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Introduction

Let G be a group and A an algebra over a field F . A G-grading on A

is a decomposition of A, as a vector space, into the direct sum of subspaces

A =
⊕

g∈GAg such that AgAh ⊆ Agh, for any g, h ∈ G.

The description of all possible G-gradings of A is an important problem

in the structure theory of graded rings and its applications. Many properties

of the ideals of ordinary identities (with trivial grading) have an analogue

for graded identities and in this setting are more easily described ([18],[36]).

Kemer developed the structure theory of ideals of polynomial identities in

the spirit of the ideal theory of commutative algebras (see [36]). In his

approach he used Z2-graded algebras in an essential way showing also the

relevance of their graded polynomial identities. In particular, the study

of these ”weaker” identities was one of his key ingredients for answering

positively the famous Specht problem in characteristic zero.

It turned out fairly soon that the study of G-graded polynomial identities

of algebras graded by a group G, was a problem of independent interest,

with various relations to other objects as, for example, group algebras. For

instance, it was proved in [7], [17] that if G is a finite abelian group and A is

a G-graded algebra, then A is PI if and only if its neutral component is PI.

It was soon discovered that one may consider the graded identities satisfied

by an algebra as an ”approximation” of the ordinary ones. Several ordinary

invariants for T-ideals were transferred to the graded case and have been

extensively studied, see for example [8] and its bibliography.

In particular, the description of all gradings on matrix algebras plays an

important role in PI-theory (see, for example [13], [47]) and in the theory of

Lie superalgebras and colour Lie superalgebras (see [10]).

Let Mn(F ) be the n × n matrix algebra over a field F of character-

istic zero. Concerning the ordinary polynomial identities, the picture is
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completely clear only for 2 × 2 matrices. The results of Razmyslov [43]

and Drensky [22] give a basis of the polynomial identities. The asymptotic

behavior of the codimension sequence cn(M2(F )), n = 0, 1, 2, . . ., was de-

termined by Regev (see [44]) and the explicit formula for cn(M2(F )) was

established by Procesi [42]. The papers [23], [27] contain explicit formulas

for the Sn-cocharacters of M2(F ).

If G is an arbitrary group, for the algebra Mn(F ) of n × n matrices,

there are two important classes of G-gradings: the elementary gradings and

the fine gradings. In fact in [11] it was proved that if F is an algebraically

closed field, every G-grading on Mn(F ) is a tensor product of an elementary

grading and a fine grading. Moreover, if G is a cyclic group then any G-

grading on a matrix algebra Mn(F ) is an elementary grading.

In case of characteristic zero, an explicit basis of the graded identities

for the algebra of 2× 2 matrices was exhibited in [21]. In [37] the result of

[21] was extended to algebras over an infinitive field of characteristic differ-

ent from 2. Further significant progress in describing the graded identities

satisfied by matrix algebras was made by Vasilovsky in [50], [51]. He de-

scribed the Zn and the Z-graded identities of the matrix algebra Mn(F )

over a field of characteristic zero with a particular Zn-grading. Namely

Vasilovsky proved that for such grading the ideal of Zn-graded identities for

Mn(F ) is generated by the polynomials xe1xe2 − xe2xe1 and xi1x(n−i)2xi3 −

xi3x(n−i)2xi1, 0 ≤ i ≤ n − 1, where xij is the jth variable of homogeneous

degree i. This result was generalized in the paper [6] to any elementary

grading of Mn(F ) induced by g = (g1, . . . , gn) ∈ Gn, where the group G is

finite arbitrary and the elements g1, . . . , gn are pairwise different. Later on

both results of Vasilovsky were established over infinite fields, see [4], [5].

This thesis is devoted to the study of the G-graded cocharacter sequence

for a PI-algebra, with particular attention to the algebra of upper triangular

matrices of order three.
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The first chapter of the thesis is introductory. We introduce the algebras

with polynomial identity by giving their basic definitions and properties. We

only deal with associative algebras over a field F of characteristic zero. The

set of all polynomial identities of A, Id(A), is a T -ideal of the free associative

algebra F ⟨X⟩, where X = {x1, x2, . . .} is a countable set. Then we recall

the definition of multihomogeneous and multilinear polynomials.

In the second chapter we give a brief introduction to the classical rep-

resentation theory of the symmetric group and of the general linear group

via the theory of Young diagrams which is our main tool in the study of the

T -ideals of the free algebra. Then we introduce the sequence of codimen-

sions, cocharacters and colengths, and we restate all results in case A is a

G-graded PI-algebra.

In the third chapter we characterize the ideal of graded identities of

A in case the multiplicities are bounded by a constant. We shall do this

in three different ways. In fact we shall prove that the multiplicities are

bounded by a constant if and only if IdG(A) + IdG(UTG
2 ), where UTG

2 is the

algebra of upper triangular matrices of order two with a generic G-grading.

Another characterization will be given in terms of Sn-characters: in fact

we shall prove that the characters appearing with non-zero multiplicities in

χG
n1,...,ns

(A) have corresponding Young diagrams contained in a hook shaped

part of the plane.

In the last chapter we study the algebra of upper triangular matrices of

order three, UT3(F ), graded by a finite abelian group G. Recall that all

G-gradings on UTn(F ), for F algebraically closed of characteristic zero, are

elementary (see [53]).

We compute the multiplicities or the proper multiplicities of the graded

cocharacter sequences of UT3(F ).
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Chapter 1

Polynomial Identities and

PI-Algebras

In this chapter we give the basic definitions and results of the theory of

polynomial identities of associative algebras.

1.1 Basic Definitions

Throughout this paper we shall be dealing with associative algebras over a

field.

We start with the basic definition of free algebra. Let F be a field and

X a set. The free associative algebra on X over F , is the algebra F ⟨X⟩ of

polynomials in the non-commuting indeterminates x ∈ X.

A linear basis of F ⟨X⟩ consists of all words in the alphabet X (including

the empty word 1). Such words are called monomials and the product of

two monomials is given by juxtaposition. The elements of F ⟨X⟩ are called

polynomials and if f ∈ F ⟨X⟩, we write f = f(x1, . . . , xn) to indicate that

x1, . . . , xn ∈ X are the only indeterminates occurring in f . We shall also

assume that X is an infinite set.

we define degu, the degree of a monomial u, as the length of the word
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u. Also degxi
u, the degree of u in the indeterminate xi, is the number

of occurrence of xi in u. Accordingly, the degree degf of a polynomial

f = f(x1, . . . , xn) is the maximum degree of a monomial in f ; degxi
f , the

degree of f in xi, is the maximum of degxi
u, for u a monomial in f .

The algebra F ⟨X⟩ is defined, up to isomorphism, by the following uni-

versal property: given an associative F -algebra A, any map X → A can be

uniquely extended to a homomorphism of algebras F ⟨X⟩ → A. The cardi-

nality of X is called the rank of F ⟨X⟩. We shall consider the free algebra

F ⟨X⟩ of countable rank on the set X = {x1, x2, . . .}.

Definition 1.1.1 Let A be an F -algebra and f = f(x1, . . . , xn) ∈ F ⟨X⟩.

We say that f ≡ 0 is a polynomial identity of A if f(a1, . . . , an) = 0 for all

a1, . . . , an ∈ A.

Let Φ denote the set of all homomorphism φ : F ⟨X⟩ → A. Then it is

clear that f ≡ 0 is a polynomial identity for A if and only if f ∈
∩

φ∈ΦKerφ.

We shall usually say that f ≡ 0 is an identity on A or that A satisfies f ≡ 0;

sometimes we shall say that f itself is an identity of A.

Since the trivial polynomial f = 0 is an identity for any algebra A, we

make the following:

Definition 1.1.2 If A satisfies a non-trivial identity f ≡ 0, then we say

that A is a PI-algebra.

For a, b ∈ A, let [a, b] = ab − ba denote the Lie commutator of a and b.

We next give some examples of PI-algebras.

Example 1.1.3 Let UTn(F ) be the algebra of n × n upper triangular ma-

trices over F . Then UTn(F ) is a PI-algebra since it satisfies the identity

[x1, x2] · · · [x2n−1, x2n] ≡ 0.
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1.2 T-ideals and varieties of algebras

Given an algebra A, we define

Id(A) = {f ∈ F ⟨X⟩ | f ≡ 0 on A},

the set of polynomial identities of A. Clearly, Id(A) is a two-sided ideal

of F ⟨X⟩. Moreover, if f = f(x1, . . . , xn) is any polynomial in Id(A), and

g1, . . . , gn are arbitrary polynomials in F ⟨X⟩, it is clear that f(g1, . . . , gn) ∈

Id(A). Since any endomorphism of F ⟨X⟩ is determined by mapping x 7→ g,

x ∈ X, g ∈ F ⟨X⟩, it follows that Id(A) is an ideal invariant under all

endomorphism of F ⟨X⟩. The ideals with this property are called T-ideals.

Definition 1.2.1 An ideal I of F ⟨X⟩ is a T-ideal if φ(I) ⊆ I for all endo-

morphisms φ of F ⟨X⟩.

Hence Id(A) is a T-ideal of F ⟨X⟩. On the other hand, it is easy to check

that all T-ideals of F ⟨X⟩ are actually of this type.

Now we need the notion of a variety of algebras.

Definition 1.2.2 Given a non-empty set S ⊆ F ⟨X⟩, the class of all alge-

bras A such that f ≡ 0 on A for all f ∈ S is called the variety V = V(S)

determined by S.

A variety V is called non-trivial if S ̸= 0 and V is proper if it is non-trivial

and contains a non-zero algebra.

The following theorem helps us to decide whether a given class of algebras

is a variety.

Theorem 1.2.3 A non-empty class V of algebras is a variety if and only if

it satisfies the following properties:

1. if A ∈ V, and B → A is a monomorphism, then B ∈ V;

2. if A ∈ V, and A → B is an epimorphism, then B ∈ V;

6



3. if {Aγ}γ∈Γ is a family of algebras and Aγ ∈ V, for all γ ∈ Γ, then∏
γ∈ΓAγ ∈ V.

There is a close correspondence between T-ideals and varieties of alge-

bras.

Theorem 1.2.4 There is a one-to-one correspondence between T-ideals of

F ⟨X⟩ and varieties of algebras. In this correspondence a variety V corre-

sponds to the T-ideal of identities Id(V) and a T-ideal I corresponds to the

variety of algebras satisfying all the identities in I.

1.3 Homogeneous and multilinear polynomials

When the base field F is infinite, the study of the identities of a given algebra

can be reduced to the study of homogeneous and multilinear polynomials.

In this section we give the basic definitions and results.

Let Fn = F ⟨x1, . . . , xn⟩ be the free algebra of rank n ≥ 1 over F . This

algebra can be naturally decomposed as

Fn = F (1)
n ⊕ F (2)

n ⊕ · · ·

where, for every k ≥ 1, F
(k)
n is the subspace spanned by all monomials of

total degree k. The F
(i)
n ’s are called the homogeneous components of Fn.

This decomposition can be further refined as follows: for every k ≥ 1

write

F (k)
n =

⊕
i1+···+in=k

F (i1,...,in)
n

where F
(i1,...,in)
n is the subspace spanned by all monomials of degree i1 in x1,

. . . in in xn. Such decomposition extend in an obvious way to F ⟨X⟩ for X

countable.

Definition 1.3.1 A polynomial f belonging to F
(k)
n for some k ≥ 1, will

be called homogeneous of degree k. If f belongs to some F
(i1,...,in)
n , it will
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be called multihomogeneous of multidegree (i1, . . . , in). We also say that a

polynomial f is homogeneous in the variable xi, if xi appears with the same

degree in every monomial of f .

A useful property of T-ideals is that if F is an infinite field, they have a

corresponding decomposition in multihomogeneous polynomials. If f(x1, . . . ,

xn) ∈ F ⟨X⟩, we can always write

f =
∑

i1≥0,...,in≥0

f (i1,...,in)

where f (i1,...,in) ∈ F
(i1,...,in)
n is the sum of all monomials in f where x1, . . . , xn

appear at degree i1, . . . , in, respectively. The polynomials f (i1,...,in) which

are non-zero are called the multihomogeneous components of f .

Theorem 1.3.2 Let F be an infinite field. If f ≡ 0 is a polynomial identity

for the algebra A, then every multihomogeneous component of f is still a

polynomial identity for A.

One of the most important consequences of the previous theorem is that

over an infinite field every T-ideal is generated by its multihomogeneous

polynomials.

Among multihomogeneous polynomials a special role is played by the

multilinear ones.

Definition 1.3.3 A polynomial f is linear in the variable xi if xi occurs

with degree 1 in every monomial of f . A polynomial which is linear in each

of its variables is called multilinear.

In the language above we can say that a polynomial f(x1, . . . , xn) ∈

F ⟨X⟩ is multilinear if it is multihomogeneous of multidegree (1, . . . , 1).

Since in a multilinear polynomial f(x1, . . . , xn) each variable appears in

each monomial at degree 1, it is clear that this polynomial is always of the
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form

f(x1, . . . , xn) =
∑
σ∈Sn

ασxσ(1) · · ·xσ(n)

where ασ ∈ F and Sn is the symmetric group on {1, . . . , n}.

The most important property of multilinear polynomials is given in the

following remark

Remark 1.3.4 Let A be an F -algebra spanned by a set B over F . If a

multilinear polynomial f vanishes on B, then f is a polynomial identity of

A

Theorem 1.3.5 If charF = 0, every non-zero polynomial f ∈ F ⟨X⟩ is

equivalent to a finite set of multilinear polynomials.

We can record this results in the language of T-ideals.

Corollary 1.3.6 If charF = 0, every T-ideal is generated, as a T-ideal, by

the multilinear polynomials it contains.
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Chapter 2

Sn-Representations

2.1 Finite dimensional representations

Let V be a vector space over a field F nd let GL(V ) be the group of invertible

endomorphisms of V . Recall the following.

Definition 2.1.1 A representation of a group G on V is a homomorphism

of groups ρ : G → GL(V ).

Let us denote by End(V ) the algebra of F -endomorphisms of V . If FG

is the group algebra of G over F and ρ is a representation of G on V , it

is clear that ρ induces a homomorphism of F -algebras ρ′ : FG → End(V )

such that ρ′(1G) = 1.

Throughout we shall be dealing only with the case when dimF V = n <

∞, i.e., with finite dimensional representations. In this case n is called the

dimension or the degree of the representation ρ. Now, a representation of a

group G uniquely determines a finite dimensional FG-module (or G-module)

in the following way. If ρ : G → GL(V ) is a representation of G, V becomes

a (left) G-module by defining gv = ρ(g)(v) for all g ∈ G, v ∈ V . It is also

clear that if M is a G-module which is finite dimensional as a vector space

over F , then ρ : G → GL(M), such that ρ(g)(m) = gm, for g ∈ G, m ∈ M ,
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defines a representation of G on M .

Definition 2.1.2 If ρ : G → GL(V ) and ρ′ : G → GL(W ) are two repre-

sentations of a group G, we say that ρ and ρ′ are equivalent, and we write

ρ ∼ ρ′, if V and W are isomorphic as G-modules.

Definition 2.1.3 A representation ρ : G → GL(V ) is irreducible if V is an

irreducible G-module. ρ is completely reducible if V is the direct sum of its

irreducible submodules

The basic tool for studying the representations of a finite group in case

charF = 0, is Maschke’s theorem. Recall that an algebra A is semisimple if

J(A) = 0 where J(A) is the Jacobson radical of A.

Theorem 2.1.4 (Maschke) Let G be a finite group and let charF = 0 or

charF = p > 0 and p - |G|. Then the group algebra FG is semisimple.

As a consequence of Wedderburn’s theorem, it follows that, under the

hypotheses of Maschke’s theorem,

FG ∼= Mn1(D
(1))⊕ · · · ⊕Mnk

(D(k))

where D(1), . . . , D(k) are finite dimensional division algebras over F . In light

of these results one can classify all the irreducible representations of G: M is

an irreducible G-module if and only ifM is an irreducibleMni(D
(i))-module,

for some i. On the other hand, Mni(D
(i)) has (up to isomorphisms) only

one irreducible module, isomorphic to
∑ni

j=1D
(i)eij .

From the above it can also be deduced that every G-module V is com-

pletely reducible. Hence if dimF V < ∞, V is the direct sum of a finite

number of irreducible G-modules. We record this fact in the following.

Corollary 2.1.5 Let G be a finite group and F a field of characteristic zero

or p > 0 and p - |G|. Then every representation of G is completely reducible
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and the number of inequivalent irreducible representations of G equals the

number of simple components in the Wedderburn decomposition of the group

algebra FG.

Recall that an element e ∈ FG is an idempotent if e2 = e. It is well

known that since FG is finite dimensional semisimple, every one-sided ideal

of FG is generated by an idempotent. Moreover every two-sided ideal is

generated by a central idempotent. We say that an idempotent is minimal

(central resp.) if it generates a minimal one-sided (two-sided resp.) ideal.

We record this in the following.

Proposition 2.1.6 If M is an irreducible representation of G, then M ∼=

Ji, a minimal left ideal of Mni(D
(i)), for some i ∈ 1, . . . , k. Hence there

exists a minimal idempotent e ∈ FG such that M ∼= FGe.

When the field F is a splitting field for the group G, e.g., F is alge-

braically closed, then the following properties hold.

Proposition 2.1.7 Let F be a splitting field for G. Then the number of

non-equivalent irreducible representations of G equals the number of conju-

gacy classes of G.

Since by Corollary 2.1.5 this number equals the number of simple com-

ponents of FG, it follows that when F is a splitting field for G, it equals the

dimension of the center of FG over F .

A basic tool in representation theory is provided by the theory of char-

acters. From now on assume that F is a splitting field for G of characteristic

zero and let tr : End(V ) → F be the trace function on End(V ).

Definition 2.1.8 Let ρ : G → GL(V ) be a representation of G. Then the

map χρ : G → F such that χρ(g) = tr(ρ(g)) is called the character of the

representation ρ and dimV = degχρ is called the degree of the character χρ.
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We say that the character χρ is irreducible if ρ is irreducible. Since

χρ(g) = χρ(h) provided g is conjugate to h in G, χρ is constant on the

conjugacy classes of G, i.e., χρ is a class function of G. Notice that χρ(1) =

degχρ.

2.2 Sn-representations

In this section we describe the ordinary representation theory of the sym-

metric group Sn, n ≥ 1. Since Q, the field of rational numbers, is a splitting

field for Sn, for any field F of characteristic zero, the group algebra FSn has

a decomposition into simple components which are algebras of matrices over

the field F itself. Moreover, by Proposition 2.1.7, the number of irreducible

non-equivalent representations equals the number of conjugacy classes of Sn.

Recall the following.

Definition 2.2.1 Let n ≥ 1 be an integer. A partition λ of n s a finite

sequence of integers λ = (λ1, . . . , λr) such that λ1 ≥ · · · ≥ λr > 0 and∑r
i=1 λi = n. In this case we write λ ⊢ n.

If r = 1, then λ1 = n and we write λ = (n). For the partition λ with

λ1 = . . . = λn = 1 the notation λ = (1n) is usually used. More generally, we

write λ = (kd) as soon as λ = (k, . . . , k) and n = kd.

It is well known that the conjugacy classes of Sn are indexed by the

partitions of n: if σ ∈ Sn, we decompose σ into the product of disjoint

cycles, including 1-cycles. this decomposition is unique if we require that

σ = π1π2 · · ·πr

with π1, π2, . . . , πr cycles of length λ1 ≥ · · · ≥ λr ≥ 1, respectively. Then

the partition λ = (λ1, . . . , λr) uniquely determines the conjugacy class of σ.

Since, as we mentioned above, all the irreducible characters of Sn are in-

dexed by the partitions of n, let us denote by χλ the irreducible Sn-character
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corresponding to λ ⊢ n.

It is standard to use the notation dλ = χλ(1) for the degree of χλ. It

follows that FSn has the following decomposition

FSn =
⊕
λ⊢n

Iλ ∼=
⊕
λ⊢n

Mdλ(F ),

where Iλ = eλFSn
∼= Mdλ(F ) is the minimal two-sided ideal of FSn corre-

sponding to λ ⊢ n, and eλ =
∑

σ∈Sn
χλ(σ)σ is the essential central idempo-

tent deduced from Remark .

Proposition 2.2.2 Let F be any field of characteristic zero and n ≥ 1.

Then there is a one-to-one correspondence between irreducible Sn-characters

and partitions of n. Let {χλ | λ ⊢ n} be a complete set of irreducible

characters of Sn and let dλ = χλ(1) be the degree of χλ, λ ⊢ n. then

FSn =
⊕
λ⊢n

Iλ ∼=
⊕
λ⊢n

Mdλ(F ),

where Iλ = eλFSn and eλ =
∑

σ∈Sn
χλ(σ)σ is up to a scalar, the unit

element of Iλ.

Definition 2.2.3 If λ = (λ1, . . . , λr) ⊢ n, the Young diagram associated

to λ is the finite subset of Z × Z defined as Dλ = {(i, j) ∈ Z × Z | i =

1, . . . , r, j = 1, . . . , λi}.

There are two standard notations. In one notation, a Young diagram

Dλ is denoted as an array of boxes corresponding to the points (i, j). In

the other notation, and this is the one we shall adopt, the array of boxes

denoting Dλ is such that the first coordinate i (the row index) increases

from top to bottom and the second coordinate j (the column index from left

to right).

For a partition λ ⊢ n we shall denote by λ′ the conjugate partition of

λ; λ′ = (λ′
1, . . . , λ

′
s) is the partition such that λ′

1, . . . , λ
′
s are the lengths of

the columns of Dλ. Hence D′
λ is obtained from Dλ by flipping Dλ along its

main diagonal.
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Definition 2.2.4 Let λ ⊢ n. A Young tableau Tλ of the diagram Dλ is a

filling of the boxes of Dλ withe the integers 1, 2, . . . , n. We shall also say

that Tλ is a tableau of shape λ.

Of course there are n! distinct tableaux. Among these a prominent role

is played by the so called standard tableaux.

Definition 2.2.5 A tableau Tλ of shape λ is standard if the integers in each

row and in each column of Tλ increase from left to right and from top to

bottom, respectively.

There is a strict connection between standard tableaux and degrees of

the irreducible Sn-characters.

Theorem 2.2.6 Given a partition λ ⊢ n, the number of standard tableaux

of shape λ equals dλ, the degree of χλ, the irreducible character corresponding

to λ.

Next we give a formula to compute the degree dλ of the irreducible

character χλ: the Hook Formula. First we need some further terminology.

Given a diagram Dλ, λ ⊢ n, we identify a box of Dλ with the corre-

sponding point (i, j).

Definition 2.2.7 For any box (i, j) ∈ Dλ, we define the hook number of

(i, j) as hij = λi + λ′
j − i− j + 1, where λ′ is the conjugate partition of λ.

Note that hij counts the number of boxes in the ”hook” with edge in

(i, j), i.e., the boxes to the right and below (i, j).

Proposition 2.2.8

dλ =
n!∏
i,j hij

where the product runs over all boxes of Dλ.
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Next we describe a complete set of minimal left ideals of FSn. Given

any tableau Tλ of shape λ ⊢ n, let us denote by Tλ = Dλ(aij), where aij is

the integer in the (i, j) box. then

Definition 2.2.9 The row-stabilizer of Tλ is

RTλ
= Sλ1(a11, a12, . . . , a1λ1)× · · · × Sλr(ar1, ar2, . . . , arλr)

where Sλ1(ai1, ai2, . . . , aiλi
) denotes the symmetric group acting on the inte-

gers ai1, ai2, . . . , aiλi
.

Hence RTλ
is the subgroup of Sn consisting of all permutation stabilizing

the rows of Tλ.

Definition 2.2.10 The column-stabilizer of Tλ is

CTλ
= Sλ′

1
(a11, a21, . . . , aλ′

11
)× · · · × Sλ′

r
(a1λ1 , a2λ2 , . . . , aλ′

sλ1)

where λ′ = (λ′
1, . . . , λ

′
s) is the conjugate partition of λ.

Hence CTλ
is the subgroup of Sn consisting of all permutations stabilizing

the columns of Tλ.

Definition 2.2.11 For a given tableau Tλ, we define

eTλ
=

∑
σ∈RTλ

,τ∈CTλ

(sgnτ)στ.

It can be shown that e2Tλ
= aeTλ

, where a = n!
dλ

is a non-zero integer,

i.e., eTλ
is an essential idempotent of FSn.

Given a partition λ ⊢ n, the symmetric group Sn acts on the set of

Young tableaux of shape λ as follows: If σ ∈ Sn and Tλ = Dλ(aij), then

σTλ = Dλ(σ(aij)). This action has the property that

RσTλ
= σRTλ

σ−1 and CσTλ
= σCTλ

σ−1.

It follows that σeTλ
σ−1 = eσTλ

.

We record the most important facts about eTλ
in the following.
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Corollary 2.2.12 For every Young tableau Tλ of shape λ ⊢ n, the element

eTλ
is a minimal essential idempotent of FSn and FSneTλ

is a minimal left

ideal of FSn with character χλ. If Tλ and T ∗
λ are Young tableaux of the

same shape, then eTλ
and eT ∗

λ
are conjugated in FSn through some σ ∈ Sn;

moreover, σeTλ
σ−1 = eσTλ

.

The above proposition says that for any two tableaux Tλ and T ∗
λ of the

same shape λ, FSneTλ
∼= FSneT ∗

λ
, as Sn-modules.

2.3 Inducing Sn-representations

In this section we regard the group Sn embedded in Sn+1 as the subgroup

of all permutations fixing the integer n + 1. The next theorem gives a

decomposition into irreducibles of any Sn-module induced up to Sn+1.

Let us denote by Mλ an irreducible Sn-module corresponding to the

partition λ ⊢ n. We have

Theorem 2.3.1 Let the group Sn be embedded into Sn+1 as the subgroup

fixing the integer n+ 1. Then

1. If λ ⊢ n, then Mλ ↑ Sn+1
∼=

∑
µ∈λ+ Mµ where λ+ is the set of all

partitions of n+ 1 whose diagram is obtained from Dλ by adding one

box;

2. If µ ⊢ n + 1, then Mµ ↓ Sn
∼=

∑
λ∈µ− Mλ where µ− is the set of all

partitions of n whose diagram is obtained from Dµ by deleting one box.

We go one step further and we state a more general result. First we need

some definitions.

We embed the group Sn × Sm into Sn+m by letting Sm act on {n +

1, . . . , n +m}. Recall that if M is an Sn-module and N is an Sm-module,

then M ⊗F N has a natural structure of Sn × Sm-module.
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Definition 2.3.2 If M is an Sn-module and M is an Sm-module, then the

outer tensor product of M and N is defined as

M⊗̂N = (M ⊗N) ↑ Sn+m.

Recall that (n) denotes a one-row partition µ ⊢ n, i.e., µ1 = n. We have

Theorem 2.3.3 (Young Rule) Let λ ⊢ n and m ≥ 1. Then

Mλ⊗̂M(m)
∼=

∑
Mµ

where the sum runs over all partitions µ of n +m such that we have µ1 ≥

λ1 ≥ µ2 ≥ · · · ≥ µn+m ≥ λn+m.

Definition 2.3.4 An unordered partition of n is a finite sequence of positive

integers α = (α1, . . . , αt) such that
∑t

i=1 αi = n. In this case we write

α |= n.

Definition 2.3.5 A Young tableau is semistandard if the numbers are non-

decreasing along the rows and strictly increasing down the columns.

We now consider the obvious partial order on the set of partitions. Let

λ = (λ1, . . . , λp) ⊢ n and µ = (µ1, . . . , µq) ⊢ m, then λ ≥ µ if and only if

p ≥ q and λi ≥ µi for all i = 1, . . . , p. In the language of Young diagrams

λ ≥ µ means that Dµ is a subdiagram of Dλ.

Let λ ⊢ n, µ ⊢ m. We say that λ ≥ µ if λi ≥ µi for all i ≥ 1, i.e.,Dλ ⊇ Dµ.

if λ ≥ µ, we define the skew-partition λ \ µ = (λ1 − µ1, λ2 − µ2, . . .); the

corresponding diagram Dλ\µ is the set of boxes of Dλ which do not belong

to Dµ.

Definition 2.3.6 A skew-tableau Tλ\µ is a filling of the boxes of the skew-

diagram Dλ\µ with distinct natural numbers. if repetitions occur, then we

have the notion of (generalized) skew-tableau. We also have the natural

notion of standard and semistandard skew-tableau.
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Definition 2.3.7 Let α = (α1, . . . , αt) |= n. We say that α is a lattice

permutation if for each j the number of i’s which occur among α1, . . . , αj is

greater then or equal to the number of (i+ 1)’s for each i.

We can now formulate

Theorem 2.3.8 (Littlewood-Richardson Rule) Let λ ⊢ n and µ ⊢ m.

Then

Mλ⊗̂Mµ
∼=

∑
ν⊢n+m

kµν\λMν

where kµν\λ is the number of semistandard tableau of shape ν \λ and content

µ which yield lattice permutations when we read their entries from right to

left and downwards.

2.4 Sn-actions on multilinear polynomials

In this section we introduce an action of the symmetric group Sn on the space

of multilinear polynomials in n fixed variables. We assume throughout this

section that charF = 0. We start with a remark about arbitrary irreducible

Sn-modules.

Lemma 2.4.1 Let M be an irreducible left Sn-module with character χ(M) =

χλ, λ ⊢ n. Then M can be generated as an Sn-module by an element of the

form eTλ
f for some f ∈ M and some Young tableau Tλ of shape λ. More-

over, for any Young tableau T ∗
λ of shape λ there exists f ′ ∈ M such that

M = FSneT ∗
λ
f ′.

The previous lemma says that, given a partition λ ⊢ n and a Young

tableau Tλ of shape λ, any irreducible Sn-module M such that χ(M) = χλ

can be generated by an element of the form eTλ
f for some f ∈ M . By

the definition of RTλ
, for any σ ∈ RTλ

we have that σeTλ
f = eTλ

f , i.e.,

eTλ
f is stable under the RTλ

-action. The number of RTλ
-stable elements in
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an arbitrary Sn-module M is closely related to the number of irreducible

Sn-submodules of M having character χλ.

Lemma 2.4.2 Let Tλ be a Young tableau corresponding to λ ⊢ n and let

M be an Sn-module such that M = M1 ⊕ · · · ⊕Mm where M1, . . . ,Mm are

irreducible Sn-submodules with character χλ. Then m is equal to the number

of linearly independent elements g ∈ M such that σg = g for all σ ∈ RTλ
.

Now let A be a PI-algebra and Id(A) its T-ideal of identities. As we

showed in Corollary 1.3.6, in characteristic zero, Id(A) is determined by its

multilinear polynomials.

We introduce

Pn = span{σ ∈ Sn | σ ∈ Sn},

the vector space of multilinear polynomials in x1, . . . , xn in the free algebra

F ⟨X⟩. We define a map

φ : FSn → Pn

by setting

φ :
∑
σ∈Sn

ασσ 7→
∑
σ∈Sn

ασxσ(1) · · ·xσ(n).

It is clear that φ is a linear isomorphism. This isomorphism turns Pn

into an Sn bimodule; if σ, τ ∈ Sn, then

σ(xτ(1) · · ·xτ(n)) = xστ(1) · · ·xστ(n) = (xσ(1) · · ·xσ(n))τ.

The interpretation of the left Sn-action on a polynomial f(x1, . . . , xn) ∈

Pn, for σ ∈ Sn, is

σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)),

that is , of permuting the variable according to σ.

The right action of τ on f(x1, . . . , xn) is that of changing the places in

each monomial xσ(1) · · ·xσ(n) according to the permutation τ and is inde-

pendent of σ. This means that the i-th factor xσ(i) will be placed in the
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τ−1(i) place of the new monomial, i = 1, . . . , n. Note that T-ideals are not

invariant in general under the right action.

Denote Pn = Pn(x1, . . . xn) = Pn(x). If y1, . . . , yn are other variables,

one can consider Pn(y1, . . . yn) = Pn(y). If A is a PI-algebra and charF = 0,

it suffices to study the multilinear identities of A. Namely one should study

Pn(x) ∩ Id(A), Pn(y) ∩ Id(A), etc. However, the correspondance xi 7→ yi

yields the isomorphism Pn(x) ∼= Pn(y) ∼= FSn and it suffices to study just

Pn(x) ∩ Id(A).

Since T-ideals are invariant under permutations of the variables, we ob-

tain that Pn ∩ Id(A) is a left Sn-submodule of Pn. Hence

Pn(A) =
Pn

Pn ∩ Id(A)

has an induced structure of left Sn-module. If F ⟨X⟩ is the free algebra of

countable rank on X = {x1, x2, . . .}, then Pn(A) is the space of multilinear

elements in the first n variables of relatively free algebra F ⟨X⟩�Id(A). If

V = var(A), we also write Pn(V) = Pn(A).

Definition 2.4.3 The non-negative integer

cn(A) = dimPn(A) =
Pn

Pn ∩ Id(A)

is called the nth codimension of the algebra A.

Definition 2.4.4 For n ≥ 1, the Sn-character of Pn(A) =
Pn

Pn∩Id(A) is called

the nth cocharacter of A and is denoted χn(A)

Now, if we decompose the nth cocharacter into irreducibles, we obtain

χn(A) =
∑
λ⊢n

mλχλ,

where χλ is the irreducible Sn-character associated to the partition λ ⊢ n

and mλ ≥ 0 is the corresponding multiplicity. Then we have
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Definition 2.4.5

ln(A) =
∑
λ⊢n

mλ

is called the nth colength of A.

In other words, ln(A) counts the number of irreducible Sn-modules ap-

pearing in the decomposition of Pn(A). We recall that if V is a variety of

algebras we write cn(V) = cn(A), χn(V) = χn(A) and ln(V) = ln(A) where

A is an algebra generating V.

We recall these important properties for codimensions and colengths.

Theorem 2.4.6 If the algebra A satisfies an identity of degree d ≥ 1, then

cn(A) ≤ (d− 1)2n.

Theorem 2.4.7 If V is a non-trivial variety, the sequence of colengths of

V is polynomially bounded, i.e., there exist constant C and k such that

ln(V) ≤ Cnk

for all n ≥ 1.

2.5 Representation of the general linear group

In this section we survey the information on representation theory of the

general linear group over an algebraically closed field of characteristic zero

in a form which we need for our study of PI-algebras. We restrict our

attention to the case when GLm = GLm(F ) acts on the free associative

algebra of rank m and consider the so-called polynomial representations of

GLm which have many properties similar to those of the representations of

finite groups. We refer to ([24], Chapter 12) for the results of this section.

Definition 2.5.1 The representation of the general linear group GLm:

ϕ : GLm → GLs
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is called polynomial if the entries of the s × s matrix ϕ(aij) are polynomial

functions of the entries of the m×m matrix aij, for all aij ∈ GLm. When

all the entries of ϕ(aij) are homogeneous polynomials of degree k, then ϕ is

a homogeneous representation of degree k.

Let Fm⟨X⟩ = F ⟨x1, . . . , xm⟩ denote the free associative algebra in m

variables and let U = spanF {x1, . . . , xm}.

The action of the group GLm
∼= GL(U) on Fm⟨X⟩ can be obtained

extending diagonally the natural left action of GLm on the space U by

defining:

g(xi1 , . . . , xik) = g(xi1) · · · g(xik), g ∈ GLm xi1 , . . . , xik ∈ Fm⟨X⟩.

Actually, Fm⟨X⟩ is a polynomial GLm-module (i.e. the corresponding

representation is polynomial).

Let Fn
m be the space of homogeneous polynomials of degree n in the

variables x1, . . . , xm, then Fn
m is a (homogeneous polynomial) submodule of

Fm⟨X⟩. We observe that:

Fn
m =

⊕
i1+···+im=n

F (i1,...,im)
m

where F
(i1,...,im)
m is the multihomogeneous subspace spanned by all monomi-

als of degree i1 in x1, . . . , im in xm.

The following theorem states a result similar to Maschke’s Theorem

about the complete reducibility of GLm-modules, valid for the polynomial

representations of GLm.

Theorem 2.5.2 Every polynomial GLm-module is a direct sum of irre-

ducible homogeneous polynomial submodules.

The irreducible homogeneous polynomial GLm-modules are described by

partition of n in not more than m parts and Young diagrams.
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Theorem 2.5.3 Let Pm(n) denote the set of all partitions of n with at most

m parts (i.e. whose diagrams have height at most m).

1. The pairwise non isomorphic irreducible homogeneous polynomial GLm-

modules of degree n ≥ 1 are in one-to-one correspondence with the

partitions λ ∈ Pm(n). We denote by W λ an irreducible GLm-module

related to λ.

2. Let λ ∈ Pm(n). Then the GLm-module W λ is isomorphic to a sub-

module of Fn
m. Moreover, the GLm-module Fn

m has a decomposition:

Fn
m

∼=
∑

λ∈Pm(n)

dλW
λ,

where dλ is the dimension of the irreducible Sn-module corresponding

to the partition λ.

3. As a subspace of Fn
m, the vector space W λ is multihomogeneous, i.e.

W λ =
⊕

i1+···+im=n

W λ,(i1,...,im)

where W λ,(i1,...,im) = W λ ∩ F
λ,(i1,...,im)
m .

We want to show that if W λ ⊆ Fn
m, then W λ is cyclic and generated

by a multihomogeneous polynomial of multidegree (λ1, . . . , λk) with λ =

(λ1, . . . , λk) ∈ Pn
m.

We observe first that the symmetric group Sn acts from the right on Fn
m

by permuting the places in which the variables occur, i.e. for all xi1 , . . . , xin ∈

Fn
m and for all σ ∈ Sn

xi1 · · ·xinσ = xiσ(1)
, . . . , xiσ(n)

.

Let now λ = (λ1, . . . , λk) ∈ Pm(n). We denote by sλ the following

polynomial of Fn
m:

sλ = sλ(x1, . . . , xk) =

λ1∏
i=1

Sthi(λ)(x1, . . . , xhi(λ)),
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where hi(λ) is the height of the ith column of the diagram of λ and

Str(x1, . . . , xr) =
∑
τ∈Sr

(sgnτ)xτ(1) · · ·xτ(r)

is the standard polynomial of degree r. Note that by definition sλ is multi-

homogeneous of multidegree (λ1, . . . , λk).

Theorem 2.5.4 1. The element sλ(x1, . . . , xk), defined above, generates

an irreducible GLm-submodule W of Fn
m isomorphic to W λ.

2. Every submodule W λ ⊆ Fn
m is generated by a non-zero polynomial

called highest weight vector of W λ, of the type:

fλ = sλ
∑
σ∈Sn

ασσ, ασ ∈ F.

The highest weight vector fλ is unique up to a multiplicative constant

and it is contained in the one-dimensional vector space W λ,(λ1,...,λk) =

W λ ∩ F
λ,(λ1,...,λk)
m .

3. Let
∑

σ∈Sn
ασσ ∈ FSn. if sλ

∑
σ∈Sn

ασσ ̸= 0, then it generates an

irreducible submodule W ∼= W λ, W ⊆ Fn
m.

Let λ = (λ1, . . . , λk) ∈ Pm(n) and let Tλ be a Young tableau. We denote

by fTλ
the highest weight vector obtained from (1) by considering the only

permutation σ ∈ Sn such that the first column of Tλ is filled in from top

to bottom with the integers σ(1), . . . , σ(h1(λ)), in this order, the second

column is filled in with σ(h1(λ) + 1), . . . , σ(h1(λ) + h1(λ)), etc.

Proposition 2.5.5 Let λ = (λ1, . . . , λk) ∈ Pm(n) and let W λ ⊆ Fn
m. The

highest weight vector fλ of W λ can be expressed uniquely as a linear combi-

nation of the polynomials fTλ
with Tλ standard tableau.
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2.6 Group gradings on algebras

In this section we introduce the notion of an algebra graded by a group

and we give some examples; moreover we extend the asymptotic methods

developed in the previous sections.

Definition 2.6.1 Let G be a group and A be an associative algebra over an

infinite field F . A G-grading on A is a decomposition of A as direct sum of

F -vector subspaces A =
⊕

g∈GAg such that AgAh ⊆ Agh ∀g, h ∈ G.

From the definition it is clear that any a ∈ A can be uniquely written

as a finite sum a =
∑

g∈G ag with ag ∈ Ag. The subspaces Ag are called

the homogeneous components of A. Accordingly, an element a ∈ A is ho-

mogeneous (or homogeneous of degree g) if a ∈ Ag. A subspace B ⊆ A is

graded or homogeneous if B =
⊕

g∈G(B ∩Ag). In other words, B is graded

if, for any b ∈ B, b =
∑

g∈G bg implies that bg ∈ B for all g ∈ G. Similarly,

one can define graded subalgebras, graded ideals, etc. Notice that if H is a

subgroup of G, then clearly B =
⊕

h∈H Ah is a graded subalgebra of A. In

particular, if e is the unit of G, Ae is a subalgebra of A. Next we give some

examples of graded algebras.

Example 2.6.2 Any algebra A can be graded by any group G by setting

A = Ae and Ag = 0 for any g ̸= e. This grading is called trivial.

Example 2.6.3 The group algebra A = FG of a group G is naturally graded

by G by setting Ag = spanF g.

Example 2.6.4 Let A = Mk(F ) be the algebra of k × k matrices over F

and let G be an arbitrary group. Give any k-tuple (g1, . . . , gk) ∈ Gk, one

can define a G-grading of A by setting

Ag = spanF {eij | g−1
i gj = g},

where eij are the usual matrix units.
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Example 2.6.5 Let UTn be the algebra of n × n upper-triangular matri-

ces. A G-grading on A = UTn(F ) is called elementary if there exists

g = (g1, . . . , gn) ∈ Gn an n-tuple of elements of G such that Ag = span{eij |

g−1
i gj = g} ∀g ∈ G, i.e.: the homogeneous degree of eij is equal to g−1

i gj

for every i and j such that 1 ≤ i ≤ j ≤ n.

Suppose that the algebra A is graded by a finite group G. Let G =

{g1 = e, g2, . . . , gs} and let A =
⊕s

i=1Agi be the decomposition of A into

its homogeneous components. Hence AgiAgj ⊆ Agigj , for all i, j = 1, . . . , s.

We denote by F ⟨X,G⟩ the free associative G-graded algebra of count-

able rank over F . Here the set X decomposes as X =
∪s

i=1Xgi , where

the sets Xgi = {x1,gi , x2,gi , . . .} are disjoint, and the elements of Xgi have

homogeneous degree gi. The algebra F ⟨X,G⟩ has a natural G-grading

F ⟨X,G⟩ =
⊕

g∈GFg, where Fg is the subspace of F ⟨X,G⟩ spanned by

the monomials xi1,gj1 · · ·xit,gjt of homogeneous degree g = gj1 · · · gjt .

Recall that an element of F ⟨X,G⟩ is called a graded polynomial. Also,

f is a graded (polynomial) identity of the algebra A, and we write f ≡ 0,

in case f vanishes under all graded substitutions xi,g → ag ∈ Ag. Let

IdG(A) = {f ∈ F ⟨X,G⟩ | f ≡ 0 on A} be the ideal of graded identities of

A. Clearly IdG(A) is invariant under all graded endomorphism of F ⟨X,G⟩.

Notice that if for i ≥ 1 we set xi = xi,gi + · · · + xi,gs , then the free

algebra F ⟨X⟩ is naturally embedded in F ⟨X,G⟩ and we can regard the

ordinary identities of A as a special kind of graded identities.

Since charF = 0, the multilinear polynomials of IdG(A) determine all of

IdG(A). Hence for n ≥ 1 we define

PG
n = spanF {xσ(1),giσ(1)

· · ·xσ(n),giσ(n)
| σ ∈ Sn, gi1 , . . . , gin ∈ G}

to be the space of multilinear G-graded polynomials in the variables

x1,gi1 , . . . , xn,gin , gij ∈ G.
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The ideal IdG(A) is determined by the sequence of subspaces PG
n ∩IdG(A), n =

1, 2, . . ., but we can consider even smaller spaces.

Let n ≥ 1 and write n = n1 + · · · + ns as a sum of non-negative in-

tegers. Define Pn1,...,ns ⊆ PG
n to be the space of multilinear graded poly-

nomials in which the first n1 variables have homogeneous degree g1, the

next n2 variables have homogeneous degree g2 and so on. Notice that given

such n1, . . . , ns, there are
(

n
n1,...,ns

)
subspaces isomorphic to Pn1,...,ns where(

n
n1,...,ns

)
denotes the multinomial coefficient. It is clear that PG

n is the direct

sum of such subspaces with n1+ · · ·+ns = n. Moreover such decomposition

is inherited by PG
n ∩ IdG(A) and we consider the spaces Pn1,...,ns ∩ IdG(A).

At the light of these observations, one defines

Pn1,...,ns(A) =
Pn1,...,ns

Pn1,...,ns ∩ IdG(A)
.

The space Pn1,...,ns(A) is naturally endowed with a structure of Sn1 × · · · ×

Sns- module in the following way: the group Sn1 × · · · ×Sns acts on the left

on Pn1,...,ns by permuting the variables of the same homogeneous degree;

hence Sn1 permutes the variables of homogeneous degree g1, Sn2 those of

homogeneous degree g2, etc. Since IdG(A) is invariant under this action,

Pn1,...,ns(A) has a structure of Sn1 × · · · × Sns- module and we denote by

χG
n1,...,ns

(A) its character.

If λ(1) ⊢ n1, . . . , λ(s) ⊢ ns, are partitions, then we write ⟨λ⟩ = (λ(1), . . . ,

λ(s)) ⊢ (n1, . . . , ns) and we say that ⟨λ⟩ is a multipartition of n = n1+ · · ·+

ns.

Since charF = 0, by complete reducibility χG
n1,...,ns

(A) can be written as

a sum of irreducibles characters in the following way:

χG
n1,...,ns

(A) =
∑
⟨λ⟩⊢n

m⟨λ⟩χλ(1) ⊗ · · · ⊗ χλ(s), (1)

where m⟨λ⟩ is the multiplicity of χλ(1) ⊗ · · · ⊗ χλ(s) in χG
n1,...,ns

(A). We call

χG
n1,...,ns

(A) the (n1, . . . , ns)th cocharacter of A.
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Recall (see for instance [30]) that the wreath product of G and Sn is the

group defined by

G ≀ Sn = {(g1, . . . , gn;σ) | g1, . . . , gn ∈ G, σ ∈ Sn}

with multiplication given by

(g1, . . . , gn;σ)(h1, . . . , hn; τ) = (g1hσ−1(1), . . . , gnhσ−1(n);στ).

We remark that if G is an abelian group, there is a well-known duality

between G-gradings and G-actions on the algebra A (one needs to assume

that the base field has enough roots of 1). Through this duality one can

define an action of the wreath product G ≀ Sn on PG
n (see [29]). Since this

action preserves IdG(A), the space PG
n (A) = PG

n /(PG
n ∩ IdG(A)) becomes a

G ≀ Sn- module and let χG
n (A) be its character. The irreducible characters

of G ≀ Sn are indexed by multipartition of n. Hence one writes

χG
n (A) =

∑
⟨λ⟩⊢n

m′
⟨λ⟩χ⟨λ⟩, (2)

and by an obvious generalization of [25], we have that if ⟨λ⟩ = (λ(1), . . . , λ(s))

with λ(1) ⊢ n1, . . . , λ(s) ⊢ ns, then in (1) and (2), m⟨λ⟩ = m′
⟨λ⟩.
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Chapter 3

Group Graded Algebras and

Multiplicities bounded by a

constant

3.1 Preliminaries

Throughout this chapter F will denote a field of characteristic zero and A

an associative F -algebra satisfying a non-trivial polynomial identity (PI-

algebra).

Let E be the infinite dimensional Grassmann algebra generated by a

countable set {e1, e2, . . .} subject to the condition eiej = −ejei, for all i, j.

Then E has a natural Z2-grading, E = E0
⊕

E1 where

E0 = span{ei1 · · · ei2k | 1 ≤ i1 < . . . < i2k, k ≥ 0}

and

E1 = span{ei1 · · · ei2k+1
| 1 ≤ i1 < . . . < i2k+1, k ≥ 0}.

If A = A0⊕A1, is a Z2-graded algebra, then the Grassmann envelope of

A is defined as E(A) = (E0⊗A0)⊕ (E1⊗A1). Notice that if A is a G×Z2-

graded algebra, A =
⊕

(g,i)∈G×Z2
A(g,i) is a G × Z2-graded algebra, we can
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consider the induced Z2-grading on A, A = A0⊕A1 where A0 =
⊕

g∈GA(g,0)

and A1 =
⊕

g∈GA(g,1). Hence in this case the Grassmann envelope of A

can be regarded as a G-graded algebra via E(A) =
⊕

g∈GE(A)g where

E(A)g = (E0 ⊗A(g,0))⊕ (E1 ⊗A(g,1)).

Next we recall an important theorem of Aljadeff and Belov [3], proved

independently by Sviridova in [48] for abelian groups.

Theorem 3.1.1 Let G be a finite group and A a G-graded PI-algebra over

a field of characteristic zero. Then there exists a finite dimensional G ×

Z2-graded algebra B such that IdG(A) = IdG(E(B)) where E(B) is the

Grassmann envelope of B.

Now let A be a finite dimensional G × Z2-graded algebra. By the

Wedderburn-Malcev theorem ([19]), we can write A = B + J where B is

a maximal semisimple subalgebra of A and J is its Jacobson radical. It

is well known that J is a graded ideal, moreover by [49] we assume, as

we may, that B is a G × Z2-graded subalgebra of A. Hence we can write

B = B(1) ⊕ · · · ⊕B(m) where every B(i) is a G× Z2-graded simple algebra.

There is an important theorem of Bahturin, Sehgal and Zaicev in [16] that

gives a characterization of all G× Z2-simple algebras.

Theorem 3.1.2 Let B be a finite dimensional G×Z2-graded simple algebra

over an algebraically closed field F . Then B has the following structure:

there exist a subgroup H of G× Z2, a 2-cocycle α : H ×H → F ∗ where the

action of H on F is trivial, an integer k and a k-tuple (a1 = e, a2, . . . , ak) ∈

(G× Z2)
k such that B is G× Z2- isomorphic to C = FαH ⊗Mk(F ) where

for a ∈ G × Z2, Ca = spanF {uh ⊗ eij : a = a−1
i haj}. Here uh ∈ FαH is a

representative of h ∈ H and the eij’s are the matrix units of Mk(F ).

We recall that if V = varG(A) is a variety of G-graded algebras generated

by A, we write χn1,...,ns(V) for χn1,...,ns(A).
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Recall also that UT2 is the algebra of 2×2 upper triangular matrices. By

[52, Theorem 1], any G-grading on UT2 is up to isomorphism, the elementary

grading determined by (e, g), for some g ∈ G. When g = e, then we get

the trivial grading. So by varG(UTG
2 ) we denote the variety of G-graded

algebras generated by UT2 with an elementary G-grading. Recall that G =

{g1 = e, g2, . . . , gs}. Then we can restate the following.

Theorem 3.1.3 ([52, Theorem 3]) Let UTG
2 be endowed with a non-trivial

G-grading determined by (e, gi), for some i ̸= 1. Then the TG-ideal of graded

identities of UTG
2 is generated by the polynomials [x1,e, x2,e], x1,gix2,gi and

x1,gj for all gj ∈ G, gj ̸= e, gi. Moreover if

χG
n1,...,ns

(UTG
2 ) =

∑
⟨λ⟩⊢n

m⟨λ⟩χλ(1) ⊗ · · · ⊗ χλ(s)

is the (n1, . . . , ns)th cocharacter of UTG
2 , we have:

1. m⟨λ⟩ = q + 1, if λ(1) = (p+ q, p), λ(i) = (1), and λ(j) = ∅, j ̸= i, 1.

2. m⟨λ⟩ = 1, if ⟨λ⟩ = ((n), ∅, . . . , ∅).

3. m⟨λ⟩ = 0 in all other cases.

Proof. Let A = UTG
2 be graded by the pair (e, gi). Then A = Ae⊕Agi . If we

consider the canonical Z2- grading on UT2, we get A = A0⊕A1 and A0 = Ae,

A1 = Agi . It follows that f(x1,e, . . . , xk,e, x1,gi , . . . , xl,gi) ∈ IdG(UTG
2 ) if

and only if f(x1,0, . . . , xk,0, x1,1, . . . , xl,1) ∈ IdZ2(UTZ2
2 ). We then apply [52,

Theorem 3] and we obtain conditions 1), 2) and 3) also for the (n1, . . . , ns)th

cocharacter of UTG
2 . 2

We now give some preliminary results needed in what follows. We start

with the following remarks.

Remark 3.1.4 Let A, B be G-graded algebras such that IdG(A) ⊆ IdG(B).

If

χG
n1,...,ns

(A) =
∑
⟨λ⟩⊢n

m⟨λ⟩χλ(1) ⊗ · · · ⊗ χλ(s)

32



and

χG
n1,...,ns

(B) =
∑
⟨λ⟩⊢n

m′
⟨λ⟩χλ(1) ⊗ · · · ⊗ χλ(s)

are the (n1, . . . , ns)th cocharacter of A and B respectively, then

m⟨λ⟩ ≥ m′
⟨λ⟩,

for all ⟨λ⟩ ⊢ n.

Proof. Let I1 = IdG(B), I2 = IdG(A); since I1 ⊇ I2 then

PG
n

PG
n ∩ I1

∼=
PG
n

PG
n ∩ I2

�
PG
n ∩ I1

PG
n ∩ I2

.

Thus we have an embedding (of FHn-modules)

PG
n

PG
n ∩ I1

↪→ PG
n

PG
n ∩ I2

and this implies that m⟨λ⟩ ≤ m′
⟨λ⟩ for every ⟨λ⟩ ⊢ n. 2

Remark 3.1.5 Let A, B be two G-graded algebras and let A ⊕ B be their

direct sum. If χG
n1,...,ns

(A) =
∑

⟨λ⟩⊢nm⟨λ⟩χλ(1) ⊗ · · · ⊗ χλ(s) , χ
G
n1,...,ns

(B) =∑
⟨λ⟩⊢nm

′
⟨λ⟩χλ(1) ⊗ · · · ⊗ χλ(s) and χG

n1,...,ns
(A ⊕ B) =

∑
⟨λ⟩⊢nm⟨λ⟩χλ(1) ⊗

· · · ⊗ χλ(s) are the corresponding (n1, . . . , ns)-th cocharacters, then

m⟨λ⟩ ≤ m⟨λ⟩ +m′
⟨λ⟩,

for all ⟨λ⟩ ⊢ n.

Proof. Let I1 = IdG(A), I2 = IdG(B) and I = IdG(A ⊕ B); clearly I =

I1 ∩ I2. Consider the following linear map:

f : PG
n → PG

n

PG
n ∩ I1

+
PG
n

PG
n ∩ I2

such that a 7→ (a + (PG
n ∩ I1), a + (PG

n ∩ I2)). It is easy to see that its

kernel is Ker(f) = PG
n ∩ I1 ∩ I2 = PG

n ∩ I thus we have an embedding (of

FHn-modules)
PG
n

PG
n ∩ I

↪→ PG
n

PG
n ∩ I1

+
PG
n

PG
n ∩ I2

.

It follows that m⟨λ⟩ ≤ m⟨λ⟩ +m′
⟨λ⟩, for all ⟨λ⟩ ⊢ n. 2

33



3.2 Some lemmas

In this section we prove some important lemmas.

Lemma 3.2.1 Let V be a variety of G-graded PI-algebras and suppose that

UTG
2 /∈ V, for any G-grading on UT2. Then V = varG(E(A)) for some

finite dimensional G × Z2-graded algebra A such that A = B + J where

B ∼= B(1) ⊕ · · · ⊕B(m) with B(i) ∼= FαiHi, 1 ≤ i ≤ m, and J = J(A). Here

Hi is a subgroup of G× Z2 and αi : Hi ×Hi → F ∗ is a 2-cocycle.

Proof. By Theorem 3.1.1, we can write V = varG(E(A)) where E(A) is

the Grassmann envelope of a finite dimensional G × Z2-graded algebra A.

As we have previously seen, A = B(1) ⊕ · · · ⊕ B(m) + J , with the B(i)’s

G-simple algebras for every i = 1, . . . ,m. Now, by Theorem 3.1.2, for every

i, B(i) ∼= Mki(F ) ⊗ FαiHi for some subgroup Hi of G × Z2 and 2-cocycle

αi : Hi ×Hi → F ∗. We need to prove that for every i, 1 ≤ i ≤ m, ki = 1,

i.e., B(i) ∼= FαiHi.

Suppose by contradiction that B(i) ∼= D = Mk(F ) ⊗ FαH with k > 1.

Then D =
⊕

(g,a)∈G×Z2
D(g,a). Let ((h1, a1), . . . , (hk, ak)) ∈ (G×Z2)

k be the

k-tuple inducing the elementary grading on Mk(F ). Then for any (g, a) ∈

G× Z2 we have

D(g,a) = span{u(h,b) ⊗ eij | (hi, ai)(h, b)(hj , aj)−1 = (g, a)},

where {u(h,b) | (h, b) ∈ H} is the canonical basis of the twisted group algebra

FαH. Note that u(e,0) ⊗ eii ∈ D(e,0) since (hi, ai)(e, 0)(hi, ai)
−1 = (e, 0) and

u(e,0) ⊗ e12 ∈ D(h1h
−1
2 ,a1−a2)

. Hence L ∼= Fe11 ⊕Fe22 ⊕Fe12 is a subalgebra

of D with induced G× Z2 grading (e, 0) (h1h
−1
2 , a1 − a2)

0 (e, 0)

 .

We write L = L(e,0)⊕L(h1h
−1
2 ,a1−a2)

where L(e,0)
∼= Fe11+Fe22, L(h1h

−1
2 ,a1−a2)

∼= Fe12 with induced G×Z2-grading. Consider now the Grassmann envelope
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E(L) of L. If a1 − a2 = 0 we have

E(L) = E0 ⊗ (L(e,0) ⊕ L(h1h
−1
2 ,0)),

and if a1 − a2 = 1 we have

E(L) = (E0 ⊗ L(e,0))⊕ (E1 ⊗ L(h1h
−1
2 ,1)).

Therefore if a1 − a2 = 0, E(L) ∼=

 E0 E0

0 E0

 with trivial grading. It fol-

lows that if UT2 denotes UTG
2 with trivial grading, then UT2 ∈ varG(E(L)) ⊆

var(E(A)) = V, a contradiction.

Suppose now that a1 − a2 = 1. Then

E(L)e = (E0 ⊗ L(e,0))⊕ (E1 ⊗ L(e,1)) = E0 ⊗ L(e,0),

E(L)h1h
−1
2

= (E0 ⊗ L(h1h
−1
2 ,0))⊕ (E1 ⊗ L(h1h

−1
2 ,1)) = E1 ⊗ L(h1h

−1
2 ,1)

and E(L)g = 0, for all g ̸= e, g ̸= h1h
−1
2 . Thus E(L) ∼=

 E0 E1

0 E0


with grading

 e h1h
−1
2

0 e

. We will show that in this case IdG(E(L)) =

IdG(UTG
2 ) where UTG

2 has grading

 e h1h
−1
2

0 e

.

In fact it is easy to verify that E(L) satisfies the identities, [x1,e, x2,e] ≡

0, x1,gx2,g ≡ 0, for g = h1h
−1
2 and x1,h ≡ 0, for all h ̸= e, g. Thus

IdG(UTG
2 ) ⊆ IdG(E(L)). On the other hand, let f ∈ IdG(E(L)) be a

multilinear polynomial. Let ⟨[x1,e, x2,e], x1,gx2,g, x1,h | h ̸= e, g⟩T be the T -

ideal generated by the polynomials [x1,e, x2,e], x1,gx2,g and x1,h. If we reduce

f mod⟨[x1,e, x2,e], x1,gx2,g, x1,h | h ̸= e, g⟩T , we may clearly assume that only

one variable of homogeneous degree g appears in f . Hence we may assume

that the polynomial f can be written in the form:

f =
∑

i1<···<ih,j1<···jn−h−1

αi1...ihxi1,e · · ·xih,ex1,gxj1,e · · ·xjn−h−1,e.
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We shall prove that for any {i1, . . . , ih} ⊆ {1, . . . , n} , αi1...ih = 0. In

fact if we specialize xi1,e = · · · = xih,e = e11, x1,g = e12, xj1,e = · · · =

xjn−h−1,e = e22, f takes value αi1...ihe12 = 0. This proves that αi1...ih = 0

for all i1, . . . , ih and, so, f = 0. Hence E(L) ∼=

 E0 E1

0 E0

 has the same

G-graded identities as UTG
2 with grading

 e h1h
−1
2

0 e

. It follows that

var(UTG
2 ) ⊆ var(E(L)) ⊆ var(E(A)), a contradiction. So, for all i ≥ 1,

B(i) ∼= FαH and the proof is complete. 2

Lemma 3.2.2 Under the hypotheses of the previous lemma, V = varG(E(A1)

⊕ · · · ⊕ E(An)) where for every i ∈ {1, . . . , n}, Ai is a finite dimensional

G × Z2-graded algebra with Jacobson radical Ji. Moreover Ai = Bi + Ji,

where Bi is a G × Z2-graded simple algebra isomorphic to FαiHi for some

Hi ≤ G× Z2 and 2-cocycle αi : Hi ×Hi → F ∗.

Proof. By the previous lemma V = varG(E(A)) where A = B(1) ⊕ · · · ⊕

B(m)+ J and, for every i ∈ {1, . . . ,m}, B(i) ∼= FαiHi for some Hi ≤ G×Z2

and αi : Hi ×Hi → F ∗ a 2-cocycle.

Suppose that B(i)JB(k) ̸= 0, for some i ̸= k. Then there exist ho-

mogeneous elements bi ∈ B(i), bk ∈ B(k), c ∈ J such that bicbk ̸= 0.

But bi = bi1B(i) , bj = bj1B(j) implies bi1B(i)cbj1B(j) ̸= 0. Set f = 1B(i) ,

g = 1B(j) , h = 1B(i)c1B(j) and note that h is homogeneous and f2 = f ,g2 = g,

fh = hg = h, hf = fg = gf = gh = 0. Also f and g have homogeneous

degree (e, 0) and h has homogeneous degree (g, a) (a = 0 or 1). Thus if N

is the algebra generated by f , g and h we have that N ∼= UT2 with G× Z2

grading

 (e, 0) (g, a)

0 (e, 0)

.

As we have seen in the proof of Lemma 3.2.1,

E(N) ∼=

 E0 E0

0 E0

 or

 E0 E1

0 E0


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with induced G-grading and it follows that var(UTG
2 ) = var(E(N)) ⊆ V, a

contradiction.

Thus B(i)JB(k) = 0 for all i ̸= k. Recall also that B(i)B(k) = 0 for all

i ̸= k. Clearly these relations imply that the same relations hold for the

Grassmann envelope: E(B(i))E(J)E(B(j)) = 0, E(B(i))E(B(j)) = 0, for all

i ̸= j. Set Ai = B(i) + J , for 1 ≤ i ≤ m. Then A = B(1) ⊕ · · · ⊕B(m) + J =

(B(1)+J)+ · · ·+(B(m)+J) = A1+ · · ·+Am where B(i)+J = Ai, 1 ≤ i ≤ m.

We claim that IdG(E(A1)⊕· · ·⊕E(Am)) = IdG(E(A1))∩· · ·∩IdG(E(Am)).

In fact, if f = f(x1, . . . , xn) ∈ IdG(E(A1))∩· · ·∩IdG(E(Am)) is multilin-

ear, we shall prove that f ≡ 0 on E(A1)+· · ·+E(Am). To this end it suffices

to check evaluations such that φ(xi,g) = x̄i,g ∈ E(A1) ∪ · · · ∪ E(Am). Now

if x̄1,g1 , . . . , x̄n,gn ∈ E(Aj) for some j, then f(x̄1,g1 , . . . , x̄n,gn) = 0. If, say,

x̄1,g1 ∈ E(Ai) and x̄2,g2 ∈ E(Aj) with i ̸= j then x̄σ(1),gσ(1)
· · · x̄σ(n),gσ(n)

= 0,

for all σ ∈ Sn, by the previous relations. Thus f ∈ IdG(E(A1) ⊕ · · · ⊕

E(Am)). Since the other inclusion is obvious we get equality. It follows that

varG(E(B)) = varG(E(A1)⊕ · · · ⊕ E(Am)). 2

3.3 The main result

In this section we prove our main theorem. First we need to recall and prove

some more results.

First we need the following result which was proved in [28].

If d ≥ 1, l, t are integers as in [28] we define a hook shaped diagram of

arm d and leg l as

h(d, l, t) = (l + t, . . . , l + t︸ ︷︷ ︸
d

, l, . . . , l︸ ︷︷ ︸
t

).

Also we define

H(d, l) =
∪
n≥1

{λ = (λ1, . . . , λr) ⊢ n | λd+1 ≤ l}.
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Finally for any integer a ≥ 1 we define:

H(d, l) ∪ (aa) =
∪
n≥1

{λ = (λ1, . . . , λr) ⊢ n | λd+1 ≤ l + a, λd+a+1 ≤ l}.

We recall that if A is a G×Z2-graded algebra and we consider the G-graded

structure on A, then we write A =
⊕s

j=1Agj where Agj = A(gj ,0) ⊕A(gj ,1).

Lemma 3.3.1 Let A = B+J be a finite dimensional G×Z2-graded algebra,

dimA = m, with B a maximal G × Z2-graded semisimple subalgebra. Let

⟨λ⟩ = (λ(1), . . . λ(s)) ⊢ n be a multipartition of n such that for some j,

1 ≤ j ≤ s,

λ(j) ≥ h(d, pj − d, (m+ 1)2),

where d is an integer and pj = dimBgj . Then m⟨λ⟩ = 0 in the (n1, . . . , ns)th

cocharacter χG
n1,...,ns

(E(A)) of E(A).

The following result can be essentially found in [28]. Here we give the

proof for completeness.

Lemma 3.3.2 Let A = B+J be a finite dimensional G×Z2-graded algebra

with B a maximal semisimple graded subalgebra. Let pj = dimBgj , 1 ≤ j ≤

s, and m = dimA. If χG
n1,··· ,ns

(E(A)) =
∑

⟨λ⟩⊢nm⟨λ⟩χλ(1)⊗· · ·⊗χλ(s), then

m⟨λ⟩ ̸= 0 implies that ⟨λ⟩ = (λ(1), . . . , λ(s)) where for 1 ≤ j ≤ s, λ(j) ⊆

H(dj , pj−dj)∪(uu), for suitable integers 0 < dj ≤ pj, with u = (m+1)2+m.

Proof. Let ⟨λ⟩ ⊢ n and suppose thatm⟨λ⟩ ̸= 0. Write λ(j) = (λ(j)1, λ(j)2, . . .),

1 ≤ j ≤ s and suppose that for some j there exists i such that λ(j)i >

(m + 1)2 + m. Let k be the integer such that λ(j)k > (m + 1)2 + m and

λ(j)k+1 ≤ (m+1)2 +m. If k > pj then λ(j) ≥ h(pj +1, 0, (m+1)2) and we

reach a contradiction by the previous lemma. Thus k ≤ pj .

Set u = (m + 1)2 + m. If λ(j)u+1 ≥ pj − k + 1, then λ(j) ≥ µ where

µ = (µ1, . . . µu+1) = ((u+1)k, (pj − k+1)u+1−k). Since (m+1)2 +m+1−

(pj − k + 1) ≥ (m + 1)2 and (m + 1)2 +m + 1 − k ≥ (m + 1)2 we see that
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µ ≥ h(k, pj − k+1, (m+1)2), hence λ(j) ≥ h(k, pj − k+1, (m+1)2), again

a contradiction by the previous lemma.

Thus λ(j)u+1 ≤ pj−k and λ(j) ⊆ H(k, pj−k)∪ (uu). Therefore we may

assume that λ(j)1 ≤ (m + 1)2 + m. Clearly λ(j)u+1 ≤ pj since otherwise

λ(j) ≥ h(0, pj +1, (m+1)2) contrary to the previous lemma. This says that

λ(j) ⊆ H(0, pj) ∪ (uu) and we are done. 2

As an immediate consequence of the previous lemma we get.

Corollary 3.3.3 Let A = B + J be defined as in the previous lemma, m =

dimA, pj = dimBgj . If in χn1,··· ,ns(E(A)) =
∑

⟨λ⟩⊢nm⟨λ⟩χλ(1)⊗· · ·⊗χλ(s),

m⟨λ⟩ ̸= 0, then for every j ∈ {1, . . . , s} , λ(j) ∈ H(rj , rj), where rj =

(m+ 1)2 +m+ pj.

Proof. We can remark that, for every j = 1, . . . , s, H(d, pj − d) ∪ (ru) ⊆

H(d + u, l + r); therefore, since d > pj ∀j = 1, . . . , s, r > u and then

H(d + u, l + r) ⊆ H(d + r, l + r). Recall that d, l are integers such that

d + l > dimBgj ≤ 1. So we can consider d = l = 1. Hence for every

j = 1, . . . , s, λ(j) ⊆ H(r + 1, r + 1) with r depending on j. If we set

r1 = (m + 1)2 + m + d, then r1 > r for every j = 1, . . . , s and so if we

consider r > r + 1 then λ(j) ⊆ H(r, r), ∀j ∈ {1, . . . , s}. 2

Lemma 3.3.4 Let A = B+J be a G×Z2-graded algebra with J the Jacobson

radical of A and B ∼= FαH for some H ≤ G × Z2 and α : H × H → F ∗

a 2-cocycle. Then there exists a constant M such that χG
n1,...,ns

(E(A)) =∑
⟨λ⟩⊢nm⟨λ⟩χλ(1) ⊗ · · · ⊗ χλ(s) and m⟨λ⟩ ≤ M , for all ⟨λ⟩ ⊢ n and for all

n ≥ 1.

Proof. As we have seen in Corollary 3.3.3, the G-graded cocharacter of E(A)

lies in the union of s hooks H(rj , rj), 1 ≤ j ≤ s. Choose a basis of A of

G × Z2- homogeneous elements. Let mj = dimA(gj ,0), mj = dimA(gj ,1),

1 ≤ j ≤ s. We have A(gj ,k) = B(gj ,k) + J(gj ,k) where k = 0 or k = 1, and
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since B ∼= FαH, dimB(gj ,k) ≤ 1. So let

A(g1,0) = span{a10, . . . , a1m1−1} ; A(g1,1) = span{b10, . . . , b1m1−1}

...
...

A(gs,0) = span{as0, . . . , asms−1} ; A(gs,1) = span{bs0, . . . , bsms−1},

where aj0 ∈ B(gj ,0) if B(gj ,0) ̸= 0 and similarly bj0 ∈ B(gj ,1) if B(gj ,1) ̸= 0,

1 ≤ j ≤ s. All other elements aji , b
j
l lie in J , 1 ≤ i ≤ mj − 1, 1 ≤ l ≤ mj − 1.

Let q be the least positive integer such that Jq = 0 and set

N0 = ((2q)
∑s

j=1 mj+mj )2srj .

We shall prove that every m⟨λ⟩ in χG
n1,...,ns

(E(A)) is bounded by M =

(
∑s

j=1mj +mj)N0.

To this end let ⟨λ⟩ = (λ(1), . . . , λ(s)) be such that λ(j) ∈ H(rj , rj), 1 ≤

j ≤ s, and consider T⟨λ⟩ = (Tλ(1), . . . , Tλ(s)), a corresponding multitableau.

For every tableau Tλ(j) let RTλ(j)
and CTλ(j)

be the row stabilizer and the

column stabilizer of Tλ(j), respectively. Let R+
Tλ(j)

=
∑

σ∈RTλ(j)
σ, C−

Tλ(j)
=∑

τ∈CTλ(j)
(sgnτ)τ and let eTλ(j)

= R+
Tλ(j)

C−
Tλ(j)

denote the corresponding

essential idempotent of the group algebra FSnj . Then eT⟨λ⟩ = eTλ(1)
· · · eTλ(s)

is an essential idempotent of F (Sn1 × . . . × Sns). For every j = 1, . . . , s,

consider the group Kj = {σ ∈ CTλ(j)
| σ(i) = i, for all i out of the first rj

columns}, and let K−
j =

∑
σ∈Kj

(−1)σσ. Then define K− = K−
1 · · ·K−

s and

notice that, since each eTλ(j)
is an essential idempotent, then K−eT⟨λ⟩ ̸= 0

and eT⟨λ⟩ generate the same minimal left ideal of F (Sn1 × . . .× Sns).

For every j, let Y j
i be the set of variables of homogeneous degree gj ,

whose indeces lie in the i-th column of λ(j), let alsoXj
i be the set of variables

of homogeneous degree gj whose indeces lie in the i-th row of λ(j) but do

not belong to the first rj columns. Then, for every polynomial f ∈ Pn1,...,ns ,

K−
j eTλ(j)

f is alternating on each of the sets Y j
1 , . . . , Y

j
rj and is symmetric

on each of the sets Xj
1 , . . . , X

j
rj . Thus, if we now consider the polynomial
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g = K−eT⟨λ⟩f , the variables of g are partitioned into 2r1 + · · ·+2rs disjoint

subsets:

X1
1 , . . . , X

1
r1 , Y

1
1 , . . . , Y

1
r1 , . . . , X

s
1 , . . . , X

s
rs , Y

s
1 , . . . , Y

s
rs

and g is symmetric or alternating on each set as described above. Note that

for every j = 1, . . . , s and i = 1, . . . , rj if λ(j) = (λ(j)1, λ(j)2, . . .) then Xj
i

is empty if λ(j)i ≤ rj , i.e, if the length of the i-th row of Tλ(j) is less than or

equal to rj . On the other hand if λ(j)i > rj then |Xj
i | = λ(j)i−rj . Moreover

|Y j
i | = λ(j)′i where λ(j)′ = (λ(j)′1, λ(j)

′
2, . . .) is the conjugate partition of

λ(j).

Notice that for any ρj ∈ Snj we also have ρjK
−
j eTλ(j)

̸= 0, and so if

ρ = ρ1 · · · ρs ∈ Sn1 × · · · × Sns , ρK
−eT⟨λ⟩ = ρ1K

−
1 eTλ(1)

· · · ρsK−
s eTλ(s)

̸= 0.

It follows that if f ∈ Pn1,...,ns is such that eT⟨λ⟩f ̸= 0, then the polynomials

eT⟨λ⟩f and g′ = ρK−eT⟨λ⟩f generate the same irreducible Sn1 × . . . × Sns-

module. Now we choose ρj , 1 ≤ j ≤ s, in such a way that ρjK
−
j eTλ(j)

f is

symmetric separately on the first λ(j)1− rj variables, on the next λ(j)2− rj

variables and so on. A similar condition holds for the alternating sets of

variables Y j
i , 1 ≤ i ≤ rj . The corresponding property of the polynomial g′

is clear.

Let now f1, . . . , fM ∈ Pn1,...,ns be multilinear polynomials such that

F (Sn1 × · · · × Sns)fi
∼= F (Sn1 × · · · × Sns)fj , for all i, j = 1, . . . ,M , i.e.,

f1, . . . , fM generate irreducible Sn1 × . . . × Sns-modules corresponding to

the same multipartition ⟨λ⟩. By what we remarked above, we can choose

permutations ρ1, . . . , ρM ∈ Sn1 × · · · × Sns and a decomposition X1 ∪ . . . ∪

Xs ∪ Y 1 ∪ . . . ∪ Y s, where for every j = 1, . . . , s, Xj = Xj
1 ∪ . . . ∪ Xj

rj ,

Y j = Y j
1 ∪ . . . ∪ Y j

rj are sets of variables of homogeneous degree gj and

ρ1f1, . . . , ρMfM are simultaneously symmetric on Xj
i and alternating on

Y j
i , for all j = 1, . . . , s, i = 1, . . . , rj .

Assume by contradiction that m⟨λ⟩ = M ≥
∑s

j=1(mj+mj)N0. We shall
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prove that E(A) satisfies an identity of the type

f = γ1f1 + · · ·+ γMfM ≡ 0, (1)

where γ1, . . . , γM ∈ F are not all zero. Clearly it is sufficient to verify

that f has only zero values on elements of the form ajk ⊗ e and bjl ⊗ e′,

where ajk ∈ A(gj ,0), e ∈ E0, b
j
l ∈ A(gj ,1), e

′ ∈ E1 and k ∈ {0, . . . ,mj − 1},

l ∈ {0, . . .mj − 1}.

First we define special substitutions as follows. Let

0 ≤ αji
0 , α

ji
1 , . . . , α

ji
mj−1, β

ji
0 , βji

1 , . . . , βji
mj−1

be integers satisfying the following equalities:

mj−1∑
k=0

αji
k +

mj−1∑
k=0

βji
k = |Xj

i |

mj−1∑
k=0

α
j(rj+i)
k +

mj−1∑
k=0

β
j(rj+i)
k = |Y j

i |

1 ≤ j ≤ s, 1 ≤ i ≤ rj .

We say that a substitution φ has type 0 ≤ αji
0 , α

ji
1 , . . . , α

ji
mj−1, β

ji
0 , βji

1 , . . . ,

βji
mj−1, 1 ≤ j ≤ s, 1 ≤ i ≤ rj , if we replace the variables in the following

way: for fixed i and j, we replace the first αji
0 variables from Xj

i by elements

aj0 ⊗ e (with distinct elements e for distinct x ∈ Xj
i ), the next αji

1 variables

by elements aj1⊗ e and so on, where all elements e lie in E0. Now substitute

the following βji
0 variables from Xj

i by elements bj0 ⊗ e′, the next by bj1 ⊗ e′,

and so on where all elements e′ lie in E1. We apply the same procedure

in order to replace the variables in Y j
i by elements of the type ajk ⊗ e and

bjk ⊗ e′.

In order to obtain a non zero value of the polynomials in (1), any sub-

stitution above should satisfy the following restrictions:

1. βji
k ≤ 1, 1 ≤ j ≤ s, 1 ≤ i ≤ rj , where 0 ≤ k ≤ mj − 1,
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2. αji
1 + · · ·+ αji

mj−1 ≤ q − 1, 1 ≤ j ≤ s, 1 ≤ i ≤ rj ,

3. αji
0 = |Xj

i | − (αji
1 + · · ·+ αji

mj−1 + βji
0 + · · ·+ βji

mj−1).

The first property follows since fj is symmetric onXj
i and, so, it becomes

zero when we evaluate two variables of Xj
i in bju ⊗ e′, bju ⊗ e′′, for some

e′, e′′ ∈ E1. The second property follows since Jq = 0.

Similarly we replace the variables from Y j
i by elements of the form aju⊗e,

bju ⊗ e′ as above and we obtain the following restrictions of the integers

α
j(rj+i)
k , β

j(rj+i)
k , for 1 ≤ j ≤ s, 1 ≤ i ≤ rj and 0 ≤ k ≤ mj − 1.

1. αji
k ≤ 1, 1 ≤ j ≤ s, rj + 1 ≤ i ≤ 2rj where 0 ≤ k ≤ mj − 1,

2. βji
1 + · · ·+ βji

mj−1 ≤ q − 1, 1 ≤ j ≤ s, rj + 1 ≤ i ≤ 2rj

3. βji
0 = |Y j

i | − (βji
1 + · · ·+ βji

mj−1 + αji
0 + · · ·+ αji

mj−1).

Now, from the restrictions 1, 2, 3 above we get that for each j = 1, . . . , s,

i = 1, . . . , rj , the number of distinct mj - tuples (βji
0 , . . . , βji

mj−1) is at most

2mj and the number of distinct mj-tuples (αji
0 , . . . , α

ji
mj−1) is at most qmj .

Thus the number of distinct mj + mj-tuples (αji
0 , . . . , β

ji
mj−1) is at most

2mjqmj < (2q)mj+mj . Similarly, from the other three conditions, we get that

the number of distinct mj +mj-tuples (α
j(rj+i)
0 , . . . , β

j(rj+i)
mj−1 ) is bounded by

(2q)mj+mj . It follows that the total number N of distinct types of substitu-

tions is less than ((2q)
∑s

j=1 mj+mj )
∑s

j=1 2rj = N0.

Note that if φ, φ′ are two substitutions of the same type and φ(z) = u⊗p

for some z ∈ X, u ∈ A, p ∈ E, then φ′(z) = u ⊗ p′ with the same grading

of the elements p, p′. Hence if X = {z1, . . . , zn}, φ(zi) = ui ⊗ pi and

φ′(zi) = ui ⊗ p′i, then

φ(f) = f(u1 ⊗ p1, . . . , un ⊗ pn) = w ⊗ p1 · · · pn

φ′(f) = f(u1 ⊗ p′1, . . . , un ⊗ p′n) = w ⊗ p′1 · · · p′n.
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In this case we say that φ and φ′ are similar. Let N be the number of

similarity classes. Now let φ1, . . . , φN be substitutions, chosen one from

each similarity class of distinct types. If φ is one of these substitutions, and

h1, h2 are two multilinear polynomials of degree n, then by multilinearity

and supercommutativity φ(h1) = r1 ⊗ p1 · · · pn and φ(h2) = r2 ⊗ p1 · · · pn,

where p1, . . . , pn ∈ E and r1, r2 ∈ A. Therefore for each j = 1, . . . , N and

i = 1, . . . ,M we get

φj(fi) = aij ⊗ pj1 · · · pjn,

where aij ∈ A and pj1, . . . , pjn depend on φj only.

We consider the matrix (aij), 1 ≤ i ≤ M , 1 ≤ j ≤ N , whose elements aij

lie in A. Since M = (
∑s

k=1(mk +mk))N0, where dimA =
∑s

k=1(mk +mk),

the rows of (aij) are linearly dependent. Hence there exist γ1, . . . , γM ∈ F

not all zero, such that:

M∑
i=1

γiaij = 0 1 ≤ j ≤ N.

From the above we get φj(
∑M

i=1 γifi) =
∑M

i=1 γiφj(fi) = (
∑M

i=1 γiaij) ⊗

pj1 · · · pjn = 0, for all 1 ≤ j ≤ N .

We claim that this implies that f =
∑M

i=1 γifi is an identity of E(A).

In fact by multilinearity it is enough to check only substitutions φ∗ where

the variables are evaluated into elements of the type u⊗ p, where u = aji or

bji , for some i, j and p ∈ E0 ∪ E1. Now, there exists a permutation σ of the

variables (preserving the homogeneous degree) such that φ⋆σ = φ′ is similar

to some φj , 1 ≤ j ≤ N . Thus φ′(fi) = aij⊗p′j1 · · · p′jn and, so, φ′(f) = 0. We

remark that the above σ satisfies σ(Xj
i ) = Xj

i and σ(Y j
i ) = Y j

i 1 ≤ j ≤ s,

1 ≤ i ≤ rj . Since f is symmetric on Xj
i and alternating on Y j

i , it follows that

φ′(f) = φ∗σ(f) = φ(±f) = ±φ∗(f) = 0. Thus φ∗(f) = 0. We have shown

that modulo the identities of E(A), any M polynomials corresponding to

the same multitableau are linearly dependent and this is equivalent to say

that m⟨λ⟩ ≤ M for all ⟨λ⟩ ⊢ n.
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2

Lemma 3.3.5 Let A = B + J , B ∼= FαH for some H subgroup of G× Z2

and α : H ×H → F ∗ a 2-cocycle. Then there exists a constant M such that

χG
n1,...,ns

(E(A)) =
∑

⟨λ⟩⊢nm⟨λ⟩χλ(1) ⊗ · · · ⊗ χλ(s) and

nj − λ(j)1 − λ(j)′1 ≤ M 1 ≤ i ≤ s.

Proof. Let ⟨λ⟩ = (λ(1), . . . , λ(s)) ⊢ n be a multipartition of n and let q be

such that Jq = 0. We claim that if m⟨λ⟩ ̸= 0, then λ(j)2 ≤ q + 1, for all j,

1 ≤ j ≤ s, that is the diagram of each λ(j) contains at most q + 1 boxes in

the second row.

In fact, suppose by contradiction that there exists j, 1 ≤ j ≤ s, such

that λ(j)2 ≥ q + 2 and m⟨λ⟩ ̸= 0. Then there exists a multitableau T⟨λ⟩ =

(Tλ(1), . . . , Tλ(s)), a corresponding essential idempotent eT⟨λ⟩ = eTλ(1)
· · · eTλ(s)

and a polynomial f ∈ Pn1,...,ns such that eT⟨λ⟩f /∈ IdG(E(A)). Recall that

eTλ(j)
acts on nj variables of homogeneous degree gj ∈ G. Since eTλ(j)

is

an essential idempotent, there exists τ ∈ RTλ(j)
such that τC−

Tλ(j)
eT⟨λ⟩f /∈

IdG(E(A)). Let i1, . . . , iq+2 denote the integers in the first q + 2 boxes of

the first row of the diagram of λ(j) written from left to right. Similarly,

let k1, . . . , kq+2 be the integers in the first q + 2 boxes of the second row of

λ(j). Then the polynomial g = τC−
Tλ(j)

eT⟨λ⟩f is alternating on each of the

following sets: {xτ(i1),gj , xτ(k1),gj}, . . . , {xτ(iq+2),gj , xτ(kq+2),gj}.

Notice that these variables are evaluated in

E(A)gj = ((E0 ⊗B(gj ,0))⊕ (E0 ⊗ J(gj ,0)))⊕ ((E1 ⊗B(gj ,1))⊕ (E1 ⊗ J(gj ,1)))

and, sinceB ∼= FαH, the spacesB(gj ,0) andB(gj ,1) are at most 1-dimensional.

Now, if at least q of the above variables are evaluated in E0 ⊗ J(gj ,0) ∪E1 ⊗

J(gj ,1), then we get that g vanishes in E(A) since Jq = 0. Therefore there

exist three sets among {xτ(i1),gj , xτ(k1),gj}, . . . , {xτ(iq+2),gj , xτ(kq+2),gj} that

are evaluated in (E0 ⊗ B(gj ,0)) ∪ (E1 ⊗ B(gj ,1)). If one of these sets, say
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{xτ(i1),gj , xτ(k1),gj}, is evaluated in the commutative algebra (E0 ⊗ B(gj ,0)),

then we will get g ≡ 0 on E(A), since g is alternating in xτ(i1),gj and xτ(k1),gj .

Then we deduce that there are at least two variables corresponding to in-

deces in the same first row or second row of Tλ(j), say xτ(i1),gj and xτ(i2),gj

that are evaluated in E1 ⊗B(gj ,1).

Now the polynomial eT⟨λ⟩f is symmetric on the set {xi1,gj , . . . , xiq+2,gj};

hence, since τ ∈ RTλ(j)
, it is also symmetric on {xτ(i1),gj , . . . , xτ(iq+2),gj}.

Since the variables xτ(i1),gj and xτ(i2),gj are evaluated in E1 ⊗B(gj ,1), which

is anticommutative, we get that eT⟨λ⟩f ≡ 0 on E(A) and the claim is proved.

Next we claim that if m⟨λ⟩ ̸= 0 then λ(j)′2 ≤ 2q, for all j, 1 ≤ j ≤ s.

This is the same as to say that the diagram of each λ(j) contains at most

2q boxes in the second column.

In fact, suppose to the contrary that there exists j, 1 ≤ j ≤ s, such

that λ(j)′2 ≥ 2q + 1 and m⟨λ⟩ ̸= 0. As above, this says that there exists

a multitableau T⟨λ⟩ = (Tλ(1), . . . , Tλ(s)), an essential idempotent eT⟨λ⟩ =

eTλ(1)
· · · eTλ(s)

and a polynomial f ∈ Pn1,...,ns such that eT⟨λ⟩f /∈ IdG(E(A)).

Let τ ∈ RTλ(j)
be such that g = τCTλ(j)

eT⟨λ⟩f /∈ IdG(E(A)). Let

i1, . . . , i2q+1 be the first integers in the first column of Tλ(j) written from top

to bottom and k1, . . . , k2q+1 the corresponding integers of the second column.

Then g is alternating on {xτ(i1),gj , . . . , xτ(i2q+1),gj} and on {xτ(k1),gj , . . . ,

xτ(k2q+1),gj}. In order to get a non zero value of g, since E0 ⊗B(gj ,0) is com-

mutative, we can evaluate at most one variable of each set in E0 ⊗ B(gj ,0).

Moreover since Jq = 0, we have to evaluate at most q − 1 variables of each

set into E1⊗B(gj ,1). It follows that two variables corresponding to indeces in

the same row, say xτ(i1),gj and xτ(k1),gj , are evaluated into E1⊗B(gj ,1). Since

g is symmetric on these two variables and E1 ⊗ B(gj ,1) is anticommutative,

we get g ≡ 0, a contradiction. This proves the second claim.

As a result of the above two claims we get that if m⟨λ⟩ ̸= 0, then λ(j)2 ≤

q+1 and λ(j)′2 ≤ 2q. This implies that nj −λ(j)1−λ(j)′1 ≤ q(2q− 1) = M .
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2

Lemma 3.3.6 Let A, B be two G-graded algebras and let A ⊕ B be their

direct sum. Consider ⟨λ⟩ = (λ(1), . . . , λ(s)) ⊢ n multipartition of n, such

that λ(1) ⊢ n1, . . ., λ(s) ⊢ ns and n1 + · · · + ns = n. Let χG
n1,...,ns

(A) =∑
⟨λ⟩⊢nm⟨λ⟩χλ(1) ⊗ · · · ⊗ χλ(s), χ

G
n1,...,ns

(B) =
∑

⟨λ⟩⊢nm
′
⟨λ⟩χλ(1) ⊗ · · · ⊗ χλ(s)

and χG
n1,...,ns

(A ⊕ B) =
∑

⟨λ⟩⊢nm⟨λ⟩χλ(1) ⊗ · · · ⊗ χλ(s) be the (n1, . . . , ns)th

cocharacters of A, B, A ⊕ B, respectively. Suppose that for every ⟨λ⟩ mul-

tipartition of n, we have that m⟨λ⟩ ≤ C and m′
⟨λ⟩ ≤ C ′, for some constants

C,C ′; Then, for all ⟨λ⟩ ⊢ n,

m⟨λ⟩ ≤ C = C + C ′.

Proof. By lemma 3.1.5, for all ⟨λ⟩ = (λ(1), . . . , λ(s)) ⊢ n multipartition of

n we have that m⟨λ⟩ ≤ m⟨λ⟩ +m′
⟨λ⟩. Therefore m⟨λ⟩ ≤ C = C + C ′ for all

⟨λ⟩ ⊢ n. 2

Lemma 3.3.7 Let V be a G-graded variety of algebras such that UTG
2 /∈ V

for any canonical G-grading on UT2. Then there exists a constant M such

that χG
n1,...,ns

(V) =
∑

⟨λ⟩⊢nm⟨λ⟩χλ(1) ⊗ · · ·χλ(s) and m⟨λ⟩ ≤ M for every

n ≥ 1.

Proof. In Lemma 3.2.2 we proved that V = var(E(A1)⊕· · ·⊕E(An)) where

for every i ∈ {1, . . . , n} , dimAi < ∞ and Ai is a G×Z2- graded algebra with

Jacobson radical Ji. Therefore for every i ∈ {1, . . . , n}, Ai = Bi + Ji, where

Bi is a G-graded simple algebra isomorphic to FαiHi for some Hi ≤ G×Z2

and αi : Hi × Hi → F ∗ 2-cocycle. Then using lemma 3.3.4, this lemma is

proved by induction on n.

2

We are now ready to prove our main theorem:

Theorem 3.3.8 Let A be a G-graded PI-algebra, and

χG
n1,...,ns

(A) =
∑
⟨λ⟩⊢n

m⟨λ⟩χλ(1) ⊗ · · · ⊗ χλ(s)
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its (n1, . . . , ns)th cocharacter. Then the following conditions are equivalent.

1. There exists a constant M such that for all n and ⟨λ⟩ ⊢ n, the inequal-

ity

m⟨λ⟩ ≤ M

holds.

2. IdG(A) * IdG(UTG
2 ) for any G-grading on UT2.

3. There exists a constant N such that for all n and ⟨λ⟩ ⊢ n, the inequal-

ities

ni − λ(i)1 − λ(i)′1 ≤ N

hold, for all 1 ≤ i ≤ s.

Proof. 1) ⇒ 2) Let V = varG(A). Now if UTG
2 ∈ V for some G-grading on

UT2, then by Theorem 3.1.3 the multiplicities in χG
n1,...,ns

(UTG
2 ), and so, in

χG
n1,...,ns

(V) are not bounded by a constant. This proves 2).

2) ⇒ 1) Suppose that UTG
2 /∈ V, for any G-grading on UT2. Now

by Lemma 3.2.2 we can write V = varG(E(A1) ⊕ · · · ⊕ E(An)) where for

every i ∈ {1, . . . n}, Ai = Bi + Ji, with Bi a G × Z2-graded simple algebra

isomorphic to FαiHi for some Hi ≤ G × Z2 and αi : Hi × Hi → F ∗ a

2-cocycle.

Now let χG
n1,...,ns

(E(Ai)) =
∑

⟨λ⟩⊢nm
(i)
⟨λ⟩χλ(1) ⊗ · · · ⊗ χλ(s), 1 ≤ i ≤ s.

Then

∑
⟨λ⟩⊢n

m⟨λ⟩χλ(1) ⊗ · · · ⊗ χλ(s) = χG
n1,...,ns

(V) = χG
n1,...,ns

(E(A1)⊕ · · · ⊕ E(As))

≤
∑
⟨λ⟩⊢n

(

s∑
i=1

m
(i)
⟨λ⟩)χλ(1) ⊗ · · · ⊗ χλ(s).

Since by Lemma 3.3.4, m
(i)
⟨λ⟩ ≤ Mi, for some constant Mi, we get that

m⟨λ⟩ ≤
∑s

i=1Mi is bounded by a constant, for all ⟨λ⟩ ⊢ n. This proves 1).
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2) ⇒ 3) This implication was proved in Lemma 3.3.5.

3) ⇒ 2) Suppose by contradiction that UTG
2 ∈ V for some G-grading on

UT2. If

χG
n1,...,ns

(UTG
2 ) =

∑
⟨λ⟩⊢n

m′
⟨λ⟩χλ(1) ⊗ · · · ⊗ χλ(s)

and

χG
n1,...,ns

(V) =
∑
⟨λ⟩⊢n

m⟨λ⟩χλ(1) ⊗ · · · ⊗ χλ(s),

then since UTG
2 ∈ V, we get that m′

⟨λ⟩ ≤ m⟨λ⟩, for all ⟨λ⟩ ⊢ n. So for every

⟨λ⟩ ⊢ n such that m′
⟨λ⟩ ̸= 0, we have that ni − λ(i)1 − λ(i)′1 ≤ N for some

constant N and for all i, 1 ≤ i ≤ s.

Now take n = 2N +5 and ⟨λ⟩ = ((N +2, N +2), (1), ∅, . . . , ∅) ⊢ n; hence

λ(1) = (N +2, N +2) ⊢ 2N +4, λ(2) = (1) and λ(i) = ∅ for all i ≥ 3. Then,

according to Theorem 3.1.3, m′
⟨λ⟩ = 1 ̸= 0, but 2N + 4 − (N + 1) − 2 =

N + 1 > N . Thus m⟨λ⟩ ≥ m′
⟨λ⟩ > N , a contradiction. 2
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Chapter 4

Gradings on UT3(F )

4.1 Introduction

Let F be a field of characteristic zero. The algebra

UT3(F ) = {


a11 a12 a13

0 a22 a23

0 0 a33

 | aij ∈ F}

is the algebra of upper triangular matrices of order 3.

We recall first this definition:

Definition 4.1.1 A G-grading on UTn(F ) is called elementary if there ex-

ists g = (g1, . . . , gn) ∈ Gn an n-tuple of elements of G such that Ag =

span{eij | g−1
i gj = g} ∀g ∈ G, i.e., the homogeneous degree of eij is equal

to g−1
i gj for every i and j such that 1 ≤ i ≤ j ≤ n.

Di Vincenzo, Koshlukov and Valenti in [20] proved that if G is a fi-

nite group, then there are |G|n−1 nonisomorphic elementary G-gradings

on UTn(F ), so in case n = 3 there are |G|2 nonisomorphic elementary G-

gradings on UT3(F ).

Valenti and Zaicev in [53] proved that if G is a finite abelian group and

F is algebraically closed of characteristic zero, then all gradings on UTn(F )
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are, up to isomorphism, elementary.

4.2 Gradings on UT3(F )

In this section we want to classify all elementary, non isomorphic, G-gradings

on UT3(F ) in terms of triples that induce G-grading.

Theorem 4.2.1 Let G be a finite abelian group. The different elementary

G-gradings on UT3(F ), non isomorphic and non trivial, are induced by the

following triples of elements of G:

1. (e, g, h) g ̸= h, h ̸= g2, g, h ̸= e

2. (e, g, g2) g ̸= e

3. (e, g, g) g ̸= e

4. (e, e, g) g ̸= e

5. (e, g, e) g ̸= e.

Proof. Let A = UTG
3 (F ), then the homogeneous components of A are

Ag = span{eij | g−1
i gj = g} and A =

⊕
g∈GAg. If dimAe = 6 then the

corresponding G-grading is trivial. Hence dimAe < 6. We observe that

eii ∈ Ae ∀i = 1, 2, 3, then dimAe ≥ 3. Now we can consider all different

triples of elements of G with at least one element equal to e. We can suppose

that the first element of the triple is always e, in fact if it is equal to some

g ̸= e, then we can multiply all elements of that triple by g−1, obtaining the

same elementary G-grading.

Hence we can suppose that the triples that induce elementary G-grading

are (e, g, h) with g, h ∈ G not both equal to e. If in this triple g ̸= h and

g, h ̸= e then dimAe = 3, otherwise, if g = h ̸= e or g = e, h ̸= e or h = e,

g ̸= e, dimAe = 4. We are now ready to study the corresponding cases:
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1. dimAe = 3, triple (e, g, h) g ̸= h g, h ̸= e.

If h ̸= g2 then Ae = span{e11, e22, e33}, Ag = span{eij | g−1
i gj =

g} = span{e12}, Ah = span{eij | g−1
i gj = h} = span{e13}, Ag−1h =

span{eij | g−1
i gj = g−1h} = span{e23}.

If h = g2 then Ae = span{e11, e22, e33}, Ag = span{eij | g−1
i gj = g} =

span{e12, e23}, Ag2 = span{eij | g−1
i gj = h} = span{e13}.

2. dimAe = 4. If the triple is (e, g, g) g ̸= e, thenAe = span{e11, e22, e33, e23},

Ag = span{eij | g−1
i gj = g} = span{e12, e13}.

3. dimAe = 4. If the triple is (e, e, g) g ̸= e, thenAe = span{e11, e22, e33, e12},

Ag = span{eij | g−1
i gj = g} = span{e23, e13}.

4. dimAe = 4. If the triple is (e, g, e) g ̸= e, thenAe = span{e11, e22, e33, e13},

Ag = span{eij | g−1
i gj = g} = span{e12}, Ag−1 = span{e23}.

2

4.3 Graded identities of UT3(F )

Now we want to find the T -ideal ofG-graded polynomial identities of UT3(F )

for each elementary G-grading described in the previous section.

We will use the techniques described in [20]. We recall these techniques

in the following results.

Definition 4.3.1 Let η = (η1, . . . , ηm) be an element of Gm. We say that η

is a good sequence with respect to the elementary G-grading ϵ if there exists

a sequence of m matrix units (r1, . . . , rm) in the Jacobson radical of UTn(F )

such that the product r1 · · · rm is not zero and also the homogeneous degree

of ri is ηi for all i = 1, . . . ,m. In this case we say that η is ϵ-good, otherwise

η is called ϵ-bad sequence.
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For any sequence η ∈ Gm we consider the polynomial fη = fη,1fη,2 · · · fη,m

where fη,i = [xe,2i−1, xe,2i] if ηi = e while fη,i = xηi if ηi ̸= e.

Theorem 4.3.2 Let G be a group and ϵ = (ϵ1, . . . , ϵn) be an elementary G-

grading on UTn(F ) with F infinite field. Then the T -ideal IdG(UTn(F ), ϵ)

of G-graded polynomial identities of UTn(F ) is generated by all multilinear

polynomials fη where η = (η1, . . . , ηm) lies on the set of all ϵ-bad sequences

and m ≤ n.

Now we are going to apply this theorem to UT3(F ).

Theorem 4.3.3 Let G be a group and ϵ = (ϵ1, ϵ2, ϵ3) be an elementary G-

grading on UT3(F ) with F infinite field. If we denote by xi the variables

of homogeneous degree e, and by yj the variables of homogeneous degree g,

then we have

1. if ϵ = (e, g, h), g ̸= h, h ̸= g2 ,g, h ̸= e then

IdG(UT3(F )) = ⟨[x1, x2], y1y2, z1z2, t1t2, yt, ty, zy, zt, tz⟩

where zi are variables of homogeneous degree g−1h and tj are variables

of homogeneous degree h.

2. if ϵ = (e, g, g2), g2 ̸= e then

IdG(UT3(F )) = ⟨[x1, x2], z1z2, yz, zy, y1y2y3⟩

where zi are variables of homogeneous degree g2.

3. if ϵ = (e, e, g), g ̸= e then

IdG(UT3(F )) = ⟨[x1, x2][x3, x4], y1y2, y[x1, x2]⟩.

4. if ϵ = (e, g, g), g ̸= e then

IdG(UT3(F )) = ⟨[x1, x2][x3, x4], y1y2, [x1, x2]y⟩.
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5. if ϵ = (e, g, e), g ̸= e then IdG(UT3(F )) =

⟨[x1, x2][x3, x4], y1y2, z1z2, zy, [x1, x2]y, y[x1, x2], [x1, x2]z, z[x1, x2]⟩

where zi are variables of homogeneous degree g−1.

Proof. The Jacobson radical of UT3(F ) is J = span{e12, e13, e23}, and any

product of three elements of J is equal to zero; then all ϵ-good sequences

have 2 elements at most. Let us consider all distinct elementary G-gradings:

1. ϵ = (e, g, h), g ̸= h, g, h ̸= e, h ̸= g2. η = (η1, η2) is ϵ-good if there

exist r1, r2 ∈ J such that r1r2 ̸= 0 and degr1 = η1, degr2 = η2. So

r1 = e12 and r2 = e23.

Since dege12 = g and dege23 = g−1h, η = (η1, η2) is ϵ-good if and only

if η = (g, g−1h).

η = (η1) is ϵ-good if there exists r1 ∈ J such that degr1 = η1. So

η = (η1) is ϵ-good if and only if η = (g), η = (h), η = (g−1h).

All other sequences are ϵ-bad. If we set xe = x, xg = y, xh = t,

xg−1h = z, then

IdG(UT3(F )) = ⟨[x1, x2], y1y2, z1z2, t1t2, yt, zy, ty, tz, zt⟩.

We remark that all other identities obtained from ϵ-bad sequences are

consequences of these ones.

2. ϵ = (e, g, g2), g2 ̸= e. η = (η1, η2) is ϵ-good if there exist r1, r2 ∈ J

such that r1r2 ̸= 0 and degr1 = η1, degr2 = η2. So r1 = e12 and

r2 = e23.

Since dege12 = dege23 = g, η = (η1, η2) is ϵ-good if and only if η =

(g, g).

η = (η1) is ϵ-good if there exists r1 ∈ J such that degr1 = η1. So

η = (η1) is ϵ-good if and only if η = (g), η = (g2).
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All other sequences are ϵ-bad. If we set xe = x, xg = y, xg2 = z, then

IdG(UT3(F )) = ⟨[x1, x2], z1z2, yz, zy, y1y2y3⟩.

We remark that all other identities obtained from ϵ-bad sequences are

consequences of these ones.

3. ϵ = (e, e, g), g ̸= e. By repeating the same arguments we obtain that

IdG(UT3(F )) = ⟨[x1, x2][x3, x4], y1y2, y[x1, x2]⟩.

4. ϵ = (e, g, g), g ̸= e. By repeating the same arguments we obtain that

IdG(UT3(F )) = ⟨[x1, x2][x3, x4], y1y2, [x1, x2]y⟩.

5. ϵ = (e, g, e), g ̸= e. By repeating the same arguments we obtain that

IdG(UT3(F )) =

⟨[x1, x2][x3, x4], y1y2, z1z2, zy, [x1, x2]y, y[x1, x2], [x1, x2]z, z[x1, x2]⟩.

2

Now we are ready to calculate the multiplicities in χG
n (UT3(F )), for some

elementary G-grading on UT3(F ).

4.4 Cocharacter sequence of UT3(F ) with elemen-

tary G-grading induced by (e, g, h), g ̸= h, h ̸=

g2, g, h ̸= e.

We recall that for every λ ⊢ n, Tλ is a Young tableau of shape λ and eTλ
is

the corresponding essential idempotent of the group algebra FSn. We recall

also that eTλ
=

∑
σ∈RTλ
τ∈CTλ

sgnτστ , where RTλ
and CTλ

are the subgroups of

row and column permutations of Tλ, respectively.
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Because we want to study UT3(F ) with elementaryG-grading induced by

the triple (e, g, h), g ̸= h ̸= g2, let λ(1) ⊢ n1, . . . , λ(4) ⊢ n4, n1+ · · ·+n4 = n

and let Wλ(1),...,λ(4) be an Sn1 × · · · × Sn4-irreducible left module.

It is well known that if Tλ(1) is a Young tableau of shape λ(1), . . .,

Tλ(4) a Young tableau of shape λ(4), then Wλ(1),...,λ(4)
∼= F (Sn1 × · · · ×

Sn4)eTλ(1)
· · · eTλ(4)

, where Sn1 , . . . , Sn4 act on distinct sets of integers.

Hence we can write the explicit decomposition of the nth G-graded

cocharacter of UT3(F ) into irreducibles. Recall that if λ ⊢ n, h(λ) denote

the height of the Young diagram associated to λ.

Theorem 4.4.1 Let χG
n (UT3(F )) =

∑
n1+...+n4=n

∑
λ(i)⊢ni

mλ(1),...,λ(4)χλ(1)

⊗ . . . ⊗ χλ(4) be the nth graded cocharacter of UT3(F ) with elementary G-

grading induced by the triple (e, g, h), g ̸= h, h ̸= g2. If we set for simplicity

mλ(1),λ(2),λ(3),λ(4) = m, then:

1. m = (q+1)(r+1)(q+r+2)
2 if λ(1) = (p+ q + r, p+ q, p) p, q, r ≥ 0, λ(2) =

λ(3) = (1), λ(4) = ∅.

2. m = (r+1) if λ(1) = (q+r, q) q, r ≥ 0 and λ(2) = (1), λ(3) = λ(4) = ∅,

or λ(3) = (1), λ(2) = λ(4) = ∅, or λ(4) = (1), λ(2) = λ(3) = ∅.

3. m = 1 if λ(1) = (n) and λ(2) = λ(3) = λ(4) = ∅.

4. m = 0 in all other cases.

Proof. We recall that for our elementary G-grading induced by the triple

ϵ = (e, g, h), g ̸= h ̸= g2, dimAe = 3, dimAg = dimAh = dimAg−1h = 1. If

we set xe = x, xg = y, xh = t, xg−1h = z, then any polynomial alternating

on four variables x or in two variables y, z, or t vanishes in A = UTG
3 (F ).

From the general form of the element eTλ(1)
eTλ(2)

eTλ(3)
eTλ(4)

, it follows

that m = 0 if either h(λ(1)) > 3 or h(λ(i)) > 1 ∀i = 2, 3, 4. Moreover, by

the previous construction, for every variable x1, x2,

y1x1y2, z1x1z2, t1x1t2, yx1zx2t, yx1t, zx1t, zx1y ∈ IdG(A)
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and this implies that m = 0 whenever |λ(i)| ≥ 2, i = 2, 3, 4 and also when-

ever λ(2) = ∅, λ(3), λ(4) ̸= ∅; λ(3) = ∅, λ(2), λ(4) ̸= ∅ and λ(i) ̸= ∅

i = 2, 3, 4.

So let us assume that |λ(i)| ≤ 1 i = 2, 3, 4. Suppose first that λ(i) = ∅

i = 2, 3, 4, then [x1, x2] ≡ 0 on A implies that x1 · · ·xn is a basis of Pn,0,0,0

(modIdG(A)). Hence m = 1 if λ(1) = (n) and m = 0 if λ(1) ̸= (n).

Suppose now that h(λ(1)) ≤ 3 and λ(2) = λ(3) = (1), λ(4) = ∅.

Let λ(1) = (p + q + r, p + q, p), p, q, r ≥ 0, we want to prove that m =

(q+1)(r+1)(r+2)+q(q+1)(q+2)
2 = (q+1)(r+1)(q+r+2)

2 . For simplicity we will study

first the case p = 0.

Let r1, r2, r3 ≥ 0 such that r = r1 + r2 + r3 and q1, q2, q3 ≥ 0 such that

q = q1 + q2 + q3. It is obvious that for every choice of r1, r2, q1, q2 we will

obtain a different tableau and hence a different polynomial associated to the

tableau.

We remark that r1 = 0, . . . , r and so if r1 = 0 then r2 = 0, . . . , r; if r1 = 1

then r2 = 0, . . . r − 1; . . .; if r1 = r then r2 = 0. So the total number of

possible choices for r1 and r2 is
∑r+1

i=1 i =
(r+1)(r+2)

2 . By repeating the same

argument for q1 and q2, we obtain that the total number of possible choices

for q1 and q2 is
∑q+1

j=1 j = (q+1)(q+2)
2 . So we will obtain (q+1)(q+2)(r+1)(r+2)

4

different tableaux.

Now we shall consider a few of these tableaux, in particular we shall

consider all tableaux in which q3 = 0 and all tableaux in which r1 = 0 and

q3 ̸= 0. For every r, if q3 = 0, then the total number of such tableaux

is (q+1)(r+1)(r+2)
2 ; if r1 = 0 and q3 ̸= 0, similar arguments show that the

number of tableaux is (r+1)(q)(q+1)
2 . So we will consider (q+1)(r+1)(r+2)

2 +

(r+1)(q)(q+1)
2 ≤ (q+1)(q+2(r+1)(r+2)

4 different tableaux.

For every i = 0, . . . , r1, j = 0, . . . , r2, i = 0, . . . , q1 define the following

tableaux:
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T i,j,i
λ(1) =

i+1 ··· i+i
i+i
+1 ··· i+

q 1 ··· i
i+q
+2 ··· i+q

+j+1
i+q+
i+j+3

··· q+i
+r+2

i+q
+j+2 ···

i+q+
i+j+1

q+r
+i+3

··· n

T i,j,i
λ(2) = i+ q + 1

T i,j,i
λ(3) = i+ q + i+ j + 2

Now for every j = 0, . . . , r2, i = 0, . . . , q1, j = 0, . . . , q2, q1 + q2 < q,

define the following tableaux

T j,i,j
λ(1) =

1 ··· i i+1 ··· i+j
i+j
+j+2 ··· q+

j+1
i+
j+2

··· i+j
+j+1

q+i
+j+3 ··· q+i

+r+1

q+
j+2 ··· q+i

+j+1
q+r
+i+2

···
q+i+
j+r+1

q+i+j
+r+2 ··· n

T j,i,j
λ(2) = i+ j + 1

T j,i,j
λ(3) = q + i+ j + 2

If q3 = 0 we associate to T i,j,i
λ(1), T

i,j,i
λ(2), T

i,j,i
λ(3) the polynomials: ai,j,i,q−i

(x1, x2, y, z) = xi1 x́1 · · · x́1︸ ︷︷ ︸
i

ẋ1 · · · ẋ1︸ ︷︷ ︸
q−i

yxj1 x́2 · · · x́2︸ ︷︷ ︸
i

zxr−i−j
1 ẋ2 · · · ẋ2︸ ︷︷ ︸

q−i

and if r1 = 0 and q3 ̸= 0 we associate to T j,i,y
λ(1) , T

j,i,j
λ(2) , T

j,i,j
λ(3) the polynomials:

a0,j,i,j(x1, x2, y, z) = x́1 · · · x́1︸ ︷︷ ︸
i

ẋ1 · · · ẋ1︸ ︷︷ ︸
j

yxj1 x̃1 · · · x̃1︸ ︷︷ ︸
q−i−j

x́2 · · · x́2︸ ︷︷ ︸
i

zxr−j
1 ẋ2 · · · ẋ2︸ ︷︷ ︸

j

x̃2 · · · x̃2︸ ︷︷ ︸
q−i−j

where ′, ·,∼ mean alternation on the corresponding elements. Notice that

the polynomials ai,j,i,q−i, a0,j,i,j are obtained from the essential idempotents
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corresponding to the triple of tableaux (T i,j,i
λ(1), T

i,j,i
λ(2), T

i,j,i
λ(3)) and to the triple

of tableaux (T j,i,j
λ(1) , T

j,i,j
λ(2) , T

j,i,j
λ(3)) respectively, by identifying all the elements

in each row of λ(1). We shall prove that (modIdG(A)) these (q+i)(r+1)(q+r+2)
2

are linearly independents over F . Suppose not.

Let∑
i,j,i

αi,j,i,q−ia
i,j,i,q−i(x1, x2, y, z) +

∑
j,i,j

α0,j,i,ja
0,j,i,j(x1, x2, y, z) = 0

(modIdG(A)) with scalars αi,j,i,q−i and α0,j,i,j not all zero. So it is a poly-

nomial identity for A and then it should be zero for every substitution of

x1, x2, y, z.

Consider the substitution x1 = αe22 + βe33, x2 = γe11 + δe33, y = e12

and z = e23, α, β, γ, δ ∈ F . With this substitution all the polynomials with

r1 ̸= 0 take zero value, so the polynomials with non-zero evaluations are the

following:

x́1 · · · x́1︸ ︷︷ ︸
i

ẋ1 · · · ẋ1︸ ︷︷ ︸
j

yxj1 x̃1 · · · x̃1︸ ︷︷ ︸
q−i−j

x́2 · · · x́2︸ ︷︷ ︸
i

zxr−j
1 ẋ2 · · · ẋ2︸ ︷︷ ︸

j

x̃2 · · · x̃2︸ ︷︷ ︸
q−i−j

.

With this substitution every monomial of each polynomial takes zero value

except one that takes value

αq+j−jβr−j+jγi+jδq−i−j .

We can observe that

αq+j−jβr−j+jγi+jδq−i−j = αq+j′−j
′
βr−j′+j

′
γi

′
+j

′
δq−i

′−j
′

if and only if

i+ j = i
′
+ j

′
j − j = j′ − j

′
.

So there are four different possibilities:

1. i = i
′ − k j = j

′
+ k j = j′ + h j = j

′
+ h

2. i = i
′
+ k j = j

′ − k j = j′ + h j = j
′
+ h
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3. i = i
′ − k j = j

′
+ k j = j′ − h j = j

′ − h

4. i = i
′
+ k j = j

′ − k j = j′ − h j = j
′ − h.

From cases 1) or 4) we obtain that k = h. From cases 2) or 3) we obtain that

all valuations obtained from the considered substitution are distinct. So we

have to consider case 1) and case 4) (we consider only case 1), because case

4) is the same). In case 1) the polynomial with the same valuations are:

x́1 · · · x́1︸ ︷︷ ︸
i

ẋ1 · · · ẋ1︸ ︷︷ ︸
j

yxj1 x̃1 · · · x̃1︸ ︷︷ ︸
q−i−j

x́2 · · · x́2︸ ︷︷ ︸
i

zxr−j
1 ẋ2 · · · ẋ2︸ ︷︷ ︸

j

x̃2 · · · x̃2︸ ︷︷ ︸
q−i−j

and

x́1 · · · x́1︸ ︷︷ ︸
i+k

ẋ1 · · · ẋ1︸ ︷︷ ︸
j−k

yxj−k
1 x̃1 · · · x̃1︸ ︷︷ ︸

q−i−j

x́2 · · · x́2︸ ︷︷ ︸
i+k

zxr−j+k
1 ẋ2 · · · ẋ2︸ ︷︷ ︸

j−k

x̃2 · · · x̃2︸ ︷︷ ︸
q−i−j

k = 1, 2, . . ..

For every choice of j, i, j the corresponding polynomial a0,j,i,j takes the

same value of other k (eventually zero) polynomials a0,j−k,i+k,j−k.

Now consider the substitution x1 = αe11+βe22+γe33, x2 = εe11+ δe22,

y = e12 and z = e23 to evaluate the polynomials a0,j−k,i+k,j−k(x1, x2, x3, y, z)

for every k ≥ 0 and ai1j1,i1,q−i(x1, x2, x3, y, z). With this substitution these

polynomials takes value respectively

1. εj−kβj−kδq−i−jγq+r−j−i(
∑i+k

t=0(−1)i+k−tαtδtεi+k−tβi+k−t).

2. αi1εq−i1βj1γq+r−i1−j1−i1(
∑i1

t=0(−1)i1−t1αt1δt1εi1−t1βi1−t1).

Now we want to see if substitution 1) is equal to substitution 2)for any

choice of i, j, j, t and i1, j1, i1, j1, t1 and for any k ≥ 0. But if 1) is equal to

2) then, for example, αt = αi1+t1 and εi+j−t = εq−t1 . Hence t = i1 + t1, so

j+ i− i1− t1 = q− t1 ⇒ i+ j = i1+ q ≥ q. But if i1+ q ≥ q, then i+ j ≥ q,

a contradiction because i + j ≤ q (recall that in the first case q3 ̸= 0). So

every substitution 1) is different to any substitution 2).
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Then we want to prove that for any choice of k ≥ 0 all evaluation 1) are

different and so all the polynomials a0,j−k,i+k,j−k(x1, x2, x3, y, z) are linearly

independent. Set k = max{k | k ≥ 0}. For any k ∈ {0, . . . , k} any evaluation

of 1) has δq−i−jγq+r−j−i in common; so, in what follows, we can exclude it.

So we obtain:

εj−kβj−k((−1)i+kεi+kβi+k + (−1)i+k−1εi+k−1βi+k−1αδ + · · ·+ αi+kδi+k)

εj−k+1βj−k+1((−1)i+k−1εi+k−1βi+k−1+(−1)i+k−2εi+k−2βi+k−2αδ+· · ·+αi+k−1δi+k−1)

...
...

εjβj((−1)iεiβi + · · ·+ αiδi).

Now let make a linear combination of these evaluations with scalars

α0,j−k,i+k,j−k ∈ F for every k ∈ {0, . . . , k}. We obtain the following relations



α0,j−k,i+k,j−k = 0

α0,j−k+1,i+k−1,j−k+1 − α0,j−k,i+k,j−k = 0
...

(−1)i+kα0,j−k,i+k,j−k + · · ·+ (−1)iα0,j,i,j = 0

So they are all equal to zero and then the considered polynomials are

linearly independent.

Now consider evaluations 2)

αiεq−iβjγq+r−i−j−i((−1)iεiβi + (−1)i−1εi−1βi−1αδ + · · ·+ αiδi)

for every i = 0, . . . , q, i = 0, . . . , r and j = 0, . . . , r− i, and we want to prove

that all the polynomials ai,j,i,q−i(x1, x2, x3, y, z) are linearly independent.
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We will write now the explicit value for every i = 0, . . . , q.

αiεqβjγq+r−i−j

αiεq−1βjγq+r−i−j−1(−εβ + αδ)

αiεq−2βjγq+r−i−j−2(ε2β2 − αδεβ + α2δ2)
...

...

αiβjγr−i−j((−1)qεqβq + (−1)q−1εq−1βq−1αδ + · · ·+ αqδq).

Let consider the evaluation obtained for i = q; then for every i = 0, . . . , r

and for every j = 0, . . . , r− i all the monomials of degree q in δ are distinct.

So αi,j,q,0 = 0 for every i, j. Then consider the evaluation obtained for

i = q − 1. With same arguments αi,j,q−1,1 = 0 for every i, j and so on. So

all coefficients αi,j,i,q−i are equal to zero for every i = 0, . . . , q, i = 0, . . . , r

and j = 0, . . . , r − i.

Notice that for every i, j, i, j,

ei,j,iTλ(1)
ei,j,iTλ(2)

ei,j,iTλ(3)
ei,j,iTλ(4)

(x1, . . . , xn−2, y, z)

is the complete linearization of ai,j,iq,r (x1, x2, y, z), and

ej,i,jTλ(1)
ej,i,jTλ(2)

ej,i,jTλ(3)
ej,i,jTλ(4)

(x1, . . . , xn−2, y, z)

is the complete linearization of aj,i,jq,r (x1, x2, y, z). It follows that the polyno-

mials

ei,j,iTλ(1)
ei,j,iTλ(2)

ei,j,iTλ(3)
ei,j,iTλ(4)

,

i+ j = 0, . . . , r, i = 0, . . . , q; and the polynomials

ej,i,jTλ(1)
ej,i,jTλ(2)

ej,i,jTλ(3)
ej,i,jTλ(4)

j = 0, . . . , r, i + j = 0, . . . , q are linearly independent (modIdG(A)), and

this implies that m ≥ (q+1)(r+1)(q+r+2)
2 .

Then we want to prove that m ≤ (q+1)(r+1)(q+r+2)
2 . Let Tλ(1), Tλ(2), Tλ(3),

Tλ(4) be any four tableaux and f = eTλ(1)
eTλ(2)

eTλ(3)
eTλ(4)

(x1, . . . , xn−2, y, z)
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the corresponding polynomial. If f /∈ ⟨[x1, x2], y1y2, z1z2, t1t2, yt, zt⟩, then

any two alternating variables have to be separated by y or z (i.e x̃1 · · · yẋ1x̃2 · · ·

zẋ2 · · · ). Since f is a linear combination (mod IdG(A)) of polynomials each

alternating on q pairs of xj ’s, we obtain that f is a polynomial of this type:

xr11 x́1 · · · x́1︸ ︷︷ ︸
q1

ẋ1 · · · ẋ1︸ ︷︷ ︸
q2

yxr21 x̃1 · · · x̃1︸ ︷︷ ︸
q3

x́2 · · · x́2︸ ︷︷ ︸
q1

zxr31 ẋ2 · · · ẋ2︸ ︷︷ ︸
q2

x̃2 · · · x̃2︸ ︷︷ ︸
q3

(1).

With r1 + r2 + r3 = r and q1 + q2 + q3 = q. Now we can prove that any

polynomial of the type (1) can be written in the following way:

xr1−q3
1 x́1 · · · x́1︸ ︷︷ ︸

q1

ẋ1 · · · ẋ1︸ ︷︷ ︸
q2+q3

yxr2+q3
1 x́2 · · · x́2︸ ︷︷ ︸

q1

zxr31 ẋ2 · · · ẋ2︸ ︷︷ ︸
q2+q3

+

−q3x
r1−q3
1 x́1 · · · x́1︸ ︷︷ ︸

q1+1

ẋ1 · · · ẋ1︸ ︷︷ ︸
q2+q3−1

yxr2+q3−1
1 x́2 · · · x́2︸ ︷︷ ︸

q1+1

zxr3+1
1 ẋ2 · · · ẋ2︸ ︷︷ ︸

q2+q3−1

+

(
q3
2

)
xr1−q3
1 x́1 · · · x́1︸ ︷︷ ︸

q1+2

ẋ1 · · · ẋ1︸ ︷︷ ︸
q2+q3−2

yxr2+q3−2
1 x́2 · · · x́2︸ ︷︷ ︸

q1+2

zxr3+2
1 ẋ2 · · · ẋ2︸ ︷︷ ︸

q2+q3−2

+

...
...

(−1)q3xr1−q3
1 x́1 · · · x́1︸ ︷︷ ︸

q1+q3

ẋ1 · · · ẋ1︸ ︷︷ ︸
q2

yxr21 x́2 · · · x́2︸ ︷︷ ︸
q1+q3

zxr3+q3
1 ẋ2 · · · ẋ2︸ ︷︷ ︸

q2

.

We can prove this formula using an induction on q3.

If q3 = 1 then:

xr11 x́1 · · · x́1︸ ︷︷ ︸
q1

ẋ1 · · · ẋ1︸ ︷︷ ︸
q2

yxr21 x̃1 x́2 · · · x́2︸ ︷︷ ︸
q1

zxr31 ẋ2 · · · ẋ2︸ ︷︷ ︸
q2

x̃2 =

xr1−1
1 x́1 · · · x́1︸ ︷︷ ︸

q1

ẋ1 · · · ẋ1︸ ︷︷ ︸
q2+1

yxr2+1
1 x́2 · · · x́2︸ ︷︷ ︸

q1

zxr31 ẋ2 · · · ẋ2︸ ︷︷ ︸
q2+1

+
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−xr1−1
1 x́1 · · · x́1︸ ︷︷ ︸

q1+1

ẋ1 · · · ẋ1︸ ︷︷ ︸
q2

yxr21 x́2 · · · x́2︸ ︷︷ ︸
q1+1

zxr3+1
1 ẋ2 · · · ẋ2︸ ︷︷ ︸

q2

.

Now suppose it true for q3 and we prove it for q3 + 1.

xr11 x́1 · · · x́1︸ ︷︷ ︸
q1

ẋ1 · · · ẋ1︸ ︷︷ ︸
q2

yxr21 x̃1 · · · x̃1︸ ︷︷ ︸
q3+1

x́2 · · · x́2︸ ︷︷ ︸
q1

zxr31 ẋ2 · · · ẋ2︸ ︷︷ ︸
q2

x̃2 · · · x̃2︸ ︷︷ ︸
q3+1

=

= xr11 x́1 · · · x́1︸ ︷︷ ︸
q1

ẋ1 · · · ẋ1︸ ︷︷ ︸
q2

yxr21 x̃1 · · · x̃1︸ ︷︷ ︸
q3

x1 x́2 · · · x́2︸ ︷︷ ︸
q1

zxr31 ẋ2 · · · ẋ2︸ ︷︷ ︸
q2

x̃2 · · · x̃2︸ ︷︷ ︸
q3

x2+

−xr11 x́1 · · · x́1︸ ︷︷ ︸
q1

ẋ1 · · · ẋ1︸ ︷︷ ︸
q2

yxr21 x̃1 · · · x̃1︸ ︷︷ ︸
q3

x2 x́2 · · · x́2︸ ︷︷ ︸
q1

zxr31 ẋ2 · · · ẋ2︸ ︷︷ ︸
q2

x̃2 · · · x̃2︸ ︷︷ ︸
q3

x1.

We obtain the desired formula by applying induction to these two polyno-

mials.

Notice that if r1 − q3 = −c < 0, then we can apply this formula to

the first q3 − c variables. In this case we’ll obtain a linear combination of

polynomials with q3 = 0 and r1 ̸= 0 and polynomials with q3 ̸= 0 and r1 = 0.

The following is an example of the previous formula when q3 = 2:

xr11 x́1 · · · x́1︸ ︷︷ ︸
q1

ẋ1 · · · ẋ1︸ ︷︷ ︸
q2

yxr21 x̃1x̃1 x́2 · · · x́2︸ ︷︷ ︸
q1

zxr31 ẋ2 · · · ẋ2︸ ︷︷ ︸
q2

x̃2x̃2 =

xr1−1
1 x́1 · · · x́1︸ ︷︷ ︸

q1

ẋ1 · · · ẋ1︸ ︷︷ ︸
q2+1

yxr2+1
1 x̃1 x́2 · · · x́2︸ ︷︷ ︸

q1

zxr31 ẋ2 · · · ẋ2︸ ︷︷ ︸
q2+1

x̃2

−xr1−1
1 x́1 · · · x́1︸ ︷︷ ︸

q1+1

ẋ1 · · · ẋ1︸ ︷︷ ︸
q2

yxr21 x̃1 x́2 · · · x́2︸ ︷︷ ︸
q1+1

zxr3+1
1 ẋ2 · · · ẋ2︸ ︷︷ ︸

q2

x̃2 =

xr1−2
1 x́1 · · · x́1︸ ︷︷ ︸

q1

ẋ1 · · · ẋ1︸ ︷︷ ︸
q2+2

yxr2+2
1 x́2 · · · x́2︸ ︷︷ ︸

q1

zxr31 ẋ2 · · · ẋ2︸ ︷︷ ︸
q2+2
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−xr1−2
1 x́1 · · · x́1︸ ︷︷ ︸

q1+1

ẋ1 · · · ẋ1︸ ︷︷ ︸
q2+1

yxr2+1
1 x́2 · · · x́2︸ ︷︷ ︸

q1+1

zxr3+1
1 ẋ2 · · · ẋ2︸ ︷︷ ︸

q2+1

−xr1−2
1 x́1 · · · x́1︸ ︷︷ ︸

q1+1

ẋ1 · · · ẋ1︸ ︷︷ ︸
q2+1

yxr2+1
1 x́2 · · · x́2︸ ︷︷ ︸

q1+1

zxr3+1
1 ẋ2 · · · ẋ2︸ ︷︷ ︸

q2+1

+xr1−2
1 x́1 · · · x́1︸ ︷︷ ︸

q1+2

ẋ1 · · · ẋ1︸ ︷︷ ︸
q2

yxr21 x́2 · · · x́2︸ ︷︷ ︸
q1+2

zxr3+2
1 ẋ2 · · · ẋ2︸ ︷︷ ︸

q2

=

xr1−2
1 x́1 · · · x́1︸ ︷︷ ︸

q1

ẋ1 · · · ẋ1︸ ︷︷ ︸
q2+2

yxr2+2
1 x́2 · · · x́2︸ ︷︷ ︸

q1

zxr31 ẋ2 · · · ẋ2︸ ︷︷ ︸
q2+2

−2xr1−2
1 x́1 · · · x́1︸ ︷︷ ︸

q1+1

ẋ1 · · · ẋ1︸ ︷︷ ︸
q2+1

yxr2+1
1 x́2 · · · x́2︸ ︷︷ ︸

q1+1

zxr3+1
1 ẋ2 · · · ẋ2︸ ︷︷ ︸

q2+1

+xr1−2
1 x́1 · · · x́1︸ ︷︷ ︸

q1+2

ẋ1 · · · ẋ1︸ ︷︷ ︸
q2

yxr21 x́2 · · · x́2︸ ︷︷ ︸
q1+2

zxr3+2
1 ẋ2 · · · ẋ2︸ ︷︷ ︸

q2

.

So we have written f as a linear combination of the polynomials

ei,j,iTλ(1)
ei,j,iTλ(2)

ei,j,iTλ(3)
ei,j,iTλ(4)

andej,i,jTλ(1)
ej,i,jTλ(2)

ej,i,jTλ(3)
ej,i,jTλ(4)

.

Hence m ≤ (q+1)(r+1)(q+r+2)
2 . If p ̸= 0 we can repeat the same argu-

ments adding to each polynomial p triples of alternating variables x’s (i.e:

x̃1 · · · x̃1︸ ︷︷ ︸
p

· · · y x̃2 · · · x̃2︸ ︷︷ ︸
p

· · · z x̃3 · · · x̃3︸ ︷︷ ︸
p

· · · ), and all results still hold.

Then we can consider the remaining cases:

1. λ(1) ̸= 0, λ(2) = (1), λ(3) = λ(4) = ∅

2. λ(1) ̸= 0, λ(3) = (1), λ(2) = λ(4) = ∅

3. λ(1) ̸= 0, λ(4) = (1), λ(2) = λ(3) = ∅.

These three cases are similar, so we can study only the first. If λ(1) =

(q + r, q) then m = r + 1 (see [52, Theorem 3]).
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If λ(1) = (p+ q + r, p+ q, p) then the p triples of xi’s are not separated

by y and z and so the polynomial obtained is a polynomial identity for A.

Then m = 0 in this case.

2

4.5 Cocharacter sequence of UT3(F ) with elemen-

tary G-grading induced by (e, g, g2), g2 ̸= e.

We consider a cyclic group of order three, G = {e, g, g2} and the elementary

G-grading induced by (e, g, g2), g2 ̸= e, is the same of Vasilovsky grad-

ing. Hence if A′ = UT3(F ), A′
e = span{e11, e22, e33}, A′

g = span{e12, e23}

and A′
g2 = span{e13}. Set λ(1) ⊢ n1, λ(2) ⊢ n2, λ(3) ⊢ n3, n1 + n2 +

n3 = n and let Wλ(1),λ(2),λ(3) be an Sn1 × Sn2 × Sn3-irreducible left mod-

ule. It is well known that if Tλ(1) is a Young tableau of shape λ(1), . . .,

Tλ(3) a young tableau of shape λ(3), then Wλ(1),λ(2),λ(3)
∼= F (Sn1 × Sn2 ×

Sn3)eTλ(1)
eTλ(2)

eTλ(3)
, where Sn1 , Sn2 , Sn3 act on distinct sets of integers.

Let h, k ∈ G, h, k ̸= e, h ̸= k, k ̸= h2, and consider the elementary

G-grading induced by (e, h, k) Note that A′
g = Ah⊕Ah−1k = span{e12, e23},

where Ah and Ah−1k are the homogeneous components of homogeneous de-

gree h and h−1k in the elementary grading induced by (e, h, k), g ̸= h, g, h ̸=

e. MoreoverA′
gA

′
g2 = A′

g2A
′
g = 0 and (Ah⊕Ah−1k)Ah = Ah(Ah⊕Ah−1k) = 0.

Hence we can regard the space of multilinear G-graded polynomials

Pn1,n2,n3,n4 (modIdG(A′)) in the first grading as the space Pn1,n2,n3

(modIdG(A′)) in the second grading.

Since dimA′
e = 3, dimA′

g = 2 and dimA′
g2 = 1, if χG

n (UT3(F )) =∑
n1+n2+n3=n

∑
λ(i)⊢ni

mλ(1),λ(2),λ(3)χλ(1) ⊗ χλ(2) ⊗ χλ(3) is the nth graded

cocharacter of UT3(F ) with this grading, it follows that mλ(1),λ(2),λ(3) = 0 if

either h(λ(1)) > 3 or h(λ(2)) > 2 or h(λ(3)) > 1. It is easy to prove that in

order to have mλ(1),λ(2),λ(3) ̸= 0, λ(2) = (1, 1).
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With the same techniques of the previous grading we obtain the following

Theorem 4.5.1 Let χG
n (UT3(F )) =

∑
n1+n2+n3=n

∑
λ(i)⊢ni

mλ(1),λ(2),λ(3)

χλ(1) ⊗ χλ(2) ⊗ χλ(3) be the nth graded cocharacter of UT3(F ) with ele-

mentary G-grading induced by (e, g, g2), g2 ̸= e. If we set for simplicity

mλ(1),λ(2),λ(3) = m, then:

1. m = (q+1)(r+1)(q+r+2)
2 if λ(1) = (p+ q + r, p+ q, p) p, q, r ≥ 0, λ(2) =

(1, 1), λ(3) = ∅.

2. m = (r + 1) if λ(1) = (q + r, q) q, r ≥ 0 and λ(2) = (1), λ(3) = ∅, or

λ(3) = (1), λ(2) = ∅.

3. m = 1 if λ(1) = (n) and λ(2) = λ(3) = ∅.

4. m = 0 in all other cases.

4.6 Cocharacter sequence of UT3(F ) with elemen-

tary G-grading induced by (e, e, g), g ̸= e.

In this case if A = UT3(F ) then Ae = span{e11, e22, e33, e12}, Ag = span{e13,

e23}. Consider λ(1) ⊢ n1, λ(2) ⊢ n2, n1 + n2 = n and let Wλ(1),λ(2) be an

Sn1 × Sn2-irreducible left module. As in the previous cases if Tλ(1) is a

Young tableau of shape λ(1) and Tλ(2) a Young tableau of shape λ(2), then

Wλ(1),λ(2)
∼= F (Sn1 × Sn2)eTλ(1)

eTλ(2)
, where Sn1 , Sn2 act on distinct sets of

integers.

We can write the explicit decomposition of the nth graded cocharacter

of A into irreducibles and calculate the corresponding multiplicities.

First recall (see [24] section 4.3) this definition

Definition 4.6.1 A polynomial f ∈ F ⟨X⟩ is called proper, if it is a linear

combination of products of long commutators

f(x1, . . . , xm) =
∑

αi,...,j [xi1 , . . . , xip ] · · · [xj1 , . . . , xjq ]
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where αi,...,j ∈ F .

Recall that the multiplicities in the cocharacter sequence are equal to the

maximal number of highest weight vectors linearly independent according

to the representation theory of GLm. Since in our case dimAe = 4 and

dimAg = 2 we can work with the group GL4 × GL2 and write all possible

highest weight vectors.

We remark that the general method of constructing an highest weight

vector is that of writing a multihomogeneous polynomial obtained by putting

a variable for each box of the Young tableaux Tλ(1) and Tλ(2), then by

identifying all variables in the same rows and alternating all variables in the

same columns. Then reducing every polynomial modulo Id(A).

In our case we work with proper polynomials, compute proper multi-

plicities and then we obtain the ordinary multiplicities using the Littlewood

Richardson rule.

We begin with a technical lemma.

Lemma 4.6.2 Let UT3(F )G be equipped with the elementary G-grading in-

duced by the triple (e, e, g), g ̸= e. If we denote by xi the variables of

homogeneous degree e and by yj the variables of homogeneous degree g; then

1. [xi1 , . . . , xih , y, xj1 , . . . , xjk ] ≡
∑

l∈I αlgl mod Id(UT3(F )G) where I

is a finite set of indeces, h ≥ 0, k ≥ 2, αl ∈ F and gl is a product

of two long commutators for all l ∈ I. The first is in the xi’s only,

and the second is a commutator in the xi’s and y shifted in the last

position (i.e.: gl = [xk1 , . . . , xkt ][xr1 , . . . , xrm , y].

2. [xi1 , . . . , xik , x2, x1, xj1 , . . . , xjh , y] ≡

[xi1 , . . . , xik , x1, x2, xj1 , . . . , xjh , y] +
∑
l∈I

αlgl mod Id(UT3(F )G)

where i1, . . . , ih are not necessarily ordered indeces, h, k ≥ 0, I is a

finite set of indeces, αl ∈ F and gl is a product of two long commu-
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tators. The first commutator is in the xi’s only, and the second is a

commutator in the xi’s and y, for all l ∈ I.

3. [xi1 , . . . , xih , x1, xj1 , . . . , xjl , x2, xt1 , . . . , xtm , y] ≡
∑

l∈I αlgl mod

Id(UT3(F )G) where h, l,m ≥ 0, I is a finite set of indeces, αl ∈ F

for all l ∈ I and gl is a product of two long commutators with no

alternating variables.

Proof. 1) if k = 0, 1, for every h ≥ 0 we have nothing to do. Then we can

suppose that k ≥ 2.

If h = 0, for every k ≥ 2, then

[y, xj1 , . . . , xjk ] ≡ −[xj1 , . . . , xjk ]y mod Id(UT3(F )G).

Suppose first h = 1. For every k ≥ 2, [xi1 , y, xj1 , . . . , xjk ]. So we can

apply the Jacoby identity ([a, [b, c]] = [b, [a, c]] − [c, [a, b]]) with a = xi1 ,

b = y, c = [xj1 , . . . , xjk ]. Then we obtain

[xi1 , y, xj1 , . . . , xjk ] = [y, xi1 , xj1 , . . . , xjk ]− [[xj1 , . . . , xjk ], [xi1 , y]] (1)

and reducing mod Id(UT3(F )G) we obtain

[xi1 , y, xj1 , . . . , xjk ] ≡ [xi1 , xj1 , . . . , xjk ]y − [xj1 , . . . , xjk ][xi1 , y]

and this is a linear combination of the required form.

Suppose now h = 2. For every k ≥ 2, [xi1 , xi2 , y, xj1 , . . . , xjk ] = from (1)

[xi1 , y, xi2 , xj1 , . . . , xjk ]− [xi1 , [xj1 , . . . , xjk ], [xi2 , y]].

We apply again the Jacoby identity to the first and to the second com-

mutator with a = xi1 , b = y, c = [xi2 , xj1 , . . . , xjk ] in the first case and

a = xi1 , b = [xj1 , . . . , xjk ], c = [xi2 , y] in the second case. Hence we obtain

[y, xi1 , xi2 , xj1 , . . . , xjk ]− [[xi2 , xj1 , . . . , xjk ], [xi1 , y]]−

[[xj1 , . . . , xjk ], [xi1 , xi2 , y]] + [[xi2 , y], [xi1 , xj1 , . . . , xjk ]] ≡
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mod Id(UT3(F )G) − [xi1 , xi2 , xj1 , . . . , xjk ]y − [xi2 , xj1 , . . . , xjk ][xi1 , y]−

[xj1 , . . . , xjk ][xi1 , xi2 , y]− [xi1 , xj1 , . . . , xjk ][xi2 , y]

and it is a linear combination of the required form. Obviously we can apply

the same procedure for every h, k ≥ 2, always obtaining a linear combination

in the form (1).

2) Suppose first that k = 0. For every h ≥ 0

[x2, x1, xj1 , . . . , xjh , y] =

[x1, x2, xj1 , . . . , xjh , y]− [[xj1 , . . . , xjh , y], [x2, x1]] ≡

[x1, x2, xj1 , . . . , xjh , y] + [x1, x2][xj1 , . . . , xjh , y]mod Id(UT3(F )G

Now suppose k = 1. For every h ≥ 0

[xi1 , x2, x1, xj1 , . . . , xjh , y] =

[xi1 , x1, x2, xj1 , . . . , xjh , y]− [xi1 , [[xj1 , . . . , xjh , y], [x2, x1]]]

Now we can apply the Jacoby identity to the second commutator.

[xi1 , [[xj1 , . . . , xjh , y], [x2, x1]]] =

[[xj1 , . . . , xjh , y], [xi1 , [x2, x1]]]− [[x2, x1], [xi1 , xj1 , . . . , xjh , y]]

and reducing mod Id(UT3(F )G) we obtain

[xi1 , [x2, x1]][xj1 , . . . , xjh , y] + [x1, x2][xi1 , xj1 , . . . , xjh , y].

It is easy to see that is a linear combination of the required form. Now we

can apply the same procedure for every k > 1 and we obtain the required

result.

3)

[xi1 , . . . , xih , x1, xj1 , . . . , xjl , x2, xt1 , . . . , xtm , y] =

[xi1 , . . . , xih , x1, xj1 , . . . , xjl , x2, xt1 , . . . , xtm , y]−
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[xi1 , . . . , xih , x2, xj1 , . . . , xjl , x1, xt1 , . . . , xtm , y].

Suppose first l, h = 0. For every m ≥ 0

[x1, x2, xt1 , . . . , xtm , y] =

[x1, x2, xt1 , . . . , xtm , y]− [x2, x1, xt1 , . . . , xtm , y] (1).

We can apply the Jacoby identity to the second commutator

[x1, x2, xt1 , . . . , xtm , y]−[x1, x2, xt1 , . . . , xtm , y]+[[xt1 , . . . , xtm , y], [x2, x1]] (2).

Then reducing mod Id(UT3(F )G) we get [x1, x2][xt1 , . . . , xtm , y] and this

is a product of two commutators of the required form.

If h > 0 we have to apply h times the Jacoby identity to the third

commutator of (2) and then reduce mod Id(UT3(F )G).

If l > 0 we have to apply l + 1 times at most the Jacoby identity to

the second commutator of (1). In all cases we get a linear combination of

products of commutators of the required form.

2

Remark 4.6.3 Let G be a finite group, G = {g1 = e, g2, . . . , gs} and A be a

finitely generated PI-algebra, graded by G. Let dimAe = p1, . . . , dimAgs =

ps, (p1 + · · ·+ ps = dimA). If χG
n1,...,ns

(A) =
∑

⟨λ⟩⊢nm⟨λ⟩χλ(1) ⊗ · · · ⊗ χλ(s)

is its (n1, . . . , ns)th cocharacter, with h(λ(1)) ≤ p1, . . . , h(λ(s)) ≤ ps, then,

if 1 ∈ A the proper G-graded cocharacter sequence of A is χG
n1,...,ns

(A) =∑
⟨λ⟩⊢nm⟨λ⟩χλ(1)

⊗ · · · ⊗ χλ(s) with h(λ(1)) ≤ p1 − 1.

Proof. Let us consider proper polynomials of A.

Recall that Ae is a subalgebra of A so we can suppose that Ae =

span{a1 = 1A, a2, . . . , ap1}. If h(λ(1)) ≤ p1, then every proper polyno-

mial is alternating in p1 variables of homogeneous degree e at most. If we

consider multilinear polynomials, we can evaluate this polynomial with basis
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elements of Ae and, since 1A ∈ Ae, it takes zero value; so it is a polynomial

identity, a contradiction. Then h(λ(1)) ≤ p1 − 1.

2

Theorem 4.6.4 Set A = UT3(F ) and let

χG
n (A) =

∑
n1+n2=n

∑
λ(i)⊢ni

mλ(1),λ(2)χλ(1) ⊗ χλ(2)

be the nth graded proper cocharacter of A with elementary G-grading induced

by (e, e, g), g ̸= e. If we set for simplicity mλ(1),λ(2) = m, then:

1. m = 1 if λ(1) = (q), q ≥ 0 and λ(2) = (1).

2. m = q + 1 if λ(1) = (p+ q, p), p > 0, q ≥ 0 and λ(2) = (1).

3. m = 2(q + 1) if λ(1) = (p+ q, p, 1), p > 0, q ≥ 0 and λ(2) = (1).

4. m = q(p+ 1)− 1 if λ(1) = (p+ q, p, r) p, q ≥ 0, r = 0, 1, λ(2) = ∅.

5. m = 0 in all other cases.
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Proof.

By Remark 4.6.3 and by obvious arguments, we can deduce that any

polynomial alternating on four variables of homogeneous degree e or on

three variables of homogeneous degree g vanishes in A. By the identity

y1y2 ≡ 0 we can deduce that λ(2) = ∅, (1). It is also easy to prove that

m = 0 if λ(1)3 > 1.

By the Poincarè-Birkhoff-Witt theorem (see [24] section 4.3) and using

the same arguments of [25] , we can deduce that the vector space F ⟨X | G⟩

is generated by elements of the type

y1 · · · yk[zi1 , . . . , zil ] · · · [zj1 , . . . , zjm ] (1)

where yi, i = 1, . . . , k, are variables of homogeneous degree g and all z’s are

variables of homogeneous degree e or g.

Recall that, with our elementary G-grading,

IdG(UT3(F )) = ⟨[x1, x2][x3, x4], y1y2, y[x1, x2]⟩,

so in (1) there are no y’s before commutators, moreover any commutator

takes value αe12 or βe23 + γe13 for some α, β, γ ∈ F , so in (1) there are at

most two long commutators.

Suppose first that λ(2) = ∅, then in this case UT3(F )G ∼= UT2(F ) ⊕ F

with trivial grading, then the proper multiplicities of UT3(F )G are the same

of the ordinary multiplicities of UT2(F ).

Suppose now λ(2) = (1).

Let now consider multilinear polynomials associated to Young tableaux

Tλ(1), Tλ(2) where λ(1) = (p+ q, p, r) p, q, r ≥ 0.

When we evaluate these polynomials on the elements e11, e22, e33 of the

basis of Ae, they always take zero value, so we can suppose that the elements

of the third row of Tλ(1) are evaluated in αe12, α ∈ F . This implies that

r ≤ 1, so the third row of the partition λ has length at most one.
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Now we want to prove that all variables in commutators can be written

in the following way:

1. [x1, . . . , x1, x2, . . . , x2, x3, y]

2. [x2, . . . , x2, x1, . . . , x1, x3] · [x1, . . . , x1, x2, . . . , x2, y]

3. [x3, x2, . . . , x2, x1, . . . , x1, x2] · [x1, . . . , x1, x2, . . . , x2, y]

Consider first a product of two commutators.

The commutator with only x’s can be written [x1, . . . , x1, x2, . . . , x2, x3]

or [x3, x2, . . . , x2, x1, . . . , x1, x2], because (UT3(F )G)e ∼= UT2(F ) ⊕ F , and

it is well known that the variables of UT2(F ) are in commutators of these

types:

[xj1 , . . . , xjm , xk] k > jm ≤ jm−1 ≤ . . . ≤ j1.

By applying condition 1) of Lemma 4.6.2 to the commutator where y

appears, and reducing modulo Id(UT3(F )G), we can deduce that the only

y is in the last position of the second commutator. By condition 2) of the

same lemma we can order all the other variables.

Now consider only one commutator with all x’s and one y. Using con-

dition 1) and 2) of Lemma 4.6.2 we can suppose that all variables are in

ordered commutator.

By condition 3) of Lemma 4.6.2 we deduce that all the alternating vari-

ables are into different long commutators.

Suppose first that λ(1)3 = 0. Then λ(1) = (p+ q, p), p, q ≥ 0.

If p = 0, for every q ≥ 0, the only proper polynomial is [x1, . . . , x1︸ ︷︷ ︸
q

, y]

and so m = 1.

If p > 0, for every q ≥ 0, the proper polynomials are the following:

aq1(x1, x2, y) = [x1, . . . , x1︸ ︷︷ ︸
p−1

, x1, . . . , x1︸ ︷︷ ︸
q1

, x2] · [x1, . . . , x1︸ ︷︷ ︸
q−q1+1

, x2, . . . , x2︸ ︷︷ ︸
p−1

, y],
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where 0 ≤ q1 ≤ q. For every choice of q1 = 0, . . . , q we obtain q+1 different

polynomials. So m ≤ q + 1.

Now we want to prove that these q+1 polynomials are linearly indepen-

dent. To do this, let us consider a linear combination of aq1(x1, x2, y) for

every q1 = 0, . . . , q. Let

q∑
q1=0

αq1aq1(x1, x2, y)

be this linear combination. Then we have to prove that it is a polynomial

identity; so we have to prove that it is equal to zero for every G-graded

substitution with linear combinations of basis elements of UT3(F )G.

Let us consider this substitution: x1 = αe11 + βe22 + γe12, α, β, γ ∈ F ,

α, β, γ ̸= 0, x2 = e11, and y = e23.

With this substitution every monomial is equal to zero except the mono-

mial with all alternating x2’s in the first commutator. In this case we have

[x1, x2] = −γe12 = −γ(α − β)0e12, [x1, [x1, x2]] = −γ(α − β)e12. In general

[x1, . . . , x1︸ ︷︷ ︸
t

, x2] = −γ(α− β)t−1e12.

[x1, y] = βe23 + γe13, [x1, [x1, y]] = γ(α + β)e13 + β2e23, in general

[x1, . . . , x1︸ ︷︷ ︸
t

, y] = γ
∑t−1

i=0 α
iβt−i−1e13 + βte23.

So the complete evaluations of these polynomials are:

γ(α− β)q1−1βp+q−q1e13.

We obtain that
q∑

q1=0

αq1(α− β)q1−1βp+q−q1e13 = 0.

We prove that αqi = 0 for every qi = 0, . . . , q.

We use induction on q, for every p > 0. If q = 0, α0γ(α− β)−1βpe13 = 0

implies that α0 = 0 since α, β ̸= 0.

Now suppose that αq1 = 0 for every q1 = 0, . . . , q and prove that αq+1 =

0.
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When we consider q + 1 we obtain all the relations of case q with a

coefficient more (αq+1) and an other relation, αq+1 = 0, corresponding to

the monomial in commutative variables γαqβp−1 which is the only monomial

of degree q in α. So αq1 = 0 for every q1 = 0, . . . , q, then m ≥ q + 1. Thus

m = q + 1 and we are done.

Suppose now that λ(1)3 = 1. Then λ(1) = (p+ q, p, 1), p ≥ 1, q ≥ 0 and

proper polynomials are only the following:

aq1(x1, x2, x3, y) = [x1, . . . , x1︸ ︷︷ ︸
p

, x1, . . . , x1︸ ︷︷ ︸
q1

, x3] · [x1, . . . , x1︸ ︷︷ ︸
q−q1

, x2, . . . , x2︸ ︷︷ ︸
p

, y]

and

a′q1(x1, x2, x3, y) = [x3, x1, . . . , x1︸ ︷︷ ︸
p−1

, x1, . . . , x1︸ ︷︷ ︸
q1

, x2] · [x1, . . . , x1︸ ︷︷ ︸
q−q1+1

, x2, . . . , x2︸ ︷︷ ︸
p−1

, y],

where 0 ≤ q1 ≤ q, and − means alternation on corresponding elements.

We remark that for every choice of q1 = 0, . . . , q we obtain 2(q + 1)

different polynomials.

So we have proved that m ≤ 2(q + 1).

Now we want to prove that these 2(q+1) polynomials are linearly inde-

pendent.

To do this let us consider a linear combination of aq1(x1, x2, x3, y) and

a′q1(x1, x2, x3, y) for every q1 = 0, . . . , q.

Let
q∑

q1=0

αq1aq1(x1, x2, x3, y) + α′
q1a

′
q1(x1, x2, x3, y)

be this linear combination.

Then we have to prove that it is a polynomial identity; so we have to

prove that it is equal to zero for every G-graded substitution with linear

combinations of basis elements of UT3(F )G.
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Let us consider this substitution: x1 = αe11 + βe22, α, β ∈ F , α, β ̸= 0,

x2 = e11, x3 = e12 and y = e23. With this substitution all the polyno-

mials a′q1(x1, x2, x3, y) take zero value. So the polynomials with non-zero

evaluations are aq1(x1, x2, x3, y), for every q1 = 0, . . . , q. Moreover every

monomial of aq1(x1, x2, x3, y) is equal to zero, except the monomial with all

alternating x2’s in the first long commutators and all x1’s in the second long

commutators.

We obtain [x1, y] = βe23, [x2, x3] = e12 and [x1, x3] = (α− β)e12.

So the complete evaluations of these polynomials are:

(α− β)q1βp+q−q1e13.

We obtain that

q∑
q1=0

αq1(α− β)q1βp+q−q1e13 = 0.

Now we want to prove that αqi = 0 for every qi = 0, . . . , q. We use again

induction on q.

If q = 0, then α0β
p = 0 implies that α0 = 0 since β ̸= 0.

Now suppose that αq1 = 0 for every q1 = 0, . . . , q. We want to prove

that αq+1 = 0.

When we consider q + 1 we obtain all the relations of case q with a

coefficient more (αq+1) and an other relation, αq+1 = 0, corresponding to

the monomial in commutative variables αq+1βp which is the only monomial

of degree q + 1 in α. So αq1 = 0 for every q1 = 0, . . . , q.

Now consider the substitution

x1 = αe11 + βe22 + γe12, α, β, γ ∈ F , α, β, γ ̸= 0, x2 = e11, x3 = e11

and y = e23. With this substitution every monomial of a′q1(x1, x2, x3, y) is

equal to zero, except the monomial with all alternating x2’s in the first long

commutators and all x1’s in the second long commutators.
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In this case we have [x1, x2] = −γe12 = −γ(α − β)0e12, [x1, [x1, x2]] =

−γ(α− β)e12. In general [x1, . . . , x1︸ ︷︷ ︸
t

, x2] = −γ(α− β)t−1.

[x1, y] = βe23 + γe13, [x1, [x1, y]] = γ(α + β)e13 + β2e23, in general

[x1, . . . , x1︸ ︷︷ ︸
t

, y] = γ
∑t−1

i=0 α
iβt−i−1e13 + βte23.

So the complete evaluations of these polynomials are:

γ(α− β)q1−1βp+q−q1e13.

With same arguments of the previous evaluation we can prove that α′
q1 =

0 for every q1 = 0, . . . , q.

Then we have proved that m ≥ 2(q + 1) and so m = 2(q + 1). 2

4.7 Cocharacter sequence of UT3(F ) with elemen-

tary G-grading induced by (e, g, g), g ̸= e.

If A = UT3(F ) then in this case Ae = span{e11, e22, e33, e23}, Ag = span{e12,

e13}.

We can apply the same techniques of section 4.6; so we are able to

calculate proper multiplicities in the sequence of G-graded cocharacters.

First we note that we can restate Lemma 4.6.2 in this way.

Lemma 4.7.1 Let A be equipped with the elementary G-grading induced by

the triple (e, e, g), g ̸= e. If we denote by xi the variables of homogeneous

degree e and by yj the variables of homogeneous degree g; then

1. [xi1 , . . . , xih , y, xj1 , . . . , xjk ] ≡
∑

l∈I αlgl mod Id(UT3(F )G) where I

is a finite set of indeces, h ≥ 0, k ≥ 2, αl ∈ F and gl is a product of two

long commutators for all l ∈ I. The first is in the variables xi’s and

y shifted in the last position (i.e.: gl = [xk1 , . . . , xkt ][xr1 , . . . , xrm , y],

and the second is a commutator in the xi’s only.
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2.

[xi1 , . . . , xik , x2, x1, xj1 , . . . , xjh , y] ≡

[xi1 , . . . , xik , x1, x2, xj1 , . . . , xjh , y] +
∑
l∈I

αlgl mod Id(UT3(F )G)

where i1, . . . , ih are not necessarily ordered indeces, h, k ≥ 0, I is a

finite set of indeces, αl ∈ F and gl is a product of two long commuta-

tors. The first is in the variables xi’s and y shifted in the last position,

and the second is a commutator in the xi’s only.

3. [xi1 , . . . , xih , x1, xj1 , . . . , xjl , x2, xt1 , . . . , xtm , y] ≡
∑

l∈I αlgl mod

Id(UT3(F )G) where h, l,m ≥ 0, I is a finite set of indeces, αl ∈ F

for all l ∈ I and gl is a product of two long commutators with no

alternating variables.

Proof. The proof is the same of that of Lemma 4.6.2, but when we reduce

mod Id(UT3(F )G) we use the identity [x1, x2]y instead of y[x1, x2]. 2

In the same way we can follow the proof of Theorem 4.6.4 obtaining

the same result; in this case the only differences are that all variables in

commutators can be written in the following way:

1. [x1, . . . , x1, x2, . . . , x2, x3, y]

2. [x1, . . . , x1, x2, . . . , x2, y] · [x2, . . . , x2, x1, . . . , x1, x3]

3. [x1, . . . , x1, x2, . . . , x2, y] · [x3, x2, . . . , x2, x1, . . . , x1, x2]

and that the considered substitution are x1 = αe11+βe22, x2 = e11, x3 = e23,

y = e12 and x1 = αe11 + βe22 + γe23, x2 = e11, x3 = e11,y = e12, α, β ∈ F ,

α, β ̸= 0.

So if

χG
n (A) =

∑
n1+n2=n

∑
λ(i)⊢ni

m′
λ(1),λ(2)χλ(1) ⊗ χλ(2)

is the nth graded proper cocharacter of A with the considered G-grading,

then m′
λ(1),λ(2) = mλ(1),λ(2) for every λ(1) ⊢ n1 and λ(2) ⊢ n2.
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4.8 Cocharacter sequence of UT3(F ) with elemen-

tary G-grading induced by (e, g, e), g ̸= e.

If A = UT3(F ) then Ae = span{e11, e22, e33, e13}, Ag = span{e12} and

Ag−1 = span{e23}. We can construct the space Wλ(1),λ(2),λ(3)
∼= F (Sn1 ×

Sn2 × Sn3)eTλ(1)
eTλ(2)

eTλ(3)
as in the previous cases.

Since dimAe = 4, dimAg = dimAg−1 = 1, if

χG
n (UT3(F )) =

∑
n1+n2+n3=n

∑
λ(i)⊢ni

mλ(1),λ(2),λ(3)χλ(1) ⊗ χλ(2) ⊗ χλ(3) (1)

is the nth graded cocharacter of UT3(F ) with this grading, it follows that

mλ(1),λ(2),λ(3) = 0 if either h(λ(1)) > 4 or h(λ(2)) ≥ 2 or h(λ(3)) ≥ 2; also

it is easy to prove that mλ(1),λ(2),λ(3) = 0 if λ(1)4 ≥ 1; so the fourth row of

Tλ(1) has one box at most.

If we denote with yi any variable of homogeneous degree g, with zj any

variable of homogeneous degree g−1, the identities y1y2 ≡ 0 and z1z2 ≡ 0

show that λ(2), λ(3) = ∅ or (1).

It is easy to prove that mλ(1),λ(2),λ(3) = 0 if λ(1) = (l1, l2, l3, 1), l1 ≥ l2 ≥

l3 ≥ 1 and λ(2) = λ(3) = (1) because any evaluation with basis elements of

any multilinear polynomial in variables x, y, z takes zero value.

Suppose now that λ(2) = λ(3) = ∅. Since Ae
∼= UT2(F )⊕F with trivial

grading, then the proper multiplicities of A are the same of the ordinary

multiplicities of UT2(F ). More precisely if χn(UT2(F )) =
∑

λ⊢nmλχλ (2)

is the nth cocharacter of UT2(F ), then we get that mλ(1),∅,∅ = mλ(1) i.e.:

the multiplicities of χλ(1) ⊗ χ∅ ⊗ χ∅ in (1) is the same as the multiplicity of

χλ(1) in (2).

Now suppose that λ(2) = λ(3) = (1) and h(λ(1)) ≤ 3. In these cases

we can apply the same techniques of Theorem 4.4.1 and obtain the same

multiplicities, since with the identities [x1, x2]y, y[x1, x2], [x1, x2]z, z[x1, x2]
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we can order all x’s before and after any y or z. More precisely if

χG
n (UT3(F )) =

∑
n1+...+n4=n

∑
λ(i)⊢ni

mλ(1),...,λ(4)χλ(1) ⊗ . . .⊗ χλ(4) (3)

is the nth graded cocharacter of UT3(F ) with elementary G-grading induced

by the triple (e, g, h), g ̸= h, h ̸= g2, then m′
λ(1),(1),(1),∅ = mλ(1),(1),(1), i.e.

the multiplicity of χλ(1)⊗χ(1)⊗χ(1)⊗χ∅ in (3) is the same as the multiplicity

of χλ(1) ⊗ χ(1) ⊗ χ(1) in (1).

In all other cases mλ(1),λ(2),λ(3) = 0.
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