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Fibrosis results from inflammatory tissue damage and
impaired regeneration. In the context of bleomycin-
induced pulmonary fibrosis, we demonstrated that
the matricellular protein termed secreted protein
acidic and rich in cysteine (SPARC) distinctly regu-
lates inflammation and collagen deposition, depend-
ing on its cellular origin. Reciprocal Sparc�/� and
wild-type (WT) bone marrow chimeras revealed that
SPARC expression in host fibroblasts is required and
sufficient to induce collagen fibrosis in a proper in-
flammatory environment. Accordingly, Sparc�/�

>WT chimeras showed exacerbated inflammation
and fibrosis due to the inability of Sparc�/� macro-
phages to down-regulate tumor necrosis factor pro-
duction because of impaired responses to tumor
growth factor-�. Hence, the use of bone marrow cells
expressing a dominant-negative form of tumor
growth factor-� receptor type II under the monocyte-
specific CD68 promoter, as a decoy, phenocopied
Sparc�/� donor chimeras. Our results point to an
unexpected dual role of SPARC in oppositely influ-
encing the outcome of fibrosis. (Am J Pathol 2011,

179:3000–3010; DOI: 10.1016/j.ajpath.2011.08.027)

Tissue remodeling and repair are characterized by epi-
thelial to mesenchymal transition. Excessive inflammatory
responses in tissues may lead to prominent cell destruc-
tion that exceeds the intrinsic regenerative potential of
the parenchyma stem cell reservoir. Subsequently, fi-
brotic tissue can occupy the area of impaired regenera-

tion. Although this form of repair does not replace the

3000
tissue or organ function (eg, myocardial scarring after
infarction), the process is, in most cases, controlled and
its regulation dependent on the resolution of the under-
lying inflammatory spur. The matricellular glycoprotein
termed secreted protein acidic and rich in cysteine
(SPARC) has a key role in extracellular matrix (ECM)
assembly and molding. Consistently, SPARC has been
implicated in the pathogenesis of several fibrotic disor-
ders, such as adipose tissue fibrosis,1 hepatic fibrosis,2,3

lung fibrosis,4 and scleroderma.5 This notion comes from
data generated in Sparc�/� mice or gene-silencing strat-
egies in models of skin, liver, and pulmonary fibrosis.
Accordingly, Sparc�/� mice were protected from bleo-
mycin-induced pulmonary fibrosis6 and adenoviral-medi-
ated inhibition of SPARC, or intratracheal instillation of
small-interfering RNA attenuated pulmonary fibrosis in
rats and mice, respectively.7,8 In this setting, SPARC
function is mainly linked to the regulation of tumor growth
factor-�1 (TGF-�1) signaling and collagen production by
fibroblasts. Nevertheless, contrasting results show in-
creased lung fibrosis in Sparc�/� mice after bleomycin
administration,9 a condition that was associated with an
increased inflammatory cell infiltration. We have previ-
ously shown that the absence of SPARC exacerbated
contact hypersensitivity10 and favored leukocyte infiltra-
tion into the tumor parenchyma.11 Said and colleagues
reported that SPARC is able to ameliorate tumor-associ-
ated inflammation in the setting of ovarian cancer.12

These findings suggest that SPARC may play contrasting
roles, depending on its cellular source and the patholog-
ical setting, by either promoting or attenuating the inflam-
matory damage and causing parenchymal fibrosis.
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The aim of this work was to dissect the effector and
regulatory role of SPARC in fibrotic diseases. To this end,
we used the well-characterized bleomycin-induced pul-
monary fibrosis model in mice, which recapitulates the
disease observed in the clinical setting of patients receiv-
ing bleomycin as a chemotherapeutic agent.13 This pro-
totypical mouse model is used for studying inflammation-
engendered organ fibrosis and has already generated
contradictory results when Sparc�/� mice were used.6,9

We show that SPARC, in the context of pulmonary
fibrosis, exerts different functions, depending on the cell
of origin. Particularly, through bone marrow transplanta-
tion (BMT) experiments, we demonstrated that SPARC
produced by bone marrow–derived leukocytes limits fi-
brosis by reducing the extent of inflammation, whereas
SPARC from fibroblasts or fibrocytes sustains fibrosis,
promoting collagen assembly. We also show that the
anti-inflammatory activity of SPARC is dependent on its
regulation of TGF-� signaling on macrophages.

To our knowledge, this is the first demonstration of the
dual function of the matricellular protein SPARC in the
regulation of tissue stroma homeostasis. Our observation
adds a new insight into the combined and opposite anti-
inflammatory and profibrotic effect of TGF-�.

Materials and Methods

Animals

BALB/cAnNCrl mice, 8 to 10 weeks old, were pur-
chased from Charles River Laboratories (Calco, Italy).
CNCr.129S(B6)-Sparctm1Hwe mice were developed in
our institute by backcrossing B6;129S-Sparctm1Hwe (pro-
vided by Dr. Chin Howe, Wistar Institute, Philadelphia,
PA) to BALB/cAnNCrl mice for 12 generations before
intercrossing them.11 Thy1a mice, on unspecified BALB/c
background (originally provided by Dr. Hyam Levitsky,
Johns Hopkins University, Baltimore, MD) were crossed
to BALB/cAnNCrl mice at least for 6 generations. Animal
experiments were authorized by the Institutional Ethical
Committee for Animal Use. Mice were housed in filtered
top caging, and room sentinels were checked for patho-
gens every 6 months by Charles River Laboratories staff.
Viral pathogens that are excluded are as follows: mouse
hepatitis virus), mouse parvovirus, mouse encephalomy-
elitis virus, pneumonia virus of mice, sendai virus, reovi-
rus-3, Hantaan virus, lymphocytic choriomeningitis virus),
mouse adenovirus, minute virus of mice, rotavirus, polyo-
mavirus, K virus, ectromelia virus, mouse thymic virus,
and mouse cytomegalovirus. Excluded bacterial agents
are as follows: Mycoplasma pulmonis, cilia-associate re-
spiratory bacillus, Citrobacter rodentium, and Salmonella
sp. In addition, Helicobacter spp. and mouse norovirus
are also tested in sentinels but are not excluded agents.

Generation of Bone Marrow Chimeras

Chimeric Sparc�/� (Thy 1b)�wild type (WT) (Thy 1a) and
WT (Thy 1a)�Sparc�/� (Thy 1b) mice (hereafter referred to
as WT�KO and KO�WT) were obtained as previously

described.11 Engraftment was verified 6 to 8 weeks after
BMT by staining peripheral blood mononuclear cells with
fluorescein isothiocyanate–conjugated anti-mouse Thy
1a (CD90.1; Becton Dickinson, Franklin Lakes, NJ) and
phycoerythrin-conjugated anti-mouse Thy1b (CD90.2,
Becton Dickinson), as well as isotype control fluorescein
isothiocyanate– and phycoerythrin-conjugated mouse
IgG2a. Bone marrow cells expressing the dominant neg-
ative form of TGF-� receptor II (TGF-�RII) under the
monocyte-specific CD68 promoter have been obtained
by infection with the lentiviral CD68DNTGFBRII vector
(see below).

Generation of WT and Sparc�/� Fibroblasts

Dermal fibroblasts from newborn mouse skin were pre-
pared according to the method of Regnier et al.14 The
dorsal skin from 1- to 3-day-old mice was incubated in
0.2% trypsin in PBS at 37°C for 1 hour. Dermal fibroblasts
were produced by digestion of muscle and dermis in
HBSS solution containing 0.1% collagenase and 0.1%
hyaluronidase, followed by filtration, centrifugation, and
resuspension. Viable cells were plated at 2 to 5 � 106

cells/mL in 50-mm-diameter plastic Petri dishes contain-
ing Dulbecco’s modified Eagle’s medium were supple-
mented with 10% fetal calf serum. Fibroblasts from both
WT and Sparc�/� mice were nontumorigenic when in-
jected into BALB/c mice. To assess fibroblast prolifera-
tion in vitro, we used spectrophotometric assay,15 using
1% methylene blue dye in 0.01M borate buffer, pH 8.5,
according to Colombo et al.16 Fibroblast migration to-
ward bovine fibronectin (Sigma-Aldrich, St. Louis, MO)
was evaluated by using Transwell supports (Corning,
Lowell, MA) as previously described.17

Generation of WT and Sparc�/� Macrophages

WT and Sparc�/� macrophages were obtained from
bone marrow precursors by plating them in the presence
of 10 ng/mL of granulocyte-macrophage colony-stimulat-
ing factor and 10 ng/mL of IL-4. On days 2, 4, and 6,
floating cells consisting mainly of dendritic cells were
eliminated and supplemented medium was replaced. On
day 7, up to 90% of the adherent population consisted of
macrophages as determined by flow cytometry analysis
using the F4/80-specific monoclonal antibody (Caltag-
Medsystems, Buckingham, UK).

Lentiviral Vector Construction

For the generation of CD68DNTGFBRII vector, DNA was
obtained from transgenic mice expressing DNTGFBRII
under the human CD2 promoter (gift of Ronald E. Gress,
National Institutes of Health, Bethesda, MD). By PCR, the
DNTGFBRII cassette was amplified and restriction sites
for AgeI and SalI were added at 5= and 3= ends (forward
primer: 5=-TTACCGGTAGAAGTCCCAACCCAGCTTT-3=;
reverse primer: 5=-AATTGTCGACATGGCTGAGTTCG-
AAGA-3=). The PCR product was inserted into
pRRLsinCD68GFP-hPGK-�NGFR-WPRE lentiviral vec-
tor by AgeI/SalI cloning substituting the GFP with the

DNTGFBRII sequence.
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In Vivo Treatments

For bleomycin treatment, animals were anesthetized with
i.p. injection of ketamine (100 mg/kg) and xylazine (5
mg/kg). The trachea was exposed in sterile conditions,
and 0.15 U per mouse of 20 g of bleomycin or saline
solution were instilled in 50 �L of final volume. The skin
incision was closed and mice allowed to recover under a
warming lamp. Mice were sacrificed 16 days after bleo-
mycin instillation and their lungs removed for histologic
analysis, fluorescence activated cell sorter (FACS) anal-
ysis, or measurement of the hydroxyproline (HP) content.
For in vivo antibody treatment, mice were administered
200 �g of rat anti-mouse tumor necrosis factor (TNF) V1q
(provided by Daniela Männel, University of Regensburg,
Regensburg, Germany) every 3 days, starting 1 day be-
fore bleomycin instillation. Experiments requiring V1q ad-
ministration in KO�WT chimeric mice have been per-
formed on a total of 20 mice in two consecutive
experiments. In each experiment, six mice were treated
with the antibody and four mice with saline as control.

Lung HP Content

Lung HP content was determined spectrophotometrically
according to Kivirriko et al.18 Briefly, lungs were homog-
enized in a solution of trichloroacetic acid and centri-
fuged for 10 minutes at 4000 � g. The pellet was washed
and hydrolyzed for 16 hours in HCl (6N) at 100°C. The HP
content was assessed colorimetrically at 561 nm with
p-dimethylaminobenzaldehyde, quantified in micrograms
and normalized for lung weight. Data are shown as total
HP content.

Histopathologic Analysis

To allow for morphologic analysis, lungs were fixed in situ
by intratracheal injection of 10% neutral buffered formalin
after mice sacrifice. The trachea was cannulated and the
lungs fixed in situ with 10% formalin at a constant rate.
The optimal instilled volume for mouse lungs was 0.3 mL
for 20 g of weight.19 Lungs were removed, maintained 24
hours in formalin, and then embedded in paraffin. Sec-
tions 3 to4 �m thick were cut from paraffin blocks and
stained with H&E, Masson’s trichrome, and periodic acid-
Schiff stain. Grading of the tissue damage was performed
by a semiquantitative scoring system based on the fol-
lowing variables: thickening of the alveolar wall, extent of
the interstitial inflammatory infiltrate, extent of fibroblast
proliferation, extent of epithelial proliferation, extracellular
collagen deposition, intracellular collagen amount, and
overall extent of the parenchymal damage. Each variable
was scored from 0 (normal samples) to 3, according to
the severity of changes. The overall histologic damage
score was calculated by summing the mean scores of
each variable. All of the samples were analyzed by two of
the authors with specific training in mouse pathology
(S.S. and C.T.) in a blinded fashion under a Leica
DM3000 optical microscope (Leica Microsystems GmbH,

Wetzlar, Germany), and microphotographs were col-
lected using a Leica DFC320 digital camera (Leica Cam-
era AG, Solms, Germany).

For histopathologic and immunofluorescence (IF) anal-
ysis, a total of 35 bleomycin-treated WT and Sparc�/�

mice (divided into five experiments) were used. A total of
15 saline-treated mice per group were also analyzed
(three mice per experiment). Each experiment was di-
vided as follows: lungs from four bleomycin-treated mice
were fixed in formalin and those from three mice embed-
ded in optimal cutting temperature (OCT) compound
(Sakura, Torrance, CA) and lungs from two saline-treated
mice were fixed in formalin and those from one mouse in
OCT as control.

Histopathologic analysis and IF analysis on bone mar-
row chimeras were similarly performed on 30 bleomycin-
treated and 15 saline-treated mice per group.

Histopathologic analysis on bleomycin-treated WT
mice transplanted with bone marrow cells expressing the
dominant negative form of TGF-�RII under the monocyte-
specific CD68 promoter has been performed on a total of
10 mice, from two independent experiments.

The following antibodies have been used for IF and/or
immunohistochemistry (IHC): polyclonal goat anti-SPARC
antibody (AF942; R&D, Minneapolis, MN), monoclonal
antibody to CD90.1 and CD90.2 (Becton Dickinson),
monoclonal antibody to CD68 (Hycult Biotech, Plymouth
Meeting, PA), monoclonal antibody to prosurfactant pro-
tein C (Millipore, Billerica, MA), polyclonal rabbit to anti-
fibroblast specific protein 1 (FSP1) (Abcam, Cambridge,
MA), anti–collagen types I and IV (Millipore), polyclonal
antibody to �-smooth muscle actin (�-SMA; Sigma-Al-
drich), and monoclonal rat anti-mouse panreticular fibro-
blast marker (clone ER-TR7; Cedarlane, Burlington, NC).

Western Blot Analysis

WT and Sparc�/� fibroblasts were washed twice with
cold PBS buffer and lysed in the RIPA buffer (1% NP-40,
0.5% sodium deoxycholate, 0.1% SDS) added with a
protease inhibitor cocktail (Roche, Milan, Italy). Cell ly-
sates were microcentrifuged at 14,000 � g for 20 minutes
at 4°C and supernatants collected and stored at �80°C.
Protein concentration in each sample was determined by
the BCATM Protein Assay kit (Thermo Fisher Scientific,
Waltham, MA). Cell lysates containing equal amounts of
protein (25 �g) were analyzed by SDS-PAGE on pre-
casted minigels (Invitrogen, Carlsbad, CA) and proteins
transferred to a nitrocellulose membrane (GE Healthcare,
Waukesha, WI). Nonspecific binding sites were blocked
in 5% nonfat dry milk in Tris-buffered saline–Tween (100
mmol/L Tris, 0.9% NaCl, pH 7.5, 0.1% Tween 20) solution.
Membrane was incubated overnight at 4°C with a poly-
clonal rabbit anti–collagen type I antibody (1:600; Milli-
pore) or a polyclonal monoclonal antibody to SPARC
(R&D), washed three times each for 5 minutes with Tris-
buffered saline containing 0.1% Tween 20, and then in-
cubated with horseradish peroxidase–conjugated anti-
body (1:2500; Zymed, San Francisco, CA) for 1 hour at
room temperature. After washing, blots were developed
with an enhanced chemiluminescence system (ECL-plus;

GE Healthcare).



SPARC Roles in Inflammation and Fibrosis 3003
AJP December 2011, Vol. 179, No. 6
For Western blot analysis of TNF, 20-�m cryostat sec-
tions were obtained from snap frozen whole-lung tissue
and collected in 1.5-mL tubes. Sections were then ho-
mogenized in ice-cold lysis buffer (RIPA buffer without
urea). Equal amounts of total protein (25 �g) were loaded
in each lane. Blots were blocked and incubated overnight
at 4°C with a monoclonal rat anti-mouse TNF antibody
(Becton Dickinson). Protein bands were quantified by
Image Quant 5.2 (GE Healthcare, Milan, Italy).

IF and Confocal Microscopy

Frozen cryostat sections were fixed in acetone, dried,
and incubated 20 minutes with a blocking 10% fetal calf
serum solution. Sections where then incubated 1 hour
with the primary antibody, washed, and incubated 40
minutes with Alexa Fluor–conjugated secondary anti-
body. For IF analysis of intracellular antigens, a permea-
bilization step in 0.1% Tween and 1% fetal calf serum
solution was performed. Slides were analyzed with a con-
focal microscopy (Microradiance 2000; Bio-Rad Labora-
tories, Hercules, CA) equipped with Ar (488 nm) and
HeNe (543 nm) lasers. Confocal images (512 � 512
pixels) were obtained using a �60 oil immersion lens and
analyzed using ImagePro 6.3 software. Reported images
represent extended depth of field from 15 to 16 frames in
stack (0.5-�m step); a focus region was selected for
maximum intensity. The pinhole diameter was regulated
according to the value suggested by the acquisition soft-
ware to obtain the maximum resolution power.
FACS Analysis

For FACS analysis cell suspensions were obtained by
lung digestion with a collagenase IV/elastase (Worthing-
ton Biochemical, Lakewood, NJ) solution for 90 minutes
at 4°C. The suspensions were filtered by a cell strainer
(BD, Franklin Lakes, NJ), washed, resuspended in 1�
PBS, and stained with the indicated monoclonal antibod-
ies. FACS analysis was performed using BD FACSCalibur
or FACSCanto from Becton Dickinson.

Results

Reduced Fibrosis, Despite High Inflammation,
Characterizes the Lungs of Sparc�/� Mice
Instilled with Bleomycin

WT and Sparc�/� mice were treated with bleomycin or
saline by intratracheal instillation and sacrificed 16 days
later. Histologic analysis and collagen accumulation,
evaluated as HP content, showed different outcomes in
the two strains. WT mice developed foci of pulmonary
fibrosis with an increased number of fibroblasts, intersti-
tial collagen, and alveolar distortion (Figure 1A). In con-
trast, Sparc�/� mice developed a parenchymal damage
characterized by inflammatory infiltration (Figure 1A) that
was not associated with foci of fibroblast accumulation or
collagen deposition. According to such pictures in
Sparc�/� mice, FACS analysis revealed that nearly the
50% of the cells from bleomycin-treated lungs were
CD3� T cells (44.82% � 5.4%), whereas only 16.53% �
9.4% were fibroblasts (�-SMA� or FSP1�) (see Supple-

Figure 1. Bleomycin-induced lung injury in WT
and Sparc�/� mice. A: Representative photomi-
crographs of the lung obtained 16 days after
bleomycin (c and d: original magnification,
�100; e and f: original magnification, �200) or
saline (a and b: original magnification, �50) in-
stillation. Pictures show conspicuous leukocyte
infiltration in Sparc�/� mice (right) associated
with milder fibrosis compared with WT mice
(left). Lung fibrosis in WT (g) but not Sparc�/�

mice (h) is also associated with the presence of
�-SMA� myofibroblasts (arrowhead). In
Sparc�/� lungs �-SMA antibody stained only
perivascular and peribronchial cells (arrows).
B: Lung HP content in bleomycin-treated mice.
Representative experiments of three experi-
ments performed with seven mice per experi-
ment for bleomycin-treated WT and Sparc�/�

mice and four mice per experiment for saline-
treated WT and Sparc�/� mice. Mean � SD
values are shown. Bleomycin-treated WT mice
had significantly more collagen than Sparc�/�

mice (Mann-Whitney U-test); *P � 0.0175. C:
Confocal immunofluorescence analysis of
SPARC expression in bleomycin-treated WT
lungs. In fibrotic areas, SPARC (red signal) ex-
pression is associated with fibroblasts (panre-
ticular fibroblast marker monoclonal antibody),
infiltrating CD45� leukocytes, and CD68� mac-
rophages (original magnification, �630).



3004 Sangaletti et al
AJP December 2011, Vol. 179, No. 6
mental Figure S1A at http://ajp.amjpathol.org). On the
contrary, the percentage of fibroblast and CD3� cells in
the lungs from WT mice treated with bleomycin was
41.86% � 6.31% and 21.83% � 2.8%, respectively. Ac-
cordingly, IHC confirmed the presence of �-SMA� cells
in the fibrotic areas of WT mice, whereas in Sparc�/�

mice, antibody to �-SMA stained only cells associated
with bronchi or blood vessels (Figure 1A). Consistently,
HP content was higher in WT than Sparc�/� mice (Figure
1B). These results suggest that in the absence of SPARC
fibrosis was reduced, whereas inflammation was appar-
ently increased. Nevertheless, SPARC expression, eval-
uated by confocal microscopy in bleomycin-treated
lungs, was similar in an area of inflammation and fibrosis.
Indeed, a SPARC-specific monoclonal antibody stained
CD45� infiltrating leukocytes, CD68� macrophages, and
fibroblasts and their matrix (Figure 1C). In nonfibrotic and
noninflammatory areas, SPARC expression was found in
resident FSP1� fibroblasts and was associated with col-
lagen of the basement membrane (see Supplemental
Figure S1B at http://ajp.amjpathol.org). The observation of
SPARC oppositely affecting fibrosis and inflammation
and the consistent detection of SPARC in both fibroblasts
and inflammatory cells prompted us to investigate
whether SPARC produced by leukocyte or fibroblast had
distinct roles in bleomycin-induced lung damage.

Characterization of Fibroblasts in Bleomycin-
Induced Pulmonary Fibrosis

Cross-talk between macrophages and fibroblasts can
alternatively exacerbate, suppress, or reverse fibrosis.20

Both macrophages and fibroblasts can produce SPARC,
and their distinct contribution to fibrosis could be partially
investigated by reciprocal BMT between Sparc�/� and
WT mice.17 This approach, however, is complicated by
the different origin of collagen-producing cells, which,
besides resident fibroblasts, include fibrocytes21 and
mesenchymal stem cells of bone marrow origin (BM-
MSCs).22 To evaluate the contribution of bone marrow–
derived collagen-producing cells in bleomycin-induced
fibrosis, we designed ad hoc bone marrow chimeras,
which allowed us to distinguish host- and bone marrow–
derived fibroblasts and fibrocytes on the basis of CXCR4,
FSP1,23 and CD45 markers (see Supplemental Figure S2
at http://ajp.amjpathol.org). CD45.2 mice were lethally ir-
radiated and transplanted with a CD45.1 bone marrow to
distinguish donor and host cells. In such chimeras, after
bleomycin treatment, numerous CXCR4� cells localized
mainly into fibrotic areas (Figure 2A), and most were
CD45.1� and therefore of donor origin (Figure 2D). IF
analysis (Figure 2B) and flow cytometry (Figure 2D) re-
vealed that among the donor population more then 85%
of CXCR4�/CD45.1� cells were leukocytes (FSP1�,
�-SMA�), whereas roughly 6% of them were fibrocytes
(FSP1� or �-SMA�). FACS analysis also showed a tiny
population (�2%) of CXCR4� CD45� cells that might
include BM-MSCs (Figure 2, B and D). This marginal
involvement of BM-MSCs in bleomycin-treated lung

was confirmed following donor CD90.2 and host
CD90.1 markers on MSCs, identified by the CD146
antigen,24 in WT (Thy 1b, CD90.2)�WT (Thy 1a,
CD90.1) bone marrow chimeras (see Supplemental Figure
S3 at http://ajp.amjpathol.org).

Donor-derived fibrocytes constituted a small fraction of
the total recruited CXCR4� cells, yet they accounted for
approximately 25% (28.9% � 5.9% in WT and 24.7% �
8.9% in KO; Figure 2E) of the entire FSP1� population;
their relative contribution to fibrosis was evaluated ac-
cording to their Sparc genotype and the ability to assem-
ble collagen. This finding was relevant in the context of
reciprocal BMT between Sparc�/� and WT mice in which
collagen assembly by host or donor cells is influenced by
their Sparc genotype. Indeed, resident (CXCR4�) fibro-
blasts and bone marrow–derived (CXCR4�) fibrocytes
participated in collagen deposition in WT but not in
Sparc�/� mice (Figure 2C). The results indicated that
collagen-secreting cells, either resident or bone marrow
derived, were impaired in ECM deposition when defec-
tive in SPARC. To confirm these data and to assess
possible additional defects in proliferation and migration
of Sparc�/� fibroblasts compared with WT ones, in vitro
experiments were performed (see Supplemental Figure
S4 at http://ajp.amjpathol.org). Dermal fibroblasts from
Sparc�/� and WT mice were seeded onto polylysine-
coated glasses and evaluated for collagen production by
IF and Western blot25) (see Supplemental Figure S4A at
http://ajp.amjpathol.org). Despite the similar capacity to
produce collagen in WT fibroblasts, Sparc�/� fibroblasts
were defective in collagen fiber assembly (see Supple-
mental Figure S4B at http://ajp.amjpathol.org), a process
that is crucial to fibrotic disorders.26 Western blot analy-
sis revealed that the two collagen type I precursors, a1(I)
and a2(I) procollagen, were synthesized without differ-
ence in WT and Sparc�/� fibroblasts. Yet, Sparc�/� fibro-
blasts were defective in the production of the mature form
of collagen that is the interstitial collagen deposited in
tissue fibrosis. No defects in proliferation and migration
were found in Sparc�/� fibroblasts compared with their
WT counterparts (see Supplemental Figure S4 at http://
ajp.amjpathol.org). This finding suggested that the milder
fibrosis observed in bleomycin-treated Sparc�/� mice
could be due to a defective assembly of collagen fibers
by Sparc�/� fibroblasts rather than to their impaired re-
cruitment or local expansion.

Dissecting the Role of SPARC from Leukocytes
and Fibroblasts in Lung Damage

The distinct contribution of fibrocytes in fibrosis could be
evaluated transplanting Sparc�/� bone marrow into WT
mice, a setting in which fibrocytes were defective in col-
lagen assembly. BMT experiments were performed trans-
planting Thy 1a WT mice with bone marrow from Thy 1b

congenic Sparc�/� (KO�WT) or WT (WT�WT) mice. This
combination allowed checking the extent of engraftment,
which at the time of bleomycin administration (8 weeks
after BMT) was more than 95% donor in circulating T
lymphocytes (not shown). Also, lung-infiltrating macro-

phages in WT�WT but not in KO�WT chimeras showed

http://ajp.amjpathol.org
http://ajp.amjpathol.org
http://ajp.amjpathol.org
http://ajp.amjpathol.org
http://ajp.amjpathol.org
http://ajp.amjpathol.org
http://ajp.amjpathol.org
http://ajp.amjpathol.org
http://ajp.amjpathol.org
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SPARC expression according to their donor origin (Figure
3A). Unexpectedly, bleomycin-induced lung damage, as
assessed by histopathologic (Figure 3B) and IF analysis
for collagen I and CD45 (Figure 3C), proved to be more
severe in mice transplanted with Sparc�/� than WT mar-
row. The most striking differences between these chime-
ras were in the inflammatory infiltration, the amount of
collagen fibrosis, and the degree of the alveolar damage
(see Supplemental Figure S5 at http://ajp.amjpathol.org).
Collagen accumulation, evaluated as HP content, was
higher in KO�WT than in WT�WT chimeras (Figure 3D).
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D45.1�FSP1-). A smaller fraction of donor CXCR4� cells were fibro-

1�FSP1� or CD45.1�SMA� cells). E: Collective data from FACS analysis
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host fibroblasts were impaired in collagen deposition,
whereas the inflammatory spur was high or low, depend-
ing on donor SPARC genotype. Bleomycin-treatment of
KO�KO chimeras produced a more severe parenchymal
inflammation and leukocyte infiltration than WT�KO chi-
meras, although significant fibrosis was absent (Figure
4A), a finding supported by immunostaining of lung sec-
tions for collagen type I and CD90 (lymphocytes), which

Figure 3. Increased inflammation and fibrosis in KO�WT chimeras. A:
Confocal microscopy for SPARC and CD68 shows SPARC expression in
WT�WT but not KO�WT CD68� macrophages, according to the genotype
of donor cells. B: Trichrome staining of lungs from bleomycin-treated
KO�WT and WT�WT bone marrow chimeras. Pictures are relative to one
representative experiment of five performed with six mice per group (orig-
inal magnification, �200). C: IF analysis of collagen type I (green signal) and
CD45 (red signal) reveals increased collagen deposition and inflammatory
infiltration in KO�WT compared with WT�WT chimeras. D: Overall histo-
pathologic damage of bleomycin-treated bone marrow chimeras. The data
are expressed as mean � SD (n � 5) Bleomycin-treated KO�WT bone
marrow chimera mice had significantly more lung damage than KO�KO
ones (Mann-Whitney U-test); *P � 0.0159. E: Total HP contents in the lungs
of KO�WT and WT�WT chimeras treated with bleomycin. Representative
experiments of four performed with seven bleomycin-treated and four saline-
treated chimeras. Mean � SD values are shown. Bleomycin-treated KO�WT
bone marrow chimeras mice had significantly more collagen than any other
group (Mann-Whitney U-test); **P � 0.0079.
highlights the scanty fibrosis and abundance of donor-
derived inflammatory cells (Figure 4B). Accordingly, the
overall parenchymal damage score was significantly
higher in KO�KO than in WT�KO chimeras (Figure 4C;
see also Supplemental Figure S6 at http://ajp.amjpathol.
org), whereas the collagen content in lung was not sig-
nificantly different (Figure 4D). These results, which are
consistent with the impaired ECM deposition that char-
acterizes Sparc�/� mice, suggest that SPARC contribu-
tion to inflammation and fibrosis is distinct and oppositely
influences the fibrotic outcome. Of note, in WT�KO com-
bination, CXCR4�FSP1� fibrocytes of donor origin, al-
though SPARC competent, were unable to mount signif-
icant fibrosis. This finding could be either because they
were insufficient in number (see Supplemental Figure S7
at http://ajp.amjpathol.org) or because SPARC-competent
leukocytes, also of donor origin, negatively control the
extent of inflammation.

Overall, these experiments identified SPARC derived
from bone marrow cells as endowed with anti-inflamma-

Figure 4. Fibrosis and inflammation are uncoupled in KO�KO and
WT�KO chimeras. A: Trichrome staining of lungs from KO�KO chimeras
shows increased inflammatory infiltration but similar slight fibrosis compared
with WT�KO ones (original magnification, �200). Pictures are relative to
one representative experiment of five performed with six mice per group. B:
IF analysis of collagen type I (green signal) and CD90 (lymphocytes) sup-
ports comparable lung fibrosis but different inflammatory infiltration in the
two types of chimeras. C: Overall histopathologic damage of bleomycin-
treated WT�KO and KO�KO bone marrow chimeras. The data are ex-
pressed as mean � SD (n � 5). Bleomycin-treated KO�KO chimeras mice
had significantly more parenchymal damage than WT�KO ones (Mann-
Whitney U-test); **P � 0.0080. D: Total HP contents in the lungs of WT�KO
and KO�KO bone marrow chimeras treated with bleomycin. Representative

experiments of four performed with seven bleomycin-treated and four saline-
treated chimeras. Mean � SD values are shown.
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tory functions while confirming the requirement of
SPARC, in-collagen secreting cells, as relevant toward
fibrotic changes.

Bone Marrow–Derived SPARC Regulates TNF
Production

Among the inflammatory molecules involved in fibrosis,
TNF is a key cytokine in both humans and mice. The
difference in bleomycin susceptibility between responder
and nonresponder mouse strains has been correlated
with their different production of TNF.27–30 We investi-
gated whether an increase in TNF production was asso-
ciated with the exacerbated bleomycin-induced fibrosis
in KO�WT chimeras. Indeed, TNF production was signif-
icantly higher in KO�WT than in WT�WT chimeras (Fig-
ure 5A), and IF analysis indicated that both SP-C� type II
pneumocytes and CD11b� leukocytes were responsible
for TNF production (Figure 5B). The KO�WT chimeras
combined the severe inflammation, associated with
Sparc�/� bone marrow–derived cells, with the compe-
tence of host fibroblasts for collagen deposition. In such
chimeras, we tested whether TNF neutralization could
attenuate the excessive inflammatory spur engendered
by Sparc�/� donors. KO�WT chimeras treated with
monoclonal antibody–blocking TNF (clone V1q), but not
those treated with control immunoglobulin isotype,
showed milder inflammatory infiltration and, conse-
quently, fibrosis (Figure 5, C-D; see also Supplemental
Figure S8 at http://ajp.amjpathol.org).

Persistent TNF Production in Sparc�/� Bone
Marrow Leukocytes Implies a Defective TGF-�1
Regulatory Loop

Considering that exacerbated inflammation depends on
the Sparc�/� genotype of bone marrow donors and on its
association with increased TNF production, the relevant
question is how SPARC could regulate TNF in leukocytes.
TGF-�1 is a potent profibrotic cytokine that stimulates
collagen deposition and epithelial-mesenchymal transi-
tion, but at the same time it also has immunosuppres-
sive31 and anti-inflammatory32 properties. These features
phenocopy those of SPARC in line with their cross-regu-
lation.33 Thus, we tested whether Sparc�/� bone marrow
cells, prototypically macrophages, were less susceptible
to TGF-�1 in down-regulating TNF production, having
checked their unimpaired capability to produce TGF-�1
(see Supplemental Figure S9 at http://ajp.amjpathol.org).
Macrophages were obtained from bone marrow precur-
sors. WT but not Sparc�/� macrophages showed de-
creased level of TNF in response to TGF-�1 (Figure 6A).
To extend this finding to the in vivo setting of bleomycin-
induced lung damage, we developed mice whose mac-
rophages had been made insensitive to TGF-�1 stimula-
tion in the attempt to reproduce the phenotype of
KO�WT chimeras.

Mice were transplanted with bone marrow cells trans-
duced to express a dominant negative form of TGF-�RII,

as decoy, under the monocyte-specific CD68 promoter.
In these chimeras, inflammation and fibrosis were more
conspicuous than in WT�WT counterparts while compa-
rable to that of KO�WT chimeras receiving bleomycin
treatment (Figure 6B).

Altogether these results suggest that SPARC regu-
lation of TGF-�1 anti-inflammatory function on macro-
phages could be the mechanism responsible for sus-
taining exacerbated inflammation induced by Sparc�/�

leukocytes.

Discussion

As a consequence of intense or chronic parenchymal
damage, fibrosis compensates impaired tissue regener-
ation. This process, although unable to replace tissue or

Figure 5. TNF production in SPARC KO�WT and WT�WT bone marrow
chimeras. TNF content was evaluated in lungs obtained from bleomycin- or
saline-treated KO�WT or WT�WT bone marrow chimeras. A: Western blot
normalization (on �-actin as housekeeping gene) of TNF content, showing
that the amount of TNF was increased in the lung of KO�WT bone marrow
chimeras compared with WT�WT ones. (One representative experiment of
two performed with four replicates is shown; the data are expressed as
mean � SD, Mann-Whitney U-test; ***P � 0.001.) B: IF analysis shows that in
KO�WT chimeras TNF (red signal) was expressed by type 2 pneumocytes
(SP-C�; green signal, left panel) and CD11b� cells (green signal, right
panel, arrows). C: Histopathologic analysis of the lungs of KO�WT bone
marrow chimeras treated with bleomycin in the presence or absence of the
TNF blocking monoclonal antibody V1q. D: Overall histologic damage of
V1q-treated versus control antibody–treated KO�WT chimeras. Data are
relative to one representative experiment (n � 10 per each experiment) of
two performed. V1q treatment significantly reduced the overall histologic
damage of bleomycin-treated KO�WT bone marrow chimeras (Mann-Whit-
ney U-test).
organ function (eg, myocardial scarring after infarction),
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is in most cases controlled, and its regulation is strictly
dependent on the resolution of the underlying inflamma-
tory spur. SPARC is a matricellular glycoprotein involved
in fibrosis3,4,7,34 through unknown mechanisms, in addi-
tion to its role in collagen and ECM deposition.35,36 An
impaired ECM deposition or the absence of SPARC is
associated with increased inflammatory infiltration and
immune cell migration.10,37,38 This finding has prompted
the idea that SPARC might be involved in the regulation of
inflammatory response as partially demonstrated in ovar-
ian cancer, where SPARC normalizes the tumor microen-
vironment by regulating cytokine production.12 In
Sparc�/� mice inflammation is greater than in their WT
counterparts.10 In the fibrotic process SPARC might play
distinct roles in stroma remodeling and ECM deposition
versus inflammation when produced by either fibroblasts
or immune cells, respectively. To test whether such dis-
tinction exists in bleomycin-induced lung fibrosis, we
combined the use of Sparc�/� mice and BMT. We found
that bone marrow–derived SPARC has a regulatory role
on inflammation, whereas SPARC from lung fibroblasts
sustains ECM deposition and fibrosis (Figure 7). The con-
current lack of SPARC in both bone marrow–derived and
lung fibroblasts in nontransplanted Sparc�/� mice, as
well as in KO�KO chimeras, hindered lung fibrosis while
augmenting inflammation when bleomycin was given.
The impaired ECM deposition by Sparc�/� collagen-pro-
ducing cells, either resident or bone marrow derived,
might have produced a condition unfavorable to fibrosis
development.39,40 Because our scope was to dissect the

Figure 6. TNF and TGF-�1 are reciprocally regulated in macrophages. A:
TGF-�1 inhibition of TNF production by bone marrow–derived macro-
phages. Bone marrow–derived macrophages were seeded into a 96-well
plate and treated with TGF-�1 (10 ng/mL) for 6 and 24 hours and evaluated
for TNF production by enzyme-linked immunosorbent assay: TGF-�1 signif-
icantly inhibited TNF production by WT but not Sparc�/� macrophages. One
representative experiment of three performed is shown (n � 6 replicates for
condition). *P � 0.0022; **P � 0.0079. B: Lung fibrosis and inflammation
were greatly increased in WT mice transplanted with a bone marrow ex-
pressing the DN form of TGF-�RII compared with WT mice receiving normal
bone marrow. Lung damage in CD68DNTGF�RII�WT chimeras parallels
that observed in KO�WT mice. Data are relative to one representative
experiment of two performed on a total of 10 mice.
role of SPARC produced by bone marrow–derived im-
mune cells from the role of SPARC produced by stromal
cells, the common bone marrow origin of fibrocytes and
leukocytes required ad hoc BMT experiments to evaluate
their relative contribution in fibrosis. We found that a
portion of FSP1� cells in fibrotic lungs were CXCR4� and
CD45� fibrocytes from a bone marrow donor. According
to the literature,22 these cells account for 20% to 30% of
the total FSP1 population and 3% to 6% of the total
CXCR4� cells recruited in the lung. We found these col-
lagen-secreting cells, in the outcome of pulmonary fibro-

Figure 7. Schematic representation of the different contribution of host
fibroblasts and leukocyte-derived SPARC to bleomycin-associated lung in-
flammation and fibrosis. A: In WT�WT bone marrow chimeras, the admin-
istration of bleomycin induces inflammation and fibrosis through TNF syn-
thesis that triggers TGF-� release; TGF-� promotes fibroblasts deposition and
regulates TNF synthesis from macrophages. B: In WT�SPARC KO chimeras,
despite a normal parenchyma inflammation, collagen deposition by fibro-
blasts is greatly reduced and results in milder fibrosis. C: In SPARC KO�WT
chimeras, the inability of SPARC KO macrophages to down-modulate TNF

production in response to TGF-� results in exaggerated and persistent in-
flammation and severe fibrosis.
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sis, co-localizing with collagen fibers in WT but not
Sparc�/� mice. Yet, their role in the fibrotic process was
marginal according to results in WT�KO chimeras that
showed a mild fibrosis similar to that of KO�KO mice
despite the fact that Sparc�/�-competent fibrocytes were
almost the main collagen-producing cells. The worst pic-
ture in terms of both inflammation and fibrosis was ob-
served in KO� WT chimeras despite the fact that bone
marrow–derived Sparc�/� fibrocytes cannot contribute to
collagen assembly. In the presence of adequate collagen
secreting cells, the inflammatory spur was critical for the
fibrotic outcome.

The high inflammatory infiltration, rich in T lympho-
cytes, which characterized the lungs of bleomycin-
treated Sparc�/� mice paralleled our previous finding
showing accelerated dendritic cell migration and T-cell
priming in the absence of SPARC, a notion that strength-
ens the role of ECM in the control of inflammation.10 Our
findings of exacerbated inflammatory infiltration and high
TNF production in the absence of fibrosis in the lungs of
bleomycin-treated Sparc�/� mice indicates that inflam-
mation is necessary but not sufficient to induce fibrosis
that also requires SPARC-competent collagen-secreting
cells.41 The importance of TNF in lung fibrosis comes
from both experimental mouse models and human data.
The risk of chemotherapy-induced pulmonary fibrosis
has been associated with a polymorphism into the TNF�2
gene and increased TNF production.30 Also in mice, the
relative resistance of the BALB/c strain to develop fibrosis
after bleomycin instillation has been associated with im-
paired TNF production and its p75 receptor up-regula-
tion28,29 rather than to a reduced modulation of TGF-�RI
and TGF-�RII42,43

Soluble, rather than transmembrane, TNF is required
for developing fibrotic lesions via lymphocyte recruitment
and their production of TGF-�1. Kapancy and colleagues
were the first to localize TNF stored in type II alveolar
pneumocytes and to postulate the need for epithelial-
mesenchymal cross-talk involving TNF and TGF-�1 to-
ward fibrosis development.44

SPARC has been described to regulate TGF-�1 sig-
naling by binding to its receptor.45,46 In light of the com-
bined effect of TGF-�1 in inducing fibrosis but also in
regulating inflammatory responses,31,47 we reasoned
that the contrasting roles of SPARC in the setting of lung
fibrosis might be explained by its capability to affect
TGF-�1 functions. Accordingly, SPARC absence from fi-
broblasts resulted in impaired collagen fibrosis, whereas
its deficiency in leukocytes resulted in exacerbated in-
flammation owing to impaired TGF-�1-mediated TNF
down-modulation. Indeed, macrophages from WT but not
from Sparc�/� mice treated in vitro with TGF-�1 were
inhibited for TNF release. The impaired resolution of the
inflammatory spur in KO�WT chimeras might be respon-
sible, at least in part, for the worsened fibrosis. The per-
sistent TNF production, in the case of Sparc�/� bone
marrow leukocytes, could be explained by SPARC atten-
uating NF-�B signaling as described in ovarian cancer.12

In fibroblasts, TNF promotes TGF-�1 expression via AP-1
activation,48 which also controls SPARC expression.49 The

similarity between SPARC and TGF-�1 suggests their dual
effect on leukocyte and fibroblasts, reducing inflammation
and promoting fibrogenesis, respectively.

Considering the disappointing results obtained using
corticosteroids in the treatment of lung fibrosis,50 TNF
emerges as an appealing target. In humans, TNF inhibi-
tion by infliximab seems to stabilize the progression of
pulmonary fibrosis associated with collagen vascular dis-
ease in patients with rheumatoid arthritis and systemic
sclerosis.51–53 In our mouse model, TNF inhibition halted
the progression of fibrosis in the highly susceptible
KO�WT chimeras. It is likely that TNF might be important
in establishing fibrosis, whereas other factors, such as
connective tissue growth factor, platelet-derived growth
factor, and IL-13, would amplify and consolidate the
pathological process.54 Two studies have so far evalu-
ated the role of SPARC in bleomycin-induced fibrosis with
opposite conclusions on the role of SPARC in such set-
ting. One such study reported increased fibrosis in
Sparc�/� mice because of exacerbated leukocyte re-
cruitment and inflammation,9 whereas the other showed a
milder fibrosis because of the reduced ECM deposition
occurring in Sparc�/� mice.6 Our study, while confirming
the exacerbated inflammation of the former study, ex-
cludes the increase of fibrosis in Sparc�/� mice and
agrees with the latter concerning the reduced collagen
deposition associated with Sparc deficiency, supporting
the notion that both inflammation and collagen deposition
are oppositely regulated by SPARC. In conclusion, the
dual role of SPARC in bleomycin-induced lung fibrosis
delineated in this report might be envisaged for other
settings in which fibrosis follows an unhealed inflamma-
tory spur, such as in liver and kidney fibrosis.
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