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Introduction

Let G be a group and A an algebra over a field F. A G-grading on A
is a decomposition of A, as a vector space, into the direct sum of subspaces
A= @gec Ay such that AjA, C Ay, for any g,h € G.

The description of all possible G-gradings of A is an important problem
in the structure theory of graded rings and its applications. Many properties
of the ideals of ordinary identities (with trivial grading) have an analogue
for graded identities and in this setting are more easily described ([18],[36]).
Kemer developed the structure theory of ideals of polynomial identities in
the spirit of the ideal theory of commutative algebras (see [36]). In his
approach he used Zs-graded algebras in an essential way showing also the
relevance of their graded polynomial identities. In particular, the study
of these ”"weaker” identities was one of his key ingredients for answering
positively the famous Specht problem in characteristic zero.

It turned out fairly soon that the study of G-graded polynomial identities
of algebras graded by a group G, was a problem of independent interest,
with various relations to other objects as, for example, group algebras. For
instance, it was proved in [7], [17] that if G is a finite abelian group and A is
a G-graded algebra, then A is PI if and only if its neutral component is PI.
It was soon discovered that one may consider the graded identities satisfied
by an algebra as an ”approximation” of the ordinary ones. Several ordinary
invariants for T-ideals were transferred to the graded case and have been
extensively studied, see for example [8] and its bibliography.

In particular, the description of all gradings on matrix algebras plays an
important role in PI-theory (see, for example [13], [47]) and in the theory of
Lie superalgebras and colour Lie superalgebras (see [10]).

Let M, (F) be the n x n matrix algebra over a field F' of character-

istic zero. Concerning the ordinary polynomial identities, the picture is



completely clear only for 2 x 2 matrices. The results of Razmyslov [43]
and Drensky [22] give a basis of the polynomial identities. The asymptotic
behavior of the codimension sequence ¢, (Mz(F)), n = 0,1,2,..., was de-
termined by Regev (see [44]) and the explicit formula for ¢, (My(F')) was
established by Procesi [42]. The papers [23], [27] contain explicit formulas
for the Sp-cocharacters of My (F).

If G is an arbitrary group, for the algebra M, (F') of n x n matrices,
there are two important classes of G-gradings: the elementary gradings and
the fine gradings. In fact in [11] it was proved that if F' is an algebraically
closed field, every G-grading on M,,(F') is a tensor product of an elementary
grading and a fine grading. Moreover, if G is a cyclic group then any G-
grading on a matrix algebra M, (F) is an elementary grading.

In case of characteristic zero, an explicit basis of the graded identities
for the algebra of 2 x 2 matrices was exhibited in [21]. In [37] the result of
[21] was extended to algebras over an infinitive field of characteristic differ-
ent from 2. Further significant progress in describing the graded identities
satisfied by matrix algebras was made by Vasilovsky in [50], [51]. He de-
scribed the Z, and the Z-graded identities of the matrix algebra M, (F)
over a field of characteristic zero with a particular Z,-grading. Namely
Vasilovsky proved that for such grading the ideal of Z,-graded identities for
M, (F) is generated by the polynomials ze1Ze2 — TeaZe1 and Ti12(,—j)2Ti3 —
Ti3T (n—i)2Til, 0 <i < n—1, where z;; is the jth variable of homogeneous
degree . This result was generalized in the paper [6] to any elementary
grading of M, (F') induced by g = (g1,...,9n) € G", where the group G is
finite arbitrary and the elements g1, ..., g, are pairwise different. Later on
both results of Vasilovsky were established over infinite fields, see [4], [5].

This thesis is devoted to the study of the G-graded cocharacter sequence
for a Pl-algebra, with particular attention to the algebra of upper triangular

matrices of order three.



The first chapter of the thesis is introductory. We introduce the algebras
with polynomial identity by giving their basic definitions and properties. We
only deal with associative algebras over a field F' of characteristic zero. The
set of all polynomial identities of A, Id(A), is a T-ideal of the free associative
algebra F'(X), where X = {x1,x9,...} is a countable set. Then we recall
the definition of multihomogeneous and multilinear polynomials.

In the second chapter we give a brief introduction to the classical rep-
resentation theory of the symmetric group and of the general linear group
via the theory of Young diagrams which is our main tool in the study of the
T-ideals of the free algebra. Then we introduce the sequence of codimen-
sions, cocharacters and colengths, and we restate all results in case A is a
G-graded Pl-algebra.

In the third chapter we characterize the ideal of graded identities of
A in case the multiplicities are bounded by a constant. We shall do this
in three different ways. In fact we shall prove that the multiplicities are
bounded by a constant if and only if 1d%(A) 2 1d%(UTY’), where UTY is the
algebra of upper triangular matrices of order two with a generic G-grading.
Another characterization will be given in terms of S,-characters: in fact
we shall prove that the characters appearing with non-zero multiplicities in
Xgl,...,ns (A) have corresponding Young diagrams contained in a hook shaped
part of the plane.

In the last chapter we study the algebra of upper triangular matrices of
order three, UT5(F'), graded by a finite abelian group G. Recall that all
G-gradings on UT,,(F), for F' algebraically closed of characteristic zero, are
elementary (see [53]).

We compute the multiplicities or the proper multiplicities of the graded

cocharacter sequences of UT5(F).



Chapter 1

Polynomial Identities and

PI-Algebras

In this chapter we give the basic definitions and results of the theory of

polynomial identities of associative algebras.

1.1 Basic Definitions

Throughout this paper we shall be dealing with associative algebras over a
field.

We start with the basic definition of free algebra. Let F' be a field and
X a set. The free associative algebra on X over F|, is the algebra F(X) of
polynomials in the non-commuting indeterminates z € X.

A linear basis of F'(X) consists of all words in the alphabet X (including
the empty word 1). Such words are called monomials and the product of
two monomials is given by juxtaposition. The elements of F(X) are called
polynomials and if f € F(X), we write f = f(x1,...,2,) to indicate that
Z1,...,Tn € X are the only indeterminates occurring in f. We shall also
assume that X is an infinite set.

we define degu, the degree of a monomial u, as the length of the word



u. Also deg, u, the degree of u in the indeterminate x;, is the number
of occurrence of x; in u. Accordingly, the degree degf of a polynomial
f = f(x1,...,2,) is the maximum degree of a monomial in f; deg,, f, the
degree of f in w;, is the maximum of deg, u, for v a monomial in f.

The algebra F'(X) is defined, up to isomorphism, by the following uni-
versal property: given an associative F-algebra A, any map X — A can be
uniquely extended to a homomorphism of algebras F(X) — A. The cardi-
nality of X is called the rank of F(X). We shall consider the free algebra
F(X) of countable rank on the set X = {1, z9,...}.

Definition 1.1.1 Let A be an F-algebra and f = f(x1,...,z,) € F(X).
We say that f =0 is a polynomial identity of A if f(a1,...,a,) =0 for all

ai,...,a, € A.

Let ® denote the set of all homomorphism ¢ : F(X) — A. Then it is
clear that f = 0 is a polynomial identity for A if and only if f € ﬂ%@ Kerp.
We shall usually say that f = 0 is an identity on A or that A satisfies f = 0;
sometimes we shall say that f itself is an identity of A.

Since the trivial polynomial f = 0 is an identity for any algebra A, we

make the following:

Definition 1.1.2 If A satisfies a non-trivial identity f = 0, then we say
that A is a Pl-algebra.

For a,b € A, let [a,b] = ab — ba denote the Lie commutator of a and b.

We next give some examples of Pl-algebras.

Example 1.1.3 Let UT,(F) be the algebra of n x n upper triangular ma-
trices over F'. Then UT, (F) is a Pl-algebra since it satisfies the identity

(1, x2] - - - [Top—1, T2n] = 0.



1.2 T-ideals and varieties of algebras

Given an algebra A, we define
IdA)={feF(X)|f=0 on A},

the set of polynomial identities of A. Clearly, Id(A) is a two-sided ideal
of F(X). Moreover, if f = f(x1,...,2,) is any polynomial in Id(A), and
g1, - -, gn are arbitrary polynomials in F'(X), it is clear that f(g1,...,9n) €
Id(A). Since any endomorphism of F(X) is determined by mapping x — g,
r € X, g € F(X), it follows that Id(A) is an ideal invariant under all

endomorphism of F(X). The ideals with this property are called T-ideals.

Definition 1.2.1 An ideal I of F(X) is a T-ideal if o(I) C I for all endo-

morphisms ¢ of F(X).

Hence Id(A) is a T-ideal of F'(X). On the other hand, it is easy to check
that all T-ideals of F'(X) are actually of this type.

Now we need the notion of a variety of algebras.

Definition 1.2.2 Given a non-empty set S C F(X), the class of all alge-
bras A such that f =0 on A for all f € S is called the variety V = V(S)
determined by S.

A variety V is called non-trivial if S' # 0 and V is proper if it is non-trivial
and contains a non-zero algebra.
The following theorem helps us to decide whether a given class of algebras

is a variety.

Theorem 1.2.3 A non-empty class V of algebras is a variety if and only if

it satisfies the following properties:
1. if A€V, and B — A is a monomorphism, then B € V;

2. if A€V, and A — B is an epimorphism, then B € V;



3. if {Ay}qyer is a family of algebras and A, €V, for all v € T, then
HWGF A’Y ev.

There is a close correspondence between T-ideals and varieties of alge-

bras.

Theorem 1.2.4 There is a one-to-one correspondence between T-ideals of
F(X) and varieties of algebras. In this correspondence a variety )V corre-
sponds to the T-ideal of identities I1d(V) and a T-ideal I corresponds to the

variety of algebras satisfying all the identities in I.

1.3 Homogeneous and multilinear polynomials

When the base field F' is infinite, the study of the identities of a given algebra
can be reduced to the study of homogeneous and multilinear polynomials.
In this section we give the basic definitions and results.

Let F,, = F(x1,...,z,) be the free algebra of rank n > 1 over F. This

algebra can be naturally decomposed as

Fn:F}Ll)@F@)@...

n

where, for every k > 1, F,(Lk) is the subspace spanned by all monomials of
total degree k. The Féi) ’s are called the homogeneous components of F,.
This decomposition can be further refined as follows: for every k > 1

write

FW = @  Fiein)
i1+ +in=k

where Fé“z") is the subspace spanned by all monomials of degree 41 in x1,
...ip In z,. Such decomposition extend in an obvious way to F'(X) for X

countable.

Definition 1.3.1 A polynomial f belonging to Fﬁ’“) for some k > 1, will
n)

be called homogeneous of degree k. If f belongs to some Fé“l , it will



be called multihomogeneous of multidegree (i1,...,i,). We also say that a
polynomial f is homogeneous in the variable x;, if x; appears with the same

degree in every monomial of f.

A useful property of T-ideals is that if F' is an infinite field, they have a
corresponding decomposition in multihomogeneous polynomials. If f(zq,...,

xn) € F(X), we can always write

f _ Z f(il,...,in)

1120,...,in, 20
where f1-in) ¢ FTQHZ") is the sum of all monomials in f where z1,..., 2z,
appear at degree i1, ..., i, respectively. The polynomials f(i1-in) which

are non-zero are called the multihomogeneous components of f.

Theorem 1.3.2 Let F be an infinite field. If f = 0 is a polynomial identity
for the algebra A, then every multihomogeneous component of f is still a

polynomial identity for A.

One of the most important consequences of the previous theorem is that
over an infinite field every T-ideal is generated by its multihomogeneous
polynomials.

Among multihomogeneous polynomials a special role is played by the

multilinear ones.

Definition 1.3.3 A polynomial f is linear in the variable x; if x; occurs
with degree 1 in every monomial of f. A polynomial which is linear in each

of its variables is called multilinear.

In the language above we can say that a polynomial f(x1,...,2,) €
F(X) is multilinear if it is multihomogeneous of multidegree (1,...,1).
Since in a multilinear polynomial f(x1,...,z;,) each variable appears in

each monomial at degree 1, it is clear that this polynomial is always of the



form

f($1,...,l'n) = Z CAoZy(1) """ Lo(n)

O’ESn

where a, € F' and S, is the symmetric group on {1,...,n}.
The most important property of multilinear polynomials is given in the

following remark

Remark 1.3.4 Let A be an F-algebra spanned by a set B over F. If a
multilinear polynomial f vanishes on B, then f is a polynomial identity of

A

Theorem 1.3.5 If charF = 0, every non-zero polynomial f € F(X) is

equivalent to a finite set of multilinear polynomials.
We can record this results in the language of T-ideals.

Corollary 1.3.6 If charF =0, every T-ideal is generated, as a T-ideal, by

the multilinear polynomials it contains.



Chapter 2
Sn-Representations

2.1 Finite dimensional representations

Let V be a vector space over a field F' nd let GL(V') be the group of invertible

endomorphisms of V. Recall the following.

Definition 2.1.1 A representation of a group G on 'V is a homomorphism

of groups p : G — GL(V).

Let us denote by End(V') the algebra of F-endomorphisms of V. If F'G
is the group algebra of G over F' and p is a representation of G on V, it
is clear that p induces a homomorphism of F-algebras p’ : FG — End(V)
such that p/(1g) = 1.

Throughout we shall be dealing only with the case when dimpV =n <
o0, i.e., with finite dimensional representations. In this case n is called the
dimension or the degree of the representation p. Now, a representation of a
group G uniquely determines a finite dimensional F'G-module (or G-module)
in the following way. If p: G — GL(V') is a representation of G, V' becomes
a (left) G-module by defining gv = p(g)(v) for all g € G, v € V. It is also
clear that if M is a G-module which is finite dimensional as a vector space

over F', then p: G — GL(M), such that p(g)(m) = gm, for g € G, m € M,

10



defines a representation of G on M.

Definition 2.1.2 If p: G — GL(V) and p' : G — GL(W) are two repre-
sentations of a group G, we say that p and p' are equivalent, and we write

p~p,if Vand W are isomorphic as G-modules.

Definition 2.1.3 A representation p : G — GL(V') is irreducible if V is an
irreducible G-module. p is completely reducible if V' is the direct sum of its

irreducible submodules

The basic tool for studying the representations of a finite group in case
charF' = 0, is Maschke’s theorem. Recall that an algebra A is semisimple if

J(A) = 0 where J(A) is the Jacobson radical of A.

Theorem 2.1.4 (Maschke) Let G be a finite group and let charF =0 or

charF' =p >0 and p1|G|. Then the group algebra FG is semisimple.

As a consequence of Wedderburn’s theorem, it follows that, under the

hypotheses of Maschke’s theorem,
FG o Mnl(D(l)) P Mnk(D(k))

where D@, ..., D% are finite dimensional division algebras over F. In light
of these results one can classify all the irreducible representations of G: M is
an irreducible G-module if and only if M is an irreducible M,,.(D®)-module,
for some i. On the other hand, M,,(D®) has (up to isomorphisms) only
one irreducible module, isomorphic to Z;“:l D® €ij-

From the above it can also be deduced that every G-module V is com-
pletely reducible. Hence if dimpV < oo, V is the direct sum of a finite

number of irreducible G-modules. We record this fact in the following.

Corollary 2.1.5 Let G be a finite group and F' a field of characteristic zero

orp >0 and pt|G|. Then every representation of G is completely reducible

11



and the number of inequivalent irreducible representations of G equals the

number of simple components in the Wedderburn decomposition of the group

algebra FG.

Recall that an element e € FG is an idempotent if €2 = e. It is well
known that since F'G is finite dimensional semisimple, every one-sided ideal
of FG is generated by an idempotent. Moreover every two-sided ideal is
generated by a central idempotent. We say that an idempotent is minimal
(central resp.) if it generates a minimal one-sided (two-sided resp.) ideal.

We record this in the following.

Proposition 2.1.6 If M is an irreducible representation of G, then M =2
Ji, a minimal left ideal of Mni(D(i)), for some i € 1,...,k. Hence there

exists a minimal idempotent e € F'G such that M = FGe.

When the field F' is a splitting field for the group G, e.g., F' is alge-
braically closed, then the following properties hold.

Proposition 2.1.7 Let F' be a splitting field for G. Then the number of
non-equivalent irreducible representations of G equals the number of conju-

gacy classes of G.

Since by Corollary 2.1.5 this number equals the number of simple com-
ponents of F'G, it follows that when F' is a splitting field for G, it equals the
dimension of the center of F'G over F'.

A basic tool in representation theory is provided by the theory of char-
acters. From now on assume that F' is a splitting field for G of characteristic

zero and let tr : End(V) — F be the trace function on End(V).

Definition 2.1.8 Let p: G — GL(V) be a representation of G. Then the
map x, : G = F such that x,(g) = tr(p(g)) is called the character of the

representation p and dimV = degx, is called the degree of the character x,.

12



We say that the character x, is irreducible if p is irreducible. Since
Xp(9) = Xp(h) provided g is conjugate to h in G, x, is constant on the

conjugacy classes of G, i.e., x, is a class function of G. Notice that x,(1) =

degx,.

2.2 §S,-representations

In this section we describe the ordinary representation theory of the sym-
metric group S,, n > 1. Since Q, the field of rational numbers, is a splitting
field for S, for any field F' of characteristic zero, the group algebra F'S,, has
a decomposition into simple components which are algebras of matrices over
the field F' itself. Moreover, by Proposition 2.1.7, the number of irreducible
non-equivalent representations equals the number of conjugacy classes of \S,.

Recall the following.

Definition 2.2.1 Let n > 1 be an integer. A partition A of n s a finite
sequence of integers X = (A1,...,\p) such that A\y > -+ > A\, > 0 and

Yoy Ai =n. In this case we write A - n.

If r = 1, then \; = n and we write A = (n). For the partition \ with
A1 =...= A, =1 the notation A\ = (1") is usually used. More generally, we
write A = (k%) as soon as A = (k,...,k) and n = kd.

It is well known that the conjugacy classes of S, are indexed by the
partitions of n: if ¢ € 5,, we decompose ¢ into the product of disjoint

cycles, including 1-cycles. this decomposition is unique if we require that
0 =Tme - Ty

with 7,9, ..., 7 cycles of length Ay > --- > A, > 1, respectively. Then
the partition A = (A1, ..., A,) uniquely determines the conjugacy class of o.
Since, as we mentioned above, all the irreducible characters of .S, are in-

dexed by the partitions of n, let us denote by x, the irreducible S,-character

13



corresponding to A F n.
It is standard to use the notation dy = xx(1) for the degree of x). It
follows that F'S, has the following decomposition

FS, =1 =P My, (F),

AFn AFn
where Iy = e\F'S,, = My, (F) is the minimal two-sided ideal of F'S,, corre-

sponding to A= n, and ex = Y g Xa(0)o is the essential central idempo-

tent deduced from Remark .

Proposition 2.2.2 Let F be any field of characteristic zero and n > 1.
Then there is a one-to-one correspondence between irreducible Sy, -characters
and partitions of n. Let {xx | A F n} be a complete set of irreducible
characters of Sy, and let dy = xx(1) be the degree of xx, A\ F n. then

FS, =1 =P My, (F),

AFn AFn

where Iy = exF'S, and ey = ZGGSn Xx(o)o is up to a scalar, the unit

element of I.

Definition 2.2.3 If A = (\1,...,\,) b n, the Young diagram associated
to X\ is the finite subset of Z x Z defined as Dy = {(i,j) € ZxXZ | i =
L....orj=1... A}

There are two standard notations. In one notation, a Young diagram
D, is denoted as an array of boxes corresponding to the points (i,7). In
the other notation, and this is the one we shall adopt, the array of boxes
denoting D, is such that the first coordinate i (the row index) increases
from top to bottom and the second coordinate j (the column index from left
to right).

For a partition A - n we shall denote by )\ the conjugate partition of
A N = (M, ..., AL) is the partition such that \,..., A, are the lengths of
the columns of D). Hence D) is obtained from Dy by flipping D) along its

main diagonal.

14



Definition 2.2.4 Let A\ - n. A Young tableau Ty of the diagram D) is a
filling of the boxes of Dy withe the integers 1,2,...,n. We shall also say
that T is a tableau of shape A.

Of course there are n! distinct tableaux. Among these a prominent role

is played by the so called standard tableaux.

Definition 2.2.5 A tableau T\ of shape X is standard if the integers in each
row and in each column of Ty increase from left to right and from top to

bottom, respectively.

There is a strict connection between standard tableaux and degrees of

the irreducible S,-characters.

Theorem 2.2.6 Given a partition A\ b n, the number of standard tableaux
of shape X equals dy, the degree of x», the irreducible character corresponding

to \.

Next we give a formula to compute the degree dy of the irreducible
character x: the Hook Formula. First we need some further terminology.
Given a diagram Dy, A F n, we identify a box of D) with the corre-

sponding point (7, j).

Definition 2.2.7 For any box (i,j) € D), we define the hook number of

(4,7) as hyj = X + )\;- — 14— j+ 1, where X s the conjugate partition of \.

Note that h;; counts the number of boxes in the "hook” with edge in

(,7), i.e., the boxes to the right and below (i, 7).

Proposition 2.2.8
n!

Hi,j hij

where the product runs over all boxes of D).

15



Next we describe a complete set of minimal left ideals of F'S,,. Given
any tableau T of shape A F n, let us denote by T\ = Dy(a;;), where a;; is

the integer in the (i, 7) box. then

Definition 2.2.9 The row-stabilizer of T, is

R, = Sy, (a11,a12,...,a10,) X -+ X Sy (ar1,ar2, ..., ary,)
where Sy, (a1, aio, ..., a;x;) denotes the symmetric group acting on the inte-
GETS @1, Aj2y « - 5 Qi) -

Hence R, is the subgroup of S,, consisting of all permutation stabilizing

the rows of T}.
Definition 2.2.10 The column-stabilizer of Ty is

Cr, = S)\/l(an,agl, .. .,a)\rll) X - X Sx (@1, G2ngs - -5 GNLN)
where X' = (N, ..., \,) is the conjugate partition of \.

Hence Cr, is the subgroup of S, consisting of all permutations stabilizing

the columns of T).

Definition 2.2.11 For a given tableau T, we define
er, = Z (sgnT)oT.
O'ERT)\ ,TECT)\

1. .
It can be shown that e% = aer,, where a = C%‘ is a non-zero integer,

i.e., er, is an essential idempotent of F'S,,.

Given a partition A F n, the symmetric group S, acts on the set of
Young tableaux of shape A as follows: If o € S, and T\ = Djy(a;;), then
0T\ = Dy(o(a;j)). This action has the property that

1

Ryr, = oRr,07" and Cor, = O'CTAO'_l.

It follows that O'€T>\0'_1 = €5T) -

We record the most important facts about ez, in the following.

16



Corollary 2.2.12 For every Young tableau Ty of shape A\ n, the element
ety 15 a minimal essential idempotent of F'S,, and F'S,er, is a minimal left
ideal of F'Sy, with character xx. If T\ and T are Young tableaux of the
same shape, then e, and ery are conjugated in F'S,, through some o € S,;

moreover, O'6T>\0'_1 = €5T)-

The above proposition says that for any two tableaux Ty and 775 of the

same shape \, F'Sper, = FSneT;, as Sp-modules.

2.3 Inducing S,-representations

In this section we regard the group .S, embedded in 5,11 as the subgroup
of all permutations fixing the integer m + 1. The next theorem gives a
decomposition into irreducibles of any S,-module induced up to Sy, +1.

Let us denote by M) an irreducible S,-module corresponding to the

partition A - n. We have

Theorem 2.3.1 Let the group S, be embedded into S,+1 as the subgroup
fizing the integer n+ 1. Then

1. If A\ F n, then My T Sp+1 = Z#GH M,, where AT is the set of all
partitions of n + 1 whose diagram is obtained from Dy by adding one

box;

2. If uFn+1, then M, | S, = Z/\e;r M)y where u~ is the set of all

partitions of n whose diagram is obtained from D,, by deleting one box.

We go one step further and we state a more general result. First we need
some definitions.

We embed the group S, x Sy, into Sy, by letting S, act on {n +
1,...,n+ m}. Recall that if M is an S,-module and N is an S,,-module,

then M ®pg N has a natural structure of S,, x S,,-module.

17



Definition 2.3.2 If M is an S,-module and M 1is an Sp,-module, then the

outer tensor product of M and N is defined as
M@®N = (M & N) 1 Spim-
Recall that (n) denotes a one-row partition p - n, i.e., uy = n. We have
Theorem 2.3.3 (Young Rule) Let \Fn and m > 1. Then
MyEMm) = Y My

where the sum runs over all partitions p of n + m such that we have p; >

AL > p2 > 2 fintm 2 Antme-

Definition 2.3.4 An unordered partition of n is a finite sequence of positive

integers o = (au,...,0q¢) such that 2221 o; = n. In this case we write

aE=n.

Definition 2.3.5 A Young tableau is semistandard if the numbers are non-

decreasing along the rows and strictly increasing down the colummns.

We now consider the obvious partial order on the set of partitions. Let
A= (A1,..., ) Fnand p = (u1,...,1q) F m, then A > p if and only if
p>qand \; > u; for all ¢ = 1,...,p. In the language of Young diagrams
A > p means that D), is a subdiagram of D).

Let A= n, u = m. Wesay that A > pif \; > p; foralle > 1,ie.,D) 2 D,,.
if A > p, we define the skew-partition A\ p = (A1 — p1, Ao — pa,...); the
corresponding diagram Dy, ,, is the set of boxes of Dy which do not belong

to Dy.

Definition 2.3.6 A skew-tableau T\, is a filling of the boxes of the skew-
diagram Dy, with distinct natural numbers. if repetitions occur, then we
have the notion of (generalized) skew-tableau. We also have the natural

notion of standard and semistandard skew-tableau.

18



Definition 2.3.7 Let a = (a1,...,0¢) = n. We say that « is a lattice
permutation if for each j the number of i’s which occur among o, ..., a; s

greater then or equal to the number of (i +1)’s for each i.
We can now formulate

Theorem 2.3.8 (Littlewood-Richardson Rule) Let A - n and p = m.
Then

MABM, = Y KM,
vEn+m

where kﬁ\A is the number of semistandard tableau of shape v\ X and content
w which yield lattice permutations when we read their entries from right to

left and downwards.

2.4 S,-actions on multilinear polynomials

In this section we introduce an action of the symmetric group S,, on the space
of multilinear polynomials in n fixed variables. We assume throughout this
section that charF = 0. We start with a remark about arbitrary irreducible

Sp-modules.

Lemma 2.4.1 Let M be an irreducible left S,,-module with character x(M) =
Xx, AFn. Then M can be generated as an Sp-module by an element of the

form er, f for some f € M and some Young tableau T of shape X\. More-

over, for any Young tableau T of shape X\ there exists f' € M such that

M = FSpery 1.

The previous lemma says that, given a partition A - n and a Young
tableau T) of shape A, any irreducible S,,-module M such that x(M) = xx
can be generated by an element of the form er, f for some f € M. By
the definition of Rp,, for any 0 € Ry, we have that oer, f = erp, f, ie.,

et, f is stable under the Ry, -action. The number of R, -stable elements in
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an arbitrary S,-module M is closely related to the number of irreducible

Sp-submodules of M having character x.

Lemma 2.4.2 Let T be a Young tableau corresponding to A\ = n and let
M be an S,,-module such that M = My & --- & M, where M,..., M,, are
irreducible Sy, -submodules with character x . Then m is equal to the number

of linearly independent elements g € M such that g = g for all o € R, .

Now let A be a Pl-algebra and Id(A) its T-ideal of identities. As we
showed in Corollary 1.3.6, in characteristic zero, Id(A) is determined by its
multilinear polynomials.

We introduce

P, =span{oc € S, | o € Sp},

the vector space of multilinear polynomials in z1,...,x, in the free algebra
F(X). We define a map
p: FS, — P,

by setting

©: Z Q0T — Z QoTy(1) """ Lo(n)-

O’GSn UGSn

It is clear that ¢ is a linear isomorphism. This isomorphism turns P,

into an S, bimodule; if 0,7 € S,,, then

O(Tr(1y  Tr(n)) = Tor(1) " Tor(mn) = (To(1) " To(m))T-

The interpretation of the left S,-action on a polynomial f(x1,...,z,) €

P,, for o € 5, is

of(x1,. . xn) = f(To1)s- s Tom))

that is , of permuting the variable according to o.
The right action of 7 on f(x1,...,x,) is that of changing the places in
each monomial @, (1) Zs(,) according to the permutation 7 and is inde-

pendent of o. This means that the i-th factor z,(;) will be placed in the
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771(i) place of the new monomial, i = 1,...,n. Note that T-ideals are not
invariant in general under the right action.

Denote P, = P,(z1,...x,) = Py(z). If y1,...,y, are other variables,
one can consider P, (y1,...yn) = Pn(y). If A is a Pl-algebra and charF' = 0,
it suffices to study the multilinear identities of A. Namely one should study
P, (z) N Id(A), P,(y) N Id(A), etc. However, the correspondance x; — y;
yields the isomorphism P,(x) = P,(y) = F'S,, and it suffices to study just
P,(z)NId(A).

Since T-ideals are invariant under permutations of the variables, we ob-
tain that P, N Id(A) is a left S,,-submodule of P,. Hence

P

P(A)=—""_
(4) P,NId(A)

has an induced structure of left S,-module. If F'(X) is the free algebra of

countable rank on X = {x1,x9,...}, then P,(A) is the space of multilinear

elements in the first n variables of relatively free algebra F(X) Id(A). If
V = var(A), we also write P,(V) = P,(A4).

Definition 2.4.3 The non-negative integer

P,

n(4) = dim Po(4) = 5o

1s called the nth codimension of the algebra A.

Definition 2.4.4 Forn > 1, the S, -character of P,,(A) = Pn%%(A) is called
the nth cocharacter of A and is denoted x,(A)

Now, if we decompose the nth cocharacter into irreducibles, we obtain

Xn(A) =) maxa,
AFn

where y is the irreducible S,-character associated to the partition A - n

and my > 0 is the corresponding multiplicity. Then we have
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Definition 2.4.5

In(A) = my

AFn
is called the nth colength of A.

In other words, [,,(A) counts the number of irreducible S,-modules ap-
pearing in the decomposition of P,(A). We recall that if V is a variety of
algebras we write ¢, (V) = cp(A), xn(V) = xn(A) and 1,,(V) = [,,(A) where
A is an algebra generating V.

We recall these important properties for codimensions and colengths.

Theorem 2.4.6 If the algebra A satisfies an identity of degree d > 1, then
cn(A) < (d—1)%,

Theorem 2.4.7 If V is a non-trivial variety, the sequence of colengths of

V is polynomially bounded, i.e., there exist constant C' and k such that
1I,(V) < Cn*

for allm > 1.

2.5 Representation of the general linear group

In this section we survey the information on representation theory of the
general linear group over an algebraically closed field of characteristic zero
in a form which we need for our study of Pl-algebras. We restrict our
attention to the case when GL,, = GL,(F) acts on the free associative
algebra of rank m and consider the so-called polynomial representations of
G L., which have many properties similar to those of the representations of

finite groups. We refer to ([24], Chapter 12) for the results of this section.
Definition 2.5.1 The representation of the general linear group GLy,:
¢ : GLy, — GLg
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is called polynomial if the entries of the s x s matriz ¢(ai;) are polynomial
functions of the entries of the m X m matriz a;;, for all a;; € GLy,. When
all the entries of ¢(ai;) are homogeneous polynomials of degree k, then ¢ is

a homogeneous representation of degree k.

Let F,(X) = F(x1,...,x,) denote the free associative algebra in m
variables and let U = spanp{x1,...,2m}.

The action of the group GL,, = GL(U) on F,,(X) can be obtained
extending diagonally the natural left action of GL,, on the space U by

defining:
9( @iy, i) = 9(xs) - 9(xi,), g€ GLy ..., x5 € Fp(X).

Actually, F,,,(X) is a polynomial GL,,-module (i.e. the corresponding
representation is polynomial).

Let F' be the space of homogeneous polynomials of degree n in the

variables x1, ..., zm, then F)} is a (homogeneous polynomial) submodule of
F,(X). We observe that:
F;ll = @ F’rgzlvvlm)

where Fr(,fl""’im) is the multihomogeneous subspace spanned by all monomi-
als of degree i1 in x1,..., %y, in Ty,.

The following theorem states a result similar to Maschke’s Theorem
about the complete reducibility of GL,,-modules, valid for the polynomial

representations of GL,.

Theorem 2.5.2 FEvery polynomial G Ly,-module is a direct sum of irre-

ducible homogeneous polynomial submodules.

The irreducible homogeneous polynomial G L,,-modules are described by

partition of n in not more than m parts and Young diagrams.
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Theorem 2.5.3 Let P,,(n) denote the set of all partitions of n with at most

m parts (i.e. whose diagrams have height at most m).

1. The pairwise non isomorphic irreducible homogeneous polynomial G Ly, -
modules of degree n > 1 are in one-to-one correspondence with the
partitions X\ € Pp,(n). We denote by W an irreducible GL,-module

related to .

2. Let A € Py(n). Then the GLy,-module W is isomorphic to a sub-
module of F}}. Moreover, the GLy,-module F)} has a decomposition:
Fre N dw,
AEP, (n)
where dy is the dimension of the irreducible Sy,-module corresponding

to the partition \.

3. As a subspace of ET, the vector space W? is multihomogeneous, i.e.
W — @ At

where WA iLwim) — WA A Fri\l’(il,“.,im).

We want to show that if W* C F, then W? is cyclic and generated
by a multihomogeneous polynomial of multidegree (A1,...,\x) with A =
(A,...,\p) € P2

We observe first that the symmetric group S, acts from the right on F}}
by permuting the places in which the variables occur, i.e. for all z;,,...,x;, €

F” and for all o € S,
Ljy * T4, 0 = Ii0(1)7""xi0(n)'

n

Let now A = (A1,...,Ax) € Pyn(n). We denote by sy the following

polynomial of F}:
A1
sn=sa(@1, . wk) = [ [ Sthoy @1, 2n0),
=1
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where h;(\) is the height of the ith column of the diagram of A and

Str(z1,...,2,) = Z (senT)z (1) Tr(r)
TESE

is the standard polynomial of degree r. Note that by definition s, is multi-

homogeneous of multidegree (A, ..., Ag).

Theorem 2.5.4 1. The element sy(x1,...,xr), defined above, generates

an irreducible G Ly,-submodule W of F isomorphic to W.

2. Every submodule W» C F" is generated by a non-zero polynomial

called highest weight vector of W, of the type:

=5y Z a,0, Qn € F.
O’GSn

The highest weight vector fy is unique up to a multiplicative constant
and it is contained in the one-dimensional vector space WM k) —

W}\ N Fri‘lv(Alv"w)‘k) .

8. Let Y cg Q0 € FSn. if sxY ,cq ;0 # 0, then it generates an
irreducible submodule W = W*, W C F.

Let A = (A1,...,Ak) € Pn(n) and let T be a Young tableau. We denote
by fr, the highest weight vector obtained from (1) by considering the only
permutation ¢ € S, such that the first column of T) is filled in from top
to bottom with the integers o(1),...,0(h1())), in this order, the second
column is filled in with o(h1(A) +1),...,0(hi(X) + hi1(N)), ete.

Proposition 2.5.5 Let A = (A1,..., ) € Pn(n) and let W» C F". The
highest weight vector fx of W can be expressed uniquely as a linear combi-

nation of the polynomials fr, with Ty standard tableau.
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2.6 Group gradings on algebras

In this section we introduce the notion of an algebra graded by a group
and we give some examples; moreover we extend the asymptotic methods

developed in the previous sections.

Definition 2.6.1 Let G be a group and A be an associative algebra over an
infinite field F'. A G-grading on A is a decomposition of A as direct sum of

F-vector subspaces A = P Ay such that AgAp C Ag,, Vg, h € G.

geG

From the definition it is clear that any a € A can be uniquely written

as a finite sum a = ) - a, with a;, € A;. The subspaces A, are called

geG
the homogeneous components of A. Accordingly, an element a € A is ho-
mogeneous (or homogeneous of degree g) if a € A;. A subspace B C A is
graded or homogeneous if B = @, (BN Ay). In other words, B is graded

if, forany b€ B, b=>_

geG
geq bg implies that by € B for all g € G. Similarly,
one can define graded subalgebras, graded ideals, etc. Notice that if H is a
subgroup of G, then clearly B = @, 5 A is a graded subalgebra of A. In
particular, if e is the unit of G, A, is a subalgebra of A. Next we give some

examples of graded algebras.

Example 2.6.2 Any algebra A can be graded by any group G by setting
A=A. and Ay =0 for any g # e. This grading is called trivial.

Example 2.6.3 The group algebra A = F'G of a group G is naturally graded
by G by setting Ay = spangg.

Example 2.6.4 Let A = Mp(F) be the algebra of k x k matrices over F
and let G be an arbitrary group. Give any k-tuple (g1,...,9x) € G, one
can define a G-grading of A by setting

Ag = spanp{ei; | g; "5 = g},
where e;; are the usual matrix units.
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Example 2.6.5 Let UT,, be the algebra of n x n upper-triangular matri-
ces. A G-grading on A = UT,(F) is called elementary if there exists
g=1(91,---,9n) € G" an n-tuple of elements of G such that Ay = span{e;; |
g;lgj =g} Vg€ G, i.e.: the homogeneous degree of e;j is equal to g;lgj

for every i and j such that 1 <i < j <n.

Suppose that the algebra A is graded by a finite group G. Let G =
{91 = €,92,...,9s} and let A = @;_; Ay, be the decomposition of A into
its homogeneous components. Hence Ay, Ay, C Ag,y;, for all i,j =1,...s.

We denote by F(X,G) the free associative G-graded algebra of count-
able rank over F. Here the set X decomposes as X = [J;_, X, where
the sets Xy, = {x1,4,,22,,,...} are disjoint, and the elements of X, have
homogeneous degree g;. The algebra F(X,G) has a natural G-grading
F(X,G) = @QGG Fy, where Fg, is the subspace of F'(X,G) spanned by
the monomials z;, g, - i, g, of homogeneous degree g = gj, - - - gj,-

Recall that an element of F'(X,G) is called a graded polynomial. Also,
f is a graded (polynomial) identity of the algebra A, and we write f = 0,
in case f vanishes under all graded substitutions z;, — a4, € A,. Let
Id%(A) = {f € F(X,G) | f =0 on A} be the ideal of graded identities of
A. Clearly Id%(A) is invariant under all graded endomorphism of F(X, G).

Notice that if for @ > 1 we set x; = x;4, + -+ + i 4,, then the free
algebra F'(X) is naturally embedded in F(X,G) and we can regard the
ordinary identities of A as a special kind of graded identities.

Since charF' = 0, the multilinear polynomials of 7d“(A) determine all of

Id%(A). Hence for n > 1 we define

P,? = spanF{xg(l) Lo(n) | 0 € SnyGirs- -1 9i, € G

791‘6(1) e 791'0_(")

to be the space of multilinear G-graded polynomials in the variables

Tlgi)s- - Tngins Jis € G.
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The ideal Id“(A) is determined by the sequence of subspaces PYNId%(A),n =
1,2,..., but we can consider even smaller spaces.

Let n > 1 and write n = ny + --- + ns as a sum of non-negative in-
tegers. Define P, . n, C PT? to be the space of multilinear graded poly-
nomials in which the first n; variables have homogeneous degree ¢g;, the
next ng variables have homogeneous degree g2 and so on. Notice that given
such nq,...,ns, there are (m"ns) subspaces isomorphic to P, ., where
(m:”_’ns) denotes the multinomial coefficient. It is clear that P is the direct
sum of such subspaces with ny +- - -+ns = n. Moreover such decomposition
is inherited by P& N Id%(A) and we consider the spaces P, . N I1d%(A).
At the light of these observations, one defines

Pnl’“-yns
Pnl,...,ng N IdG(A> .

Pnly-n,ns (A) =

The space P, .. n,(A) is naturally endowed with a structure of Sp, x - x
Sp.- module in the following way: the group Sy, x - -- x S, acts on the left
on P, .n, by permuting the variables of the same homogeneous degree;
hence S,, permutes the variables of homogeneous degree g1, Sy, those of
homogeneous degree gy, etc. Since Id“(A) is invariant under this action,
Py, ..n.(A) has a structure of Sy, x --- x Sy, - module and we denote by
Xf;"hm’ns (A) its character.

If A(1) F n1,..., A(s) F ng, are partitions, then we write (A\) = (A(1),...,
A(s)) F (n1,...,ns) and we say that (\) is a multipartition of n = n; +-- -+
Ng.

Since charF' = 0, by complete reducibility X%,...,ns (A) can be written as

a sum of irreducibles characters in the following way:
X ms(A) =D mpyXaa) @+ ® Xags): (1)
(A)Fn

where my, is the multiplicity of x\(1) ® -+ ® x)(s) in Xgl’wns(A). We call
XnGl,...,ns (A) the (n1,...,ns)th cocharacter of A.
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Recall (see for instance [30]) that the wreath product of G and S, is the

group defined by

Gi1S,={(91,---,9n;0) | 91,---,9n € G,0 € S,}

with multiplication given by

(91,5 gn;0) (M1, hns T) = (91hg-1(1), - -+ Gnho—1(n); OT)-

We remark that if G is an abelian group, there is a well-known duality
between G-gradings and G-actions on the algebra A (one needs to assume
that the base field has enough roots of 1). Through this duality one can
define an action of the wreath product G S, on PS¢ (see [29]). Since this
action preserves Id(A), the space P¢(A) = PY/(PSY N 1d%(A)) becomes a
G 1 S,- module and let X% (A) be its character. The irreducible characters

of G5, are indexed by multipartition of n. Hence one writes
XS(A) = Z ml(/\)XO\)a (2)
(ANFn

and by an obvious generalization of [25], we have that if (\) = (A(1),...,A(s))
with A(1) = n1,...,A(s) F ng, then in (1) and (2), my = m’w.
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Chapter 3

Group Graded Algebras and
Multiplicities bounded by a

constant

3.1 Preliminaries

Throughout this chapter F' will denote a field of characteristic zero and A
an associative F-algebra satisfying a non-trivial polynomial identity (PI-
algebra).

Let E be the infinite dimensional Grassmann algebra generated by a
countable set {e1,es,...} subject to the condition e;e; = —eje;, for all i, j.

Then E has a natural Zy-grading, £ = Ey @ E1 where
Ep =span{e;, ---€iy, | 1 <i1 < ... <o, k >0}

and

FEy :span{eil C Cigpyn | 1< <. < i2k+1,]€ > 0}.

If A= Ag® Ay, is a Zs-graded algebra, then the Grassmann envelope of
A is defined as E(A) = (Ep® Ap) @ (E1 ® A1). Notice that if A is a G x Za-
graded algebra, A = @(g,z’)ecng Ag,iy is a G x Zy-graded algebra, we can
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consider the induced Zo-grading on A, A = Ag® Ay where Ay = ®96G Ag.0)
and A} = @QGG A(g1)- Hence in this case the Grassmann envelope of A
can be regarded as a G-graded algebra via E(A) = @, .5 E(A)y where
E(A)g = (Eo @ Agg)) ® (E1 @ A(g))-

Next we recall an important theorem of Aljadeff and Belov [3], proved

geG

independently by Sviridova in [48] for abelian groups.

Theorem 3.1.1 Let G be a finite group and A a G-graded Pl-algebra over
a field of characteristic zero. Then there exists a finite dimensional G X
Zs-graded algebra B such that 1d°(A) = I1d%(E(B)) where E(B) is the

Grassmann envelope of B.

Now let A be a finite dimensional G x Zs-graded algebra. By the
Wedderburn-Malcev theorem ([19]), we can write A = B + J where B is
a maximal semisimple subalgebra of A and J is its Jacobson radical. It
is well known that J is a graded ideal, moreover by [49] we assume, as
we may, that B is a G X Zs-graded subalgebra of A. Hence we can write
B =BW & ...® B where every BY is a G x Zy-graded simple algebra.
There is an important theorem of Bahturin, Sehgal and Zaicev in [16] that

gives a characterization of all G x Zy-simple algebras.

Theorem 3.1.2 Let B be a finite dimensional G X Zy-graded simple algebra
over an algebraically closed field F. Then B has the following structure:
there exist a subgroup H of G X Zo, a 2-cocycle o : H x H — F* where the
action of H on F is trivial, an integer k and a k-tuple (a1 = e,aq,...,ax) €
(G x Zo)* such that B is G x Zy- isomorphic to C = F*H & My(F) where
fora € G x Zy, Cy = spanp{u, ® e;; : a = ai_lhaj}. Here up, € F*H is a

representative of h € H and the e;;’s are the matriz units of My(F').

We recall that if V = var®(A) is a variety of G-graded algebras generated
by A, we write Xn,,...n. (V) for xn,,..n.(A).
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Recall also that UT5 is the algebra of 2 x 2 upper triangular matrices. By
[52, Theorem 1], any G-grading on UT5 is up to isomorphism, the elementary
grading determined by (e, g), for some g € G. When g = e, then we get
the trivial grading. So by varG(UTQG ) we denote the variety of G-graded
algebras generated by UT, with an elementary G-grading. Recall that G =

{91 =¢€,92,...,9s}. Then we can restate the following.

Theorem 3.1.3 (/52, Theorem 3]) Let UTS' be endowed with a non-trivial
G-grading determined by (e, g;), for some i # 1. Then the Tg-ideal of graded
identities of UT2G is generated by the polynomials (1., %], X1,9,T2,4, and

L1,g; for all g; € G, g; # e, gi. Moreover if

X5 (UTY) = Z MyXa(1) @ & Xags)
(A)Fn

is the (n1,...,ns)th cocharacter of UTS', we have:
1.mpy =q+1, if M1) = (p+¢p),A(@) = (1), and A(j) =0, j #1i,1.
2. mpy =1, if (A\) = ((n),0,...,0).
3. meyy = 0 in all other cases.

Proof. Let A = UTS be graded by the pair (e, g;). Then A = A, @ Ag,. If we
consider the canonical Zs- grading on UTy, we get A = A5 A7 and A = A,
Ay = Ay, It follows that f(z1e,...,%ke, T1,g;5---,%1g) € 1d%(UTS) if
and only if f(:zlﬁ, TR T ,azlj) € IdZQ(UTzzz). We then apply [52,
Theorem 3] and we obtain conditions 1), 2) and 3) also for the (n,...,ns)th
cocharacter of UTS’. O

We now give some preliminary results needed in what follows. We start

with the following remarks.

Remark 3.1.4 Let A, B be G-graded algebras such that Id%(A) C I1d(B).
If

Xgl ..... ne(A) = Z MyXA1) @ - @ Xa(s)
(A)Fn
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and

Xoon (B) =D mipyxam) ® -+ @ Xags)
(A)Fn

are the (nq,...,ns)th cocharacter of A and B respectively, then
Moy > My,
for all (A\) Fn.

Proof. Let I} = Id%(B), Iy = I1d%(A); since I; D I then

P& ~ P PSnI
Pgﬂll Pncﬂlg PEDIQ'

Thus we have an embedding (of F'H,-modules)
p¢ o p¢
PnG NI PnG N Iy

and this implies that m ) < m’o\> for every () F n. O

Remark 3.1.5 Let A, B be two G-graded algebras and let A @ B be their
direct sum. If X5 . (A) = 2o 0kn MY XA ® - ® Xa(s) XS, n (B) =
>k M XA ® -+ ® Xas) and X5, o, (A® B) = Xy, My Xa) ®

- ® X)(s) are the corresponding (n1,...,ns)-th cocharacters, then

My < My + iy,

for all (\) F n.

Proof. Let Iy = Id%(A), I = Id%(B) and I = Id%(A & B); clearly I =
I; N I5. Consider the following linear map:

PG pP¢
PnG{WIl + Pﬁﬂ[g

f:PnG—>

such that a ~— (a + (P N I1),a + (PS N I)). Tt is easy to see that its
kernel is Ker(f) = P N1 NIy = PS N1 thus we have an embedding (of
F H,-modules)

e B S
PGNI PN PSNIy
It follows that 7y < my + m’<)\>, for all (\) - n. ]
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3.2 Some lemmas

In this section we prove some important lemmas.

Lemma 3.2.1 Let V be a variety of G-graded Pl-algebras and suppose that
UTS ¢V, for any G-grading on UTy. Then V = var®(E(A)) for some
finite dimensional G X Zo-graded algebra A such that A = B + J where
B~BWag...e B™ with B~ Feif, 1<i<m, and J = J(A). Here

H; is a subgroup of G X Zo and «; : H; X H; — F* is a 2-cocycle.

Proof. By Theorem 3.1.1, we can write V = var®(E(A)) where E(A) is
the Grassmann envelope of a finite dimensional G x Zy-graded algebra A.
As we have previously seen, A = BN @ ... @ B(™ 4+ J, with the B®)’s
G-simple algebras for every i = 1,...,m. Now, by Theorem 3.1.2, for every
i, B0 =~ My, (F) ® F* H; for some subgroup H; of G x Zy and 2-cocycle
a; 1 Hy x Hi — F*. We need to prove that for every ¢, 1 < i < m, k; = 1,
ie., B ~ paif,.

Suppose by contradiction that B =~ D = My(F) ® F*H with k > 1.
Then D = Dy o)ecixz, Piga)- Let ((h1,a1),..., (hy, ax)) € (G < Z3)* be the
k-tuple inducing the elementary grading on My (F'). Then for any (g,a) €

G X Zo we have

D(g,a) = Span{u(h,b) ® eij | (hiv ai)(hv b)(hj7 aj)_l = (g’ a)}v

where {u () | (h,b) € H} is the canonical basis of the twisted group algebra
F*H. Note that u o) ® e;; € D) since (h;,a;)(e,0)(hi, a;)”' = (e,0) and

U(e,0) D €12 € D(hlhgl . Hence L = Fej; @ Fegs P Fepo is a subalgebra

,01—02)

of D with induced G x Z3 grading
(6, 0) <h1h2_1, ay — GQ)
0 (€,0)

We write L = L(e,o)@L(hthA 2) where Loy = Feni+Fe, L(

—1
,a1—a hihy *,a1—az)

&~ Feyo with induced G x Zs-grading. Consider now the Grassmann envelope
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E(L) of L. If a1 — az = 0 we have
E(L) = Eo © (Lc,0) ® L 51 0)):
and if a1 — as = 1 we have
E(L) = (Eo @ L)) ® (E1 @ Ly, -1 1y)-

Ey Ey
Therefore if a1 — a2 =0, E(L) = with trivial grading. It fol-
0 Ep

lows that if UT, denotes UTY’ with trivial grading, then UT, € var®(E(L)) C
var(E(A)) =V, a contradiction.

Suppose now that a; — as = 1. Then
E(L)e = (Eo ® Lc,)) ® (E1 @ Le,1)) = Eo ® L),

E(L)ppzr = (Bo @ Ly pz ) @ (B @ Lz ) = By @ Loy

-1 Ey E;p

and E(L)y = 0, for all g # e, g # hihy . Thus E(L) =
0 Ep
. . e hhy! . N o
with grading . We will show that in this case Id“(F(L)) =
0 e
e hihy?
I1d%(UTS) where UTS' has grading
e

In fact it is easy to verify that E(L) satisfies the identities, [21 ¢, 2] =
0, z1,9724 = 0, for g = hlhgl and =1, = 0, for all A # e,g. Thus
1d8(UTE) C 1d%(E(L)). On the other hand, let f € Id¢(E(L)) be a
multilinear polynomial. Let ([x1,¢, %2, Z1,4%2,4, 21,5 | B # €,g)7 be the T-
ideal generated by the polynomials [x1 ¢, 2], 1,422, and z1 5. If we reduce
f mod([x1c, 2], 1 g%2,4, 15 | h # €, g)T, we may clearly assume that only
one variable of homogeneous degree g appears in f. Hence we may assume
that the polynomial f can be written in the form:

f= g Qi Tig,e " TipeT1,gTj1e " Lo _p_1,e-
11 <-<tp,J1<'Jn—h—1
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We shall prove that for any {i1,...,in} € {1,...,n}, a;. 4, = 0. In
fact if we specialize z;, ¢ = -+ = Zj, e = €11, T1,g = €12, Tjje = "+ =

Tj, . ..e = €2, [ takes value «;, ;,e12 = 0. This proves that o;,. 4, = 0

Ey Ey
for all 41,...,i, and, so, f = 0. Hence E(L) = has the same
0 Fy
N C . . e hihy'
G-graded identities as UT;" with grading . It follows that
0 e

var(UTS) C var(E(L)) C var(E(A)), a contradiction. So, for all i > 1,
BW =~ paf and the proof is complete. O

Lemma 3.2.2 Under the hypotheses of the previous lemma, V = varG(E(Al)
@ - @ E(A,)) where for every i € {1,...,n}, A; is a finite dimensional
G X Zso-graded algebra with Jacobson radical J;. Moreover A; = B; + J;,
where B; is a G X Zy-graded simple algebra isomorphic to F* H; for some

H; < G X Zs and 2-cocycle o; : H; x H; — F™*.

Proof. By the previous lemma V = var®(E(A)) where A = B @ ... @
B(™) 4 J and, for every i € {1,...,m}, B® = F® H; for some H; < G x Zy
and «; : H; x H; — F* a 2-cocycle.

Suppose that B®JB®) = 0, for some i # k. Then there exist ho-
mogeneous elements b; € B(i), b € B(k), ¢ € J such that b;ch, # 0.
But b; = bilgu),b; = bjlpy implies bjlguycbjlpy) # 0. Set f = 1pwu),
9 = 1pu), h =156 cl ) and note that A is homogeneous and f?=fg¢*>=g,
fh=hg="h, hf = fg=gf = gh = 0. Also f and g have homogeneous
degree (e,0) and h has homogeneous degree (g,a) (a = 0 or 1). Thus if N
is the algebra generated by f, g and h we have that N = UT, with G X Zo

. (e,0) (g,a)
grading
0 (e0)
As we have seen in the proof of Lemma 3.2.1,
Ey E Ey F
B(N) = 0o Lo or 0 £1
0 Ep 0 Ey
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with induced G-grading and it follows that var(UTS) = var(E(N)) C V, a
contradiction.

Thus BOJB® = 0 for all i # k. Recall also that B B®) = 0 for all
i # k. Clearly these relations imply that the same relations hold for the
Grassmann envelope: E(BW)E(J)E(BYW) =0, E(BD)E(BY) = 0, for all
i#j. Set A;=BW 4+ J for1<i<m. Then A=BDq...¢ B 4 J=
(BO 4+ )+ 4 (BM™ 4 J)= A1+ -+ A, where BO+J = 4;,1 < i <m.
We claim that Id%(E(A1)®---®E(Ay,)) = Id9(E(A1))N---NId%(E(An)).

In fact, if f = f(21,...,2,) € Id9(E(A1))N---NIdY(E(Ay,)) is multilin-
ear, we shall prove that f = 0on E(A;)+---+E(A;,). To this end it suffices
to check evaluations such that ¢(z;4) = Z; g € E(A1)U---U E(Ay,). Now
if Z1,g,,...,%n,g, € E(A;j) for some j, then f(Z14,,...,%Tng,) = 0. If, say,
T1q € E(A;) and Zo 4, € E(A;) with ¢ # j then To(1)g51) " Lo()gomy = 05
for all o € S,, by the previous relations. Thus f € Id%(E(A) @ --- @

E(A,,)). Since the other inclusion is obvious we get equality. It follows that

var®(E(B)) = var®(E(A) ® --- ® E(Ap)). O

3.3 The main result

In this section we prove our main theorem. First we need to recall and prove
some more results.

First we need the following result which was proved in [28].

If d > 1,1,t are integers as in [28] we define a hook shaped diagram of

arm d and leg [ as

hd,1,t)=(1+t,....0+t1,....10).
TT

Also we define

H(d) = J{ =0 .. h) bn [ A <13

n>1

37



Finally for any integer a > 1 we define:
H(d,l) U (a®) = U{)\ =, A) e [ A ST+ a, Agratr < U
n>1
We recall that if A is a G x Zo-graded algebra and we consider the G-graded
structure on A, then we write A = @j’:l Ag; where Ag; = Ay 0) @ Ay, 1)-

Lemma 3.3.1 Let A = B+J be a finite dimensional G X Zy-graded algebra,
dim A = m, with B a maximal G X Zs-graded semisimple subalgebra. Let
Ay = (M1),...A(s)) F n be a multipartition of n such that for some j,
1<j<s,

)‘(]) > h(dvpj —d, (m + 1)2)7

where d is an integer and p; = dimBy;. Then my = 0 in the (n1,...,ns)th

cocharacter Xgl,...,ns (E(A)) of E(A).

The following result can be essentially found in [28]. Here we give the

proof for completeness.

Lemma 3.3.2 Let A = B+ J be a finite dimensional G X Zo-graded algebra
with B a maximal semisimple graded subalgebra. Let pj = dim By, 1 < j <
s, and m = dim A. Ifxgh_,,,ns(E(A)) = Z()\)Fn MXA(L) @+ & Xa(s), then
myy # 0 dmplies that (A) = (A(1),...,A(s)) where for 1 < j < s, A(j) C
H(dj,pj—d;)U(u®), for suitable integers 0 < d; < pj, withu = (m+1)>+m.

Proof. Let (\) - n and suppose that myy # 0. Write A(j) = (A(j)1, A(J)2, - -),
1 < j < s and suppose that for some j there exists ¢ such that A(j); >
(m + 1)2 4+ m. Let k be the integer such that A(j)r > (m + 1)®> + m and
Mkr1 < (m+1)2+m. If k > p; then A(j) > h(p; + 1,0, (m +1)?) and we
reach a contradiction by the previous lemma. Thus £ < p;.

Set u = (m + 1) +m. If A(j)us1 > pj — k + 1, then A(j) > p where
= (1, pur1) = ((w+ ¥, (pj — k+1)“"1F). Since (m+1)2 +m+1—
(pj—k+1)>(m+1)2?and (m+1)2+m+1—k > (m+1)% we see that
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p > hk,p; —k+1,(m+1)?), hence A(j) > h(k,p; — k+1, (m+1)?), again
a contradiction by the previous lemma.

Thus A(j)ut1 < pj—k and A(j) € H(k,p; —k)U(u"). Therefore we may
assume that A(j); < (m + 1)2 +m. Clearly A(j)u+1 < p; since otherwise
A(j) > h(0,p; + 1, (m+1)?) contrary to the previous lemma. This says that
A(y) € H(0,p;) U (u*) and we are done. O

As an immediate consequence of the previous lemma we get.

Corollary 3.3.3 Let A= B+ J be defined as in the previous lemma, m =
dim A, p; = dim Bg,. If in Xp, - 0, (E(A)) = 200000 M) Xa1) @+ © Xa(s)s
mey 7 0, then for every j € {1,...,s} , A(j) € H(rj,rj), where rj =
(m+ 1) +m+p,.

Proof. We can remark that, for every j = 1,...,s, H(d,p; —d) U (r*) C
H(d + u,l + r); therefore, since d > p; Vj = 1,...,s, 7 > u and then
H(d+ u,l+r) C H(d+ r,l + ). Recall that d,l are integers such that
d+1 > dimBy < 1. So we can consider d = | = 1. Hence for every
j=1,...,8, AN(j) € H(r +1,r + 1) with r depending on j. If we set
ri = (m+1)2+m +d, then r; > r for every j = 1,...,s and so if we

consider 7 > r + 1 then A\(j) C H(F,7), Vj € {1,...,s}. ]

Lemma 3.3.4 Let A = B+J be a GxZo-graded algebra with J the Jacobson
radical of A and B = F*H for some H < G X Zs and o : H x H — F*
a 2-cocycle. Then there exists a constant M such that xglv_wns (E(A)) =
Z<,\>,_n MmoyXa1) @ - @ Xas) and my < M, for all (\) & n and for all

n>1.

Proof. As we have seen in Corollary 3.3.3, the G-graded cocharacter of E(A)
lies in the union of s hooks H(rj,r;), 1 < j < s. Choose a basis of A of
G x Zy- homogeneous elements. Let m; = dim Ay, o), m; = dim A, 1),

1 <j<s. Wehave A 1) = By x) + Jg, k) Where k =0 or k = 1, and
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since B = F'*H, dim B(,. ) < 1. So let

Agr0) = span{a(l), el ainl_l} s Ay = span{bé, ol blml—l}

A(gs,O) = span{ag, . . . ,afns_l} : A(g&l) = span{bg, ..., bsms_l},

where ag € By, 0) if By, 0) # 0 and similarly bé € By, 1) if By, 1) # 0,
1 < j <s. All other elements af,b{ lieinJ,1<i<m;—-1,1<1<m;—-1

Let ¢ be the least positive integer such that J¢ = 0 and set
No = ((2q)%5= "0 )27

We shall prove that every m,) in Xghm,ns(E(A)) is bounded by M =
(25:1 mj + ;) No.

To this end let (A\) = (A(1),...,A(s)) be such that A\(j) € H(rj,r;), 1 <
J < s, and consider Tjyy = (T,\(l), ..+, T\(s)), a corresponding multitableau.
For every tableau T A() let RTA(J') and C’Tw) be the row stabilizer and the
column stabilizer of T);), respectively. Let R}w) = R, o, Ci(]_) =

ZTGCTW) (sgn7)7 and let ey = R: =

denote the correspondin
Tag) ~Taw) P &

essential idempotent of the group algebra F'S,,,. Then €T,y = €Ty " €Ty
is an essential idempotent of F(S,, x ... x Sp,). For every j = 1,...,s,
consider the group K; = {o € Cr,, | o(i) =14, for all i out of the first r;
columns}, and let K;” = ZaeKj(—l)"a. Then define K~ = K --- K; and
notice that, since each ery;, 1s an essential idempotent, then K Ter,, #0
and er,, generate the same minimal left ideal of F/(Sp, x ... X Sp,).

For every j, let Y;j be the set of variables of homogeneous degree g;,
whose indeces lie in the i-th column of A(j), let also X ZJ be the set of variables
of homogeneous degree g; whose indeces lie in the i-th row of A(j) but do
not belong to the first r; columns. Then, for every polynomial f € P, . n,,
Kjer, f is alternating on each of the sets Ylj yees ,Yrjj'. and is symmetric

on each of the sets X{, .. ,Xﬂj. Thus, if we now consider the polynomial
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g=K"er,, f, the variables of g are partitioned into 2r; + - - - + 27 disjoint

subsets:

Xi.ox!

71

Y. vt

ryo”

S S S S
XL XYY

and g is symmetric or alternating on each set as described above. Note that
for every j =1,...,s and i = 1,...,7; if A(j) = (A(4)1,A(J)2,...) then Xg
is empty if A(j); < 75, i.e, if the length of the i-th row of T}(;) is less than or
equal to ;. On the other hand if A(j); > r; then ]XZ]| = A(j)i—rj. Moreover
V7| = A(j); where A(j) = (A(5);, A(j)b, - ..) is the conjugate partition of
AG)-

Notice that for any p; € S, we also have pi K5 ery ;) # 0, and so if
p=0p1-ps € Spy X xSy, pK‘eT<A> = lefeTm) ---psKs_eTMs) # 0.

It follows that if f € Py, ., is such that eTmf = 0, then the polynomials

eTmf and ¢ = pK‘eTmf generate the same irreducible S,, X ... X S, -
module. Now we choose p;, 1 < j < s, in such a way that ijj_eTw)f is
symmetric separately on the first A(j); —r; variables, on the next A\(j)2 —r;
variables and so on. A similar condition holds for the alternating sets of
variables Yij , 1 <i <rj;. The corresponding property of the polynomial ¢’
is clear.

Let now fi,...,fm € P, . n, be multilinear polynomials such that
F(Sp, x -+ x Sp)fi &2 F(Sp, x -+ x Sy,)fj, foralli,j =1,..., M, ie.,
fi,--., far generate irreducible S,, X ... x S,,-modules corresponding to
the same multipartition (\). By what we remarked above, we can choose
permutations p1, ..., py € Spy X -+ X Sy, and a decomposition X' U...U
X*UY'U...UY? where for every j = 1,...,s, X/ = X{ U... UX?J,7
Y = Ylj u...U Y,% are sets of variables of homogeneous degree g; and
p1f1,---, ppfyur are simultaneously symmetric on XZ and alternating on
Yij, forall j=1,...,5,i=1,...,7;.

Assume by contradiction that my = M > 377_, (m; +7;) No. We shall
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prove that E(A) satisfies an identity of the type

f=mh+-+vyufmu =0, (1)

where v1,...,vym € F are not all zero. Clearly it is sufficient to verify
that f has only zero values on elements of the form ai ® e and b{ ® ¢,
where ai € A(gjyo),e € Eo,b{ € A(gjyl),e’ € By and k € {0,...,mj — 1},
le{0,...m; —1}.

First we define special substitutions as follows. Let

i ji i ji nji i
0§a0,a1,...,amj71, 05015 By

be integers satisfying the following equalities:

mj—l mj—l
ji Ji 1y
Yo+ Y B =1
k=0 k=0
mj—l m]'—l
J(rj+i) j(rj+) i
Yo Y BT =1
k=0 k=0

1<j<s,1<i<ry.

We say that a substitution ¢ has type 0 < o%i,a{i, e ,aﬁjfl, gi, {i, cee
5%,71, 1 <j<s,1 <4<y, if we replace the variables in the following
way: for fixed ¢ and j, we replace the first oz%i variables from X f by elements
ag) ® e (with distinct elements e for distinct = € Xl-j ), the next a{i variables
by elements a{ ® e and so on, where all elements e lie in Fy. Now substitute
the following ﬁéi variables from X l] by elements bg ® €/, the next by bj1 ®e,
and so on where all elements ¢’ lie in F;. We apply the same procedure
in order to replace the variables in Y;j by elements of the type ai ® e and
bi ®e.

In order to obtain a non zero value of the polynomials in (1), any sub-

stitution above should satisfy the following restrictions:

LA'<1l, 1<j<s 1<i<r where0<k<m;—1,
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2. a{i+--.+a{,§j_1§q—1, 1<j<s 1<i<r,

3. o = X/ = (af'+- - +ad B B )

m;—1

The first property follows since f; is symmetric on X, ZJ and, so, it becomes
zero when we evaluate two variables of Xf in b, @ ¢, b, e, for some
e/, € E1. The second property follows since J? = 0.

Similarly we replace the variables from Yij by elements of the form aﬂ@e,
b, ® ¢ as above and we obtain the following restrictions of the integers

ai(””),ﬁi(”“),for 1<j<s,1<i<rjand 0 <k <m;—1
Laf<1, 1<j<s rj+1<i<2r;where0<k<m;—1,
2. B+ +BL  <g—1, 1<j<sr+1<i<2py
3. B = ‘Yij|—(5{i+"'+ﬁ%—1+agi+"‘+aﬁj—1)~

Now, from the restrictions 1,2,3 above we get that for each 7 = 1,...,s,
. . _ i ji .
i=1,...,7;, the number of distinct 77, - tuples (/5 ,...,ijfl) is at most

Jt

2™ and the number of distinct m;-tuples (aéi, e ,amj_l) is at most ¢".
Thus the number of distinct m; + m;-tuples (aéi, .. .,ﬁ%j_l) is at most
2MigMi < (2¢)™it™i. Similarly, from the other three conditions, we get that
the number of distinct m; + m;-tuples (aé(rj H), cel Bjm(?_ tl)) is bounded by
(2q)™i*™i Tt follows that the total number N of distinct types of substitu-
tions is less than ((2¢)%i=1"75)25=12 — Ny,

Note that if ¢, ¢’ are two substitutions of the same type and ¢(2) = u®p
for some z € X, u € A, p € E, then ¢/(2) = u ® p’ with the same grading
of the elements p, p’. Hence if X = {z1,...,2,}, ©(z) = u; ® p; and

¢'(2i) = u; @ p};, then

/
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In this case we say that ¢ and ¢’ are similar. Let N be the number of
similarity classes. Now let ¢1,...,¢on be substitutions, chosen one from
each similarity class of distinct types. If ¢ is one of these substitutions, and
h1, he are two multilinear polynomials of degree n, then by multilinearity
and supercommutativity ¢(h1) = 71 @ p1---pp and @(hg) = 19 @ p1 -+ P,
where p1,...,p, € E and 71, 7o € A. Therefore for each j = 1,..., N and
1=1,..., M we get
@i (fi) = aij @ pj1 -+ pjn,
where a;; € A and pj1,...,pjn depend on ¢; only.
We consider the matrix (a;5), 1 <i < M, 1< j < N, whose elements a;;
lie in A. Since M = (> _,(my +my))No, where dim A = Yy, (my + ),
the rows of (a;;) are linearly dependent. Hence there exist vq,...,va € F

not all zero, such that:

M

> i =0 1<j<N.
=1

From the above we get ;30 7ifi) = Sty i (fi) = (2 viag) @
pj1---pjn =0, forall 1 < j < N.

We claim that this implies that f = Zf\i 1 Vifi is an identity of E(A).
In fact by multilinearity it is enough to check only substitutions ¢* where
the variables are evaluated into elements of the type u ® p, where u = ag or
bg, for some 7,7 and p € Ey U E1. Now, there exists a permutation o of the
variables (preserving the homogeneous degree) such that p*o = ¢’ is similar
to some @;,1 < j < N. Thus ¢'(f;) = a;;®@p}; - - - P}, and, so, ¢'(f) = 0. We
remark that the above o satisfies O’(Xg) = Xg and U(Yij) = Yl-j 1<j<s,
1 <17 <rj;. Since f is symmetric on Xg and alternating on Yij , it follows that
O'(f) = e a(f) = p(x£f) = £p*(f) = 0. Thus ¢*(f) = 0. We have shown
that modulo the identities of F(A), any M polynomials corresponding to
the same multitableau are linearly dependent and this is equivalent to say

that myy, < M for all (\) - n.
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Lemma 3.3.5 Let A= B+ J, B= FYH for some H subgroup of G X Zo

and o : H x H — F* a 2-cocycle. Then there exists a constant M such that

Xsrns (B(A) = 2 en My Xaq) @ -+ @ Xags) and
nj = A — A <M 1<i<s.

Proof. Let (A) = (A(1),...,A(s)) F n be a multipartition of n and let ¢ be
such that J? = 0. We claim that if m,, # 0, then A(j)2 < ¢+ 1, for all j,
1 < j <s, that is the diagram of each A(j) contains at most ¢ + 1 boxes in
the second row.

In fact, suppose by contradiction that there exists j, 1 < j < s, such
that A(j)2 > ¢+ 2 and myyy # 0. Then there exists a multitableau Ty, =
(Tx(1)s - - - » Tx(s)), a corresponding essential idempotent €Ty = €Ty " €Ty (s

and a polynomial f € Py, . n, such that er,, f ¢ Id%(E(A)). Recall that

s

er,; acts on n; variables of homogeneous degree g; € G. Since ery(;, 18

)eT<>\>f g'é
Id%(E(A)). Let i1,...,i42 denote the integers in the first ¢ + 2 boxes of

an essential idempotent, there exists 7 € RTA(;‘) such that TCEM.
J

the first row of the diagram of A(j) written from left to right. Similarly,
let k1,..., kg2 be the integers in the first ¢ + 2 boxes of the second row of
A(j). Then the polynomial g = TC{«)\(_)

J

following sets: {xT(i1)7gj , xT(kl),g]’}’ R {xT(iq+2):gj , 'TT(qurg),gj}'

ety f is alternating on each of the

Notice that these variables are evaluated in
E(A)g; = ((Eo @ By, ,0) © (Eo ® Jig,0)) & ((E1® B, 1)) © (E1 ® Jig; 1))

and, since B = F*H, the spaces B, o) and B(,, 1) are at most 1-dimensional.
Now, if at least ¢ of the above variables are evaluated in Fy ® Jig;00 U E1®
J(g;,1) then we get that g vanishes in E(A) since J? = 0. Therefore there

exist three sets among {x } that

7(i1),95° xT(kl),gj}’ T {xT(iq+2),gj’xT(kq+2):gj

are evaluated in (Ep ® By, 0)) U (E1 ® By, 1y). If one of these sets, say
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{Z7(i1),9;» Tr(k1).g; 1+ 18 evaluated in the commutative algebra (Eo @ By, o)),

then we will get g = 0 on E(A), since g is alternating in z( and T,y

il)’gj »95°

Then we deduce that there are at least two variables corresponding to in-

deces in the same first row or second row of T)(j), say T (i;),¢; and T (i),
that are evaluated in Ey ® By, 1y

Now the polynomial eTmf is symmetric on the set {i g, Tiy s, };
hence, since 7 € Rr, ), it is also symmetric on {Z (i) g5+ Tr(iyya).g; |-

Since the variables ;) 4. and x,(;,) 4, are evaluated in Ey ® By, 1), which

95 295

is anticommutative, we get that er,, f = 0 on E(A) and the claim is proved.

Next we claim that if my, # 0 then A(j); < 2¢, for all j, 1 < j <'s.
This is the same as to say that the diagram of each A\(j) contains at most
2q boxes in the second column.

In fact, suppose to the contrary that there exists j, 1 < j < s, such
that A(j)5 > 2¢ + 1 and m(y # 0. As above, this says that there exists
a multitableau Tiyy = (T\(1),---,T\(s)), an essential idempotent €T,y =
€T\ " €Ty (o) and a polynomial f € P, 5, such that eTmf ¢ IdG(E(A)).

Let 7 € Rr,, be such that g = 7Cr, er,, f ¢ Id%(E(A)). Let
i1, ... ,12¢+1 be the first integers in the first column of T)(;) written from top
to bottom and k1, ..., kag41 the corresponding integers of the second column.

Then ¢ is alternating on {x } and on {z ()

7(i1),950 * * * 2 Tr(ing41).9; sgjo

mT(kQQH)’gj}. In order to get a non zero value of g, since Ep ® By, o) is com-
mutative, we can evaluate at most one variable of each set in Fy ® B(gj,o)-
Moreover since J? = 0, we have to evaluate at most ¢ — 1 variables of each
set into £y ® By, 1)- 1t follows that two variables corresponding to indeces in

the same row, say x,( and z.(x,) g, are evaluated into E1® By, 1). Since

il)vgj
g is symmetric on these two variables and Ey ® By, 1) is anticommutative,
we get g = 0, a contradiction. This proves the second claim.

As a result of the above two claims we get that if myy # 0, then A(j)2 <

q+1 and A(j)5 < 2¢g. This implies that n; — A(j)1 —A(j)] < q(2¢—1) = M.
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Lemma 3.3.6 Let A, B be two G-graded algebras and let A ® B be their
direct sum. Consider (A) = (A(1),...,\(s)) F n multipartition of n, such
that A(1) F ny, ..., X(s) F ns and ny + -+ ns = n. Let Xgl’m,ns(A) =
>k XA @ @ Xa(s)s Ximnoma (B) = 2 (kn My Xa(1) @+ © Xa(s)
and X%,...,ns (A® B) =3y MXA(1) ® - @ Xa(s) be the (na, ... ng)th
cocharacters of A, B, A ® B, respectively. Suppose that for every (\) mul-
tipartition of n, we have that m, < C and m'<A> < ', for some constants

C,C’; Then, for all (\) F n,
m<)\> 35:0—1—0/.

Proof. By lemma 3.1.5, for all (A\) = (A(1),...,A(s)) - n multipartition of
n we have that m,y < my + m’o\

(A\) Fn. O

. Therefore m,y < C' = C + C’ for all

<

Lemma 3.3.7 Let V be a G-graded variety of algebras such that UTQG ¢V
for any canonical G-grading on UT,. Then there exists a constant M such
that X5, . . (V) = 2 yen MyXa@) @ - - Xas) and mpy < M for every
n>1.

Proof. In Lemma 3.2.2 we proved that V = var(E(A;1)&---® E(A,)) where
foreveryi € {1,...,n},dimA; < co and A; is a G X Zy- graded algebra with
Jacobson radical J;. Therefore for every i € {1,...,n}, A; = B; + J;, where
B; is a G-graded simple algebra isomorphic to F'“ H; for some H; < G X Zs
and «; : H; x H; — F* 2-cocycle. Then using lemma 3.3.4, this lemma is

proved by induction on n.

We are now ready to prove our main theorem:

Theorem 3.3.8 Let A be a G-graded Pl-algebra, and

Xgl ..... ne(A) = Z mMyXA1) @ - @ Xa(s)
(A)Fn
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its (n1,...,ns)th cocharacter. Then the following conditions are equivalent.

1. There exists a constant M such that for all n and (\) b n, the inequal-
ity
m<)\> <M

holds.
2. 1d%(A) ¢ 1d%(UTS') for any G-grading on UTs.

3. There exists a constant N such that for all n and (\) b n, the inequal-

ities

hold, for all 1 <1i < s.

Proof. 1) = 2) Let V = var®(A). Now if UT{' € V for some G-grading on
UTy, then by Theorem 3.1.3 the multiplicities in X%,,..,ns(UTZG)v and so, in
¢ ..n.(V) are not bounded by a constant. This proves 2).

2) = 1) Suppose that UTS' ¢ V, for any G-grading on UTy. Now
by Lemma 3.2.2 we can write V = var®(E(A1) @ --- @ E(A,)) where for
every i € {1,...n}, A; = B; + J;, with B; a G x Zs-graded simple algebra
isomorphic to F*H; for some H;, < G X Zy and «; : H; x H; — F* a
2-cocycle.

Now let x&, o (E(A)) = 3 n m&xm) Q- ®Xas), L £ < s
Then

D> mpyxam @ @ Xaw) = X ome (V) = X (B(A1) @ -+ ® B(Ay))
(A)Fn

S
< 3 Oomam @ ®xa:
(Mkn i=1
Since by Lemma 3.3.4, mgg < M;, for some constant M;, we get that

my < o5y M; is bounded by a constant, for all (A) Fn. This proves 1).
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2) = 3) This implication was proved in Lemma 3.3.5.
3) = 2) Suppose by contradiction that UT2G € V for some G-grading on
UTs. If

and

XS W) =) muyxa) @+ @ Xas):
(A)Fn

then since UTY" € V, we get that m’o\> < myyy, for all (A) = n. So for every
(A\) F n such that m’</\> # 0, we have that n; — A(i)1 — \(i)] < N for some
constant NV and for all 7, 1 <i < s.

Now take n = 2N +5 and (\) = (N +2,N +2),(1),0,...,0) - n; hence
A1) =(N+2,N+2)F 2N +4, \(2) = (1) and A(i) = 0 for all i > 3. Then,
according to Theorem 3.1.3, m’</\> =1#0,but 2N+4—-(N+1)—-2 =

N +1> N. Thus my > m’o\> > N, a contradiction. O

49



Chapter 4

Gradings on UT5(F)

4.1 Introduction

Let F be a field of characteristic zero. The algebra

ail a1z a13
U3 (F)={| 0 ax ax | aij € F'}
0 0 ass

is the algebra of upper triangular matrices of order 3.

We recall first this definition:

Definition 4.1.1 A G-grading on UT,(F) is called elementary if there ex-
ists § = (g1,.-.,9n) € G™ an n-tuple of elements of G such that A, =
span{e;; | gi_lgj =g} Vg€ G, i.e., the homogeneous degree of e;; is equal

to gi_lgj for every i and j such that 1 <i < j <mn.

Di Vincenzo, Koshlukov and Valenti in [20] proved that if G is a fi-
nite group, then there are |G|"~! nonisomorphic elementary G-gradings
on UT,(F), so in case n = 3 there are |G|?> nonisomorphic elementary G-
gradings on UT5(F).

Valenti and Zaicev in [53] proved that if G is a finite abelian group and

F is algebraically closed of characteristic zero, then all gradings on UT,,(F)
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are, up to isomorphism, elementary.

4.2 Gradings on UT5(F)

In this section we want to classify all elementary, non isomorphic, G-gradings

on UT3(F) in terms of triples that induce G-grading.

Theorem 4.2.1 Let G be a finite abelian group. The different elementary
G-gradings on UT5(F'), non isomorphic and non trivial, are induced by the

following triples of elements of G:

~

(e,9:h)  g#h, h#4¢* gh#e
2. (e,9.9°) g#e
3. (e.9.9) g#Fe
4. (e;e,g)  g#e
5. (e,9,e)  g#e.

Proof. Let A = UT$(F), then the homogeneous components of A are
A, = spanfe;; | g;'gj = g} and A = D,ec Ag- 1f dimAc = 6 then the
corresponding G-grading is trivial. Hence dim A. < 6. We observe that
ei; € Ae Vi =1,2,3, then dim A, > 3. Now we can consider all different
triples of elements of G with at least one element equal to e. We can suppose
that the first element of the triple is always e, in fact if it is equal to some

g # e, then we can multiply all elements of that triple by ¢+

, obtaining the
same elementary G-grading.

Hence we can suppose that the triples that induce elementary G-grading
are (e, g,h) with g,h € G not both equal to e. If in this triple g # h and
g,h # e then dim A, = 3, otherwise, if g=h #eorg=e, h #eor h =e,

g # e, dim A, = 4. We are now ready to study the corresponding cases:
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1. dim A, = 3, triple (e,g,h) g#h g,h#e.
If h # g% then A, = span{ejy, ea, es3}, A, = span{e;; | gi_lgj =
g} = span{eia}, Ap = spanfe;; | g; 'g; = h} = span{eis}, Ag-1j, =
span{ei; | g; 'g; = g~'h} = span{eas}.
If h = g% then A. = span{eiy, e, es3}, Ay = spanfe;; | g;lgj =g} =

span{ejs, €23}, Agz = span{e;; | gi_lgj = h} = span{es}.

2. dim A, = 4. If the tripleis (e,g,9) g # e, then A, = span{ey, €22, €33, €23},

A, = span{e;; | gi_lgj = g} = span{ej2, e13}.

3. dim A, = 4. Ifthe tripleis (e,e,g) ¢ # e, then A, = span{ej1, €22, €33, €12},

Ag = span{eij \ gi_lgj = g} = Span{€23, 613}-

4. dim A, = 4. If the tripleis (e, g,e) ¢ # e, then A, = span{ei1, ea2, €33, €13},

Ag = span{e;; | g; 'g; = g} = span{en}, A1 = span{ess}.

4.3 Graded identities of UT5(F)

Now we want to find the T-ideal of G-graded polynomial identities of UT5(F)
for each elementary G-grading described in the previous section.
We will use the techniques described in [20]. We recall these techniques

in the following results.

Definition 4.3.1 Let 7= (n1,...,mm) be an element of G™. We say that 7
s a good sequence with respect to the elementary G-grading € if there exists
a sequence of m matriz units (r1,...,rm) in the Jacobson radical of UT,, (F')
such that the product r1-- -7, s not zero and also the homogeneous degree
of ri ism; for alli=1,...,m. In this case we say that 7 is e-good, otherwise

7 18 called e-bad sequence.
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For any sequence 7 € G™ we consider the polynomial f; = fz1f52- - fam

where f5; = [Te2i—1,%e,2:) if m; = e while f; =y, if ; # e.

Theorem 4.3.2 Let G be a group and € = (€1,...,€,) be an elementary G-
grading on UT,(F) with F infinite field. Then the T-ideal Id%(UT,(F), €)
of G-graded polynomial identities of UT, (F) is generated by all multilinear
polynomials f where 7 = (1,...,0m) lies on the set of all e-bad sequences

and m <n.
Now we are going to apply this theorem to UT3(F).

Theorem 4.3.3 Let G be a group and € = (€1, €2,€3) be an elementary G-
grading on UT3(F) with F' infinite field. If we denote by x; the variables
of homogeneous degree e, and by y; the variables of homogeneous degree g,

then we have
1. ife=(e,g,h), g # h, h# g* ,g,h # e then
IdG(UTS(F)) = <[‘Tla‘T2]7y1y2721223t1t27yt7ty) Zyvzt)tz>

where z; are variables of homogeneous degree g~'h and tj are variables

of homogeneous degree h.
2. ife=(e,9.9%), g° # e then
IdG(UTS(F)) = (w1, 22|, 2120, Y2, 2y, Y1Y2Y3)

where z; are variables of homogeneous degree g>.
3. ife=(e,e,g), g # e then
1d°(UT(F)) = ([21, 22][3, 24], Y192, Y71, 22]).
4. ife=(e,9,9), g # e then
1d9(UT3(F)) = ([x1, @2][x3, 4], yry2, [21, 22]y).
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5. ife=(e,g,€), g # e then Id°(UT3(F)) =

<[$1, xQHxSa :E4]7 Y1Yy2, 2122, =Y, [:L'l, x?]ya y[xl7 x?]a [xh I'Q]Z, Z['Ilv m2]>

where z; are variables of homogeneous degree g~ '.

Proof. The Jacobson radical of UT5(F') is J = span{eia, €13, €23}, and any
product of three elements of J is equal to zero; then all e-good sequences

have 2 elements at most. Let us consider all distinct elementary G-gradings:

1. e = (e,g,h), g #h, g,h # e, h # g>. 7 = (n1,72) is e-good if there
exist 71,79 € J such that rire # 0 and degr; = 71, degro = 2. So
r1 = e12 and ro = ea3.

Since degejs = g and degeas = g~ h, j = (11, 72) is e-good if and only
if 7= (9,9~ h).

7 = (m) is e-good if there exists r; € J such that degr; = n;. So
7 = (m) is e-good if and only if 7 = (g9), 7= (h), 7= (g7 *h).

All other sequences are e-bad. If we set z. = =, 4 = y, xp, = t,

Tg-1p = 2, then

1d9(UT(F)) = ([21, 22), y1y2, 2122, tite, yt, 2y, ty, t2, 2t).

We remark that all other identities obtained from e-bad sequences are

consequences of these ones.

2. €= (e,9,9°), > # e. T = (m,m2) is e-good if there exist ri,ro € J
such that rry # 0 and degr; = n1, degro = 12. So r1 = ej2 and
o = €23.

Since degeia = degeas = g, 7 = (n1,72) is e-good if and only if 7 =
(9, 9)-
7 = (m) is e-good if there exists r; € J such that degr; = n;. So

7= (1) is e-good if and only if 7 = (g), 7 = (g?).
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All other sequences are e-bad. If we set ¥ =z, 1y =y, 242 = 2, then
1d°(UT5(F)) = ([21, w2], 2122, Y2, 29, Y192y3).

We remark that all other identities obtained from e-bad sequences are

consequences of these ones.

3. e =(e,e,9), g # e. By repeating the same arguments we obtain that
1d°(UT5(F)) = ([21, za][xs, 24], Y192, y[z1, 22]).
4. e =(e,g,9), g # e. By repeating the same arguments we obtain that

I1dC(UT3(F)) = ([x1, z2)[x3, 24], Y172, [T1, Z2]Y).

5. € = (e,g,€), g # e. By repeating the same arguments we obtain that
IdS(UT3(F)) =
([1, m2][m3, 4], Y12, 2122, 2y, [T1, T2ly, y[71, T2, [T1, W22, 2[W1, T2]).

g
Now we are ready to calculate the multiplicities in x& (UT3(F)), for some

elementary G-grading on UT3(F).

4.4 Cocharacter sequence of UT5(F) with elemen-
tary G-grading induced by (e, g,h), g # h, h #
9% 9, h # e

We recall that for every A b n, Ty is a Young tableau of shape A and er, is

the corresponding essential idempotent of the group algebra F'S,,. We recall

also that er, = ZUERTA sgntoT, where Ry, and Cr, are the subgroups of
TECT)\

row and column permutations of T}, respectively.
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Because we want to study UT3(F) with elementary G-grading induced by
the triple (e, g,h), g # h # ¢>, let \(1) Fny,...,A4) Fng,ni+--+ng=n
and let Wy (1) . a4 be an Sy, X -+ x Sp,-irreducible left module.

It is well known that if Ty is a Young tableau of shape A(1), ...,
T\) a Young tableau of shape A(4), then Wyq)  au) = F(Sn, X --+ X
Sna)€Ty )+ €Ty 4y Where Sy, ..., Sy, act on distinet sets of integers.

Hence we can write the explicit decomposition of the nth G-graded
cocharacter of UT5(F') into irreducibles. Recall that if A F n, h(\) denote

the height of the Young diagram associated to A.

Theorem 4.4.1 Let x5 (UT3(F)) = X2, 0 nimn 2or(iin: AL, A#)XAL)
® ... ® Xa@) be the nth graded cocharacter of UTs(F) with elementary G-
grading induced by the triple (e, g,h), g # h, h # g>. If we set for simplicity

A1) A(2),A(3),A(4) = M, then:

1. m = @EDEEDEED) e\ (1) = (p+ g+ 7,p+ ¢,p) prg,T > 0, A(2) =
AB) = (1), A(4) = 0.

2. m = (r+1) if A(1) = (g+7,9) ¢;7 > 0 and \(2) = (1), A(3) = A(4) = 0),
or A(3) = (1), A(2) = M4) = 0, or A(4) = (1), A(2) = A(3) = 0.

3. m=1if (1) = (n) and A\(2) = A(3) = \(4) = 0.
4. m =0 in all other cases.

Proof. We recall that for our elementary G-grading induced by the triple
e=(e,g,h), g#h # ¢? dim A, = 3, dim 4, = dim 4, = dim A1y, = 1. If
we set Te = T, T3 =y, T = t, Ty-1, = 2, then any polynomial alternating
on four variables x or in two variables y, z, or ¢ vanishes in A = UTS'(F).
From the general form of the element €T (1) €T (2) €T (3) €T 4y it follows
that m = 0 if either A(A\(1)) > 3 or h(A(i)) > 1 Vi = 2,3,4. Moreover, by

the previous construction, for every variable z1, zo,
Y1T1Ya, 2171 22, t1T1ta, YT1 220t Y1 t, 2x1t, 201y € Id9(A)
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and this implies that m = 0 whenever |A(7)| > 2, i = 2,3,4 and also when-
ever A\(2) = 0, A(3),A(4) # 0; X(3) = 0, X(2),A(4) # 0 and A(¢) # 0
i=2,3,4.
So let us assume that [A(¢)| <1 7= 2,3,4. Suppose first that (i) = ()
i = 2,3,4, then [z1,22] = 0 on A implies that z; - .-z, is a basis of P, 00,0
(modId%(A)). Hence m = 1 if A\(1) = (n) and m = 0 if A(1) # (n).
Suppose now that h(A(1)) < 3 and A(2) = A3) = (1), A(4) = 0.

Let X(1) = (p+q+r,p+4q,p), p,g,v > 0, we want to prove that m =
(+D)(r+1)(r+2)+q(g+1)(g+2) _ (g+D)(r+1)(g+r+2)
2 = 2

. For simplicity we will study
first the case p = 0.

Let r1,79,73 > 0 such that r = r{ 4+ ro + 73 and q1, ¢2, g3 > 0 such that
q = q1 + q2 + g3. It is obvious that for every choice of r1,r9,q1, g2 we will

obtain a different tableau and hence a different polynomial associated to the

tableau.
We remark that r1y =0,...,randsoif ry =0thenry =0,...,r;ifry =1
then ro = 0,...7 —1; ...; if 11 = r then ro = 0. So the total number of

r+1 . (r4+1)(r+2)
2

possible choices for 71 and rois > ;7 i = . By repeating the same

argument for ¢; and ¢, we obtain that the total number of possible choices

for ¢; and ¢ is E?i}j — W (q+1)(l1+2£(r+1)(r+2)

. So we will obtain
different tableaux.

Now we shall consider a few of these tableaux, in particular we shall
consider all tableaux in which ¢z = 0 and all tableaux in which 1 = 0 and

q3 # 0. For every r, if g3 = 0, then the total number of such tableaux

is w; if r1 = 0 and g3 # 0, similar arguments show that the

(r+1)(g)(g+1) (@+)(r+)(r+2)
2 : 2

number of tableaux is So we will consider

(r+l)(g)(4+l) < (q+l)(Q+2§r+l)(r+2)

different tableaux.
For every i = 0,...,71, j = 0,...,79, %5 = 0,...,q define the following

tableaux:
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INEI
T\ =
. - i+ || e | ] it | itet “ a+i ‘
i+l iti +1 q 1‘ i +2‘ ‘+j+1 i+j+3 42
i+q itg+ q+r
+j+2 i+l | +i+3 "

Ty =|i+q+1

T\ =|i+q+i+i+2

Now for every j = 0,...,79, i =0,...,q1, j = 0,...,q2, 1 + ¢2 < q,

define the following tableaux

Grind
o =
- - - i+ g+ | i+ i+j q+i q+i
o] L e | e | | g | G2 || gl | 444 frtl
gt | | aki | oafr || gt | atitg ||
j+2 +i+1 | +i+2 JHr+1 | +r+2

Ty =|i+j+1

TG =| g +i+j+2

If g3 = 0 we associate to T’ ;“, T ;\é;, T ;\(]3; the polynomials: a®J4—

i ;. . j . , r—i—j . .
(3717372,%»2)—331951"'561961"‘x1y371962”’3?22w1 T -T2

A q—1 i q—1i

and if r1 = 0 and ¢3 # 0 we associate to T/{gl)g, T/{ég, Ti(g the polynomials:

0,4,4,7 . s . 7~ ~ . r—j
a P (xy,w0,y,2) = &1Ly By - By Y2 Ty Ty B - - Do 20y

RERE O PN
——

% J q—i—j %

<.
Q
L
|
<.

where /, -, ~ mean alternation on the corresponding elements. Notice that

the polynomials a®7 ,g,q_57 a%J4J are obtained from the essential idempotents
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corresponding to the triple of tableaux (Tj\(]S’ T;\ég, Tf\(]?j) and to the triple
of tableaux (Ti(zl’g , T)J\(’Z’g Tj’(z’g) respectively, by identifying all the elements

in each row of A(1). We shall prove that (modId“(A)) these (q+i)(’"+§)(q+r+2)

are linearly independents over F'. Suppose not.

Let

’L Z 7774,
Za% i,q—i® IR (@, w0, y, 2) +ZO‘0,J,T“ ’ j (z1,22,9,2) =0

0,4, RN

(modId®(A)) with scalars o, and ay ;5 not all zero. So it is a poly-

1,4,5,g—1
nomial identity for A and then it should be zero for every substitution of

T1,T2,Y, 2

Consider the substitution z; = aess + Bess, xo = vei1 + dess, y = e1s
and z = ess3, a, B8,7,0 € F. With this substitution all the polynomials with
r1 # 0 take zero value, so the polynomials with non-zero evaluations are the
following;:

3'71'”3'?1561”-d?1y36j1£%1’--531952--'562Z$I_ji?2"’$23?2"-572.
N—_—— N—_—— N—_——

i T

<

% J q—i—
With this substitution every monomial of each polynomial takes zero value

except one that takes value
QUHI—I gri+initige—i=j,
We can observe that
QI+ greitiniHi ga=i=i — qa+i'=7 gri'+i N +7 goi =7

if and only if
- - =/ =/ . - ./ =/
tt)=1+) J—=J1=J —J-

So there are four different possibilities:

</

~k J=7 4k j=j+h j=]+h

—_

.
Il

<.

<

i+k j=j—k j=j'+h j=7+h

o
<
Il
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</

~k j=+k j=j~h j=7-h

w

.
Il
<

~

L
.
Il

=

"tk =7 -k j=j~h j=]—h

From cases 1) or 4) we obtain that £ = h. From cases 2) or 3) we obtain that
all valuations obtained from the considered substitution are distinct. So we
have to consider case 1) and case 4) (we consider only case 1), because case
4) is the same). In case 1) the polynomial with the same valuations are:

i-l...jli-l...i-lyx{.%l...5;11'2...f2zm;_]i-2...i-2§;2...i-2
—— —— ——— —_——

i J q—i—j i J q—i—j
and
. s . . i—k ~ ~ . r—j+k . .o~ ~
a:‘l PR xl wl PR a:‘l yxl :L'l PEEY xl x2 PEEEY :L'2 le a:‘2 PR 1'2 $2 PR a:‘2
R o T v T Y
i+k j—k q—i—j i+k j—k q—i—j
k=1,2,....

For every choice of j,1, j the corresponding polynomial a%J:4J takes the
same value of other k (eventually zero) polynomials a%7 —hjitkj—k,
Now consider the substitution 1 = aey1 + Bess +vess, xo = €eq1 + deas,

TRATRI =R (21, 20, 23, Y, 2)

y = e1o and 2 = es3 to evaluate the polynomials a°
for every k > 0 and ailjl’gl’q*z(xl, x9,x3,Y,2). With this substitution these

polynomials takes value respectively

1. 53—1651'—k(;q—i—j,qurr—j—E(zgilg (—1)ith—totgteith—t gith—ty,

2. ot Eq—gl lef}ﬂ‘i‘?"_il —j1—i1 (Zil 0(_1)51 —t1t1 8t Egl_tl 521 _tl).

Now we want to see if substitution 1) is equal to substitution 2)for any
choice of i, 7, j,t and i1, j,,41,71,t1 and for any k > 0. But if 1) is equal to
2) then, for example, af = a1 and It = 471 Hence t = iy + t1, S0
jti—ii—ti=q—t1=>i+j=14i1+q>q Butifii+q>gq, theni+j>gq,
a contradiction because i + j < ¢ (recall that in the first case g3 # 0). So

every substitution 1) is different to any substitution 2).

60



Then we want to prove that for any choice of k£ > 0 all evaluation 1) are

0,j—k,2+k,§—k(

different and so all the polynomials a x1,x2,x3,Y,2) are linearly

independent. Set k = max{k | kK > 0}. For any k € {0, ..., k} any evaluation
of 1) has 5‘1_5_37‘1”_7' ~iin common; so, in what follows, we can exclude it.

So we obtain:

ej—Eﬁj—E((_l)HEeﬂEBHE + (_1)E+E—1€E+E—1ﬁé+ﬁ—1a5 + gt aE+E5€+E)

63—E+1ﬁj—E+1 ((_1)E+E—1€{+E—1ﬁ€+ﬁ—1+(_1)E+E—2EE+E—2BE+E—2Q5+. ) _+aE+E—152+E—1)

B ((—1)'eB 4 - + aldd).

Now let make a linear combination of these evaluations with scalars

Qg j_pirkjk € I forevery k € {0, ... ,k}. We obtain the following relations
(
0§ R 1itR-15-F+1 ~ Q0 Fitkjk O
_1)itk e (=1 e —
( (Do garjr T ()55 =0

So they are all equal to zero and then the considered polynomials are
linearly independent.

Now consider evaluations 2)

@igq—iﬁj7q+r—i—j—i((_1)1'6@'61‘ + (—1)2_155_165_10454— . a{(sz*)

for every i =0,...,¢q,i=0,...,7rand j = 0,...,7 —i, and we want to prove

that all the polynomials ai’j’z’q_{(azl, x9,x3,Y,2) are linearly independent.
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We will write now the explicit value for every i = 0,...,q.

et BINaTT I (e 4 af)

ai6q72l3j,yq+r7ifjf2(€252 _ Oz(SEﬁ 4 a252)

aiﬁjfyrfifj((_l)ngﬁq + <_1)q715q71ﬂq71a5 + o+ add).

Let consider the evaluation obtained for 7 = ¢; then for every i = 0,...,r
and for every j = 0,...,r —i all the monomials of degree ¢ in § are distinct.
So «ajjq0 = 0 for every 7,7. Then consider the evaluation obtained for
i = g — 1. With same arguments «; j,—1,1 = 0 for every i, j and so on. So
all coefficients O, ;747 are equal to zero for every i =0,...,¢q,i=0,...,r
and j =0,...,r —1.

Notice that for every i, j,1, 7,

/[/7.]72 Z7.]7z 27]71 l’.??”’

T/\(l) T>\(2) T)\(g) T)\<4) ("El? R 7'1"774*27 y? Z)

is the complete linearization of a7’ (21, z2,y, 2), and

j7{73 6]’273 j7273 6]7;73

Ta) ST2) T3 TM4)($17~-;37n—27y7z)

is the complete linearization of aé’jﬁj(m, x2,Y,z). It follows that the polyno-

mials
RN R RN R
Txy Th) Tai) Tha)’
i+j=0,...,7,i=0,...,q; and the polynomials

Gid id I Giid
T Ta@) Tae) Taw

j=0,...,7, i+ =0,...,q are linearly independent (modId®(A)), and
(q+1)(r+§)(q+r+2) .

this implies that m >

(q+1)(r+;)(q”+2) . Let T\1), T

Then we want to prove that m < @) Th@3)>

T4y be any four tableaux and f = €Ty (1) €T (2) €T (3) €T 4) (T1,...,Tp—2,9,2)
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the corresponding polynomial. If f ¢ ([z1, 2], y1y2, 2122, t1te, yt, zt), then
any two alternating variables have to be separated by y or z (i.e Z1 - - - yd1 %2 - - -
2y ---). Since f is a linear combination (mod Id%(A)) of polynomials each
alternating on ¢ pairs of z;’s, we obtain that f is a polynomial of this type:
CV oy by by B YT R B e By by Ep 2 dg - dp By By (1)
—_———— —_—— ——

a a2 a3 a a2 as
With r1 + 72+ 173 = r and ¢1 + ¢2 + g3 = q. Now we can prove that any
polynomial of the type (1) can be written in the following way:

x"{l qg:ﬁl---3'51:)':1---:tly:):?'i_qg’@---aégzx;?’a’cQ---JEQ—l-
S—— SN—— N——
q1 q2+4q3 Q q2+4q3
S—— S~—— S~——
@+l g2tg3—1 @+l q2+g3—1

a3 —q3 ;. . -2 , . .
zi q3z1-~-x1m1---1‘1ym§2+qg $2“‘$QZ$§3+2$2"'1}2+
——— —— ~—— ~——

2
@+2  gqatg3—2 q1+2 q2+q3—2
(—1)q3l‘71nliq3 i‘l s Ii‘l T1--21 y:n’f i’g s i‘g Z:L';ngqS Lo X2 .
——— —— —— ——
q1+g3 q2 q1+g3 q2

We can prove this formula using an induction on ¢3.

If g3 = 1 then:

.1‘;1:1’?1"'.fl.i‘l"-:ﬁlyl’?fliﬁg"'i’QZJE?iQ"'i‘Q.ﬁQ:
—— —— N—— N——

a1 q2 q1 q2
x;l_l.fl"‘a’fl.ijl”-j?lyx?_'—la/}z”-3/322’5613:%2”-@24-
———— —— ~—— ~——
q1 g2+1 q1 g2+1
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_qu_lx’l...x’lil...ilnyQjQ...j22x71”3+15'52...;t2‘
—— —— —— ——
q1+1 q2 q1+1 q2

Now suppose it true for g3 and we prove it for g3 + 1.

'f;l-fél"'«flj;l"'«flclylﬂl?»%l‘"fi1j32""f23$71"35t2"'j32§72"‘532:
—— —— —— —— ——

Q q2 q3+1 q q2 q3+1

:x?a&l---;ﬁldnl---dvlyx?icl---501961332---:é2z3:§3j62---:k23?2---:izx2+
—— —— — N—— —— ——

q1 q2 q3 q1 q2 q3

@V gy by B Y2 Fy e By o B - g 22 g dp g - Fp T
—— — —_— —— —
a a2 a3 a g2 a3

We obtain the desired formula by applying induction to these two polyno-
mials.

Notice that if r1 — g3 = —c < 0, then we can apply this formula to
the first g3 — ¢ variables. In this case we’ll obtain a linear combination of
polynomials with g3 = 0 and r; # 0 and polynomials with g3 # 0 and r; = 0.

The following is an example of the previous formula when ¢3 = 2:

.IIT 331 . -.fl.itl . ~:t1y5671“2i‘1:513§2 -":Z’JQZJ.QZE"3 igu‘i’gijgi’g =
—— —— — —

q1 q2 q1 q2
CL‘rl_l i‘l N -i‘l Ci?l N 'l"l y:CTQ—H.fl j:Q N -ff'g Z$T3 .%"2 N 'j:Q Zi'Q
1 1 1
—— N — —— ——
Q g2+1 Q q2+1
fqu—l Gy gy By e dy YT 2 E By - B zx’f’“ Bg -+ iig g =
——— —— ~— ~——
q1+1 q2 qa1+1 q2
qu—%ﬁl...x’ljgl...j;lyx’l“ﬁ?@...fzzx’f’»@...@
——— —— ~—— ~——
q1 q2+2 q q2+2
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7"1_2 £ £, > o 7”2+1 4 2 r3+1 . .
_1‘1 $1"'x1x1"'$1y$1 x2...l‘2zx1 l’BQ...xz
——_—— —— N—_—— ——
q1+1 q2+1 q1+1 q2+1
_$71“1*2 By @y i yg;’1”2+1 Fop iy Z$71“3+1 B Do
——— —— ——
q1+1 q2+1 q1+1 q2+1
+$§1_2i‘1 B -Jf'1j31 . -Jvlyx? .’L/‘QH -i:gzx7{3+2¢2- . -j?g =
—— —— —— ——
q1+2 q2 q1+2 q2
1;71“1—2951...551551...g'clyfl"ﬁ?ggz...ggzzxflﬁiz...iz
——— —— N—— N——
q1 q2+2 q g2+2
—21’;172 :)f’l s i’l $'1 s l"l y:r?“ :f?g s l"g ZJ,‘?{SJFI i)g . i‘z
—— —— ———
q1+1 q2+1 q1+1 q2+1
+m§1_2i:1~~-:(’:15U1~--i:lyx7£2i72~--igzx7{3+2j:2---ab2.
—— —— —— ——
q1+2 q2 q1+2 q2

So we have written f as a linear combination of the polynomials

27]7; 617]7Z 617]72 Z7]75 n ]7;73 ]7Z73 j7273 ]7573
T Tae@) Tae) Traw Tra) Ta@) Tae) T’

Hence m < (q+1)(r+;)(q+r+2). If p # 0 we can repeat the same argu-

ments adding to each polynomial p triples of alternating variables z’s (i.e:

Ty X1 - YyZo---To-- 223 -Tz--+), and all results still hold.
—_——

P P
Then we can consider the remaining cases:

LA #£0, A2)=(1), A3)=X4) =0
2. A1) 20, A3)=(1), A2)=A\4) =0
3AM1) 20, A4)=(1), A2)=A(3)=0.

These three cases are similar, so we can study only the first. If A\(1) =

(g +r,q) then m =r +1 (see [52, Theorem 3]).
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If \N(1) = (p+q+r,p+ q,p) then the p triples of z;’s are not separated
by y and z and so the polynomial obtained is a polynomial identity for A.

Then m = 0 in this case.

4.5 Cocharacter sequence of UT;(F) with elemen-

tary G-grading induced by (e, g, ¢%), g° # e.

We consider a cyclic group of order three, G = {e, g, g?} and the elementary
G-grading induced by (e, g,¢?), g*> # e, is the same of Vasilovsky grad-
ing. Hence if A" = UT5(F), AL = span{e11, e, €33}, A’g = span{eja, €23}
and A;JQ = spanf{eis}. Set A(1) F ny,A(2) F n2, A\(3) F ng, n1 + na +
ng = n and let Wy z2)2@3) be an Sp; X Sp, X Spy-irreducible left mod-
ule. It is well known that if T)(;) is a Young tableau of shape A(1), ...,
T\(3) a young tableau of shape A(3), then W) x@2)A3) = F(Sn, X Spy X
Sn3)eTA(1)eTM2) €Ty () where Sy, Sp,, Sny act on distinct sets of integers.

Let h,k € G, h,k # e, h # k, k # h?, and consider the elementary
G-grading induced by (e, h, k) Note that A’g = Ap ® Aj,-1;, = spanieia, €23},
where Aj, and Aj-1; are the homogeneous components of homogeneous de-
gree h and h~'k in the elementary grading induced by (e, h, k), g # h, g,h #
e. Moreover A’gA;2 = A’ggA’g = 0and (Ap,®A-1;)An = Ap(Ap®Ap-1,) = 0.

Hence we can regard the space of multilinear G-graded polynomials
Poynapmsng (modId9(A’)) in the first grading as the space Pn,npns
(modId%(A’)) in the second grading.

Since dim A, = 3, dim A = 2 and dim A}, = 1, if xJ(UT3(F)) =
D tnatns=n 2oA(@)n: MAMLAR)AB)XAL) @ Xa@) @ Xa@3) is the nth graded
cocharacter of UT3(F') with this grading, it follows that m (1) x2)a3) = 0 if
either A(A(1)) > 3 or h(A(2)) > 2 or h(A(3)) > 1. It is easy to prove that in

order to have my) z2)a3) 7 0, A(2) = (1,1).
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With the same techniques of the previous grading we obtain the following

Theorem 4.5.1 Let X (UT3(F)) = 3, tnstnsmn 2or(i)en TAL)A2)AG)
Xa() @ Xa@) @ Xa@) be the nth graded cocharacter of UTs(F) with ele-
mentary G-grading induced by (e, g,g%), g> # e. If we set for simplicity

MA(1),A(2),\(3) = M, then:

1.om = @EDEEDEED) e A1) = (p+ g+ 7,p + ¢,0) p,g,T > 0, A(2) =
(1,1), A(3) = 0.

2.m=r+1)if N1)=(¢g+7,9) qr >0 and \(2) = (1), \(3) =0, or
A3) = (1), A2) = 0.

3. m=1if \1) = (n) and \(2) = A\(3) = 0.

4. m =0 in all other cases.

4.6 Cocharacter sequence of UTs(F') with elemen-

tary G-grading induced by (e, e, g), g # e.

In this case if A = UT3(F') then A, = span{ei1, e22, €33, €12}, Ay = span{es,
eas}. Consider A(1) F n1, A(2) - na, n; +na = n and let Wi@).a2) be an
Sny X Spy-irreducible left module. As in the previous cases if T)y(j) is a
Young tableau of shape A(1) and T)(3) a Young tableau of shape A(2), then
W@ = F(S,, % Sm)eTm)eTw), where S, , Sp, act on distinct sets of
integers.

We can write the explicit decomposition of the nth graded cocharacter
of A into irreducibles and calculate the corresponding multiplicities.

First recall (see [24] section 4.3) this definition

Definition 4.6.1 A polynomial f € F(X) is called proper, if it is a linear

combination of products of long commutators
f(xlw . _’xm) = Zai,.n,j[wil? .. .,.’L'ip] . [xju - ,:qu]
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where o, ; € F.

Recall that the multiplicities in the cocharacter sequence are equal to the
maximal number of highest weight vectors linearly independent according
to the representation theory of GL,,. Since in our case dim A, = 4 and
dim A, = 2 we can work with the group GL4 x GLy and write all possible
highest weight vectors.

We remark that the general method of constructing an highest weight
vector is that of writing a multihomogeneous polynomial obtained by putting
a variable for each box of the Young tableaux T)(;) and T)(), then by
identifying all variables in the same rows and alternating all variables in the
same columns. Then reducing every polynomial modulo Id(A).

In our case we work with proper polynomials, compute proper multi-
plicities and then we obtain the ordinary multiplicities using the Littlewood
Richardson rule.

We begin with a technical lemma.

Lemma 4.6.2 Let UT3(F)C be equipped with the elementary G-grading in-
duced by the triple (e,e,g), g # e. If we denote by x; the variables of

homogeneous degree e and by y; the variables of homogeneous degree g; then

L@y, ooy @i Yy Ty oo T ] = D ey cugr mod IA(UT3(F)Y) where T
1 a finite set of indeces, h > 0, k > 2, oy € F and g; is a product
of two long commutators for all 1 € I. The first is in the x;’s only,

and the second is a commutator in the x;’s and y shifted in the last

position (i.€.: g1 = [Ty, .-, Thy)[Trys- s Ty Y-
2. [@iy, ..., Ty, T2, X1, X5y, ., T4, Y] =

[.’L‘il, sy Ly X1, T2, Ly - - - 7$jh7y] + Zalgl mod Id(UT3(F)G)
lel

where i1,...,1i, are not necessarily ordered indeces, h,k > 0, I is a

finite set of indeces, oy € F and g; is a product of two long commu-

68



tators. The first commutator is in the x;’s only, and the second is a

commutator in the x;’s and y, for alll € I.

S [Tiys e s Ty T Ty oy Ty, T2, Ty 5 Ty Y] = Y jepugr mod
Id(UT3(F)%) where h,l,m > 0, I is a finite set of indeces, oy € F
for all 1 € 1T and g; is a product of two long commutators with no

alternating variables.

Proof. 1) if k = 0,1, for every h > 0 we have nothing to do. Then we can
suppose that k > 2.
If h =0, for every k > 2, then

[, Ty ) = —[T4ys - 2]y mod  Td(UT3(F)%).

Suppose first h = 1. For every k > 2, [zi,,y,xj,,...,2j]. So we can
apply the Jacoby identity ([a,[b,c]] = [b,]a,c]] — [¢,[a,b]]) with a = z;,,

b=y, c=[zj,...,zj]. Then we obtain
i gy @] =y e wgy o wg] =l ag ] s yll (1)
and reducing mod Id(UT3(F)%) we obtain
[Tis U Ty T ) = [ @iy, Ty oo @5, Y — [Tg0 - 25, [T, ]

and this is a linear combination of the required form.

Suppose now h = 2. For every k > 2, [x;,, %, Y, Tj,, ..., 2] = from (1)

[miuyaxizaxjw' . 'al‘jk] - [171‘1, [xj17' . 'amjkL [xiwy]]'

We apply again the Jacoby identity to the first and to the second com-

mutator with @ = z;,, b = vy, ¢ = [zj,,2j,,...,xj,] in the first case and
a=xy, b=[xj,...,2;], ¢ = [Ti,y] in the second case. Hence we obtain
[y, Tiy, iy, Ljiyee- 7xjk] = [[z4,, Ljiyee- 7xjk]’ [, y]]—
ijlv s 7xjk]7 [y, @iy, Y1) + [[245, Y], [mi17$j17 ce 7‘Tjk]] =
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mod Id(UTg(F)G) — @iy, Tin, Ty - T )Y — @iy Ty - X [T, Y] —

[lev cee ’xjk”ximxizvy] - [$i1,$j1, B x]’k”xizvy]

and it is a linear combination of the required form. Obviously we can apply
the same procedure for every h, k > 2, always obtaining a linear combination
in the form (1).

2) Suppose first that & = 0. For every h > 0

(2, 1, %), ..., 25,y =
[$1,1’2,1’j1,...,$jh,y] - [[leﬂ . 7xjh7y]7 [x27x1“ =
(21, 29, Ty, - 4, Y]+ (21, 2] [Ty, - - -5 gy, ylmod  Td(UT3(F)C

Now suppose k = 1. For every h > 0

[xipw?amhwjp cee 7xjh7y] =
[I‘Z'l,.’L'l,.TQ,le, cee 7xjh7y] - [xiu iju v 7$jh7y]7 [1'27:(;1]“

Now we can apply the Jacoby identity to the second commutator.

[Ty ijlﬂ RREEA 1) yl, [v2, m1]]] =
ijlv RRELA IS y]a [wiw [va xlm - [[x% xl]? [xilvxju ERELZ I y]]

and reducing mod Id(UT3(F)%) we obtain

[xila [$2,.’,U1H[33’j1, s 7$jh>y] + [xlaxQHxila-rjl) v ,i’jh,y].

It is easy to see that is a linear combination of the required form. Now we
can apply the same procedure for every k£ > 1 and we obtain the required
result.

3)

[:L‘ip' ")xihvflaxjp' ">$jluf27xt17” . 7xtm7y] =
[:1:2'17"’ ,.'Ifih,.fCl,.le,... 7leax27$t17' "7xtm7y]_
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[Tiyy e s Ty T2 Ty ey Ty T, Ty e ey Ty Y

Suppose first {,h = 0. For every m > 0
[flawal'tla e al‘tmay] =

(21, T2, Tty oy Tty Y] — (T2, 1, 24y, T,y (D).

We can apply the Jacoby identity to the second commutator

[x17$27xt17 sy Tty s y]—[$17$27$t17 sy Tty s y]_'_[[xtl? DR xtm7y]7 [.’132,371]] (2)

Then reducing mod Id(UT3(F)%) we get [x1,22][T4y, .., 2t,,,y] and this
is a product of two commutators of the required form.

If h > 0 we have to apply h times the Jacoby identity to the third
commutator of (2) and then reduce mod Id(UT3(F)%).

If | > 0 we have to apply [ + 1 times at most the Jacoby identity to
the second commutator of (1). In all cases we get a linear combination of
products of commutators of the required form.

|

Remark 4.6.3 Let G be a finite group, G = {g1 = e€,92,...,9s} and A be a
finitely generated Pl-algebra, graded by G. Let dim A, = p1,...,dim Ay, =
Pss (P14 +ps =dimA). IF XSG o (A) = 3 e Moy Xam) @ -+ © Xags)
is its (ni,...,ns)th cocharacter, with h(A(1)) < p1,...,h(A(s)) < ps, then,

if 1 € A the proper G-graded cocharacter sequence of A is yﬁl’n_vns(A) =

220k N Xam) © @ Xogs) with h(A(1)) < p1 — 1.
Proof. Let us consider proper polynomials of A.

Recall that A. is a subalgebra of A so we can suppose that A, =
span{a1 = 1a,a2,...,ap, }. If R(A(1)) < pi1, then every proper polyno-

mial is alternating in p; variables of homogeneous degree e at most. If we

consider multilinear polynomials, we can evaluate this polynomial with basis
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elements of A, and, since 14 € A, it takes zero value; so it is a polynomial

identity, a contradiction. Then h(A(1)) < p; — 1.

Theorem 4.6.4 Set A= UT3(F) and let

XA = D D mpmaeng ©xae)
ni+n2=n \(i)Fn;

be the nth graded proper cocharacter of A with elementary G-grading induced
by (e,e,9), g # e. If we set for simplicity my1) x@2) = m, then:

1. m=1if A1) = (q), ¢ >0 and A(2) = (1).
2.m=q+1ifN1)=@+qp), p>0,¢>0 and \(2) = (1).

3. m=2(q+1)if \1)=(p+¢p,1), p>0, ¢>0 and A(2) = (1).
4.-m=qlp+1)—1ifM1)=(p+aqpr)p,g=0,7=0,1 A2)=0.

5. m =0 in all other cases.
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Proof.

By Remark 4.6.3 and by obvious arguments, we can deduce that any
polynomial alternating on four variables of homogeneous degree e or on
three variables of homogeneous degree ¢ vanishes in A. By the identity
y1y2 = 0 we can deduce that A(2) = 0, (1). It is also easy to prove that
m=0if A(1)3 > 1.

By the Poincare-Birkhoff-Witt theorem (see [24] section 4.3) and using
the same arguments of [25] , we can deduce that the vector space F(X | G)

is generated by elements of the type

yl"'yk[zilv'”vziz]"'[zjl""?'zjm] (1)

where y;, ¢ = 1,..., k, are variables of homogeneous degree g and all z’s are
variables of homogeneous degree e or g.

Recall that, with our elementary G-grading,

I1d°(UT5(F)) = ([21, 22)[x3, 24], Y192, y[71, 22]),

so in (1) there are no y’s before commutators, moreover any commutator
takes value aejg or Beas + vers for some «, 3,7 € F, so in (1) there are at
most two long commutators.

Suppose first that A\(2) = ), then in this case UT3(F)¢ = UTy(F) & F
with trivial grading, then the proper multiplicities of UT5(F)% are the same
of the ordinary multiplicities of UT(F).

Suppose now A\(2) = (1).

Let now consider multilinear polynomials associated to Young tableaux
T\1), Tx2) where A(1) = (p +¢,p,7) p,q,7 > 0.

When we evaluate these polynomials on the elements e, es9, €33 of the
basis of A., they always take zero value, so we can suppose that the elements
of the third row of T() are evaluated in aej2, « € F. This implies that

r <1, so the third row of the partition A\ has length at most one.
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Now we want to prove that all variables in commutators can be written

in the following way:

1. [:vl,...,xl,xQ,...,xQ,xg,y]
2. [z2,...,x2,®1,...,21,23] - [X1,...,%1,T2,...,T2,Y]
3. [x3,29,...,2,21,...,21,%2] - [T1,...,21,%2,...,T2,Y]

Consider first a product of two commutators.

The commutator with only z’s can be written [z1,..., 21,22, ..., T2, 23]
or [3,22,...,T2,T1,...,21, 2], because (UT3(F)¥), = UTy(F) ® F, and
it is well known that the variables of UT»(F) are in commutators of these
types:

[Tirseeos Tis k) k> G < dme1 < .o < 1.

By applying condition 1) of Lemma 4.6.2 to the commutator where y
appears, and reducing modulo Id(UTs(F)%), we can deduce that the only
y is in the last position of the second commutator. By condition 2) of the
same lemma we can order all the other variables.

Now consider only one commutator with all 2’s and one y. Using con-
dition 1) and 2) of Lemma 4.6.2 we can suppose that all variables are in
ordered commutator.

By condition 3) of Lemma 4.6.2 we deduce that all the alternating vari-
ables are into different long commutators.

Suppose first that A(1)s = 0. Then \(1) = (p + q,p), p,q > 0.

If p = 0, for every ¢ > 0, the only proper polynomial is [z1,...,z1,¥]

q
and so m = 1.

If p > 0, for every g > 0, the proper polynomials are the following:

aql(xl,:cg,y) = El,...,fl,xl,...,xl,:@] . xl,...,fbl,fg,...,fg,y],
[\_._/\_v—/ [\_._/\_v—/

p—1 q1 qg—q1+1 p—1
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where 0 < g1 < g. For every choice of ¢ = 0,...,q we obtain ¢+ 1 different
polynomials. Som < ¢+ 1.

Now we want to prove that these ¢+ 1 polynomials are linearly indepen-
dent. To do this, let us consider a linear combination of ag, (x1,z2,y) for

every g1 = 0,...,q. Let

q
Z g, ag, (21,2, Y)

q1=0
be this linear combination. Then we have to prove that it is a polynomial

identity; so we have to prove that it is equal to zero for every G-graded
substitution with linear combinations of basis elements of UT3(F)¢.

Let us consider this substitution: 1 = aeiy + Bess + vero, a, 8,7 € F,
a,B,7#0, o = eq1, and y = eos.

With this substitution every monomial is equal to zero except the mono-

mial with all alternating x2’s in the first commutator. In this case we have

[21,29] = —ye12 = —y(a — B)%12, [21, [z1,22]] = —7(a — B)e12. In general

L1y ,.Tl,LUQ] - _V(a - B)t_1612'

t
[z1,y] = Beas + veis, [x1,[z1,y]] = v(a + B)eis + [B2es3, in general

T1,...,T1L,Y] =7 Zf;é !Bt eyg + Bleas.

t
So the complete evaluations of these polynomials are:

(o — B)ql—lﬁpﬂ—qlelg_

We obtain that
q
Z g, (o — 5)q1flﬁp+qfq1€13 = 0.
q1=0
We prove that ay, = 0 for every ¢; =0, ...,q.
We use induction on ¢, for every p > 0. If ¢ = 0, agy(a — )71 BPe13 = 0
implies that ag = 0 since «, 8 # 0.

Now suppose that oy, = 0 for every ¢g; =0, ...,q and prove that o1 =
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When we consider ¢ + 1 we obtain all the relations of case ¢ with a
coefficient more (oy4+1) and an other relation, o441 = 0, corresponding to
the monomial in commutative variables ya43P~! which is the only monomial
of degree ¢ in a. So ay, = 0 for every ¢q1 =0,...,q, then m > ¢+ 1. Thus
m = ¢+ 1 and we are done.

Suppose now that A(1)s = 1. Then A(1) = (p+¢,p,1),p>1, ¢ >0 and

proper polynomials are only the following:

aq, (1, 22,23, y) = [T1, ..., Ty, 1, .., @1, @8] - (21, ..., @1, Ta, .., T2, Y
p il q—q1 P
and
/ _ — — — —
aq1($1,$2,$37y) - [$37$1,. ey L1, L1y - - ,.’El,.TQ] : [ivl)' <y L1, T2y - - 7$27y]>
p—1 q1 q—q1+1 p—1

where 0 < ¢; < ¢, and — means alternation on corresponding elements.

We remark that for every choice of g1 = 0,...,q we obtain 2(q + 1)
different polynomials.

So we have proved that m < 2(¢+ 1).

Now we want to prove that these 2(q + 1) polynomials are linearly inde-
pendent.

To do this let us consider a linear combination of agq, (21,22, 23,y) and

/
ag, (v1, 72, 23,y) for every ¢1 = 0,...,q.
Let
q
/ /
E : O‘tnatn(xl?x%x&y) + aqlaq1($1;$27x37y)
q1=0

be this linear combination.
Then we have to prove that it is a polynomial identity; so we have to
prove that it is equal to zero for every G-graded substitution with linear

combinations of basis elements of UT3(F)%.
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Let us consider this substitution: x1 = ae11 + fexn, a, 8 € F, a, 8 # 0,
To = e11, x3 = e1g and y = eo3. With this substitution all the polyno-
mials ay, (w1, 72,73,y) take zero value. So the polynomials with non-zero
evaluations are aq, (21,22, 3,y), for every ¢ = 0,...,q. Moreover every
monomial of ag, (1,2, x3,y) is equal to zero, except the monomial with all
alternating zo’s in the first long commutators and all z1’s in the second long
commutators.

We obtain [z1,y] = Beas, [x2, 23] = e12 and [z1,x3] = (o — f)eqa.

So the complete evaluations of these polynomials are:
(o — BB gPHaI—de .

We obtain that

q
Z gy (o — B)N BPHI— N5 = (.

q1=0

Now we want to prove that oy, = 0 for every ¢; = 0,...,q. We use again
induction on gq.

If ¢ = 0, then aBP = 0 implies that oy = 0 since g8 # 0.

Now suppose that ay, = 0 for every ¢; = 0,...,q. We want to prove
that ag41 = 0.

When we consider ¢ + 1 we obtain all the relations of case ¢ with a
coefficient more (cg4+1) and an other relation, og+1 = 0, corresponding to
the monomial in commutative variables o471 8P which is the only monomial
of degree ¢ +1 in a. So oy, = 0 for every ¢1 =0,...,q.

Now consider the substitution

1 = aen + fex +vew2, o, B,y € F, o, 8,7 # 0, 13 = enn, x3 = en
and y = eg3. With this substitution every monomial of afh (1,2, 23,Y) is
equal to zero, except the monomial with all alternating x2’s in the first long

commutators and all z1’s in the second long commutators.
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In this case we have [z1,22] = —7ye1s = —y(a — B)%2, |21, [z1,22]] =

—y(a — B)erz. In general [z1,...,21,22) = —y(a — B)F L

t
[z1,y] = Beas + veis, [21,[z1,y]] = (o + B)eis + [B2es3, in general

21,21yl = g BT ey + Bleos.

t
So the complete evaluations of these polynomials are:

vl — 5)q1—15p+q—q1613_

With same arguments of the previous evaluation we can prove that agl =
0 for every q1 =0,...,q.
Then we have proved that m > 2(¢+ 1) and so m = 2(¢ + 1). O

4.7 Cocharacter sequence of UT;(F) with elemen-

tary G-grading induced by (e, g,9), g # e.

If A= UT;3(F) then in this case A, = span{ei1, 22, €33, €23}, Ay = span{eqa,
e1s}.

We can apply the same techniques of section 4.6; so we are able to
calculate proper multiplicities in the sequence of G-graded cocharacters.

First we note that we can restate Lemma 4.6.2 in this way.

Lemma 4.7.1 Let A be equipped with the elementary G-grading induced by
the triple (e,e,g), g # e. If we denote by x; the variables of homogeneous

degree e and by y; the variables of homogeneous degree g; then

Lo [@igsee s B Yy Ty o ) = D ey ugr mod  Id(UT3(F)C) where I
18 a finite set of indeces, h > 0, k > 2, oy € F and g; is a product of two
long commutators for all l € I. The first is in the variables x;’s and
y shifted in the last position (i.e.: gy = [Tk, -, Th,|[Trys s Ty Y,

and the second is a commutator in the x;’s only.
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[xily' ..,.’Eik,.TQ,.Tl,inl,. . '7xjh7y] =

[:Uil,...,xik,xl,xg,le,...,xjh,y]—I—Zalgl mod ITd(UT3(F)%)
lel

where i1,...,1, are not necessarily ordered indeces, h,k > 0, I is a
finite set of indeces, oy € F' and g; is a product of two long commuta-
tors. The first is in the variables x;’s and y shifted in the last position,

and the second is a commutator in the x;’s only.

B [Tiyy ooy @i T, Xy ey Ty T2 Tty oo Ty, Y] = Zlelalgl mod
Id(UT3(F)%) where h,l,m > 0, I is a finite set of indeces, oy € F
for all 1 € T and g; is a product of two long commutators with no

alternating variables.

Proof. The proof is the same of that of Lemma 4.6.2, but when we reduce
mod Id(UT3(F)%) we use the identity [21, o]y instead of y[z1, x]. 0

In the same way we can follow the proof of Theorem 4.6.4 obtaining
the same result; in this case the only differences are that all variables in

commutators can be written in the following way:

1. [1‘1,...,.%'1,.%'2,...,332,1'3,3/]
2. [x1,... 21,29, ,22,Y] - [T2, ..., X2, X1, ..., 21, 23]
3. [x1,...,x1,29,...,x2,Y] - [T3, T2, ..., 2, X1, ..., 21, T3]

and that the considered substitution are 1 = aei1+8e2s, T3 = €11, T3 = €23,
y = e1z and x1 = aeyy + Peaz + yeas, Ta = €11, T3 = €11,y = €12, o, € I,
a, B #0.

So if

(A= D D Mm@ X
ni+n2=n \(i)Fn;

is the nth graded proper cocharacter of A with the considered G-grading,

then m’/\(l)’)\@) = my)a2) for every A(1) - ny and A(2) k= ny.
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4.8 Cocharacter sequence of UTs(F') with elemen-

tary G-grading induced by (e, g,¢e), g # e.

If A = UT3(F) then A, = span{eii, e, es3,e13}, Ay = span{eia} and
Ag-1 = span{ess}. We can construct the space Wy1)r@2)a3) = F/(Sny X
Shy X Sns)eTA(l)eTm)eTm) as in the previous cases.

Since dim Ae = 4, dim Ay = dim A ;1 = 1, if

XSUTs(F) = > D mama@aEX0 @ Xa@ @ Xa@ (1)
ni+n2+n3=n \(i)Fn;

is the nth graded cocharacter of UT5(F') with this grading, it follows that
mamya@)a3) = 0 if either A(A(1)) > 4 or h(A(2)) > 2 or h(A(3)) > 2; also
it is easy to prove that my(1y x@2)r3) = 0 if A(1)s > 1; so the fourth row of
T'y(1) has one box at most.

If we denote with y; any variable of homogeneous degree g, with z; any
variable of homogeneous degree g—', the identities 4192 = 0 and 2123 = 0
show that A(2),A(3) =0 or (1).

It is easy to prove that myq) z2)a@) = 0 A(1) = (I1,12,13,1), lh > 12 >
I3 > 1 and A(2) = A(3) = (1) because any evaluation with basis elements of
any multilinear polynomial in variables x,y, z takes zero value.

Suppose now that A(2) = A(3) = 0. Since A, = UT»(F) @ F with trivial
grading, then the proper multiplicities of A are the same of the ordinary
multiplicities of UT(F'). More precisely if x,(UT>(F)) = >\, maxx  (2)
is the nth cocharacter of UT,(F), then we get that myq) g9 = myq) i-e:
the multiplicities of x 1) ® xp ® xp in (1) is the same as the multiplicity of
Xaq) in (2).

Now suppose that A(2) = A(3) = (1) and h(A\(1)) < 3. In these cases
we can apply the same techniques of Theorem 4.4.1 and obtain the same

multiplicities, since with the identities [x1,x2]y, y[z1, z2], [x1, 222, 2[21, 2]
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we can order all x’s before and after any y or z. More precisely if
XSUTs(F) = ) > A, WX @ B xa@ (3)
ni+...+n4=n \(i)Fn;
is the nth graded cocharacter of UT3(F') with elementary G-grading induced
by the triple (e,g,h), g # h, h # ¢*, then m'/\(l)y(l)’(l),@ = Mx(1),(1),(1)s 1-€
the multiplicity of x 1) ®@x1)®x(1)®Xp in (3) is the same as the multiplicity
of Xxaa1) ® x(1) ® x(1) in (1).

In all other cases m(1),z(2),x(3) = 0-
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