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Introduction: Treatment with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs)
yields tumour responses in non-small cell lung cancer (NSCLC) patients harbouring activating EGFR
mutations. However, even in long-lasting responses, resistance to EGFR TKIs invariably occurs.
Areas covered: This review examines resistance mechanisms to EGFR TKI treatment, which mainly arise
from secondary EGFR mutations. Other resistance-inducing processes include mesenchymal–epithelial
transition factor (MET) amplification, epithelial–mesenchymal transformation, phenotypic change from
NSCLC to small-cell lung carcinoma, and modifications in parallel signalling pathways. Current therapeu-
tic strategies to overcome these EGFR TKI resistance mechanisms focus on the inhibition or blocking of
multiple members of the ErbB family. Several molecules which target multiple ErbB receptors are being
investigated in NSCLC and other indications including afatinib, an ErbB Family Blocker, as well as daco-
mitinib and lapatinib. Novel, non-quinazoline, EGFR inhibitors, that also target EGFR activating and resis-
tance (T790M) mutations, are currently under clinical development. Other therapeutic strategies include
inhibition of parallel and downstream pathways, using agents which target heat shock protein (HSP)90 or
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poly (ADP-ribose) polymerase in addition to mammalian target of rapamycin (mTOR), monoclonal anti-
bodies against the insulin-like growth factor-1 receptor, and fulvestrant-mediated oestrogen receptor
regulation.
Conclusion: Improved understanding of mechanisms underlying resistance to EGFR TKIs emphasises the
importance of a genotype-guided approach to therapy. Elucidation of resistance mechanisms is indeed
crucial to target innovative therapeutic approaches and to improve the efficacy of anticancer regimes
in NSCLC.

� 2014 Elsevier Ltd. All rights reserved.
Introduction tion, survival, migration and metastasis (Fig. 1). Targeting EGFR
Non-small cell lung cancer (NSCLC) is the most common form of
lung cancer, accounting for approximately 85% of cases. Disease
staging is essential in defining clinical management, and surgical
resection remains the best option in early stage disease. However,
70% of patients have locally advanced or metastatic disease at diag-
nosis. To date first-line platinum-based chemotherapy has repre-
sented the standard treatment for these patients, achieving about
30% as response rates (RR) and an approximate 12-months median
overall survival (OS). More recently, the molecular biology of lung
cancer has been shown to play an important part in its pathology.
Genotyping for key mutations has become clinically relevant, guid-
ing the success of new therapies in NSCLC compared with tradi-
tional chemotherapy [1].

Development of EGFR TKIs

One particular area of research interest has focused on the ErbB
Family, whose four members – epidermal growth factor receptor
(EGFR/ErbB1), human epidermal growth factor receptor 2 (HER2/
ErbB2), ErbB3 and ErbB4 – are central for the regulation of down-
stream signalling pathways important for tumour cell prolifera-
eceptors and signalling pathways i
has become an essential strategy in the treatment of NSCLC [2].
Two reversible EGFR tyrosine kinase inhibitors (TKIs), gefitinib

and erlotinib, are currently commercially available for the treat-
ment of NSCLC. These agents were first investigated in unselected
NSCLC patients with encouraging results [3–6] but subsequent tri-
als proved disappointing [7–9]. However, more recently clinical tri-
als have shown clinical benefit of both gefitinib and erlotinib in a
specific population of NSCLC patients with tumours bearing EGFR
activating mutations [10–17]. The two most common EGFR muta-
tions, accounting for >85% of all EGFR alterations, are in-frame
deletions in exon 19 (del19) or point mutations in exon 21
(L858R) [18] while exon 18 mutations are less frequent (approxi-
mately 4%) [19,20]. The del19 and L858R mutations are present
in �10% of Caucasian patients and 30–50% of Asian patients with
NSCLC [21] and are sensitive to treatment with reversible EGFR
TKIs [22].
Resistance to EGFR TKIs

While most (>75%) NSCLC patients with somatic EGFR muta-
tions show initial responses to treatment with the reversible TKIs
nvolved in the development of NSCLC.
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[21] they invariably develop or ‘acquire’ resistance to these agents
[21,23]. There are also a number of patients who do not respond to
initial treatment with reversible EGFR TKIs and these patients are
deemed to have primary or de novo resistance.
Primary resistance

There are several mechanisms of primary resistance (Table 1)
some of which are common to acquired resistance but are present
prior to EGFR TKI treatment.
De novo T790M EGFR mutation
The primary mechanism of de novo resistance is thought to be

the T790M EGFR mutation which is present before EGFR TKI treat-
ment (31.5–35% of tumours) [24,25] and may contribute to pri-
mary resistance. Specifically, the presence of the compound
mutant EGFR is postulated to contribute to the Darwinian selection
of pre-existing drug-resistant clones [26,27]. Thus, the fraction of
the T790M allele would increase during EGFR TKI therapy to a
threshold, which allows us to consider resistance ‘acquired’. As a
consequence the T790M detection rate changes from 31.5–35% in
tumours pre-EGFR TKI therapy [24,25] to 83.3% post-EGFR TKI
treatment [27]. These detection rates are obtained by matrix-
assisted laser desorption ionization–time of flight mass spectrom-
etry (MALDI–TOF MS), which is a highly sensitive method for
detection of EGFR mutations. The detection rate of T790M is 2.8%
in TKI-naive patients by direct sequencing. This low prevalence
of de novo T790M detected by direct sequencing may be a result
of the low copy number of T790M present in patients’ tumour
Table 1
Resistance factors (mutations) to EGFR TKIs.

Type of mutation Outcome

Primary resistance mechanisms*

Basal T790M mutations De novo reversible EGR
decreased progression-
TKI treatment [25]

BRCA1 expression Low levels of BRCA1 co
offer a longer progressio

NF-κB signalling NF-κB hyperactivation p
treated NSCLC patients

BIM expression and 
polymorphism

A pro-apoptotic member
an important role in resis

Acquired resistance mechanisms*

Acquired T790M mutations Resistance to reversible
cases of acquired resist

MET amplification MET, a receptor tyrosine
of PI3K/Akt signalling, g

HGF amplification Has been identified as a

AXL upregulation Expression of AXL and 
resistance in TKI-resista

Epithelial-mesenchymal 
transformation

Common process in can
NSCLC tumours with ac

Conversion from NSCLC to 
SCLC

This transition seems to
[46,49]

CRKL amplification Induces resistance to ge
kinase signalling [50,51]

⁄ Some mechanisms may be common to both primary and acquire
cell death; BRCA1, breast cancer 1, early onset; CRKL, crk-like p
tocyte growth factor; MET, mesenchymal–epithelial transition
phoinositide-3-kinase; TKI, tyrosine kinase inhibitor.
specimens. For this reason the evaluation of studies assessing the
clinical role of T790M should take into account the type of detec-
tion method utilised.

However, the existence of the T790M mutation does not neces-
sarily indicate a poorer outcome compared with patients without
the T790M mutation. Oxnard and Sordella found that the combined
EGFR mutations (del19 or L858R plus T790M), identified at the time
of clinical progression on erlotinib, were associated with longer sur-
vival [28]. Likewise, Fujita et al. observed that patients who were
strongly positive for T790M had significantly longer time to treat-
ment failure on reversible EGFR TKIs than patients without
T790M or those with modest positivity for the mutation (frequency
of positive signals obtained from colony hybridization) [24]. Finally,
T790M mutations have recently been associated with better pro-
gression-free survival (PFS) in EGFR-mutant NSCLC patients receiv-
ing chemotherapy [29]. These results suggest that the presence of
the T790M mutation in a tumour with activating EGFR mutations
does not necessarily preclude treatment with an EGFR TKI. Sec-
ondly, T790M has a prognostic and predictive value for EGFR TKI
treatment outcomes; therefore, routine assessment of the T790M
mutation in the diagnostic biopsy is warranted. Moreover, a better
understanding of the role of T790M is crucial for the development
of effective treatments to overcome this problem.
Brca1
The expression of Breast Cancer Type 1 susceptibility protein

(BRCA1) has also been evaluated as a predictive marker of outcome
in NSCLC patients treated with an EGFR TKI [25]. For NSCLC
patients bearing a T790M mutation pre-TKI exposure, low BRCA1
 TKI resistance. T790M mutation associated with a 
free survival in patients with NSCLC who received 

uld improve the current negative perspectives and 
n-free survival with erlotinib [25]

redicts worse response and survival in erlotinib-
harbouring EGFR-mutant tumours [30]

 of the B-cell CLL/lymphoma 2 (BCL2) which has 
tance to EGFR TKIs [31ó34]

 EGFR TKI treatment (affects over 50% of the 
ance) [24, 35ó37]

 kinase, stimulates the ErbB3-dependent activation 
enerating resistance to EGFR TKIs [39]

 resistance factor in NSCLC patients [41ó44]

its ligand, GAS6, is increased and contributes to 
nt EGFR-mutant NSCLC [45]

cer pathogenesis and has been observed in 
quired resistance to reversible EGFR TKIs [46]

 be specific to cells with resistance to EGFR TKI

fitinib by activating extracellular signal-regulated 

d resistance. BIM, B-cell lymphoma 2 interacting mediator of
rotein; EGFR, epidermal growth factor receptor; HGF, hepa-
factor; NSCLC, non small cell lung carcinoma; PIK3, phos-
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levels may improve the impact of T790M and promote a longer
progression-free survival (PFS) with erlotinib. This suggests that
establishing the presence of the T790M mutation and BRCA1 levels
could aid appropriate treatment selection for such patients [25].
Furthermore, the coexpression of BRCA1 and the associated onco-
gene, astrocyte elevated gene-1, could represent a marker for prog-
nosis in patients with wild-type EGFR and response to erlotinib
treatment in patients with EGFR mutations [30].
NF-jB signalling and IjB
A recent study performed a pooled shRNA screen to identify

genes that, when silenced, enhanced sensitivity to the EGFR TKI
erlotinib [31]. Results revealed a potentially important role for
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-jB) signalling in regulating EGFR oncogene dependence in
EGFR-mutant NSCLC. Genetic or pharmacological inhibition of
NF-jB significantly enhanced responses to erlotinib in in vitro
and in vivo models of EGFR-mutant NSCLC [31]. Furthermore, clin-
ical studies using EGFR-mutant NSCLC specimens from erlotinib-
treated patients showed that NF-jB hyperactivation, as marked
by low tumour levels of IjB, predicted worse response and survival
than for patients treated with chemotherapy. Additional prospec-
tive studies validating NF-jB signalling as a predictive biomarker
of EGFR TKI response and as a therapeutic target in EGFR-mutant
NSCLC patients are underway.
BIM expression and polymorphisms
BIM, also known as BCL2-like 11, is a proapoptotic protein that

is overexpressed in different malignancies. BIM upregulation is
required for induction of apoptosis by EGFR TKIs in EGFR-mutant
NSCLC and low BIM mRNA levels are thought to be a marker of pri-
mary resistance in these tumours [32]. Indeed BIM mRNA expres-
sion has recently been shown to be a biomarker of survival in
EGFR-mutant NSCLC [33]. A study by Ng et al. has assessed the
presence or absence of the BIM deletion polymorphism in 141 sub-
jects with NSCLC from Singapore and Japan who were known to
have activating mutations in EGFR and who received TKI therapy.
The authors concluded that a common BIM deletion polymorphism
mediates intrinsic resistance and inferior responses to EGFR TKIs in
cancer [34]. Recent studies have showed that HDAC inhibition can
epigenetically restore BIM function in vitro and apoptotic sensitiv-
ity to EGFR-TKI, in cases of EGFR mutant NSCLC where resistance to
EGFR-TKI is associated with a common BIM polymorphism [35].
Acquired resistance

In 2010, Jackman et al. proposed criteria to define and classify
acquired resistance to EGFR TKIs in NSCLC patients with somatic
EGFR gene mutations (Table 2) [22]. Many mechanisms of acquired
drug resistance to reversible EGFR TKIs have been postulated
(Table 1).
Table 2
Proposed criteria for acquired resistance to EGFR TKIs in NSCLC (adapted from Jackman e

All patients should have the following

1. Received previous treatment with single-agent EGFR TKI (e.g. gefitinib or e
2. Have either or both of the following:

a. An EGFR mutation-positive tumour, for which the EGFR mutation i
b. An objective clinical benefit to EGFR TKI treatment

3. Have shown systemic progression of disease (RECIST or WHO) within the
4. Received no intervening systemic therapy between cessation of gefitinib o

EGFR = epidermal growth factor receptor; TKIs = tyrosine kinase inhibitors; NSCLC = no
WHO = World Health Organization.
EGFR resistance mutations
In approximately 50–83% of EGFR mutation-positive NSCLC

patients, resistance to a reversible EGFR TKIs is attributed to devel-
opment or acquirement of a second EGFR mutation, the T790M
mutation [24,36–38]. Several other mutations, including D761Y,
L747S and T854A, have also been implicated in acquired resistance
in patients who have previously responded to EGFR TKIs [2,39].
The reports of these mutations are rare and mainly attributed to
single patient case reports in the literature but they do demon-
strate the role of secondary mutations in acquired resistance.

MET and HGF amplification
Another significant group of cancers (approximately 20%)

acquire resistance to reversible EGFR TKIs following the amplifica-
tion of the mesenchymal–epithelial transition factor (MET) recep-
tor tyrosine kinase (RTK), which in combination with ErbB3
activates different signalling pathways from EGFR [40]. MET, an
RTK and its ligand, hepatocyte growth factor (HGF), regulate multi-
ple cellular processes that stimulate cell proliferation, invasion,
and angiogenesis. Alterations in MET (mutation, amplification or
translocation) can produce tumourigenic effects. MET amplifica-
tion stimulates the ErbB3-dependent activation of phosphoinosi-
tide-3-kinase (PI3K)/Akt signalling, which by-passes the effects of
EGFR TKIs [40]. MET amplification is detected in 7% of EGFR TKI-
naïve NSCLC patients who undergo surgical resection and approx-
imately 20% of patients with acquired EGFR TKI resistance [40,41].
Evidence suggests that EGFR inhibition induces HGF-mediated clo-
nal selection of pre-treatment MET amplification [42]. HGF is,
therefore, another important resistance factor in NSCLC patients
[43]. It is tempting to speculate that HGF production by stroma
may also partly explain the discordant emergence of clinical resis-
tance in some tissues such as liver, bone and brain, while pulmon-
ary disease continues to respond to erlotinib treatment [42].
Researchers have discovered that HGF induces gefitinib resistance
by restoring the PI3K/Akt pathway through Gab1, but not via EGFR
or ErbB3 [42,43]. A recent study showed that the transient block-
ade of the PI3K/Akt pathway by PI-103 and gefitinib could over-
come HGF-mediated resistance to EGFR TKIs by inducing
apoptosis in EGFR-mutant lung cancer [44]. These observations
suggest that targeting MET and HGF may counteract TKI resistance
in EGFR-mutant lung cancer. However HGF overexpression
detected by immunohistochemistry showed a favourable prognos-
tic value [45].

AXL upregulation
AXL is a member of the TAM (Tyro3-AXL-Mer) family of RTKs,

assuming broad functions in tumour cell growth, proliferation,
migration, adhesion and chemosensitivity. An important and pre-
viously underappreciated role for AXL signalling in acquired EGFR
TKI resistance in EGFR-mutant NSCLC was recently revealed [46]. In
TKI-resistant EGFR-mutant NSCLC, increased expression of AXL and
its ligand, GAS6 was observed and was required for resistance;
genetic or pharmacological AXL inhibition restored sensitivity to
t al., 2010) [22].

rlotinib)

s known to be associated with drug sensitivity e.g. G719X, del19, L858R, L861Q

last 30 days while on continuous treatment with gefitinib or erlotinib
r erlotinib and initiation of new therapy

n-small cell lung cancer; RECIST = Response Evaluation Criteria in Solid Tumours;
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erlotinib. Interestingly, elevated AXL and GAS6 co-existed with
T790M in a minority of tumours, suggesting that these mecha-
nisms may cooperate to promote resistance. In contrast, upregula-
tion of AXL and MET was not shown, indicating that AXL or MET
kinase activation alone is sufficient to function as a kinase-
mediated bypass mechanism of EGFR TKI resistance. Prospective
validation of AXL and GAS6 as biomarkers of EGFR TKI resistance
and evaluation of promising therapeutic targets in EGFR-mutant
NSCLC are ongoing.

Epithelial–mesenchymal transformation
Epithelial–mesenchymal transformation (EMT) is a common

process in cancer pathogenesis and has been observed in NSCLC
tumours with acquired resistance to reversible EGFR TKIs [47].
EMT includes processes underlying an increased potential for can-
cer cells to migrate to other tissues, such as the loss of epithelial
cell characteristics and the development of new mesenchymal
markers.

EMT has been associated with EGFR TKI resistance because cell
behaviour can vary depending on their transformation stage. For
example, cells containing wild-type EGFR that retained certain epi-
thelial characteristics, such as E-cadherin expression, were more
sensitive to erlotinib, whereas those that expressed mesenchymal
markers such as vimentin and/or fibronectin were erlotinib-resis-
tant [48]. A recent study suggested that MED12 loss induces an
EMT-like phenotype associated with resistance to chemotherapy
in colon cancer and to gefitinib in lung cancer [49]. As MED12 is
partly cytoplasmic (where it negatively regulates transforming
growth factor [TGF]-bR2 through physical interaction), TGF-bR
inhibition restores drug responsiveness in MED12(KD) cells, high-
lighting a strategy to treat drug-resistant tumours with MED12
loss [49]. Interestingly, a recent study, also reported a relationship
between EMT and erlotinib acquired resistance in an erlotinib sen-
sitive lung cancer cell-line harbouring an EGFR deletion mutation.
The authors found that cells acquired mesenchymal phenotype and
exhibited down-regulation of E-cadherin expression, while the
Histone deacetylase inhibitor, MS-275, restored E-cadherin expres-
sion and partial sensitivity to erlotinib [50]. Expression studies of
these markers may be a very important source of diagnostic
information.

Conversion of NSCLC to SCLC
Sequist et al. first described certain phenotypic changes in

tumours with acquired resistance to TKIs. These changes affected
a significant number of patients (14% of those studied) presenting
with NSCLC whose biopsies – taken at the time of TKI resistance –
revealed a small-cell lung cancer (SCLC) phenotype [47]. This
transformation may be indicative of a pluripotent population of
EGFR-mutant cancer cells or cancer stem cells as the source of
resistance. The transition from NSCLC to SCLC appears specific to
EGFR TKI-resistant cells. While the original EGFR mutation was
maintained in all patients, none developed EGFR T790M or MET
amplification. These patients received etoposide-based chemother-
apy and showed a response similar to ‘classical’ SCLC. More
recently, however a study by Yu et al. has shown that in EGFR
mutation-positive NSCLC patients with acquired resistance to
reversible EGFR TKIs, T790M, MET amplification and SCLC transfor-
mations have also been simultaneously observed [51]. Therefore,
rebiopsy in lung cancer patients with acquired resistance to EGFR
inhibitors can provide information about tumour cell phenotype,
which can be relevant to choose an appropriate therapeutic
strategy.

CRKL amplification
Multiple NSCLC cell lines and 3% of lung cancer specimens exhi-

bit high-level amplification at cytoband 22q11.21 containing the
crk-like protein (CRKL) gene, which contributes to cell proliferation
and survival [52]. CRKL over-expression promotes anchorage-inde-
pendent growth and tumourigenicity via SOS1-RAS-RAF-ERK and
SRC-C3G-RAP1 pathway activation. Description of CRKL overex-
pression in an EGFR mutant cells induces resistance to gefitinib.
The appearance of CRKL amplification in lung adenocarcinoma
post-treatment with EGFR-inhibitors, suggests CRKL as an addi-
tional mediator of acquired resistance to epidermal growth factor
receptor (EGFR)-inhibitors and credential it as a potential thera-
peutic target for a subset of NSCLC [52]. Hence, amplification and
over-expression of CRKL contribute to oncogenic phenotypes in
lung cancer, with relevance for therapy [53].

Other receptor mutations and signalling pathways involved in EGFR
TKI resistance

Several receptor mutations as well as other signalling pathways
and receptors have been shown to be modified in EGFR TKIs resis-
tant tumours. These include increased expression of vascular endo-
thelial growth factor (VEGF) which has been shown post-TKI
therapy in patients with different malignancies, including squa-
mous cell carcinoma and GEO (well differentiated colon cancer cell
line). The insulin-like growth factor-1 receptor (IGF-1R) has been
described as activating many of the same signalling pathways as
EGFR [54]. EGFR TKI treatment increased IGF-1R expression, lead-
ing to the activation of PI3K/Akt signalling and increased resistance
to EGFR TKIs [55]. In about 5% of NSCLC patients harbouring EGFR
mutations, who developed resistance to EGFR TKIs, phosphoinosi-
tide-3-kinase, catalytic, alpha polypeptide (PIK3CA) mutation has
been identified [47]. v-Raf murine sarcoma viral oncogene homo-
log B1 (BRAF) mutations, which affect the RAS pathway, have also
been observed in 1% of tumours with acquired resistance [56].
HER2 amplication has been detected in NSCLC inducing an unfa-
vourable prognostic value. It is mutually exclusive with T790M
mutation in EGFR and has been found in 12% of lung cancers which
developed resistance to EGFR TKIs [57]. MAPK1 can also be ampli-
fied in lung cancer patients with acquired resistance to EGFR TKIs
and has been identified in 5% of these patients and is mutually
exclusive with both EGFR T790M mutation and MET amplification
[58]. More recently preclinical work has shown that resistance to
the EGFR TKI erlotinib is associated with reduced expression of
neurofibromin [59]. Neurofibromin is a RAS GTPase encoded by
the NF1 gene. Erlotinib failed to fully inhibit RAS-ERK signalling
when neurofibromin levels were reduced but treatment of neuro-
fibromin-deficient lung cancers with a mitogen-activated protein
kinase (MEK) inhibitor restored sensitivity to erlotinib. Further-
more, low levels of NF1 expression have been observed in EGFR
TKI resistant lung adenocarcinoma patients [59]. Other potential
mechanisms include upregulation of JAK2, an upstream STAT sig-
nalling pathway, and phosphatase and tensin homologue (PTEN)
loss [2,60].

Monitoring resistance to EGFR TKI

Large-scale EGFR mutation screening interventions based on
tumour tissue samples have proven their utility in NSCLC and
can play an important role in clinical treatment decisions [61].
However, obtaining tumour tissue is challenging; for this reason,
more sensitive and/or non-invasive techniques requiring a small
amount of tissue or involving nucleic acid genotyping in blood
samples have been tested for implementation in clinical practice.

New polymerase chain reaction techniques

Aside from BRCA1, other genes potentially involved in erlotinib
resistance have been explored using NanoString� [62]. This tool
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utilises digital technology based on a direct multiplexed measure-
ment of targeted gene expression, allowing the expression analysis
of 48 genes in a single reaction. Using NanoString�, both BRCA1-
associated protein 1 (BARD1) and astrocyte elevated gene-1
(AEG-1) were found to predict PFS in erlotinib-treated EGFR-
mutant NSCLC [62]. Hence, wider adoption of NanoString� may
have important implications for optimal NSCLC management.
Peripheral blood samples for monitoring EGFR mutations

In NSCLC patients for whom obtaining tissue samples is chal-
lenging non-invasive tissue sampling methods could be useful.
Blood samples drawn from NSCLC patients may serve as a source
of tumoural DNA for the detection of EGFR mutations. The equiva-
lence of EGFR mutations in serum samples and matched tumour
tissue from patients with advanced disease was shown using two
detection methods, mutant-enriched polymerase chain reaction
(PCR)-based DNA sequencing and non-enriched sequencing [63].
A reported concordance rate of 93.1% for mutant-enriched
sequencing supports its recommendation for routine practice.

Results obtained with a new non-invasive method for deter-
mining the presence of T790M using DNA extracted from plasma
samples – the mutation-biased PCR quenching probe (MBP-QP)
[64] – were comparable with other non-invasive DNA-based muta-
tion detection systems. However, the MBP-QP method confers
major advantages in terms of simplicity and sensitivity for detect-
ing T790M in plasma samples, suggesting real utility in standard
care.
Strategies for overcoming resistance to EGFR TKIs

New drugs affecting the ErbB signalling pathways

Recently, attention has focused on the simultaneous blocking of
multiple members of the ErbB Family, achieving prolonged inhibi-
tion of EGFR signalling and reducing the development of resis-
tance. Several new agents that block or inhibit the ErbB
Table 3
Drugs targeting EGFR signalling pathways in NSCLC.

Agent Detail

Afatinib ErbB Family Blocker that irreversi
(ErbB2) and ErbB4 tyrosine kinas
against EGFR mutations targeted
insensitive to these therapies, tha
HER2.

Cetuximab Chimeric monoclonal antibody inh
with tumours harbouring the T790
combination with afatinib.

Dacomitinib Agent with activity against wild-typ
NSCLC cell lines with deletion of E
L858R/T790M mutation.

Lapatinib Reversible EGFR/HER2 TKI. It ha

AZD9291 Irreversible TKI targeting both EG
Limited inhibition in wild-type EGF

CO-1686 Irreversible TKI targeting with both
mutations. Limited activity in wild-

XL647 An oral small-molecule inhibitor of
EGFR, VEGFR2, HER2 and EphB

Pelitinib, AV-412/MP-
412 and BMS-599626

These are new EGFR tyrosine kin

CR, complete response; EGFR, epidermal growth factor receptor;
growth factor receptor 2; NSCLC, non-small-cell lung carcinoma;
growth factor receptor 2.
signalling pathways are currently under development or have been
recently approved (afatinib in NSCLC) (Table 3 and Fig. 1).

Afatinib
Afatinib (BIBW 2992; Boehringer Ingelheim) is an orally bio-

available ErbB Family Blocker that irreversibly blocks signalling
from EGFR (ErbB1), HER2 (ErbB2) and ErbB4 [65,66] and also
blocks the transphosphorylation of ErbB3; thus blocking all rele-
vant ErbB Family dimers [65].

In vitro and in vivo, afatinib has shown similar potency against
the EGFR L858R mutation versus gefitinib and against the HER2
YVMA mutant versus the EGFR/HER2 TKI, lapatinib [65,66]. More-
over, afatinib showed significantly greater activity against the TKI-
resistant EGFR double mutant, L858R/T790M, than gefitinib. Fur-
thermore, afatinib was more effective than erlotinib, gefitinib,
and lapatinib in inhibiting human NSCLC cell lines harbouring
wild-type EGFR or the L858R/T790M double mutant. Similarly, in
xenograft models of NSCLC, afatinib has suppressed tumour
growth to a greater extent than gefitinib or lapatinib and was also
effective in xenografts resistant to EGFR TKIs [65]. These preclinical
data suggested the potential for afatinib to offer clinical benefit to
patients with ErbB Family-driven tumours. Overall afatinib has a
low potential for drug–drug interactions [67]. Afatinib is not
metabolised but enzyme-catalysed metabolic reactions and is not
an inhibitor or an inducer of the CYP enzymes [67]. In vitro studies
have shown that afatinib interacts with the drug transport systems
involving p-glycoprotein (P-gp) and Phase I studies support the
adjustment of afatinib dose as tolerated in patients requiring co-
administration of P-gp inhibitors/inducers [67,68]. Afatinib is
dosed once daily and should preferably not be taken with food;
Phase I studies have shown that when consumed with a high fat
meal exposure to afatinib is reduced [68,69].

Afatinib is being investigated in NSCLC in the LUX-Lung clinical
trial programme as a first-line treatment in patients with EGFR-
activating mutations (LUX-Lung 2, 3, 6 and 7) and as a second-
or third-line treatment in patients previously treated with EGFR
TKIs (LUX-Lung 1, 4 and 5) [70]. Afatinib is also being assessed in
LUX-Lung 8, a Phase III, randomized trial comparing afatinib with
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erlotinib in patients with advanced squamous cell NSCLC, who
have progressed after platinum-based chemotherapy. The Phase
IIb/III LUX-Lung 1 trial evaluated afatinib versus placebo in
patients with NSCLC who had experienced prior treatment failure
on reversible EGFR TKIs, gefitinib and/or erlotinib, and one or
two lines of chemotherapy [71]. The median PFS was significantly
longer (P < 0.0001) and response was higher with afatinib (PRs in
29 patients versus one patient) when compared with placebo.
Although this did not translate into an OS benefit. The trial did
not meet its primary endpoint since not survival benefit was
observed with afatinib in the overall population (afatinib
10.8 months versus 12.0 months in the placebo). Interpretation of
the lack of benefit in OS during the trial may be complicated by
cancer treatments administered post-progression and the fact that
afatinib was not the final treatment patients received. Indeed 79%
and 68% of patients in the placebo and afatinib arms, respectively,
received additional treatment. Afatinib treatment in LUX-Lung 1
was also associated with significant improvement in NSCLC-
related symptoms and quality of life (QoL; P 6 0.05) [72]. In the
first-line setting, the clinical activity of afatinib was assessed in
the proof-of-concept, Phase II LUX-Lung 2 study, which enrolled
129 patients with EGFR-mutation-positive NSCLC (>80% with
Del19 or L858R mutations) [73]; 61 patients received afatinib
first-line and 68 patients received afatinib as second-line therapy.
Regardless of starting dose (50 mg (n = 99) or 40 mg (n = 30)), afat-
inib demonstrated notable anti-tumour activity in the selected
patient population, with two complete responses (CRs) and 77
PRs; thus representing an overall response rate (ORR) of 61% (inde-
pendent review). There was no significant difference in achieving
an objective response between those who received afatinib treat-
ment first-line (40 [66%] of 61) versus second-line (39 [57%] of
68; odds ratio [OR]: 0�71, 95% confidence interval [CI]: 0�35–
1�44) or between those who received afatinib 40 mg as first dose
(18 [60%] of 30) versus 50 mg as first dose (61 [62%] of 99; OR
1.07, 95% CI: 0.46–2.47). The subsequent LUX-Lung 3 trial was
the largest randomised, global prospective Phase III study of afati-
nib versus cisplatin/pemetrexed as first-line treatment for patients
with advanced adenocarcinoma of the lung harbouring EGFR-acti-
vating mutations [74]. The median PFS for afatinib treatment was
significantly longer than for cisplatin/pemetrexed in the overall
study population and in patients with common EGFR mutations,
del19 and L858R. Recent results from LUX-Lung 6, the companion
Phase III study to LUX-Lung 3, reinforce the superiority of afatinib
over chemotherapy (gemcitabine/cisplatin) alone in the EGFR
mutation-positive NSCLC patient population [75]. The safety pro-
file of afatinib has demonstrated consistency across studies; the
most frequent adverse events, diarrhoea and rash, were manage-
able [76,77]. On the basis of these key studies, afatinib mono-
therapy has gained approval for the treatment of EGFR TKI-naïve
patients with locally advanced or metastatic NSCLC and activating
EGFR mutations. Interestingly, recently a data analysis from LUX-
Lung 2, LUX-Lung 3 and LUX-Lung 6 have shown that afatinib is
active in lung tumours harbouring uncommon EGFR mutations,
such as G719X, L861Q and S768I [78]. The rate and duration of
response was comparable with that previously observed in
patients with common mutations in these trials. While the
response rate was low in tumours with de novo T790M mutations
and insertions in exon 20 durable tumour control was achieved in
some patients. In LUX-Lung 3 [78].

Afatinib has also been studied in combination with cetuximab, a
chimeric mAb against EGFR. Afatinib plus cetuximab was associ-
ated with CRs in mice with tumours harbouring the T790M muta-
tion or the L858R mutation [79,80]. Preliminary results from a
Phase I trial of EGFR-mutant NSCLC patients with progressive
disease following treatment with erlotinib or gefitinib
(NCT01090011) showed disease control in all patients (n = 22)
treated with afatinib 40 mg plus cetuximab 500 mg/m2 and con-
firmed PR in 8 patients (36%) including 4 patients with T790M
mutation [81]. These findings are in contrast to negative results
from a Phase I/II trial of cetuximab and erlotinib in patients with
lung adenocarcinoma and acquired resistance to erlotinib [82].

Dacomitinib
Dacomitinib (PF-00299804; Pfizer) is active against wild-type

EGFR, HER2, and ErbB4. Pre-clinical in vitro and in vivo studies
showed activity for dacomitinib against EGFR-sensitising muta-
tions, the EGFR T790M resistance mutation, and wild-type and
mutant HER2 [83]. Dacomitinib is metabolised by CYP2D6. Admin-
istration of drugs that are highly dependent on CYP2D6 metabo-
lism may require dose adjustment or substitution with an
alternative medication. Recent Phase I pharmacokinetic data sug-
gest that dacomitinib exposure may be slightly affected by moder-
ate hepatic impairment [84]. Since many patients with advanced
cancer have liver metastases leading to impaired liver function,
dose adjustment may be required.

Dacomitinib was clinically active in a two-arm Phase II trial in
patients with advanced NSCLC who had failed 1 or 2 prior chemo-
therapy regimens and prior erlotinib treatment [85]. Other studies
provided evidence of additional clinical activity in advanced lung
carcinoma [86], versus erlotinib as second- or third-line therapy
in patients with advanced NSCLC [87], and in Kirsten rat sarcoma
viral oncogene homologue (KRAS) wild-type patients refractory to
at least one chemotherapy regimen and erlotinib [88]. Interim
results from an ongoing Phase II open label trial (NCT00818441)
of dacomitinib showed that 74% of patients with advanced lung
adenocarcinoma and EGFR-activating mutations experienced PR
and remained progression-free at 1 year, and that the median PFS
was 17 months [89]. Diarrhoea and skin and nail changes were
common side effects.

Based on PFS benefits with dacomitinib versus erlotinib in a
previous Phase II study of pre-treated patients [90], a randomised,
double-blind, Phase III trial (ARCHER 1009) was initiated. The
study was designed to compare dacomitinib with erlotinib in
locally advanced or metastatic NSCLC after at least one prior che-
motherapy regimen in two co-primary populations – all patients
and patients with KRAS wild-type NSCLC [91]. Initial results of
the study have recently been released and have shown that the
study did not meet its primary objective and no significant
improvement in PFS was observed in dacomitinib-treated patients
versus those who received erlotinib [92]. A second study, BR.26,
which is a double-blind placebo controlled randomized Phase III
study assessing dacomitinib in patients with incurable stage IIIB/
IV NSCLC after failure of standard therapy for advanced or meta-
static disease has also recently release of initial findings. The study
did not meet its objective of prolonging OS versus placebo [92]. A
third study, ARCHER 1050, is ongoing and will assess dacomitinib
versus gefitinib in treatment-naïve patients with EGFR-mutant
advanced NSCLC. The results are expected in 2015 [92].

Other agents in development
Several new agents which target the ErbB Family and their sig-

nalling pathways are in development. Most recently these include
AZD9291 and CO-1686. AZD9291 is an irreversible selective tyro-
sine kinase inhibitor that targets both EGFR activating and resis-
tance (T790M) mutations. Preclinical work has demonstrated that
AZD9291 potently inhibits EGFR phosphorylation across a num-
ber of in vitro cell lines harbouring EGFR-mutations including
T790M [93]. While in vivo AZD9291 treatment has been associ-
ated with profound growth regression across multiple EGFR
mutation-positive (PC9; 250% growth inhibition) and EGFR muta-
tion and T790M positive (H1975; 132% growth inhibition) tumour
models [93]. Tumour growth inhibition was associated with
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profound inhibition of EGFR activity and key downstream signal-
ing pathways and chronic long-term treatment of these xenograft
tumours with AZD9291 led to a complete and sustained
macroscopic response [93]. Preliminary data from a Phase I
dose-escalation study in patients with advanced NSCLC who have
progressed following EGFR TKI treatment (n = 18 plus T790M
expansion cohorts [n = 9]) are encouraging with reports of about
50% Response Evaluation Criteria in Solid Tumours (RECIST)
responses, at the starting dose level of 20 mg once daily (n = 2
confirmed partial responses in T790M mutation-positive patients)
with good tolerability [93,94].

CO-1686 is an irreversible TKI that also targets EGFR activating
and resistance (T790M) mutations. Preclinical work has demon-
strated that oral administration of CO-1686 as single agent induces
tumour regression in EGFR-mutated NSCLC tumour xenograft and
transgenic models [95]. No inhibition of wild-type EGFR is
observed. Interestingly in NSCLC cells with acquired resistance to
CO-1686 in vitro, there was no evidence of additional mutations
or amplification of the EGFR gene, but resistant cells exhibited
signs of epithelial–mesenchymal transition and demonstrated
increased sensitivity to AKT inhibitors. Initial reports from a Phase
I dose-finding study are encouraging with CO-1686 demonstrating
good tolerability and efficacy against proven T790M positive EGFR
mutant NSCLC, with reports of about 67% responses, and a strong
suggestion of a dose–response relationship [96].

XL647 is an oral small-molecule inhibitor of multiple RTKs,
including EGFR, VEGFR2, HER2 and ephrin type-B receptor 4
(EphB4). XL647, administered in an intermittent or daily-dosing
schedule, exhibited antitumour activity with an objective response
rate (ORR) of 3% in TKI-resistant patients selected for EGFR-activat-
ing mutations [97]. The EGFR-driven component of NSCLC com-
bined with resistance likely precludes the prolonged use of
reversible or weak irreversible inhibitors in NSCLC. Neratinib, an
EGFR and HER2 TKI, failed to produce a response in advanced
NSCLC patients bearing the TKI-resistant T790M mutation. Even
maximally tolerated doses of neratinib may be insufficient to pre-
vent potential development of EGFR T790M. To overcome second-
ary acquired resistance to current quinazoline-derived EGFR TKIs,
novel non-quinazoline EGFR inhibitors have been developed to
Table 4
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specifically target T790M. Such agents have shown a powerful
selective inhibition in vitro against EGFR T790M [98]. The EGFR
TKI, icotinib hydrochloride (BPI-2009H), is being tested in preclin-
ical studies, and has shown a significant effect [99,100]. Other new
EGFR-targeted agents under development include the irreversible
TKIs, pelitinib (EKB-569; EGFR, HER2, and ErbB4) and AV-412/
MP-412 (EGFR and HER2), and BMS-599626, a reversible TKI
(EGFR/HER2) [101,102].

Agents acting on alternative signalling pathways

Agents acting on other signalling pathways that complement
the EGFR pathway are also being evaluated in clinical trials of
advanced NSCLC (Table 4).

MET inhibitors
MET inhibitors are able to overcome EGFR TKI resistance. Even

though specific studies of MET inhibitors for EGFR resistant have
not been conducted yet, some evidence has emerged concerning
the concomitant inhibition of MET and EGFR pathway. However
the positive, encouraging results, reported in the phase II trials
[103,104], were not confirmed in the subsequent, phase III studies.
The phase III, MET Lung study (NCT01456325), of MET-inhibitor
Onartuzumab (MetMAb) plus Erlotinib versus placebo plus Erloti-
nib, in previously treated, MET-positive, advanced NSCLC, was
stopped, following an interim analysis that suggested a lack of clin-
ically meaningful efficacy. A second phase III study exploring onar-
tuzumab plus erolotinib in patients with MET/EGFR-positive
advanced NSCLC (NCT02031744) is currently ongoing. Two ran-
domized, phase III trials, MARQUEE and ATTENTION trials, compar-
ing tivantinib plus erlotinib versus placebo plus erlotinib in non-
squamous NSCLC, failed to meet their primary endpoint of OS.
However, the secondary endpoint of PFS was significantly
extended in favour of tivantinib combinations [105].

Anti-IGF-1R antibodies
There is a close relationship between the signalling of IGF-1R
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EGFR is inhibited and the consequent increase in tumour cellular
proliferation.

Figitumumab (CP-751,871; Pfizer) is a mAb targeted against
IGF-1R [106]. In a Phase II trial of treatment-naïve or advanced
NSCLC patients who received paclitaxel/carboplatin with or with-
out figitumumab, RR was 54% versus 42% in the chemotherapy
alone arm [107]. The addition of figitumumab to chemotherapy
also improved PFS, compared with chemotherapy alone. However,
patient enrollment in a Phase III clinical trial testing figitumumab
plus paclitaxel/carboplatin was halted due to lack of efficacy.

Another mAb against IGF-1R is R1507. A Phase II trial randomly
assigned patients with advanced-stage NSCLC who progressed fol-
lowing one or two prior regimens to receive erlotinib (150 mg
orally once a day) in combination with either placebo, R1507
9 mg/kg weekly, or R1507 16 mg/kg intravenously once every
3 weeks [108]. The combination of R1507 with erlotinib did not
confer a survival advantage over erlotinib alone in an unselected
group of patients with advanced NSCLC [108].

Heat shock protein – HSP90 inhibitors
The heat shock protein (HSP)90 chaperone mediates conforma-

tional changes in the ErbB Family, MET, and various downstream
kinases, including Akt. Therefore, inhibiting the action of HSP90
is a potentially viable treatment strategy given that EGFR muta-
tions associated with resistance to EGFR TKIs do not compromise
the ability of HSP90 to regulate ErbB Family members [109]. More-
over, HSP90 inhibitors have been described as suppressors of
EGFR-mediated signalling in erlotinib-sensitive and erlotinib-resis-
tant cell lines [109]. More recently preclinical work with the HSP90
agent, CH5164840, has demonstrated potent antitumour activity
and is highly effective in combination with erlotinib against NSCLC
tumours with EGFR overexpression and mutations [110]. These
findings have been translated into the clinical setting where a
Phase II study has recently reported interim data from 16 NSCLC
EGFR mutation-positive patients who had progressed on EGFR-
TKIs who were treated with the HSP90 inhibitor, AUY922, in com-
bination with erlotinib. The ORR was 13% (2/16; both patients were
T790M positive. Four other patients have stable disease for at least
8 weeks [111]. Another phase II study was conducted in patients
with previously treated, advanced NSCLC, stratified by molecular
status. Interestingly, clinical activity of AUY922 was mainly
observed in patients with ALK-positive and EGFR-mutant NSCLC,
reporting a 18% of RR, and an estimated 34% of median PFS rate
in the latter subgroup of patients [112].

mTOR inhibitors
Another pathway of interest in NSCLC is the Akt/mTOR, which is

activated by mutant HER2. In a preclinical HER2-driven transgenic
murine lung cancer model, synergistic anti-tumour activity was
observed with the combination of a HER family inhibitor and an
mTOR inhibitor compared with either drug alone [113]. The mTOR
inhibitor, everolimus was evaluated in a Phase II trial of patients
with advanced NSCLC after one or two previous chemotherapy reg-
imens or chemotherapy plus an EGFR TKI [114]. Everolimus
achieved objective responses in 7.1% of patients who had previ-
ously failed chemotherapy, and in 2.3% of patients who had failed
chemotherapy and an EGFR-TKI. A Phase I/II trial evaluated everol-
imus plus erlotinib versus erlotinib alone in patients with
advanced NSCLC who progressed after more than two previous
lines of chemotherapy, showing an improved disease control rate
(DCR) [115].

PARP inhibitors
Poly adenosine diphosphate (ADP)-ribose polymerases (PARPs)

are a family of nuclear enzymes that play a critical role in cellular
processing of DNA damage through the base excision repair
pathway. PARP inhibition can be directly cytotoxic to tumour cells,
thus agents targeting PARP could be suitable for enhancing radio/
chemotherapy and overcoming drug resistance [116]. A large, mul-
ticentre, prospective study, conducted by the Spanish Lung Cancer
Group, will evaluate the clinical efficacy and safety profile of olapa-
rib, a potent, orally active, PARP inhibitor, plus gefitinib versus gef-
itinib monotherapy in patients with NSCLC bearing EGFR mutations
(NCT01513174).
Controlling oestrogens
The oestrogen receptor (ER) beta has been detected in NSCLC

cells [117]. In fact, ERs are expressed independently of gender
and histology [118] and oestrogens stimulate growth of NSCLC
cells and tumour xenografts [118,119]. EGFR and ER pathways
share signalling molecules; thus, activation of EGFR results in acti-
vation of ERs. Studies in cell cultures and xenographic models have
shown that the combination of the ER antagonist, fulvestrant and
gefitinib resulted in an additional inhibition of growth [118,120].
In an analysis of 317 NSCLC tumours it has been shown that oest-
rogen receptor a and b expression distinguishes a subset of NSCLC
that has defined clinicopathologic and genetic features. Indeed
data from this study demonstrated a positive correlation between
oestrogen receptor a expression and EGFR mutations in lung ade-
nocarcinoma [121]. A recent study has suggested that lung cancer
in female never-smokers is frequently associated with an EGFR
mutation and ERa expression, with a correlation between both
markers. These findings suggest the possibility of treating this pop-
ulation by targeting both hormonal factors and genetic abnormal-
ities [122]. Several Phase II trials are evaluating the hypothesis that
the combination of fulvestrant and an EGFR inhibitor, such as erl-
otinib [118,119] or gefitinib [117] will provide improved efficacy
over the EGFR inhibitor alone in NSCLC patients.
HDAC inhibitors
In vitro studies have demonstrated that gefitinib resistant cell

lines were simultaneously treated with the histone deacetylase
(HDAC) inhibitor vorinostat and gefitinib a synergistic effect was
observed in four out of five of the cell lines tested [123]. These data
suggest that HDAC inhibitors overcome EGFR-TKI resistance. It is
postulated that this is achieved by the upregulation of E-cadherin
expression which facilitates synergy between the HDAC and
EGFR-TKI. There may also be a role of ErbB3 in this process
[123]. Another study has recently shown that the HDAC inhibitor
Vorinostat increased expression of the pro-apoptotic BH3
domain-containing the isoform of BIM, epigenetically restoring
BIM function and EGFR-TKI sensitivity, in EGFR-mutant NSCLC,
where resistance to TKI is associated with BIM polymorphism
[124]. However, the effectiveness of this treatment strategy in
overcoming EGFR-TKI acquired resistance, remains to be proven
in clinical setting. In a phase I/II trial, the combination of Erlotinib
and Vorinostat has shown no magniful activity in NSCLC patients
with EGFR mutations, after Erlotinib progression [125]. The results
of another randomized Phase II study have shown that patients
with advanced NSCLC, who have progressed on erlotinib, who also
have elevated E-cadherin, have a better outcome when treated
with erlotinib plus entinostat (OS = 9.4 months), another HDAC
inhibitor, versus erlotinib alone (OS = 5.4 months) [126].
Novel treatment paradigms

The move towards targeted therapy also requires changes to
existing treatment approaches.
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Accelerated progression after EGFR TKI discontinuation in patients
with acquired resistance

An accelerated progression of disease in patients with EGFR-
mutant lung cancer and acquired resistance to erlotinib or gefitinib
after discontinuation of reversible EGFR TKI therapy has been
observed. The first description of this phenomenon was published
by Riely et al. in a prospective assessment of discontinuation and
reinitiation of erlotinib or gefitinib in patients with acquired resis-
tance to these agents [127]. The study recommended implementa-
tion of a randomised trial to assess the value of continuing
erlotinib or gefitinib after development of acquired resistance
[127]. More recently, Chaft et al. evaluated disease progression in
patients with EGFR-mutant lung cancer with acquired resistance
who needed to discontinue EGFR TKI [128]. In 40 of 61 patients
(95% CI, 14–35), accelerated progression was observed and was
associated with shorter time to progression on initial TKI
(P = 0.002) and the presence of pleural (P = 0.03) or central nervous
system (CNS) disease (P = 0.01). No association with the presence
of T790M at the time of acquired resistance was found.
These results suggest that washout periods must be minimised in
these patients [128].

Continued treatment post-progression with EGFR TKI

EGFR TKI treatment should normally stop when disease pro-
gression is confirmed, even though treatment discontinuation is
usually followed by an acute exacerbation of the disease. In certain
conditions, continuous administration of EGFR TKI following dis-
ease progression appears to be a valid treatment option
[129,130] as it can be suggested that tumour cell populations
remain sensitive to EGFR TKIs after progression. Therefore, post-
progression EGFR TKI treatment combined with chemotherapy is
plausible, and early indications suggest that the choice of chemo-
therapy will depend on avoiding intolerable adverse events due
to the amplified toxicity of the combination. Two randomized,
phase III trials, PREFER and IMPRESS (NCT01544179), are currently
investigating the effectiveness of continuing EGFR TKI, Erlotinib or
Gefitinib, after progression on first-line TKI treatment, combined
with platinum based chemotherapy versus chemotherapy alone
of note, new agents which target the ErbB Family are also being
investigated in combination with chemotherapy beyond progres-
sion. The second part of the LUX-Lung 5, phase III, randomized
study, aims to investigate the use of afatinib with chemotherapy
in patients who progress on afatinib alone. In this study patients
have previously been treated with erlotinib/gefitinib and therefore
highly selected for the presence of EGFR mutations [131]. Further
investigation will determine the effectiveness of such combination
therapy, but there is evidence to suggest that the tumour genotype
and phenotype may evolve dynamically under the selective pres-
sure of TKI therapies considering that genetic mechanisms of resis-
tance are lost in the absence of the continued selective pressure of
the EGFR inhibitor treatment. Hence, in order to know how best to
prevent or overcome resistance to treatment, there is a need for
continuing assessment of the genotypic and histological evolution
of the cancer over the course of therapy in each patient.

Re-treatment with EGFR TKIs after having completed treatment with
EGFR TKIs

Conventional chemotherapy is usually considered the only
option for patients who progress following an initial response to
EGFR TKIs. However, it has been observed that some NSCLC cell
lines are able to regain sensitivity to TKIs [37], which suggests
the action of a non-mutational and reversible EGFR TKI drug resis-
tance mechanism. In a retrospective study of patients with stage IV
NSCLC who progressed after previously achieving long term dis-
ease control on EGFR TKI treatment, subsequent treatment with
standard chemotherapy and, at renewed progression, retreatment
with erlotinib (alone or in combination with cetuximab) was con-
sidered a viable option [132]. Several evidences support the re-
treatment with the same [133–137], or different [138–143]
EGFR-TKI in patients who showed SD during 1st TKI treatment,
while lower activity is reported for those patients who had PD to
1st TKI [144]. The highly heterogeneous nature of NSCLC tumours
with respect to the mutations causing both the initial tumour and
treatment response, which can also change in response to treat-
ment, can create an apparent paradox whereby failure of a treat-
ment at one stage of the disease does not mean that the same
treatment might not be beneficial at a later stage. Intratumoural
heterogeneity is therefore a subject of interest, and its importance
in the development of biomarker strategies and drug development
is increasingly recognised.

Approaches based on different growth rate of resistant cells lines to
EGFR TKIs

Most advanced NSCLCs with activating EGFR mutations respond
initially to EGFR TKIs. Chmielecki et al. theorised that the current
dosing schedules of gefitinib and erlotinib, created to target wild-
type EGFR, were not optimised for resistant EGFR [145]. In order
to investigate this further, isogenic TKI-sensitive and TKI-resistant
pairs of cell lines were developed to replicate the behaviour of
human tumours. Observations that the drug-resistant EGFR-
mutant cells exhibited a slower growth were used to create evolu-
tionary mathematical cancer models, which were able to predict
alternative therapeutic strategies to prolong the clinical benefit
of TKIs against EGFR-mutant NSCLCs, by delaying the development
of resistance [145]. These models predicted that high-dose pulses
with low-dose continuous therapy were likely to be the most effec-
tive in preventing the development of resistance [146].

Combining radiotherapy with EGFR TKIs in patients with brain
metastases

Brain metastases are a common and devastating consequence of
disease progression in patients with NSCLC. The administration of
radiotherapy to control brain metastases has proven survival ben-
efit [147]. Several studies using growth factor inhibitors to modify
tumour proliferation and/or radiosensitivity, report the potential
to improve tumour control [148]. Combining first-line erlotinib/
gefitinib with early multi-target radiotherapy is very effective in
selected patients who respond to TKI, when the status of EGFR
mutations is unknown before treatment [149]. In another study,
the presence of EGFR mutations and the administration of EGFR
TKI during radiotherapy independently conferred radiosensitivity
in brain metastases of lung adenocarcinoma, with the best
response rate achieved in the subgroup of patients who received
TKI during radiotherapy [147]. Furthermore, experimental models
show that gefitinib could inhibit cellular proliferation and enhance
tumour response to radiation [147]. To summarise, continuous
administration of EGFR TKI during and following radiotherapy for
progressive disease in brain metastases appears to be a potential
treatment option [129] but further work is needed to fully assess
the use of this approach.

Use of local ablative therapy for oligoprogressive disease with
continued TKI treatment

Disease progression is often observed at limited sites in patients
with EGFR mutation-positive NSCLC. It is now postulated that
there is a role for local ablative therapy (LAT) in patients with



1000 C. Rolfo et al. / Cancer Treatment Reviews 40 (2014) 990–1004
CNS and/or limited systemic disease progression. In many cases
disease progression is due to the treatment not penetrating the
CNS. Consequently, it is unlikely that a patient will have developed
systemic resistance to a drug and may be deriving significant ongo-
ing benefit from its use [150]. This idea is based on reports in the
literature of the benefit of radiation therapy on isolated CNS pro-
gression in patients with EGFR mutant NSCLC being treated with
EGFR TKIs who also received continued systemic administration
of the TKI in the absence of systemic progression [129]. A recent
study has extended the use of LAT to those NSCLC patients with
limited systemic disease progression or ‘oligoprogressive disease’
[150]. The authors of this study hypothesised that treatment of
systemic progression before resistant clones can be spread will
allow disease control to be achieved until the resistant clones
can multiply and become detectable. In addition, there is also the
theory that other, non-progressing sites, will benefit from targeted
therapy due to continued suppression of sensitive clones that have
not yet developed acquired resistance [150]. In patients with met-
astatic anaplastic lymphoma kinase (ALK)+ NSCLC treated with
crizotinib (n = 38) and EGFR-MT NSCLC treated with erlotinib
(n = 27) a subset (n = 25/51) with either non-leptomeningeal CNS
and/or64 sites of extra-CNS progression (oligoprogressive disease)
suitable for LAT received either radiation (n = 24) or surgery (n = 1)
to these sites and continued on the same TKI. After LAT 19/25
patients progressed again, with median PFS of 6.2 months [150].
Combining chemotherapy with TKIs

Several randomized trials have shown no significant improve-
ment of survival by combining EGFR-TKIs and chemotherapy in a
population unselected for EGFR [15,7,151,8,152,153].

However, one of the such trials, the CALGB30406, reported evi-
dence to suggest that EGFR mutations identify patients most likely
to benefit [15]. More recently, the FASTACT2 trial demonstrated
that intercalated chemotherapy and erlotinib is a viable first-line
option for patients with non-small-cell lung cancer with EGFR
mutation-positive disease or selected patients with unknown EGFR
mutation status [154]. Survival outcomes were significantly pro-
longed with intercalated combination, leading a median PFS of
16.8 months and a median OS of 31.4 months, only in patients with
an activating EGFR gene mutation [154]. These results are similar
to those reported in phase 3 trials of single-agent EGFR TKIs in east
Asian [155] and European populations [17,156] Therefore the cur-
rent debate is: will the intercalated strategy ultimately delay or
prevent the onset of acquired resistance? Which are the mecha-
nism of how a TKI intercalated with chemotherapy might delay
the onset of acquired resistance? The best schedule (timing,
sequence, . . .) of TKI and chemotherapy is still unknown. Further
randomised studies are needed, to compare the new intercalated
approach versus TKI alone followed by chemotherapy treatment,
which remains the standard of care in this subgroup of patients.
Conclusions

The treatment of NSCLC with reversible EGFR TKIs is limited by
the development of acquired resistance. The aetiology of resistance
to EGFR TKIs is most often caused by mutations in the EGFR gene –
most commonly T790M – but also attributed to MET or HGF, EMT
cell transformations, phenotypic change from NSCLC to SCLC and
signalling pathway changes. Modifications in parallel signalling
pathways, such as the amplification of the CRKL oncogene have
also been considered as inducers of resistance effects in NSCLC. It
is clear that the blockade of each of these alterations could have
therapeutic potential. The search for pathways to overcome the
resistance to EGFR TKIs has been a focus of research in recent years
with several potentially useful agents currently under develop-
ment. The most clinically advanced agent in development is the
ErbB Family Blocker, afatinib, which has shown encouraging
results in several trials, and has received approval as monotherapy
for the treatment of EGFR TKI-naïve patients with locally advanced
or metastatic NSCLC and activating EGFR mutations. Promising
results emerged from early phase I studies, investigating the safety
and activity of a new class of non-quinazoline, EGFR inhibitors, that
also target EGFR activating and resistance (T790M) mutations.
Another possibility is the use of inhibitors of parallel signalling
pathways, such as MET, HSP90, mTOR, PARP inhibitors or anti-
IGF-1R mAbs. The regulation of the oestrogen receptor with fulve-
strant is also a therapeutic option, in combination with EGFR TKIs.

As drug resistance appears to be pleomorphic, changes to stan-
dard treatment approaches, including different schedules and
combinations, may also be an effective strategy in circumventing
resistance. However, appropriate pharmacological evaluation
should always be accompanied by a deeper understanding of the
genetic alterations of tumour cells and of tumour heterogeneity,
emphasising the need for continuous monitoring of the tumour
genotype by both rebiopsy or liquid biopsy in order to lead deci-
sion-making. The evaluation of resistance development should also
be carried out, because the standard definition of disease progres-
sion according to RECIST criteria has not always been related to
clinical worsening during EGFR TKI treatment.
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