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ABSTRACT

We construct a non-associative algebra A over a field of characteristic

zero with the following properties: if V is the variety generated by A, then

V has exponential growth but any proper subvariety of V is nilpotent.

Moreover, by studying the asymptotics of the sequence of codimensions of

A we deduce that exp(V) = 2.

1. Introduction

Let F be a field of characteristic zero and A a not necessarily associative F -

algebra. A natural and well established way of measuring the polynomial identi-

ties satisfied by A is through the study of the asymptotic behavior of its sequence

of codimensions cn(A), n = 1, 2, . . . . In characteristic zero, without loss of gen-

erality, one can study the multilinear identities satisfied by A and the sequence
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of codimensions actually gives a measure of such identities. More precisely, let

F{X} be the free non-associative algebra in a countable set X and Pn the space

of multilinear polynomials in the first n variables. If Id(A) denotes the T-ideal

of polynomial identites satisfied by A, one considers the relatively free algebra

F{X}/Id(A) and the sequence of subspaces Pn/(Pn ∩ Id(A)), n ≥ 1. Then

cn(A) = dimPn/(Pn ∩ Id(A))

is the n-th codimension of A

In the language of varieties, if V = var(A) is the variety generated A, then

the growth of V is the codimension growth of the algebra A. Also, we write

Id(V) = Id(A) and cn(V) = cn(A).

The asymptotic behavior of the sequence of codimensions has been extensively

studied in recent years leading to classification theorems (see, for instance, [7],

[9], [14]). The key result in this area says that the sequence of codimensions

of an associative PI-algebra (algebra satisfying a non-trivial polynomial iden-

tity) is exponentially bounded ([13]). Moreover, its exponential rate of growth,

exp(A) = limn→∞ n
√
cn(A), is an integer called the PI-exponent of A ([4], [5],

see also [7]).

For non-associative PI-algebras, the corresponding codimensions in general

are not exponentially bounded. The same conclusion can be drawn for Lie and

Jordan algebras. In case of Lie algebras an interesting scale of functions between

exponential and factorial has been provided by Petrogradsky in [12]. Even when

the codimensions are exponentially bounded, the exponential growth rate can

be not an integer (see [11]). In fact in [6] the authors constructed for any real

number α > 1 an algebra whose exponential growth of the codimensions is equal

to α.

Here we are interested in the largest T-ideals, or equivalently in the smallest

varieties. Recall that an algebra A is nilpotent if, for some k ≥ 1, any product of

k elements of A (with all possible arrangement of the brackets) is zero. Clearly

if A is a nilpotent algebra then cn(A) = 0, for n large. Accordingly we say that

a variety is nilpotent if it is generated by a nilpotent algebra. Hence nilpotent

varieties are the ones of smallest growth. Clearly next smallest varieties must

have all proper subvarieties nilpotent. A variety with such a property is called

almost nilpotent. If we consider varieties of associative algebras, it is easily

seen (see Section 3) that the only almost nilpotent variety is the variety V of

commutative algebras (the sequence of codimensions is cn(V) = 1, n ≥ 1). In
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case of varieties of Lie algebras, in [9] it was shown that there is also only one

almost nilpotent variety: this is the metabelian variety, denoted A2, and in this

case cn(A2) = n− 1.

In the non-associative case the situation is unclear. Anyway, by a standard

application of Zorn’s lemma, here we show that any variety contains a subvariety

which is almost nilpotent.

Next we consider the problem of constructing an almost nilpotent variety of

exponential growth and this is the main result of the paper. In fact we explicitly

construct a non-associative algebra A such that V = var(A) is almost nilpotent.

Moreover, we extensively study the structure of the multilinear identities of A

as a module of the symmetric group. We are able to determine almost all

multiplicities in the n-th cocharacter of V and as a reward we prove that the

variety V is almost nilpotent and exp(V) = exp(A) exists and is equal to 2.

2. Preliminaries

Throughout, F will be a field of characteristic zero, X = {x1, x2, . . . } a count-

able set and F{X} the free non-associative algebra on X over F . For every

n ≥ 1, we consider Pn, the space of multilinear polynomials of F{X} in the

first n variables x1, x2, . . . , xn. Notice that since the number of distinct ar-

rangements of parentheses on a monomial of length n is the Catalan number
1
n

(
2n−2
n−1

)
, it readily follows that dimF Pn =

(
2n−2
n−1

)
(n− 1)!.

Given an algebra A, let Id(A) = {f ∈ F{X}|f ≡ 0 on A} be the T-ideal of

F{X} of polynomial identities of A. Since charF = 0, it is well known that

the sequence of spaces Pn ∩ Id(A), n = 1, 2, . . . , carries all information about

Id(A). The symmetric group Sn acts on Pn by permuting variables: if σ ∈ Sn,

f(x1, . . . , xn) ∈ Pn,

σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

The space Pn ∩ Id(A) is invariant under this action and one studies the struc-

ture of Pn(A) = Pn/(Pn∩Id(A)) as an Sn-module. The Sn-character of Pn(A),

denoted χn(A), is called the nth cocharacter of A. Its degree cn(A) = χn(A)(1)

is the nth codimension of A. By complete reducibility one writes χn(A) =∑
λ�n mλχλ, where χλ is the irreducible Sn-character corresponding to the par-

tition λ of n and mλ ≥ 0 is the multiplicity of χλ (see, for example, [8] for the

representation theory of the symmetric group).
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If V = var(A) is the variety generated by the algebra A, we define Pn(V) =
Pn(A) and χn(V) = χn(A).

In case V is a proper variety of associative algebras, by [1], the multiplicities

mλ are polynomially bounded. If A = F 〈X〉 is the free associative algebra we

have that in χn(A), mλ = dλ where dλ = degχλ is the degree of the character

χλ. In the non-associative case these relations do not hold any more (see, for

instance, [10], section 2). For instance, for the free non-associative algebra

A = F{X} we have that in χn(A), mλ = Cndλ where Cn is the nth Catalan

number.

We next recall some basic properties of the representation theory of the sym-

metric group that we shall use in the sequel. Let λ � n be a partition and let

Tλ be a Young tableau of shape λ � n. We denote by eTλ
the corresponding

essential idempotent of the group algebra FSn. Recall that eTλ
= R̄Tλ

C̄Tλ

where

R̄Tλ
=

∑
σ∈RTλ

σ, C̄Tλ
=

∑
τ∈CTλ

(sgnτ)τ

and RTλ
, CTλ

are the row and column stabilizers of Tλ, respectively. Re-

call that if Mλ is an irreducible Sn-submodule of Pn(V) corresponding to λ,

then there exists a polynomial f(x1, . . . , xn) ∈ Pn and a tableau Tλ such that

eTλ
f(x1, . . . , xn) 	∈ Id(V).

3. Almost nilpotent subvarieties

Let V be a variety of algebras. We say that V is a nilpotent variety if there

exists k ≥ 1 such that the product of k variables (with all possible bracketing)

is an identity of V . Also, we say that a variety V is almost nilpotent if V is not

a nilpotent variety but every proper subvariety U ⊂ V is nilpotent.

We start this section by proving the following

Remark 1: Let V be the variety of associative commutative algebras. Then V
is the only almost nilpotent variety of associative algebras.

Proof. Let V be the variety of associative commutative algebras. Then V can be

generated by the algebra A = Fe where e2 = e. Let U be a variety of associative

algebras and suppose that V 	⊆ U . Then Id(U) 	⊆ Id(V) says that there exists

a (multilinear) polynomial f(x1, . . . , xk) ∈ Id(U) \ Id(V).
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Since f 	∈ Id(V) = Id(A), f does not vanish on the basis {e} of A. Thus if

f=
∑

σ∈Sk
ασxσ(1) · · ·xσ(k), we get 0 	=f(e, . . . , e) =

∑
σ∈Sk

ασe
k =

∑
σ∈Sk

ασe.

It follows that α =
∑

σ∈Sk
ασ 	= 0. Now let U = var(B) and take any b ∈ B.

Then 0 = f(b, . . . , b) = αbk, which implies bk = 0. We have proved that if U is a

variety of associative algebras and V 	⊆ U , then U satisfies the identity xk ≡ 0,

for some k ≥ 1. But then by the Nagata–Higman theorem (see [3]) U satisfies

x1 · · ·xt ≡ 0 for some t ≥ 1, i.e., U is a nilpotent variety. This proves that any

proper subvariety of V is nilpotent and V is the only almost nilpotent variety

of associative algebras.

Theorem 1: Let V be a non-nilpotent variety of algebras. Then there exists a

subvariety W of V such that W is almost nilpotent.

Proof. Let S be the family of T -ideals Q of F{X} such that Q ⊇ Id(V) and
F{X}

Q is not nilpotent; S is non-empty since it contains the T -ideal Id(V). We

consider S partially ordered by inclusion, and we let {Qi}i∈I be a chain in S. If

Q =
⋃

i∈I Qi, we claim that Q ∈ S, i.e., Q ⊇ Id(V) and F{X}
Q is not nilpotent.

In fact if not, there exists k ≥ 1 such that any multilinear monomial in

x1, . . . , xk (with any arrangement of the brackets) belongs to Q. Let Ck be the

k-th Catalan number and let us denote by {w1, . . . , wCk
} the set of monomials

obtained from x1 · · ·xk by placing the brackets in all possible ways. Then for

every i, there exists Qsi , si ∈ I, such that wi ∈ Qsi . If s = maxi=1,...,Ck
si, then

w1, . . . , wCk
∈ Qs and so F{X}

Qs
is nilpotent, a contradiction.

By applying Zorn’s lemma to S it follows that there exists a maximal element

M ∈ S. If W is the variety such that Id(W) = M , then W is not nilpotent but

any proper subvariety is nilpotent.

4. The algebra A

In this section we define a non-associative algebraA that will be the main object

of our investigation.

Let us denote by Ra the operator of right multiplication by a.

Definition 1: A is the algebra over F generated by the elements {a, b, z} satis-

fying the following relations:

(1) a2 = b2 = ab = ba = az = bz = 0;
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(2) (zw(Ra, Rb))(zw
′(Ra, Rb)) = 0, for any fixed eventually empty words

w,w′ in Ra and Rb;

(3) for all k ≥ 0,

z(RaRb)
kRaRb + z(RaRb)

kRbRa = 0,

z(RaRb)
kR2

a = z(RaRb)
kR2

b = 0.

The following lemma easily follows from the above relations.

Lemma 1: A basis of A is given by the elements

a, b, z(RaRb)
k, z(RaRb)

kRa, z(RaRb)
kRb,

for all k ≥ 0.

Proof. By the defining relations it is clear that the above elements span A. Next

we prove that they are linearly independent over F. Let

(1) α1a+α2b+
∑
i

βiz(RaRb)
i +

∑
j

γjz(RaRb)
jRa +

∑
k

δkz(RaRb)
kRb = 0.

Applying the above on the right to z, we obtain that α1za+α2zb = 0. Hence

α1zaRa + α2zbRa = α2zbRa = 0, and so α2 = α1 = 0. If we now multiply (1)

by Ra on the right it follows that∑
i

βiz(RaRb)
iRa −

∑
k

δkz(RaRb)
k+1 = 0.

By multiplying again by Ra on the right we obtain
∑

k δkz(RaRb)
k+1Ra = 0

and so δk = 0, ∀k. Similar calculations complete the proof.

The following remark will be of use in what follows.

Remark 2: Letf(Ra, Rb) be a not necessarily homogeneous polynomial inRa, Rb.

If zf(Ra, Rb) 	= 0 then z(RaRb)f(Ra, Rb) 	= 0.

We next prove

Lemma 2: x1(x2x3) is an identity of A.

Proof. Notice that if I is the ideal generated by z, then dimA/I = 2.

Let annr(A) = {x ∈ A|Ax = 0} be the right annihilator of A. Since

I ⊆ annr(A) and, by definition of A, A2 ⊆ I, we obtain that 0 = AI ⊇ AA2

and so x1(x2x3) ≡ 0 holds on A.
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From Lemma 2 it is clear that only left normed polynomials can have a non-

zero evaluation on A. Throughout we shall omit the parenthesis in left normed

monomials.

Lemma 3: The left normed monomial x0xxx is an identity of A.

Proof. Let ϕ : F{X} → A be an evaluation on A. Since x0xxx is linear in x0

we may evaluate x0 into a basis element of A.

If ϕ(x0) = a or b then ϕ(f) = 0.

Hence we assume that ϕ(x0) = zw(Ra, Rb), for some word w in Ra and Rb.

Let ϕ(x) = αa + βb + c, for some α, β ∈ F and c ∈ I, the ideal generated

by z. Then, since I ⊆ annr(A), we may assume that ϕ(x) = αa + βb. Now

by direct inspection it is easily shown that ϕ(x0xxx) = 0. For instance, if

ϕ(x0) = z(RaRb)
kRa,

ϕ(x0xxx) =z(RaRb)
kRa(α

2R2
a + β2R2

b + αβ(RaRb +RbRa))(αRa + βRb)

=(β2z(RaRb)
k+1Rb + αβz(RaRb)

k+1Ra)(αRa + βRb)

=αβ2z(RaRb)
k+1RbRa + αβ2z(RaRb)

k+1RaRb = 0.

By applying a partial linearization to the identity of Lemma 3 we have the

following

Remark 3: x0x1x1x2 ≡ −x0x1x2x1 − x0x2x1x1 (mod. Id(A)).

Lemma 4: x0xxy1 · · · y2s+1yy is an identity of A.

Proof. Let ϕ be an evaluation on A. By linearity on x0, y1 · · · y2s+1 and by what

we remarked in the previous lemma, we may assume that ϕ(x0) = zw(Ra, Rb),

for some w, ϕ(x) = αa + βb, ϕ(y) = γa + δb and ϕ(yi) = yi = a or b, where

α, β, γ, δ ∈ F.

If degw = 2k, then w = (RaRb)
k and by the defining relations we get

ϕ(x0xxy1 · · · y2s+1yy) = z(RaRb)
k(α2R2

a + β2R2
b + αβ(RaRb +RbRa)) · · · = 0.

If degw = 2k + 1, then either w = (RaRb)
kRa or w = (RaRb)

kRb. In any

case, by the defining relations,

ϕ(x0xxy1 · · · y2s+1yy) = μz(RaRb)
k+s+1(γ2R2

a+δ2R2
b+γδ(RaRb+RbRa)) = 0,

for some μ ∈ F , and the lemma is proved.
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From now on we shall write Xi = Rxi the right multiplication by the variable

xi.

Lemma 5: Let w = w(X1, X2). If degx1
w−degx2

w ≥ 3, then x0w(X1, X2) ≡ 0

on A.

Proof. The proof is by induction on k = degx2
w.

If k = 0, we are done by Lemma 3. Suppose that the conclusion of the lemma

holds for degx2
w = k > 0 and let degx2

w = k + 1.

If x0w(X1, X2) is equal to x0X2w
′ or to x0X1X2w

′, for some w′, then since

degx2
w′ < k + 1, we are done by induction.

Therefore we may assume that x0w(X1, X2) = x0X1X1w
′′, for some w′′. Also,

by Lemma 2, we may assume that x0w(X1, X2) = x0X1X1X2w
′′′, for some w′′′.

Now, by Remark 3, we can write

x0X1X1X2 ≡ −x0X1X2X1 − x0X2X1X1 (mod. Id(A)),

and the proof follows from the previous cases.

5. Some numerical invariants

We start this section by proving some combinatorial propositions that will allow

us to compute most multiplicities in the cocharacter of V = var(A) for most

partitions.

Recall that if λ � n is a partition of n and Tλ is a Young tableau of shape

λ, we denote by eTλ
∈ FSn the corresponding essential idempotent of FSn.

In what follows we shall identify eTλ
with the polynomial eTλ

(y0y1, . . . , yn) =

y0eTλ
y1 · · · yn obtained by acting with eTλ

on the left normed monomial y1 · · · yn.
We shall then identify all variables corresponding to each row of the tableau.

Let Qn = span{x0xσ(1) · · ·xσ(n)|σ ∈ Sn} be the space of multilinear left

normed monomials in x0, . . . , xn with x0 as the first variable. The symmetric

group Sn acts on Qn by permuting the variables x1, . . . , xn and Qn ∩ Id(A) is

invariant under this action. Hence we have that

Qn(A) =
Qn

Qn ∩ Id(A)

is an Sn-module and we denote by

χQ
n (A) = χSn

(
Qn

Qn ∩ Id(A)

)
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its character. We decompose χQ
n (A) into irreducible Sn-characters and we write

χQ
n (A) =

∑
λ�n

mQ
λ χλ,

where mQ
λ is the multiplicity of χλ in χQ

n (A).

Let f ∈ Qn and suppose that f has a non-zero evaluation on A. Being multi-

linear f has a non-zero evaluation on a basis of A. Hence we must evaluate x0

into z(RaRb)
k or z(RaRb)

kRa or z(RaRb)
kRb. It follows that any other vari-

able of f must be evaluated into a or b. As a consequence we get that any

multilinear polynomial of Qn alternating on 3 variables is an identity of A. By

standard arguments, this says that if the diagram of λ � n has more than two

rows, then the corresponding Sn-character χλ appears with zero multiplicity in

χQ
n (A). Also, let (λ1, λ2) � n be such that λ1 − λ2 ≥ 3. Then for any tableau

Tλ, if f is the polynomial obtained from eTλ
(x0x1, . . . , xn) by identifying the

variables corresponding to each row, we get that degx1
f − degx2

f ≥ 3 and, by

Lemma 5, we obtain that mQ
λ = 0. Thus we obtain the decomposition

χQ
2k(A) = mQ

(k,k)χ(k,k) +mQ
(k+1,k−1)χ(k+1,k−1)

and

χQ
2k+1(A) = mQ

(k+1,k)χ(k+1,k).

In order to simplify the notation we shall also use the following convention:

a monomial M in which some variables are overlined by the same sign (say

tilda, hat, etc.) must be read as the polynomial in which those variables are

alternated.

We start by analyzing the partitions of the type λ = (k+1, k− 1), k ≥ 1. We

have the following

Proposition 1: If λ = (k + 1, k − 1), k ≥ 1, then mQ
(k+1,k−1) = 1.

Proof. Let w1, w2 be polynomials, obtained from the essential idempotents cor-

responding to two different tableaux of shape λ by identifying the elements in

each row of λ. Then degx1
w1 − degx2

w1 = degx1
w2 − degx2

w2 = 2.

First we shall prove that mQ
(k+1,k−1) ≤ 1.

To this end we assume that x0w1 and x0w2 are not polynomial identities of A

and we need to prove that x0w1 and x0w2 are linearly dependent (mod. Id(A)).

We prove our claim by induction on t = degx2
w1 = degx2

w2.

If t = 0, then w1 = w2 = x1x1 and we are done.
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Let degx2
w = k > 0, where w is a monomial, and suppose first that

x0w = x0X2w
′ for some w′. Since degx1

w′ − degx2
w′ = 3 then, by Lemma 5,

x0w ≡ 0 (mod. Id(A)). Therefore we must have that either x0w = x0X1X2w
′

or x0w = x0X1X1w
′′, for some w′, w′′. In the second case, from Lemma 3,

it follows that x0w = x0X1X1X2w
′′′. Moreover, by Remark 3, we have that

x0w = x0X1X1X2w
′′′ ≡ −x0X1X2X1w

′′′ (mod. Id(A)).

Hence we may assume that x0w1 = x0X1X2w
′
1. Similar considerations con-

cerning w2 lead to x0w2 = x0X1X2w
′
2. But then we are done by induction. We

have proved that mQ
(k+1,k−1) ≤ 1.

Next we prove that mQ
(k+1,k−1) = 1.

Let

gk = x0x1x1 x̄1x̄2 · · · x̂1x̂2︸ ︷︷ ︸
k−1 pairs

be the left-normed polynomial associated to λ = (k + 1, k − 1), where ,̄ˆmean

alternation on the corresponding elements. Notice that the polynomial gk is

obtained from the essential idempotent corresponding to λ by identifying all

the elements in each row of λ.

We claim that if ϕ is an evaluation on A such that ϕ(x0) = za, ϕ(x1) =

a+ b, ϕ(x2) = b, then ϕ(gk) = (−1)k−1z(ab)k(a+ b) 	= 0.

In fact, by induction on k, if k = 1 then ϕ(g1) = ϕ(x0x1x1) = zab(a + b).

Now, in general,

ϕ(gk+1) = ϕ(gk)(̂a+ b)̂b = (−1)k−1z(ab)k(a+ b)(̂a+ b)̂b.

Since by (3) of Definition 1

z(ab)k(a+ b)(a+ b)b ≡ 0 (mod. Id(A)),

it follows that ϕ(gk+1) = (−1)kz(ab)k+1(a+ b) 	= 0, and we are done.

Proposition 2: If λ = (k + 1, k) then mQ
(k+1,k) = 2.

Proof. By induction on k. If k = 1, since d(2,1) = degχ(2,1) = 2, we are done.

Let k ≥ 2, and let w = w(x1, x2) be a homogeneous polynomial such that

degx1
w−degx2

w = 1.We claim that x0w can be written as a linear combination

of polynomials of the type x0X2w
′ and x0w

′X2 for some w′.
In fact, if we apply partial linearization to the identity of Lemma 3 we obtain

x0X1X1X2 ≡ −x0X1X2X1 − x0X2X1X1 (mod. Id(A))
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and

x0uX2X1X1 ≡ −x0uX1X2X1 − x0uX1X1X2 (mod. Id(A)),

for any monomial u. It follows that x0w is a linear combination of polynomials of

the type x0X2w
′, x0w

′X2 and x0X1X2vX2X1 for some w′, v with deg v = 2k−3.

But linearizing the identity of Lemma 4, for any v with deg v = 2k− 3 we get

x0X1X2vX2X1 ≡ −x0X2X1vX1X2 − x0X1X2vX1X2 − x0X2X1vX2X1

and the claim is proved.

LetHk+1,k−1 be the space of homogeneous polynomials in x1, and x2 of degree

k + 1 in x1 and k − 1 in x2. Then Proposition 1 says that dim x0Hk+1,k−1 ≤ 1

and dim x0Hk+1,k−1X2 ≤ 1 (mod. Id(A)). Hence from the previous claim we

get that mQ
(k+1,k) ≤ 2.

Define the following two polynomials:

g1 = x0x1x̄1x̄2 · · · x̃1x̃2 = x0g
′
1

and

g2 = x0x̄1x̄2 · · · x̃1x̃2x1 = x0g
′
2.

The polynomials g′1, g
′
2 are obtained from the essential idempotents correspond-

ing to the tableaux

T 1
λ =

2 4 · · · n− 1 1

3 5 · · · n
and T 2

λ =
1 3 · · · n− 2 n

2 4 · · · n− 1

by identifying the integers in each row of λ.

In order to complete the proof of the proposition it is enough to prove

that g1, g2 are linearly independent (mod. Id(A)). Write g = αg1 + βg2 ≡ 0

(mod. Id(A)), for some α, β ∈ F.

Let ϕ be an evaluation on A such that ϕ(x1) = a, ϕ(x2) = b, ϕ(x0) = z.

Since by the defining relation on A,

z(RaRb)
kRaRb ≡ −z(RaRb)

kRbRa (mod. Id(A)),

and by Remark 3,

zaba ≡ −zaab− zbaa ≡ −zbaa (mod. Id(A)),

we obtain

ϕ(g) = (−1)kαzabab · · ·aba+ 2kβzabab · · ·aba ≡ 0 (mod. Id(A))
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and so

(−1)kα+ 2kβ = 0.

In the same way, by putting ϕ(x1) = a, ϕ(x2) = b, ϕ(x0) = zb we have

(2kα+ (−1)kβ)zbabab · · ·ab ≡ 0 (mod. Id(A)).

It follows that
2kα+ (−1)k β = 0.

Hence from the above we have that α = β = 0, and this implies that mQ
(k+1,k) =

2.

Proposition 3: If λ = (k, k) then 0 < mQ
(k,k) ≤ 2.

Proof. First we prove that mQ
(k,k) > 0. Let n = 2k and define the following

polynomial:
g = x0x̄1x̄2 · · · x̃1x̃2 = x0g

′,
where we have k pairs x1x2.

The polynomial g′ is obtained from the essential idempotent corresponding

to the tableaux

Tλ =
1 3 · · · n− 1

2 4 · · · n

by identifying the integers in each row. If m(k,k) = 0 then g ≡ 0 (mod. Id(A)).

From this it follows that g1 ≡ 0 and g2 ≡ 0 (mod. Id(A)), where g1 and g2 are

the polynomials defined in the proof of Proposition 2, a contradiction. Hence

mQ
(k,k) > 0.

Let w be a polynomial in x1 and x2, with degx1
w = degx2

w = k. By us-

ing a partial linearization of the identity in Lemma 3, it easily follows that

mod. Id(A), w can be written as a linear combination of monomials of the type

x1x2x2w
′, x2x1x1w

′′, x1x1x2w
′′′, x2x2x1v,

for some w′, w′′, w′′′, v.
By a repeated application of this argument we get the following.

If k = 2m, then w can be written as a linear combination of the following 4

monomials,

w1 =x1x1x2x2 · · ·x1x1x2x2,

w′
1 =x2x2x1x1 · · ·x2x2x1x1,

w2 =x1x2x2x1 · · ·x1x2x2x1,

w′
2 =x2x1x2x1x2 · · ·x2x1x1x2.
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If k = 2m+1, then w can be written as a linear combination of the following

monomials:

w̄1 =x1x1x2x2 · · ·x1x1x2x2x1x2,

w̄′
1 =x2x2x1x1 · · ·x2x2x1x1x2x1,

w̄2 =x1x2x2x1 · · ·x1x2x2x1x1x2,

w̄′
2 =x2x1x1x1x2 · · ·x2x1x1x2x2x1.

Let g be a highest weight vector corresponding to the partition λ = (k, k). If

k = 2m, then we can write g ≡ αw1 + βw′
1 + γw2+ δw′

2, for some α, β, γ, δ ∈ F.

Since g is alternating on k pairs {x1, x2}, we get that

g(x1, x2) ≡ (−1)2mg(x2, x1) = αw′
1 + βw1 + γw′

2 + δw2.

Hence

g ≡ α+ β

2
(w1 + w′

1) +
γ + δ

2
(w2 + w′

2) (mod. Id(A)).

It follows that any highest weight vector corresponding to the partition λ =

(k, k) is a linear combination of (w1 + w2) and (w′
1 + w′

2) and so mQ
(k,k) ≤ 2.

Similarly, if k = 2m+ 1, write

g(x1, x2) ≡ αw̄1 + βw̄′
1 + γw̄2 + δw̄′

2

and we get

g(x1, x2) ≡ (−1)2m+1g(x2, x1) = αw̄′
1 + βw̄1 + γw̄′

2 + δw̄2.

Hence

g ≡ α− β

2
(w1 − w′

1) +
γ − δ

2
(w2 − w′

2) (mod. Id(A)).

As above this says that mQ
(k,k) ≤ 2, and the proof is complete.

Putting together the results so far obtained, we have the following

Theorem 2: (1) χQ
2k+1(A) = 2χ(k+1,k).

(2) χQ
2k(A) = aχ(k,k) + χ(k+1,k−1) with a = 1 or a = 2.

In the next proposition we shall determine the relation between the sequence

of codimensions cQn (A) and cn(A), n = 1, 2, . . ..

Proposition 4: For all n ≥ 1 we have that cn+1(A) = (n+ 1) · cQn (A).
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Proof. For every i ∈ {0, . . . , n} let us denote by Qi
n the vector space spanned

by the left normed monomials in x0, x1, . . . , xn starting with xi. Hence in this

terminology Qn = Q0
n. Let us also denote by Pn+1(A) the space of multilinear

left normed polynomials in x0, x1, . . . , xn (not in x1, x2, . . . , xn+1 as before). It

is obvious that

Pn+1(A) = Q0
n(A) + · · ·+Qn

n(A),

and so cn+1(A) ≤ (n+ 1) · cQn (A).
We claim that

Pn+1(A) = Q0
n(A)⊕ · · · ⊕Qn

n(A).

This is clear by the structure of the algebra A. We only note that if

x0f1(x1, . . . , xn), . . . , x0fm(x1, . . . , xn) ∈ Q0
n are linearly independent

(mod. Id(A)), then the (n+ 1) ·m left-normed polynomials of Pn+1

x0fi(x̂0, x1, . . . , xn), . . . , xnfi(x0, x1, . . . , x̂n), i = 1, . . . ,m,

are linearly independent (mod. Id(A)), where ̂means that the corresponding

element is omitted.

Next we want to study the variety of algebras V = var(A), generated by

A. Our aim is to prove that V is almost nilpotent. We start by proving the

following

Proposition 5: Let W � V be a proper subvariety of V . If, for some n ≥ 1,

x0 x1x1x2x2x1x1 · · ·x2x2x1x1︸ ︷︷ ︸
2n

∈ Id(W), then cQN (W) = 0, for all N ≥ 2n+ 2.

Proof. Clearly cQN (W) = 0 means that QN ⊆ Id(W). Now since W � V ,
recalling the decomposition given in Theorem 2, we get that χQ

n (W) < χQ
n (V),

i.e., χQ
2k+1(W) = aχ(k+1,k) and χQ

2k(W) = bχ(k,k) + cχ(k+1,k−1), with a ≤ 2,

b ≤ 2, c ≤ 1. In particular, this says that in order to prove that cQN (W) = 0 it is

enough to show that x0Hh,l ⊆ Id(W), where Hh,l is the space of homogeneous

polynomials of degree h in x1 and l in x2. Here l = k or l = k − 1 or l = k − 2.

Let v = x0w(x1, x2) ∈ x0Hk,l (mod. Id(W)).

We claim that v = x0w(x1, x2) ≡ x0x1x1w
′ or x0x2x2w

′ or x0x1x2x2w
′ or

x0x2x1x1w
′, for some w′.

In fact, if v = x0x1x1v
′ or x0x2x2w

′ for some v′, w′, we are done.

Otherwise, recalling that, by Remark 3, x0x1x2x1 ≡ −x0x2x1x1 − x0x1x1x2,

we get the claim. Now, by eventually exchanging the role of x1 and x2, we may
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assume that v = ux1x1w
′ where u = x0 or u = x0x2 and w′ is a polynomial,

not necessarily homogeneous, in x1 and x2. Then since x0x1x1x1 ≡ 0, it follows

that

v = ux1x1x2x2x1w
′′

or

v = ux1x1x2x1x2w
′′′ ≡ −ux1x1x2x2x1w

′′′.

Now the proof is complete by induction on n. Notice that in this construction

we have eventually one extra variable at the beginning after x0 and eventually

one extra variable at the right-end side.

We can now prove the main result of the paper.

Theorem 3: The variety V = var(A) is almost nilpotent and exp(V) =

exp(A) = 2.

Proof. We first show that exp(A) = 2.

In fact, from the decomposition of the cocharacter of Qn(A) and Proposition

4 we have the asymptotic equality n
√
cn(A) � n

√
d(m,m), where n = 2m or

2m+ 1. Since limn→∞ n
√
d(m,m) = 2, we get that exp(A) = 2.

Next we show that V = var(A) is almost nilpotent.

Let W � V be a proper subvariety. Then, there exists a multilinear polyno-

mial f, of degree l, such that f ∈ Id(W) and f 	∈ Id(V). We claim that we may

assume that f = x0w where w = w(Rx1 , Rx2). In fact, since x(yz) ∈ Id(V), we
have that f =

∑
xsws with ws = ws(Rx1 , . . . , R̂xs , . . . , Rxl

) (here again, the

symbol̂means that the corresponding element is omitted).

Let t be such that xtwt 	∈ Id(V) and let ϕ be a non-zero evaluation in A. Since

f is linear, by Lemma 1, we may assume that ϕ(xt) = z(RaRb)
k or z(RaRb)

kRa

or z(RaRb)
kRb and k ≥ 1. If we now make the substitution xt = x0xl+1xl+2 in

f, then we obtain x0xl+1xl+2wt 	∈ Id(V) and x0xl+1xl+2wt ∈ Id(W).

In fact if ϕ(xt) = z(RaRb)
k, it is sufficient to set x0 = ϕ(xt) = z(RaRb)

k−1,

xl+1 = Ra, xl+2 = Rb, similarly for the other cases. Since χQ
n (A) lies in a strip

of height 2, we get the claim, i.e., we may assume that f = x0w and w is in

only two variables x1 and x2.

By multiplying on the right by x1 and x2 in a suitable way, we may assume

that f = x0w and degw = 4m+1. By Proposition 2 or its proof we may assume

that

f = αx0x1 x̄1x̄2 · · · x̃1x̃2︸ ︷︷ ︸
2m pairs

+βx0 x̄1x̄2 · · · x̃1x̃2︸ ︷︷ ︸
2m pairs

x1 ∈ Id(W),
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with αβ 	= 0. If we now substitute x0x1 for x0, we get

(2) αx0x1x1x̄1x̄2 · · · x̃1x̃2 + βx0x1x̄1x̄2 · · · x̃1x̃2x1 ∈ Id(W).

Multiplying on the right by x1 we obtain

(3) αx0x1x̄1x̄2 · · · x̃1x̃2x1 + βx0x̄1x̄2 · · · x̃1x̃2x1x1 ∈ Id(W).

Set

g0 = x0 x1x1x2x2 . . . x1x1x2x2︸ ︷︷ ︸
4m

x1x1, g1 = x0x1x1 x̄1x̄2 · · · x̃1x̃2︸ ︷︷ ︸
2m pairs

and

g2 = x0x1 x̄1x̄2 · · · x̃1x̃2︸ ︷︷ ︸
2m pairs

x1.

By using Lemma 3 and Lemma 4, from (2) we obtain that g1 ≡ (−1)mg0 and

g2 = 2k(−1)mg0. This implies αg0 + βk(−1)mg0 ≡ 0.

From (3), by applying Lemma 3 and Lemma 4, we obtain 2kαg0 + βg0 ≡ 0.

Since αβ 	= 0 it follows that g0 ≡ 0 (mod. Id(W)). By Proposition 5, cQn (W) =

0, for all n ≥ 4m+ 2. Moreover, as in the proof of Proposition 4 it follows that

cn+1(W) ≤ (n+ 1)cQn (W). Hence cn+1(W) = 0 and so W is nilpotent.
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creasing entire functions, Matematicheskĭı Sbornik 188 (1997), 119–138; English trans-

lation: Sbornik. Mathematics 188 (1997), 913–931.

[13] A. Regev, Existence of identities in A ⊗ B, Israel Journal of Mathematics 11 (1972),

131–152.

[14] M. Zaicev, Integrality of exponents of growth of identities of finite-dimensional Lie alge-
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