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1  INTRODUCTION 
 
From the geochemical point of view the fluids released from volcanic systems represent the only 

surface manifestation of magma degassing at depth. Volatiles are dissolved in magma at well 

established thermodynamic conditions (P, T and fO2), and any variation in the starting conditions at 

depth determine a new state of equilibrium. Usually, a decrease in total pressure caused by the 

fracturing of the rock around the conduit and/or the rise of a magma batch triggers the exsolution of 

dissolved volatiles that easily reach the surface, thus providing information on the physico-chemical 

conditions of the volcanic system.( Inguaggiato et al.2011) 

In particular, “intensive” parameters such as the chemical composition of the discharged gases and 

their relative proportions (ratios) give useful information on Pressure, temperature and oxygen 

fugacity (P, T and fO2) conditions (Gerlach and Nordlie 1975; Giggenbach 1980, 1996; Gerlach 

1993; Giammanco et al. 1998; Taran et al. 1998; Paonita et al. 2002). Isotopic compositions (such 

as He, C, Ar, N, H, O) mainly indicate the origin of the gases and give an indication of the physico-

chemical processes that took place during exsolution and migration towards the surface (Allard 

1983; Taran et al. 1986; Capasso et al. 1997; Nuccio and Paonita 2001; Inguaggiato et al. 2000, 

2004). Moreover, the measure of the plume’s compositional ratios such as F/Cl, S/Cl, C/S 

(Oppenheimer et al. 1998; Aiuppa and Federico 2004; Aiuppa et al. 2004; Allard et al. 2005) gives 

information about the depth of the exsolution of volatiles. In detail, C/S ratio measurements were 

performed by Aiuppa et al. (2009) during the 2007 Stromboli eruption with the aim of identifying 

the depth of the source of the degassing system. 

Over the last few years, numerous studies have focused on the volcanic system using an “extensive” 

approach to quantify the “masses” involved in the degassing processes occurring both during 

quiescent and active states of degassing (Allard et al. 1994; Italiano et al. 1997; Aiuppa et al. 2005; 

Allard et al. 2005). Quantification of extensive parameters in volcanic systems results in estimates 

regarding the volume of magma involved in volcanic degassing. By coupling intensive parameters 

with extensive parameters, monitored simultaneously over a period of time, it is possible to obtain a 

more complete description of the state of the volcanic activity, making it possible to better evaluate 

the nature (i.e. explosive or effusive) and timing of eruptions. 

Generally, CO2 represents the main constituent of dry fumarolic gases emitted from the summit of a 

volcano through plume and/or crater fumarolic areas (Chiodini et al. 2005; Inguaggiato et al. 2005). 

CO2 flux measurements has been successfully applied to volatile budget studies (Chiodini et al. 

1996; Favara et al. 2001; Cardellini et al. 2003; Chiodini et al. 2005; Pecoraino et al. 2005), and to 

programs of geochemical monitoring of fluids, the aims of which are to forecast changes in volcanic 

activity (Brusca et al. 2004; Carapezza et al. 2004). 
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SO2 is the main sulphur species in high-temperature fumarolic gases (Aiuppa et al. 2005), SO2 

emission flux has been used to calculate the volume of magma batches in volcanic systems applied 

to volcanic surveillance activities (Bruno et al. 1999; Edmonds et al. 2003). Over the past few years 

many investigations have been carried out on SO2 flux measurements of plumes (Bruno et al. 1999; 

Edmonds et al. 2001). Technological advancements in the SO2 flux measurements have recently 

been made, which have simplified monitoring this parameter in the plume (Galle et al. 2003). 

Moreover, considering that SO2 is absent in clean atmospheres, it is simple to measure the plume 

compared to the ambient background. By contrast, it is more difficult to measure CO2 in the plume 

because CO2 is present in the clean atmosphere, 388 ppm by volume (Annual Mean Growth Rate 

for Mauna Loa, Hawaii, http://www.esrl.noaa.gov/gmd/ccgg/trends/#mlo_growth. Retrieved 28 

April 2010) and the telemetric measurement of this parameter is only possible over short distances 

in the atmosphere, where the plume occupies a large percentage of the path. In fact, for long-path 

CO2 measurements, the contrast between plume and atmosphere is not well defined, and the amount 

measured in the atmospheric layers can be comparable to or greater than the amount of CO2 in the 

plume.  

For this reason, we have focused the development of this thesis on the measurements in the active 

volcanic areas of CO2 flux emitted from the soils and of the SO2 flux measured in the plume.  

 

In particular during the realization of this thesis-work we investigate the fluids discharged from 

active volcanoes located in the Aeolian Archipelago (Vulcano and Stromboli) of Sicily island. 

These studied volcanic systems, Vulcano and Stromboli, are characterized by closed and open 

conduct systems respectively.  

International joint projects are utilized to improve the quality of the investigation and to compare 

the relative high scientific technology reached in the different European countries.  

The investigation on Vulcano Island was carried out inside of the NOVAC project (Network for 

Observation of Volcanic and Atmospheric Change) while for Stromboli Island the research 

investigation was performed inside a joint project with Heidelberg University. 
Finally we utilize part of this PhD-work to the realization of a active DOAS equipment, to 

investigate SO2 and trace molecular species inside of the volcanic plume. 

 
1.2 Aeolian Islands 
The Aeolian Islands represent the emerged portions of an extended submarine volcanic arc. This 

archipelago is related to the subduction of the African plate underneath the European Plate [Keller, 

1980; Ellam et al., 1989] 
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Volcanic activity of the archipelago started at the westernmost part and then move towards East and 

South, defining three different sectors showing different evolutions, structural and volcanological 

features (De Astis et al., 2003).  

(1) a western sector(Alicudi and Filicudi islands) dominated by NW–SE oriented tectonic 

lineaments;  

(2) a central sector (Salina, Lipari and Vulcano islands)aligned along the NNW–SSE tectonic trend; 

(3) an eastern sector (Panarea and Stromboli islands) characterized by prevailing NE–SW oriented 

SE to NNW–SSE-trending faults (Ventura, 1994).  

Salina, Lipari, and Vulcano are three islands aligned along a NNW–SSE trend, distinct with respect 

to the arc layout. The development of these islands is strongly influenced by an active crustal 

discontinuity related to the Tindari–Letojanni dextral strike-slip fault system formed in the 

continuation of the Malta escarpment (Barberi et al., 1994; Ventura, 1994; Ghisetti, 1979) 

Since 1983, more than 800 earthquakes (M > 2.5) have occurred in the southern portion of the 

Aeolian archipelago. Most seismicity occurred inside the Gulf of Patti area, showing a mix of 

dextral strike-slip and extensional fault-plane solutions, in agreement with the tectonic pattern of the 

northern shore of Sicily at this longitude (Billi et al., 2006). The remaining seismicity is clustered 

around the Salina, Lipari and Vulcano islands, in particular on their western side, showing reverse 

focal mechanisms with NNW–SSE and NW–SE compressive axes. 

 
 
 
2 STROMBOLI  ISLAND 
 
2.1 Previous studies  

Stromboli, the northernmost island of the Aeolian Arc (Tyrrhenian Sea; fig. 1), is characterized by 

open conduit degassing and by a persistent, albeit, mildly explosive activity (e.g. “Strombolian 

activity”, Rosi et al. 2000). Intermittent explosions, which usually occur at intervals of 10-20 

minutes, throw up melted scoriae, ash and solid blocks to heights of up to a few hundred meters.  

This “normal” activity is episodically interrupted by more violent explosions, called “major 

explosions” or, if larger, “paroxysms” (Barberi et al. 1993), and by effusive events like the ones of 

the 2002-2003 and 2007 crises. The main difference between normal Strombolian activity and 

“major or paroxysm” events has been explained in terms of the petrology of the products and 

energy involved. In fact, normal Strombolian activity is characterized by high porphyritic products 

while “major or paroxysm” events are characterized by the presence of highly vesicular, crystal 

poor, light-coloured pumice (called golden pumice) (Bertagnini et al. 2008 and insight references).  
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Fig. 1 - Stromboli volcano is the northernmost island of Aeolian Islands archipelago 
 
Moreover, these last events are characterized by higher energy than that of the normal Strombolian 

activity and by a deeper (i.e. several kilometres) feeding source (Bertagnini et al. 2008 and 

references therein). Major explosions occur on average two or three times a year (Barberi et al. 

1993; Bertagnini et al. 2003). Paroxysms are Stromboli’s most powerful explosive events and occur 

every 5-15 years; they last from a few hours to several days and produce a fallout of bombs and 

blocks, ash showers and glowing avalanches, such as those of the 1930, 1944, 2003 and 2007 

events (Barberi et al. 1993; Calvari et al. 2005). Paroxysms often affect the inhabited areas of the 

island (i.e. the villages of Stromboli and Ginostra).  

Stromboli’s hydrothermal system has a marine-dominated aquifer located in the NE part of the 

island; this was recognized through wells drilled for thermal water (up to 40°C) that contains 

dissolved magmatic-derived fluids (mainly CO2 and 3He) (Inguaggiato and Rizzo 2004; Capasso et 

al. 2005, Grassa et al. 2008). 

Zones of structural weakness (faults, fractures, etc.) on active volcanoes have proved to be the most 

representative sites for monitoring soil diffuse CO2 flux (Finizola et al. 2002; Werner and Cardellini 

2006; Mazot et al. 2010). On Stromboli, the most extensive and intense soil degassing areas, which 

Eolian Islands
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are sometimes associated with thermal anomalies, are located at the summit area (Pizzo Sopra la 

Fossa) and on structural zones (Carapezza and Federico 2000; Finizola et al. 2003; Brusca et al. 

2004). 

Plume degassing is the main way in which an open-conduit volcano such as Stromboli discharges 

fluids; this is another good site for investigating the compositional ratios and the relative fluxes of 

the fluids emitted (Aiuppa and Federico 2004, Allard et al. 2005; Burton et al 2007a; Allard et al. 

2008).  

On 27 February, 2007 the “normal” Strombolian activity was interrupted by a new effusive phase 

that lasted several weeks, finishing on 2 April of that year (Rizzo et al. 2009). During this effusive 

period a paroxysmal event occurred on 15 March with ejection of pyroclastic materials that ejected 

reached the village of Stromboli. This eruption was the first paroxysm to occur since the 5 April 

2003 event.  

 

2.2 Dynamic volatiles equilibrium model 

Stromboli is an open conduit volcano characterized by “Strombolian” activity, which over the past 

few years has been interrupted by two effusive eruptions. We have been able to refine our previous 

models by using the experience gained over the last ten years through geochemical and 

volcanological observations at Stromboli. 

The “normal” Strombolian activity is the result of a “delicate” dynamic equilibrium between 

continuous refilling of deep volatiles exsolved from the magma batch and superficial degassing 

(Allard et al. 2008, Grassa et al. 2008, Inguaggiato et al. 2011). When the volatiles reach the surface 

they interact with the superficial fluids, thereby modifying the peripheral and summit degassing 

processes. In particular, the main peripheral manifestations are represented by volatiles dissolved in 

the basal hydrothermal aquifer, and by structurally controlled soil degassing in the lower parts of 

the volcanic edifice (Capasso et al. 2005; Federico et al. 2008). Summit degassing is both active 

(i.e. explosions from the conduit) and passive (i.e. plume from the conduit and diffuse soil 

degassing). During “normal” Strombolian activity this dynamic equilibrium allows the volatiles, 

rising from deep down, to discharge into the atmosphere (fig. 2a). When the deep volatile flux 

increases, the system initially reacts with an increase in the diffuse volatile discharge from the 

superficial system. Indeed, the result is an increase in the Strombolian activity (i.e. increase in the 

frequency and energy of the explosions due to the increase in the total volatiles pressure) and/or an 

increase in the total dissolved volatiles in the hydrothermal aquifer and in the anomalous soil flux 

(fig. 2b). 
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Fig. 2 - Sketch map of the “dynamic equilibrium” between deep and shallow fluids. a) “normal” Strombolian 

activity; b) “High” volcanic activity; c) “Paroxystic” volcanic activity. 

 

During overpressure of the plumbing system, paroxystic activity is necessary to maintain the 

dynamic pressure equilibrium, which allows the dynamic equilibrium between the deep and 

superficial volatiles to be maintained. Indeed, due to the opening of new fractures and ensuing lava 

flow, or because of major explosions and paroxysms, there is a decrease in the total pressure of the  

volatiles that thus restores the dynamic equilibrium of the Stromboli plumbing system (fig. 2c). 
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2.3 Data acquisition and field measurement procedures 

2.3.1 Continuous CO2 flux measurements 

Since 2000, the continuous monitoring of CO2 flux emitted from the soil at Pizzo Sopra la Fossa 

(STR02) has been carried out on hourly basis (Brusca et al. 2004; Madonia et al. 2009) by means of 

an accumulation chamber (Fig. 3) (West Systems LTD, Chiodini et al. 1998). Data are transmitted 

to the COA Civil Protection volcano observatory at Stromboli via a radio link (STR02), whereby 

they are sent to the INGV-Palermo geochemical monitoring centre through a virtual private network 

link (VPN).  

 
Fig. 3 - Location Map: a) monitoring CO2 station (STR02), accumulation chamber (West Systems LTD);  

b) photo of the 2007 effusive eruption: the lava flow reached the sea; c) inset of Stromboli Island map with 

STR02 location; 

 

Carbon dioxide is measured with a Dräger Polytron IR spectrometer, which operates in the range of 

0-9999 ppm  (precision of ±5 ppm); environmental parameters (wind direction and speed, soil and 

atmosphere temperatures, atmospheric pressure, soil and atmospheric relative humidity) are 

acquired at the same time (Brusca et al. 2004).  
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The daily average of the CO2 flux (2005-2008 period) is reported in Fig. 5a, while the Natural 

Daily Variation (NDV, see caption of figure 5b for explanation) in the CO2 flux (for the same 

period), expressed as normalized standard deviation is reported in fig. 5b. 

 
2.3.2 SO2 flux measurements 
 
Initially SO2 flux measurements were carried out on the plume using Mini-DOAS instruments 

consisting of a USB2000 ultra-violet spectrometer (spectral range 245-400 nm, resolution about 0.7 

nm, manufactured by Ocean Optics Inc.) and a vertically pointing telescope of 7 mrad field of view 

with a circular-to-linear converter 4x200 µm fibre bundle which connects the telescope to the fibre. 

A USB cable connects the spectrometer to a laptop computer providing power and means of data 

transfer. Software control of the USB2000 was achieved using J-scripts executed in DOASIS 

software (https://doasis.iup.uni-heidelberg.de/bugtracker/projects/doasis/), to save and analyse 

spectra, providing real time concentration readings. Geographic coordinates for each spectrum were 

obtained using a hand held GPS receiver. Details of the DOAS routine used and the flux 

calculations can be found in Galle et al. (2003). 

Considering the morphology of Stromboli, and on the basis of the dominant wind direction, the 

monthly measurements were carried out by performing several traverses of measurement a day (i.e. 

usually about five) from a boat moving beneath the plume. The used plume speed was assumed to 

be equally with the wind speed in a height of about 950m measured by a whether station located in 

the summit area at “Pizzo sopra la Fossa”. To improve the frequency of data acquisition, in the 

beginning of March 2007 first two NOVAC mark II instruments (Kern 2009) were installed on the 

island, in agreement with University of Heidelberg for Long-time measurement (see below 2.5) 

  

2.4 Long-time variations 

2.4.1 Soil CO2 flux at Pizzo Sopra la Fossa 

We analyzed the complete soil CO2 flux data from station STR02 during the period 2005-2008, in 

order to improve our knowledge of the behaviour of summit soil CO2 flux and to relate variations to 

the different degassing regimes and eruptive states of Stromboli volcano.  

We processed the CO2 flux data through a cumulated probability graph (Sinclair 1974). In this 

graph (Fig. 4a), the log CO2 flux is plotted against the cumulated probability for the entire data set 

of CO2 flux at Pizzo sopra La Fossa (2005-2008). On the basis of the thresholds identified, we 

divided our data into 3 different families (L, M, and H). Their range is respectively between 2000-

4000; 4000-10000; 10000-80000 g m-2 d-1. Group M (i.e. medium CO2 flux) includes about 85% of 
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the total acquired data, where the CO2 flux ranges from 4000 to 10000 g m-2 d-1. Group L (i.e. low 

CO2 flux) includes about 12% of the total acquired data and it is to be referred to a low degassing 

regime between 2000 and 4000 g m-2 d-1. Group H (i.e. high CO2 flux) includes little more than 2% 

of the CO2 flux data, having the highest values that range between 10000 and 80000 g m-2 d-1.  

 

Fig. 4a) - STR02 Log CO2 flux vs cumulated probability – period 2005-2008; The distribution of the plotted 

data has allowed us to divide it into three families: Low, Medium and High. 

 

The histogram of the totality of the acquired data (Fig 4b) it’s consistent with a unimodal 

distribution of log CO2 centred around 3.7 (~5000 g m-2 d-1) with two residual tail values.  The 

average values of CO2 flux, 5000±1000 g m-2 d-1, computed from the data in Group M, represents 

the background value to be found during "normal" Strombolian activity at the permanent station. 

The left residual tail values represent the values below 4000 g m-2 d-1 (Group L). The right residual 

tail values represented by Group H deserve a separate discussion and elaboration. In fact, even 

though these latter include only about 2% of the CO2 flux data, which is insufficient for statistical 

elaboration, this data group represents a higher than background CO2 degassing regime.  
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Fig. 4b) - Histogram of STR02 log CO2 flux data. The plotted data show a unimodal distribution centred at 

3.7 value. 
 

Furthermore, this group is characterized by a wide NDV of flux, thus indicating an unstable 

degassing regime while providing important geochemical information during the transition phases. 

The thresholds defined in the CO2 flux are marked on the temporal graph (Fig. 5a) where the daily 

average values of CO2 flux for the period 2005-2008 have been plotted. The variations recorded 

highlight background values of around 5000 g m2 d-1, thus confirming regular Strombolian activity, 

and a high anomalous period (Group H) with values up to 80000 g m2 d-1. This clear and univocal 

peak coincides with the February-March 2007 effusive phase. In Fig. 5a it can be observed that the 

CO2 fluxes recorded over the last 4 years have only reached Group H values a few times. In each of 

these cases the explosive activity at Stromboli increased significantly, leading to major explosive 

events (22 May 2006; 15 March 2007; 29 February 2008; 6 December 2008), or even to effusive 

activity accompanied by a paroxysm (27 February-2 April 2007, with a paroxysm on 15 March 

2007). The NDV values have been calculated for the entire CO2 flux data set (2005-2008) and 

plotted on the diagram given in Fig. 5b. It is very interesting to observe that each increase in CO2 
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flux corresponds to an increase in the NDV values; that  highlights the instability of the soil CO2 

degassing system.  

 

 
Fig. 5 - a) Daily average values (g m-2d-1 ) of summit CO2 flux (STR02) for the period 2005-2008; 

 

In particular, we recorded a significant change in the degassing style of the CO2 flux from the 

STR02 station during the end-of-2005/first semester of 2006 period (Fig. 5b); the daily average 

degassing flux increased from 4000 to 12000 g m2 d-1 with peaks in the hourly measurements of up 

to 20000 g m-2 d-1. A simultaneous strong increase in NDV was recorded during the same period 

with values from 10 to 40%. An increase in the number of Very Long Period events (VLP) 

coincident with this anomalous passive style of CO2 degassing was also recorded, thus confirming 

an increase in the degassing of volatiles in the magma column. This behaviour revealed the 

instability of the volcanic degassing system which had received numerous new impulses of volatiles 

exsolved from the magma. This anomalous behaviour of the geochemical and geophysical 

parameters culminated in the April–May 2006 period, when several earthquakes were recorded in 

the Aeolian Archipelago (the epicentre of which was close to the island of Stromboli) and when a 

major explosion from the north crater occurred on 22 May 2006. 
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Fig 5 - b) Natural Daily Variation (NDV) of CO2 flux (STR02) for the period 2005-2008; The NDV is 

expressed as normalized standard deviation in %. 
x
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i i  and x  is the 

arithmetic mean of the daily measurements (hourly measurements, n=24). The red bar at 20% represents 

the average value of NDV for the whole period of observation. The blue arrows added to both figures (5a,5b) 

highlight similar behaviours and the simultaneous increase in these parameters. 

 

The anomalous degassing stopped in the second half of April 2006 when it reached low values of 

around 4000 g m-2 d-1 (Fig. 5a). These low CO2 flux values remained stable until the end of June 

2006, thus highlighting very low passive degassing in the summit area. The CO2 flux and the NDV 

increased again in the period July 2006-February 2007 with values of 5-7 thousand g m2 d-1 and 10-

30% respectively. No data was acquired due to technical problems encountered in December 2006. 
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Fuoco. The CO2 flux continued its increasing trend, reaching about 80000 g m2 d-1 and NDV values 

of over 50% on 5-8 March 2007, a few days before the 15 March 2007 paroxysm. After this 

paroxysm, the CO2 flux decreased drastically, dropping to about 4600 g m2 d-1 on 28 March 2007, a 

few days before the end of the effusive event (2 April 2007). During the ensuing period (28 March 

to 23 May 2007) the CO2 fluxes fluctuated between 5000 and 10000 g m2 d-1. Finally, in the last 

period (end May-early July) the CO2 flux decreased, dropping to values of around 5000 g m2 d-1, a 

characteristic of “normal” Strombolian activity.  

The year 2008 was characterized by normal Strombolian activity; in fact, only two major explosions 

occurred on February 29 and December 6 respectively. Both of these events were preceded by an 

increase in the CO2 flux and NDV values, although they were more apparent on December 6 when 

the values reached 11000 g m-2 d-1 and up to 45 % respectively. 

 

2.4.3 Plume SO2 flux  

In the past, SO2 fluxes at Stromboli were measured using an ultraviolet correlation spectrometer 

(COSPEC), (Stoiber et al. 1983). The first studies on SO2 flux at Stromboli focused on the sulphur 

budget involved in degassing during Strombolian activity (Millan and Hoff 1978; Allard et al. 1994; 

Bruno et al. 1999). However, the monitoring frequency has increased since the 2002-2003 effusive 

eruption and the large data set available has made it possible to fix the value of SO2 flux during 

periods of “normal” Strombolian activity at around 250±50 t d-1 (Burton et al. 2007b). We first 

measured the SO2 flux on June 27, 2006.  

 The SO2 fluxes, which were recorded nearly monthly (although the frequency of the measurements 

was higher during the 2007 eruptive period), show an average flux of 190±50 t d-1; this refers to the 

2006-2007 period with the exception of the effusive period (February 27-April 4 2007) and is a 

similar figure to that given by Burton et al. (2007b). On January 19, 2007, the first increase in the 

SO2 flux (i.e. up to 730 t d-1) was recorded, although by January 22 it had returned to the baseline. 

The flux showed a further increase on February 28, 2007 when it reached 1280 t d-1, the day after 

the onset of the effusive activity (Fig. 6a). The flux showed generally higher than “normal” values 

during the entire effusive period (600±200 t d-1), moreover there was a sudden increase on 14 

March, just one day before the 15 March 2007 paroxysm, when it reached its maximum value of 

2900 t d-1. Over the following days, the SO2 flux decreased but remained “anomalous” with values 

around 500 t d-1. After the lava effusion ceased (i.e. on 2 April 2007) it took ~2 months for the SO2 

fluxes to drop back to typical Strombolian values (around 200 t d-1). 
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Fig.6 - a) Plume-SO2 flux expressed in T/d-1 , time variation for the 2006-2007 period of discontinuous data 

set; The STR02-CO2 flux (g m-2d-1) time variations for the same period (selected data of the continuous data 

set) have been plotted for comparison; 

 

2.5 Discussion 

The 2007 effusive eruption, timing and geochemical variations 

On the basis of the CO2 and SO2 long-time data set, we have been able to define the values during 

“normal” Strombolian activity at 5000±1000 g m-2 d-1 and at 250±50 t d-1, respectively.  

February 2007 was characterized by an increase in the Strombolian activity: the level of the magma 

in the central conduit was high and summit soil degassing increased (CO2 flux = 14000 g m-2 d-1 on 

26 February 2007). This situation culminated on 27 February 2007 (CO2 flux = 25000 g m-2 d-1) 

with the opening of a fracture (c.13:00 GMT) in the lower Sciara del Fuoco at 650-600 m a.s.l. and 

with the consequent onset of effusive activity (Neri et al. 2008). On the same day ( c.18:30) another 

vent opened at the lower elevation of ~400 m a.s.l. while the previous vent terminated its activity 

(Barberi and Rosi 2007) (Fig. 6a,6b). An initially fast lava flow of about 22 m3 s-1 (Neri et al. 2008  

and insight references) discharged through these fractures, a result of the emptying of the upper 

parts of the magma column. The fast drop in the lithostatic pressure triggered the uprising of a fresh 

magma batch (richer in volatiles), which caused a strong degassing of the lower parts of the magma 

column and a further increase in the CO2 (>70000 g m-2 d-1) and SO2 (>1000 t d-1) fluxes at the 

summit (Fig. 6a,6b).  
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Fig 6 - b)  Sketch map of volcanic activity: A)Onset of eruption, B)Crater collapse, C)Major explosion; D)End 

of effusive activity, transition period with unstable degassing; E) Return to normal strombolian activity. 

 

The emptying of the summit part of the conduit lead to the collapse of the crater walls inside the 

conduit (7-12 March). The structurally weakened summit part resulted in the “opening up” of the 

summit area, favouring summit soil CO2 degassing.  The increase in summit degassing during the 
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first half of March 2007 produced the maximum values of the CO2 (around 80000 g m-2 d-1, 5-8 

March) and SO2 (2900 t d-1, 14 March) fluxes, which preceded the paroxysm that occurred on 15 

March (Fig. 6a). After this explosion summit degassing showed a decreasing trend, caused by the 

lack of significant magma refilling, that lasted until the end of March when it dropped to its 

minimum values of 4500 g m-2 d-1 (28 March) and 370 t d-1 (30 March) for CO2 and SO2 fluxes 

respectively. This announced the end of the effusive activity (2 April). 

After the end of the effusive activity there was a true instability in the degassing regime 

characterized by CO2 fluxes up to 11000 g m-2 d-1 and SO2 fluxes up to 500 t d-1(Fig. 6a). This 

period (April-early July) represents the transition from effusive to Strombolian activity when slow 

magma refilling caused the steady up-lift of the magma level towards the central craters. “Normal” 

Strombolian activity resumed in July 2007 (Fig. 6a,6b).  

This last eruption was studied in detail and other new parameters were monitored on a continuous 

basis. In particular, Aiuppa et al. 2009, on the basis of the C/S monitored in the plume, estimated 

the depth of the magma degassing source. These depth values were inferred by considering the 

differences in solubility of these volatiles in the magma. We found it of great service to compare 

and combine the information regarding extensive parameters (CO2 and SO2 flux in this paper) with 

the intensive parameter (C/S by Aiuppa et al. 2009) data set acquired during the 2007 eruption.  

We analyzed the behaviour of these parameters in the overlapping observation period (January 

2006-December 2007). In particular, the year 2006 was considered by Aiuppa et al. 2009 as a 

period of relatively “normal” activity at Stromboli with the lowest C/S ratios at around 5. On the 

contrary, the daily average soil CO2 flux featured, mainly in the first semester of 2006, a significant 

increase of up to 12,000g m-2 d-1 that was corroborated by an increase in the seismic activity.  

This apparent discordant behaviour could be related to the acquisition of the C/S discontinuity data 

set. 

On the contrary, the year 2007 showed a good relationship between these two data sets. In fact, we 

simultaneously recorded a strong increase both in the CO2 and SO2 fluxes (up to 80,000g m-2 d-1, 

2800 t d-1 respectively) and the highest C/S ratio (up to 25).  Therefore, by combining these data we 

obtained reliable information regarding the evolution of the magma degassing system in terms of 

amount and depth, which allowed us to evaluate the budget of the magma involved, the origin of the 

degassing magma batch and the movement of it from depth to the shallow part of the volcanic 

edifice. 

Moreover, by utilizing the plume SO2 flux measured and the corresponding CO2/SO2 ratio (Aiuppa 

et al. 2009) it was possible to compute the CO2 flux of the plume taking into consideration three 

different periods of volcanic activity: before, during, and after the 2007 effusive activity. Therefore, 



 21

we coupled these different data sets: C/S = 3-5 with SO2 flux= 250 t d-1 for normal Strombolian 

activity; C/S= 11-21 with SO2 flux = 400-2800 t d-1 for effusive and paroxysmal periods; C/S= 4-20 

with SO2 flux = 200-500 for transition effusive-Strombolian periods. The CO2 flux from the plume 

computed for these different periods are respectively 700±200, 15000±4000 and 3000±1500 (fig. 

7). Subsequently, we observed that the effusive and paroxysmal period was characterized by an 

increase in the CO2 flux from the plume of over one order of magnitude compared to that of normal 

Strombolian activity. These very interesting results are comparable to the soil CO2 flux increase 

recorded at the summit (STR02) that went from 5000 to 80000 (over one order of magnitude too; 

fig. 7).   

 

 
Fig. 7 - Estimated CO2 flux of plume calculated combining the SO2 flux (this paper) with the C/S ratio (Aiuppa 

et al. 2009) for three distinct periods of volcanic activity: “normal” strombolian, effusive and transition;  

 ΦCO2 plume = C/Sratio* ΦSO2 plume 

 

The measured CO2 flux of summit soil degassing (STR02) has been plotted for comparison. The good 

correspondence between the behaviour of the three distinct pairs of data sets highlights the useful 

information that can be acquired from the monitoring of these parameters. 
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Therefore, the implications for surveillance activities are the following. Firstly, soil CO2 summit 

degassing gives us information regarding the plume degassing system and, just as importantly, the 

STR02 site represents the whole degassing system and therefore gives us good indications of the 

changes in the volcanic activity. 

Summarizing all the information acquired from the Stromboli discharged fluids (both plume that 

soil anomalous degassing) highlights the importance of obtaining the extensive parameters to 

identify and evaluate changes in the volcanic activity. Five years of soil CO2 flux data have allowed 

us to establish the real natural thresholds for Stromboli’s summit area (STR02- Pizzo sopra La 

Fossa) that can be used for future monitoring. Both CO2 flux from the soil and SO2 flux from the 

plume varied simultaneously during the 2007 eruption, although the degassing processes were 

clearly different. In this case, geochemical signals of volcanic unrest were clearly identified both in 

the plume degassing as well as in the soil degassing at the summit area.On the basis of these 

promising results we decide to improve the frequency of data acquisition of the SO2 in the plume. 

For this reason, inside of this PhD work we starting a joint collaboration with the Heidelberg 

University research group to install a UV-scanning DOAS prototypes to measure in continuous the 

SO2 flux of the Stromboli plume. fig. 8. 

Fig. 8 - UV-Scanning DOAS network at Stromboli Island;  two instruments were installed respectively in the 

northeast (Saibbo) and southern side (Punta Lena) of the island. 
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The first two NOVAC mark II instruments were installed on the island in the beginning of March 

2007 (Kern 2009). The installations were conducted in cooperation with the Istituto Nazionale di 

Geofisica e Vulcanologia (INGV) Palermo and  University of Heidelberg. The two instruments 

were installed respectively in the northeast (Saibbo) fig. 9a) and southern side (Punta Lena) fig. 9b) 

of the island.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 9 - a) Images show the NOVAC installation at Saibbo Well, near the village of Stromboli. The NOVAC 

mark II instrument is installed on an aluminium tower on the beach; 
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Fig 9 - b) Installation at Punta Lena. The NOVAC mark II instrument is mounted on an aluminium structure 

on the roof of a small building. An additional housing contains the 100 Ah solar battery, which in turn is 

charged by a solar panel. The instrument is switched off at night with a 12V DC timer. 

 

The instrument was configured to perform a folded scan in two planes. Before each scan, one 

spectrum is taken in the zenith (later used as a reference for the evaluation). Afterwards, the dark 

current and offset are measured. The scan then begins at an azimuth of 215° relative to north, 

thereby pointing directly towards the other installation on the southern side of the island. Once the 

zenith is reached, the instrument rotates and the scan continues in an azimuth direction of 335°. 15 

exposures are taken in each viewing direction.  

 This geometry enables the instrument at Saibbo Well to measure the plume during wind directions 

between about 225° and 350°(Kern 2009). The second installation was performed on the southern 

tip of Stromboli Island. This site is called Punta Lena and is accessible either by boat or 3 km foot 

path from the town of Stromboli. This second instrument covers a range of wind directions between 

about 45° and 260° relative to north. A timer turns the instrument off at night to save power and 

reboot the system once per day. The temperature stabilization was set to 23°C, the approximate 

average day-time temperature in spring (Kern 2009). 

The acquired SO2 fluxes data highlight the good performances of the UV-scanning DOAS. The 

continuous SO2 data (2009-2010) are reported in the graph of  fig. 10 (blue symbols) together with 

the discontinuous data ( red symbols) acquired with mobile DOAS during 2006-2008 (Inguaggiato 

et al. 2011).  
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 Fig. 10 - Plume-SO2 flux long-time variations expressed in t d-1. The continuous SO2 data (2009-2010) 

acquired with UV-scanning DOAS Mark II are reported (blue symbols) together with the discontinuous data 

(red symbols) acquired with mobile DOAS during 2006-2008 (Inguaggiato et al. 2011).  

 

The continuous data of SO2 flux ranging from 80 to 480 t d-1 during all the 2009-2010 period 

showing a coherent behaviour with the variation observed in the other geochemical parameters (soil 

CO2 flux) acquired in continuous too. The totality of acquired data showed a big increase of SO2 

flux in coincidence of the paroxysm of February-April 2007 up to 2800  t d-1 . After the end of this 

effusive period we recorded a decrease of SO2 flux up to 70 t d-1 in September 2007. Then we 

recorded a slow but continuous increasing trend of SO2 flux from the end-2007 to the end of 2010 

(70 and 480 t d-1 respectively).  

Both these parameters are well correlate with changes of volcanic activity observed..  
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3 VULCANO ISLAND 

3.1 Geological setting 

Vulcano is a small volcanic island located at the southernmost of the Aeolian Islands in the southern 

Tyrrhenian Sea in Italy (Fig. 11). Vulcano is one of the largest and the southernmost of the seven 

Aeolian Islands. 

The main activity at Vulcano are related to sin-eruptive pyroclastic surges, bombs and block fallout, 

phreatic explosions, gas hazard, debris flows, and landslides of altered flanks and the subsequent 

formation of tsunamis. In ancient times, the Romans believed that Vulcano was the chimney to the 

forge of the god Vulcan. The earthquakes that either preceded or accompanied the explosions of 

ashes were considered to be due to Vulcan himself making weapons for the other gods. 

 

 

Fig. 11 - Aeolian Island map with Vulcano island, the southernmost island of archipelago. 

 

 

Eolian Islands
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Vulcano Island, as we see now is the result of five major episodes during the past 120,000 years.  

First are Vulcano Primordiale, Piano Caldera, Lentia Complex, La Fossa Caldera, and Vulcanello. 

The history of Vulcano begins with the formation of a stratovolcano. The collapse of this 

stratovolcano produces the Piano caldera ,(Santacroce et al. [2003]). Then, this caldera was partially 

filled with pyroclastic deposits and lava flows. The stratovolcano and its caldera form the southern 

part of the island of Vulcano. 

The Fossa cone is a small stratovolcano with an altitude of 391 m a.s.l. and diameter is about 2 

kilometers. The history began form 6,000 years ago [Dellino and La Volpe, 1997; De Rosa et al., 

2004].  Six volcanic successions: Punte Nere, Palizzi, Caruggi, Forgia Vecchia, Pietre Cotte and 

Gran Cratere, with different vent locations and eruptive histories, shaped the edifice [Dellino and La 

Volpe, 1997; De Rosa et al., 2004, De Astis et al.,2007].  

Vulcanello was formed as an island beginning in 183 BC and was connected to the Vulcano island 

in 1550 AD during its last eruption. 

Each succession follows the same evolution starting with pyroclastic surges and ending with the 

emission of highly viscous lava flows.  

All the explosive and effusive products of La Fossa cone have high potassium contents and a 

chemical composition ranging from trachytic to the more evolved rhyolitic composition [Keller, 

1980]. The latest eruption from Vulcano consisted of explosive activity from the Fossa cone from 

1888 to 1890 [e.g., Frazzetta et al., 1983, 1984]. 

In the same century, Vulcano produced three eruptions lasting more than one month (1822–1823, 

1873 and 1886). The violence of the last eruption (1888–1890) was marked by the fall of volcanic 

bombs and blocks, about 1 m in diameter, at 1 km from the vent. Breadcrust bombs, distinctive of 

this style of eruption, were ejected about 500 m.  

 

Vulcano Island, is an active volcano that has been in state of solphataric activity, since the last 

eruption (1888-1890). At present, the main exhalative activity is in the northern part of the island 

fig. 12, it is revealed by: a) a wide fumaroles field, on the active edifice of “La Fossa” crater, 

(100°C <450°C); b) low temperature fumaroles (T<100°C) and sea-bubbling gases in the Baia 

Levante area. Moreover, strong soil degassing occurs in the Vulcano Porto area and around the 

volcanic edifice, where the active tectonic discontinuities drive CO2 to the surface (Capasso et al 

1997, Diliberto et al 2002). Finally, numerous carbon-rich thermal wells (up to 80°C) in the 

Vulcano Porto Area, testify the presence of a geothermal system with equilibrium temperature 

around 200°C (Federico et al. 2010). 
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In the last decades Vulcano Island has showed indication of renewal activity, highlighted by 

increase of temperatures and volatile fluxes of fumarolic area (Chiodini et al.1996 a,b; Paonita et al. 

2002); strong variations of chemical and isotopic compostion of crater fumaroles and thermal 

waters (Capasso et al., 1997, 1998), probably due to increase of deeper fluid fluxes. 

In fact, volatiles discharged from a volcanic system represent the exsolved volatiles from the batch 

of magma located beneath of it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 12 – Vulcano Island. Main exhalative activity:  Fumarolic field on the summit crater; Beach  
fumaroles; Thermal waters; strong soil degassing in the Vulcano Porto area and around the volcanic  
edifice. 
 

Usually, a decrease in pressure caused by rock fracturation or rising of magma batch towards the 

surface determine an over pressure of volatiles in the magma and consequently their exsolution. 

These volatiles, reaching the surface, interact with superficial fluids like aquifer and produce also 

increase in soil degassing and fumarolic activity (Taran et al. 1986; Capasso et al. 1997; Nuccio and 

Paonita 2001; Inguaggiato et al. 2000, 2004, 2011). 
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3.2 Previous geochemical studies  

In the last few years many geochemical investigations on volcanic systems  were focused on the 

study of extensive parameters, as tools to quantify the involved masses during the degassing 

processes both during active and quiescent phases (Allard et al. 1994; Italiano et al. 1997; Aiuppa et 

al. 2005, 2010; Allard et al. 2005, Inguaggiato et al. 2011). 

 

Generally, the carbon dioxide represents the main constituent of anidrous gases discharged in the 

summit areas of the volcanoes through the plume or crater fumaroles (Chiodini et al. 2005; 

Inguaggiato et al. 2005).  

 

This parameter has been applied successfully to studies the volatiles budget in many volcanic 

systems (Chiodini et al. 1996; Favara et al. 2001; Cardellini et al. 2003; Chiodini et al. 2005; 

Pecoraino et al. 2005; add more Mazot et al.2010), and in the geochemical monitoring program to 

be aim to individuate changes in the volcanic activity (Brusca et al. 2004; Carapezza et al. 2004; 

Werner et Cardellini 2006).  

The goal of this part of thesis-work was the CO2 budget estimation of discharged fluids from the 

summit area of Vulcano Island. Moreover, the realization of a CO2 flux map allowing us to 

individuate the anomalous degassing areas and idoneous sites future installation of geochemical 

monitoring systems to control the volcanic activity. To reach this aim a geochemical campaign for 

measuring the soil CO2 fluxes was performed in September 2007 covering the whole summit area 

of Vulcano Island. Moreover, the installation of continuous soil CO2 fluxes equipment on the 

summit area and the UV-Scanning DOAS system and the relative long-time acquisition data will be 

presented.  

The estimation of CO2 degassing budget from volcanic systems have relevant aspect both for 

geochemical monitoring activity and for the role of magmatic-CO2 in the Carbon world global 

cycle. The volcanic activity represents the main natural contributor of CO2 emitted in to the 

atmosphere, consequently many authors worked to estimate it (Brantley and Koepenick, 1995; 

Morner and Etiope, 2002). For this reason any work aimed to estimate the CO2 degassing in a 

volcanic system represent a contribution to refine the previous global estimation and to achieve a 

realistic value of a total world global budget of CO2 volcanic . 

Great amount of soil, fumaroles and plume CO2 fluxes were observed during quiescent activity 

(inter-eruptive periods) from the volcanoes (Carbonnelle et al. 1985; Allard et al. 1987; Baubron et 

al.1990; Allard et al. 1991, Baubron et al. 1991, Aiuppa et al. 2010; Inguaggiato et al. 2011). 

Changes in the CO2 fluxes have been correlated with important variations in the volcanic activity 
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and in several cases forecast the renewal of the paroxystic volcanic activity like increase of 

explosion activity and/or onset of effusive activity (Carapezza et. al 2004; Brusca et al. 2004; 

Aiuppa et al. 2010; Inguaggiato et al. 2011). 

The Vulcano Island was studied from many authors to characterize and estimate the discharged 

carbon dioxide.  In particular, many studies was aimed to estimate the CO2 emitted from the summit 

area (Chiodini et. al. 1996a), and from the peripheral area (Diliberto et al. 2002). Moreover, studies 

aimed to highlight relationship between changes in the CO2 rate flux and the volcanic activity level 

were also performed (Chiodini et. al. 1996b; Diliberto et al. 2002). 

The diffuse soil degassing estimation in the Porto area (north-east side of Vulcano) was carried out 

from different authors since 1984 (Badalamenti et al 1998). The estimations shown a wide range of 

values, in fact in the 1984-1988 period (Badalamenti et al. 1998). On the basis of 55 points of 

measurement covering an area of 2.2 Km2 report a range of values between 70 and 1000  t d-1.  In 

1993, a flux of 75 t d-1 was reported from the same area utilizing 420 points of measurement 

performed with accumulation chamber method (Chiodini et al, 1995). 

Regarding to the diffuse soil degassing from the summit area an estimation of 115 t d-1 (150 

measurement’s point) and 200 t d-1 (91 measurement’s point) have been calculated respectively in 

1990 and 1995 (Baubron et al., 1991; Chiodini et al. 1996). 

In 1990 the carbon dioxide discharged from the fumaroles of the Istmo area was estimated to be 6.5 

t d-1 (Italiano and Nuccio, 1994). 

Vulcano Island was also studied for the chemical composition of a volcanic “plume”. In fact, 

nevertheless the Vulcano Island does not show a real plume like an open conduct degassing volcano 

(only a summit degassing fumarolic field around 400°C) in the last few years many scientists 

utilized Vulcano as natural laboratory to test new remote sensing techniques and different  

prototypes. In particular, Toshiya Mori et al.(1995) used FT–IR Spectral Radiometer on the 

Vulcano’s plume; Aiuppa et al. (2004), carried out an inter-comparison of different methodologies ( 

FTIR, Filter-packs, direct sampling) on the plume of Vulcano Island; Real-time measurement of 

volcanic H2S and SO2 concentrations have been measured by a UV spectroscopy prototype  (M. 

O’Dwyer et al. GRL, 2003); moreover, an intercomparison of H2S fluxes from Vulcano with those 

of Etna and  Stromboli volcanoes was made to the aim of estimate the total sulfur budget at 

volcanoes (Aiuppa et al., 2005)  Finally, Aiuppa et al. 2004, 2005a, 2005b, 2006 and McGonigle 

2008 carried out measurements to determine H2S/SO2 and CO2/SO2 and relative fluxes of SO2 with 

DOAS, Infra Red and electrochemical sensors equipments.   
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3.3 CO2 fluxes budget 

On the basis of previous geochemical information about the kind of fluid manifestations (Chiodini 

et al. 1996; Italiano & Nuccio 1994; Italiano et al. 1997) we tried to estimate the total CO2 output 

discharged from Vulcano Island by fluids in different way. In particular, we measured the 

discharged CO2 from both the fumaroles and soil degassing summit areas. 

The crater area is characterized by a wide fumarolic field with temperature ranging between 100 

and 450 °C. The fumaroles show a chemical composition with ratios values of H2O/CO2 and 

CO2/SO2 (Capasso et al. 1997, Paonita et al. 2002; Aiuppa et al. 2005a; McGonigle et al. 2008) 

between 4-11 and 30-67 respectively. Moreover many studies have been focused on determining the 

H2S/SO2 ratio (Aiuppa et al., 2005b; Aiuppa et al., 2006) and show values between 0.4 and 2.3.  

To estimate the CO2 flux emitted from the fumarolic field we utilize an indirect method based on 

“plume” SO2 flux measurements and CO2/SO2 fumaroles ratio (McGonigle et al. 2008, Aiuppa et 

al. 2010; Inguaggiato et al. 2011). The SO2 flux measurements were carried out by a portable UV-

DOAS system on September 2009. Six traverses  by car were performed below the “plume”, 

allowing us to estimate an average SO2 flux value of  12 t d-1 ±2. This value represents the back-

ground level of SO2 flux for the “normal” solfataric activity of Vulcano like measured by other 

authors in the past (Aiuppa et al., 2005a, McGonigle et al. 2008; Diliberto 2002). 

 

In order to determine the CO2/SO2 ratio, 2 fumarolic gas samples, FA and F0, were collected using 

pre-evacuated glass flasks containing an alkaline solution (AgNO3 in ammoniacal solution) in 

which steam condenses and CO2 is absorbed. These fumaroles are located respectively in the inner 

part (FA) of fumarolized area and on the rim (F0) of the crater.  

On the basis of the average CO2/SO2 ratio of fumarolic gases and of the SO2 plume flux measured 

with mobile DOAS instruments we estimated the CO2 flux from the fumarolic area (Farea) by the 

following relation:   

  QCO2Farea = QSO2Plume * [CO2]/[SO2]fumaroles 

Where, QCO2Farea is the flux of CO2 plume of the fumarolized area; [CO2]/[SO2]fumaroles is the 

average weight ratio of CO2/SO2 in the fumaroles and QSO2Plume is the SO2 flux in the plume. 

QSO2Plume = 12 tday-1 

( CO2/SO2)fumaroles  ~ 30 

QCO2Farea = 362 tday-1 ÷40 
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Soil summit degassing: 

Soil flux measurements have been carried out through 248 measures of CO2 fluxes from the entire 

summit area of Vulcano Island, performed by means of the accumulation chamber method (West 

Systems equipment. Soil gas data were processed for surface mapping using the sequential 

Gaussian simulation (sGs), which produces maps flux contour lines. The 248 measured CO2 fluxes 

in randomly distributed points on the Crater surface were interpolated by a distribution over a grid 

of 2823 square cells (5x5 m2) covering an area of 238,150 m2 using the so-called exponential 

variogram model. Then, 100 simulations of the CO2 fluxes with the obtained distribution were 

performed (Fig. 13). For each simulation, the CO2 flux estimated at each cell is multiplied by 25 m2 

and added to the other CO2 fluxes estimated at the other cells of the grid to have a total CO2 output 

for the simulation. The average flux of the 100 simulation is 206 g m-2 d-1  with a standard deviation 

of 42 g m-2 d-1. The mean of the 100 total simulated CO2 outputs, 49 t d-1, represents the estimation 

of the total CO2 output from the Crater area. (The total area of the crater is 440,755 m2, if we 

remove the fumaroles area (32,755 m2) we have a total CO2 output of 91 t d-1 for an area of 408, 

000 m2. 

 
Fig. 13 - Map of CO2 flux of crater area. 

  
Crater Area
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The total CO2 output of 532 t d-1 was estimated for the summit area of active crater, with 362 and 

91 t d-1 from crater fumaroles (indirect method) and crater soil anomalous degassing areas (direct 

measurements) respectively.  

The estimation of the CO2 output discharged from the summit allowed us to improve the 

comprehension of degassing system of Vulcano and to compare with other volcanic systems in the 

world (Fig 14). This comparison shows that Vulcano Island emits 532 t/d  of CO2 into the 

atmosphere similar to other quiescent volcanoes such as Pantelleria (1071 t d-1), Ischia (1313 t d-1) 

and Teide (Tenerife) (432 t d-1).  
 

 

Fig. 14 – Comparison of CO2 fluxes for some active volcanoes. The red bar shows the mean fluxes 
measured in   Vulcano Island during the PhD thesis period (2007- 2010). 
 

Moreover, the map of summit soil degassing allowed us to find the suitable sites for the installation 

of continuous monitoring system to measure the CO2 flux continuously. 

On the basis of the acquired information it has been decided to install a CO2-flux equipment on the 

north-east side of the crater (fig. 15) in a point close to the fumarolic area but outside to avoid 

processes of corrosion with acid fumarole condensates.  
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Fig. 15 - Picture of CO2 soil equipment installed at the summit of Vulcano (La Fossa Crater). 

 

3.4 Summit CO2-flux: long-time variations 

Since November, 2007 the continuous monitoring of CO2 fluxes emitted from the soil at La Fossa 

crater (VCS) has been carried out on an hourly basis by means of an accumulation chamber (Fig.15) 

(West Systems LTD, Chiodini et al. 1998). Data is transmitted directly to INGV-Palermo 

geochemical monitoring centre by GSM service. 

We analyzed the complete soil CO2 flux hourly data set from station VCSCS during the 2007-2010 

period, in order to improve our knowledge of the behaviour of summit soil CO2 flux and to try to 

relate the fluxes variations to the different degassing regimes of solfataric activity of Vulcano 

Island.  

We processed the CO2 flux data through a cumulated probability graph (Sinclair 1974). In this 

graph (fig. 16a) the log CO2 flux is plotted against the cumulated probability for the entire data set 

of CO2 flux at La Fossa crater (2007-2010). This graph highlights a continuous degassing process, 

without any “break slope” in the curve, indicating a single family of degassing. The histogram of 

the totality of the acquired data (fig. 16b) confirm it showing an unimodal distribution of log CO2 

centred around 3.2 value  (~1600 g m-2 d-1). The average values of CO2 flux, 1600±250 g m-2 d-1, 

computed from the acquired data, represents the background value to be found during "normal" 

Solphataric activity at the permanent station.  

 

CO2 flux station
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Fig. 16 a) VCS Log CO2 flux vs cumulated probability – period 2007-2010; The distribution of the plotted data 

show a single degassing family. b) - Histogram of VCS log CO2 flux data. The plotted data show a unimodal 

distribution centred at 3.2 value. 

 

The daily average of the CO2 flux for the whole period (2007-2010) was reported in Fig. fig. 17. 

The daily average of degassing flux showed a slow decreasing trend of CO2 from 9000 to 500 g m-

2d-1 from November 2007 to August 2008 with an average value of about 1200 g m-2d-1 recorded in 

the period August 2008 to September 2009. In Mid-September 2009 we observed a great and rapid 
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positive trend of CO2 flux that increased up to 16,000 g m-2d-1 with hourly peaks of 20,000 g m-2d-1, 

recorded on November-December, 2009. The anomalous degassing period terminated at the early 

January with fluxes coming back to the “normal” values of about 2000 g m-2d-1. 

 

 
Fig. 17 - Daily average values (g m-2d-1 ) of summit CO2 flux (VCS) for the period 2007-2010;  

 

The great variations of CO2 fluxes recorded in the summit during the solphataric activity were 

similar (one order of magnitude) to the changes observed in the Stromboli volcano (open conduct 

degassing system) in coincidence of the paroxystic activity occurred in the 2007 effusive activity. 

This big variation observed indicate change in the degassing regime of solphataric activity due to 

increase of volatiles input arriving from depth.  

Nevertheless, this variation is of the same order of magnitude than this recorded at Stromboli during 

changes in the strombolian activity, the flux variation recorded in Vulcano island show different 

way of degassing. 

In this particular case (VCS) we observe that the big variation of summit CO2 flux recorded in 

Vulcano occurred in the wide time interval (about 2 months) and do not reveal the presence of other 
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degassing families. Probably, it is due to the different way of degassing processes that the summit 

soil degassing reveals. 

In the case of Strombolian activity the anomalous CO2 degassing in the summit area occurred in 

few days (Inguaggiato et al.2011), because it’s directly connected to the exsolving volatiles from 

the magma inside the open conduct where new batches of magma refilling it.  

Conversely, the anomalous degassing processes visible on the summit area of Vulcano Island are 

linked to degassing processes of volatiles exsolved from the huge hydrothermal system (Federico et 

al. 2010) feed from magma batch located below La Fossa crater. This hydrothermal system does not 

allow sharp variation in soil CO2 flux in short time because the volatiles exsolved from the magna 

batch underwent a buffering  processes that smooth the deep input variation in a wide time. 

 
3.5 SO2 fluxes  

Vulcano Island is a closed conduct volcano and in a state of solphataric activity whit no real 

“plume” but only a wide fumarolic field degassing on the summit area (La Fossa crater). On the 

basis of this consideration the telemetric measurements of SO2 fluxes in the “plume” were not 

performed systematically in the past. In the framework of NOVAC (Network for Observation of 

Volcanic and Atmospheric Change) we decided to improve our knowledge on SO2 fluxes at 

Vulcano and we installed a scanning DOAS at Palizzi in March 2008  fig. 18. 

 The NOVAC project is started in 2005, a worldwide network of permanent scanning DOAS 

instruments (Galle et al. 2010) was installed at 19 volcanoes around the world  for measuring 

volcanic SO2 emission fluxes, and now use this technology for real-time monitoring and risk 

assessment (fig. 19 ). 

The equipment installed is an Differential Optical Absorption Spectroscopy-instrument designed by 

the Optical Sensing Group in Chalmers University of Technology in Göteborg, Sweden.  

The system contents a single spectrometer from Ocean Optics Company, an embedded PC, a GPS 

receiver, a fibre, and a telescope. Technical aspects of continuous monitoring with scanning DOAS 

systems such as instrument design, station networking, and measurement geometries were described 

in Zhang 2005, Galle et al. 2010, Johansson 2009a.  

 

Data analysis was significantly improved by identifying and considerably reducing the two main 

sources of error: wind speed at plume height and radiative transfer effects (Johansson et al. 2009b, 

Kern et al. 2009). New software for data evaluation was specifically implemented for the NOVAC 

network (Johansson 2009b). 
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Fig. 18 - Picture of UV-Scanning DOAS equipment installed at Palizzi area south-east flank of Vulcano 

island.  
 

Further two weather stations were installed, one directly at the la Fossa crater and the second one at 

Lentia, an area with nearly the same height as the la Fossa crater, around 2 km away from it 

 (fig. 20)  
 

 



 39

 
Fig. 19 - Geographical location of the volcanoes involved in the NOVAC project as of March 

2009. The project is open to participation by any interested institution, so the network may be 

expanded in the future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 20 - Weather station at Lentia, an area with nearly the same height as the la Fossa crater, around 2 km 

away from it. 
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The continuous SO2 flux measurements were recorded from March 2008 up to October 2010, the 

results are reported in  fig. 21. 

Vulcano Island is characterized by very low SO2 flux considering the absence of a real “plume”. 

Nevertheless this anomaly respect to the open conduct volcanoes characterized by higher SO2 

fluxes, we were able to measure in continuous and calculate the SO2 fluxes at Vulcano Island. This 

was possible because Vulcano island is a very small volcano with an altitude of only 320 masl  and 

a diameter of 500 m.  UV-scanning DOAS could be install at Palizzi area, very close to the source 

of SO2 (La Fossa crater), the distance between this two points is only 400 meters and the relative 

SO2 slant column is high enough (50 to 250 ppmm) to well calculate the flux. In the diagram of 

fig.21 is reported the SO2 flux with the time. We observe a quite constant value of SO2 flux around 

12 t/d in the period of August 2008-August 2009. In mid September 2009 a great increase in SO2 

emission was recorded with fluxes up to 100 t d-1 reached in November 2009. These anomalous 

values were recorded in the period 15 September 2009 - end December 2009. Then, the values of 

SO2 flux decreased to the normal values of about (12 t d-1) and remained constant until October 

2010. 

 

Fig. 21- Plume-SO2 flux expressed in t/d-1 , time variation for the 2008-2010 period of continuous data set. 
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It is very interesting to observe that the anomalous values of SO2 fluxes that increased about one 

order of magnitude occurred in the same period of the anomalous degassing processes of soil CO2 

recorded with a VCS monitoring station, located at the summit of the La Fossa crater (see fig 22). 

 

 

 

Fig 22 Comparison between the CO2 soil flux and SO2 plume flux in Vulcano Island 
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 This indicate that independent parameters like CO2 soil flux and “plume” SO2 flux give us the 

same indication and reveal an increase of volatiles “masses” involved in the solphataric degassing 

processes at Vulcano Island due to an increase of volatiles arriving from the deep. 

These are the first continuous data set of geochemical parameters acquired in continuous directly 

from the summit crater at Vulcano Island. This approach is very promising to better investigate the 

geochemical processes responsible of the plumbing degassing system of Vulcano Island and will 

help us to formulate a more complete geochemical fluids model. 

 

3.6 Analysis of data evaluation of fluxes 

3.6.1 Evaluation of spectra 

The collect spectra are analyzed according to standard procedures DOAS; each spectrum is 

corrected for electronic offset and dark current signal.  

To obtain the optical density, the logarithm is taken at each measurement spectrum.  A polynomial 

is used to compensate any broadband extinction structures caused by Rayleigh molecular and Mie 

aerosol scattering (Platt and Perner 1983; Platt 1994). High and low pass filter are applied. For a 

best fit ,a shift and squeeze of the absorption cross-sections are allowed to compensate for any small 

optical  error. (Stutz and Platt 1996) and then fitted to a library reference spectrum of SO2 (Vandele 

et al. 1994).  

In the way to improve and find the best solutions for data evaluation, several tests were performed 

on data from the station "scanning DOAS" on Vulcano Island. The data set of the 14th of August 

2008 was chosen to carry out various sensitivity studies on the SO2 evaluation. On this day the 

plume was clearly inside the geometrical plane of the instrument. For all performed tests the 

NOVAC-software was applied and the data of all scans on this day are compared below.  

The presented results, discussed and shown in the various figures, are always based and compared 

to an evaluation done in the 305.26-318.22 nm range, and include SO2, ozone (O3) and a Ring 

correction in the fit with a polynomial of 5th degree, which is illustrated as black rectangles. The 

first test was done expanding slightly the wavelength evaluation range from 305.26 - 318.22 nm to 

305.26 - 321.40 nm, the second one was performed by shifting the evaluation range to 310.00 - 

320.00 nm. In fig 23(a) the results are expressed as kg/s of SO2 over the day analysed in the above 

described wavelength regions. The different results obtained by the analysis in various wavelength 

ranges are displayed with different colours and symbols. Neither the slight nor the larger shift 

analyzed showed glaring difference of SO2 fluxes although a systematic increase can be noted for 

the shift to the larger wavelength region. Fig 23(b) reports the different results, again displayed 

with different colours, gained by applying various polynomial degrees (2, 3 and 5 degree) in order 
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to remove the broadband extinction structures from the spectra. No differences are notable in these 

results. In fig 23(c) are reported the results considering correction or non correction of the Ring 

effect as well as taken into account or not the O3 absorption. If only the Ring effects is considered 

(red circle) the SO2 fluxes are generally larger, instead considering only the O3 presence (blue 

triangle) and leaving the Ring effect out of considerations leads to comparable results as 

considering both (Ring effect and O3 absorption).  

Fig 23d shows the last sensitive study carried out in this work; two different SO2 references were 

utilized (273 K and 293 K) and the results compared. The data obtained are almost overlapping, in 

contrast with earlier studies performed by Bobrowski 2005, where a difference of 7 % was 

observed. 

The most notable difference, the effect of the O3 absorption, is shown in more detailed in fig 23(e).  

displays two plume scan examples, one at midday and the other in the afternoon, comparing the fit 

results obtained with and without included ozone (O3). From this figure can be noted that without 

including O3 in the evaluation process the SO2 values obtained are generally higher, especially 

when the telescope is looking closer to the horizon. In the afternoon this effect gets even stronger 

showing a difference of up to 10 ppmm. This is expected, because of an increased ozone column 

due to a longer light-path in the stratosphere when the sun light is entering the earth atmosphere 

under a higher solar zenith angle (Hönninger et al. 2004). 

  

 3.6.2 Weather measurements:  

In order to have correct information about wind speed and wind direction, a weather station was 

installed at Vulcano Island in a site called Lentia located at the same elevation of the crater fig20. 

The weather station was built by Davis and model and Vantage Pro 2 and provides us, as well as 

wind speed and direction, including rainfall, temperature, relative humidity, sunburn and UV. 

Communication is ensured by a wireless system, the data passing via the Vulcano Observatory 

arrived in Palermo at the National Institute of Geophysics and Volcanology  in a real time.  

The wind data for the  measurement at Stromboli island arrived from the station Str02 located at the 

summit area(Pizzo sopra la Fossa)  in real-time. 

In some cases wind data provided by global model from European Centre for Medium-Range 

Weather Forecasts (ECMWF) or the National Oceanic and Atmospheric Administration (NOAA) 

can be referred.  
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Fig. 23 - Sensitivity studies on the SO2 evaluation a) The different results obtained by the analysis in various 

wavelength ranges are displayed with different colours and symbols;b) the different results, gained by 

applying various polynomial degrees (2, 3 and 5 degree);c) are reported the results considering correction or 

non correction of the Ring effect as well as taken into account or not the O3 absorption;d) two different SO2 

references were utilized (273 K and 293 K) and the results compared; e) displays two plume scan examples, 

one at midday and the other in the afternoon, comparing the fit results obtained with and without included 

ozone (O3). 



 45

3.6.3 Error Analysis 

The errors identified in these measurements are mainly: spectroscopy, atmospheric scattering and 

wind parameters. 

Spectroscopic error is related to non linear absorption, errors in absorption cross section, stray light 

and temperature changes in the spectrometer.  

While the errors in absorption cross section and nonlinear behaviour in Beer’s low are documented, 

(C. Kern et al 2010) the major spectroscopy errors from stray light and change in temperature are 

different to each spectrometer.  For reducing the stray light error we use a filter (Hoya U330). In 

some of these instruments, like Dual-axis scanning DOAS and the Active DOAS, the temperature 

effects are reduced by active temperature stabilization of the spectrometer.    

 

Atmospheric scattering errors: 

Solar light scattered by molecules and particles in the air like volcanic ash, condensed water and 

others molecules, giving an extended path length in the plume and this effect is detected by the 

instrument. 

The scattering error strongly depends on meteorological condition, also depends on the distance 

between the instrument and the plume, to a lesser distance is less the error (Kern 2009).  

 

Wind parameters error 

To calculate the flux the concentration of the molecules in a cross section perpendicular to the 

direction of propagation of the plume shall be multiplied by the wind speed. If  the speed and 

direction of propagation is not real you will have an under or overestimation of the flux 

measurement. To reduce the wind speed and wind direction have to be measured directly on the 

summit areas of the emission point. Although the measurements made at long distances downwind 

from the point of emission may not reflect the real conditions of speed and wind direction.  
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4. Realization of an Active DOAS prototype  

 
4.1 Introduction active DOAS 

The Active-DOAS utilize the artificial light as source. The first active DOAS instruments were 

developed in the 1970s as research tools for the measurements of various radicals, in particular OH. 

This type of technology has now found place in the study of trace gases, air pollution from 

anthropogenic emissions, and study of natural phenomena such as gaseous emissions as natural 

volcanic systems like O3, NO2, and SO2, as well as NO3 and HONO. Technology has seen the new 

source light of the LED (light emitting diodes) as a great alternative to Xenon arc lamps for low 

power consumption, longevity and high stability. 

 

4.2 Prototype idea and realization  

My research project included the realization of an instrument called Long Path Active DOAS. The 

new active DOAS ideated and assembled at the INGV PA followed the plans of the first models 

manufactured at the University of Heidelberg with little but substantially improvements. The new 

Active DOAS is designed primarily for measurements in volcanic areas, as opposed to models 

made before. In fact, this new model is characterized by reduced weight and dimensional geometry 

in order to allow easy transport up to the volcanic summit areas. Were also treated some aspects of 

the optical system tracking allowing a fast focus, reducing than the operational time spent in the no 

safe summit areas.  The optical system of light sources and the size of the optical fiber were 

replaced too. In fact, while in previous models the optical system of the light source was prepared 

and focused in the laboratory while with the new system, we can make a quick focus in the field. 

The aperture size of optical fiber has been reduced for a narrower beam of light and to reduce 

intensity losses. 

In detail the Active-Doas consists of the following items (fig. 24):  

• telescope,  

• optical fiber,  

• UV LED sources,  

• Spectrometer,  

• retro-reflector  

• notebook 
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Fig. 24 - NewActive Doas  composed by one telescope, a optical fiber, three UV LED sources, one 

Spectrometer, a retoreflector and one notebook 

 

Telescope: is composed of a spherical mirror (6” Ǿ) with a radius of curvature (R) of 800 mm and a 

focal length (f) 400 mm. This mirror (BK7 material), covered with Aluminium and MgF2 UV 

enhanced, mounted on a special support that allows the movement along the X Y directions 

 (fig. 25).  

An aluminium optical bench allows the position in line between the mirror and the optical fiber 

positioner, that allows the movement along the Z direction. Moreover, the telescope is supported by 

an adjustable tripod.  

 

Optical fiber: is a bundle of  7 fibers  (AS 100/110 UVPI-2,5m N.A 0.10 micron) (fig. 26) with a 

transmissivity greater than 90% at the wavelengths involved (fig. 27).  Six transmitting fibers (two 

fibers for each LED) were arranged in a ring around a central receiving fiber in the focal point of 

the telescope, thus allowing radiation at three different wavelengths (fig. 28). 

 

NEW ACTIVE DOASNEW ACTIVE DOAS

LightsourceLightsource RetroRetro--reflectorsreflectorsTelescopeTelescope
SpectrometerSpectrometer

OpticalOptical--fiberfiber

PCPC



 48

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25 - Detail of the telescope consists of a Spherical mirror mounted on a special support that allows the 

movement along the X Y directions. An aluminium optical bench allows the position in line between the 

mirror and the optical fiber positioner, that allows the movement along the Z direction. 

 

 

 
 

 

Fig. 26 - Section of a bundle of  7 fibers,  six transmitting fibers (two fibers for each LED) were arranged in a 

ring around a central receiving fiber. 

 

 

 

 

 

 

 

 

 

 
 
Fig. 27 - Transmissivity of the fiber, greater than 90% at the wavelengths involved. 
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Fig. 28 - Example of radiation at three different wavelengths. 
 

Source: Multi-UV-LED light source is composed by three separate optical systems (fig. 29), each 

one of which is composed by one LED (fig. 30) with a different wavelength placed in an XY  

positioner, connected to a optical tube (1” Ǿ) where two plane-convex lenses focus the beam into 

the fiber. An electronic system allows to adjust the intensity of the each beam. 

The wavelengths 280, 310 and 315 nm were chosen to the absorption of SO2, ClO, CS2 structures 

mainly.  

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 29 - Multi-UV-LED light source is composed by three separate optical systems 

with electronic system for the intensity variation. 
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Fig. - 30 UV Top LED pattern emission 
 

Spectrometer: Ocean Optics© QE65000 spectrometer (fig. 31): spectral range between 260 and 

340 nm;  w/scientific-grade detector Grating H7installed;  select 70-100 nm; best: 200-500nm; 

SLIT-100: installed optical bench entrance aperture 100.  

The spectrometer is maintained at a stable temperature using a SuperCool© PR-59 thermoelectric 

cooling/heating whit digital control unit (fig. 32). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 31 - Ocean Optics© QE65000 spectrometer with a spectral range between 260 and 340 nm w/scientific-

grade detector Grating H7installed, select 70-100 nm, SLIT 100 
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Fig. 32 - Isothermal box whit SuperCool© PR-59 thermoelectric cooling/heating and digital control unit 
 

Retroreflector : it is composed by 10 UV Fused Silica Corner Cube Retroreflectors  (fig. 33). 

520mm Ǿ by Edmund Optics© inserted into appropriate housing (fig. 34), and placed on a stand of 

triangular shape, in turn mounted on an adjustable tripod (fig. 35). 

 

 

 

 

 

 
 
 
 
 
 
Fig. 33 - UV Fused Silica Corner Cube Retroreflector 520mm 
 
Notebook: The spectra are collected by a small notebook computer with the help of specific 

programs like: OOIB Base 32 (Ocean Optics) and DOASIS (DOAS Intelligent System By Institute 

of environmental Physics, University of Heidelberg ) for working with spectral data, data 

acquisition, mathematical operations, species evaluation. A 12 V battery is necessary to power the 

entire setup. 

The operation is described in more detail in the experiment on the plume of Vulcano Island 

(paragraph 5: Geochemistry of molecular traces).  
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Fig. 34 - Drawings for the construction of retro-reflectors PVC supports 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 35 - Triangular shape mounted on an adjustable tripod. 
 

In summary the light beam produced by the artificial source (LEDS) is coupled in to the fiber and 

arrive at the mirror; then the light through the gas masses is reflected by retro-reflector back to the 

mirror, and by the fiber into the spectrometer. The signal converted from analog to digital, is 

collected by the notebook. 
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5 Geochemistry of molecular traces 

LP-DOAS measurements conducted at Vulcano Island (Italy) - February 2010 
 

5.1 Measurement Setup 

5.1.1 Instrument design 
Long path differential optical absorption spectroscopy (LP-DOAS) measurements were conducted 

on the west rim of the Gran Cratere on Vulcano Island (Italy) on February 24 and 25, 2010. The 

goal of these measurements was to test a novel LP-DOAS instrument especially designed for 

measurements of volcanic gas emissions. Features of the instrument include a fiber-optic-based 

Newtonian telescope (as described by Merten 2008, Merten et al. 2010) with a smaller than usual 15 

cm main mirror, as shown in Fig. . The compact design specifically targets short light paths (order 

of several hundred meters, not several kilometers) usually used in volcanic environments. In 

addition, the compact setup reduces weight and space limitations therefore enabling use in remote 

locations. 

 

 
 

Fig. 36 – Image of the LP-DOAS setup. The compact design of the telescope is specifically targeted at 
applications in which small, light instrument is necessary. The spectrometer is located in a temperature 
controlled housing. The current driving each of the three    LEDs can be regulated individually on the power 
supply (seen in the lower part of the image). The entire setup is powered by a standard 12 V battery. 

 
Ultra violet LEDs served as a light source for the measurements (see Kern et al. 2006, Sihler et al. 

2009 for details). Three different LEDs were connected to two fibers each. These six transmitting 

fibers were arranged in a ring around a central receiving fiber in the focal point of the telescope, 
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thus allowing radiation at three different wavelengths to be used. For these first measurements, the 

wavelengths 280, 310 and 315 nm were chosen, where the absorption structures of SO2, ClO, and 

CS2 are located.  

An array of retro-reflectors was used to reflect the transmitted radiation back to the telescope after 

having crossed the sampling area. An Ocean Optics© QE65000 spectrometer with a spectral range 

between 260 and 345 nm was used to measure the spectrum of this incident radiation at intervals of 

a few seconds. The spectrometer was kept at a stable temperature of 20° using a SuperCool© PR-59 

thermoelectric cooling/heating unit. The spectra were recorded on a small netbook computer. A 

12 V battery was used to power the entire setup. 

 

 
 

Fig. 37– Location of the array of retro reflectors during the first measurement period (Position 1) on February 
25, 2010. The array is visibly reflecting the flash of the camera with which the picture was taken. The 
reflectors are positioned directly behind a low-temperature fumarole on the western rim of the Gran Cratere. 

 

5.1.2 Measurement geometry 
The measurements on February 24, 2010 were not successful, as the onset of rain caused the 

experiment to be abandoned shortly after setting up the instrumentation. However, on February 25, 

successful measurements were performed using two different light paths. During the first 

measurement period from approximately 12:00 to 12:45 local time, the array of retro reflectors was 

positioned behind a low temperature fumarole about 150 m from the telescope (see Fig. ). During 

this time, the gases being emitted by this fumarole were sampled. Little or no disturbance from 

other fumaroles is expected in this dataset, as favorable winds were blowing the gases from other 
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fumaroles in the area away from the light path. Depending on the wind, the light path length 

through the fumarolic gases was between 0 and 15 m one way, so a total light path of between 0 and 

30 m resulted (see Fig. 18). 

 

 
 

Fig. 18 – Side view of the location of the retro reflector array during measurements at Position 1 on February 
25, 2010. A length scale was added to demonstrate the extent of the fumarolic gases during the 
measurements. The one way light path through the fumarolic gases was between 0 and about 15 m during 
the measurements, depending on the wind direction. Therefore, peaks in the SO2 column density are thought 
to correspond to a total light path of 30 m through the fumarolic gases. 

 

During the second measurement period, the reflectors were then moved to a position further down 

in the crater to enable the measurement of gases being emitted from the higher temperature 

fumaroles located on the edge of the crater floor (see Fig. ). The light path length inside the 

fumarolic gases varied considerably due to variations in wind direction as well as variations in the 

degassing strength of the fumaroles themselves. Therefore, obtaining volatile concentrations from 

these measurements is difficult, but concentration ratios between different species are accessible 

with the LP-DOAS technique. 

 

5.2 Sulfur dioxide (SO2) evaluation and results 

5.2.2 DOAS retrieval of SO2 column densities 
Sulfur dioxide is the volcanic gas with by far the most dominant absorption structures in the 

analyzed wavelength range. Therefore, measuring SO2 is the first experiment conducted to prove 
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the functionality of the novel LP-DOAS instrumentation. SO2 was evaluated in all recorded spectra 

in the wavelength range between 280 and 290 nm. This evaluation range was chosen because 

several strong absorption lines of SO2 are found here. However, the most important argument for 

choosing this range was the absence of solar radiation in this wavelength region. Below about 

300 nm, solar radiation is completely blocked by the ozone layer. Since the fumarolic plume studied 

in these experiments was rich in highly scattering aerosol, solar radiation was scattered into the light 

path of the LP-DOAS to a varying degree depending on the aerosol optical density in the light path 

during a particular measurement. The spectrum of the scattered solar radiation was therefore 

superimposed on the transmitted LED spectrum. By using an evaluation range below 300 nm, 

however, interference between the two could be avoided. 

 

 
 

Fig. 39 – The arrow indicated the location of the retro reflector array during the second measurement period 
on February 25, 2010 (Position 2). The reflectors are now located further down in the crater to enable the 
measurement of gas being emitted from the high temperature fumaroles in the crater floor. 

 
For each measurement spectrum, the offset and dark current of the spectrometer were first 

corrected. Then the logarithm was taken. In order to obtain the optical density, the logarithm of the 

average of 150 spectra recorded under conditions in which no SO2 was in the light path was fit to 

each measurement spectrum together with the absorption cross-section of SO2 (Vandaele et al. 

2009). Also, a 5th order polynomial was included to remove any broadband structures and a 

spectrum of the background solar spectrum as well as a Ring spectrum were included to allow the 

fit to be adapted to other wavelength later on. An example fit is shown in Fig. . 
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Fig. 40 – Example evaluation of SO2 between 280 and 290 nm. The residual is still slightly structured, a 
result of the short total integration time used for the measurement (see text for details). 

 

5.2.3 Retrieved SO2 column densities 
The results of the SO2 evaluation for the spectra recorded during the first measurement period at 

Position 1 (low temperature fumarole) are shown in Fig. . The time series is characterized by a 

strong fluctuation of SO2 column densities. These fluctuations are mainly caused by winds blowing 

the fumarolic gas into or out of the light path of the LP-DOAS instrument. In part, fluctuations of 

the degassing strength of the fumarole itself could also be responsible.  

The errors of the individual measurements are considerable. This is due to the very short (order of 

seconds) integration time of the instrument for an individual measurement. While it is desirable to 

use a longer integration time to enhance the signal to noise ratio, this is not possible for 

measurements such as these in which the measurement conditions change at such a rapid pace. It is 

not advisable to average consecutive spectra obtained under drastically different measurement 

conditions (SO2 column density, aerosol optical density…) as this will distort the results of a DOAS 

evaluation. Instead, statistics can be improved by co-adding or averaging spectra that were obtained 

under similar measurement conditions, as will be discussed later on. 
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Fig. 41 – Time series of SO2 recorded during the first measurement period on February 25, 2010. The SO2 
column density fluctuated between 0 and 2.8×1017 molec/cm2. The fluctuation is mainly caused by winds 
blowing the fumarolic gas into or out of the light path. The maximum values correspond to an average SO2 
mixing ratio of about 3.7 ppm in the fumarolic gas along the light path (assuming a light path length of 30 m 
for these measurements, see text for details).  

 
While DOAS measurements always yield integrated column densities, it is possible to estimate an 

average mixing ratio of SO2 from the obtained results in this case. As shown in Fig. 18, the one-way 

light path length in the fumarolic gases was between 0 and 15 m during the experiment, depending 

on the wind during a particular measurement. Assuming that the highest column densities (2.8×1017 

molec/cm2) were measured at a time in which the fumarolic gases filled out the entire 15 m (thus 

yielding a total light path length of 30 m in the gases), the average SO2 mixing ratio along the 30 m 

light path amounts to about 3.7 ppm. 

Fig.  depicts the time series of SO2 column densities obtained from the LP-DOAS measurements of 

the fumarolic gases emitted by the higher temperature fumaroles located at the base of the Gran 

Cratere (Position 2). Measurements were conducted in this set up from about 13:00 to 15:30 local 

time on February 25, 2010. Again, favorable wind conditions allowed the more-or-less exclusive 

sampling of the gases emitted from the fumaroles at the base of the volcanic crater. While the LP-

DOAS light path was several hundred meters, only a fraction of this path was filled with the gases 

of interest. Variations in the amount of gas in the light path due to fluctuating winds and emission 

strength of the fumaroles led to a highly variable time series. The highest SO2 column densities 

were measured during the first 45 minutes of the measurements. In this time period, up to 1.2×1018 



 59

molec/cm2 were detected. After this time, a shift in wind direction towards the south caused less gas 

to be blown into the light path and lower columns (up to about 5×1017molec/cm2) were measured.  
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Fig. 42 – Time series of SO2 column density in the light path of the LP-DOAS instrument during the second 
measurement period (Position 2). Here, the fumarolic gases from the higher temperature fumaroles located 
in the base of the Gran Cratere were sampled. Fluctuations are due to varying wind directions leading to 
varying amounts of fumarolic gas in the light path and fluctuations of the emission strength. 

 
The measurement errors were significantly reduced during the measurements conducted at Position 

2 compared to those at Position 1. This was due to an improved alignment of the instrumentation 

leading to an increased light throughput of the system. More photons could be recorded in each 

measurement interval, thus improving the statistics of the measurement. The time series recorded at 

Position 2 thus demonstrates the ability of the novel LP-DOAS to measure SO2 at high accuracy 

(errors on the order of a few percent) and time resolutions on the order of a few seconds. 

 

5.3 Quantification of CS2 with active Long Path DOAS 

5.3.1 Background 
It was shown above that the novel LP-DOAS is capable of measuring SO2 at high accuracy and 

temporal resolution. The experiment conducted at Vulcano Island had another goal as well. The 

instrumentation was to be applied in an attempt to measure carbon disulfide (CS2). While this 

compound has never before been detected at a volcano using the DOAS technique, its differential 

absorption structure (see Fig. ) makes it potentially detectable with an LP-DOAS instrument. 
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Vulcano Island was chosen for this experiment because the low temperature of its fumaroles causes 

a substantial amount of the emitted sulfur to be degassed in a reduced form. Recent measurements 

have shown that H2S / SO2 ratios are typically between 0.15 and 2.5 (Aiuppa et al. 2005, Aiuppa et 

al. 2006), depending on the degassing temperature and extent of re-equilibration of gases with the 

hydrothermal system. The authors report that the lowest values for the H2S / SO2 ratio were 

obtained during heating events, and that periods of low degassing temperature resulted in ratios 

close to unity.  

5.3.2 Spectroscopy 
The ultra-violet absorption cross-section of CS2 is well known today, although the most recent 

publication in a major journal dates back to 1981 (Wu and Judge 1981). However, more recent 

unpublished measurements (Schneider and Moortgat 1990, Vandaele et al. 2000) confirm the 

original cross-section within reasonable errors. As shown in Errore. L'origine riferimento non è 

stata trovata., the cross-section exhibits a number of differential absorption structures between 280 

and 330 nm, with the strongest absorption bands lying between 315 and 330 nm. Therefore, 

measurement with differential spectroscopy is in principle possible in this wavelength region. 
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Fig. 43 - Absorption cross-section of CS2 between 280 and 330 nm according to 3 separate studies (Wu and 
Judge 1981, Schneider and Moortgat 1990, Vandaele et al. 2000). The strongest differential absorption 
bands are found between 315 and 330 nm. 

 
The absorption cross-section of SO2 is also very prominent for wavelengths between 280 and 

320 nm, as can be seen in Fig. , and although it is an order of magnitude weaker above 320 nm (Fig. 

), the differential structures still reach depths of approximately 1.5×10-20 cm-1 between 320 and 
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330 nm. As the differential absorption structures of CS2 are about 1 order of magnitude larger in 

this wavelength range, the sensitivity of a DOAS instrument will typically be 1 order of magnitude 

higher for CS2 than for SO2 at these wavelengths. However, the CS2 / SO2 ratio in the plume of La 

Fossa crater fumarolic field on Vulcano Island is expected to be between 10-4 and 10-3 (S. 

Inguaggiato, personal communication). Therefore, the measured DOAS optical density of CS2 is 

expected to be approximately 100 to 1000 times smaller than that of SO2 in any particular 

measurement. The detection limit of the instrument in respect to CS2 will in large part be 

determined by the ability to fully account for SO2 absorption in the CS2 absorption region.  
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Fig. 44 – Absorption cross-section of SO2 between 280 and 330 nm according to 
Vandaele et al. 2009. The strongest differential absorption lines are between 280 and 310 nm. 
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Fig. 45 – Absorption cross-section of SO2 between 315 and 330 nm according to 

Vandaele et al. 2009. While the differential absorption becomes weaker towards higher wavelengths, the 
differential structures still reach depths of approximately 1.5×10-20 cm-1 between 320 and 330 nm  

 

5.3.3 DOAS retrieval of the CS2 detection limit 
A DOAS retrieval was set up to retrieve the column density of CS2 in the spectra recorded during 

the measurements on February 25, 2010. The wavelength region between 314 and 321 nm was 

chosen for the retrieval. This region contains three absorption bands of CS2. While several 

additional strong absorption bands are located above 321 nm, this region was not accessible with 

the available LEDs (see Outlook for more details). In addition to the cross-section of CS2, the cross-

section of SO2 (the strongest absorber in the evaluation range) was included in the fit as well as a 

background spectrum, a Ring spectrum and a reference spectrum compiled from 60 spectra without 

SO2 absorption. A 5th order polynomial was used to account for any broad band structures in the 

retrieval. To improve the statistics of the measurement, between 10 and 20 spectra with similar SO2 

column densities were co-added before the fit was applied. 

Unfortunately, it was not possible to retrieve CS2 in any of the measured spectra. The noise 

superimposed on the measurement was larger than any potential CS2 absorption structures at all 

times. Instead of a specific CS2/SO2 ratio, only an upper limit for this ratio could be retrieved. This 

upper limit was obtained from the detection limit of CS2 in each spectrum. In order for a species to 

be measured using the DOAS technique, the differential optical density τ of this species must be 

larger than the noise R in the DOAS fit residual (see Kern 2009 for details). 

RS >⋅= 'στ       Eq. 1.   
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The trace gas column density S must therefore be larger than the ratio of the noise N and the 

differential absorption cross-section σ’ in order for it to be measured. The detection limit Sdet of a 

specific gas is thus given by the relation 

'det σ
RS =        Eq. 2.   

Fig. 2 demonstrates the retrieval of the CS2 detection limits for the LP-DOAS measurements. To 

obtain an upper limit for the CS2 column density in each spectrum, the DOAS fit described above 

was performed in the absence of the CS2 absorption cross-section. After the fit was applied, the fit 

residual was analyzed. The fit residual gives the difference between the measurement optical 

density and the modeled optical density obtained from the DOAS fit. IF CS2 were present in the 

optical path of the instrument, the respective absorption structures would be visible in the fit 

residual. If no such structures are visible, the optical density of potential CS2 absorption must be 

smaller than the differential optical density of the residual (see Eq. 1 and 2). Therefore, the upper 

limit can be estimated from the residual. The dotted red line in the lower left panel of Fig. 2 depicts 

the maximum differential CS2 absorption deemed to be possibly hidden by the noise in the residual. 

In this case, the upper limit was 3.7×1014 molec/cm2. This results in an upper limit for the CS2/SO2 

ratio of about 5×10-4. 

In this manner, each of the compiled spectra was evaluated in regard to the individual detection 

limits of CS2. The results are shown in Fig.  and Fig. . The resulting upper limit for the CS2/SO2 

ratio at Position 1 (the low temperature fumarole) was 7×10-4. The enhanced light throughput at 

Position 2 enabled the retrieval of a lower detection limit. Here, the CS2/SO2 ratio was below 5×10-4 

during the measurement time period. Hence, although CS2 could not positively be identified during 

the measurements, hard upper limits can be given both in total column and relative to the abundance 

of SO2. If the CS2/SO2 ratio had been higher, the instrument would have positively identified the 

species.  
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Fig. 2 – Example of the retrieval of the CS2 detection limit for the LP-DOAS measurements conducted at 
Vulcano Island on February 25, 2010. The fit residual shows the difference between measurement and 
model spectra after fitting SO2 to the measurement. The residual is of random nature and doesn’t show an 
indication of CS2 absorption. The detection limit of CS2 is determined by the differential optical density of the 
noise. The red dotted line shows the maximum CS2 signal that is deemed to possibly be hidden by the noise. 
This is the detection limit. In this case, the detection limit was calculated to 3.7×1014 molec/cm2. By dividing 
this value by the SO2 column density, a maximum for the CS2/SO2 ratio of about 5×10-4 is obtained. 

 

5.4 DISCUSSION 
First and foremost, this study confirms the functionality of the newly developed LP-DOAS 

instrument specifically designed for application in remote volcanic environments. Despite its small 

size, weight and power consumption compared to typical LP-DOAS instruments, it allows the 

remote sensing of a multitude of gases in the ultra violet wavelength region. As a proof of principle, 

stable measurements of SO2 were performed at two positions on the crater rim of the Gran Cratere 

of Volcano Island on February 25, 2010. The resulting SO2 time series illustrated the instruments 

capability to measure SO2 absorption at high accuracy and time resolution. 

The second objective of the experiment was to quantify CS2 in the fumarolic gases on Vulcano 

Island. Unfortunately, the abundance of CS2 was below the instrument’s detection limit at all times 

during the experiment. However, upper limits of the CS2/SO2 ratio could be retrieved. In the low 

temperature fumarole, the CS2/SO2 ratio was below 7×10-4. In the fumarolic gases emitted near the 

base of the Gran Cratere, the ratio of CS2/SO2 was below 5×10-4 during the experiment. Combined 
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with the SO2 flux measurements conducted at Vulcano Island in the scope of the NOVAC project, 

an upper limit for the CS2 flux can be calculated. 
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Fig. 47 – Upper limits for the CS2 column density as a function of the SO2 column density retrieved in the 
same spectrum for measurements conducted at Position 1. The CS2 detection limit increases towards higher 
SO2 column densities, as the strong absorption of SO2 can not be perfectly compensated in the CS2 retrieval. 
The measurements yield an upper limit for the CS2/SO2 ratio of about 7×10-4. 
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Fig. 48 – Upper limits for the CS2 column density as a function of the SO2 column density retrieved in the 
same spectrum for measurements conducted during the second measurement period at Position 2. Here, 

the measurements yield an upper limit for the CS2/SO2 ratio of about 5×10-4.  
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Of course it is desirable to further improve the instrument’s sensitivity towards CS2 in order to be 

able to actually measure the true ratio of CS2 to SO2 at Vulcano Island. To this extent, several 

modifications of the instrumentation are suggested. First, at least one if not two LEDs emitting in 

the wavelength region between 320 and 330 nm should be used. This will reduce the interference of 

SO2 in the spectra, as the differential absorption cross-section of SO2 is weaker at wavelengths 

above 320 nm. Also, it will enable the detection of a number of strong yet currently inaccessible 

CS2 bands. Finally, the maximum intensity of these LEDs will be higher than with the current 

LEDs, as technical production is more evolved. 

At the same time, an automated, software-driven switch should be designed to switch on and off the 

LEDs. This would allow the recording of a background spectrum in close temporal proximity to 

each individual measurement spectrum. The compensation of scattered solar radiation in each of the 

measurement spectra could thus be improved. This is especially important if longer wavelengths are 

used, as the solar spectrum becomes increasingly intense towards 400 nm. 

In total, it is expected that these changes should increase the light throughput of the LP-DOAS by a 

factor of 2 due to the brighter LEDs (this corresponds to a reduction of noise by a factor of 1.5) as 

well as reducing the SO2 disturbances by a factor of 2 in optical density. Therefore, the CS2 

detection limit should be reduced by at least a factor of 3, thus hopefully making a positive 

detection of the species possible in future measurements. 
 

 
 
6. APPLIED METODOLOGIES 
 
6.1 Telemetry State of art 
Differential optical absorption spectroscopy (DOAS) is based on the principle that different 

molecules absorb light in different wavelength regions and are characterised by typical absorption 

structure, which can be related to the kind and the number of gas molecules, in the light path 

between the source and the spectrometer collecting in the spectra (Platt and Perner, 1980). 

The DOAS is distinguished in two main types depending on the kind of light source used, Active 

DOAS use artificial light sources, while passive DOAS uses light from natural sources (Sun, Moon, 

or hot lava in the infrared). 

NOXON in 1975 was among the first to make measurements of scattered sunlight, to better 

understand both ozone and NO2 in the stratosphere. The DOAS was considered as a fundamental 

tool to study and understanding the halogen-catalysed ozone destruction mechanisms and the 

budget of nitrogen species in the atmosphere.  
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The measurements of BrO and OClO by Solomon et al.(1987b,) revealed that chlorine and bromine 

chemistry played a crucial role in the formation of the ozone hole in the stratosphere.  

The rapid development of MAX-DOAS offers a large number of practical applications: monitor the 

level of air pollution, information about pollution transport, measurements of emissions from 

individual industrial point sources, as well as from area sources such as traffic, monitoring of 

emissions from forest fires, measurement of SO2 ,BrO, and other gases emitted from volcanoes, 

used in the monitoring of the state of a volcano(Bobrowski et al., 2003). 

MAX-DOAS also expands the use of passive DOAS systems from mainly stratospheric 

applications, to the measurements of tropospheric trace gases (NO2, HCHO...) 

Recent development in several models and instruments using the DOAS technique to monitor and 

study the gases of both natural and anthropogenic origin in the atmosphere has been improved:1) 

Mobile Mini Doas, 2) simple Scanning DOAS, with fixed location, using a motor and a prism 

where viewing direction can be changed in a vertical plane or on a conical surface that intersects the 

plume, 3) Dual beam scanning Doas collecting column data from two different directions, 4) Multi-

Axis DOAS, multiple viewing angles and 5)Imaging DOAS (IDOAS) basically combining two 

principles,  imaging spectroscopy and DOAS technique (I.Louban et al. 2007). 

 Many of these instruments are now automated, thanks to special software that can simplify the 

process of extraction and processing the data (concentration of gases), and are very important for 

remote sensing. gas monitoring.  

Developments over the past ten years was projected on a global scale thanks to the launch of the 

satellite systems that Global Ozone Monitoring Instrment GOME on board Earth Research Satellite 

2 by ESA (ERS-2) in 1995  has extended explorations of local or regional to global coverage allows 

us to study simultaneously several chemical species  such as O3, NO2 , BrO, HCHO, and SO2 

present in the atmosphere. Scanning Imaging Spectrometer (SCIAMACHY) for Atmospheric 

Cartography was launched in 2002 and is now will likely go offline soon. The next generation of 

satellite instruments, OMI and GOME2 are now operational. 

 
6.2 DOAS TECHNIQUES 

 

The Differential Optical Absorption Spectroscopy is based on the Lambert Beer’s law: 
 
I(λ) = Io(λ) exp (-σ (λ)⋅c⋅L)                                                                          (6.2.1) 
 
which describes the diminution of light when light passes through matter. Io(λ) is the intensity 
before the light passes through matter, I(λ) the light intensity after the light has passed the matter 
(i.e. volcanic plume), σ(λ) is the absorption cross section of molecules at wavelength(λ) , c the 
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concentration and L the length of the light path, beside absorption of light due to molecules, also 
scattering (Rayleigh and Mie) takes light out of the light path, .. 
 
 
A schematic diagram of the basis of Lambert Beer’s law 
 

 
 
 
If the length of the light path L , is known, the concentration c of the species can be calculated as:  
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In the real atmosphere, the Lambert Beer’s law is more problematical because the intensity of the 
light is dropped off by the absorption of other trace gases, and scattered by air molecules and 
aerosol particles. 
In addiction the instrument (mirrors, grating, retro-reflectors, etc.) will also decreases the light 
intensity. 
 
Considering all these factors previously mentioned as a cause of decrease in light intensity, the 
Lambert Beer’s  law has been expanded including the absorption of various trace gases with 
concentration jc  and absorption cross-section )(λσ j ,  Rayleigh and Mie extinction, scattering by 
aerosol particles and air molecules [ ])(λε R   and [ ])(λεM , and instrumental effect A(λ) become: 
 

[ ] )())()())(((exp)()( λλελελσλλ AcLIoI MRjj ⋅++⋅Σ⋅−⋅=                                    (6.2.4) 
 
While in the laboratory it is possible to reduce these effects by subtracting the absorber from the 
light path, in the open atmosphere these corrections are very difficult. In this case we measure the 
“differential absorption”, defined as the difference between absorption at two different wavelengths 
( Platt and Stutz,2008). 
 
 
Basically the DOAS technique makes it possible to isolate the structures of trace gases separated by 
broad and narrow band using a filtering method, 
 

)()()( '
0 λσλσλσ jjj +=                                                                                            (6.2.5) 

 
In these Equation )(0 λσ j  represent slow variation with wavelength(λ ) , and )(' λσ j rapid variations 
with wavelength (λ ) 
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The meaning of ‘rapid’ and ‘slow’ variation of the absorption cross-section as a function of 
wavelength is, of course, a question of the observed wavelength interval and the width of the 
absorption bands to be detected. ( Platt and Stutz,2008). 
 
The expanded Lambert Beer’s Law can then be rewritten in the following equation: 
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The first exponential function represent the rapid structured differential absorption of trace gas 
species, the second exponential function represent the slow absorption due to the influence to 
Rayleigh and Mie scattering. 
Considering the instrument factor [ ])(λA  dependent of a slow wavelength, the intensity in the 
absence of differential absorption )(' λoI  can be defined as: 
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The differential optical density )(' λD can be defined as: 
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The equation (6.2.3) can be rewritten  
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Where the concentration of atmospheric trace gases can be calculated replacing )(λD  
and )(λσ  by )(' λD  and )(' λσ . 
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6.3 Soil degassing accumulation chamber method     

The most diffuse techniques to measure the soil CO2 flux is the accumulation chamber method. This 

method is based on the measurements of CO2 concentration on the time utilizing normally an Infra-

Red spectrometer. The flux is proportional to the slope of concentration in the time (Fig. 49).  

dCCO2/dt 

 

 

 

 

 

 

 

 

 

 
Fig 49  Graphical resolution of CO2 flux measurements.CO2 concetration vs time the sloop it’s proportional 

to CO2 flux 

The amount of CO2 measurements was performed in ppm s-1 and on the basis of proportionality 

factor the CO2 flux  was calculate in moles m2 d-1. The proportionality factory (K) depends on the 

chamber volume/surface ratio as well as the barometric pressure and the air temperature inside the 

accumulation chamber. The most common unit is grams/square meter per day, but using the same 

instrument for two gas species to express the flux using this unit means to have two different 

conversion factors. Actually we use the unit moles/square meter per day that has two advantages: A 

single conversion factor for every gas specie and an easy conversion of the flux in grams/sm per 

day simply multiplying the result expressed in moles/sm per day for the molecular weight of the 

target gas. The accumulation chamber factors A.c.K.: 

 
Where 
 
P is the barometric pressure expressed in mBar (HPa) 
R is the gas constant 0.08314510 bar L K-1 mol-1 
T is the air temperature expressed in Kelvin degree k 
V is the chamber net volume in cubic meters 
A is the chamber inlet net area in square meters. 
 
The dimensions of the A.c.K. are: 
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7 Instrumentations 

7.1 CO2 soil portable flux-meter  

The WEST Systems fluxmeter is a portable instrument for the measurement of diffuse degassing 

phenomena fig50 , based on the accumulation chamber method, suitable for volcanic and 

geothermal areas as well as soil respiration rate in agronomy. This method studied for soil 

respiration in agronomy and for soil degassing in volcanic areas (Chiodini et al. 1998), has been 

designed by WEST Systems to obtain a portable instrument that allows the performance of 

measurements with very good accuracy in a short time. The instrument allows a wide range 

evaluation of the amount of soil gas flux, and can be also used for the survey of biogas non 

controlled emissions on landfills. 

The instrument is extremely versatile and allow measurement of flux in 2/4 minutes.  

 

 

 

 

 

 

 

 

 

 

 
Fig 50 In the drawing CO2 soil portable flux-meter, the accumulation chamber, electronic IR spectrometer  
and Gps, palm recorder data. 
 

 

7.2 CO2 Soil permanent flux-meter 

The station, in the default configuration (Fig. 51), record and store the barometric pressure, the air 

temperature and the soil temperature. The variation of few degrees of temperature do not affect the 

evaluation of flux very much, then it's possible to use the air temperature instead of the temperature 

of the gas mixture into the accumulation chamber. The instrument measures the barometric 

pressure, using the VAISALA barometric pressure gauge, with a good accuracy. A platinum Pt100 

it's used to measure the soil temperature and a digital solid state based device measure the air 

temperature. 
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Fig 51) In the drawing the top view of box with the station, the battery and the 
accumulation chamber in measuring position. 
 

7.3 MiniDOAS 

 

The mobile mini-DOAS instrument includes a telescope, an optical fibre, one spectrometer, one 

GPS and a PC fig. 52. 

The telescope consists of a quartz lens, a U330 filter is used in order to reduce stray light, blocking 

visible light with wavelength higher then 360 nm (Galle et al. 2003).  

The optical quartz fibre connects the telescope to the spectrometer in order to transfer the light 

beam. The spectrometer used was a Ocean Optics SD 2000 with spectral range from 280nm to 

420nm.  

Spectrometer and GPS are connected to a computer controlled by software (Mobile Doas) which 

collects and evaluates acquired spectra in real time (Zhang and Johansson2004-2008) 

The telescope is installed in a vehicule and positioned vertically with the aim of measuring the total 

number of molecules in a cross section of a plume. The transects are carried out in a perpendicular 

direction to the plume.  

For each measurements the exposure time is recorded and automatically calculated in order to 

regulate the amount of light entering the detector, the exposure time depending of the weather 

conditions and by solar position during the day.  

One reference spectrum is collected at the beginning of every measurement, it is preferable to 

collect the reference spectrum or “sky spectrum” outside the plume, since the measurement was 

referred to this initial spectrum. The second spectrum is the dark spectrum collected in the absence 

of light and used during the evaluation for removing the instrumental noise.  

Global Position System (GPS) data is recording for each collect spectrum giving both time and 

position of each spectrum collected. 

To get the flux from traverses the SCD slant column density must be multiplied by the distance 

perpendicular to the wind direction and by the wind speed at plume height.  
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Fig. 52 - Mobile mini-DOAS instrument essentially formed by a telescope a optical fibre, one spectrometer, 

one GPS, and a PC. 

 

7.4 UV-Scanning DOAS 

Also called NOVAC Version 1 instrument was designed to be a robust and simple instrument for 

measurement of volcanic  emissions fluxes at high time resolution with minimal power 

consumption. 

Composed predominantly as the mini DOAS described above but with a substantial difference, it 

work in a fixed position and the scanning of the plume is ensured by a motorized device that allows 

to take measurements from horizon to horizon in a 180°. 

In particular, a composite system from a rotating part driven by a step motor controlled by the 

electronics, allows the reception of the light beam, that is reflected by a mirror and directed into the 

telescope.  This UV light is coupled to optical fiber, which transmits the signal to the spectrometer. 

By placing the mirror at 60 degrees a conical scan surface can be performed instead of over a 

vertical plane. In this condition the instrumental coverage is more than the models with upright 

position( mirror at 90°). fig. 53 

 

The spectrometer is an Ocean Optics S2000, which incorporate a high-sensitivity 2048-element 

linear CCD array detector, coupled with an Ocean Optics ADC1000-USB A/D analogue to digital 

converter, is connected with the electronics based on an embedded computer. The wavelength range 

is set at 280–420 nm. 
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Fig. 50 - UV Scanning DOAS (modified by Galle et al 2010) 

 

The integration time (the time the CCD array is exposed to light) is adjusted automatically 

throughout the day by the software, in the range 200 to 1,000 ms, to account for changes in the 

intensity of sunlight throughout the day and to prevent saturation of the data stream.  

The integration time is linked to the angular velocity of the stepper motor such that, for any 

integration time, there is the same number of data points per scan (i.e. the prism rotates faster for 

faster measurement times). 

A (GPS) provides latitude and longitude of the instrument and the exact time for each measurement. 

A web-server, and a FTP-server  allow by network-interface the transmission data.  

The scanning systems are powered by solar panels and a 12-V battery.  Electronic timer switching 

the power on in the morning and off at night, data collection is programmed to begin at 08:00 and 

continues until 16:00 h. 

The spectrometer and the electronic part of the scanning system are housed in insulated boxes, and 

a Peltier cooling system technology prevents changes in temperature. 

Free Wave radio modems; transfer the data from embedded pc back to the observatory. 

 

7.5 UV- scanning DOAS Mark II 

The Dual-axis scanning DOAS, also called NOVAC Version II instrument, was designed to allow 

the best possible spectroscopy and enhanced flexibility in regard to measurement geometry of the 

plume. fig. 47. 

The difference that distinguishes it from scanning DOAS described above is the ability to perform 

scanning in all directions. 

 The Dual-axis scanning Doas in fact has two motors step, one (elevation motor),  that allows scan 

from zenith to zenith and the second motor or (Azimuth motor) that allows movements in the 

horizontal plane.  
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The geometry of this device is totally different from scanning mini DOAS, in this case, both the 

optical and the electronics are in the same box that can be used in a fixed position or discontinuous 

measurements mounted on a tripod. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 47 UV- scanning DOAS Mark II (Modified by Galle et al.2010) 

 

From the instrumental point of view this device contain a spectrometer Ocean Optics HR2000 with 

a focal length of 101.6 mm at f/4, a 100 mm entrance slit, and a 2400 groove/mm grating, yielding a 

wavelength range of 295–390 nm. The spectrometer optical bench temperature 

is controlled by a thermoelectric Peltier module regulated using a Super Cool PR-59 temperature 

controller with constant voltage pulse width modulation. 

The entry of light is ensured by the presence of an optical system composed of: a prism which 

replaces the mirror, an Hoya U330 UV filter  and 25 mm diameter spherical mirror that focused the 

beam onto a single 400 mm fused silica fiber positioned in the focal point 75 mm away and leading 

to the spectrometer.  

The electronic consists of a An embedded PC that controls the peripheral components in the sensor, 

with the assistance of a software package especially developed to control spectra collection, read 

out information from the GPS receiver and temperature sensor, handle data communication, and 

manage the file system. ( Galle et al. 2010).Data transmission is ensured by a wireless system.  
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8. Conclusions 
 
The main goal of this  PhD thesis have been focused on the importance of extensive parameters in 

the study of volcanic systems. In particular, anomalous degassing of CO2 from the soils and SO2 

fluxes from the plume have been investigated. The measurements of these kind of parameters were  

carried out on Stromboli and Vulcano islands. These volcanoes, characterized respectively by 

Strombolian and Solphataric activities, give us the opportunity to investigate the relationships 

between some  recorded geochemical variations and the changes observed in the stage of volcanic 

activity. 

 

In particular we have reported data of SO2 and CO2 fluxes emitted respectively from the plume and 

degassed from the soils in the upper part of the Stromboli area  in the period  February-April 2007, 

concomitant to a period of  effusive eruption.  The entire data set of CO2 and SO2 fluxes recorded 

during the 2007 eruption, highlights the relationship between  extensive parameters (fluxes 

measured)  and observed  changes in volcanic activity. 

 

The same geochemical approach was utilized at Vulcano Island even if this volcano is actually in a 

stage of  solphataric activity. The results of our preliminary investigation shows  huge variations  

(order of magnitude) in the SO2 and CO2 fluxes in coincidence of some  other geochemical 

parameters acquired discontinuously (Gas/H2O ratio of fumaroles) and geophysical parameters 

(increase of shallow seismic activity). These promising results open new prospective for the 
strengthening of geochemical monitoring of volcanic activity and for the constraints regarding the 

construction of a “geochemical model”, necessary condition to better understand the functioning of 

volcanic systems.   

 

Moreover, another part of the investigation of this PhD thesis was focused on the realization of a 

innovative telemetric equipment “ Active-DOAS”  that give us the possibility to improve both,  in 

number and sensitivity, the determination of   some  geochemical parameters  ( SO2, BrO,  ClO and 

OClO) to better investigate the composition of fluids emitted from volcanic systems to the 

atmosphere.  
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