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Abstract—The most of medical imaging methods involve ion-
izing waves and scanning of a wide human body area whether
the area under investigation is large or not. In this paper, we
propose a novel method to evaluate the shape of microstructures
for application in the medical field, with a very low invasiveness
for the patient. We focus our attention on the the tooth’s root
canal shape estimation, which is a crucial step in the endodontic
procedures. The proposed method makes use of a flexible thin-
wire antenna to be inserted into the tooth’s root canal and
radiating non-ionizing Very High Frequency (VHF) waves. By
measuring the spatial distribution of the magnetic field in the
neighboring of the tooth, it is possible to reconstruct the tooth’s
root canal shape by solving an inverse problem that involves the
estimation of the shape of the antenna against the sensors panel.
Simulation results show the validity and the robustness of the
proposed approach.

I. INTRODUCTION

The medical imaging methods involve electromagnetic
waves in a frequency range that spans from some Hz to GHz
and over. Many of these methods are characterized by their
invasiveness since they involve both ionizing waves and the
scanning of wide areas even when only a focused investigation
is needed. In particular, in this paper we address the tooth’s
root canal shape reconstruction (Figure 1).

Fig. 1. Tooth’s root canal path (point red line).

The solution of such a problem is of great interests in en-
dodontic procedures where rotary instruments, named “files”,
are subjected to various types of mechanical stress. This stress
is directly related to canal characteristics (i.e. angle, curva-
ture radius, length, possible bifurcations) and modifies the
instrument life and, consequently, its breakage [1]. Therefore,
root canal reconstruction techniques have to be implemented.
To this aim, as an alternative to established X-ray imaging,

we propose a novel method that is straightforward and can
be applied many times on the patient, because of its low
invasiveness. The proposed method works with non-ionizing
low-power electromagnetic waves, in the Very High Frequency
(VHF) range, and makes use of a system endowed with a
microtransmitter and a sensors panel to acquire the spatial
distribution of the magnetic field. The magnetic field compo-
nent is selected since the physical domain can be characterized
with about uniform magnetic permeability in the VHF range.

The microtransmitter radiates the VHF waves by means of
a flexible thin-wire microantenna, inserted in the root canal.
Hence, the microantenna can be assumed to have the same
shape of the analyzed structure. By measuring the spatial dis-
tribution of the magnetic field in the neighborhood of the thin-
wire antenna, it is possible to reconstruct the microstructure
image by solving an electromagnetic inverse problem.

II. METHODOLOGY

The thin-wire antenna is supposed to be made by a sequence
of linear segments: given a model for the characterization of
the magnetic field at a set of points in space (forward problem)
and given a set of measurements at these points, it is possible
to solve the inverse problem in terms of the distances of
the antenna axis points from the sensor panel. The forward
problem can be solved in the frequency domain through a
numerical model based on the point-matching Method of
Moments (MoM) [2], [3]. The Levenberg-Marquart algorithm
can be used in solving the inverse problem by means of
minimization of the Euclidean distance between the measured
field and the field generated by a given configuration of thin-
wire piecewise antenna [4].

The current distribution along the antenna is evaluated by
solving an appropriate integral equation in frequency domain,
derived from Maxwell’s equations. In particular, by introduc-
ing the relevant electromagnetic quantities (i.e., scalar electric
and vector magnetic potentials) as functions of the unknown
currents, the following integral equation in frequency domain,
holds [4]:

−jω
∫
L
~u · [~u′

∫
Ω
µIs(l

′)g(~r, ~r′)dl′]dl+

+
∫
L

∂
∂ltg

[ 1
jωε̇

∫
Ω
dIs(l′)
dl′ g(~r, ~r′)dl′]dl = żs

∫
L
Is(~r)dl

(1)

Equation (1) is a general relation that depends only on
longitudinal current and on geometrical quantities related to



the conductors constituting the thin-wire structures to be
analyzed. In fact, Is is the longitudinal current flowing into
the conductor, supposed concentrated on its axis (~u′ as the
unit vector) because of the thin-wire assumption [2], ~u is the
unit vector tangential to the conductor’s surface, as shown
in Figure 2, żs is the per-unit-length surface impedance of
the conductor, Ω is the length of the exciting conductor, the
subscript tg indicates the component tangential to the wire
surface, L is the length of the induced conductor, ~r and ~r′ are
space position vectors of the observation and source points,
respectively; g(~r, ~r′) = e−k̇|~r−~r′|

4π|~r−~r′| is the Green’s function in
an unbounded region. The quantity ε̇ = ε + jωσ takes into
account the complex medium permittivity and k̇ =

√
−ω2µε̇

is the wave number.
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Fig. 2. General thin-wire geometric references.

The problem of finding the current distribution along the
antenna, represented by equation (1), is numerically solved by
splitting the thin-wire antenna into a finite number of linear
segments. Once the currents are computed, the magnetic field
components in the surrounding medium are given by the dipole
theory, by superposing the effects of all segments [2].

III. NUMERICAL RESULTS

In order to validate the capabilities of the proposed method,
numerical experiments concerning the shape estimation of a
specific tooth’s root canal have been carried out. A NiTi (elec-
trical conductivity 1.1 · 106 S/m) thin-wire antenna, 0.1 mm
in radius and 2.3 cm in length, is assumed to be inserted in
a typical root canal and fed by a sinusoidal current source
with frequency equal to 100 MHz and the amplitude equal to
50 mA. It has to be underlined that this current value, as well
as the selected frequency, can be well tolerated by the human
tissues also depending on the time of application (i.e., a few
seconds) [5]–[7]. In order to approximate the characteristics
of a tooth, the medium around the canal is assumed to have
zero electrical conductivity, relative permittivity equal to 15
and relative permeability equal to 1 [8].

The measurements are supposed to be affected by additive
white Gaussian noise: the measured values of magnetic field at
sensors locations have been calculated by means of the MoM-
based forward solver described in Section II and then the noise
has been added.

Three different sensor panels has been tested, namely 24
or 32 sensors on two parallel flat panels and 32 sensors on
a cylindrical panel. Moreover, in order to test the effect on
reconstruction accuracy of an increasing number of variables
involved in the optimization process, the shape of the antenna

has been reconstructed by assuming a two branch conductor or
a three branch conductor, alternatively: if one considers com-
mon canal shapes and curvatures, both of these configurations
can satisfactorily represent the canal shape.

The behavior of the relative reconstruction error versus the
SNR for different sensor panels and numbers of assumed
antenna branches is shown in Figure 3.
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Fig. 3. Relative reconstruction error vs. SNR (dB).

Satisfactory accuracies has been achieved with all the
configurations tested, even when the SNR is low. However,
by approximating the antenna with a two branch conductor,
a better robustness with respect to noise is observed. The
prototype of the sensors panel and the related electronic
equipment, is in progress.
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