
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 147.163.21.158

This content was downloaded on 24/07/2014 at 13:46

Please note that terms and conditions apply.

Transitionless quantum driving in open quantum systems

View the table of contents for this issue, or go to the journal homepage for more

2014 New J. Phys. 16 053017

(http://iopscience.iop.org/1367-2630/16/5/053017)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/16/5
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Transitionless quantum driving in open quantum
systems

G Vacanti1, R Fazio1,2, S Montangero3,4, G M Palma5, M Paternostro6 and
V Vedral1,7,8
1 Center for Quantum Technologies, National University of Singapore, 1 Science Drive 2,
Singapore
2NEST, Scuola Normale Superiore & Istituto di Nanoscienze-CNR, I-56126 Pisa, Italy
3 Institut für Quanteninformationsverarbeitung, Universität Ulm, D-89069 Ulm, Germany
4Center for Integrated Quantum Science and Technology (IQST), Universities of Ulm/Stuttgart
and MPI for Solid State Research
5NEST, Istituto Nanoscienze-CNR & Dipartimento di Fisica e Chimica, Universita’ degli Studi
di Palermo, I-90123 Palermo, Italy
6 Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and
Physics, Queenʼs University, Belfast BT7 1NN, UK
7Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
8Department of Physics, National University of Singapore, 3 Science Drive 4, Singapore
E-mail: m.paternostro@qub.ac.uk

Received 29 January 2014, revised 24 March 2014
Accepted for publication 26 March 2014
Published 7 May 2014

New Journal of Physics 16 (2014) 053017

doi:10.1088/1367-2630/16/5/053017

Abstract
We extend the concept of superadiabatic dynamics, or transitionless quantum
driving, to quantum open systems whose evolution is governed by a master
equation in the Lindblad form. We provide the general framework needed to
determine the control strategy required to achieve superadiabaticity. We apply
our formalism to two examples consisting of a two-level system coupled to
environments with time-dependent bath operators.

Keywords: superadiabatic dynamics, quantum open system, quantum control

The adiabatic theorem in quantum mechanics states that a physical system remains in the
instantaneous eigenstate of the Hamiltonian that rules its dynamics, if a given perturbation
is acting on it slowly enough [1, 2]. The slower the time-dependence of the Hamiltonian
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the better the system is able to adapt to the corresponding changes. The implications of the
adiabatic theorem have found key roles in the context of quantum computation [3], in the
physics of quantum phase transitions (see [4] for a review), quantum ratchets, and
pumping.

Adiabatic dynamics is a way to control the evolution of the state of a quantum
system through the time-dependence of some Hamiltonian parameters, typically performed
varying appropriately chosen external potentials. As perfect adiabaticity would require
infinitely slow changes, the desired evolution can only be achieved approximately. In
general, non-adiabatic corrections, although possibly very small, should thus be accounted
for.

At the opposite side of the spectrum lies optimal quantum control [5], which relies on the
ability to engineer time-dependent Hamiltonians that allow to reach, in principle with unit
fidelity, a given target state. Optimal quantum control [6–8] has recently found very important
applications in quantum information processing, where it has been shown to be crucial for the
design of fast and high-fidelity quantum gates [9–13], the efficient manipulation of simple
quantum systems [14–16], and the state preparation of quantum many-body systems [17, 18].

A very interesting connection between adiabatic dynamics and optimal control stems
from a problem posed and solved in [19–22], and that can stated as follows: given a time-

dependent Hamiltonian ˆ ( )H t0 with instantaneous eigenstates φ ( )tn
, is it possible to

identify an additional term ˆ ( )H t1 such that the time-dependent Schrödinger equation

driven by ˆ = ˆ + ˆ( ) ( ) ( )H t H t H t0 1 admits φ ( )tn
as an exact solution? With the provision of

an explicit construction of ˆ ( )H t1 and the discussion of simple examples, [19–22] have
basically initiated a new field of investigations currently known as transitionless quantum
driving, shortcut to adiabaticity or superadiabatic dynamics. Protocols based on
superadiabatic dynamics have been applied to a variety of different situations in atomic
and molecular physics, cold atomic systems, and many-body state engineering. The field
has been recently reviewed in [23], while the experimental realizations have been reported
for artificial two-level quantum system realized with Bose–Einstein condensates in optical
lattices [24] and for nitrogen vacancies in diamonds [25].

To the best of our knowledge, the superadiabatic approach has only been considered
for closed quantum systems (see however [26–28]). Very recently, it was shown that when
applied to quantum many-body systems, transitionless quantum driving may be achieved
at the cost of highly non-local operations [29, 30]. Quite clearly, though, a rigorous
extension of the concept of superadiabaticity to open-system dynamics would be much
needed in order to enlarge the range of physical situations that can be addressed.

The provision of a framework for such generalization is exactly the subject of
this work. We reformulate the superadiabatic framework so as to adapt it to the case of an
open-system dynamics written in a general Lindblad form. Our approach will be built on
the definition of open adiabatic dynamics as given in [31] and will lead us to the statements
given in equations (12), (13) and (15), which represent the main results of our work. We
will then illustrate the effectiveness of our framework using two examples involving the
open dynamics of a single spin in a time-dependent environment.
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1. Unitary evolution

In order to set the ground for the discussion on superadiabatic dynamics for open quantum
system it is useful to rephrase the results in [22] using a different approach, which will be
perfectly suited for a generalization to the case of non-unitary evolutions.

Let us consider a system spanning a Hilbert space of dimension N and ruled by a time-

dependent Hamiltonian ˆ ( )H t with a discrete, non-degenerate spectrum. By choosing the time-

independent basis { }i =( ){ }i N1 ,..., , we can represent the Hamiltonian as

ˆ = ∑ ˆ( ) ( )H t i i H t j j
i j,

, and diagonalize it using the (time-dependent) similarity transfor-

mation

∑ φˆ =( ) ( )U t t i , (1)
i

i

where φ ( )ti
is the ith instantaneous eigenvector of ˆ ( )H t , associated to the eigenvalue ( )E ti . It

is straightforward to check that ˆ ˆ ˆ ≡ ˆ = ∑− ( ) ( ) ( ) ( ) ( )U t H t U t H t E t i i .
i i

1

d

Following [31], let us now consider the time-dependent Schrödinger equation

ψ ψˆ = ∂( ) ( ) ( )H t t i tt and transform it to the picture defined by ˆ − ( )U t
1

, which gives us

ψ ψˆ + ∂ ˆ ˆ = ∂
−⎡⎣ ⎤⎦( ) ( ) ( )H t i U t U t i (2)t td

1

d d

with ψ ψ= ˆ −
U .d

1
By splitting ∂ ˆ ˆ− ( ) ( )i U t U tt

1
into the sum of a diagonal term ˆ ′Hd and an off-

diagonal one ˆ ′H ,nd equation (2) is recast in the form

ψ ψˆ + ˆ + ˆ = ∂′ ′⎡⎣ ⎤⎦( ) ( ) ( )H t H t H t i . (3)td d nd d d

The explicit form of ˆ ′Hd and ˆ ′Hnd can be given as

∑ ∑ φ φˆ = ∂ ˆ ˆ = ˙′ −( ) ( ) ( )H t i i i U t U t i i i i i , (4)t i id

1

∑ ∑ φ φˆ = ∂ ˆ ˆ = ˙′
≠

−

≠
( ) ( ) ( )H t i i i U t U t j j i i j , (5)

i j
t

i j
i jnd

1

where we have dropped the explicit time dependence of the instantaneous eigenstates

φ{ }( )ti
. While ˆ ′ ( )H td encompasses the contribution that leads to the geometric phases [33],

adiabaticity is enforced when ˆ ′ ( )H tnd is neglected. This can be easily seen by noticing that both

ˆ ( )H td and ˆ ′ ( )H td are diagonal in the basis { }i and, by neglecting ˆ ′ ( )H tnd , different eigenvectors
will not be mixed across the evolution. In transitionless quantum driving, the goal is to find an

additional term ˆ ( )H ttqd such that the Schrödinger equation for the Hamiltonian ˆ + ˆ( ) ( )H t H ttqd

admits the adiabatic evolution of an eigenvector of ˆ ( )H t as an exact solution. From the
discussion above, it is straightforward to see that such additional term is given by
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ˆ = − ˆ ˆ ˆ′ −( ) ( ) ( ) ( )H t U t H t U t . (6)tqd nd

1

Indeed, by applying ˆ −
U

1
to both side of the Schrödinger equation for the Hamiltonian ˆ + ˆH Htqd,

it is straightforward to get ψ ψˆ + ˆ = ∂′⎡⎣ ⎤⎦( ) ( )H t H t i td d d d. That is, the non-adiabatic term

responsible for the coupling between different eigenspaces of ˆ ( )H t , which is usually neglected

in the adiabatic approximation, can be cancelled exactly by adding the term ˆ ( )H ttqd to the

original Hamiltonian. Needless to say, the explicit calculation of ˆ ( )H ttqd leads to the same

expression given in [22].

2. Superadiabatic dynamics: Lindblad dynamics

We are now in a position to generalize the framework discussed above to the case of non-
unitary evolutions. We will consider a general master equation in the Lindblad form ϱ = ϱ̇ [ ]
for the density matrix ϱ of the system. Here,  is the time-dependent superoperator describing
the non-unitary dynamics of the system and given by the general form

∑ Γ Γ Γ Γϱ = − ˆ ϱ + ˆ ϱ ˆ − ˆ ˆ ϱ
=

† †⎡⎣ ⎤⎦ ( ){ }[ ] ( ) ( ) ( ) ( ) ( )i H t t t t t,
1
2

2 , (7)
j

N

j j j j
1

with ˆ ( )H t the Hamiltonian of the system and Γ̂ ( )tj the operators describing the system-

environment interaction. Here · ·{ }, stands for the anticommutator.
The adiabatic dynamics in open system needs to be defined with care. In fact, due to the

coupling of the system with the environment, the energy-difference between neighbouring
eigenvalues of the Hamiltonian no longer provides the natural time-scale with respect to which
a time-dependent Hamiltonian could be considered to be slow-varying. Here we follow the
approach developed in [31], according to which adiabaticity of open systems is reached when
the evolution of the state of a system occurs without mixing the various Jordan blocks into
which  can be decomposed. The use of Jordan block decomposition is necessary due to the
fact that the Lindblad operator  might not be diagonalizable in general. Although many
important problems deal with diagonalizable Lindblad superoperators, a general treatment of
transitionless quantum driving in open systems requires the Jordan formalism. Explicit ad hoc
examples of non-diagonalizable Lindblad superoperators can be constructed even for simple
systems such a single qubit, as shown in [31]. Although for the sake of our analysis it is the
general formalism to be relevant, we stress that the search for less contrived instances is the
topic of current studies.

Equipped with this definition we are now ready to describe superadiabatic dynamics of
open systems. In order to use the formalism introduced above for the case of pure states
undergoing a unitary evolution, we need to write all superoperators as matrices and all density
matrices as vectors. Following [31, 32], we start by defining a time-independent basis in the
D2-dimensional space (where D is the dimension of the Hilbert space) of the density matrices as

σˆ ≡ ˆ{ }B i . This could consist, for example, the three Pauli matrices and the identity matrix in the

case of a single spin-1 2. Once we have defined the basis B̂, the density matrix can be transform
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into a ‘coherence vector’ living in a D2-dimensional space as ρ ρ ρϱ =
†( ), ,..., ,

D1 2 2 where

ρ σ= ˆ ϱ†⎡⎣ ⎤⎦Tr .
j j On the other hand, the Lindblad superoperator  becomes a ×D D2 2 time-

dependent matrix L(t) (which we will call a ‘supermatrix’) whose elements are given by

σ σ= ˆ ˆ†⎡⎣ ⎤⎦( )[ ]( )L t Tr .jk j t k With this notation, the master equation now reads

ϱ = ϱ̇( )L t . (8)

Although the supermatrix L(t) might be non-Hermitian, in which case it cannot be diagonalized
in general, it is always possible to find a similarity transformation C(t) such that L(t) is written
in the canonical Jordan form

= =− ⎡⎣ ⎤⎦( ) ( ) ( ) ( ) ( ) ( )L t C t L t C t J t J tdiag ,..., , (9)NJ
1

1

where ν ( )J t represents the Jordan block (of dimension νM ) corresponding to the the eigenvalue

λν ( )t of ( )L t . The number N of Jordan blocks is equal to the number of linear independent
eigenvectors of L(t) and the similarity transformation is given by

∑∑ σ=
ν μ

ν μ ν μ
= =ν

ν

ν ν
( ) ( )C t t , (10)

N M

1 1
, ,

where ν μν
{ }( )t, is a basis of right instantaneous quasi-eigenvectors of L(t) associated

with the eigenvalues λν{ }( )t . The set of right quasi-eigenstates ν μν
{ }( )t, is defined

through the equation

λ= +ν μ ν μ ν ν μ−ν ν ν
  ( ) ( ) ( ) ( ) ( )L t t t t t , (11), , 1 ,

where ν ( )t,0 represents the eigenvector of L(t) corresponding to the eigenvalue λν ( )t and

μ =ν μ{ }M1 ,..., , with μM the dimension of block μJ . On the other hand, σν μν{ }, are the vector

of the basis B introduced above with the index i now defined as μ= ∑ +ν
ν=

−
i M

k k0

1
( =M 00 ). The

inverse transformation − ( )C t1 (such that = =− − ( ) ( ) ( ) ( )C t C t C t C t1 1 ) can be defined in a
conceptually analogous way by considering the set of left instantaneous quasi-eigenvectors of

L(t). As the set ν μν
{ }( )t, embodies the basis where L(t) is in Jordan form, we

immediately get that = −( ) ( ) ( ) ( )L t C t L t C tJ
1 . Needless to say, when L(t) is diagonalizable the

same arguments and definitions above apply with νM becoming the multiplicity of the
eigenvalue λν and right (left) quasi-eigenvectors being promoted to the role of exact right (left)

eigenvectors of ( )L t .
Exploiting the formal equivalence between equation (8) and the (imaginary-time)

Schrödinger equation for non-Hermitian Hamiltonians, the same arguments illustrated above
in the context of unitary evolutions can be used here. We thus apply the transformation − ( )C t1 to
both side of equation (8). After some straightforward manipulation, the latter is rewritten in the
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form

+ + ϱ = ϱ̇′ ′⎡⎣ ⎤⎦( ) ( ) ( )L t L t L t (12)J J nd J J

which is analogous to equation (3) and where we have introduced

∑ σ σ=′ ν μ μ μ
ν ν

ν μν ν ν ν
( ) ( )L t t , (13)J , ,

,
,

∑ σ σ=′ ′′ ′
ν ν

ν μ μ μ
ν ν

ν μ
≠ ′

′ ′ν ν
ν ν′

( ) ( )L t t (14)nd , ,
,

,

with σ σ= ˙′
′

μ μ
ν ν

ν μ ν μ
−

′ ′ ′ν ν ν ν′
 ( ) ( ) ( )t C t C t,

,
,

1

, . In both equations (12) and (13), the pedex J

indicates that the matrix L(t) is in the Jordan form and the coherence vectors are transformed as

ϱ = ϱ−CJ
1 .

For open systems, the problem of transitionless quantum driving consists of finding an
additional term ( )L ttqd such that different Jordan blocks of L alone evolve independently under

the action of +( ) ( )L t L ttqd . Since the two terms ( )L tJ and ′ ( )L tJ preserve the Jordan blocks

structure, any admixture between different Jordan blocks is bound to arise from ′ ( )L tnd .
Therefore, by using the same approach sketched in the unitary case, we can infer the form of the
additional term ( )L ttqd as

= − ′ −( ) ( ) ( ) ( )L t C t L t C t . (15)tqd nd
1

equation (15) extends and generalizes the result valid for the unitary case (cf equation (24)) to
quantum open-system dynamics and is the main result of this work. Just like in the unitary case,

( )L ttqd encompasses the control that should be implemented so that the state of the system

remains, across the evolution, in an instantaneous eigenstate. The required control term could be
either on the unitary part of the dynamics (i.e. an additional Hamiltonian term), or in the non-
unitary one, which would require the engineering of a proper quantum channel. While we
identify a physically relevant condition that ensures that the correction term is of Hermitian
nature in the following paragraph, in the latter case there is no guarantee that the correction adds
up to the dynamics of the system so as to give a completely positive map9. When this is the
case, though, it is sufficient to add an effective damping term diagonal in the correction term,
large enough to re-instate complete positivity.

It is worth noting that, analogously to the case of adiabatic unitary dynamics, the term ′Lnd

cancels exactly the terms in the evolution that would be neglected when the adiabatic
approximation is enforced. By differentiating equation (11) it is possible to explicitly link the
correction term ′Lnd to the neglected terms under the adiabatic approximation. For example, for
unidimensional Jordan blocks (i.e. for a fully diagonalizable Lindblad operator with non-
degenerate spectrum) we can write the off-diagonal matrix elements of the correction term as [31]

New J. Phys. 16 (2014) 053017 G Vacanti et al

6

9 This is the case, for instance, for a spin-1 2 particle subjected to a magnetic filed along the z-axis and a dephasing
mechanism rotating at frequency ω in the z = 0 plane. In such instance, it is straightforward to see that the
superadiabatic correction is not Hermitian and that the Kossakowski matrix of the overall master equation is, in
general, not positive definite.



λ λ
˙ =

˙

−
   

( ) ( )
( ) ( ) ( )

t t
t L t t

. (16)i j

i j

j i

The general case of non-trivial Jordan block can be treated analogously, although the correction
term would assume a more complicated (although conceptually equivalent) expression (cf [31]
for more details about the adiabatic approximation in open systems).

We now address the question of whether is possible to provide a necessary condition for
the Hermitian nature of the correction term in equation (15) is always Hermitian. Let us now
consider a Lindblad superoperator on the form

∑ρ
γ

Γ ρΓ Γ Γ ρ= ˆ ˆ − ˆ ˆ† †⎡
⎣⎢

⎤
⎦⎥ { }[ ] ( ) ( ) ( ) ( )t t t t

2
2 , , (17)

k

k
k k k k

where we assumed Γ Γˆ = ˆ ˆ ˆ†( ) ( ) ( )t U t U tk

k

0 for a given global unitary operator ˆ ( )U t and time-

independent jump operators Γ̂ .
k

0 By moving to a rotating frame defined by ˆ ( )U t and calling

ρ ρ˜ = ˆ ˆ †( ) ( ) ( )U t t U t the density matrix in such a frame, we get the Lindblad equation

∑ρ γ Γ ρΓ Γ Γ ρ˜̇ = ˆ ˜ ˆ − ˆ ˆ ˜ − ˆ̇ ˆ ϱ̃
†⎡

⎣⎢
⎤
⎦⎥ ⎡⎣ ⎤⎦{ } ( ) ( )i iU t U t

2
2 , , . (18)

k

k k k k

0 0 0 0

That is, in the rotating frame generated by ˆ ( )U t , the time dependence of the Lindblad operator
is cancelled, and different eigenvectors will evolve independently. This simple argument shows
that, whenever the non-unitary part of the evolution of a system is governed by jump operators
such as Γ ( )tk , the superadiabatic correction is provided by the Hamiltonian term

ˆ = ˆ̇ ˆ †( ) ( ) ( )H t iU t U t .tqd A more formal proof is given in the appendix.

3. Examples

In order to illustrate the general formalism described above, let us now discuss some simple
examples involving a single-spin system. The first addresses the case of a single spin affected
by a dissipative mechanism described by the super operator

γ σ σ σ σϱ = ˆ ϱ ˆ − ˆ ˆ ϱ− + + −⎡⎣ ⎤⎦ [ ] { }
2

2 , (19)n n n nad

σ σˆ = ˆ = ↓ ↑− + †( )n n n the lowering ladder operator along the direction n, and ↓ ↑{ }, the two

spin states of the system. The dissipation occurs along a direction in the single-spin Bloch
sphere identified by the unit vector θ ϕ θ ϕ θ= ( )n sin cos , sin sin , cos with θ and ϕ the
azimuthal and equatorial angle, respectively. In order to write explicitly both the Liouvillian
supermatrix θ ϕ( )L , and the corresponding coherence vector, we choose the ordered basis

σ σ σˆ ≡ ˆ ˆ ˆ ˆ( )B , , ,x y z . Let us now consider the case in which the direction of the dissipation n

precesses around the z-axis of the Bloch sphere at a constant angular velocity ω, maintaining a
fixed azimuthal angle θ0, and a constant damping rate γ. By setting ϕ ω= t and employing the

result in equation (15), we can find the explicit form of the 4 × 4 supermatrix θ ω( )L t,tqd

required to achieve superadiabaticity in this example. An explicit calculation shows that a

New J. Phys. 16 (2014) 053017 G Vacanti et al

7



purely Hamiltonian contribution of the form ϱ = − ˆ ϱ⎡⎣ ⎤⎦ [ ] ( )i H t ,tqd tqd with

σˆ = × ˙ · ˆ( ) ( )H t n ntqd , is sufficient to achieve superadiabaticity. Indeed, the correction term is

a magnetic field which at any instant induces a rotation that cancels the time-dependence of the
original Lindblad superoperator. Being equation (19) a particular case of the more general

expression in equation (17), the correction term corresponds to ˆ = ˆ̇ ˆ †( )H t iUU ,tqd as expected.

Let us now consider a simple example involving two qubits. We start by designing a
Lindblad operator which generate a time evolution map whose fix point is a Bell state

ψ = +( ) ( )1 2 00 11 . Such state can be obtain by applying a unitary operation Û to the

state 00 , where Û represent an Hadamard transformation on one of the qubit followed by a C-

NOT gate. The operation Û can be represented by the 4 × 4 matrix

ˆ = −
−

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

U
1

2

1 0 1 0
0 1 0 1
0 1 0 1
1 0 1 0

(20)

The Lindblad map having the state ψ as a fix point has the form given in equation (17) with
jump operators

Γ Γ= ˆ ⊗ ˆ ˆ = ˆ ˆ ⊗ ˆ† † ( ) ( )U U U U0 1 ; 0 1 (21)1 1 2 2 1 2

Let us now consider a unitary operation

θ θ
θ θ

θ θ
θ θ

ˆ =
−

−

ϕ

ϕ

ϕ

ϕ

−

−

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

( )U t

e
e

e
e

cos 0 sin 0
0 cos 0 sin
0 sin 0 cos
sin 0 cos 0

(22)

i

i

i

i

This unitary operation represents a generalization of the one given in equation (20) in which the
Hadamar transformation is substituted by a general rotation specified by the angles ϕ and θ.
The case we are interested in is the one in which such angles are time-dependent. For simplicity,
we assume ϕ = 0, so the only time-dependent parameter is θ ( )t . This means that the Jump

operators Γ ( )tk are now time dependent, with the time dependence included in the parameter

θ ( )t .
The scenario we consider is the following: we consider a Lindblad whose fix point is a

particular state, for example ψ = +( )( ) ( )t 1 2 00 11 ,0 which correspond to

θ π=( )t 4,0 with t0 the time at which the system has reached such state. At this point, we

can change the parameter θ, and consequently the jump operators Γ ( )t .k In such a way, the
stationary state of the system can be dragged from the initial state

ψ = +( )( ) ( )t 1 2 00 110 to the state ψ θ θ= +( )( ) ( ) ( )t t tcos 00 sin 11 at

time t. If the changes in the parameter θ ( )t are slow, the system will remain in the instantaneous
fix point at all times t with good approximation. On the other hand, by implementing the super-
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adiabatic protocol for open systems, we can change the prepared state exactly and without the
constrain of slowly changing jump operators.

In this particular example, the super-adiabatic correction needed to obtain an exact driving

can be easily calculated as ˆ̇ ˆ †( ) ( )iU t U t . Using equation (22) with ϕ = 0, the correction is given
by

θ
θ

θ
θ

= ˆ̇ ˆ =

− ˙
− ˙

˙
˙

†

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

H iUU

i
i

i
i

0 0 0
0 0 0
0 0 0

0 0 0

(23)tqd

which can be written as

θ= − ˙ + +( )H i 00 11 01 10 h.c. (24)tqd

4. Conclusions

We have proposed the extension of superadiabatic dynamics to systems undergoing an
explicitly open evolution. Although we have considered, for the sake of simplicity, examples
involving only a small number of spins, the method that we have proposed is entirely general
and can indeed be applied to instances of more complex systems. For example, we foresee that
superadiabatic techniques for open system will play a key role in the context of dissipative
quantum state engineering [34–39] and in the emerging field of thermodynamics of quantum
systems. A promising result in this sense is provided by [40], where the design of superadiabatic
quantum engines has been reported. Moreover, in general, the class of problems for which the
time-dependent Lindblad superoperator admits one non-degenerate Jordan block with
eigenvalue λ = 00 for any t is of particular interest in the context of transitionless quantum
driving. Indeed, in this cases the system admit a unique stationary state for any time. The
correction term, in such case, can be seen as the one needed to keep the system in its exact
stationary state throughout the whole evolution.
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Appendix

For simplicity, we assume that the Lindblad operator is diagonalizable. This is the case
considered by Kraus et al in the context of quantum state preparation of a chain of qubits [34].
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However, the proof can be generalize to the case in which the Lindblad admits only a Jordan
block decomposition.

Let us consider a Lindblad operator in the general form given in equation (17) with the

jump operators given by Γ Γ= ˆ ˆ†( ) ( ) ( )t U t U t .k k
0 Following [34], we notice that the problem of

finding the instantaneous eigenstates of equation (17) can be reduced to the problem of finding
the eigenstates for the time-independent Lindblad operator at time t .0 Let us denote by

{ }( )
n
0 the eigenstates of the time-independent Lindblad operator Γ{ }k

0 and by{ }D( )
n

0 the

corresponding eigen-matrices, i.e.

λ=Γ
⎡⎣ ⎤⎦{ } D D . (A.1)( ) ( )

n n n
0 0

k
0

The set of matrices { }D( )
n

0 forms a basis in  ( ) (this is also true for the set of quasi-

eigenstates of Γ{ }k
0 when the Lindblad operator is not diagonalizable). Moreover, the

eigenstates of the time-dependent Lindblad operator Γˆ ˆ†{ },( ) ( )U t U tk
0 which we will denote by

{ }( )tn and { }( )D t ,n can be found as [34]

= ˆ ˆ†( ) ( ) ( )D t U t D U t . (A.2)( )
n n

0

As above, this relation also hold in the case of non-diagonalizable Lindblad operators for the
quasi-eigenstates. Equation (A.2) gives the important link between the eigenvectors of  at the

initial time t0 (indeed, we choose the initial time such that ˆ = ( )U t0 ) and the eigenstates at a
generic time t.

Let us now prove that the general correction term ˙ −
C C

1
corresponds to an Hamiltonian

term ˆ̇ ˆ †
i UU if the jump operators can be written in the form Γ Γ= ˆ ˆ†( ) ( ) ( )t U t U t .k k

0 Since we are
allowed to choose any time-independent basis for describing the system in Banach space, we

pick the basis of quasi-eigenvectors of  at time t ,0 i.e. the set of matrices{ }D .( )
n

0 We then have

that

∑ ∑= =−   ( ) ( )C t C t, , (A.3)( ) ( )

n
n n

n
n n

0 1 0

∑˙ = ˙−    ( ) ( )C C t t . (A.4)( ) ( )

n m
n m n m

1

,

0 0

By definition, the matrix ˙ −
C C

1
corresponds to a superoperator ρ ( ) through the relation

˙ =− †⎡⎣ ⎤⎦ { }( )C C Tr D D . (A.5)( ) ( )
i j

i j

1

,

0 0

From equation (A.3), we also have

˙ = ˙−⎡⎣ ⎤⎦  ( ) ( )C C t t . (A.6)
i j

i j

1

,
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This can be written in terms of density matrices as

˙ = ˙− †⎡⎣ ⎤⎦ { }( ) ( )C C t tTr D D . (A.7)
i j

1

,
i j

Using equation (A.2), this can be written as

˙ = ˆ̇ ˆ + ˆ ˆ̇ ˆ ˆ =− † † † † †⎡⎣ ⎤⎦ { }( )C C Tr U D U U D U U D U (A.8)( ) ( ) ( )
i j

1

,
i
0

i
0

j
0

= ˆ̇ ˆ ˆ ˆ + ˆ ˆ̇ ˆ ˆ =
† † † † † †{ }( { }Tr U D UU D U Tr U D UU D U (A.9)( ) ( ) ( ) ( )

i
0

j
0

i
0

j
0

= ˆ ˆ̇ + ˆ̇ ˆ =† † † †{ } { }(Tr D D UU Tr D UU D (A.10)( ) ( ) ( ) ( )
i
0

j
0

i
0

j
0

= ˆ ˆ̇ + ˆ̇ ˆ† † †{ }( )(Tr D D UU UU D . (A.11)( ) ( ) ( )
i
0

j
0

j
0

As Û is unitary, we have that

= ˙ = ˆ ˆ̇ = ˆ̇ ˆ + ˆ ˆ̇ ⟹ ˆ ˆ̇ = − ˆ̇ ˆ† † † † † ( )0 UU UU UU UU UU . (A.12)

Substituting in equation (A.8), we obtain

˙ = ˆ̇ ˆ − ˆ̇ ˆ− † † †⎡⎣ ⎤⎦ { }( )(C C Tr D UU D D UU . (A.13)( ) ( ) ( )
i j

1

,
i
0

j
0

j
0

Using the definition given in equation (A.5), the superoperator ρ ( ) corresponding to ˙ −
C C

1
is

then given by

ρ ρ= − ˆ̇ ˆ †⎡⎣ ⎤⎦ ( ) i iUU , . (A.14)
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