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Abstract

Tracking-by-detection is a widely used paradigm for
multi-person tracking but is affected by variations in crowd
density, obstacles in the scene, varying illumination, human
pose variation, scale changes, etc. We propose an improved
tracking-by-detection framework for multi-person tracking
where the appearance model is formulated as a template
ensemble updated online given detections provided by a
pedestrian detector. We employ a hierarchy of trackers to
select the most effective tracking strategy and an algorithm
to adapt the conditions for trackers’ initialization and
termination. Our formulation is online and does not
require calibration information. In experiments with four
pedestrian tracking benchmark datasets, our formulation
attains accuracy that is comparable to, or better than,
the state-of-the-art pedestrian trackers that must exploit
calibration information and operate offline.

1. Introduction
Tracking-by-detection is a commonly used paradigm for

multi-person tracking [4, 8, 1]. In tracking-by-detection, a

classifier is used to detect candidate instances of pedestrians

in the current video frame; the resulting detections are

linked together, frame-to-frame to reconstruct the trajecto-

ries of pedestrians across time. The underlying classifier

can be trained offline [8, 6], or adapted via an online

retraining mechanism [4, 19].

In practice, tracking-by-detection performance in pedes-

trian tracking is adversely affected by variations in crowd

density, obstacles in the scene, varying illumination, human

pose variation, scale changes, etc.. Some approaches

employ occlusion reasoning to fill gaps in pedestrian tracks

[1, 15]. However, in practice, tracking-by-detection is still

vulnerable to missing and false detections.

In tracking-by-detection, the tradeoff between missing

detections and false detections seems inescapable. If de-

tector’s parameters are adjusted to reduce false detections,

then more “true positive” detections are missed, resulting

in gaps in tracks, lost tracks, or missed tracks. If detector’s

parameters are adjusted to reduce missing detections, then

more false detections occur, leading to false tracks, noisy

tracks, or drifting tracks.

To cope with these challenges, tracking methods often

incorporate dynamical models and appearance models.

Dynamical models not only help with predicting the new

position of a pedestrian during a “detection gap,” they

also can help with smoothing out noisy trajectories and

improving detection association. Appearance models can

also help improve data association, particularly when

the models are adapted online to account for gradual

changes in appearance and pose. However, dynamical

models and appearance models also come with significant

shortcomings. Dynamical models essentially impose priors

on motion and tend to hallucinate incorrect tracks when

pedestrian motion changes abruptly, e.g., turning a corner,

stopping, etc. Appearance models, when updated online,

inevitably diverge from some targets due to false detections,

errors in data association, and abrupt changes in pose or

appearance.

We propose an improved tracking-by-detection strategy

for multi-person tracking whose main contributions are:

1. A new appearance model formulated as a template

ensemble, which is updated online given detections

provided by a pedestrian detector. An online pruning

strategy maintains each ensemble and ensures that

weaker templates are discarded.

2. A hierarchy of trackers to select the most effective

tracking strategy. An expert tracker has a sufficient

set of reliable templates it uses to localize the target; a

novice tracker has fewer templates and relies more on

new detections than on its template ensemble. Through

time, trackers can be promoted to experts or demoted

to novices based on demonstrated level of reliability.

3. An online algorithm to adapt the conditions for track-

ers’ initialization and termination based on the consen-

sus of the trackers that are active at a given frame.
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In experiments with four pedestrian tracking benchmark

datasets, our formulation attains accuracy that is compa-

rable to, or better than, state-of-the-art pedestrian trackers.

But unlike these other methods, our formulation is online

and does not require calibration information.

2. Related Work
In recent years, several works combined discriminative

and generative methods for tracking, e.g. [3, 8, 16]. In

these works, offline trained detectors and standard tracking

techniques are combined, and the detectors are used in a

tracker’s appearance/observation model.

Some works integrate the detector’s response as well as

motion and appearance models into a global optimization

framework [2, 13, 6]. In others, a data association problem

is formulated to link detections through time [7, 5]. These

techniques are based on offline approaches, and require

calibration information. In contrast to these approaches, we

present a fast online method to track multiple pedestrians

with an uncalibrated camera.

Some tracking-by-detection methods employ the mean-

shift tracker [10], which searches for the detection whose

appearance best matches the target via a gradient ascent

procedure. In [9], mean-shift tracking is coupled with

online adaptive feature selection. Features are selected

to separate the target from the background; the most

discriminative features are used to compute weight images.

Then the mean-shift tracker is applied on each of the weight

images to localize the target. Based on the new target

detection, foreground/background samples are selected to

compute a new set of discriminative features.

In [4], at each frame weak classifiers are trained to dis-

criminate between pixels on the target vs. the background.

Online AdaBoost is used to train a strong classifier. Mean-

shift is applied on the classifier’s confidence map to localize

the target. In [19] several classifiers are co-trained to detect

the object and reach a consensus on the predicted location.

In all these methods, the appearance model is fully

dependent on the tracker’s detection. Moreover, in [4, 19],

the classifiers are dependent one each other and, through

time, they may correlate. In our approach, we adopt

the mean-shift tracker, but the appearance model consists

of a pool of templates found by the pedestrian detector.

The template ensemble is updated over time adding or

removing templates; however, as the templates are found

by the pedestrian detector and not by the tracker itself, the

templates are independent of each other. Each template’s

appearance is not updated through time with the new

detections, limiting the noise introduced in case of false

detections.

Some works [1, 20, 15] integrate occlusion modeling

within the tracking framework. These techniques define

repulsive forces between the occluding observations, or

Figure 1. Feature selection and back-projection image. “+” marks

the inner window binner .

define grouping behaviors. In contrast to these works, we

consider that during an occlusion the appearance model

may provide little information about the object position and

the pedestrian behavior may be unpredictable during the

gap. Therefore, we take a different approach by adaptively

growing the tracker’s search area to enable the target’s

reacquisition when the occlusion ends.

3. Tracking by Template Ensemble
At each frame It, a detector outputs a set of Nd

detections Dt = {dti}Nd
i=1, in which dti is a bounding box in

frame It. Although a threshold for the detector’s response

can be manually set to filter out false detections in some

specific scene, our system does not rely on this threshold to

perform robust tracking.

At time t, the state of the tracker Ti is defined as

{F t
Ti
, btTi

, kf t
Ti
}, where the template ensemble F t

Ti
=

{f j
i }N

t
i

j=1 is the set of N t
i templates collected across time,

btTi
= [xcti, yc

t
i, w

t
i , h

t
i] defines the current estimate of the

target’s bounding box centered at (xcti, yc
t
i) and of size

(wt
i , h

t
i), and kfi is the Kalman filter used to model the

tracker’s dynamics. The Kalman filter’s state is defined as

the tracker’s 2D center point position and the 2D velocity

(x, y, ẋ, ẏ). In our implementation, the Kalman filter’s

process and measurement noise covariance matrices are set

to (
wt

i

rf
)2 ·diag(0.025, 0.025, 0.25, 0.25) and wt

i
2 ·diag(1, 1)

respectively, where rf is the frame rate of the sequence.

3.1. Template Ensemble

Every time a detection is associated to a target, a

template is added to the corresponding template ensemble.

A template is defined as f := {channel[2], H, vshift},

where channel[2] represents two color channels selected

to represent the template, H is the 2D histogram for the two
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Figure 2. Short-term Occlusion Handling. Circles represent the search area for each tracker. When the Expert tracker with the purple box

crosses the pole, it loses templates due to the occlusion. Then it degrades to Novice and expands its search area (middle frame). When a

near detection is matched with it again, it recovers the tracking correctly (final frame).

selected channels and vshift is a 2D shifting vector. Once

the template is created, it will not be updated afterwards.

The two color channels are selected – among the 9 from

RGB, HSV and Lab color spaces – to yield separation of

pixels within foreground and background. To select these

channels, we follow [9], with several changes made to better

suit the pedestrian tracking problem. As shown in Fig. 1,

a central patch (inner window) inside the detection window

(outer window) is used as the foreground area, while the

ring region surrounding the detection window is taken as

background. The best two channels are selected based on

the variance ratio between the background and foreground’s

feature weight distributions (see [9] for details).

The histogram H of the selected color channels is

calculated inside the inner window and used to compute

the back-projection image BP for the region of interest.

As illustrated in Fig. 1, the distribution of pixel values in

the back-projection image may not be evenly distributed on

the person’s body. When we apply mean-shift tracking on

the back-projection image, the tracking window shifts to the

densest area, causing a bias in position with respect to the

object’s center. The vector vshift accounts for such bias

so that, during mean-shift tracking, the feature template is

shifted back to the center of the body.

For maintaining the template ensemble, a score is com-

puted for each template based on its back-projection image

given the updated target’s position from the tracker. The

tracker maintains at most Nmax templates by discarding all

the templates with negative scores, and the templates with

lowest scores. The score is computed as follows:

Score(f) = mean
inner

BP (f)−max
r⊂R

{mean
r

BP (f)}, (1)

where meaninner(·) is the mean pixel value inside the inner

window binner on BP (f); the second term takes the mean

pixel value in the patch r whose size is the same of binner

and whose mean value is the highest within the ring area

R. Score(·) measures the difference between foreground

and distracting areas in the background for the given feature

template’s back-projection.

3.2. Tracking

Tracking is performed by alternating between mean-shift

tracking (to take into account the target’s appearance) and

Kalman filtering (to take into account the target’s motion

dynamics). Alg. 1 summarizes the main steps needed to

perform tracking. At each frame, each template of tracker

Ti is used to compute a back-projection image BP . The

set of computed BP images is then averaged to provide a

voting map. A mean-shift tracker is applied to the voting

map to estimate the new target’s position. This position is

then used as the measurement input to the Kalman filter kfi,
which will predict the position for Ti to start the mean-shift

tracker at the next frame. Trackers adopt different update

strategies based on the template ensemble characteristics as

described in Sec. 4.

Alg. 1 T t
i = Tracking(T t−1

i , It, Ot)

Input: Tracker T t−1
i ; Current frame It; Occupancy map for current frame Ot

Output: Updated tracker T t
i

1: Calculate the back-projection map for each feature template of the tracker
2: Compute the voting map by summing up the back-projection maps
3: Look up in occupancy map Ot and set occupied pixels to 0 in the voting map to

avoid coalescence (see Sec. 6)
4: Predict the tracker’s starting position for mean-shift using Kalman filter
5: Update the tracker’s position by mean-shift tracking on the voting map
6: Register the pixels it occupies on occupancy map Ot for subsequent trackers

7: if T t−1
i is a Novice then

8: Replace kfi’s posterior state with current position and previous velocity
9: else

10: Correct kfi using current position by Kalman gain
11: Calculate the scores for tracker’feature templates by Eq. 1 and discard weak

templates

12: T t
i ← T t−1

i
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4. Tracker Hierarchy
We assume that a tracker’s confidence may be quantified

as the number of templates it possesses. Trackers are

divided into two groups:

1. Experts are trackers having more than K templates.

These trackers have high confidence and may use their

template ensemble to perform tracking;

2. Novices are trackers having fewer than K templates.

These trackers have low confidence and during track-

ing rely more on the newly assigned detections than on

their template ensemble.

We also consider a group of candidate trackers, which

are trackers waiting for enough matched detections before

being accepted as novice. Once a novice is initialized, it

tries to accumulate templates that may robustly track the

target. After K templates have been accumulated, a novice

is promoted to expert. Conversely, an expert that loses

templates is demoted to novice; this usually occurs when

the target undergoes occlusions or appearance changes. A

novice will retain its last template if all the templates’ scores

are negative. In our implementation (Nmax,K) are set to

(10, 5).

4.1. Detection Association and Tracking Strategies

Novices and experts apply different tracking strategies,

i.e. across time they update the dynamical model and the

search area in different ways.

Given the set of detections Dt, the assignment of the

detections to the trackers is formulated as an assignment

problem and it is solved by finding the maximum matching

in a bipartite graph. In a way similar to that described in

[12], we used the Hungarian Algorithm [18] with the cost

matrix

cij =

{
distij , distij < Ri

∞, otherwise
(2)

where distij is the distance between the current estimated

target position and the center of the detection dtj , while

Ri = αiwi depends on the width wi of the target’s

bounding box. αi controls the extension of the search area

for new detections. In our implementation, αi is calculated

as αi = min(φ1
σkfi

wi
+φ2, αmax), where σkfi is the square

root of the scale of the posteriori covariance of kfi, wi is the

width of the bounding box, (φ1, φ2) are constants and αmax

is an upper bound. We set (φ1, φ2, αmax) to be (0.5, 1.5, 4).
While an expert corrects its Kalman filter at each step, a

novice only updates the posterior state of its Kalman filter

without shrinking the posterior covariance (see Alg. 1).

This mechanism is similar in spirit to the adaptive Kalman

filter [17]. Our method can be interpreted as switching

between two modes of measurement noise covariance in

Kalman filter by thresholding the number of templates a

tracker has. In this way, a novice has a growing search area

and, therefore, it has more chances to be associated with a

detection even though it may lose its track for a short time.

When a new detection (xdet, ydet, wdet, hdet) is associated

to a novice Ti, the posterior state of kfTi , (x, y, ẋ, ẏ), is

replaced by (xdet, ydet, ẋ, ẏ). In this way, the novice jumps

to the position of the newly matched detection. This allows

a novice to recover its tracking efficiently after a short-term

occlusion or change of appearance (see Fig.2).

The detection association process has three steps. First,

detections are matched to the experts. Then, remaining

detections are matched to the novices. Finally, detections

that are not associated to experts or novices are matched

with candidates in the waiting list (in this case αi is set to

1.5). If any detections remain unassigned after these steps,

then these are added to the waiting list. Thus, to initiate a

novice a minimum number of matching observations must

be found. The condition to initiate a novice tracker is

learned adaptively as described in Sec. 5.

5. Trackers’ Birth and Death

The initialization or termination of a tracker is deter-

mined based on the tracker’s matching rate τi and average

matching rate τ̄ among all the established trackers. A

Alg. 2 (Tt,W t
L) = Multi track(Tt−1,Dt, It,W t−1

L )

Input: Tracker group Tt−1 = {T t−1
i }ni=1; Detections Dt = {dt

j}mj=1;

Current frame It; Waiting list W t−1
L

Output: Updated tracker group Tt; Updated waiting list W t
L

1. Tracking:
Create a new occupancy map Ot and set it to 0 (see Sec. 6)

for T t−1
i in Tt−1

T t
i = Tracking(T t−1

i , It, Ot) by Alg. 1

Tt ← Tt−1

2. Detection Association:
Associate Dt with experts and add feature templates accordingly
Associate rest of Dt with novices and add feature templates accordingly

Associate rest of the detections with candidates in W t−1
L

Use the remaining detections to activate new candidates and insert in W t−1
L

3. Initialization
for candidate Ci ∈ W t−1

L
if Ci has detection rate more than θinit

Initialize Ci, and move it to Tt−1

W t
L ← W t−1

L

4. Termination
for T t

i ∈ Tt

if T t
i has detection rate less than θterm
remove T t

i from Tt

5. Promotion and Demotion:
Promote novices if their numbers of templates are greater than or equal to K
Demote experts if their numbers of templates are less than K

6. Matching Rate Update:
Update τ̄ and τi by Eqs. 4 and 3
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Figure 3. Example tracking results for PETS09 and Town Center datasets.

tracker’s matching rate is defined as

τi =
ΔNmatched

i

Δt
, (3)

where ΔNmatched
i is the number of detections matched

with Ti in a temporal sliding window of length Δt.
Considering that the detections have a Poisson distribution,

the average matching rate among all the established trackers

is estimated by

τ̄ =
α+

∑Ntrackers

i=0 ΔNmatched
i

β +Δt ·Ntrackers
(4)

where (α, β) are the parameters the Poisson distribution (in

our implementation (α, β) are set to (30, 5)).
Once a tracker candidate is activated, it will stay in the

waiting list until its detection τi is above the threshold:

θinit = τ̄ − γ1
√
τ̄ , (5)

where γ1 is a scale factor controlling the confidence

interval. The waiting list has a maximum length and when

this length is reached the oldest candidates are removed.

A tracker will be terminated when its detection rate is

less than

θterm = τ̄ − γ2
√
τ̄ , (6)

where γ2 is a scale factor similar to γ1. In this way, the

conditions for tracker’s termination and initialization adapt

to different recall rates of the given pedestrian detector.

In our implementation, (γ1, γ2) are set to (1, 2). Alg. 2

summarizes our formulation.

6. Implementation Details
Occupancy Map: To prevent multiple trackers from

sticking to the same object, a simple 2D occupancy map

is employed. For a single frame, the areas occupied by

trackers are recorded one by one in the occupancy map and

each tracker sets to zero the pixels in the voting map that

are already occupied by other targets.

Detection Filtering: Before being associated, the detec-

tions are filtered out based on their height. In our system, a

body height projection map is learned online. We divide the

frame into (8 × 8) cells and estimate online the mean μij

and standard deviation σij of the heights of expert trackers’

bounding boxes in each cell cij . Then we calculate

[μij − ηij , μij + ηij ] with ηij = k1
σij

Nsamples
+ k2σij ,

as the confidence interval for the height of the detections’

bounding box. (k1, k2) are parameters controlling the

confidence interval; in particular, k1 determines how

fast the confidence interval shrinks with the increase

of the sample number. (k1, k2) are set to (10, 3) in

our implementation. In this way, many false detections

are filtered out without the need for camera calibration

information.

Scale adaptation: When a tracker is matched with a

detection by the method described in Sec. 4.1, it updates

the size of its bounding box (wt
i , h

t
i) with a learning rate λs,

i.e. (wt
i , h

t
i) = λs ∗ (wdet, hdet) + (1− λs) ∗ (wt−1

i , ht−1
i ),

where (wdet, hdet) is the window size of the detection. λs

is set to 0.4 in our implementation.

7. Experimental Evaluation
We implemented the system using C++ and the OpenCV

library and tested it on a computer with a dual core

3.2GHzX2, 12GB memory. A software implementation of

our tracker is available for public download1.

We tested our method on four publicly available se-

quences: three from the PETS 2009 dataset S22 and one

called “Town Center”3. For the PETS09 data set, we use

“View 1” of sequences S2.L1, S2.L2 and S2.L3. These

sequences have different levels of difficulty based on the

density of the moving crowd, and the ground-truth used

for evaluation is publicly available4. The Town Center

sequence is much longer than the PETS sequences. The

crowd density changes across time from sparse to dense.

The ground-truth for evaluation on this sequence is publicly

available2 (see Table 1). The runtime performance is about

7 fps for PETS09 data set (768 × 576) and 0.8 fps for the

Town Center sequence(1920× 1080) given the detections.

1http://www.cs.bu.edu/groups/ivc/software/TrackerHierarchy/
2http://www.cvg.rdg.ac.uk/PETS2009
3http://www.robots.ox.ac.uk/ActiveVision/Research/Projects/2009bbenfold head

pose/project.html
4http://www.gris.informatik.tu-darmstadt.de/˜aandriye/data.html
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Table 1. Dataset description
Frame N. of N. of HOG OpenCV[11] From [1] or [6]
Rate frames Id. Precision Recall Precision Recall

PETS09 S2.L1 7 795 19 94.75% 82.22% 75.14% 87.81%
PETS09 S2.L2 7 436 43 90.48% 51.62% 72.55% 55.91%
PETS09 S2.L3 7 240 44 88.56% 39.08% 90.48% 51.62%
TownCenter 25 4500 230 89.08% 62.46% 84.45% 74.16%

Table 2. Methods Comparison
calibration batch multi-camera appearance

Our NO NO NO YES
[1] YES YES NO NO
[6] YES NO NO NO
[5] YES YES YES YES
[15] YES YES NO NO

To measure performance we employed the CLEAR

MOT metrics described in [14]. The Multiple Object Track-

ing Accuracy (MOTA) considers the number of missed

detections (MS), the number of false positives (FP), and

the switches of identities (ID Sw.). The Multiple Object

Tracking Precision (MOTP) considers the precision of the

detections and it is computed using the intersection over

union (IOU) metric for 2D bounding boxes. Note that

higher values of these metrics indicate better performance.

As summarized in Table 3, we compare our method

with [1] and [6] on the PETS09 and Town Center data

sets respectively. Tracking results for [1] on the PETS

sequences were provided to us by the authors, and tracking

results of [6] on the Town Center sequence are available

on the same web page of the Town Center data set. For

fair comparison, we adopted the same evaluation protocol

and detector’s output: for the PETS09 data set, we use

the same detections used in [1]; in the Town Center data

set we use the same detections used in [6]. Note that the

results of [1, 6] are slightly different from the reported

results in the original papers, because we have re-evaluated

them using the same 2D matching protocol. We also report

the tracking results based on a generic HOG pedestrian

detector [11] from the OpenCV Library. We also show the

results reported in [5] and [15] when available.

Table 1 compares the performance of the pedestrian

detectors used for testing. The detector provided by [1, 6]

gives a higher recall rate but lower precision rate than

the OpenCV HOG detector in most sequences, which

means there are more false positives in the provided

detections. Without using calibration information, our

system successfully suppresses the false detections and

gives similar MOTA scores (see Table 3). Thus, for these

data sets, the choice of pedestrian detector did not greatly

affect the performance of our system.

As shown in Table 2, all the methods we compare with,

except [6], require calibration information and perform

batch processing of the data, while our method is fully

online. However, our method achieves higher MOTA

scores than most of them. On the PETS09 data set, our

system achieves higher MOTA scores in S2L1 and S2L2,

and slightly lower but comparable MOTA score in S2L3

compared with [1] based on the same detections. Note

that in [1], tracking is performed only in a central cropped

area, whereas we track all the pedestrians in the scene; this

potentially increases the risk of more missing detections and

false detections. We believe that the slightly lower MOTP

Table 3. Results and Comparison

MOTA MOTP MS FP ID Sw.

PETS Our+det.[1] 93.27% 68.17% 162 132 19
S2L1 Our+det.(HOG) 90.75% 68.64% 360 56 14

[1](cropped) 91.71% 74.47% 285 32 11
[5] 81% - - - -
[15] 67% - - - -

PETS Our+det.[1] 66.72% 58.21% 2963 247 215
S2L2 Our+det.(HOG) 64.12% 58.66% 3394 106 193

[1](cropped) 60.17% 63.02% 3169 54 104

PETS Our+det.[1] 40.38% 56.41% 2507 22 80
S2L3 Our+det.(HOG) 39.67% 57.75% 2477 96 67

[1](cropped) 43.37% 59.77% 1814 9 23

Town Our+det.[6] 73.61% 68.75% 12689 5746 421
Center Our+det.(HOG) 72.30% 66.35% 16430 3176 188

[6] 69.73% 69.68% 11886 9313 402
[15] 67.30% 71.50% - - 86

scores are due to the fact we neither use camera calibration

information nor employ off-line smoothing or pruning of

trajectories (as in [1]). On the Town Center sequence,

our system produces fewer false positives than [6] (about

40% less) using the same detections. Thus, our method

outperforms the online method [6] in terms of MOTA score

on this dataset.

We examined the ratio of expert trackers for each

experimental sequence. The ratio was around 90% for

the PETS09S2L1 and Town Center sequences, whereas

the ratio was lower for the other two sequences: 56% for

PETS09S2L2 and 60% for PETS09S2L3. As expected, the

ratio of experts decreases when there are more occlusions

and/or greater densities of people within the observed scene.

Finally, experiments were conducted to evaluate the

formulation’s sensitivity to the parameter settings. Each

parameter is varied within the range of ±40% from

the baseline parameter setting while keeping the other

parameters fixed. The corresponding MOTA and MOTP

scores are shown in the graphs of Fig. 4. The changes

of parameters have varied levels of influence on different

sequences. This is because these sequences have different

characteristics like crowd density, pedestrians’ dynamics,

etc. The performance of the system varies within a

reasonable range for all four data sets, which indicates that

our system is relatively robust to the setting of parameters

that need to be set a priori.

8. Conclusion and Future Work

We propose a new appearance model that is formulated

as template ensemble. In experimental evaluation, the

proposed ensemble formulation tends to be robust to noise
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Figure 4. Influence of parameters on system performance on different data sets. Each parameter is varied within the range of ±40% from

the baseline parameter setting while keeping the other parameters fixed. The parameters covprocess and covmeasure are scale factors for

the process and measurement noise of the Kalman filter respectively.

and false detections. We formulate multi-person tracking

using a tracker hierarchy. Trackers are classified as experts

or novices based on the number of templates they have,

and apply different strategies for adapting their dynamical

models and search areas for matching new detections. False

detections languish in the waiting list and expire if they do

not gain sufficient support to be promoted to novice. In

our experiments, we have found that this tracker hierarchy

provides robustness to missing and false detections.

In future work, a model of individuals’ interactions can

also be incorporated in our formulation to help account for

longer-term occlusions. We also expect that our approach

can be extended for use in multi-camera systems.
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