Needless to say,
our analysis is not exhaustive nor de�nitive: many are the
problems that have yet to �nd an appropriate addressing
in the context of hybrid quantum optomechanics, and we
have provided a set of suggestions that, we hope, would
raise the interest of the community working in related ar-
eas and, ultimately, will contribute to the full development
of such a promising architecture for quantum devices.
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