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Our aim was to examine some parameters of oxidative status, gelatinases, and their inhibitors and to evaluate their interrelationships
in subjects with metabolic syndrome (MS). We enrolled 65 MS subjects, subdivided according to the presence or not of diabetes
mellitus. We examined lipid peroxidation (expressed as thiobarbituric acid reacting substances, TBARS), protein oxidation
(expressed as carbonyl groups), nitric oxide metabolites (NO, ), total antioxidant status (TAS), MMP-2, MMP-9, TIMP-1, and TIMP-
2. We found that MS subjects, diabetics and nondiabetics, showed an increase in TBARS, PC, and NO,. A significant decrease in
TAS was observed only in nondiabetic MS subjects in comparison with diabetic MS subjects. We observed increased concentrations
of MMP-2, MMP-9, TIMP-1, and TIMP-2, higher in diabetic subjects. Our data showed a positive correlation between TAS and
MMP-2, TAS and MMP-9, and TAS and MMP-9/TIMP-1 and a negative correlation between TBARS and MMP-2 in diabetic MS
subjects in the entire group. In MS subjects a prooxidant status and increased levels of gelatinases and their inhibitors are evident
although the correlations between oxidative stress and MMPs or TIMPs are controversial and need further investigation.

1. Introduction

Today the metabolic syndrome (MS) is considered a public
health problem [1]. As it is known, obesity and MS are asso-
ciated with a low-grade of chronic systemic inflammation,
reflected by an increase in circulating leukocytes and by
elevated levels of proinflammatory cytokines [2, 3] that con-
tributes to the development of insulin-resistance and ather-
osclerosis [4] via the activation of nuclear factor-kB pathway
[5]. The alterations of the vascular wall start from the endo-
thelial dysfunction and oxidative stress and also an altered
matrix metalloproteinases (MMPs) expressions contribute to
the consequent remodelling of the basal membrane.

In the last years, we have been interested in the evaluation
of the redox balance [6-10] and of the MMPs profile [11, 12] in
MS. MMPs are related to atherosclerotic disease and to car-
diovascular morbidity and mortality [13-18]; these are endo-
peptidases responsible for the degradation of several extracel-
lular matrix proteins, such as collagen, laminin, gelatin, and

fibronectin [19] which are produced into the vascular wall
and are denominated in relation to their target (collagenase,
gelatinase, stromelysin, or matrilysin). Gelatinases A and B
(MMP-2 and -9) are involved in the vascular remodelling that
precedes the atherosclerosis development and also in its
worse outcomes [20, 21]. MMP-9 has been discovered in older
atherosclerotic lesions [22] and is responsible for fibrosis,
matrix degradation, and angiogenesis resulting in plaque
instability and rupture [22, 23], while MMP-2 has been corre-
lated with a more stable plaque and with rare haemorrhages
[24]. The regulation of MMPs production and activity is com-
plex. Some MMPs (MMP-2) are constitutively expressed on
cell surface, while others (MMP-9) are stored in secretory
granules and are inducible by exogenous stimuli, such as
cytokines, growth factors, and cell-matrix contacts [19, 20].
MMPs are synthesized as precursors (pro-MMP) and they
must be activated, to expose the catalytic domain with the
Zn**-binding site, by several proteases, such as plasmin,
thrombin, chimase, and membrane-type MMP (MT-MMPs)
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(19, 25], or by S-glutathiolation, S-nitrosylation, and phos-
phorylation reactions [23].

MMPs and oxidative stress seem to be strongly correlated
in subjects with high cardiovascular risk [26-30] and this link
has been demonstrated in several experimental models [31-
34]. Peroxynitrite (ONOOQO™) activates some MMPs via the S-
glutathiolation [31, 34] but, at higher concentrations, can lead
to the inactivation of MMP-2 [34]. Also hydrogen peroxide
(H,0,) activates MMP-2 and promotes the expression of
MMP-2 and MMP-9 in human venous endothelial cells [35].
Reactive oxygen species (ROS) can influence MMP tran-
scription by means of the activation of the mitogen-activated
protein kinase (MAPK), the inhibition of MAPK phos-
phatase, the inactivation of the histone deacetylase, and the
recruitment of different chromatin remodelling factors [36].
MMPs activity is downregulated especially by the four tissue
inhibitors of MMP (TIMPs): TIMP-1 inhibits MMP-1, MMP-
3, MMP-7, and MMP-9, TIMP-2 inhibits especially MMP-2,
and TIMP-3 can inhibit both the gelatinases, while TIMP-4
inhibits MT-1 MMP and MMP-2 activity [14].

In literature, there is no definite information regarding
the effects of the oxidative stress on MMPs expression and
activity in MS, even if classical cardiovascular risk factors,
such as dyslipidemia and diabetes mellitus, increase the gel-
atinase levels via oxidative stress. In fact, the exposure of
endothelial cells to oxidized LDL increases the levels of MT-1
MMP mRNA [37] and the treatment of monocytes-derived
macrophages with oxidized HDL induces ROS production,
release of TNF-«, and an overexpression of MMP-2 and
MMP-9 [38]. Also the effects of hyperglycemia on MMP-9
and MMP-2 activity in cultured cells are mediated by ROS
[39-41].

Previously, we have focused on the oxidative status [6, 7,
9] and the profile of gelatinases and tissue inhibitors [11, 12] in
MS subjects. In this study, our aim was to evaluate, in a
group of MS subjects, some parameters of the oxidative status,
MMP-2, MMP-9, and their tissue inhibitors in order to
investigate their statistical correlations.

2. Materials and Methods

We examined 65 subjects (41 men and 24 women; median age
51yrs; interquartile range 12) selected from those referred to
our observation from 2008 to 2011. MS was defined following
the International Diabetes Federation (IDF) criteria [1]. The
subjects were subsequently subdivided into diabetics (DMS)
(22 men and 11 women; median age 59yrs; IQR 7) and
nondiabetics (NDMS) (19 men and 13 women; median age
46 yrs; IQR 9). The baseline characteristics of the two sub-
groups of DMS and NDMS subjects are described in Table 1.
No subjects of both subgroups were taking antioxidants or
practising exercise regularly. In the DMS subgroup, only 4
subjects were current smokers while 29 subjects were non-
smokers; in the NDMS subgroup, 11 subjects were current
smokers while 21 were nonsmokers. Neither DMS nor NDMS
subjects were heavy drinkers. In the subgroup of DMS
subjects, diabetes had duration less than 5 years and was
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TABLE 1: Medians (interquartile ranges) of the anthropometric
profile, blood pressure values, and metabolic pattern in the whole
group of MS subjects and in the two subgroups of MS subjects,
respectively, with and without diabetes mellitus.

All Diabetic Nondiabetic

MS patients  MS patients  MS patients
Waist circumference ) o, 13.0 (16) 1005 (8)°
(cm)
BMI (Kg/m?) 3195 (4.71)  33.2(4.4) 314 (4.2)
SBP (mmHg) 130 (20) 140 (27.5) 130 (15)*
DBP (mmHg) 80 (7.5) 80 (10) 80 (5)
Glycaemia (mg/dL) 101.5 (40.5) 130.5 (80) 91 (13)°
Total cholesterol s
(mg/dL) 207 (74) 186 (50) 227.5 (60)
HDL-cholesterol
(mg/dL) 40 (15) 41(17) 38 (1L5)
LDL-cholesterol N
(mg/dL) 127.6 (53.6) 109 (47.8) 145 (55.5)
Triglyceridemia #
(mg/dL) 180 (84) 159 (65) 191.5 (115)
Triglyceridemia/HDL #
o 431(331) 374 (2.41)  5.11(2.66)

#P < 0.05and *P < 0.001 versus diabetic MS patients (Mann-Whitney test).

treated with diet and oral antidiabetic agents. In all partici-
pants, cholesterol and triglycerides were measured by stan-
dard enzymatic procedures, HDL-cholesterol after phospho-
tungstic acid/magnesium chloride precipitation and enzy-
matic determination of cholesterol, and LDL-cholesterol by
the Friedewald formula.

In this group of MS subjects we examined on fasting
venous blood the following.

(i) Lipid Peroxidation. The oxidation of polyunsaturated
fatty acids was evaluated in plasma by detection of the
TBARS, generated by peroxidative processes, which
include lipid peroxides and MDA. The evaluation of
TBARS was made by fluorimetry, using1,1,3,3-tetram-
ethoxypropane as standard [42].

(ii) Protein Oxidation. The protein carbonyl (PC) content
was measured by an enzyme-linked immunosorbent
assay (ELISA) kit (BioCell PC test kit, Enzo Life
Sciences AG, Switzerland), which uses the classic PC
reagent 2,4-dinitrophenylhydrazine (DNP). In brief,
plasma samples were incubated with DNP, and then
plasma proteins were nonspecifically adsorbed on an
ELISA plate. Unconjugated DNP and nonprotein
constituents were washed away. The adsorbed pro-
teins were probed with biotinylated anti-DNP anti-
body, followed by streptavidin-linked horseradish
peroxidase. A chromatin reagent was added, and the
reaction was stopped by adding an acid solution.
Absorbance for each well was measured at 450 nm
and related to a standard curve prepared for serum
albumin containing increasing proportions of hypo-
chlorous acid-oxidized protein, calibrated colouri-
metrically. Total protein concentration in plasma
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TABLE 2: Medians (interquartile ranges) of gelatinase and inhibitor plasma concentrations in normal controls, in the whole group of MS
patients, and in the two subgroups, respectively, with and without diabetes mellitus.

Control subiects All Diabetic Nondiabetic

) MS patients MS patients MS patients

TBARS (nmol/mL) 5.71 (2.28) 8.83 (0.70)* 8.99 (0.71)* 8.73 (0.665)*
PC (nmol/mg prot.) 0.470 (0.125) 0.880 (0.240)* 0.880 (0.240)* 0.880 (0.220)*

TAS (mmol/L)

NO,, (ymol/L)

MMP-2 (ng/mL)
MMP-9 (ng/mL)
TIMP-1 (ng/mL)
TIMP-2 (ng/mL)
MMP-2/TIMP-2
MMP-9/TIMP-1

0.910 (0.330)
28.05 (24.65)
29.19 (6.07)
53.17 (6.57)
30.99 (2.63)
87.27 (6.28)
0.354 (0.080)
1.720 (0.150)

0.880 (0.300)
74.80 (26.52)*
4450 (10.46)*

0.910 (0.150)
77.10 (24.20)*
47.84 (10.76)*

0.720 (0.395)"
67.70 (43.92)*
39.69 (9.75)*

105.6 (36.15)* 1273 (28.7)* 91.50 (11.61)*
73.47 (10.31)* 75.66 (8.65)* 68.45 (9.35)*
98.77 (14.38)* 99.79 (12.86)* 95.21 (15.32)™*
0.449 (0.130)* 0.460 (0.104)* 0.391 (0.141)"
1.480 (0.345) 1.658 (0.339) 1.347 (0.298)"

*P < 0.05, TP <0.01,and *P < 0.001 versus control subjects (Mann-Whitney test).

*P < 0.01and *P < 0.001 versus diabetic MS patients.

samples was evaluated by the method of Lowry et al.
[43].

(iii) Nitric Oxide Metabolites (NO,). The NO production
was evaluated by a micromethod, which measures the
concentration of the NO metabolites, nitrite and
nitrate (NO,). In vivo NO has a very short half-life
(less than 0.1 sec) and it is converted, through different
biochemical pathways, into nitrite, which has a half-
life of a few minutes, and the more stable nitrate.
Plasma concentrations of nitrate are 90-99% of the
total NO metabolites concentration, indicated as
NO,. In the laboratory method adopted by us, nitrate
was first converted into nitrite by a nitrate reductase;
then nitrite was assessed by spectrophotometry after
addition of the Griess reagent [44].

(iv) Total Antioxidant Status (TAS). TAS was obtained
using an Assay kit (Calbiochem, La Jolla, CA, USA)
which relies on the ability of plasma antioxidant
substances to inhibit the oxidation of 2,2-azino-bis(3-
ethylbenzthiazoline sulfonic acid) (ABTS) to the rad-
ical cation ABTS"" by a peroxidase [45]. The radical
concentration was measured by spectrophotometry.

(v) Gelatinases and Their Inhibitors. Plasma concentra-
tions of gelatinases (MMP-2 and MMP-9) and their
inhibitors (TIMP-1 and TIMP-2) were determined
using, respectively, the Human MMP-2 ELISA and
Human MMP-9 ELISA kit (Boster Biological Tech-
nology, Ltd.) and the Human TIMP-1 ELISA and
Human TIMP-2 ELISA kit (Boster Biological Tech-
nology, Ltd.).

The same parameters have been examined in a group of
17 normal subjects (10 men and 7 women; median age 38 yrs;
IQR 4), selected from the hospital staff. In this group of
control subjects the basal glucose level was 89 (7) mg/dL,
total cholesterol level was 200 (40) mg/dL, LDL-cholesterol
was 142 (24) mg/dL, HDL-cholesterol was 46 (9) mg/dL, and
triglycerides were 65 (36) mg/dL. The mean values of blood

pressure in these subjects were 125 (10)/75 (5) mm/Hg; BMI
was 26 (4); waist circumference was 98 (13) cm.

The Ethical Committee approved the study and each
subject gave informed consent.

3. Statistical Analysis

The results were expressed as medians and interquartile
ranges (IQR); the differences between MS subjects and nor-
mal controls as well as the differences between normal con-
trols and subjects with MS subdivided in agreement with the
presence or not of diabetes mellitus were estimated according
to the Mann-Whitney test. The study of correlations was per-
formed employing the Spearman rank correlation coefficient.

4. Results

Examining the baseline characteristics of subjects with MS we
observed a significant decrease in waist circumference (P <
0.001), systolic blood pressure (P < 0.05), and basal glucose
level (P < 0.001) and a significant increase in total cholesterol
(P < 0.001), LDL-cholesterol (P < 0.001), triglycerides (P <
0.05), and triglycerides/HDL-cholesterol (P < 0.05) in
NDMS subjects in comparison with DMS subjects (Table 1).

MS subjects showed an increase in lipid peroxida-
tion, protein oxidation, and nitric oxide metabolites (NO,)
(Table 2). In the same group of MS subjects, we found an
increase in MMP-2, MMP-9, TIMP-1, and TIMP-2 in com-
parison with normal subjects; we also observed an increase
in MMP-2/TIMP-2 ratio, with no difference regarding MMP-
9/TIMP-1 ratio (Table 2). Subdividing the MS group in the
two subgroups, we found that the increase in lipid peroxi-
dation, protein oxidation, and NO, was similar in DMS and
NDMS subjects, while the decrease in TAS was significantly
evident only in NDMS subjects, in comparison with normal
and DMS subjects (Table 2). We observed also that the plasma
concentrations of MMP-2, MMP-9, TIMP-1, and TIMP-2



were significantly increased in the two subgroups in com-
parison with normal subjects, but in MS subjects with DM
the values were higher than in nondiabetics (Table 2). The
MMP-2/TIMP-2 ratio was significantly increased in the two
subgroups in comparison with normal subjects although its
value was lower in NDMS than in DMS subjects (Table 2). The
MMP-9/TIMP-1 ratio instead was significantly decreased in
MS subjects without DM, not only in comparison with
normal subjects but also in comparison with DMS subjects
(Table 2).

In normal controls, as well as in the two subgroups of sub-
jects with MS, no statistical correlation was observed among
age, parameters of oxidative status, gelatinases, and tissue
inhibitors. Examining the linear regression among TBARS,
gelatinases, and their inhibitors, we found a negative correla-
tion between TBARS and MMP-2 in DMS subjects (Table 4).
No correlation among carbonyl groups, gelatinases, and their
inhibitors was evident (Tables 3, 4, and 5) and no relationship
among NO,, gelatinases, and their inhibitors was observed
(Tables 3, 4, and 5). A positive correlation between TAS and
MMP-2, TAS and MMP-9, and TAS and MMP-9/TIMP-1
ratio in the entire group of MS subjects was found (Table 3).

5. Discussion

The results of this research confirm all the data previously
published by us [7, 9, 10, 12]: the parameters of the oxidative
stress distinguish DMS from NDMS subjects and are altered
even in middle-aged MS subjects [10]. Also the gelatinases
and their inhibitors discriminate DMS from NDMS subjects
and in fact their means were significantly higher in MS
diabetic subjects.

Our goal was in particular the evaluation of the statistical
correlations between the parameters of the oxidative status
and the gelatinases and their tissue inhibitors in MS.

It has been observed that ox-LDLs upregulate MMP-9
expression and reduce TIMP-1 expression in monocyte-
derived macrophages [46] and that MDA, which is included
in TBARS, is correlated with the MMP-9 activity in subjects
with acute coronary syndrome [27]. In this study however the
TBARS that reflects lipid peroxidation was negatively corre-
lated with MMP-2 only in DMS subjects.

No correlation was observed among protein oxidation,
gelatinases, and their inhibitors, although in experimental
models [35] a significant correlation between carbonyl groups
and MMP-9 has been described.

We noted especially a positive correlation between TAS
and MMP-2, between TAS and MMP-9, and between TAS
and MMP-9/TIMP-1 ratio in the entire group of MS subjects.
As it is known, TAS includes enzymatic antioxidants (super-
oxide dismutase, catalase, and glutathione peroxidase) and
nonenzymatic antioxidants (uric acid, ascorbic acid, biliru-
bin, vitamin E, and carotenoids). The examination of the lit-
erature data regarding the correlations between antioxidants
and MMPs profile shows controversial aspects. In fact, MMP-
9 plasma levels are negatively associated with provitamin A
carotenoids in a general population [47] while, in exper-
imental models, the deficiency of vitamin A seems to be
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TaBLE 3: Correlations between oxidative parameters and gelatinases
in all MS subjects.

Versus Versus Versus Versus

TBARS PC TAS NO,
MMP-2 0162  -0.043  0.255°  -0.077
MMP-9 0.176 —-0.025 0.315 0.075
TIMP-1 0.094 -0.067  —0.052 —-0.012
TIMP-2 0.126 —-0.199 0.067 0.071
MMP-2/TIMP-2 —-0.206 0.035 0.196 -0.100
MMP-9/TIMP-1 0.133 -0.017 0.320° 0.097

*P < 0.05 %P < 0.01 (Spearman’s rank correlation).

TaBLE 4: Correlations between oxidative parameters and gelatinases
in diabetic MS subjects.

Versus Versus Versus Versus

TBARS PC TAS NO,
MMP-2 -0.363" —-0.240 -0.235 —-0.144
MMP-9 0.180 —-0.144 —-0.057 0.295
TIMP-1 0.002 0.000 —-0.287 0.079
TIMP-2 0.224 —-0.266 0.148 0.287
MMP-2/TIMP-2 —-0.283 -0.100 —-0.263 —0.149
MMP-9/TIMP-1 0.167 —-0.136 0.028 0.216

#P <0.05 (Spearman’s rank correlation).

TaBLE 5: Correlations between oxidative parameters and gelatinases
in nondiabetic MS subjects.

Versus Versus Versus Versus

TBARS PC TAS NO,
MMP-2 —-0.346 0.097 0.207 -0.167
MMP-9 —-0.041 -0.021 0.236 —-0.163
TIMP-1 0.055 —-0.174 -0.289 —-0.167
TIMP-2 —-0.067 —-0.154 —-0.193 —-0.140
MMP-2/TIMP-2 —-0.280 0.195 0.316 -0.077
MMP-9/TIMP-1 —-0.104 0.084 0.317 —-0.065

responsible for a gelatinase decrease without any variations of
TIMPs [48]. In subjects with acute stroke the infusion of uric
acid induced a decrease of total and active MMP-9 levels [49]
and the treatment with antioxidants (polyethylene glycol-
superoxide dismutase and N-acetyl-L-cysteine) reduces the
MMP-9 activity in plasma and in aortic tissue homogenates
of experimental models of diabetes mellitus [39] and the use
of tempol (a ROS scavenger) reduces MMP-2 levels and its
activity in aortic rings of animal models of renovascular
hypertension [50]. Even in experimental models of oxidative
stress (obtained with the depletion of glutathione), taurine
inhibits MMP-2 activation in cardiac tissues [51]. Differently,
the treatment with retinoic acid increases significantly MMP-
9 but not MMP-2 [48] and lutein, a carotenoid, enhances
MMP-9 synthesis in animal models [52]. Therefore, all these
studies do not clarify how in subjects with MS the TAS
could be positively related to the gelatinases and their tissue
inhibitors and then all these data need further investigation.
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With regard to the behaviour of NO,, its increase in
MS is related especially to a nitric oxide overproduction by
macrophages, in which the NO synthase activation is caused
by cytokines, such as TNF-« and IL-1/3 [53-55] that are able to
induce also MMPs expression [56-58]. In this study, no sta-
tistical correlation was observed among NO,, gelatinases and
their inhibitors in the whole group and in the two subgroups
of MS subjects. Keeping in mind that NO production and
gelatinases expression are induced by the same cytokines that
are increased in MS [59], the inflammatory state could be the
link between oxidative stress and MMPs. In addition, it must
be considered that, during an inflammatory response, leuko-
cyte infiltration through basal membranes is only possible
if these cells produce enzymes that can degrade the extra-
cellular matrix so MMPs, as well as ROS, are crucial effector
molecules of inflammatory cells, which play a sure role
in atherosclerosis and other chronic inflammatory and meta-
bolic diseases [60].

6. Conclusions

There are several data regarding the influence of the oxidative
status on the gelatinases and their tissue inhibitors. In this
preliminary study concerning a small group of MS subjects,
we observed a significant alteration of all these parameters,
although from the statistical analysis of the data it is difficult
to clarify how the oxidative stress could influence the plasma
levels of the gelatinases and their inhibitors. Further investi-
gation seems to be necessary, considering the impact of MS
on cardiovascular morbidity and mortality and especially the
opportunity of specific therapeutic strategies.
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