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Abstract. We analyze the non-Markovian character of the dynamics of an open two-level
atom interacting with a gas of ultra-cold fermions. In particular, we discuss the connection
between the phenomena of orthogonality catastrophe and Fermi edge singularity occurring
in such a kind of environment and the memory-keeping effects which are displayed in the
time evolution of the open system.

1. Introduction and Motivations

The precise definition and quantitative description of memory effects (or non-
Markovianity) have become a central issue in the theory of open quantum
systems [1-11], and have been the subject of recent experimental efforts
[12]. It has been argued that non-Markovianity has the potential of being
exploited to pursue new quantum technologies [9], and that it can be thought
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as a resource in quantum metrology [13], for the generation of entangled states
[14] and for quantum key distribution [15].

Various characterizations of the non-Markovian behaviour have been given,
which capture different aspects of the decohering dynamics of an open sys-
tem. They include the lack of divisibility of the map describing the time
evolution of the system of interest [1, 4], or the back-flow of the information
that the system itself had previously lost, described either in terms of the
distinguishability of the evolved states [2] or of the quantum Fisher informa-
tion [5]. Further proposals have been put forward, based on the decay rates
entering the master equation [6], on the use of the quantum mutual informa-
tion [8] or of channel capacities [9], on spectral considerations [10], and on
the temporary expansion of the volume of the states accessible through the
reduced dynamics [16]. Moreover, many other properties, related to the lo-
cality [17], to the complexity [18] or to the size of the environment [19], have
been investigated in different physical settings, ranging from spin systems
[20,21] to Bose-Einstein condensates of ultra-cold atoms [22].

Despite the conceptual differences, several quantifiers of the amount of
non-Markovianity give similar qualitative (and sometimes also quantitative)
descriptions when applied to the dynamics of simple quantum systems such as
a qubit [23,21]. In particular, this holds true for the specific case of a purely
dephasing dynamics where the system loses coherence due to its interaction
with the environment, without any energy exchange. In this case, indeed, the
open system evolution is completely characterized by a so-called decoherence
factor, which is the only ingredient necessary to evaluate the amount of non-
Markovianity.

Specifically, let us consider a two-level system (a qubit, with energy eigen-
states |a), o = 0,1) interacting with its environment in such a way as to
preserve its energy. This implies that the interaction Hamiltonian commutes
with that of the qubit and, as a result, the qubit state can be written as

_ poo(0)  v(t)po1(0) _ iH1t —iHot
PO o) pnt) | 1O = A e, ()

where peny 18 the initial state of the environment, while
H, = env T <OC‘Hint‘04>

are effective Hamiltonians for the environment, conditioned on the state of
the qubit (e =0,1).

If the initial state of the environment is pure, peny = |#)(¢|, then the deco-
herence factor (whose square is known as the Loschmidt echo, L(t) = |v(t)|*
[24]) is given by the overlap v(t) = {(¢1(t)| ¢o(t)), where |p) = e~ Hat|p).

The quantity v(t) can be used to characterize the environment itself, and,
in particular, it gives a very peculiar behaviour for fermionic environment.
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Indeed, as first pointed out by P. W. Anderson over 40 years ago, such an
overlap of the two many-body wave functions, describing deformed and un-
deformed Fermi seas, respectively, scales with the size of the environment and
vanishes in the thermodynamic limit, giving rise to an ‘orthogonality catas-
trophe’ [25]. The dynamic counterpart of Anderson’s theory was investigated
a few years later with the prediction of a universal absorption-edge singular-
ity in the X-ray spectrum of simple metals, which has become known as the
‘Fermi-edge singularity’ [26]. Mahan, Nozieres and De Dominicis (MND) ob-
tained an expression for the function v(¢) describing the response of a Fermi
gas to the sudden switching of a local perturbation, i.e. a core-hole induced by
the X-ray, which gives rise to a deformation (or shake up) of the many-body
state of the gas.

It is our aim in this paper to study the analogous of such a phenomenon
for a trapped gas of ultra-cold Fermi atoms in which the very fast excitation
of an impurity atom (e.g. by a focused laser pulse) produces a sudden local
perturbation [27—29]. The time response of the gas is directly related to the
decoherence of the impurity, which experiences a purely dephasing dynamics.
As mentioned above, for such a case the non-Markovianity of the map is
strictly connected to the decoherence factor. As a result, with our theoretical
construction we are able to explore the link between the non-Markovianity
and the orthogonality catastrophe occurring within the environment.

We will adopt the geometric measure recently put forward by some of
us in [16], which allows for an intuitive visualization of the information ex-
change between system and environment. This is briefly recalled in Sect. 2.
Then, after the model for the fermionic bath is explicitly described in Sect. 3,
in Sect. 4 we use the geometric measure to discuss the decoherence of the
impurity. Some final remarks are given in Sect. 5.

2. Geometric Description of non-Markovianity

In this section we briefly review the definition and meaning of the measure
of non-Markovianity introduced in [16], adapting it to the case of a qubit
undergoing a purely dephasing dynamics. The basic idea is that the time
evolution of the density matrix of a qubit can always be recast into the form
of an affine transformation for the Bloch vector b = Tr{o} (where o is the
vector of Pauli matrices), which can be contracted, rotated and translated
by a given amount. In particular, for the time evolution given in (1), the
translation term is absent and we have

b(t) = A:b(0), (2)
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Fig. 1: (Color online) Behaviour of the determinant |A|, of the dynamical
map governing the time evolution of the two-level impurity atom, for the case
of an environment with Ny = 200 fermions and for 8 = 0.05, a = 0.001 (left
plot) and 8 = 3, @ = 0.1 (right plot). (Energies are in units of fw.)

with
Rev(t) Tmy(t) 0
Ay = | =Omvu(t) Rev(t) 0 |. (3)
0 0 1

The generic initial state for the qubit corresponds to a Bloch vector lying
within the unit (Bloch) sphere. The set of accessible states changes as a
function of time, being contracted (with respect to the initial sphere) in the
equatorial plane for the case of a purely dephasing evolution. In Fig. 1 we
provide a representation of this set as a function of time for two specific
situations which will be described in more detail in the next section.

In the general case, the absolute value of the determinant of the matrix
describing the dynamical map, ||A;||, gives the ratio between the volume of
the set of states (or, more precisely, the set of b vectors) accessible by the
system at time ¢ and the volume of the initial set of all possible Bloch vectors,
which is the entire Bloch sphere.

A dynamical map described by a Lindblad-like master equation gives rise
to a non-increasing volume [1, 16]. This is true even if the master equation has
time decay coefficients, provided that the latter are strictly positive quantities
[30]. Hence, it is natural to call a process Markovian if the determinant does
not increase in time, and non-Markovian if an initial volume contraction is
followed by a temporary inflation, giving rise to a determinant that has a
positive time derivative in some specific interval.

The two examples reported in Fig. 1 explicitly depict a Markovian and a
non-Markovian evolution in terms of the determinant.

Using the same method adopted in [2] to single out the intervals in which
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the determinant increases in time, we define [16]

dj|A
dladdl g di

as a non-Markovianity measure.

For the map corresponding to a dephasing evolution, the determinant is
related to the decoherence factor. Explicitly, ||A¢|| = |v()[?. In Sect. 4, we
will discuss the behaviour of Ny for a qubit in a fermionic environment as a
function of the coupling strength and of the temperature of the environment.

~—

3. Impurity in a Fermionic Environment

The explicit model for the environment that we discuss in this paper is given
by a gas of ultra-cold non-interacting fermionic atoms, trapped in a harmonic
potential of frequency w. This is described by the Hamiltonian

Henv = 5 5nCLCn7
n

with ¢, being the annihilation operator for the n-th single particle level
of energy &, = hw(n + 1/2). Heyy, together with the number operator
N = don chn, also sets the initial equilibrium state of the gas, peny =
exp{—B(Heny — 1tN)}/Z, where the chemical potential y is fixed by the re-
quirement that the gas contains (on average) Np fermions, while 5 is the
inverse temperature.

We consider a two-level impurity, trapped in an auxiliary potential and
brought in contact with the Fermi gas. We assume that when the impurity
is in the state |0), it has a negligible scattering interaction with the gas. On
the other hand, if the impurity is in the state |1), the gas feels a localized
perturbation 17, describing a neutral s-wave like interaction that we treat in
the pseudo-potential approximation: V(z) = nVyxod(x) (the trap length xg
as well as the factor 7 are put in the definition for future convenience only).
The interaction Hamiltonian, then, has the form

Hiy = V®@le)e|. (5)

As mentioned in the Introduction, the key quantity for our discussion is
the decoherence factor

v(t) = <e%ﬁenvt e‘%(ﬁenv+‘7)t>7 (6)

where the braket symbol is a short-hand notation for the thermal equilibrium
average over the unperturbed environment.
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An analytic estimate can be given for this quantity both at zero and at
finite temperatures [28]. Here, we will proceed to a numerical evaluation of
the decoherence factor (and, in particular, of its modulus) using the linked
cluster theorem and up to two-vertices connected Feynman diagrams, which
amount to a partial re-summation of a perturbative expansion in the ratio
of the interaction strength 1, with the Fermi energy ep = hw(Np + %) The
details of this kind of evaluation are given in [28], where it is shown that a
good indicator of the effect of the perturbation induced on the Fermi gas is
the dimensionless parameter

‘/02
= 0 7
= e (7)

This coincides with the critical parameter of the MND theory, which is ob-
tained as the limiting case of a free Fermi gas, w — 0.

In the following, we will consider spin 1/2 fermions, fix their number to
Np = 200, and discuss the behaviour of the measure of non-Markovianity
Ny as a function of « and of the inverse temperature 8 = 1/(KT).

4. Non-Markovianity and Its Relation to the Shake-Up of the
Fermi Gas

The parameter « introduced in the previous section is a measure of the
strength of the perturbation due to the switching impurity. One could naively
expect that by increasing a the amount of non-Markovianity in the dynamics
of the qubit should increase. However, this is not the case as Fig. 2 clearly
shows. In particular, Ny increases for a very small «, reaching a maximum
value for o < 0.2, which depends on the chosen value of 3. After such a
maximum, Ny decreases with increasing the interaction strength.

This is due to the peculiar way a fermionic system responds to the pertur-
bation, especially at small temperatures. For very small o, an almost linear
increase with the intensity of the perturbation is expected from simple second
order perturbation theory. Indeed, to first order in V one would obtain only
a shift of the energy levels, resulting in a purely oscillating v(¢); the second
order correction in Vj (which are linear in «), instead, introduces a distortion
of the single-particle energy eigenstates.

A small « implies that the Fermi surface is not substantially modified
and that only those fermions whose energy is close to the Fermi energy are
excited. This, in turns, means that only a few fermionic modes (and, thus,
few almost undistorted frequencies) enter the dynamics, and give rise to a
quasi-periodicity of the function v(t) with frequency w. As a result, every half
a period the derivative of the determinant changes sign and a contribution is
given to the integral in (4). The accumulation of such positive contributions
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Fig. 2: (Color online) Non-Markovianity measure Ny as function of the ef-
fective coupling strength «, for various values of the inverse thermal energy
B expressed in units of 1/hw.

gives rise to an Ny that grows with o. Notice, however, that a true periodicity
is quickly lost with increasing «, especially if the temperature is not kept low.
From Fig. 1, one can see that only a vague periodicity survives at o = 0.1 if
KT = hw/3.

This increase of Ny, with increasing « is counteracted by an effective sup-
pression of the oscillations in v(¢) which occurs when the single-particle ener-
gies become more and more distorted (so that they are not anymore multiple
of w) and when more and more transitions are induced by the increasing-in-
strength of the perturbation. For large values of «, indeed, the entire Fermi
sea responds to the perturbation and the non-Markovianity decreases.

Such a behaviour can also be interpreted in a complementary way. For
small o’s the effective environment felt by the impurity has a very promi-
nent spectral structure, given by the Fermi edge. On the other hand, with
increasing «, the effective environmental frequency spectrum becomes more
and more flat, giving rise to an effective Markovian dynamics for the qubit.

This line of reasoning is confirmed by the fact that the amount of non-
Markovianity decreases with increasing the temperature due to the fact that
the Fermi edge is more and more blurred for a smaller and smaller 5.

Figure 3 gives the behaviour of the amount of non-Markovianity as func-
tion of the trap frequency, to explicitly confirm that Ny increases with w as
a result of the fact that the periods in which the determinant grows become
closer to each other in time.

In particular, for the free gas originally treated by MND, which is obtained
when w — 0, the dynamics of the impurity is fully Markovian due to the
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Fig. 3: (Color online) Non-Markovianity measure as function of the trap
frequency w for different temperatures.

absence of any oscillations in the decoherence factor.
4.1. BUILD-UP IN TIME OF THE NON-MARKOVIANITY

The non-Markovianity measure Ny gives an integral characterization of the
whole dynamics. More details on the time development of the memory ef-
fects during the system-environment information-exchange process can be
obtained if we consider separately the time intervals in which the determi-
nant increases and decreases, up to a given time t. To this end, it is useful

to define
d||A-||

Ni(t) = i/ﬁ:dlfjl>0 Lot~ ) dr, (8)

which give, respectively, (the sum of) the amount of expansion/contraction
of the volume of the set of accessible states within the time ¢. In particular,
it is meaningful to consider the ratio

Ny (t)
N ()

R(t) = 9)
which expresses the fraction of the volume which is recovered in the expan-
sions with respect to the one lost due to the previous contractions. The
function R(t) is strictly zero until the volume starts increasing and then it
grows/diminishes with the volume. Every time interval in which R grows cor-
responds to a positive contribution to the build-up of the integral measure

Ny.
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Fig. 4: (Color online) Ratio expansion over contraction factors of the volume
of states accessible through the dynamical map after time ¢t. The left panel
reports R(t) at fixed a = 0.01 for various temperatures, while the right panel
shows the same quantity for different values of a and a fixed KT = hw/3.

Figure 4 confirms the interpretation that the non-Markovianity is due to
quasi-periodic oscillations of the volume of the set of accessible states, occur-
ring with a period 27 /w, which is more and more suppressed with increasing
temperature.

5. Concluding Remarks

In this paper we studied the dynamics of a two-level impurity encapsulated
in a trapped fermion environment. Due to the presence of the Fermi edge,
at low temperatures such an environment enjoys the presence of a spectral
structure which induces a non-Markovian behaviour in the time evolution of
the impurity. This is due to the oscillating response of the trapped Fermi
gas in which transitions are induced by the perturbing local impurity. Such a
behaviour is found to occur provided the interaction strength is not too large
(with respect to the relevant energy scale of the gas, given by ephw). On
the other hand, a stronger interaction tends to smoothen the environmen-
tal spectral density giving rise to a Markovian dynamics for the impurity.
Markovianity is generically obtained also if the temperature is larger than
the scale set up by the trapping frequency and, more generally, whenever
the discrete structure of the single-particle energy levels of the gas can be
confused with a continuum, e.g. in the absence of the trap.

The effects that we reported can be studied with a system of trapped cold
fermionic atoms. Indeed, in this realm, many experiments have recently dealt
with the effect of impurities within the gas [31], which can be easily tested
both as function of the interaction strength (changeable via the phenomenon
of Feshbach resonance) and of the trapping frequency.
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