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ABSTRACT

Mineral dissolution and precipitation reactions actively participate in controlling fluid chemistry during
water-rock interaction. In this study, the changes in the biotite and muscovite basal surface nano-mor-
phology were evaluated during interaction with fluids of different pH (pH = 1.1, 3.3 and 5.7) at different
temperatures (T=25°, 120° and 200 °C). Results show that at the nanometre scale resolution of the
atomic force microscope (AFM), dissolution generates etch pits with a stair-shaped pattern over the
(00 1) surface. The flux of dissolved elements decreases when pH increases. However, at pH 5.7, a change
was found in the flux after 42 h of reaction when abundant gibbsite and kaolinite coat the dissolving min-
eral surface. This phenomenon was widely observed at edges of the etch pits by AFM. It was also found
that an increase in temperature produces an enhancement in the elemental flux in both micas. Dissolu-
tion regime changes after less than one day of interaction at high temperature because of abundant coat-
ing formation over the etch pits and edges. The results demonstrate the key role of nanometre size
neogenic phases in the control of elemental flux from mica surfaces to solution. The formation of nano-
metre size coatings, blocking the sites active for dissolution, appears to control the alteration of phyllo-

silicates even at the early stage of the interaction.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

To accurately estimate water quality evolution in many natural
and human controlled processes it is prerequisite to understand
the process of mineral alteration. Specifically, the ion release
mechanism from silicates controls not only the pH of natural water
but also the formation and stability of secondary minerals as well
as the mobility of potential harmful and toxic metals. The hydro-
thermal alteration of minerals is important to a wide range of basic
and industrial processes. In recent years, the quantitative evalua-
tion of the hydrothermal alteration of minerals has become crucial
in establishing the economic and security feasibility of CO, storage
in geological reservoirs (Kharaka et al., 2009). More recently, the
re-evaluation of global geothermal resources also requires a great-
er understanding of mineral alteration and stability (Morgillo and
Axelsson, 2010, and references therein).

In the particular case of phyllosilicates, the alteration of mica is
considered to be the general pathway in the formation of vermic-
ulite and smectite. These clay minerals generate the material
responsible for changing rock structure and sediment porosity
via the formation of several kinds of cement. In geothermal sys-
tems, mica dissolution results in forming illite and smectite that
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in turn promote pressure solution in sedimentary basins (Gerard
et al., 2002; Meyer et al., 2006). Although the understanding of
mica alteration is crucial to the dynamics of water-rock interac-
tion, studies on mica dissolution mechanisms are rare (Nickel,
1973; Lin and Clemency, 1981; Knauss and Wolery, 1989; Tulpault
and Trotignon, 1994; Oelkers et al., 2008). These studies suggest
that mica dissolution rates vary as a function of pH much as they
do in other aluminosilicates: dissolution rates decrease with
increasing pH under acid conditions, and are minimal at near neu-
tral pH, while they increase as pH reaches basic values. Among
other aspects of mica dissolution, Dietzel (2000) and Maurice
et al. (2002) investigated the degree of Si polymerisation during
muscovite dissolution at a pH of 3. Studies on mica surface reactiv-
ity have been reviewed by Nagy (1995).

This study builds upon this past work by focusing on the effect
of reactive solution composition and temperature at the mica-
water interface. Reactions at this interface play a role in a number
of natural processes. The focus was on the reaction mechanisms
occurring at the surface of the mineral during the first stage of
the reaction. Micas are layer phyllosilicates consisting of two tetra-
hedral (T) sheets with an octahedral (O) sheet in between (TOT
structure). The octahedral unit is linked to the others by sharing
octahedral edges. In biotite all the three octahedral sites are occu-
pied by chemical elements (trioctahedral) whereas, in muscovite
only two octahedral sites are occupied (dioctahedral). Since the
2:1 structure is negatively charged, an interlayer cation neutralises
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the bulk electrical structure. Biotite is a mica that has K* as an
interlayer cation, Mg and Fe are in the trioctahedral layer and Si
and Al make up the tetrahedral layer. Muscovite has a similar
structure except that it contains Al in the dioctahedral layer. There
are two main types of mica surface: the basal (0 01) parallel to the
layers and the lateral (hk0) (Nagy, 1995). Basal (0 0 1) surfaces are
composed of many tetrahedral units joined by shared O atoms at
their corners. If a mica monocrystal is cleaved, the (0 0 1) basal face
may contain K ions on the tetrahedral sheet. In contrast, lateral
(hkO) surfaces consist of TOT and of K* interlayers between two
TOT units with a potential different reactivity.

2. Experimental conditions
2.1. Materials

The mechanism of biotite and muscovite alteration at the (001)
basal face was investigated combining atomic force microscopy
(AFM) observations and analysis of the chemical composition of
the interacting solutions. A large monocrystal of muscovite from
South India and a biotite crystal from Sweden (mineralogical collec-
tion of the University of Lyon) were selected for this study. The bulk
analysis of the samples by X-ray fluorescence spectroscopy gave the
following chemical formula estimates: K(Mg, 5 Fe3 | Fe3?!)(Si,oA-
11.1)010(OH); (biotite) and K(Fepg2Al1.98)(Siz.18Al0.82)010(0H)4
(muscovite).

Solutions of a given pH were prepared by adding suprapure HCI
to Milli-Q deionised water at room temperature. Different pH and
temperature conditions were investigated.

2.2. Methods

The influence of pH and temperature on the mica alteration pro-
cess were investigated using a 1 x 1 x 0.1 cm monocrystal of mica
placed in contact with 10 mL of solution in a PTFE tube cell at vary-
ing initial pH values: 1.1, 3.3 and 5.7. The investigated reaction
time varied between 30 min and 7 days. After reaction, the solution
from each cell was collected using a syringe and filtered through a
0.2 um pore-size Minisarter filter. Sampled solutions were divided
into two aliquots: one for silicon analysis and pH control and the
second for the analysis of the other elements. The morphological
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Fig. 2. Fluxes of Mg, Al, Fe and Si (on logarithmic scale) as a function of pH at the
temperature of 25°C during the experiment on biotite alteration. A change is
observed after 42 h of interaction at pH 5.7.

surface state (0 0 1) was determined by scanning electron micros-
copy (SEM) and atomic force microscopy (AFM).

The influence of temperature was investigated by experiments
where mica monocrystals and aqueous solutions at pH 3.3 were
introduced into PTFE cells placed in steel autoclaves stored in an
oven at constant temperature. A pH of 3.3 was chosen because at
that pH dissolved Al generally begins to precipitate. A more de-
tailed description of the experimental apparatus has been pre-
sented previously (Zuddas and Michard, 1993). Experiments were
conducted at three different temperatures, 25°+2, 120°3,
200° £ 4 Celsius, and for an identical vapour saturation pressure.
The cell (containing the mineral and solution) was weighed before
and after reaction to evaluate the possible loss of solution by evap-
oration. After reaction, each cell was cooled to ambient tempera-
ture. Solutions were sampled using a protocol identical to the pH
investigation. The mineral surface was observed by SEM and AFM.

2.3. Analysis

Solution pH was measured at 25 °C with an Ingold electrode cal-
ibrated against NIST traceable buffer solutions (pH 4.01 and 7.01 at
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Fig. 1. Concentration of dissolved elements as a function of time at different pH conditions during the experimental biotite alteration.
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Fig. 3. Concentration of dissolved elements as a function of time at different pH conditions during the experiment on muscovite alteration.
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Fig. 4. Fluxes of Al and Si (on logarithmic scale) as a function of pH at the
temperature of 25 °C during the experiment on muscovite alteration. A change is
observed after 42 h of interaction at pH 5.7.

25 °C). An automatic colorimeter was used to measure dissolved Si.
Aluminium and Fe were determined by Graphite Furnace Atomic
Adsorption Spectroscopy, and Mg and K by Inductively Coupled
Plasma-Mass Spectrometry and Flame Atomic Absorption Spec-
troscopy, respectively. The analytical precision value was 2-3%
for Si, 5% for K and Mg, and 10% for Al and Fe.

The mica surface was analysed by AFM. The images were col-
lected after 168 h of reaction using a molecular imaging AFM
(Nanoscope III) equipped with Digital Instrument software and a
7.5 pm x 7.5 pm scanner. AFM operated in contact mode and at
an imaging loading force <10nN using a silicon probe with a
spring constant of 0.02-0.1 N/m. The scan frequency was 4 Hz with
256 lines per scan while the elapsed time from the top to the bot-
tom of each image was about 1 min. To exclude the possibility of
dirty tip formation, the scan angle was rotated during image collec-
tion and a highly ordered pyrolitic graphite (HOPG) standard was
used as a control.

Results reported in Annexe 1 show that pH values measured at
the beginning and the end of the reaction time are the same. This
indicates that the hydrothermal experimental reaction investi-
gated in this study takes place under constant pH conditions.

3.1.1. Biotite

Fig. 1 shows the evolution of the dissolved elements as a func-
tion of time during biotite dissolution at different pH conditions.
Potassium was present at a higher concentration compared to
the other dissolved elements in the first 42 h of investigation. In
experiments at pH 1.1 and 3.3, the concentration of Si, Al, Fe and
Mg constantly increased as a function time, while in experiments
at pH 5.7, solutions reached a steady state after 42 h of reaction
for Al, Si and Mg. The saturation state of the solution was estimated
using the PHREEQC software (Parkhurst and Appelo, 1999) and it
was found that at pH 5.7, fluids were oversaturated with respect
to gibbsite (Al(OH)3) after only 42 h of reaction.

In plotting the flux of elements on a logarithmic scale as a func-
tion of pH for the first 42 h of reaction (Fig. 2), was found that Si
and Al fluxes decreased 3-4-fold when pH increased from 1.1 to
5.7, while Fe and Mg fluxes decreased 2- and 1-fold, respectively.
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during the experiment on biotite alteration at pH 3.3. At both 120 and 200 °C, fluxes
change after 24 h of interaction.

In experiments at pH 5.7 two flux regimes were identified: one
before and one after 42 h of reaction. After 42 h of reaction, Si and
Al fluxes decreased by 2 orders of magnitude while Mg and Fe
fluxes decreased by 3 orders of magnitude.

3.1.2. Muscovite

Fig. 3 shows the evolution of K, Al, and Si concentrations as a
function of time at the different pH values. Potassium remained
nearly constant throughout the 168 h of investigation at all the
investigated pH values. At pH 1.1 and 3.3, Si and Al concentrations
increased linearly as a function of time. At pH 5.7, Al decreased after
42 h of reaction. The decrease in Al concentration could be related to
the precipitation of secondary minerals. Modelling the solution sat-
uration state, it was found that after 42 h of reaction, fluids were
saturated with respect to gibbsite, kaolinite [A;Si,(OH)4] and
boehmite [AIO(OH)].

Fig. 4 shows that in the first stage of the reaction, the Al flux re-
mained constant when pH increased while Si decreased by an or-
der of magnitude. At pH 5.7 and after 42 h of reaction, Si and Al
fluxes were 2 orders of magnitude lower compared to the earlier
stage.
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5. Concentration of dissolved elements as a function of time during the experiment on biotite alteration at pH 3.3 and at different temperatures.

3.2. Influence of temperature on flux

3.2.1. Biotite

Fig. 5 shows that Al Si, Fe and Mg concentrations increased as a
function of time during the first 24 h of investigation, and after-
wards reached a steady state. In batch experiments, steady state
may reflect either isochemical mineral dissolution-precipitation
reactions (Pauwels et al., 1989) or a lower dissolution rate of par-
ent minerals. Under the experimental conditions, it was found that
at steady state, the solutions are oversaturated with respect to
both kaolinite and gibbsite. This suggests the possible precipitation
of neogenic phases potentially able to cover part of the dissolving
mica surface.

Fig. 6 shows that in the first 24 h, the flux of Fe increased
slightly, while Al, Mg and Si increased by 1-2 orders of magnitude
when temperature increased from 25 to 200 °C. After 24 h of reac-
tion however, fluxes of Al, Fe and Mg decreased by more than 1 or-
der of magnitude as temperature increased from 25 to 200 °C.
Silicon flux decreased when temperatures increased from 25 to
120 °C and increased by an order of magnitude when temperature
increased from 120 to 200 °C.

3.2.2. Muscovite

Fig. 7 shows K, Al, and Si concentrations as a function of time at
120 and 200 °C. It was found that K concentration was higher than
Al and Si. At both 120 and 200 °C, Al and Si concentrations in-
creased constantly as a function of time in the first 18 h and later
reached steady state. A similar trend was observed during the
hydrothermal alteration of biotite. In muscovite however, steady
state is reached earlier than in the biotite experiments. After 18 h
of reaction, fluids were saturated with respect to both gibbsite
and kaolinite.

It was found that Al and Si fluxes were constant at 25 °C during
the 168 h of investigation, similar to the findings for biotite alter-
ation. However, at both 120 and 200 °C two distinct trends were
identified, one before and the other after 18 h of reaction. In the
first stage, Al and Si fluxes increased by 2 orders of magnitude as
a function of temperature increase while in the second stage, Al
and Si fluxes decreased by 2 orders of magnitude at 120 and
200 °C (Fig. 8).

3.3. Evolution of the surface state

The state of the pristine surface after air cleavage and before the
experiment was found to be perfectly flat with surface roughness
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Fig. 7. Concentration of dissolved elements as a function of time during the experiment on muscovite alteration at pH 3.3 and at different temperatures.

values lower than 0.1 £ 0.1 nm as measured by AFM. No evidence
of defect points or dislocations was observed. The determinations
confirm earlier AFM investigations on layer silicate minerals
(Henderson et al., 1994) where it was found that freshly cleaved
mica surfaces are perfectly flat at the atomic scale resolution of
the basal (00 1) surface (Coleman et al., 1993; Baba et al., 1997;
Campbell et al., 1998).

After 168 h of reaction, SEM observations show the presence of
etch pits on the biotite basal surface interacting with solutions at
pH = 3.3 and 200 °C. Pits have circular form and appear randomly
distributed over the surface. This confirms previous work on sili-
cate alteration (Zuddas and Michard, 1993; Murakami et al.,
2002; Aldushin et al., 2006), where dissolution effects on the sur-
face state were found from the very early stages of the process.
However, the relationship between the measured dissolution
fluxes and surface changes is unclear.

To better characterise the relationship between flux and surface
behaviour during hydrothermal alteration of mica, AFM high-reso-
lution equipment was used rather than the SEM. It was found that
on the basal (0 0 1) surface of both biotite and muscovite, etch pits
have a stair shaped pattern as shown in Fig. 9. Measuring the thick-
ness of the first step in several etch pits, values of 4.4 + 0.5 and
45+0.5A were found for biotite and muscovite, respectively.
These values are in agreement with the theoretical thickness of tet-
rahedral and octahedral sheet summation of both micas, showing
the potential structural control of the dissolution during the early
stage of muscovite and biotite dissolution under acidic conditions.

Fig. 10 shows the presence of nano-coatings at the surface edge
of triangular pits during the biotite and muscovite experiments
after 168 h of reaction. Here, neogenic phases may coat the surface
of the dissolving mica, explaining the significant decreases in ele-
mental flux observed in the reacting fluids. It was found that the
etch pit density was higher at pH 1.1 compared to pH 3.3 or 5.7,
while the amount of neogenic coatings present at the surface edge
of the steps was significantly higher at pH 5.7 compared to that ob-
served at pH 1.1 and 3.3.

4. Discussion
This experimental study confirms that pH controls the flux of

dissolved elements during hydrothermal alteration of mica under
acidic and far from equilibrium conditions. The release of elements

from mica to the solution decreases by 2 orders of magnitude
when pH increases from 1 to 5.7. Nanometre scale observations
carried out on mica surfaces indicate that the density of etch pits
decreases when pH increases from 1.1 to 5.7. This shows that as
pH increases, the available reactive surface decreases confirming
previous studies where it was postulated that mica dissolution
depends on H" activity (Bales and Morgan, 1985; Carrol-Webb
and Walther, 1988; Acker and Bricker, 1992; Casey et al., 1993;
Kalinowski and Schweda, 1996; Oelkers et al., 2008).

According to the Transition State Theory, when a mica crystal is
in contact with solutions, H* may exchange with K* to form an acti-
vated complex with surface cations leading to polarisation and
instability of cationic bonds with the mineral surface (Stumm
and Wollast, 1990). Theoretically, this instability should facilitate
the detachment of cations from the mica surface and their transfer
into solution. Under acidic and far from equilibrium conditions, as
H* activity increases so does surface instability. This ‘activated
complex’ itself is not stable and is released rapidly. Moreover,
the AFM observations of the basal (00 1) mica surfaces showed
that etch pits have a stair pattern suggesting the higher reactivity
of the lateral surfaces. In both biotite and muscovite, lateral (1 1 0)
faces are characterised by under-saturated O bonds leading to fas-
ter dissolution compared to the basal faces where O bonds are sat-
urated. The full charge of O atoms at the basal surface has a lower
affinity for protonation.

The result of this study shows that dissolution of mica is not con-
gruent: Mg/Si, Fe/Si and Al/Si ratios in solutions are higher com-
pared to ratios in both biotite and muscovite minerals. The
elemental flux is not only dependent on pH but also results from
the precipitation of neogenic minerals coating pit edges and lateral
surfaces. The observed change in flux after 42 h of reaction at pH 5.7
reflects the precipitation of neogenic phases as confirmed by high-
resolution AFM surface observations. SEM does not reveal the coat-
ing phenomenon; the same surfaces observed with SEM appear to
be flat. The nanometre scale observations clearly indicated that
coatings block the reactive sites of the mica surfaces controlling
the reaction time of mica dissolution. It is proposed that coating for-
mation inhibits H" interaction with under-saturated O atoms at the
highly reactive pit edges and lateral surfaces. Elemental flux is then
slowed because the available reactive surface is reduced.

This study shows that the flux of dissolved elements increases
when the temperature increases confirming the catalytic role
played by temperature. At higher temperatures mica is more



K. Pachana et al./Applied Geochemistry 27 (2012) 1738-1744 1743

0
oAl
ASi
11 oalafierish
—_ ASi after 18 h
'IT-: 24 *
£ .
S A
E 3 A
= *
= 2
241 a
o) <
_5 B
A
-6 T T T T
0 50 100 150 200 250

Temperature °C

Fig. 8. Fluxes of Al and Si (on logarithmic scale) as a function of temperature during
the experiment on muscovite alteration at pH 3.3. At both 120 and 200 °C, fluxes
change after 18 h of interaction.

Fig. 9. Atomic force microscopy detailed images of the etch pit shape observed on
the basal (0 0 1) surface of biotite during the hydrothermal alteration at pH 3.3 and
200 °C after 168 h of reaction.

energetic and surface cations are activated generating more colli-
sions with solutions. This greater instability of cationic bonds at
the mineral surface facilitates ion detachment (Stumm and
Morgan, 1980). It was found that the precipitation of neogenic
phases reduces the elemental flux. The surface observations at
the end of the experiment showed neogenic phases coating both
muscovite and biotite. They were particularly abundant at the edge
and lateral surfaces at 120 and 200 °C. It is propose that in long
term interaction, higher temperature may initially accelerate dis-
solution and facilitate the formation of neogenic phases. Over time,
the neogenic phase coatings inhibit mica alteration.

The study demonstrates the pre-eminent role of neogenic min-
eral coatings in the control of elemental flux. Mineral dissolution
accelerators such as low pH and high temperatures may also en-
hance coating formation. The phenomena documented in the
experimental conditions have also been described in natural bur-
ied feldspars (Nugent et al., 1998; Murakami et al., 1998, 2002).
Under natural conditions, coating formation can also be facilitated
by closed system conditions and a low water-rock ratio.

5. Implications and conclusions

There are major discrepancies between the mineral dissolution
rates documented in laboratory experiments and those observed in
the natural watershed. This is because it is not possible to

Fig. 10. Atomic Force Microscopy overall images of the basal (0 01) mica surfaces
after 168 h of interaction with fluids at pH 3.3 at the temperature of 200 °C. (Top:
muscovite; bottom: biotite.)

determine precisely the reactive surface area between minerals
and the percolating waters in rocks and soils under natural condi-
tions. Mineral alteration is not a homogeneous process because
coatings may cover the mineral surface from the earliest stages
of water-mineral interaction. By proving the early formation of
surface coatings, this study indicates that when applying experi-
mental determination to natural situations account must be taken
of the real state of the mineral surface. Naturally occurring mineral
surfaces are not pure phases; they may be mixtures of various min-
erals and they have most often been altered by the formation of
coatings.

The results have implications on the definition of the reactive
surface area of minerals. The available reactive surface area is
not the total geometric surface of the minerals but rather the
sum of the sites that actually reacted with the nearby aqueous
solution (see Brantley et al. (2008) for a review). An explanation
is provided for the variation of dissolution fluxes during mica alter-
ation through analysis of the nanometre details of the reacting
mineral surfaces. The loss of matter from the mineral surface is
governed by the formation of stair-shaped etch pits. The density
of steps and etch pits over the surface increases as pH and temper-
ature increase. However, the study has provided direct observa-
tions demonstrating that active surface sites of both dioctahedral
and trioctahedral mica have a temporal dependence due to the ra-
pid formation of nanometre coatings that block the dissolution
reactive sites.

Finally, results of this experimental study may improve the
quantitative assessing of the ability of minerals to neutralise CO,
acidic fluids. At the initial stage of the interaction, when minerals
dissolve abundantly, CO, can be easily captured in the form of
HCO; ions, but when coatings form at the mineral surface, the
mineral’s capacity to neutralise the acidity of the fluid decreases
significantly or can be brought to a halt. Predictive modelling of
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CO, sequestration under geological conditions should take into ac-
count the inhibiting role of surface coating formation. This work
may open the door to a new generation of rate equations and mod-
elling concepts for a better understanding and prevision of how
minerals dissolve and influence the environment.
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