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“L’illuminismo è l’uscita dell’uomo dallo stato di minorità che egli

deve imputare a sé stesso. Minorità è l’incapacità di valersi del

proprio intelletto senza la guida di un altro. Imputabile a sé stesso è

questa minorità se la causa di essa non dipende da difetto di

intelligenza, ma dalla mancanza di decisione e del coraggio di far

uso del proprio intelletto senza essere guidati da un altro. Sapere

aude! Abbi il coraggio di servirti della tua propria intelligenza! É

questo il motto dell’illuminismo.Sennonché a questo illuminismo non

occorre altro che la libertà, e la più inoffensiva di tutte le libertà,

quella cioè di fare pubblico uso della propria ragione in tutti i campi.

Ma io odo da tutte le parti gridare: Non ragionate! L’ufficiale dice:

Non ragionate, ma fate esercitazioni militari. L’impiegato di

finanza: Non ragionate, ma pagate! L’uomo di chiesa: Non

ragionate, ma credete!”

da Risposta alla domanda: che cos’è l’Illuminismo?, Beantwortung

der Frage: Was ist Aufklrung?.

Immanuel Kant

“Could be worse...could be raining”

Igor



Abstract

The huge amount of biological data has spread the development of

plenty of bionformatics tools, databases and web services. In order to

face a computational biology problem, there not exist only a way, but

different methodologies and strategies, with their own pros and cons,

can be applied.

In this PhD thesis I present a knowledge-based expert system that

aims at helping a bionformatics researcher in the choice of the proper

strategy and heuristic in order to resolve a bioinformatics issue. The

Knowledge Base of the system is structured by means of an ontol-

ogy and codes the expertise about the application domain. KB is

organized into decision-making modules that introduce a set of meta-

reasoning levels.

The proposed expert system is the core reasoning component of BORIS

(Bionformatics Organized Resources - an Intelligent System) frame-

work, a research project High Performance Computing and Network-

ing Institute of National Research Council (ICAR-CNR). BORIS,

based on a hybrid architecture, can be seen as a crossover between

Decision Support System and Workflow Management System because

it not only provides decision support, but it help the User in the

proper configuration and running of algorithms, tools and services

implementing the suggested strategies and, at the same time, builds

a workflow that traces both the decision-making activity and the ex-

ecution of tasks and tools.

The whole system will be applied to an actual case study: the reverse

engineering of Gene Regulatory Network.
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Introduction

In the late 70s, Computer Science algorithms and statistics have begun to be

applied for the analysis and the study of problems related to molecular biology.

With the first attempts of DNA sequencing and especially with the beginning, in

1990, of the Human Genome Project (HGP) (1), this type of in silico approach,

rather than in vivo or in vitro, grew in importance. A new discipline, called

Bionformatics, was born with the aim of highlighting the raising need of merg-

ing Computer Science methodologies and techniques with the management and

analysis of biological data.

It is not simple to provide a synthetic definition of Bioinformatics. According

to the National Center for Biotechnology Information (NCBI) (2) “Bioinformat-

ics is the field of science in which biology, computer science, and information

technology merge to form a single discipline. The ultimate goal of the field is

to enable the discovery of new biological insights as well as to create a global

perspective from which unifying principles in biology can be discerned”.

The type of biological data typically considered are DNA and protein se-

quences, protein structures, gene expressions, protein expressions, protein com-

plexes, protein-protein interactions (PPI).

In this scenario, researchers have begun to develop computational techniques

in order to analyse these data, applying well established Artificial Intelligence

approaches, such as Pattern Matching, Data Mining and Machine Learning algo-

rithms, and adapting them to the biological evidences.
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1.1 Motivation and Goals

Bioinformatics has provided its major efforts in various application domains,

including among the others: sequence alignment, gene identification, drug dis-

covery and design, protein structure alignment, protein structure prediction, pre-

diction of protein-protein interactions, inference of metabolic and regulatory net-

works.

1.1 Motivation and Goals

In the past few decades the continuous growing amount of biological data, thanks

to the developing of high throughput technologies, has also given a boost to the

number of both bionformatics tools and algorithms and both to the availability

of web services and biological databases.

Nowadays, in fact, researchers facing biological problems are overwhelmed by

the huge set of computational techniques and enormous amount of data available:

for any problem, there are many possible models and algorithms, each of them

with their own characteristics, giving different results. Given a biological issue,

there are potentially plenty of different tools that could be used, none of them

providing the best possible results. Just to make a quick example, for the predic-

tion of the tridimensional structure of a protein from its amminoacid sequence,

also known as primary sequence, there exist more than 70 software (30), called

structure predictors, that offer different performances on the basis of the intrin-

sic properties of the analysed protein. It means there is not just one predictor

that always gives the best result, but each software has its own strengths and

weaknesses.

This situation has led to an increasing need for a computational system that

can respond to the afore mentioned issues.

In this thesis it will be presented an intelligent system, named BORIS, whose

main goals can be summarized as follows:

1. to collect the most common and used bionformatics tools and services and

to give them a coherent and flexible structure;

2



1.2 Background

2. to offer support to the bionformatics researcher about the decision-making

process in the choice of the best suited algorithm and service. This decision-

making activity is built on a set of heuristics and strategies representing the

expertise about the application domain;

3. to help the bionformatics researcher in the proper configuration and running

of the selected tools;

4. to build a path, or workflow, where both the decision phases and the exe-

cution phases can be tracked down;

All of these directives will be formalized in the guidelines of BORIS project,

presented in the next Chapter. BORIS is the main research project where my

PhD work is born and carried on.

In a very general way, it is possible to say that the basic idea of BORIS system

is, then, to provide to the researcher, or experimentalist, not only the tools able

to resolve a problem, but also the knowledge used in order to justify the choice

of those specific tools and strategies. In the generated workflow representing the

execution of an experiment, then it will be shown not only a simple succession

of tasks, but also what is the conceptual scheme at the basis of that workflow.

From this point of view, BORIS system can be seen as a novel intelligent system

that represent an innovative crossover between classical decision support systems

(DSS) and the most recent workflow management systems (WFMS).

In this thesis I will present what is my contribution to the BORIS project.

1.2 Background

History of Decision Support Systems and expert systems traces back to 70s (3),

when Gorry and Scott-Morton (4) used first the term Decision Support Sys-

tem, defining it as “an interacting computer-based system that helps the decision

maker in the use of data and models in the solution of unstructured problems”.

Definitions and features of a DSS are actually very wide: Moore and Chang

focus on their extendibility and adaptability to different domains (5); other re-

views emphasises the flexibility in the decision contest change (6), while in (7)

3



1.2 Background

is highlighted the chance to deal with semi-structured problems. More recently,

authors of (8) introduced the concept of intelligent decision maker by using tools

and techniques of Artificial Intelligence in order to gain direct access to exper-

tise for supporting the decision-making process: this integration provides higher

accuracy, reliability and utility.

Knowledge-driven DSS (KDSS) is a category of DSS built using an expert

system (9). These systems have their own expertise based on knowledge on many

aspects of the problem: the application domain, the definitions of problems within

that domain and the necessary skill to solve them (10). The knowledge of the

system is often coded as a set of rules by one or more human experts: this kind

of systems are often referred to as rule-based expert systems.

KDSSs applied in diagnosis in various clinical domains take the name of Clini-

cal DSS (CDSS). In CDSS a medical knowledge base is integrated with a collection

of patient data and an inference engine in order to provide medical recommenda-

tions about cases of a specific pathology.

MYCIN (12) was one of the first and most famous CDSS used for the diagnosis

and treatment of some blood infections. It was written in Lisp (13), and offered

support in the recommendations of the type and dosage of antibiotics.

ONCOCIN (14) is a rule-based expert system developed at Stanford Uni-

versity in order to give support with the treatment of cancer patients receiving

chemotherapy. ONCOCIN also introduced a sort of flowchart language in order

to keep trace of the sequence of decisions over the time.

KON3 (15) is a CDSS that adopts a proper ontology and rules, starting from

unstructured databases of medical records and clinical guidelines, in order to give

advices for care process patients.

Other currently used CDSS are: ATHENA (16) implementing guidelines for

hypertension using Stanford Medical Informatics EON architecture (17); LISA

(18) that is a clinical information system for supporting collaborative care in the

management of children with Acute Lymphoblastic Leukaemia (ALL); Thera-

pyEdge (19) that is a web-enabled decision support system for the treatment of

HIV.

The proposed system improves the classical concept of DSS in many ways.

First of all, for all decision steps it suggests a list of suitable strategies or algo-

4



1.3 Dissertation outline

rithms presenting for all of them a brief description, a series of pros and cons

and a list of bibliographic references. The system also helps the user in the

proper configuration and running of the strategies or algorithms selected during

the decision making process.

However the main feature is that all decisions made during an experiment are

ordered and visualized on a workflow where the user can backtrack in order to

change a previous decision. Furthermore it is possible to save the whole workflow

and its results in order to share or reuse them.

These last features make our systems closer to modern Workflow Management

Systems (WFMS) (20). A WFMS is a computer program that is able to manage

and define a series of tasks and processes in order to provide one or multiple

outputs. WFMS can be applied in different application fields and they can take

into account several types of jobs.

In bioinformatics domain, WFMS provide a simple way to build and run a

custom experiment using the most common bioinformatics resources, like online

databases, software and algorithms. WFMS, however, do not interact with the

user, do not have a knowledge base, nor makes decision like KDSS: for this reason

our system represents an ideal merging point between classical DSS and emerging

WFMS.

The most used and famous WFMS for bioinformatics is Taverna (21): it is

able to automatically integrate tools an databases available both locally and on

the web in order to build workflows of complex tasks; to run the workflows and

to show results in different formats. The system works by means of a Graphical

User Interface (GUI) or a script language.

Other WFMS for bioinformatics are Biowep (22), that allows the user to

search and run a predefined set of workflows, already tested, validated and anno-

tated; and BioWMS (23), that is a web-based WFMS built upon an agent-based

middleware architecture.

1.3 Dissertation outline

The rest of the thesis will be organized as follows:
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1.3 Dissertation outline

In Chapter 2 BORIS project will be described: it is the main research project

at the basis of my thesis work.

In Chapter 3 my contribution to BORIS project will be presented: it repre-

sents the core of my PhD work.

In Chapter 4 the Graphical User Interface (GUI) and the main features of

BORIS will be shown.

In Chapter 5 the application of the proposed system to an actual case study

will be described.

In Chapter 6 a brief explanation of all tools and methods used in order to

develop the proposed system will be provided.
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1.4 Publications

During the 3-years PhD course the following publications has been produced:

• FIANNACA A, LA ROSA M., PERI D, RIZZO R (2011). An Intelligent

System for Decision Support in Bioinformatics. ERCIM NEWS, vol. 84; p.

35-36, ISSN: 0926-4981

• FIANNACA A, GAGLIO S, LA ROSA M., PERI D, RIZZO R, URSO

A (2010). A Proposed Knowledge Based Approach for Solving Proteomics

Issues. Revised selected papers. LECTURE NOTES IN COMPUTER SCI-

ENCE, vol. LNCS 6160; p. 304-318, ISSN: 0302-9743, doi: 10.1007/978-3-

642-14571-1

• FIANNACA A, GAGLIO S, LA ROSA M., PERI D, RIZZO R, URSO A

(2010). A Knowledge Based Decision Support System for Bioinformatics

and System Biology. In: Proceedings of CIBB 2010. Palermo, Italy, 16-18

September 2010, ISBN/ISSN: 978-88-95272-87-0

• LA ROSA M., RIZZO R, URSO A, GAGLIO S (2009). Normalized Com-

pression Distance and Evolutionary Distance of Genomic Sequences: Com-

parison of Clustering Results. INTERNATIONAL JOURNAL OFKNOWL-

EDGE ENGINEERING AND SOFT DATA PARADIGMS, vol. 1; p. 363-

375, ISSN: 1755-3210, doi: 10.1504/IJKESDP.2009.028988

• FIANNACA A, GAGLIO S, LA ROSA M., PERI D, RIZZO R, URSO A

(2009). A Proposed Knowledge Based Approach for Solving Proteomics
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vol. 3, ISBN/ISSN: 978-88-903537-2-7

• FIANNACA A, GAGLIO S, LA ROSA M., PERI D, RIZZO R, URSO A

(2009). A Decision Support System for Reverse Engineering Gene Regula-

tory Networks. In: Proceedings of SysBioHealth Symposium 2009. Milano,

Italy, November, 25-27 2009, p. 81-83
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• LA ROSA M., RIZZO R, URSO A, GAGLIO S (2008). Comparison of
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BERG: Springer, vol. LNAI 5179, p. 740-746, ISBN/ISSN: 978-3-540-
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2

Bioinformatics Organized

Resources - an Intelligent System

In this Chapter BORIS, an acronym standing for Bioinformatics Organized Re-

sources: an Intelligent System, will be presented. BORIS is a research project

developed by the National Research Council and it represents the framework in

which my PhD work has given its contribution.

BORIS main features and guidelines will be presented, focusing the attention

on its hybrid architecture and development paradigms.

My contribution to BORIS project will be shown in the last Section.

2.1 BORIS Project

PhD work has been carried out inside one of the active project of High Per-

formance Computing and Networking Institute of National Research Council of

Palermo, Italy (ICAR-CNR), entitled: “B.O.R.I.S, Bioinformatics Organized Re-

source - an Intelligent System”, under the supervision of project manager Dr.

Alfonso Urso, belonging to research group “Analisi Intelligente di Dati per la

Bioinformatica”.

BORIS project was born from a threefold need:

1. to give a solid and coherent structure both to bioinformatics issue and the

plenty of tools and services that operate on bioinformatics domain;
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2. to offer support to a bioinformatics researcher during the decision-making

process of an experiment;

3. to help the user in the building and execution of pipeline of software and

services.

2.2 BORIS Guidelines

Following the three global requisites written in the previous Section, a set of

guidelines and functional requirements have been outlined.

Main guidelines of Boris project are the design and implementation of a De-

cision Support System (DSS) that can help bioinformatics researchers to deal

with the plenty of tools and services currently available. The system should col-

lect and organize the most common and used bioinformatics resources, such as

bioinformatics tools, web services and biological databases in order to make them

accessible to a bioinformatics researcher.

The system should deal with the unstructured knowledge typical of a human

expert of the domain that turns into the formalization of heuristics and strategies.

BORIS should give to the User support in terms of decision-making activity and

execution phase. The former requirement means BORIS should suggest to the

User what is the proper methodology to follow in order to resolve a problem and,

once the strategy has been set, it should suggest the best tool in order to fulfil

it. The latter requirement makes BORIS closer to actual Workflow Management

Systems (WFMS), since it is also responsible for the configuration and running

of all external tools specified during the planning phase.

Moreover BORIS should provide a flexible and modular framework in order

to maintain its constituents parts in an independent way and it should offer a

developing platform that can be easily updated and enhanced with new function-

alities and new kind of application domains. BORIS should define a standard

protocol so that developers community can add his own knowledge and expertise

to the system.
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2.3 BORIS Hybrid Architecture

Basically in Artificial Intelligence two main programming paradigms are employed

in order to implement a Decision Support System (DSS): procedural approach and

declarative approach. Intelligent architectures based on a declarative approach

encodes the knowledge, using a symbolic representation, about a specific problem

so that it can be manipulated and managed by an inference engine: that means

the knowledge is referred to the control of reasoning process and it represents the

concept of “what to do” given a particular environmental context. The purpose of

a declarative program is to generate a plan of action. Other features of declarative

programming are:

• the possibility to easily maintain and update the system representation;

• the improving of system transparency, since it is known what is the general

flow of control of the program;

• a certain slowness of the execution because the program code has to be

interpreted

• the system is data-oriented, because according to the input data, the declar-

ative program can generate a different plan

On the other hand, procedural knowledge specifies all the needed instructions in

order to achieve a goal. This type of knowledge is explicitly represented and it is

aimed at describing “how to do something”. This type of approach is particularly

suited for deterministic processes in which there is no need of any kind of reasoning

activities and there exists only one way to reach the fixed goal. Procedural

programming is the most common paradigm in the development of algorithms.

A procedural program has also the following qualities:

• it can be seen as a black box with an input and an output;

• it can be hard to debug;

• it is fast to run;
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• it is process-oriented;

• it is easy to write for the first time but it can be difficult to maintain,

according to the adopted “programming style”.

BORIS architecture has been designed following the main idea of integrating these

two computational approaches in order to create a hybrid intelligent system that

could inherit the main advantages of both paradigms.

Apart from procedural and declarative approach, another methodology has

been considered in the developing of BORIS. According to BORIS guidelines, in

fact, the system should offer support not only in the form of a simple textual

advice, but it has to trace all the decisions confirmed by the user and, moreover,

it has to help the user in the proper configuration and running of the suggested

instruments. For this reason, it has been considered the so called “process ap-

proach”, inherited from business process management and currently carried out

by modern Workflow Management System (21, 22, 23). With the expression

“process approach” it is meant a collection of structured activities, called tasks,

that provides a particular service or product and that can be visualized using a

flowchart or a workflow.

2.3.1 BORIS Reference Space

The three-folded approach, i.e. declarative, procedural, process, at the basis

of BORIS architecture has been formalized through the generation of a three

dimensional reference space where each kind of approach has been mapped into

a different axis. Then each point in this reference space, that we can simply call

system space, represents the state of the system, whereas the projection of this

point into the single axis gives the contribution of each approach.

The three axes are called: Abstraction Layer, Decision Making Level and Work-

flow Timeline and their reference system is shown in Fig. 2.1. Here the basic

features and ideas behind each axis will be provided.

1. Abstraction Layer Axis, mapping the Procedural approach:

• it is responsible for the “how to do” part of the system

12
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Figure 2.1: The 3-dimensional reference space of BORIS system. In each axis it

is mapped one of the different adopted computational approach: in the abstraction

axis it is mapped the procedural approach; in the decision-making axis it is mapped

the declarative approach; in the workflow timeline axis it is mapped the process

approach.

• it decomposes input problem into a set of one or more sub-problems

of lesser complexity;

• it runs algorithms and services, guaranteeing fully interoperability

among them.

2. Decision Making Level Axis, mapping the Declarative approach:

• it is responsible for the “what to do” part of the system;

• it implements the reasoning activity

• it deals with unstructured data;

• it uses strategies and heuristics in order to generate a plan of action;

13
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3. Workflow Timeline Axis, mapping the Process approach:

• it builds a workflow of operations, according to the executed tools by

the Abstraction Axis;

• it allows the configuration of each algorithm and service in the work-

flow;

• it provides backtracking features, in the sense that it is possible to

select any part of the workflow in order to obtain a different flow of

execution or to follow alternative paths during the decision making

activity;

• it can save the generated workflow for sharing it with other users or

to re-use it in other experiments.

The three axes contain only discrete values. On the abstraction axis we have

high values representing high abstraction layers referred to the whole problem,

while low values represent operations at low abstraction layers like for instance

the execution of a specific algorithm. In the decision making axis it is traced

the succession of every reasoning step of the system. In the timeline axis the

workflow is updated only when a tool or service is run, so that it is possible to

follow the progression of the experiment and eventually to modify it.

2.4 Contribution to BORIS

My PhD work has been developed according to BORIS functional requirements

and it has been designed with the aim of integration with BORIS hybrid archi-

tecture.

My PhD work consisted in the design and implementation of a knowledge-

based expert system representing the core component of the reasoning process of

the Decision Support System. The structure of the expert system responds to

the three-folded approach of BORIS architecture.

My work focused first of all on the organization and definition of a Knowledge

Base (KB) used to provide expertise in bioinformatics domain. The knowledge-

base is built upon an ontology, representing an essential framework in order to
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obtain a coherent and consistent KB. The KB has been enriched with a set of

rules, extracted from more than 50 scientific papers, that code the skill of a

human expert of the domain. Rules are the key elements to let the inference

engine of the expert-system make reasoning and to deduce new knowledge and

conclusion in the form of suggested operations. The final aim of the expert-

system is, in fact, to make, by consulting the KB, those necessary inferences

in order to produce a suggestion that will be managed by the Decision Support

System and the workflow manager. The KB is organized so that it can be directly

mapped to the three dimensional space defined in the previous section, thanks

to the definition of a set of decision making modules and their organization as a

topological tree.

The expert system belongs to a more complex software architecture, charac-

terized by a multi-layer structure that allows modularity and the possibility to

change and improve every single component without modifying the rest of the

system. Apart from the expert system my work also consisted in the definition,

design and implementation of the Graphical User Interface (GUI) of BORIS sys-

tem. Furthermore the system has been given the possibility to communicate

and interface with a large set of bioinformatics tools and services in order to ac-

complish and run the proposed methodologies obtained as result of the decision

making activity.

Finally the proposed system, fully integrated into BORIS architecture, has

been tested on a bioinformatics scenario. Considering the state-of-the-art, it has

been chosen the case study regarding the reverse engineering of gene regulatory

networks (GRN). Inferring a GRN is crucial in order to realize the biological

mechanism that regulates the gene expression phenomenon inside cells. There

exists a lot of different approaches, strategies and techniques to face this problem,

according to the available type of data and resources, so our system can offer

support, both in the decision making process and in the execution phase. More

than 20 research papers found in literature have been used in order to populate

the KB with the necessary skill, and strategies and heuristics has been coded

into a set of specific rules. A complete experiment will be shown, highlighting

the behaviour of BORIS with regards to the hybrid architecture and the rule-

based expert system.
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BORIS Software Architecture

In this Chapter, the software architecture of the Rule-Based expert system devel-

oped for the BORIS global framework is presented. The design ad implementation

of this expert system is one of the main contribution of my thesis work.

First of all the whole architecture will be described and then its most im-

portant parts will be described in detail, stressing on the organization of the

Knowledge Base of the system through an ontology and introducing the concept

of Decision-Making module, that are responsible for the reasoning activity of the

system.

Finally we will see how the software architecture integrates with the rest of

BORIS hybrid structure, following its main requisites and guidelines.

3.1 Three-layer Architecture

Boris software architecture has been developed as a three layers structure. The

layered architecture of the proposed system, shown in Fig. 3.1, is inspired by its

main goal: to separate the researcher from the tools in order to let him focus on

the problem.

The user interacts with the system through a Graphical User Interface (GUI)

and the wrapper component that are in the interface layer. The wrapper is the

module that manages the communication between the executor in the Controller

layer and and the GUI. The GUI sends user’s commands to to the wrapper; it

formats this messages in the form of queries to the Reasoner. Wrapper module,
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Figure 3.1: Software Architecture. Three main layers interact each other to make

the system work. The Interface layer is responsible for the interaction between

the User and the system. It implements a GUI that manages the input/output

operation. The Controller layer holds a Knowledge-Based expert system: it is able

to make inferences on the application domain by consulting the skill coded into

the Knowledge-Base. KB is organized and maintained through an ontology. The

decisions taken by the Reasoner (inference engine) are passed to the Executor that

will schedule and put them in action. The Object layer represents all the tool

and services the system can gain access, both locally and on the Internet. Every

time a new web service or software is available, the upper layer just needs a simple

interface in order to use them.

moreover, allows to to easily change the GUI without interferences to the other

parts of the system. The main components and their meaningful features of the

GUI will be described in Chapter 4.

The Controller Layer includes a knowledge-based expert system (9). Knowledge-
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Base (KB) contains and codes the expertise of the system about the application

domain. KB can be populated with information provided by human experts of

the domain or extracted by research papers found in literature: so far we used

for our KB almost 50 scientific papers. Knowledge Base is composed of facts and

rules: facts represent single pieces of information; rules, having the typical form

IF <precondition on fact is TRUE> THEN <do action>, are used in order

to make the system able to do inferences about the domain. The rules, acting

on facts, have to be considered single steps of reasoning used for the coding for

heuristics, guidelines and strategies adopted by an expert of the domain. The KB

is built upon an ontology, in order to provide a fixed and expandable structure

to the KB itself. Facts, then, represent instances of the concepts defined in the

ontology. The relationships between ontology, facts and rules are shown in Fig.

3.2

The design and the main features of our ontology will be described in the next

subsection.

The Reasoner is the inference engine. It, by consulting the knowledge base

and according to user’s query and input data received from the upper layer, has

to decide and suggest what are the suited strategies and tools useful in order to

solve user’s request. All the decision taken by the Reason are sent to the Execu-

tor. It has an internal agenda, in order to schedule the action to perform, and

moreover has access to the Object Layer which contains all the tools and soft-

ware available to the system. The Executor can update the KB with intermediate

results obtained during the execution of an experiment.

The Object layer represents all the low level parts that will be run by the

executor, according to the decision taken by the reasoner. The Object layer can be

considered as a big container, made up of different compartments, corresponding

to different class of software and tools. In this layer we considered algorithms

and tools and the access to the most common web services and online databases

for bioinformatics. All the components of Object layer are developed by third

parties and are not subject of our study.
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Figure 3.2: Knowledge-Base three main components: Facts are the instances of

the concepts defined into the Ontology; the Rules work on facts in order to give

semantic and the possibility to make inferences over the facts.

3.2 Ontology Design

In order to build a complete and exhaustive Knowledge Base, three basic com-

ponents are needed: facts, rules and an ontology of the domain.

In Computer Science, an ontology is a formal representation of the knowledge

about a specific domain. It provides a conceptual schema for all facts to be

represented. The main reasons for developing an ontology are:

• to share the structure of information among other people or software agents;

• to allow the reuse of domain knowledge;

• to give a well structured, robust and consistent conceptual schema for all

facts to be represented
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Figure 3.3: An example of ontology in the vehicle domain. The rounded rectan-

gles are the classes characterized by properties or attributes (the yellow boxes); the

other rectangles are instances of the classes: in the instances each attribute has a

value. Finally there are the relationships between the instances, indicated through

the black arrows. Each relationship is given a label representing the type of bind.

• to enable the chance of easily update and extend the KB with new concepts.

Ontology is composed of classes (concepts) organized in a hierarchical struc-

ture. Classes are characterized by properties, also called attributes, that describe

various features of the concept itself; and relationships with other classes of the

domain. Given this definition, facts of the KB represent instances of concepts

defined into the ontology.

In Fig. 3.3 it is shown a very simple scheme of an ontology, describing the

motor vehicle domain. There we have the concept Automobile and its super

concept Motor vehicle, with the set of attributes indicated in yellow. A child

concept inherits all the properties from its parent concept. “Ford Mondeo LX”

is an instance of Automobile class: in general an instance has all its attributes

with a specific value. Moreover, this instance has a mutual relationships of the

type manufacturer/producer with another instance of the domain, “Ford Motor

Co.”. The latter element is an instance of “Auto mfr” class that is a subclass of

“Corporation” concept.

In practical terms, developing an ontology includes:
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1. identifying and defining classes in the ontology,

2. organizing the classes in a taxonomic (subclasssuperclass) hierarchy,

3. defining slots (attributes) and describing allowed values for these slots,

4. filling in the values for slots for instances, this way obtaining facts for the

KB.

In the development of the ontology at the basis of our KB, we decided to focus

on and model three main sub-domains:

1. the set of tasks we can do on bioinformatics domain;

2. the tools, software and algorithms currently used in bioinformatics;

3. the type of biological data we have as input and that we have to analyse

(we call it generically “Domain”).

These three sub-domains are shown in Fig. 3.4, where we can also see the

kind of relationships among them: Tasks operate on a specific biological data,

following the idea “what we can do according to the available type of data”; on

the other hand Tasks use Tools, in the sense: “in order to do something, what

are the suited tools?”.

All three main branches of our ontology are modelled according to an hierar-

chy of classes and subclasses. Each concept is then characterized with a set of

attributes and relationships with other concepts: sub-classes, representing more

specialized concepts, have all the attributes of their own super-classes plus other

specific properties.

The Tasks part of the ontology describes what are the most common bioin-

formatics operations we can do on biological data. Here, at the moment, we

identified three main areas of our interest: Protein Analysis; Protein-Protein In-

teraction; Gene Regulatory Network. The hierarchical structure of Tasks ontology

is shown in Fig. 3.5

Protein Analysis is one of the biggest challenge in bioinformatics: it is a

very hard issue to understand how proteins work in biological processes. In
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Figure 3.4: Three main ontology sub-domains: Tasks model the set of operations

it is possible to do on the bioinformatics domain; Tools model the set of algorithms

and services that implements the Task instances; Domain models the biological

data to analyse. The generic relationships among the three subdomains are shown:

Tasks “operate on” Domain’s instances and “uses” Tools’ instances.

facts, the proteome of a specific organism differs even from cell to cell, this is

because a single gene can code for over 1,000 proteins and each protein can

express several functionality, according to other interacting proteins. According

to bioinformatics topics classification in (24), protein analysis is divided into four

classes of problems: protein structure prediction, protein annotation, protein

function prediction, and protein localization prediction.

• Structure Prediction: the structure of a protein represents a key feature in

its functionality (25). Unfortunately, the prediction of 2D and 3D struc-

tures is an NP hard problem in general, because most of the proteins are

composed by thousands of atoms and bounds and the number of poten-

tial structures is very large. For this reason, in order to approximate the

real structure of a protein, several optimization techniques based on ma-

chine learning approaches have been implemented and a competition (CASP

(30)), aiming at improving prediction techniques in the years, has been in-

stituted;

• Function Prediction: another challenge is to determine protein function at
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Figure 3.5: Hierarchy of classes and subclasses for the Task part of the proposed

ontology.

the proteomics scale. In fact, although in a model organism many individual

proteins have a known sequence and structure, their functions are currently

unknown. In particular, a single protein can express different function ac-

cording to some environmental parameters, therefore it is not enough to

identify which proteins are responsible for diseases or are advised for med-

ical treatments, if the specific functions are unknowns. Approaches to the
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function prediction are based on different techniques (28): some of these

are related to protein sequence and structure, the other ones use protein-

protein interaction patterns and correlations between occurrences of related

proteins in different organisms.

• Location Prediction: the prediction of protein localization aims at deter-

mining localization sites of unknown proteins in a cell. By means of this

study, it is possible to cope with problems like genome annotation, protein

function prediction, and drug discovery. The location of protein into the

cell can be calculated through experimental approaches (29), but they are

time and cost consuming, thus a computational technique able to screen

possible candidates for further analyses, appears a desirable solution.

• Protein Annotation: available databases and technical information on pro-

teins form the raw material of the proteomics. A correct organization of

these input data prevents a misleading interpretation of elements. A critical

phase in this process is a correct annotation of properties and main features

of proteins. This step is based on the classification of scientific texts and the

information extraction in the biological domain (27), and it copes with the

identification problems. In the biological field the nomenclature is highly

variable and ambiguous, especially for protein name identification, where

both the use of phenotypical descriptions and the gene homonym/alias man-

agement have influenced the nomenclature.

A central role in biological mechanism of a cellular process is covered by the anal-

ysis of protein-protein interaction (PPI). Nowadays a large amounts of PPI data

have been identified with many technologies, but only a few of them are account

as real interaction with an emerging function. Moreover, at biological pathway

level, the functionality is not linked to a simple pair of proteins, but arises with

protein complex, that is a collection of PPIs. Analysis of protein-protein interac-

tion, as well as identification and extraction of protein complexes, represents an

hard task for machine learning algorithms (26), because uncertain information

about interconnection and functionality of each protein could lead to erroneous

interpretation. Inside Protein-Protein Interaction we distinguished subtasks like
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PPI prediction and PPI network analysis. PPI network analysis is composed of

techniques for the extraction of protein complexes and the comparison of protein

complexes.

Finally Complex Extraction class is made of the following subclasses:

• Complex Clustering is the identification of set of protein complexes charac-

terized by common features according to a similarity metric;

• Complex Identification is the classification of unknown protein complexes

given a training set of known complexes;

• Complex Preprocessing is the set of operations used in order to prepare the

input dataset the complex clustering or complex identification tasks;

• Complex Visualization is a set of techniques that allow the visualization,

using different styles, of the protein complexes.

GRN ontology is made of subtasks concerning preprocessing of data, network

inference and visualization. Inside Preprocessing jobs, we also considered:

• Gene clustering is the individuation of set of genes, called clusters, that

exhibit similar expression values, according to a specific metric (31, 32).

These gene are also defined “coexpressed”. Each gene cluster is given an

expression value equal to the mean value of all its elements or equal to the

value of its most representative gene (cluster centre);

• Gene interpolation consists in the increasing of the number of data points

(expression values) in order to obtain more accurate results (33);

• Gene discretization is a numerical procedure to transform continuous ex-

pression values into discrete values, because some tools need this type of

input values, such as Bayesian Networks (34);

• Gene filtering is a set of procedures that allow to select a subset of input

genes according to some user defined constraints (35, 55).

Instances of Tasks ontology has the following attributes:
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• description: a brief explanation;

• entry: the type of biological data needed;

• exit: the type of output data produced;

• precondition: required task to be previously run

• pros: a list of task’s advantages;

• cons: a list of task’s weak points;

• reference: one or more bibliographic references;

• input type (only for GRN instances): the type of input data supported (see

Microarray instance description)

The Tools component is also structured in an hierarchy: here, at the top level,

we distinguish between algorithms, that are run locally, and services, that run

remotely. At the moment we included filters, algorithms on graphs, graphical

models, machine learning algorithms etc... The complete hierarchy is shown in

Fig. 3.6.

A generic instance of Tools ontology is characterized by the following at-

tributes:

• description: a brief explanation on its main features;

• input: type of input data (file format);

• output: type of output data;

• parameters: number and type of input parameters, if needed;

• pros: a list of algorithm’s strong points;

• cons: a list of algorithm’s weak points;

• complexity: computational complexity;

• reference: one or more bibliographic references;
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Figure 3.6: Hierarchy of classes and subclasses for the Tools part of the proposed

ontology.

In the last main branch of our ontology we modelled the type of biological

data we want to analyse: we considered genomic data, proteomic data and tran-

scriptomic data (see Fig. 3.7). Here we focused especially on the modelling of

microarray data, since this is at the basis of the developed scenario presented in

Chapter 5

Microarray class has the following attributes:
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• db: the biological database the dataset belongs to;

• genes: the number of input genes;

• samples: the number of input samples;

• experiment: the kind of experiment: time-series or steady state (see Section

5.2.1)

• species: the type of biological species (if known);

• missing values: the presence or less of missing values.

Apart from an hierarchy of classes and subclasses, an ontology is character-

ized by the relationships among those classes. We are interested above all in the

relationships between Tasks and Domain on one hand, because we want to iden-

tify what is the type of biological data needed to perform a specific operation; on

the other hand we are interested on the relationships between Tasks and Tools,

because we want to know what are the available instruments that actually im-

plements strategies and heuristics coded in the Tasks ontology. For this reason,

At the top level we have defined a mutual relation between Tasks and Tools: an

instance of Tools “resolves” an instance of Tasks, that conversely is “resolved by”

an instance of Tools. We want this way point out that a particular software or

algorithm is suited to be applied to a particular bioinformatics task.

3.3 Decision-Making modules

In order to make the system more efficient and structured, facts and rules of the

KB are organized into a set of decision-making modules.

A decision-making module, from now on simply module, is a collection of

specific facts and rules with common features. We can assign to each module a

well defined scope and purpose, a specific slice of the decision-making process.

For example, we can have modules suited for taking decisions about prepro-

cessing operations, visualization, clustering and so on that can be used in different

application domain.
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Figure 3.7: Hierarchy of classes and subclasses for the Domain part of the pro-

posed ontology.

All the modules are organized in a tree, representing the relationships of

specialization or generalization that exist between modules. Modules can have

one or more children and the parent module is responsible for the activation

of its sub-modules. Each level in the tree represents a different meta-reasoning

level. We define it a meta-reasoning because a parent module makes decision on
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the activation of one of its child module, that in turn has the expertise to take

decisions on more specialized activities: so we can say that there is a high level

reasoning whose results is another kind of reasoning at a lower level.

The mechanism of modules activation, also called focusing, is managed by

special rules: when the preconditions of these rules, the IF part, are satisfied,

their action, the THEN part, is to give the focus to a child module. A parent

module activates a child module when it needs specialized knowledge, i.e. more

specific facts and rules, in order to complete its decision-making activity.

When the module ends its job, the focus is automatically returned to the

parent module. The tree representation of modules can be converted in a clearer

one using a treemap (36), as in Fig. 3.8. The treemap allows to immediately

visualize the topology of the tree using a set of nested boxes: the parent nodes

“englobe” their own children nodes.

Figure 3.8: The tree structure among modules is projected into a treemap rep-

resentation. Relationships between nodes mean a parent module is responsible for

the activation of children nodes. In the treemap, this relation is depicted through

a set of nested boxes.
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Modules organization and its features has been designed in order to fully inte-

grate the expert system architecture into the Boris hybrid architecture described

in Section 2.3. With regard to the 3-axes reference space of Fig. 2.1, in fact,

decision-making modules stand into the decision axis, because they represent the

reasoning activity of the system. Then if the abstraction axis is considered, it

is possible to map it with the hierarchy of tasks and sub-tasks defined into the

ontology: at the lowest level of abstraction there are the instances of the Tools

component of the proposed ontology. Finally if the timeline axis, that is re-

sponsible for tracking the executed strategies and tools into a workflow, is also

considered, it is possible to obtain the scheme of Fig. 3.9.

Figure 3.9: Example of complete workflow produced by our system. Gray boxes

on the background, arranged as a treemap, are the modules responsible for the

decision-making process about current experiment. On the vertical axis there are

abstraction layers in which the experiment is decomposed: it is evident that deci-

sions are taken at various abstraction levels. Along the horizontal axis, representing

the timeline axis, we have the developing of the workflow, with the rectangles rep-

resenting strategies and tools already run.

In this type of workflow representation, the decision making modules, in their
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treemap organization, are in the central part. The horizontal and vertical axis

are respectively the abstraction axis, with the above mentioned features, and the

timeline axis. The rectangles that intersects the decision-making modules at the

various abstraction layers are the executed tools and services, if they are at the

bottom layer, or the strategies and heuristics that use them, if they are at higher

abstraction layers. The highest abstraction layer is the main goal of the running

experiment. Since this scheme includes the temporal dimension, the treemap used

for the modules is a bit different from the classic one. The entire tree structure of

the modules is not converted into the treemap and projected into the workflow,

but only the modules activated during the execution of the experiment are shown.
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4

System Overview

In this Chapter a brief explanation of the main features and components of the

Graphical User Interface (GUI) of the proposed system is given. The GUI has

been designed according to one of the main aim of Boris project, i.e. integrating

the functionalities of a Decision Support System with the ease and usability

requirements of a Workflow Management System.

4.1 Boris’ Graphical User Interface

In Figure 4.1 we show a typical caption of the GUI of our system during the

execution of an experiment. Here we can see four main components, that will be

presented in detail in the following subsections:

• Profile Panel

• Workflow Panel

• Strategy Panel

• System Log
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Figure 4.1: A caption of the Graphical User Interface (GUI) of BORIS system

during a typical experimental session.

4.1.1 Profile Panel

The Profile Panel, standing in the top part of Fig. 4.1, allows the User to select a

profile that will be considered in the choice of strategies and tools for the selected

problem. The available profiles are:

• Quick Analysis: the User prefers tools with low computational time;

• Deep Analysis: the User prefers the most accurate tools, without time or

resources constraints;

• Low resources: the User prefers tool that needs low computational re-

sources:

• Only local services: the User prefers the execution of local tools and soft-

ware.
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The User can change the selected profile anytime during the experiment, so that

he can combine different models according to his preferences.

4.1.2 Workflow Panel

Workflow Panel, that we can see in Fig. 4.2, shows the building of the workflow.

Figure 4.2: Workflow Panel component of BORIS system. It shows the active

decision-making modules (pink boxes on the background), the adopted heuristics

and strategies (blue rectangles), and the run algorithms and services (yellow rect-

angles).

It visualizes the hierarchy of tasks and subtasks used to solve the problem orga-

nized in different abstraction layers according to their complexity level: at the

top level we have the main problem to resolve and at the bottom level we have

the actual algorithms and tools run by the system. The intermediate levels rep-

resents strategies and heuristics used to decompose and to resolve the main goal.

Strategies and corresponding algorithms are shown in rectangular boxes.

Active decision-making modules, representing the reasoning activity of the

expert system, are depicted using bounding boxes on the background. The work-

flow is interactive: right clicking on the different part, a context-sensitive pop-up
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menu allows the User to do different actions: for example if he selects an algo-

rithm block he can change input parameters and re-run it; if he selects a strategy

block it is possible to select an alternative tool; while if a box representing a

module is selected it is possible to start over the whole part of the workflow for

which it is responsible, in terms of decision-making activity, that module, in order

to explore alternative paths, if any.

4.1.3 Strategy Panel

Strategy Panel, shown in detail in Fig. 4.3, describes available strategies and

algorithms for a particular task. For each of them it is provided a general de-

scription, a list of pros, cons and bibliographic references. The suggested strategy

or tool is highlighted with red text. All of these information is provided by the

Knowledge Base.

Figure 4.3: Strategy Panel showing the available strategies, heuristics and tools

for the given task. The red element is the suggested one.

4.1.4 System Log

System log allows to the User to know every single operation done by the sys-

tem during the execution of an experiment. It shows the reasoning behind each

proposed strategy/tool, writing the motivation of each activated rule; the result
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of each executed process; the pathway of the workflow, if there are some possi-

ble forks, and the final results of the experiment. The User can scroll the log

in order to read the history of the running experiment. The different kinds of

communication have different text coloration.

Figure 4.4: System Log of Boris system. Activated rules and their motivation,

intermediate and final results, available forks in the workflow and progression of

the experiment are shown.
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5

Case Study: Reverse Engineering

Gene Regulatory Network

In this Chapter an application of the proposed system to an actual case study

in Bioinformatics will be presented. The scenario is the inference of a Gene

Regulatory Network from an input dataset of gene expression values. First of all

I will present what is the biological issue; then I will give a brief explanation of

the most common bioinformatics approaches and tools and finally it will be seen

how our system can offer support in the choice, configuration and run of those

tools. During the system demonstration, we will also show the “back-end” of the

system, that is how the system works with regards to BORIS hybrid architecture

(see Chapter 2) and its software implementation (see Chapter 3)

5.1 Biological Problem

Gene regulation is the cellular control governing the rates at which genes are

transcribed into mRNA: this biological phenomenon is called gene expression.

Gene expression depends on physical signals from the environment or within

an organism cell. When one of these signals reaches cell nucleus, a protein,

called Transcription Factor (TF) is activated. TF, then, binds to the promoter

region, that is a specific upstream region, of a target gene and triggers the RNA

polymerase enzyme to transcribe DNA to RNA. TFs can be seen as controller of

the on-off switch mechanism of gene expression: repression (down-regulation) or
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induction (up-regulation) of output. The molecular readout of a gene are then

mRNA, which is transcribed from DNA, and protein, which is translated from

RNA. In Fig. 5.1 it is shown a schematic representation of gene regulation.

Figure 5.1: A synthetic representation of gene regulation biological phenomenon.

This picture is taken from U.S. Department of Energy Genome Programs,

http://genomics.energy.gov

5.2 Bioinformatics Approach

Gene regulation is a very complex biological phenomenon and it is not full under-

stood yet (37). In Bioinformatics and System Biology this mechanism is studied

and modelled by means of Gene Regulatory Networks (GRN): a GRN is a di-

rected graph where nodes represent genes and other regulatory elements, such as

transcription factors (TF), protein complexes and so on, and edges are regulatory
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Figure 5.2: Sample gene regulatory network (directed graph)

relationships among them. Basic input for inferring a GRN is a dataset of gene

expression values obtained through microarray technology. An example of GRN

is shown in Fig. 5.2.

From a computational point of view, modelling a GRN is a reverse engineering

problem, since from the output of gene regulation, that is gene expression, we

want to infer the network, with its topology and parameters, that provided those

outputs.

5.2.1 Microarray Technology

Gene Expression is measured by means of microarray technology (38). Microarray

chips are devices that enable the scientist to simultaneously measure the tran-

scription level of every gene within a cell. Microarrays are commercially available
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Figure 5.3: Example of microarray image

from a number of companies, like for instance Affymetrix, Invitrogen and Sigma-

Genosys. The chip is usually constructed by amplifying all the genes within the

selected genome, yeast, for example, using polymerase chain reaction (PCR) (39)

methodology. The PCR products would then be “spotted” onto the chips by a

robot, as single-stranded DNA that is linked by covalent bonds to the glass slide.

The spots would be positioned in an array on a grid pattern, where each spot

contains many identical copies of an individual gene. A discussion of the chem-

istry involved in creating a microarray can be found on the technology page of

the Affymetrix website. The position of the genes are recorded by spot location,

so that the appropriate gene can be identified any time a probe hybridizes with,

or binds to, its complementary DNA strand on the chip.

Microarray chips measure transcriptomes, which are the entire collection of

RNA transcripts within a cell under the given conditions. To use the chip to

measure an experimental transcriptome against a reference transcriptome requires

cells grown under two different conditions, the experimental conditions and the

reference conditions. The mRNA from the two different conditions are harvested

separately, and reverse transcriptase (40) is used to transcribe the mRNA into

cDNA. The nucleotides used to synthesize the cDNA will be labelled with either

a green or red dye, one colour for the reference conditions and the other for

the experimental conditions. The microarray chip is then incubated overnight

with both populations of cDNAs, and a given cDNA will hybridize with the

complementary strand from its gene that is covalently bound to a grid spot on

the chip. The chips are washed to remove any unbound cDNAs and then two
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computerized images are produced by scanning first to detect the grid spots

containing cDNAs labelled with green dye, and second to detect the spots contain

red-labelled cDNAs. The computer also produces a merged image, like the one

shown in Fig. 5.3, that will show a yellow spot for grid spots that contain both

red- and green-labelled cDNAs, indicating transcripts that are expressed under

both sets of conditions.

In addition to producing a qualitative image that is easy visualize, a microar-

ray experiment yields quantitative data for each spot, consisting of the measured

fluorescence intensity of the red signal, the fluorescence intensity of the green sig-

nal, and the ratio of red signal to green signal. It is in storing and analysing the

quantitative data that bioinformatics really comes into play in microarray tech-

nology. These datasets are incredibly large. For instance, a typical mammalian

cell is estimated to have between 10,000 to 20,000 different species of mRNA

expressed at a given time.

There exists two different types of microarray datasets: static, or steady-state,

and dynamic, or time-series. In static data, an experiment with well-defined

conditions is carried out and the observation of gene expression values is done at

the presumed steady state of the biological system. Static data, then, captures

the effects that the perturbations on initial conditions have ion the final state

of the system. This type of data, however, can miss some dynamic events that

may be critical in the description of the biological phenomenon described by the

GRN.

Dynamic data, in turn, are obtained from time-series experiment, when the

gene expression values, also called samples, are taken at precise intervals, or

time-points, after a perturbation. Dynamic datasets have the advantage that

can capture some fundamental dynamics of the biological system but, on the

other hand, may contain redundant information that could penalize the network

inference process. Furthermore in this type of experiments it is difficult to find

a compromise between the duration of the observation and the interval between

two consecutive measurements, since the number of time-points influences the

performance of the GRN inference methodologies.

42



5.3 Bioinformatics tools

5.3 Bioinformatics tools

Inferring a GRN is an ideal application scenario for our system: looking at the

state-of-the-art, in fact, a wide set of algorithms and methods are used for this

purpose (41, 42, 43). All of these techniques present pros and cons, and dif-

fer each other according to the type of input data (microarray, gene sequences,

protein-protein interactions), the applied algorithm, the desired output, the need

of specific data format, the accuracy level of the inferred model, the computa-

tional time and resources. Moreover the process of modelling a GRN often needs

preprocessing steps, like filtering and clustering, and/or postprocessing steps, like

simulation and visualization.

Among the most used methodologies there are static and Dynamic Bayesian

Networks (44, 45), Factor Graph (46), Boolean Networks (47), correlation meth-

ods (48), Ordinary Differential Equations (ODE) (49, 50).

To be more precise, at the moment Bayesian Network (51), Graphical Gaus-

sian Models (52), and correlation methods using ARACNE (48) and Context

Likelihood of Relatedness (CLR) (53) algorithms, are supported. Moreover, Boris

can also offer support for preprocessing of input data, using algorithms for Gene

Clustering (31, 32), Gene Filtering (35) and Gene Interpolation (33); and for

visualization of networks, using Graphviz software (61) and Cytoscape (62).

5.3.1 Correlation Methods

Generally speaking, correlation methods are based on Information Theory Mod-

els. This kind of approach compares expression profiles from a microarray dataset

computing, for each pair of genes, a pairwise correlation coefficient called Mutual

Information (MI). Given the gene i and the gene j, their mutual information MIij

is computed as:

MIij = Hi +Hj −Hij (5.1)

where H represents the entropy and it is defined as:

Hi = −
n∑

k=1

p(xk) log(p(xk)) (5.2)
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Then gene i and gene j are considered connected by an edge if their MI is higher

than a specific threshold. The higher the threshold, the sparser is the inferred

network. Using an algorithm based on correlation measures, an undirected graph

is inferred because it is found only a possible correlation between two genes,

without any information about the direction of that relationship.

The computation of the MI requires that each experiment in the microar-

ray dataset be statistically independent each other. That means information-

theoretic approaches works both on steady-state gene expression dataset and

with time-series experiments only if the sampling time is long enough to consider

statistically independent one time point from the other ones.

The inferred relationships among genes, representing the edges of the gene

network, computed by means of this type of approach indicate a statistical de-

pendence among gene expression profiles. Information-theoretic models, in fact,

does not represent direct casual interaction between two genes.

Correlation-based methods are best suited to infer large-scale networks be-

cause of their low computational cost and low data requirement. A major draw-

back is that they can not model the dynamics of gene regulation and do not

consider that multiple genes can influence the regulation.

5.3.1.1 ARACNE

Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) is an

information-theoretic algorithm for the reverse engineering of gene regulatory net-

works. It uses a Gaussian kernel estimator (63) for the estimation of the MI (5.1)

and moreover it implements a pruning phase of the inferred network with the aim

of reducing the number of false-positive interactions, i.e. inferred relationships

that do not correspond to actual biological interactions. The pruning is done ac-

cording to the Data Processing Inequality (DPI) principle (64), which states that

if gene i and gene k interacts only through gene j, then MIik ≤ min(Mij,Mjk).

DPI principle represents a necessary but not sufficient condition, that means some

direct interaction could be eliminated during the pruning phase.

The main purpose of ARACNE is, in fact, to infer a subset of all the regulatory

interactions with a high confidence level. It has a low computational cost, it does
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not need any prior assumption about the network to compute and it does not

require the discretization of input gene expression values.

5.3.1.2 CLR

Context Likelihood of Relatedness (CLR) is an unsupervised network inference

method that, given a dataset of gene expression profiles, finds transcriptional

regulatory relationships among genes. CLR is an improvement over the relevance

network algorithm (65), which considers Mutual Information between each pair

of genes in order to estimate the similarity between them according to a certain

threshold. CLR algorithm gives an estimate of the relevance of the MI value

between each pair of input genes by comparing it with a background distribution

of MI values. Given the gene i and the gene j, their background distribution

is computed considering the set of MI values of gene i with all other genes,

MIi, and the set of MI values of gene j with all other genes, MIj. Then the

background MI is approximated as a joint normal distribution assuming MIi and

MIj as independent variables. The key idea at the basis of CLR algorithm is that

the mutual information score of the most probable interacting genes should be

significantly higher than the background distribution of the MI scores.

CLR algorithm is characterized by a low computational cost, since it is based

on an information-theoretic model, and it is suited for the analysis of large-scale

gene expression datasets. Moreover, if a list of known transcription factors is

available, it can provide a directed acyclic graph, limiting the possible interactions

from transcription factors to non-transcription factor genes.

5.3.1.3 Graphical Gaussian Models

Graphical Gaussian Models (GGM) are undirected probabilistic graphical models

that are able to find the conditional independence relations among the nodes of a

network, considering the prior hypothesis of a multivariate Gaussian distribution

of the data. GGM uses partial correlation in order to calculate the conditional

independence between each pair of genes in the network. Given the generic gene

i and gene j, their partial correlation coefficient pij is computed by measuring

the correlation between them after the effects of all the other genes have been
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discarded. The estimation of the covariance matrix of the Gaussian distribution

of the data allows the computation of GGM because partial correlation ρij is

related to covariance matrix C, and its inverse C−1, by the following formula:

ρij =
C−1

ij√
C−1

ii C−1
jj

(5.3)

Partial correlation is able to distinguish direct interactions among genes, that are

the ones of interest for the construction of a regulatory network, from indirect

interactions. In order to infer a GRN using a Graphical Gaussian Model partial

correlation among the elements belonging to the input dataset is computed by

means of Eq. (5.3). Then the distribution of |ρij | is analysed and the edges (i, j)

with a small value of |ρij | are discarded from the graph. So the key element of

this method is the estimation of the covariance matrix and its inverse.

GGM produces undirected graphs, therefore it is able to model network with

feedback loops. In (54) an improvement over GGM has been done in order to

obtain a partially causal network, i.e. a directed graph, in which some edges are

given a direction.

One of the major drawbacks of GGMs is the dealing with high dimensional

data.

5.3.2 Bayesian Networks

Bayesian Networks (BN) are directed graphical models that allow to identify prob-

abilistic relationships among a set of interacting elements, or random variables.

These relationships are represented through a directed acyclic graph (DAG) whose

nodes are the random variables and the edges are the conditional relationships

among them. In this case study, random variables are input gene expression levels

and their regulatory relationships are described by a joint probability distribu-

tion P (X1, . . . , Xn) where Xi is the i-th gene. The joint probability distribution

(JPD) can be decomposed into the product of conditional probabilities if each

variable (gene) Xi is independent from its non-descendants, given its parents in

the graph:
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P (Xi, . . . , Xn) =
n∏

i=1

P (Xi = xi ‖Xj = xj , . . . , Xj+p = xj+p ) (5.4)

The p+ 1 genes, on which the probability is conditioned, are the parents of gene

i in the graph and represent its regulators. Equation (5.4) is obtained using the

Bayes Theorem:

P (A,B) = P (B ‖A) ∗ P (A) = P (A ‖B ) ∗ P (B) (5.5)

from which we can derive the so-called Bayes rule:

P (B ‖A) =
P (A ‖B ) ∗ P (B)

P (A)
. (5.6)

Bayesian Networks reflect the stochastic nature of gene regulation. They are used

to infer a gene network by finding the best DAG, according to a metric, describing

the gene expression dataset. The most common metric, computed using the Bayes

Rule (5.6) are the Bayesian Information Criteria (BIC) and Bayesian Dirichlet

equivalence (BDe). Learning a BN is an iterative procedure consisting of three

main steps: model selection, parameters fitting and network scoring.

During model selection, a candidate DAG is found. Then, given this graph, the

best conditional probabilities of each node is computed thanks to the experimental

data provided. Finally each candidate graph is scored, by means of one of the

above cited metrics, and the model with the highest score is the winner network,

since that means it best fit to the data.

The most expensive computational phase is model selection, because the

brute-force approach, i.e. enumerating all the possible graph configuration, is

a NP-Hard problem. Therefore for this learning phase it is often used an heuris-

tic search method considering techniques such as greedy-hill-climbing, simulating

annealing, etc...

In reverse engineering GRN Bayesian Networks represent a very flexible frame-

work because it is possible to combine many type of input data, like for instance

TF-DNA interaction data, and also, when available, prior knowledge about the

47



5.4 Experimental Dataset

structure of the searched network. Moreover they can use a network template, ob-

tained for example by other inference techniques like information-theoretic meth-

ods (see Section 5.3.1), in order to restrict the space of possible models and to

speed up the entire computation. Moreover, as stated in (43), BNs avoid over-

fitting issues and can deal with incomplete and noisy data.

Classic Bayesian Networks have a very strong limitation in their application to

the inference of gene networks because they can not model networks containing a

feedback loop, that is a direct cycle. In a gene network, a feedback loop represents

a feature that can cause homeostasis. The result of this limitation is that BNs

can not work with input dataset containing time-series experiments. In order to

overcome this drawback, Dynamic Bayesian Networks (51) have been introduced.

5.3.2.1 Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBN) are an extension of traditional (static) Bayesian

Networks that can deal with time-series input data. Here gene-expression values

are modelled by means of random variables Xi[t] representing the gene expres-

sion level of gene i at time t. DBNs are used under the assumption that the

modelled process is stationary, i.e. the relationships between two nodes in the

graph do not change over time. DBNs can be specified by a directed acyclic

graph (DAG) where its vertices belongs to two separate sets of random variables:

X1[t], X2[t], . . . , Xn[t] and X1[t + 1], X2[t + 1], . . . , Xn[t + 1]. Moreover there are

only directed edges from the nodes of the first set to the nodes belonging to the

second one. One last consideration is that if we represents the genes as nodes

independent of time, we obtain a direct cyclic graph that is not allowed using

static BNs.

5.4 Experimental Dataset

The dataset used in this system demonstration is extracted from the genome of

Saccharomyces cerevisiae (yeast) (66) and consists of 3000 genes. This dataset

is obtained from a dynamic (time-series) experiment, it has 17 samples (time-

points) and it contains some missing values. Saccharomyces cerevisiae is one of
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the most studied organism in the field of system biology and gene networks issues.

This dataset has been chosen because it has some interesting features, such as

the presence of missing values, the high number of input genes and the relatively

low number of time-points, that can exploit several important characteristics and

suggestions of the proposed system.

5.5 System Running

In this Section, a typical experimental session with BORIS will be shown. The

aim of the experiment is to infer a gene regulatory network from the input dataset

of gene expression values described in the previous Section. Boris system will give

decision support in the choice of the proper strategies and tools and will help the

User both in the configuration and running of selected instruments. Moreover,

during the description of the experiment, it will be shown the status of the system

according to the the 3-axes architecture presented in Section 2.3.1.

Figure 5.4: Available bioinformatics problems supported by BORIS system.

When the User starts a new session, he can choose the type of the experiment

from a list, organized as a tree, of the supported scenarios (Fig. 5.4). This

list of supported bionformatics problems is obtained through the Task ontology

presented in Section 3.2. Once selected a problem, the User he will be asked

to insert an input file, depending on the type of the experiment, so that the

system can begin its work. Here he choose “Gene Expression Modeling” as for
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the bioinformatics problem and insert the input dataset presented in Section 5.4

in csv format. Selected User Profile is Quick Analysis.

After selecting the problem and inserting input dataset, decision-making activity

starts. In Fig. 5.5 we can see what are the decision-making modules responsible

for the current experiment:

Figure 5.5: Decision-Making modules responsible for the reasoning activity re-

lated to the reverse engineering GRN scenario.

• GRN Modeling : the supervisor module that manages all the session and

that can activate children modules in order to deal with more specific tasks;

• GRN Preprocessing : the module responsible for the reasoning part with

regard to the preprocessing phase of input data

• Gene Expression: the module in charge of the decision-making activity

regarding the inference of the gene network.

At the beginning of the experiment, GRN Modeling module is active (the blue

filled circle): the job of this module is to analyse input dataset in order to extract

all the meaningful information that can be used to trigger the rules.
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In Fig. 5.6 it is shown what is the current status in the 3-axes reference

system: there we can see what are the values of abstraction, decision-making

level and workflow timeline. Abstraction axis, characterized by discrete values,

has an high value because at the beginning of the experiment the user’s request

represents the final goal and then it is seen as a complex problem at the top

abstraction level. An increment of the value in the decision-making axis means a

new decision-making module has been activated. Finally, in the workflow timeline

axis, we will see a progression according to the generation of the workflow: the

workflow is built every time a tool or service is actually run.

Figure 5.6: The initial state of the system with regard to the 3-dimensional

system reference space defined in Section 2.3.1

According to the attributes of Microarray template described in Section 3.2,

the number of genes, the number of samples (or time-points), the name of the

species, if available, and the type of experiment (steady-state or time-series) are

extracted. The latter property is expressly asked to the user, because the system

can not infer it by itself.

As stated in Section 5.4, input file has some missing values: that property

triggers a rule, whose action is shift the focus to the GRN Preprocessing module:
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it will be responsible to suggest to the user a possible strategy to deal with this

issue (Fig. 5.7).

Figure 5.7: Available techniques for dealing with missing values.

The supported strategies are:

• Missing Filtering: the genes with a certain percentage of missing values are

pruned;

• WK NN interpolation: missing values are interpolated using Weighted K-

Nearest Neighbour algorithm (68);

• K NN interpolation: missing values are interpolated using K-Nearest Neigh-

bour algorithm (67);

• Linear interpolation: missing values are interpolated by means of linear

interpolation (33).

At this point, if we look at the 3-axes reference system, the abstraction axis

has a low value because the proposed strategies are immediately executable rep-

resenting the lowest level of abstraction. (Fig. 5.8), while the decision-making

axis has incremented because a new module has been activated.

The User selects Missing Filtering with a threshold of 25%: the resulting

dataset has now 2951 genes, and the first part of the workflow is built (Fig. 5.9).
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Figure 5.8: State of the system in the 3-axes reference space (left) and corre-

sponding activation status of decision-making modules (right) during preprocessing

operations.

Figure 5.9: Workflow of the current experiment after the first algorithm (Thresh-

old filtering) has been run. It is possible to notice the decision-making modules on

the background, the strategy name at middle abstraction layer and the main goal

at the top abstraction layer.
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Once again input dataset has still missing values (the threshold was not

enough), this way the system suggests to the user to continue with preprocessing

and, after the affirmative selection of the User, it presents the possible prepro-

cessing strategies, suggesting the Missing Values strategy. This time, among the

available tools, Linear Interpolation is the suggested one because it satisfies the

requirement on User’s Profile (Quick Analysis) since it is the less expensive algo-

rithm. After the linear interpolation has been done, then the workflow is updated

(Fig. 5.10).

Figure 5.10: Workflow of the current experiment after Linear interpolation.

Input dataset has no more missing values, but the system keeps on suggesting

the preprocessing phase because of the activation of the rule that proposes to

do preprocessing if input dataset has many genes (more than 1000). Once again

the system presents the supported preprocessing operations, and the suggested

strategy is Gene clustering, because with dataset with many genes (almost 3000)

and few sample (17) is the most recommended technique. The remaining strategy,

Gene Filtering, offers support in the selection of only a subset of input genes. The

available gene filtering algorithms in the system are:
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• Threshold filtering: input gene with an expression value lower than a user

defined threshold are not considered;

• Genecycle: an algorithm that is able to identify periodically expressed

genes, supposed to hold meaningful information content, in a time-series

gene-expression dataset (55);

• Robust Genecycle: an enhanced version of simple Genecycle algorithms,

characterized by more accurate results but higher computational time (56,

57).

Figure 5.11: Supported clustering tools. K-means, in red, is the suggested one.

The supported clustering algorithms are (Fig. 5.11):

• K-Means: one of the simplest clustering algorithm, it puts together input

elements into clusters, maximizing intra cluster similarity and inter clusters

diversity (58);

• Self Organizing Map (SOM): an unsupervised clustering algorithm allow-

ing multidimensional elements to be projected into a (typically) 2D space,

providing this way both visualization and clustering information (59);
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• fuzzy c Mean: similar to K-Means algorithm, but it produces soft clusters,

i.e. each element is given a score measuring its membership level to each

cluster (60).

K-Means, that is the fastest algorithm among the other ones, is the suggested

algorithm according to the User’s Profile (Quick Analysis). The system then asks

the user what is the final number of clusters: K-Means in fact requires the number

of output clusters as an input parameter.

In this case, the system will assist the User in the proper configuration of

the algorithm emphasizing the effect of the desired number of clusters: the more

the number of clusters, the finer the classification of patterns, but if too many

clusters are chosen, the resulting clustering can miss important correlation among

elements. In this scenario, 200 clusters are selected, K-Means is run and the

workflow is updated (Fig. 5.12).

Figure 5.12: Workflow of the current experiment after K-Means has been run.

The active decision-making module is GRN Preprocessing as well.

After the Gene clustering procedure, preprocessing is no longer needed be-

cause there are not missing values and the number of input genes is not very

high, so the system suggests to continue with the rest of the experiment. Since

GRN Preprocessing module has finished its job, it gives back the focus to its
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Figure 5.13: State of the system in the 3-axes reference space (left) and corre-

sponding activation status of decision-making modules (right) at the beginning of

actual GRN inference phase.

parent module, the GRN Modeling module. It is aware, by consulting its KB, the

GRN Preprocessing has ended, so it can activate the Gene Expression module,

containing the needed skill in order to infer a GRN.

At the beginning of this phase, the status in the 3-axes reference system can

be seen in Fig. 5.13: the abstraction axis has a medium value because the system

is reasoning about a sub-problem of the main problem; the timeline axis tracked

the building of the workflow so far; in the decision-making axis there is an other

incremental step corresponding to the activation of Gene expression module.

The system shows what are the possible strategies to infer a gene network:

the suggested ones are the correlation based methods, consisting of the use of

Graphical Gaussian Models (GGM) and CLR algorithm (Fig. 5.14). Here it is

important to point out that both techniques are recommended at the same time

for different motivations: that means the two rules that trigger the suggestion

of these algorithms are both fired by the Reasoner. If two or more rules, whose

effect is to suggest a strategy or a tool, are activated at the same time, they, in

fact, do not represent mutually exclusive options.

GGMs are suited for the analysis of datasets with with a number of genes

greater than the number of samples, more than ten times in the specific case

study; CLR is recommended for the quick analysis of large-scale input dataset,

where with large-scale dataset can be considered dataset with more than 150
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Figure 5.14: Supported tools implementing Correlation methods. Both algo-

rithms are suggested, for different motivations.

elements. In this situation the User decides to run one of the two algorithms,

remembering that the backtracking features of the system allows him to reconsider

his choice in order to select another possible alternative and, in case, to compare

the two different results. Here the User decides to run CLR algorithm, then

the workflow is updated (Fig. 5.15) and a first gene network is generated. This

network can be saved and/or visualized.

After that, the systems invites the User to continue with the experiment

because the inferred network, obtained with a fast but poor accurate algorithm

(CLR), can be considered as a template input network in order to find a better one

using a Dynamic Bayesian Network (DBN). If the User agrees with the system,

input dataset is first “discretized” since DBN works with discrete values, once

again the workflow is updated (Fig. 5.16). The final network is then obtained:

in Fig.5.17 a visualization of the inferred GRN obtained through Cytoscape is

shown. The nodes without any connections with other nodes are not plotted.

At the end of the experiment, the User can save the workflow, start a new

session or exit the program.
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Figure 5.15: Workflow of the current experiment after CLR algorithm has been

run. The active decision-making module is Gene Expression.
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Figure 5.16: Final workflow of the current experiment. It can be eventually saved

for sharing or reusing it. 5
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Figure 5.17: GRN inferred from the input dataset. This visualization is obtained

by means of Cytoscape software, supported by BORIS system.
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Materials & methods

In this Chapter the instruments and tools adopted for the development of the

proposed system will be described.

Main features and characteristics of a Rule-Based system will be provided

and the specific properties of Jess, the rule Engine for the Java platform, will be

exploited.

Finally some of the basic concepts of Protege, the tool used for the design of

the ontology, will be highlighted.

6.1 Rule-Based System

A Rule-Based system is an intelligent system that is able to make conclusions,

or inferences, from a set of initial knowledge, called facts, by means of rules,

representing reasoning activity. Rules are usually written in the traditional if-

then statement of programming languages: the if part is called predicate or

premises; the then part is called action or conclusion.

Rule-Based systems are not general purpose: they are designed and employed

for a specific application domain. A domain represents the system’s scope, that

is all the set of information the rules could possibly work with.

Rule-Based systems are also known as Expert system, since they capture the

knowledge of human experts in a particular domain. With this definition, the

rules are intended to code the expertise, the skill and the heuristics typical of

human experts.
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6.1 Rule-Based System

The main difference between rule-based systems and common computer pro-

grams is their programming paradigm. Computer programs use a procedural

approach, in the sense the programmer decide “what to do”, “how to do” and in

what order. Rule-based systems, on the other hand, use a declarative approach:

a declarative program only tells the computer “what to do”, but it does not give

instructions about “how to do”. That means declarative programs need some

kind of runtime system that is able to use those declarative information in order

to make conclusions, or inferences.

A declarative approach is well suited above all for solving problems without a

clear algorithm solution, like for instance classification, prediction, diagnosis that

have some heuristics or guidelines rather than a predefined set of instructions.

6.1.1 Architecture of a Rule-Based System

Main components of a typical Rule-based system are the Knowledge-Base (KB)

and the inference engine.

KB contains both the pieces of information, called facts, and the rules. Facts

can be seen as tables in a relational database, where each element has a set of

attributes and relationships with other elements of the database. Each rule is

in the form IF precondition on facts is true THEN execute action and it is

activated when some constraints on the values of facts’ attributes are satisfied.

The set of all facts is also known as working memory.

The inference engine is made of three elements:

• a pattern matcher;

• an agenda;

• an execution engine.

The pattern matcher in an algorithm that is able to check the KB and realize

what are the rules that can be activated according to the content of working

memory. The pattern matching phase is the most expensive in terms of time and

resources during the inference mechanism, for this reason a lot of research has
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been done in this context in order to optimize this issue. It is important to point

out that activated rules are not immediately executed, or “fired”.

All activated rules, in fact, are written into the agenda, that is responsible

for the scheduling of the rules to be fired. The agenda can resolve execution

conflicts, that means it can decide in which order rules activated at the same

time should be fired, using a conflict strategy. Common strategies take into

account the complexity of each rule, its age, that is how much time it is stored

into the agenda, and eventually some special properties like for instance priority

values.

Finally the execution engine, after the agenda has decided the order in which

rules have to be fired, can actually execute the right part of the rules. Firing a

rule can have several effects: it can produce new knowledge, in the sense of new

facts to be added to the KB; it can invoke other programming languages that

define what happen when that rule fires; it can call external algorithm and tools

whose results can, at last, update the KB.

The whole mechanism of the inference engine is not static, but it works as

a cycle, or reasoning loop, as we can see in Fig. 6.1. The pattern matcher

checks the KB for activated rules and stores them into the agenda; the agenda,

through a conflict resolution strategy, decides the firing scheduling of the rules;

the execution engine runs the right part of rules according to the order provided

by the agenda, obtaining eventually new information that updates KB and that

can trigger the activation of other rules; and then this mechanism can restart.

New facts can be added to the KB also by the user, if he submit new inputs.

6.2 Jess: the Rule Engine for the Java Platform

The Rule-Based system of Boris has been implemented using Jess (71), the Rule

Engine for the Java Platform. Jess is written totally in Java and it can be easily

embedded in our framework. Jess inference engine uses RETE algorithm (72) as

pattern matcher: this algorithm will be briefly described in the next Subsection.

The agenda works with two different conflict resolution strategies: depth and

breadth. With depth strategy, the default one, the most recent activated rules

are fired first; with breadth strategy, rules are fired according to their activation
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6.2 Jess: the Rule Engine for the Java Platform

Figure 6.1: Reasoning Loop

order: this way the most activated rules fire last. In both strategies firing order

can be modified changing rules priority.

Jess’ working memory can be organized into modules: each module has its

own set of facts and rules. Only one module a time can be active, or in other

words can have the “focus”, and only the rules belonging to the active module

can be fired. By default the MAIN module has got the focus; the other modules

can receive the focus when special rules, whose action is to shift the focus, are

fired. The entire mechanism is managed by a stack, with the active module on

the top and the other modules below, according to the order of the shift of focus.

This way, when a module ends its job, the focus is automatically returned to last

active module.

6.2.1 Rete algorithm

As stated in the above Sections, the main task of the pattern matcher component

of an inference engine is to check the KB in order to find what rules are satisfied

and activated so that they can be fired according to the scheduling of the agenda.

A brute force approach, consisting in the analysis of every rules’ premise against
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the KB would be inefficient and difficult to scale for large working memories.

The Rete algorithm represents an efficient way to deal with the pattern match-

ing issue. Over time, it has been enhanced and refined in past rule based system

such as OPS5 (73), ART (74) and CLIPS (75): Jess implements the highest per-

formance version. Rete algorithm improves simple pattern matching approach

considering only new or deleted facts of working memory to be tested against

the rules at each reasoning step. Moreover it stores past test results across itera-

tions of the rule loop. Rete, that is the Latin word for net, organizes the pattern

matcher by means of a network of interconnected nodes, so that the few facts

interested in the inference mechanism are tested against a subset of rules could

eventually match.

The performance of Rete algorithm with regards to the simple pattern matcher

algorithm depends on the number of reasoning cycles. During the first reasoning

loop, in fact, since Rete has to analyse all the facts of the working memory

because there are not previous results to compare, the performance between the

two algorithms are basically the same. Rete will, instead, outperform the basic

algorithm for all the reasoning cycles after the first one.

6.3 Protege Ontology Editor

The knowledge base and the underlying ontology have been implemented with

Protege (69, 70), that is one of the largest adopted tool for building an ontology

and populate it with pieces of information that represent the knowledge of the

system. Protege, through a clear and simple graphical user interface allows to

define classes, to define their properties and relationships, to build hierarchies of

concepts, to create instances. Moreover Protege is supported by a set of third

parties plugins that extend its functionalities, adding for example visualization

capabilities, using Jambalaya (76) or Ontoviz plugins (77), or a simple way to

export instances into Jess facts by means of JessTab plugin (78). Protege is based

on a Java implementation, so that it provides a set of Java APIs in order to ease

its own interoperability with other systems.
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6.4 Implementation Details

The computational instruments described in the previous Sections and adopted to

implement the Knowledge-Based expert system belonging to BORIS framework,

interact each other according to the scheme shown in Fig. 6.2. The main control

program of the expert system, also implementing the GUI seen in Chapter 4, is

written in Java. In this way it is possible to gain access both to protege editor,

in order to get the initial knowledge, and both to Jess inference engine, in order

to eventually assert new facts depending on the User’s interaction. Protege and

Jess, being both written in Java, provide a set of interface classes that simplify

the communication with other Java programs. Jess accesses the knowledge base

defined into Protege and, through JessTab plugin, assert the facts into its own

working memory to allow the beginning of the inference process.

Figure 6.2: The interaction scheme among the computational tools adopted by

the expert system belonging to BORIS framework-
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Conclusions and Future Work

In this thesis, a Knowledge-Based expert system for bioinformatics domain has

been presented. The Knowledge Base, populated thanks to the expertise ex-

tracted from more than 50 scientific papers, is based on an ontology of concepts.

The proposed ontology provides a robust and coherent structure to the knowl-

edge base and moreover it offers a simple way for maintaining and expanding

it with new expertise. The designed ontology models three main global classes,

interacting each other. The Tasks ontology represents what are the operations

it is possible to carry on a specific kind of input biological data; the Tools on-

tology models the algorithms, software and services implementing the instances

defined in the Tasks ontology; the Domain ontology gives the most important

features and properties of the biological data to be analysed. Moreover the KB,

consisting of facts and rules, is organized in a set of decision-making modules,

each of them is responsible for a specific slide of the reasoning activity. The

decision-making modules are arranged into a topological tree, where each level in

the tree defines a meta-reasoning level, since the inference result of a high level

decision-making module is the activation of a lower level module, representing a

specialized reasoning task.

The expert system and all the PhD work has been developed inside a research

project of National Research Council of Italy. The name of this project is BORIS

(Bioinformatics Organized Resources: an Intelligent System). BORIS is born

with the main goal of providing to the bioinformatics community a simple and
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at the same time powerful instruments that is able to offer decision support dur-

ing the execution of a bioinformatics experiment. Given the plenty of services,

strategies, tools and algorithms available, it is often very difficult to discern what

are the best suited methodologies and techniques for a given problem. BORIS

proposes an hybrid architecture, integrating a declarative approach, with regards

to its decision-making activity; a procedural approach, with regard to its capa-

bility to run and configure the selected tools; and a process approach because it

generates a workflow that traces all the taken decision and executed tools during

a typical session. Focusing on these two main features, i.e. the decision-making

process and the workflow building, BORIS system can be seen is an ideal joint

between classical decision support system and more recent workflow management

system.

BORIS system has been tested with an actual case study: the reverse engi-

neering of gene regulatory network. In this thesis a typical experimental session

is shown, highlighting the original features of the system and how the three dif-

ferent approaches of its hybrid architecture work together.

In the near future, the whole BORIS framework will be turned into a web

application so that it will be freely accessible by the community.

Looking at the future developing progress, the proposed expert system will

be provided with an editor and formal guidelines that will offer the possibility to

introduce new knowledge and expertise in a very simple way. New application

scenario in bionformatics domain will be added, and at the same time the existing

scenarios will be updated and enhanced when new tools and services will be

available.

The ontology organization into the three-folded main classes (Tasks, Tools,

Domain) provides a very general purpose knowledge arrangement. That means

that the expert system can be adapted with few modifications to other application

domain, like for instance the clinical field. The system, in fact, can be used

in order to combine the characteristics of an electronic clinical workflow with

an Electronic Medical Record (EMR). The former represents a decision support

system that can assist a medic in the diagnosis and prognosis activities. Its

suggestion can be given according to the patient’s EMR, so that its previous
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medical history will be taken into account. The EMR will be then updated with

the current medical cures.
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