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Preface 

Late blight of potato, which occurred in Ireland in 1845, brought the attention of the 

scientific community to the genus Phytophthora. Phytophthora infestans (De Bary, 

1876) in particular caused the loss of entire potato fields in Ireland that caused 

poverty, starvation and emigration of millions of people. The impact of the genus 

Phytophthora on worldwide agriculture is still enormous. The member of this genus are 

able to cause disease with remarkable economic losses in a large number of crop, as 

well as environmental damage in natural ecosystems. For example P. nicotianae and P. 

cinnamomi have a wide host range of approximately 900-1000 plant species and P. 

cinnamomi in particular is known for the epidemics that is causing the death of Jarrah 

forests in Australia. Phytophthora ramorum is another important species responsible 

for the Ramorum dieback epidemics that recently rose in California and Oregon coasts 

and in nursery, as well as forest ecosystems in Europe. In the last decade the number of 

newly described Phytophthora species has increased considerably through the 

development and application of molecular techniques that overcome the morphology-

based methods. The molecular studies are more and more fundamental to reveal 

differences between very close species and to determine changing in the taxonomic 

classification within the genus. The increasing of sequence data available has helped 

with the identification of new species, thinking that in the last decade 39 new 

Phytophthora species and two species hybrids have been formally described
 
(1) and the 

total number raised at more than 100 species. Furthermore, has been suggested, that a 

greater number of species (until 500 species) still undiscovered (2). 

 

1) Ersek T, and Ribeiro K, 2010. Acta Phytopathologica et Entomologica Hungarica 45 (2), pp. 251–266. 

2) Brasier C, 2009. Phytophthora biodiversity: how many Phytophthora species are there? In: E. M. Goheen and S. 

J. Frankel (tech coords): Phytophthoras in Forests and Natural Ecosystems. Proc., 4thMeeting of IUFRO Working 

Party 07.02.09, August 26–31, 2007, Monterey, CA. Gen. Tech. Rep. PSW-GTR-221, Albany,CA, pp. 101–115. 



 II 

General Abstract 

 

Phytophthora nicotianae is an Oomycete plant pathogen affecting a broad range of 

plant species comprising more than 250 genera. It causes several economically relevant 

diseases and is particularly known as the causal agent of black shank of tobacco and 

root rot, stem rot and gummosis of citrus. Despite the relevance of this pathogen, 

information on the field reproductive strategy, population structure and global 

distribution of genetic variability is not completely known. This is because available 

studies have been conducted to characterize local populations (mainly from tobacco) or 

have been based on physiological aspects such as resistance to fungicides and 

pathogenicity on differential hosts. 

In the present study, variable mitochondrial and nuclear loci were explored to evaluate 

genetic intraspecific variability of P. nicotianae on global scale using a collection of 

isolates from different geographic regions and hosts. A mixed approach of comparative 

genomics and sequencing of known and anonymous loci was utilised to identify 

suitable regions for population studies. High mitochondrial and nuclear genetic 

diversity and a panmictic distribution of haplotypes and genotypes were observed using 

these markers. This work offers useful tools to analyze the population genetic structure 

and migrations of P. nicotianae. 
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I.1 Introduction to Oomycetes and Phytophthora. 

The Oomycetes and the genus Phytophthora fall within the kingdom Stramenopila (= 

Chromista), which also includes golden brown algae, diatoms, and brown algae such as kelp 

(Baldauf et al., 2000). These organisms, known also as “water molds,” include a various 

group of species that have a similar ecology and biology as Fungi since they parasitize plants 

using similar mechanisms and grow by polarized hyphal extension, produce spores, use an 

absorptive mode of nutrition and are present in different environments.  

Until a couple of decades ago these organisms were included in the kingdom Fungi 

(Eumycota) and considered as “lower fungi”. Lately, accurate biological, morphological, 

biochemical and phylogenetic analyses have revealed that these organisms are closely related 

with heterokont algae in the Chromalveolate super kingdom (Cavalier-Smith and Chao, 2006; 

Tsui et al., 2009). Oomycetous organisms differ from the true fungi because of their diploid 

nature; the morphology of mitochondrial cristae; the flagellar heterokont apparatus of the 

zoospores; the biochemistry of the cell wall, which contain a cellulose microfibril skeleton 

and -1,3-glucans amorphous material instead of chitin; their lack of epoxidation of squalene 

to sterols; their different metabolic pathways and their unique molecular biology system 

(Erwin and Ribeiro, 1996). 

The phylum Oomycete comprises saprophytes, facultative parasites and obligate 

parasites (biotrophes) that are able to live in both terrestrial and aquatic environments. The 

Oomycetes can be pathogen of plants, animals, seaweed, crustaceans, fishes, amphibians and 

also humans. Despite their great diversity (Fig. 1) more than 60% of Oomycetes are plant 

pathogen (Thines and Kamoun, 2010). Phytophthora belongs to this percentage of plant 

pathogens.  

The genus Phytophthora is located in the family Peronosporaceae and order 

Peronosporales (Cannon and Stalpers, 2008) that include obligate biotrophic pathogens, 
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hemibiotrophic and saprophytic organism. For nearly all of their life Phytophthora are diploid 

whereas the higher fungi are haploid (Erwin and Ribeiro, 1996).  

 

 

Fig. 1 - Phylogenetic tree of the phylum Oomycota from Thines and Kamoun, 2010. Only the number of species 

for the Saprolegniales and Peronosporales are present because of their large number of described species.  

 

 

I.1.1 Biology and genetics of Phytophthora nicotianae 

Phytophthora nicotianae produces the typical structures characteristic of the genus. The 

mycelium is composed of hyaline, branched, coenocytic filaments, except in old cultures 

where septa can sometime be seen. It reproduces asexually by forming sporangium papillate 

and ovoid from which are discharged biflagellate zoospores which enable the movement of 

the pathogen in water for short distances.  

Sexual reproduction is characterized by the production of thick walled structure called 

oospores. This spherical structure (average diameter 20 μm) originates from the union of two 

gametangia, an amphigynous antheridia (paternal) and a spherical oogonia (maternal). The 
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haploid nuclei of the antheridia pass into the maternal gametangia and fuse with the haploid 

nuclei of oogonia to generate the diploid oospore. Antheridia and oogonia represent the only 

haploid stage in the life cycle of Phytophthora species. 

Phytophthora nicotianae requires two opposite mating types, A1 and A2, for oospore 

production and like all other heterothallic species, it is bisexual and self-incompatible (Erwin 

and Ribeiro, 1996). This means that isolates of both mating types (A1 and A2) can be either 

the maternal or paternal parent during sexual crossing. 

Phytophthora nicotianae is known also for the production of abundant asexual 

structure called chlamydospores. These structures are globose and have thick walls that allow 

the pathogen to persist in soil and plant tissue in unfavorable conditions for long periods 

(Mircetich and Zentmyer 1966). Usually, the chlamydospores are dark but can be also hyaline 

and can be formed intercalary or terminal at the tip of the hyphae. These structures germinate 

and infect host plants when environmental conditions are favorable. 

 

I.2 Phytophthora nicotianae diseases 

Phytophthora nicotianae (syn. P. parasitica) is a soilborne pathogen of a wide range of plant 

species. It is the most important soilborne pathogen in citrus production areas in the world 

(Matheron et al., 1997; Graham and Menge, 1999; Magnano di San Lio et al., 2002) as well as 

for tobacco (Erwin and Ribeiro, 1996; Lucas, 1975) and ornamental plants (Lamour et al., 

2003; Pane et al., 2001). This pathogen can cause foliar and fruit diseases (blight and brown 

rot of citrus) however root rot is the most common disease manifestation in both herbaceous 

and trees plants. The pathogen is favored by temperatures ranging from 10 to 35 °C, high 

humidity and rainfall (Erwin and Ribeiro, 1996). Black shank of tobacco and root rot of citrus 

are among the most important P. nicotianae diseases.  
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I.2.1 Black shank of tobacco 

Since its description in 1931 by Tucker in North Carolina, black shank of tobacco has been 

considered one of the most destructive disease on this plant with annual losses of millions of 

dollars. The tobacco plant is susceptible at any stage of the growth, from seedbed to mature 

plant in the field where root necrosis, wilting, chlorosis, stem lesions, and stunting occur 

(Lucas, 1975). The spread of the disease is favored by transplants from infested seed beds 

(Lucas, 1975).  

To control the disease an integrated approach consisting of cultural practices, 

fungicide applications and host resistance is needed (Melton et al., 2003). It is important to 

reduce the passage of water, soil and contaminated materials from infested to non-infested 

soil to limit the spread of the pathogen. Because the pathogen can persist in soil as oospores 

and chlamydospores for more than five years, long-term rotations (more than 5 years) with 

non susceptible crops such as peanut or cotton are useful to reduce the population of the 

pathogen (Lucas, 1965). Chemical control gives better results when applied in combination 

with other methods, but it is not highly effective when a susceptible cultivar is grown. 

Chemicals commonly used are metalaxyl and its derivative, mefenoxam. Dosage and time of 

application vary based on the type of host resistance and incidence of the disease in the 

specific field (Gallup et al., 2006). 

However, the most widely used and effective method of control for black shank is the 

use of host resistance (Sullivan et al., 2005a). Four physiological races of P. nicotianae (0, 1, 

2 and 3) have been identified even though race 0 is predominant. Race 0 (not pathogenic to 

Nicotianae plumbaginifolia) and race 1 (pathogenic to N. plumbaginifolia) occur in most 

tobacco growing areas of the world while race 2 is present in South Africa  and race 3 occurs 

in Connecticut (Erwin and Ribeiro, 1996). Several varieties are available with different levels 

of resistance to black shank. The first variety available for the growers was the cigar wrapper 

cultivar Florida 301 (Fla. 301), which gives partial resistance against different races of P. 
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nicotianae (Carlson et al., 1997). However, resistance derived from Florida 301 provides only 

partial protection from disease, requiring supplemental soil fungicide applications and crop 

rotation for growers to meet their production goals (Parkunan et al., 2010). Resistant varieties 

come from intraspecific and interspecific crosses using three different genetic sources: N. 

tabacum (cultivar Fla. 301), N. plumbaginifolia and N. longiflora. The latter two species are 

the source of single dominant resistance genes (Phl and Php) that provide complete resistance 

against race 0 but does not provide any resistance against race 1 (Apple, 1967). Since the 

deployment of these single gene resistant cultivars the frequency of the most virulent race 1 

has increased in the South Eastern area of the US (Apple, 1967). Because of this problem, 

integrated pest management approaches that involves the use of metalaxyl or mefenoxam and 

resistant crop rotation scheme are suggested to the growers by different scientists to reduce 

the development of the disease by the different races of black shank.  

 

I.2.2 Root rot of citrus 

Root rot caused by Phytophthora spp., together with damping-off and gummosis, are among 

the most economically important fungal diseases in citrus, occurring in nearly all production 

regions (Leoni and Ghini, 2004). Phytophthora.nicotianae and P. citrophthora are the most 

common species in citrus production areas worldwide. Phytophthora nicotianae growths at 

higher temperatures (28-30°C with max of 35-38°C) than P. citrophthora (25°C with max of 

30°C) and attacks mainly the rootlets, while P. citrophothora is the main causal agent of 

gummosis and brown rot of fruits (Cacciola and Magnano, 2008). Root rot of citrus cause 

mortality of newly planted trees and a slow decline and yield loss of mature trees. The 

management of the disease is based on an integrated approach that includes the use of tolerant 

rootstocks, cultural practices and fungicides. Several biocontrol agents also have been tested 

for the control of this disease but they are still not commercially available (Colburn and 

Graham, 2007). The severity of the disease is related to the use of specific susceptible 
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rootstock. Furthermore, a top graft with highly susceptible species or cultivars, such as the 

clementine or nucellari clones of sweet orange, reduces the resistance of the rootstock 

(Cacciola and Magnano, 2008). Another aspect to consider is that even when resistant 

rootstocks are utilized, hypoxia resulting from water saturation of the soil makes the roots 

more susceptible to infection by Phytophthora and inhibits the growth of new roots.  

The systemic fungicides metalaxyl, mefenoxam and fosetyl-Al can be used to control 

the disease according to the physiological state of the plant and the population of the 

pathogen. In the case of root rot caused by P. nicotianae the best time to apply the chemical is 

immediately before the roots start to grow when the first flush of spring vegetation has 

reached about three-quarters of its maximum development (Cacciola and Magnano, 2008). 

Treatment with systemic products can only be justified if the inoculums density reach the 10-

15 propagules/cm
3
 because their high costs (Timmer et al., 1988; Sandler et al., 1989). For the 

first two years after planting the treatment against root rot should be done routinely because 

the young citrus seedlings are very susceptible to this disease. 

 

 

 

 

 

 

 

 

 

 

Fig. 2 - (a) Characteristic wilting of leaves due to the black shank in flue-cured tobacco (picture by apsnet.org, 

Gallup et al., 2006,). (b) Little roots appearing filiform due to the disintegration of the cortex in citrus plant 

(picture by Marco Mammella). 

 

a

b
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I.3 Population genetics of Phytophthora 

The study of the population genetics of a plant pathogen is important because the genetic 

structure reflects the evolutionary potential of the pathogen (McDonald and Linde, 2002). 

Several factors are involved in shaping the populations structure of pathogens like 

Phytophthora spp. and include natural selection, reproductive system of the organism, 

mutation rate, gene flow, migration and genetic drift (Goodwin, 1997). Plant pathogens are 

immersed in an environment where there are several factors that can cause strong directional 

selection and changes in the viability of the pathogen, in its aggressiveness and therefore in 

the occurrence of the disease. Resistant cultivars, different environmental conditions, crop 

rotation, fertilizers, application of specific fungicides or presence of antagonists in the soil are 

some of the factors that can lead to changes and require continuous adaptation by the 

pathogen. These aspects have been accurately analyzed and reviewed for different 

Phytophthora species (Flier et al., 2003; Goodwin, 1997; Grunwald and Flier, 2005; 

Grunwald et al., 2008).  

 

I.3.1 Forces acting on natural populations 

I.3.1.1 Selection 

Natural selection is the process driving the evolution of populations of all organisms on earth. 

The main requirement for selection to take place is the presence of genetic variation in the 

population. Favorable genetic variation in a particular environment will be maintained and its 

frequency in the population will increase compared with unfavorable variations that will 

decrease. In Phytophthora, one of the most obvious causes of selection is the changing in host 

resistance genes (Goodwin, 1997). The spread of resistant plants in a specific geographic area 

can result in monoculture systems characterized by high genetic uniformity and could 

stimulate selective pressure for specific mutants, recombinants or introduced genotypes of the 

pathogen that can overcome resistance (McDonald and Linde, 2002). The survival of portions 
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of populations following the use of chemical agents also is the result of selection of genotypes 

with a higher fitness. For example, the metalaxyl sensitive US-1 clonal lineage of P. infestans 

was replaced by the new resistant genotype US-8 from Mexico as a major component of the 

US population following metalaxyl applications (Goodwin, 1997). Similarly, the US-1 

genotype was no longer able to compete with new introduced genotypes in Europe, Asia and 

South America and was progressively replaced by other genotypes (Drenth et al., 1994; Koh 

et al., 1994; Fry et al., 1992). 

 

I.3.1.2 Reproductive system  

Sexual reproduction is certainly a process that leads to genetic variations that may provide the 

opportunity for faster changes in the genetic structure of populations. The contribution of new 

genotypes derived from meiotic recombination is the basis for changing the genetic structure 

of a population. Different Phytophthora species presented clear evidence of the sexual cycle 

as a constant element of their life cycle in nature, which influences the biology of the 

organism such as self/non self recognition, intercellular communication, cell-type 

differentiation, and evolution (Judelson, 2009). The sexual cycle creating genetic diversity 

can improve fitness of pathogen population and this, obviously, can affect population genetics 

and can negatively influence control strategies to prevent the spread of diseases. There are 

different examples showing that isolates of a Phytophthora spp. from populations in regions 

where the sexual cycle has been active are more aggressive than isolate from clonal 

population (Fry, 2008). Sexual reproduction may also promote survival when unfavorable 

environmental conditions are present and in the absence of the host since oospores can 

survive for a long time in soil. A key factor that can enhance or negatively affect the 

possibility of sexual recombination in a population is the environment that allows contact 

between new genotypes and opposite mating type (in case of heterothallic species as P. 

nicotianae) or avoid it with geographical barriers leading in particular cases to vicariant 
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speciation. For P. infestans it has already been demonstrated that there is an unequal 

distribution of mating type in case where recombination does not occur (Fry, 2008). In fact, 

the geographic separation between opposite mating type limits the possibility for sexual 

recombination in many areas of the world where both mating types are present (Goodwin et 

al; 1998).  

Clonality in natural Phytophthora populations is widely documented (Dobrowolsky et 

al., 2003; Grunwald et al., 2008; Lamour et al., 2003). In this case, genetic variation is 

unidirectionally transmitted from the genotype of the parent to the new generation. Obviously, 

it is possible to assume that such populations exhibit lower variability and thus lead to a 

slower process of evolution comparing with sexually reproducing populations. The reduced 

level of genetic variations present in a clonal population might make these individuals more 

susceptible to unfavorable environmental changes or new control strategies. Furthermore, in 

clonal populations, there are no mechanisms for avoiding inheritance of deleterious genes 

from the parent to the new generation. 

 

I.3.1.3 Mutation 

Mutation is one of the most important sources of genetic variation and is basic for natural 

selection of populations and can lead to future evolutionary divergence. Pathogens with fast 

mutation rates represent a major concern compared to pathogens with low mutation rates (Mc 

Donald and Linde, 2002). Mutations have an evident impact when new variants present in a 

population are able to overcome specific resistance genes of plants. A typical example of the 

effect of mutation and selection is the continuous origin of new pathovars in P. sojae and P. 

infestans that are able to overcome resistance genes of newly released cultivars. Similarly, 

mutations can also allow the pathogen to resist specific fungicides. Metalaxyl resistant 

genotypes for the US-1 clonal lineage of P. infestans were observed in Philippines (Koh et al., 

1994). This was unusual if think that in Philippines there were only US-1 lineage of P. 
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infestans that was known to have an extreme sensitivity to metalaxyl. This change in a 

resistant genotype of the US-1 lineage was clearly due to mutations. In fact one of the first 

metalaxyl resistant genotype was discovered in Ireland in 1980 (Carter et al., 1982) and was 

shown that it was a mutated genotype of the US-1 lineage (Goodwin et al., 1996). 

 

I.3.1.4 Gene flow and migration 

Gene flow and migration contribute to the fluctuation and exchange of alleles and genotypes 

among geographically separated population. These events of genetic transfer can lead to 

change the allele frequencies in a population. Both these processes are strongly influenced by 

human activities such as  nursery trade or agricultural practices that facilitate the spreading of 

pathogens in specific areas. For example, dispersion trhough potato tuber distribution allows 

movement for P. infestans, P. erythroseptica and P. nicotianae (Goodwin et al., 1997).  The 

mobility of the pathogens is another important factor influencing gene flow and migration. 

Pathogens that develop asexual structures easily transportable by wind or rain 

(sporangia and zoospores) have a better mobility than pathogens that don’t differentiate these 

kinds of structures. Classical example of migration for Phytophthora was the spread of the 

US-1 P. infestans genotype from US (where was found for the first time in 1843) to Europe, 

around 1845. This event caused the great Irish famine (O'Neill, 2009). Migration vents have 

significantly changed the population structure of P. infestans in Europe, South America, 

North America, north of Mexico and Asia (Fry et al., 2009). Migrations occurring in regions 

where no previous populations of the pathogen were present are defined as “founder effects”.  

 

I.3.1.5 Genetic drift 

Genetic drift is the process that drives changes in allele frequencies of a population by random 

sampling of alleles from the parents to the offspring. The main consequence of genetic drift is 

the loss of genetic variation in a population. This effect is larger in small population, which 
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can easily reach genetic uniformity. In addiction to random mating other factors can 

determine genetic drift. Environmental conditions unfavorable for a certain pathogen can 

heavily reduce the number of these individuals in a population and significantly lower the 

allele frequencies of their genes (Goodwin et al., 1997). In the next generation the frequency 

of a pathogen forming survival structures such as oospores or chlamydospores will be higher 

compared to a pathogen without resting structures that will be subjected to a substantial 

reduction of its population. For example, a treatment with metalaxyl in a field that has a 

genetically variable population of P. nicotianae will favor resistant genotypes that will 

survive and contribute to the offspring. This condition will change the allele frequencies of 

specific genes in the next generation. 

 

I.3.2 Genetic structure of population in the genus Phytophthora spp. 

The population genetic structure has been widely investigated in some important 

Phytophthora species such as P. infestans, P. ramorum and P. cinnamomi, while only a few 

studies are available for P. nicotianae, and the majority of them focused on isolates from 

tobacco (Zhang et al., 2001; Zhang et al., 2003; Sullivan et al., 2010). Many studies on 

population structure of P. nicotianae are based on the analysis of physiological traits such as 

resistance to fungicides (metalaxyl and mefenoxam) and differential aggressiveness on 

tobacco cultivars. Phytophthora nicotianae is a cosmopolitan pathogen most likely 

widespread by trading of infected plant material, in particular of ornamental plants. However, 

there is no existing information about migration and gene flow of P. nicotianae among 

different geographical regions.  

 

I.3.2.1 Phytophthora infestans 

Events of migration have completely changed the population structure of this pathogen in 

different regions of the world (Fry et al., 2008). The migration of different genotypes and 
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opposite mating types has led to the emergence of new and aggressive strains that displaced 

the existing populations in Europe and North America (Drenth et al., 1994; Fry and Goodwin, 

1997). Over the last decade, the analysis of the global population structure of P. infestans has 

seen areas with sexual reproduction compared to other regions dominated by asexual 

reproduction. Initially, evidence of sexual reproduction for P. infestans was found only in 

Mexico, which most likely represented the center of origin of this species in constant co-

evolution with native Solanum hosts (Grunwald and Frier, 2005); however, a new hypothesis 

based on an higher genetic diversity identified, assign Peru and Andean region as center of 

origin of this pathogen (Gomez-Alpizar et al., 2007).  

With the spread of new genotypes and the A2 mating type in Europe it was believed 

that sexual recombining populations were present in these regions. First of all, the migration 

in the 1980’s of the A2 mating type in Europe laid the foundations for the emergence of new 

genotypes by sexual recombination with the existing isolates of A1 mating type. Furthermore, 

a high genetic diversity and similar level of both mating types supported sexual recombination 

for populations in Netherlands (Drenth et al., 1994), Poland (Sujkowski et al., 1994), Norway 

and Finland (Bruberg et al., 1999; Lehtinen et al., 2008).  

In North America migrations from Mexico has contributed to modeling the population 

structure. Before events of migrations in the 1990s, the US-1 was the first and widest spread 

genotype in United States (Fry et al., 2009; Goodwin et al., 1998). Subsequently different 

genotypes were found in the US originating from Mexico, changing the genetic background 

and characteristics of the previous populations. In particular, new genotypes US-7, US-8 and 

US-17 were resistant to metalaxyl in comparison with the US-1 genotype that was susceptible 

(Goodwin et al., 1998). However, with both mating types in the US asexual reproduction was 

widespread and geographic separation between the opposite mating types played an important 

role in preventing the emergence of a stable sexual recombining populations in this region 

(Fry et al., 2009).  
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I.3.2.2 Phytophthora ramorum 

Unlike P. infestans, where its population structure in different continents is known, for P. 

ramorum population studies are limited only to Europe and North America. The populations 

are characterized by three distinct clonal lineages EU1, NA1, NA2 (Ivors et al., 2004, 2006; 

Grunwald et al., 2009).  

These three clonal lineages were identified by AFLP analysis, SSR (Ivors et al., 2004; 

Ivors et al., 2006; Prospero et al., 2007) and sequencing analysis of 13 nuclear loci (Bilodeau, 

2008). Furthermore, these three lineages were confirmed also by sequencing analysis of 8 

mitochondrial loci (Martin et al., 2008). EU1 is the first and only lineage identified in 

nurseries in Europe as well as in natural ecosystem, considering also the two A2 mating type 

isolates discovered in Belgium (Werres and De Merlier, 2003) that were defined as EU1-A2 

lineages (Vercauteren et al., 2010a). While the other two clonal lineages NA1 and NA2 are 

present in US where two genotypes of the EU1 lineage have also been reported (Hansen et al., 

2003; Ivors et al., 2006, Mascheretti et al., 2008). The NA1 lineage (Ivors et al., 2006; 

Prospero et al., 2007) is the principal cause of disease in forest in Oregon and California. The 

NA1 lineage is characterized by different intraspecific genotypes, in contrast, the NA2 lineage 

has a low level of genotype diversity with only two microsatellite multilocus genotypes 

identified in nurseries in North America (Ivors et al., 2006). North American population of 

NA1 and NA2 lineages analyzed to date were of A2 mating type, while in Europe the EU1 

genotype identified were all of A1 genotype except for three isolates found in 2002 and 2003 

in Belgium that were A2 (Werres and De Merlier, 2003). The presence of both mating types 

in particular for the European situation suggest that recombination may be possible but recent 

studies indicates that sexual recombining population are no present yet, as well as in US. In 

fact, no evidence for sexual recombination was identified by microsatellites analysis in the US 

forest population, European nurseries or in Belgium where both mating types were present 

(Ivors et al., 2006; Vercauteren et al., 2010b). However, the analysis of the nuclear genome of 
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P. ramorum revealed the presence of heterozygous sites consistent with a sexual recombining 

species (Tyler et al., 2006). In fact, a phylogenetic approach inferred using haplotypes of each 

clonal lineage derived from nuclear genes showed that haplotypes from the same clonal 

lineage did not tend to cluster together and genealogical relationships among the lineages 

varied with each gene (Goss et al., 2009). The fact that alleles within the same lineages 

exhibited different origins suggested an ancient origin of these clonal lineages through sexual 

recombination (Grunwald et al., 2009).  

Genotypic diversity has been observed in the European (EU1) and North American 

(NA1) lineages, although the EU1 lineage had a major level of diversity with a total of 30 

distinct genotypes observed (Vercauteren et al., 2010b). Rare genotypes were found in 

different regions in Europe and this could be explained by nursery shipments of Viburnum 

and Rhododendron (Vercauteren et al., 2010b; Werres and De Merlier, 2003). Shipment of 

infected plant material could explain also the presence of the two EU1 genotypes in Oregon 

and Washington nurseries (Ivors et al., 2006). Different genotypes within each lineage were 

very similar and this kind of population structure can be due to introgression of closely related 

genotypes followed by the creation of new genotypes via mutation or mitotic recombination 

(Ivors et al., 2006). In fact, this could be hypothesized for the typical EU1 lineage from the 

nursery that had a higher genotypic diversity than the other two lineages. In nurseries, the 

repeated exchange of pathogen genotypes through the trade of infected plant material and 

strong selection pressure for new genotypes are all factors contributing to the development of 

genetic variability (Ivors et al., 2006). 

 

I.3.2.3 Phytophthora cinnamomi 

Phytophthora cinnamomi, as with P. infestans and P. nicotianae, is a heterothallic species 

wide spread in the world. Similarly to P. nicotianae, this Phytophthora sp. causes diseases in 

a large number of plant species, in particular woody plants (Zentmyer, 1980). Phytophthora 
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cinnamomi is known to cause epidemic diseases with significant impact on natural ecosystem, 

as exemplified by the dieback of jarrah and eucalyptus forest in Australia (Dubrowsky et al., 

2003; Weste, 1994). Despite the importance of the pathogen and its presence in different 

countries around the world, detailed information about the population structure at global level 

are not available. Most of the studies available to date were performed using populations from 

Australia, South Africa and Papua New Guinea (Old et al., 1984; Linde et al., 1997; Linde et 

al., 1999; Dobrowolsky et al., 2003, 2008). This is probably because the two mating types are 

globally distributed (Zentmyer, 1980), but only in the three above mentioned countries the 

two mating types were found together (Linde et al., 1997; Pratt and Heather, 1973; Arentz and 

Simpson, 1986). Furthermore, even in these countries studies conducted up to now have not 

revealed specific evidences of sexually recombining populations. In fact, low level of gene 

and genotypes diversity was identified using isozyme analysis in South Africa (Linde et al., 

1997). Similarly restriction fragment length polymorphisms (RFLP) analyses have shown that 

South African and Australian population has a similar low level of diversity and shared some 

RFLP alleles (Linde et al., 1999). A high level of genetic diversity supported by RFLP 

analysis (Linde et al., 1999) and isozyme multilocus genotype (Old et al., 1984) was only 

found among P. cinnamomi isolates from Papua New Guinea, suggesting this region may be 

the center of origin of the species (Old et al., 1984; Linde et al., 1999). On the whole, a low 

level of heterozigosity, low differences between Australia and South Africa populations, 

significant deviation from Hardy-Weinberg equilibrium of the loci tested and RAPD profiles 

suggested that the populations in these regions consist of clonal lines. Furthermore the limited 

number of alleles observed in South African and Australian populations implied an introduced 

origin of P. cinnamomi (Old et al., 1984; Linde et al., 1997; Linde et al., 1999). The absence 

of recombination for P. cinnamomi populations was confirmed in Australia where three clonal 

lineages, commonly present in other regions in the world, were identified using four 

dinucleotide microsatellite markers (Dubrowsky et al., 2003). Loss of heterozigosity 
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identified in the Australian clonal lineages has shown the possibility that mitotic crossing over 

has been involved in the development of new genetic variability, even though sexual 

recombination has not been found (Dubrowsky et al., 2003). 

 

I.4 Marker for population studies 

Molecular markers have received much attention as useful tools to investigate intraspecific 

diversity of organisms and geographical distribution of genotypes within a species. Specific 

mitochondrial and nuclear markers may be used to follow and understand the changes in the 

genetic structure of populations. As reported above, there are different causes that can lead to 

a change in the genetic structure of a population. These causes can be identified through the 

analysis of appropriate markers within a representative number of samples (appropriate 

sampling technique) followed by accurate statistical analyses. In particular, markers can be 

used to determine the sources of introduction into new areas and migration events between 

different populations. Several markers have been used to analyze genetic diversity and 

population structure starting with isozymes, nuclear and mitochondrial fingerprinting, 

microsatellite and markers-based on sequencing approaches such as SNPs (single nucleotide 

polymorphisms).  

It is important to mention that phylogenetic analysis at the intraspecific level can be 

influenced by specific phenomena such as recombination, parallel mutation and recurrent 

mutation that do not follow the typical phylogenetic bifurcating evolution as for the majority 

of interspecific analysis. As a consequence they require a multifurcate network to explain 

relationships among all the individuals (Bandelt et al., 1999; Templeton, 1998; Posada and 

Crandall, 2001). 
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I.4.1 Mitochondrial DNA 

Mitochondrial DNA has been the marker of choice for microevolutionary and genealogical 

studies at the intraspecific level for many organisms, in particular for higher animal taxa 

(Avise, 2004). Because mitochondrial DNA is present in multiple copies it can be easily 

amplified and is a good target for PCR reactions (McDonald, 1997). Mitochondrial markers 

are independently inherited from the nuclear genome and in a uniparental way from the 

maternal parent (Forster and Coffey, 1990). They can be used to determine lines of descent or 

paths of gene flow (McDonald, 1997, Avise, 2004, Zink and Barrowclough, 2008).  

The use of the mitochondrial genome is favored by a higher rate of mutation 

(evolutionary rate) compared to the nuclear genome and the absence of interference from 

recombination events (Avise, 2004; Zhang and Hewitt, 2003), which has been rarely 

documented in fungi (Seville et al., 1998; Anderson et al., 2001). The hypothesis of higher 

evolutionary rates in animal mtDNA enhanced its use in genealogical and phylogenetic 

studies. The rate of evolution of the mtDNA in plants was found to be lower compared to 

nuclear and chloroplast DNA (Palmer and Herbon, 1988) and therefore the latter was 

preferentially chosen as cytoplasmic marker (Wolfe et al., 1987).  

Several factors were hypothesized as the cause of the faster evolution of animal 

mitochondrial DNA (Wilson et al., 1985; Gillespie, 1986): i) less functional constraints 

because mtDNA does not codify for protein involved in its transcription and translation; ii) 

high mutation rates due to less accurate mechanism of DNA repairing, iii) to the particular 

oxidative mitochondrial environment and fast turnover within cell lineages; iv) mitochondrial 

DNA is not protected by histones, and this leads to a lower functional constraints. 

Mitochondrial markers have been widely utilized also to study phytopathogenic fungi and 

oomycetes. They were applied to assess intraspecific variability in different Phytophthora 

species (Griffith and Shaw et al., 1998; Martin, 2008) in Verticillium dahliae (Martin, 2010) 

and in Ceratocystis fagacearum (Kurdila et al., 1995) as well as in phylogeographic studies to 
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estimate the genetic structure of populations of Phaeosphaeria nodorum (Sommerhalder et 

al., 2007) and Phytophthora cinnamomi (F. Martin, unpublished). Furthermore, intraspecific 

mt DNA variation in fungi has been useful for testing hypothesis on the evolutionary origins 

of P. infestans (Ristaino et al., 2001; Alpizar et al., 2007) and for providing evidence of 

recombination in mitochondrial genome in fungi (Anderson et al., 2001; Saville et al., 1998). 

The “haploid genome” of mtDNA represents a great advantage in the estimation of 

haplotypes that characterize a population and in the genealogical and phylogenetic analysis 

since it gives the maternal history of the population. This characteristic highly biased 

phylogenetic analyses because the mitochondrial DNA can not entirely represent the history 

of a population. Furthermore, the mtDNA is characterized by a faster lineage sorting and a 

higher allele extinction rate, since it has only a quarter of the population size of the nuclear 

DNA (in a diploid organisms, 1 mitochondrial locus vs 4 nuclear alleles). Another important 

aspect is that for the higher lineage sorting and alleles extinction of the mitochondrial DNA is 

very likely to lose some genealogical connection during a pedigree analysis (Zhang and 

Hewitt et al., 2003). Although, the mitochondrial DNA remains in some respects the marker 

of choice for phylogeographic analyses, in some cases, particularly for studying the genealogy 

and the genetic structure in species in which the reproductive system is not exclusively clonal 

reproduction, nuclear markers are necessary to follow the evolutionary processes and 

genealogy in sexual recombining populations. 

 

I.4.2 Nuclear marker 

I.4.2.1 Random amplified polymorphic DNA (RAPD) 

This technique is based on the amplification of random DNA regions using a single short 

primer (commonly 10 bp decamer) (Williams et al., 1990). A major advantage of RAPDs is 

that it does not require specific previous knowledge of the genome of the target individual. 

This technique has been widely utilized to study the genetic diversity of different organisms 
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for its easy application and interpretation of results and also for its low cost. In fact, 

polymorphisms are identified as the presence or absence of a particular DNA amplicon. The 

technique is informative since different independent loci in the genome of an organism can be 

amplified and screened and a limited quantity of DNA is required. RAPDs are dominant 

markers and this characteristic does not allow the differentiation of the homozygote from the 

heterozygote genotype, which could be an issue in diploid organisms such as Oomycetes 

(McDonald et al., 1997). 

A major drawback of RAPD is the low reproducibility of the technique since 

amplification patterns can be influenced by a number of factors including the quality of target 

DNA, PCR reagents, Thermal cycler, manual skill of the operators, etc. This is partially due 

to the low stringency that characterizes the technique (annealing temperature from 40-50°C) 

that may also allow the amplification of non-specific or partially-specific targets.  

 

I.4.2.2 Restriction fragment length polymorphisms (RFLP) 

This technique has been widely applied for the analysis of polymorphisms in both nuclear and 

mitochondrial genomes and specifically in plant pathology to study intraspecific variability. 

The analysis is based on the identification of differences in the molecular size of DNA 

fragments after enzymatic digestion. Individuals with different positions for the restriction 

cutting sites will produce fragments of different lengths. The results of this technique are 

easily interpretable since it consists in looking at the presence of bands of different lengths. 

Furthermore, this type of marker is codominant and allows for the identification of 

homozygous and heterozygous individuals. An advantage compared to RAPD analyses is the 

reproducibility of results since the same results can be obtained by using the same battery of 

probes and restriction enzymes, allowing the comparison of data from different scientists, 

time periods and laboratories (McDonald et al., 1997). However this method may not 

accurately discriminate closely related strains, requires a relatively high quantity of DNA 
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(around 5-10 μg) and is quite laborious and costly. An alternative to RFLP is PCR-RFLP that 

avoids the slow hybridization step with the probe. This technique is performed by digesting 

locus-specific PCR amplicons with one or more restriction enzyme, followed by separation of 

the digested DNA on agarose or polyacrylamide gels (Konieczny and Ausubel, 1993). The 

method is simple, relatively inexpensive, and utilizes the ubiquitous technologies of PCR, 

restriction digestion and agarose gel analysis (Agarwal et al., 2008). 

 

I.4.2.3 Amplified fragment length polymorphisms (AFLP) 

AFLP is based on the analysis of whole genome restriction fragments which are selectively 

amplified by PCR after ligation with specific adapters to the cohesive ends produced by the 

restriction enzyme (Vos et al., 1995). The fragments produced by amplification reactions are 

visualized on denaturing polyacrylamide gels either through autoradiography or using 

fluorescent labeled-primers with automated DNA sequencing methods. This technique shares 

some characteristics with RAPDs; it does not require specific knowledge of the target 

genome, allows for the identification of many polymorphic loci within the genome and only 

dominant markers can be analyzed. A significant advantage of this technique compared to 

RAPDs is the more accurate discrimination of closely related strains since it produces a much 

more complex polymorphic patterns with a very high number of fragments. Furthermore, the 

use of primers specific for the sequences of the adaptors and for the restriction sites enable a 

higher reproducibility of results, although the comparison of data from different laboratories 

and time period still remain challenging. Disadvantages of AFLPs are the complexity of the 

technique, the higher cost of reagents and facilities needed for the analyses and the more 

complex interpretation of data. 

 

 

 

http://www.springerlink.com/content/q6k87v04609821n6/fulltext.html#CR38#CR38
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I.4.2.4 Microsatellites 

Microsatellite, or simple sequence repeat (SSR), are genomic regions composed of tandem 

repeats usually ranging from 1 to 6 nucleotides. The repeated unit can be present different 

times (e.g. from 10 to 100 copies) in several individuals resulting in a polymorphism. Several 

features make these markers the most currently used and also preferred to mitochondrial 

markers (Zhang and Hewitt, 2003). First of all these markers are widely distributed in the 

genome in coding and non-coding regions, are easily amplifiable by PCR and give an high 

level of alleles polymorphisms due to high mutation rate of order of 10
-4

. Although SSRs are 

widely used, little is know about microsatellite modes of evolution. Understanding the 

evolutionary mechanism of microsatellites is needed not only to realize how the genome is 

organized but also to better interpret and correctly use microsatellites data in population 

genetic studies (Ellegren, 2004). Two models of evolution are primarily considered: slipped-

strand mispairing during DNA replication (Tachida and Iizuka, 1992)
 

and unequal 

recombination between DNA strands (Harding et al., 1992). Apparently microsatellites are 

considered as neutral marker (Schlötterer & Wiehe 1999), even though there is evidence of 

structural and functional constraints. The hypothesis that microsatellites are neutral markers is 

supported by the fact that different loci were observed conserved among long evolutionary 

distance (Martin et al., 2002). However, multiple studies reveal the functional importance of 

several microsatellite loci. It was shown how microsatellites could be involved in DNA 

structure, in particular in telomeric and centromeric regions (Canapa et al., 2002). 

Furthermore it has been hypothesized that in DNA recombination dinucleotide motifs can act 

as hot spots for recombination due to their higher affinity for recombination enzymes (Biet et 

al., 1999). Finally it has been also seen that a different number of motif repetitions can be 

involved in differential expression of the nucleolin promoter gene (Ncl) in rat (Rothenburg et 

al., 2001); in the promoter of the Escherichia coli lacZ gene, the motif (GAA)12 allows the 
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gene expression, whereas different repetition of the motif (GAA)14-16, (GAA)5-11 does not 

allow this gene to be expressed (Liu et al., 2000). 

Several studies in the genus Phytophthora have shown the appropriateness of 

microsatellites for analysis of genetic structure and population dynamics and, of course, for 

analysis of genetic variability at intraspecific and interspecific level. For example, 

microsatellites have been used to distinguish three different populations of P. ramorum in 

Europe (EU1) and North America (NA1, NA2) (Ivors et al., 2006) and to study the dynamics 

of this pathogen population in Oregon (Prospero et al., 2007) and California (Mascheretti et 

al., 2008). In the study of P. cinnamomi SSRs were useful to detect the presence of three 

different clonal populations in Australia (Dobrowolski et al., 2003). 

One of the major drawbacks for the use of microsatellites is the high cost for their 

development when specific primers are not available for a particular species. Furthermore, 

mutations in the primer annealing sites may result in the occurrence of null alleles (no 

amplification of the intended PCR product), which may lead to errors in genotype scoring 

(Jarne and Lagoda, 1996). Null alleles may result in a biased estimate of the allelic and 

genotypic frequencies and an underestimation of heterozygosity (Dakin and Avise, 2004). 

Size homoplasy may occur at microsatellite loci due to the high mutation rates that generate 

forward and backward mutations, which may cause underestimation of genetic divergence or 

wrong assumption where a simply convergent or parallel evolution could be mistaken with 

descent. 

 

I.4.2.5 Single nucleotide polymorphisms (SNPs) 

The rapid growth of available data from genome projects has increasingly justified the use of 

SNPs as genetic markers in the evolutionary studies of population. Initially, SNPs were used 

in whole-genome linkage and association studies, but their high occurrence through the 

genomes, level of variation and easy screening suggested them as useful markers for studying 
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the evolutionary history of specific populations (Brumfield et al., 2003). Not always genomic 

data are not always available for a species of interest, therefore different approaches need to 

be considered to discover SNPs. Comparative genomic approaches can be used to design 

primer in conserved flanking regions of related species which genomes are already available, 

or sequencing of anonymous nuclear loci (Karl and Avise, 1993). A panel of mitochondrial 

and nuclear SNPs were discovered for a number of Phytophthora species representative of the 

entire genus using a similar approach (Schena and Cooke, 2006; Schena et al., 2008). A bias 

that may arise from the use of this method is the need for an initial screening for discovery of 

polymorphisms in a limited panel of isolates that include enough genetic variability. The use 

of a representative panel of individuals, limited in size and composition as compared with the 

target samples can save considerable time and money (Wakeley et al., 2001). Furthermore 

non-sequence methods such as melt curve analysis and alleles specific oligonucleotide real 

time PCR can be used to reduce the costs of the analyses. For example, an alleles-specific 

oligonucleotide (ASO) method was used to differentiate the European from the North 

American lineage of P. ramorum (Bilodeau et al., 2007).  

The SNPs are easier to screen as compared with microsatellites and their being 

widespread in the genome make them ideal for evolutionary studies considering that several 

unlinked nuclear loci are required to estimate population genetic parameters with statistical 

confidence (Brumfield et al., 2003). SNPs have a lower mutation rates (10
-8 

- 10
-9

) as 

compared to microsatellites, but because multiple mutations events are very improbable on 

the same site, most SNPs are bi-allelic and therefore appropriate for high-throughput 

genotyping (Brumfield et al., 2003).  

 

I.4.2.5.1 Challenges using nuclear sequence markers 

Nuclear sequence markers offer a great opportunity for studying population genetic structure 

and mechanisms of evolution but different analytical and/or biological issues need to be 
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addressed during SNPs analyses. They include difficulties during sequencing of PCR 

products, insertion and deletion polymorphisms, heterozigosity, recombination, selection and 

so on. In diploid organisms such as Phytophthora spp., as well as in haploid heterokaryotic 

organisms, one of the most important problems is the haplotype (allele) determination. 

Diploid organisms are often characterized by the presence of heterozygous loci which “hide” 

two different alleles (haplotypes). In some cases haploid tissues (i.e. antheridium or oogonium 

in Phytophthora spp.) or specific sex related chromosomes such as the Y chromosome in 

humans the haploid status of the gene can be known. Alternatively, there are several empirical 

and computational-statistical methods that allow the determination of haplotypes. Among the 

experimental methods, cloning of PCR products is the most used method. However the 

application of this technique on a wide scale is challenging, expensive and time-consuming. 

The analysis of different clones in needed to avoid the risk of losing genetic diversity (alleles) 

and reducing replication errors of Taq polymerase and recombination artifacts created during 

the cloning process (Zhang and Hewitt, 2003). Other experimental techniques that can be used 

are: i) allele-specific amplification; ii) haplotype separation by SSCP (Single-strand 

conformation polymorphism) or DGGE (Denaturating gradient gel electrophoresis); iii) allele 

dropout effect which consists of a substantial dilution of genomic DNA until a single 

molecule is present; and iv) haplotype resolution by denaturating high performance liquid 

chromatography (Taberlet et al., 1996). 

Using computer software that implement specific algorithms it is possible to infer the 

frequency of specific haplotypes. The software PHASE based on Bayesian statistical method, 

assigns probabilities of haplotypes to individual sites within a specific haplotypes (Stephens et 

al., 2001). In a specific study to compare the efficiency of the software PHASE with the 

standard cloning procedure to reveal haplotypes in nuclear loci, the software was able to 

determine haplotypes correctly (in a comparable manner with cloning procedure) and 

significantly reduce costs and speeding up the analysis (Harrigan et al., 2008). Furthermore, 
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haplotypes inference performed well considering the evidence of recombination and 

homoplasy (Hurrigan et al., 2008). Another program for haplotype determination based on 

Bayesian approach is HAPLOTYPER (Niu et al., 2002).  
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II.1 ABSTRACT 

A new method based on the analysis of mitochondrial intergenic regions 

characterized by intraspecific variation in DNA sequences was developed and applied to 

the study of the plant pathogen Phytophthora nicotianae. Two regions flanked by genes 

trnY and rns and trnW and cox2 were identified by comparing the whole mitochondrial 

genomes of P. infestans, P. ramorum and P. sojae and amplified using primers designed 

from the flanking conserved genes.  These regions were sequenced from 51 isolates of 

P. nicotianae of both A1 and A2 mating type recovered from different hosts and 

geographic regions. Amplicon length varied from 429 to 443 bp (trnY/rns) and 322 to 

373 bp (trnW/cox2) with intraspecific variation due to single nucleotide polymorphisms 

and indels. Seventeen, 7 and 20 different haplotypes were detected by individually 

analyzing regions trny-rns, trnw-cox2 and the combined data set of sequences from both 

regions, respectively. Phylogenetic analysis inferred with 3 different methods enabled 

the grouping of isolates in 5 clades, each containing different mitochondrial haplotypes 

and revealed diversity in the mitochondrial genome of P. nicotianae. The majority of 

isolates from citrus grouped in a single clade indicating either movement of isolates on 

planting stock or an association of particular isolates with this host. Phylogenetic groups 

were not correlated with the radial growth rate of the isolates or the rapidity of apple 

flesh colonization. The method developed in the present study represents an innovative 

molecular tool for the characterization of natural populations of P. nicotianae and 

should be easily expanded to other species of Phytophthora as well as other plant 

pathogens. It can be used to track specific haplotypes and, thanks to its high genetic 

resolution, it could be standardized and applied in a DNA barcoding like strategy for the 

precise identification of sub-specific taxa. Compared to alternative molecular methods, 

a major advantage is that results are unbiased (a list of nucleotides) and highly 

reproducible, thus enabling the comparison of data from different laboratories and time 
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periods. Furthermore, the method could be further enhanced by the identification of 

additional variable mitochondrial and/or nuclear genomic regions.  

 

II.2 Introduction 

Phytophthora nicotianae van Breda de Haan (=P. parasitica Dastur) (1896) 

stands out among plant pathogens since it is a threat to plant productivity on a global 

scale for a broad range of hosts (Erwin and Ribeiro, 1996). Hickman (1958) reported the 

host range of P. nicotianae included 72 plant genera and 298 plants species, but in the 

subsequent 50 years since this report the number of hosts has increased to 255 plant 

genera in 90 families (Cline et al., 2008). This pathogen has been widely studied for its 

impact on tobacco (Nicotiana tabacum L.) since it is responsible for a disease 

commonly named black shank that can account for severe annual losses. Host resistance 

and crop rotations are the most economic measures to control black shank, but they are 

not always effective (Shew, 1987; Johnson et al., 2002). Similarly, productivity in the 

major citrus growing regions across the world is heavily affected by citrus root rot and 

gummosis, whose main causal agents are P. nicotianae and P. citrophthora (Menge and 

Nemec, 1997; Cacciola and Magnano di San Lio, 2008). When severely affected, plants 

show a lower yield, fruit are smaller and trees progressively decline until death. Control 

strategies, which include the use of resistant rootstocks, chemical products and/or 

fumigants, and proper management of the orchards, are not always sufficiently effective 

(Menge and Nemec, 1997).  

Apart from N. tabacum and Citrus species, P. nicotianae is responsible for 

heavy losses on a number of other economically important species including fruit trees 

and herbaceous hosts (Erwin and Ribeiro, 1996). Recent surveys have revealed that this 

species is one of the most common pathogens on ornamental plants, the cultivation and 

sale of which has been recognized as a principal pathway for the introduction and 
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spread of invasive plant pathogens (Cacciola et al., 1997, 2001; Reichard and White, 

2001; Pane et al., 2005; Moralejo et al., 2009). Commonly, ornamental nurseries are 

intensive farming systems in which many plant species are simultaneously and 

repeatedly cultivated with limited crop rotation. In such conditions multiple generations 

of the pathogen can occur and different genotypes, including opposite mating types, can 

come in contact thereby increasing the potential for sexual outcrossing and evolutionary 

divergence.  

Despite the relevance of P. nicotianae, specific studies to evaluate intraspecific 

genetic variability and to establish the possible pathways by which the pathogen has 

been introduced and distributed to new areas are quite limited and mainly restricted to 

populations from tobacco. Random Amplified Polymorphic DNAs (RAPDs) were 

utilized to study the variability among seven populations of P. nicotianae from different 

tobacco fields (Zhang et al., 2003). Populations were genotypically and phenotypically 

variable, but no distinct genotypic differences were identified among populations from 

the seven locations. The same technique was applied to differentiate isolates causing 

black shank (Zhang et al., 2001) and to identify markers linked to the dominant black 

shank resistance gene (Johnson et al., 2002). Amplified Fragment Length 

Polymorphism (AFLP), utilized by Lamour et al. (2003) to study a population from 

different floricultural hosts and production sites, enabled the identification of 6 clonal 

lineages. Although RAPD-PCR and AFLP have proved valuable within a particular 

study, results obtained with such fingerprinting tools are not always easily reproducible 

in different laboratories (Cooke and Lees, 2004).  

Several alternative molecular approaches have been proposed to study 

intraspecific variability of Phytophthora species (Cooke et al., 2007). Microsatellites or 

simple sequence repeats (SSRs) have been recognized as one of the most powerful 

choices, but their main limitation is the need for knowledge of the DNA sequence of the 
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SSR flanking regions in order to design specific primers. As a consequence, 

microsatellites have been widely utilized for those species whose genome has been 

partially or completely sequenced (Dobrowolski et al., 2003; Ivors et al., 2006; Prospero 

et al., 2007; Weng et al., 2007; Widmark et al., 2007), but their application to other 

Phytophthora species remains challenging despite recent attempts to create a 

comprehensive dataset of candidate SSRs for a range of species (Schena et al., 2008).  

Accurate analysis of mitochondrial and nuclear DNA has elucidated the 

phylogenetic relationships within the genus Phytophthora with a grouping of 10 

genetically related clades (Cooke et al., 2000; Kroon et al., 2004; Blair et al., 2008; 

Martin and Tooley., 2003) However, these studies were based on genes commonly 

conserved within a species and therefore unsuitable to characterize intraspecific 

variability. Recently, the analysis of different intergenic regions of the mitochondrial 

DNA (mt-IGS) from 31 Phytophthora species, representing the breadth of diversity in 

the genus, revealed the existence of regions too variable to be used for broad scale 

phylogenetic analyses. However, it was suggested these markers were suitable for the 

examination of intraspecific variation and the analysis of closely related species (Schena 

and Cooke, 2006).  Intraspecific polymorphisms in mitochondrial DNA have been 

useful for characterizing populations by mitochondrial haplotypes for P. infestans 

(Griffith and Shaw, 1998) and the recent classification of mitochondrial haplotypes in P. 

ramorum should be useful for this species as well (Martin, 2008). 

In the present study, variable mitochondrial intergenic regions were identified by 

comparing the whole mitochondrial genomes of P. infestans P. ramorum and P. sojae in 

GenBank and primers were designed to amplify these regions to characterize a 

population of A1 and A2 mating types of P. nicotianae from different hosts and 

geographic origins. Isolates were also characterized by measuring the radial growth rate 

on agar medium and the ability to colonize the flesh of artificially inoculated apples.  
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II.3 Materials and methods 

II.3.1 Phytophthora nicotianae isolates 

Fifty-one isolates from different geographic regions and international culture 

collections were used in this study (Table 1). Isolates were stored on oatmeal agar at 

15°C and grown on potato dextrose agar (PDA) for routine stock cultures. 

 

II.3.2 Identification of easily amplifiable and variable mtDNA intergenic regions  

The complete mitochondrial genome from 4 different haplotypes of P. infestans 

(accession numbers NC_002387, AY894835, AY898627, AY898628), P. ramorum 

(accession number DQ832718) and P. sojae (accession number DQ832717) were 

aligned using ClustalX (http://www.clustal.org/) and manually analyzed to select 

variable intergenic regions flanked by conserved sequences on both sides. The latter 

condition was necessary to design primers suitable to amplify selected intergenic 

regions from other Phytophthora spp., including P. nicotianae. Two intergenic regions 

appeared to be of particular interest, one was flanked by genes trnY and rns (trnY/rns) 

and had been previously sequenced from a number of other Phytophthora species using 

primers Mt2F-Mt5R (Schena and Cooke, 2006). A second region, flanked by genes 

trnW and cox2 (trnW/cox2) was amplified with two primers (Mt17F 

AAATACTTTTTAACAAAAGGGAATTTA and Mt12R 

TGGAGTTGCTGGATCTTGAA) selected among six candidates during preliminary 

tests to identify the best primer combinations and amplification conditions. All primers 

were designed using the Primer3 Software (Rozen and Skaletsky, 2000).  

 

II.3.3 DNA amplification and sequencing 

Total DNA was extracted from all isolates according to the procedure described 

by Ippolito et al. (2002). Amplification conditions consisted of 1 cycle of 94°C for 3 
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min followed by 35 cycles of 94°C for 45 s, 54°C for 30 s, 72°C for 45 s and by a final 

extension cycle of 72°C for 10 min. Reactions were performed in a total volume of 30 

μl containing 5 ng of genomic DNA, 1X PCR buffer, 0.1 mM dNTPs, 3 mM MgCl2, 1 

unit Taq polymerase (Invitrogen, CA, USA) and 10 μM for each primer. Amplicons 

were analyzed by electrophoresis in 1.5% agarose gels containing SYBR Safe™ DNA 

gel stain (Invitrogen) in TBE buffer and visualized with UV light. PCR products were 

purified using Centri Spin
TM

 Columns (Applied Biosystems, Foster City, USA) to 

remove excess primers and nucleotides and sequenced in both directions with the 

corresponding amplification primers using the BigDye sequencing kit (Applied 

Biosystems) on ABI 310 DNA Analyzer (Applied Biosystems).  

 

II.3.4 Sequence analysis 

The "ChromasPro version1.5" software (http://www.technelysium.com.au/) was 

utilized to evaluate reliability of sequences and to create consensus sequences. Non-

reliable sequences in which either forward or reverse sequences contained doubtful 

bases were sequenced again. Consensus sequences from both mitochondrial regions 

were aligned, analyzed and edited manually for checking indels and SNPs using Bioedit 

7.0 software (Hall, 1999). Prior to analysis, sequences of primers were removed.  

 

II.3.5 Haplotype analysis and networks 

Haplotypes were identified by aligning sequences from all 51 isolates with 

Bioedit 7.0 (Hall, 1999) and confirmed using the DnaSP ver. 5.10.01 software (Librado 

and Rozas, 2009).  To infer intraspecific evolution a network of haplotypes was 

constructed using a statistical parsimony algorithm implemented in TCS ver. 1.21 

(Clement et al., 2000) individually for each of the mitochondrial regions and for the 

combined data set. This program applies a statistical parsimony method to infer 

http://www.technelysium.com.au/
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unrooted cladograms based on Templeton‟s 95% parsimony connection limit 

(Templeton 1992). Haplotypes were directly connected without dots when differing by a 

single change. Every additional putative change was indicated by adding a dot. 

 

II.3.6 Phylogenetic analysis 

The two regions were analyzed individually and combined in a single data set. 

To test the homogeneity of the combined data set for the phylogenetic analysis a 

partition homogeneity test (PHT) (Farris et al 1995) was performed using heuristic 

search with 1000 number of replicates in PAUP v4.0b10 (D. Swofford, Sinauer 

Associates, Sunderland, MA). To generate compatible alignments for the phylogenetic 

analysis, indels were recoded manually to minimize errors due to the length of the gaps 

and ensure the treatment of all indels as a single event of mutation.  

A maximum parsimony analysis was performed in PAUP v4.0b10 using a 

heuristic search algorithm with random stepwise addition of taxa (10 replicates), tree 

bisection reconnection (TBR) branch swapping and multiple trees option. The statistical 

support was determined by bootstrap values for 1000 replicates. Maximum likelihood 

analysis was inferred using the TrN (Tamura and Nei, 1993) +I (proportion of infinite 

sites model) while Bayesian method was inferred using the HKY+I (Hasegawa et al., 

1985). The substitution models that best fit our data were selected with Jmodeltest 0.1.1 

(Posada, 2008). Maximum likelihood analysis was conducted using PhyML ver 2.4.5 

(Guindon and Gascuel, 2003) implemented in TOPALi v2 (Milne et al., 2009) with 100 

bootstrap replicates. Bayesian analysis was performed in TOPALi using MrBayes ver 

3.1.1; four runs were conducted simultaneously for 1,000,000 generations with 10% 

sampling frequency and burn in of 25%. 
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II.3.7 Biological tests 

All isolates were analysed to assess their mating type by pairing each isolate 

with known A1 and A2 strains on V8 juice agar medium according to standard 

procedures (Erwin and Ribeiro, 1996). Isolates that did not produce oospores were 

considered sterile. The growth rate of the isolates was evaluated by transferring PDA 

agar plugs ( 5 mm) containing actively growing mycelium into Petri dishes with PDA 

and incubating at 24°C in the dark. Colony diameter was measured daily until the 

complete colonization of the dish. Three replicate dishes were used for each isolate.  

Isolates were also compared by evaluating their rapidity in colonizing the flesh 

of „Golden Delicious‟ apples. Uniform fruits for size and ripeness were surface 

sterilized by immersion for 1 min in a 2% of sodium hypochlorite solution, washed with 

tap water, air dried, wounded in the equatorial zone with a nail ( 0.5 mm) and 

inoculated by placing on each wound a PDA agar plug ( 5 mm) containing actively 

growing mycelium. Inoculated apples (5 per each isolate) were placed in plastic boxes 

to create high relative humidity and incubated at 20°C. The extension of decaying 

tissues on the apple surface was measured daily for 7 days, after which the fruit was cut 

perpendicularly along the inoculation site in order to measure length and width of 

internal flesh rotted areas. Data were subjected to ANOVA (analysis of variance) and 

mean values were compared using Tukey test. 
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Table 1. Isolates of Phytophthora nicotianae included in the study, their designation, origin, year of collection, and mating type. Amplicon size, 

accession numbers and haplotypes are reported for the two mitochondrial regions (trnY-rns and trnW-cox2) sequenced in the present study. Isolates 

were listed accordingly to the last two column reporting haplotypes (Fig 2) and phylogenetic groups (Fig 3) respectively. 

Isolate code 

 Origin  
Mating  

Type 

 trnY-rns region  trnW-cox2 region  trnY-rns + trnW-cox2  

 Host Region and Country Year   
Amplicon  

size (bp) 

Accession 

number 
Haplotype  

Amplicon  

size (bp) 

Accession 

number 
Haplotype  Haplotype 

Phylogenetic 

group 

Albicocco9  Prunus armeniaca Calabria (Southern Italy) 2005  A2  430 GU938492 1  373 GU938586 1  H1 N1 

IMI 268688  Citrus sp. Trinidad-Tobago 1982  A1  431 GU938493 16  373 GU938585 1  H2 N1 

Dodonea Col1  Dodonaea viscosa Sicily (Southern Italy) 2005  A2  429 GU938495 8  373 GU938591 1  H3 N1 

Dodonea Rad1  Dodonaea viscosa Sicily (Southern Italy) 2005  A2  429 GU938494 8  373 GU938592 1  H3 N1 

Correa5  Correa reflexa Sicily (Southern Italy) 2004  A1  431 GU938498 7  373 GU938590 1  H4 N1 

Correa3  Correa reflexa  Sicily (Southern Italy) 2004  A1  432 GU938496 6  373 GU938588 1  H5 N1 

Correa8  Correa reflexa  Sicily (Southern Italy) 2004  A1  431 GU938497 6  373 GU938589 1  H5 N1 

Ciclamino1  Cyclamen sp. Sicily (Southern Italy) 2004  A1  432 GU938499 5  373 GU938580 5  H6 N1 

Ph168  Citrus sp. (root) Tunisia 2003  A1  443 GU938542 4  373 GU938593 1  H7 N2 

STA24  Rhamnus alaternus  Sicily (Southern Italy) 2000  A2  443 GU938540 4  373 GU938587 1  H7 N2 

Ph440/00  Cyclamen sp. Liguria (Northern Italy) 2004  A2  443 GU938539 4  373 GU938584 4  H8 N2 

KVB  Howea sp. Sicily (Southern Italy) 2000  A2  443 GU938541 4  373 GU938582 4  H8 N2 

IRF26/2  Impatiens wallerana  Liguria (Northern Italy) 2007  A2  443 GU938512 4  373 GU938583 4  H8 N2 

Ceanothus  Ceanothus sp. Sicily (Southern Italy) 2002  A2  443 GU938538 4  373 GU938581 4  H8 N2 

Ph3  Citrus clementina (fruit) n.d. 2001  A1  431 GU938534 9  373 GU938551 6  H9 N3 

Ph87  Citrus clementina (root) Apulia (Southern Italy) 2000  A1  431 GU938531 9  373 GU938550 6  H9 N3 

Ph195  Citrus sp. Tartaus (Syria) 2003  A1  431 GU938535 9  373 GU938543 6  H9 N3 

Ferrara R11  Citrus sp. (root) Sicily (Southern Italy) 2004  A1  431 GU938529 9  373 GU938547 6  H9 N3 

Ferrara R3  Citrus sp. (root) Sicily (Southern Italy) 2004  A1  431 GU938533 9  373 GU938549 6  H9 N3 

Ferrara R8  Citrus sp. (root) Sicily (Southern Italy) 2004  A1  431 GU938536 9  373 GU938548 6  H9 N3 

Serravalle 1  Citrus sp. (root) Sicily (Southern Italy) 2004  A1  431 GU938530 9  373 GU938544 6  H9 N3 

Ph342/03  Limonium sinensis Liguria (Northern Italy) 2004  A2  431 GU938532 9  373 GU938545 6  H9 N3 
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Ph9  Citrus sp. (soil) Apulia (Southern Italy) n.d.  A1  432 GU938528 10  373 GU938552 6  H10 N3 

Ph142  Citrus trifoliata Valona (Albania) 2001  A1  432 GU938527 10  373 GU938553 6  H10 N3 

Serravalle 3  Citrus sp. (root) Sicily (Southern Italy) 2004  A1  430 GU938537 11  373 GU938546 6  H11 N3 

SCRP462  Fragaria x ananassa India 1998  A1  431 GU938522 15  366 GU938563 7  H12 N4 

Ph653/03  Choisya ternata   Liguria (Northern Italy) 2004  A2  431 GU938518 15  373 GU938570 3  H13 N4 

Ph647/b03  Phormium tenax Liguria (Northern Italy) 2004  A2  431 GU938519 15  373 GU938568 3  H13 N4 

Ph5  Citrus sp. (root) Basilicata (Southern Italy) 2000  A1  431 GU938520 15  373 GU938572 3  H13 N4 

Lavanda4  Lavandula angustifolia  Sicily (Southern Italy) 2002  A2  431 GU938516 15  373 GU938569 3  H13 N4 

IMI 379626  Lycopersicum esculentum Chile n.d.  A1  431 GU938521 15  373 GU938571 3  H13 N4 

Melanzana1  Solanum melongena Sicily (Southern Italy) 1998  A2  431 GU938517 15  373 GU938564 3  H13 N4 

Lavanda1  Lavandula angustifolia  Sicily (Southern Italy) 2002  A2  432 GU938514 14  373 GU938574 3  H14 N4 

Mirtus3  Myrtus communis Sicily (Southern Italy) 2002  A1  432 GU938515 14  373 GU938566 3  H14 N4 

IRF5  Polygala myrtifolia Liguria (Northern Italy) 2007  A2  433 GU938526 13  373 GU938573 3  H15 N4 

TL8VP  Lavandula angustifolia Piedimont (Northern Italy) 2000  A2  433 GU938524 3  373 GU938575 3  H16 N4 

Nic8Vasi  n.d. Sicily (Southern Italy) 2000  A2  433 GU938525 3  373 GU938576 3  H16 N4 

C88  Simmondsia chinensis Apulia (Southern Italy) 1984  A2  433 GU938523 3  373 GU938567 3  H16 N4 

IMI 207770  Durio zibethinus Malaysia 1976  A2  431 GU938508 12  373 GU938577 3  H17 N5 

IRF3  Polygala myrtifolia Liguria (Northern Italy) 2007  A2  431 GU938502 12  373 GU938565 3  H17 N5 

C301  Myrtus communis Sicily (Southern Italy) 1991  A2  430 GU938500 17  322 GU938557 2  H18 N5 

IRF27  Agapanthus sp. Liguria (Northern Italy) 2007  A2  431 GU938501 12  322 GU938561 2  H19  N5 

IRF8  Anemone americana  Liguria (Northern Italy) 2007  A2  431 GU938503 12  322 GU938578 2  H19  N5 

Peperone GJ  Capsicum annuum  Calabria (Southern Italy) 2000  A1  431 GU938506 12  322 GU938558 2  H19 N5 

Peperone RC  Capsicum annuum  Calabria (Southern Italy) 2000  A2  431 GU938507 12  322 GU938560 2  H19 N5 

Pomodoro  Lycopersicum esculentum  Sicily (Southern Italy) 2000  n.d.  431 GU938504 12  322 GU938555 2  H19 N5 

Mirto p5  Myrtus communis Sicily (Southern Italy) 2007  A2  431 GU938509 12  322 GU938579 2  H19 N5 

Pittosporo  Pittosporum sp. Sicily (Southern Italy) 1996  A1  431 GU938505 12  322 GU938559 2  H19 N5 

Anthurium  Anthurium sp. Sicily (Southern Italy) 2005  A1  432 GU938510 2  322 GU938554 2  H20  N5 

Hybiscus B  Hybiscus sp. Calabria (Southern Italy) 2004  A2  432 GU938511 2  322 GU938556 2  H20 N5 

Pandorea2C  Pandorea jasminoides Sicily (Southern Italy) 2005  A2  432 GU938513 2  322 GU938562 2  H20 N5 
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II.4 Results 

II.4.1 Characterization of polymorphic mtDNA regions 

Two different primer pairs were utilized to amplify mitochondrial regions 

trny/rns and trnw/cox2 from 51 isolates of P. nicotianae from different hosts and 

geographic origins (Table 1). Amplicons exhibited variable length ranging from 429 to 

443 bp (trnY/rns) and 322 to 373 bp (trnW/cox2) (Table 1). Intraspecific variability was 

observed as single nucleotide polymorphisms (SNPs), short indels (1-4 bp), long indels 

(a 19 bp indel and two 7 and 51 bp indels were revealed in the trny/rns and trnW/cox2 

regions, respectively) (Fig. 1) and length variations in a homopolimeric T region in the 

trnY-rns spacer (Fig 2). For the trny-rns region 9 SNPs were identified; 3 were 

transversions and 6 were transitions with 8 of these parsimony informative. When 

combined with data for indels 17 different haplotypes were observed.  The trnW-cox2 

region was less polymorphic with 4 SNPs (3 transversions and 1 transition) and a single 

parsimony informative site; when combined with data for indels 7 haplotypes were 

present. Combining DNA sequences from the two intergenic regions identified 20 

different haplotypes (Table 1). 

 

 

 

 

 

 

 

 
Fig. 1 - Electrophoretic gel containing PCR products of the mitochondrial intergenic region trnW-cox2 of 

9 Phytophthora nicotianae isolates (A). Differences in the length of fragments is due to a deletion of 51 

bp (B). 
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The P. nicotianae trnY/rns region had a length comparable to that of the homologous 

region from P. ramorum (353 bp; DQ832718), but was significantly shorter compared 

to homologous regions in P. sojae (952 bp; DQ832717) and P. infestans haplotype IIa 

(2785 bp; AY898627), IIb (2729 bp; AY898628), Ia (904 bp; AY894835) and Ib (904 

bp; NC_002387). Similarly, the trnW/cox2 region in P. nicotianae was shorter 

compared to homologous sequences from P. ramorum (846 bp; DQ832718), P. sojae 

(725 bp; DQ832717) and P. infestans haplotype IIa (1007 bp; AY898627), IIb (849 bp; 

AY898628) and Ia (814 bp; AY894835) and Ib (850 bp; NC_002387). 

 

 Albicocco9  H1  TTTTGATAATTTTAAATATATA-TTTTTTTTTT--ATTAAAAAACTCAATACAATCGATAAAATATAAGCAGATTTATATTAATTATTTAA-------------------AA IMI268688   H2  ......................-..........T-........................................................-------------------.. 

DodoneaRad1 H3  ......................-.........---........................................................-------------------.. 

Correa5     H4  ......................A..........--....................................A...................-------------------.. 

Correa3     H5  ......................A..........T-....................................A...................-------------------.. 

Ciclamino1  H6  ......................A..........T-.....................A..............A...................-------------------.. 

Ph168       H7  ......................AA......-----................T....A...........A..A...................TATATATTTTTAAATAAAA.. 

KVB         H8  ......................AA......-----................T....A...........A..A...................TATATATTTTTAAATAAAA.. 

FerraraR11  H9  ......................A..........--.....................A...........A..A...................-------------------.. 

Ph9         H10 ......................A..........T-.....................A...........A..A...................-------------------.. 

Serravalle3 H11 ......................A.........---.....................A...........A..A...................-------------------.. 

SCRP462     H12 ......................AA.........--.................................A..A...................-------------------.. 

IMI379626   H13 ......................AA.........--.................................A..A...................-------------------.. 

Mirtus3     H14 ......................AA.........T-.................................A..A...................-------------------.. 

IRF5        H15 ......................AA.........TT...............G.................A..A...................-------------------.. 

C88         H16 ......................AA.........TT.................................A..A...................-------------------.. 

IMI207770   H17 .G..A.................AA.........--.................................A..A...................-------------------.. 

C301        H18 .G..A.................AA........---.................................A..A...................-------------------.. 

IRF27       H19 .G..A.................AA.........--.................................A..A...................-------------------.. 

Anthurium   H20 .G..A.................AA.........T-.................................A..A...................-------------------..  

Fig. 2 - Sequence alignment of portion of the trnY-rns region of twenty representative Phytophthora 

nicotianae haplotypes.  
 

II.4.2 Haplotype analysis and networks 

Seventeen and 7 haplotypes were identified by individually analyzing regions trny/rns 

and trnw/cox2, respectively; the combined data set of sequences revealed 20 different 

haplotypes (Table 1). The haplotype network (Fig 3) of the combined data set confirmed 

the presence of five different genetic groups defined by the phylogenetic analyses (Fig 

4). The N2 group was more distant compared to the other groups while the N3 group, 

which was almost exclusively represented by citrus isolates, presented the most frequent 

haplotype in the network. No patterns of geographic association were revealed among 

the most frequent haplotypes. The network has shown cases where identical haplotypes 

were present within isolates with opposite mating types. In particular, the haplotypes 
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H14, H19 and H20 had opposite mating types in the same geographic location (Table 

1). Cases of homoplasy were observed in the combined data set network (Fig 3). This 

homoplasy was also confirmed in the analysis of the network for the two intergenic 

region considered individually (data not shown).   
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N5-17

 

Fig. 3 - Parsimony haplotype network of Phytophthora nicotianae isolates constructed using combined 

sequence data from trnW-cox2 and trnY-rns regions. The letter codes identify the single or the groups of 

haplotypes with N referring to the phylogenetic clade in Fig 3 and the number after the “-“ the final 

mitochondrial haplotype. The size of each oval represents the relative frequencies of haplotypes in the 

pool of isolates considered in this study. Greek letters (α and β) indicate possible event of homoplasy. 

Haplotypes were directly connected without dots when differing by a single change. Every additional 

putative change was indicated by adding a dot.  
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II.4.3 Phylogenetic analyses  

In the partition homogeneity test a significant congruence (p = 0.74) between the two 

mitochondrial regions was observed so the concatenated file of the two regions was 

used for analysis with the three different phylogenetic methods (maximum parsimony, 

maximum likelihood and Bayesian analysis). A tree with the same five major clades 

was observed with each type of analysis (Fig 4), a grouping that was also observed 

when the two regions were analyzed separately (although a less accurate discrimination 

among isolates was possible, data not shown).  

The first clade (N1) was comprised of seven isolates from Southern Italy (6 from 

Sicily and 1 from Calabria) and an isolate (IMI 268688) obtained from citrus in 

Trinidad (Table 1; Fig 4). This clade contained six mitochondrial haplotypes distributed 

in three branches. Isolates of this clade shared differences that clearly distinguished 

them from the other clades such as a SNP in position 193 of the trnY-rns region. The 

isolate Ciclamino1 constituted an individual haplotype branch within this group. No 

mating type association within this clade was revealed. Six out of the eight isolates were 

recovered from host plants of the Sapindales order (Correa reflexa, Dodonea viscosa 

and Citrus sp.).  

Clade N2 was well differentiated from other clades with two distinct 

mitochondrial haplotypes clustered in this group (Fig 4). Except for the citrus isolate 

Ph168, all isolates were mating type A2 (Table 1). Isolates of this clade had a 19 bp 

insertion in the trnY-rns region that differentiated them from all the other isolates 

analyzed in this work. 

Clade N3 was almost exclusively represented by isolates from citrus recovered 

from different regions of southern Italy, Syria (isolate Ph195) and Albania (isolate 

Ph142). This clade also contained an isolate from Limonium sinensis that, unlike all 

other isolates, was an A2 mating type (Table 1; Fig 4). Three different mitochondrial 
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haplotypes clustered in this group that differed in base numbers in a homopolymeric 

thymine region in the trnY-rns intergenic region (Fig 2).  

Five mitochondrial haplotypes clustered in clade N4 (Fig 4). This group of 

isolates was heterogeneous for geographic origin, host and mating type. Only two SNPs 

(pos. 148 and 394) differentiate this group of isolates from the N3 clade of isolates from 

citrus. Except for the isolate IRF5 from Polygala myrtifolia that constituted an 

individual haplotype branch within this group (SNP in position 175 in trnY-rns region) 

and the isolate SCRP462 that had a 7 bp deletion in the trnW-cox2 region, the other 

isolates within this group were distinguished by differences in length variation in the 

homopolymeric thymine region in the trny-rns intergenic spacer. 

Clade N5 was represented by 13 isolates divided in four mitochondrial 

haplotypes; no specific associations were observed with either geographic origin or 

host. All isolates of this clade shared a 51 bp indel in the trnW-cox2 intergenic region. 
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Fig. 4 - Phylogenetic relationships between Phytophthora nicotianae isolates based on the 

combined data set of sequences from the two mitochondrial intergenic region trnY-rns and trnW-

cox2. The tree was midpoint rooted. Numbers on nodes represent the statistical support for the 

Bayesian method (posterior probabilities, top number), maximum likelihood (100 replicates, 

middle number) and maximum parsimony (1000 bootstrap replicates, bottom number). Table on 

the right of the tree reports phylogenetic clades (first column; N followed by a number) 

distinctive haplotypes (second column; number only) and plant host from which isolates were 

obtained (third column). 

 

II.4.4 Biological tests  

The characterization of 51 isolates of P. nicotianae from different geographic 

regions and hosts showed that 23 and 27 isolates were A1 and A2 mating type, 

respectively (Table 1). Among these, all isolates from citrus were of mating type A1. 
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One isolate from tomato did not form oospores when paired with the two reference 

mating types. 

Growth rates of isolates on PDA ranged from 1.7 and 9.1 mm/day and 

differences among isolates were significant (P≤0.05; Fig 5). Similarly, significant 

differences were also observed in the colonization rates of apple tissues. After 5 days of 

incubation the extent of colonization of apple flesh by the pathogen ranged from 1.7 to 

33 mm
2
 (Fig 5). The extension of decaying tissues on the apple surface reflected 

internal colonization and after 5 days of incubation ranged from 3.2 and 44.5 mm
2
 (data 

not shown). Although differences among isolates for both growth rates on PDA and 

apple flesh colonization were significant, no correlations were found between these two 

parameters or with host, geographic origin or molecular group based on mitochondrial 

haplotype analyses (Fig 5). 

 

II.5 Discussion 

Fifty-one isolates of P. nicotianae from different hosts and geographic origins 

were characterised using two variable intergenic regions of the mitochondrial DNA to 

evaluate mitochondrial haplotypes and their phylogenetic relationships.  The analysis of 

haplotypes exhibited a different level of variation between the mitochondrial regions 

used. The trnY-rns intergenic region was more variable with 9 SNPs, 3 indels (29 bp) 

and length variations in a homopolymeric thymine region that differentiated 17 

haplotypes.  In contrast, for the trnW-cox2 region 4 SNPs and 2 indels (58 bp) 

differentiated isolates into 7 mitochondrial haplotypes. The combined data set for both 

regions revealed a total of 20 mitochondrial haplotypes.  
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Fig. 5 - Comparison between apple flesh colonization after 5 days of incubation (left) and 

growth rate on PDA (right) of Phytophthora nicotianae isolates grouped according to 

phylogenetic clades (center). In both charts isolates were primarily listed accordingly to their 

phylogenetic groups (Fig 2) and secondly (in each group) according to a decreasing order. 

Letters on the right of columns report statistical analysis; values not sharing common letters are 

statistically different according to Tukey test (P≤0.05). 
 

 

No consistent association of haplotypes with the geographic location of isolation 

or host from which the isolates were recovered was observed. The majority of isolates 

from citrus had similar haplotypes (H9, H10, H11) and differed only in the number of 

bases in a homopolymeric thymine region (haplotypes with 9, 10 or 11 thymine bases). 
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Similar length variations in homopolymeric stretches of “T” were also identified in 

other groupings of haplotypes (H13, H14, H16 and H18, H19, H20; Fig 2). It is likely 

these differences were generated by slippage events during DNA replication, which is 

known as source of length polymorphisms in sequence stretches in human populations 

(Schlötterer and Tautz, 1992). The fact that isolates from citrus recovered from different 

geographic regions had the same mitochondrial haplotype (or very similar) could be due 

to the nursery trade distributing infected plant material, which could also explain the 

presence of identical haplotypes for isolates from ornamental and horticultural plants 

from different production areas (H8, H13, H17, H19).   

Another explanation for shared mitochondrial haplotype among citrus isolates is 

there may be a preferential association between these isolates and citrus hosts since 

subgroups of P. nicotianae showing some host specificity have been reported for some 

host species (Philips and Baker, 1962; Erwin and Ribeiro, 1996; Allagui and Lepoivre, 

2000). It was demonstrated that isolates from Citrus spp. were more virulent on roots of 

rough lemon than isolates from petunia, tomato, walnut, silk tree, jojoba, hibiscus and 

peach. Also, tomato plants exhibited high susceptibility to many isolates including 

citrus isolates (Matheron and Matejka, 1990). Furthermore, the analysis of both 

mitochondrial and nuclear DNA restriction fragments distinguished isolates causing 

black shank in tobacco from other P. nicotianae isolates (Colas et al., 1997). The 

observation that an isolate recovered from Limonium sinensis (Ph342/03) had the same 

mitochondrial haplotype as most citrus isolates could be due to its recovery from a 

nursery in which many ornamental species, including ornamental citrus, were also 

grown.  Furthermore, while some P. nicotianae groups may have a preferential host, 

most studies have demonstrated that they can still infect other hosts (Erwin and Ribeiro, 

1996). Additional experimentation evaluating virulence of citrus isolates on Citrus and 

several other hosts is needed to confirm if there is a preferential host association.  
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The use of mitochondrial markers, which are maternally inherited, would be 

useful to study clonally reproducing populations of the pathogen. Clonal populations of 

P. nicotianae were identified as a component of field populations from the same 

tobacco field in 4 consecutive years (Sullivan et al., 2010) and for isolates from 

different ornamental plants and production sites (Lamour et al., 2003). It was suggested 

that isolates within the same ornamental nurseries spread by asexually generated 

propagules, such as hyphal fragments, sporangia, chlamydospores or zoospores 

(Lamour et al., 2003). Furthermore, it was concluded that, at least in citrus orchards in 

Italy, P. nicotianae reproduced primarily asexually since in the majority of citrus 

orchards examined only the A1 mating type was found (Cacciola and Magnano di San 

Lio, 2008). However, the heterothallic mating behaviour of this pathogen can generate a 

sexual recombining population when both mating types are present and therefore 

nuclear markers should be included when analyzing field populations in much the same 

way as observed for P. infestans (Flier et al., 2007; Widmark et al., 2007).   The 

observations that opposite mating types were found within the same mitochondrial 

haplotype (H7, H9, H13, H14, H19, H20 with isolates from the last three haplotypes 

having opposite mating types in the same geographic region) suggests that sexual 

recombination has occurred in the past. 

 These two mitochondrial intergenic regions were used also to infer phylogenetic 

analysis and highlight evolutionary divergence at mitochondrial genome level. The 

phylogenetic analysis of the combined sequences identified 5 phylogenetic clades, a 

result that was consistent with three different methods of analysis (maximum 

parsimony, maximum likelihood and Bayesian analysis).  

Different haplotypes were distributed in each of the 5 clades and did not exhibit a 

consistent clustering based on geographic origin, mating type or host. However, the 

majority of haplotypes representing citrus isolates (10/13) grouped together in clade N3, 
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reinforcing the idea that these haplotypes came from the same ancestral mitochondrial 

genome and indicating that the differences found at level of homopolymeric T region 

(as for some isolates of N4 and N5 clades), were meaningless in a phylogenetic sense. A 

divergent evolutionary pattern was shown in particular for clade N2 as shown also in the 

parsimony haplotype network (Fig 3). Two haplotypes (H7, H8) were identified in the 

N2 clade by a different number of polymorphisms. In particular, 3 SNPs that were 

parsimony informative (SNPs specific of this clade), a 19 bp insertion and 4 bp 

deletions differentiated this clade from the others. In contrast, the lower amount of 

genetic variation between the N3 clade and the N4, clade N5 and N4, N1 and N4 

suggested a more recent evolutionary divergence among these groups of haplotypes. In 

particular, only 2 SNPs that were parsimony informative differentiated the clade N5 

(haplotype H17 of clade N5, Fig 4) from the clade N4 (haplotype H13 of clade N4); 3 

SNPs that were parsimony informative discriminated clade N1 (haplotype H5, Fig 4) 

and the citrus clade N3 from clade N4 (from haplotypes H14 and H13 of clade N4). 

Furthermore, as shown in the haplotype network analysis, the homoplasy revealed 

between haplotypes could explain the reduction of evolutionary resolution, in particular, 

between the citrus clade N3 and clade N4. This not to exclude the possibility that events 

of inter molecular recombination between different mitochondrial DNA can occur 

leading to homoplasies, although given the uniparental inheritance of mitochondrial 

genomes in sexual outcrossing this would be unlikely (Forester and Coffey, 1990). 

Taking into consideration that the majority of these isolates come from nurseries, the 

conjunct effect of rare mutation in mitochondrial DNA and possible drift of haplotypes 

due to different trade pathways could be involved in establishing new divergent 

haplotypes populations.   

Whereas mitochondrial DNA was one of the markers more available in the 

studies of population evolution, we need to bear in mind that phylogenetic analysis 
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based solely on mitochondrial markers could have some important limitations. The main 

thing to consider is that mitochondrial DNA represents the historical map of the 

maternal lineage, ignoring part of the genetic history present in the population (Zhang 

and Hewitt, 2003). Therefore, a phylogenetic analysis based only on this cytoplasmatic 

marker may only partially help to answer questions on the evolution of populations and 

resulting evolutionary relationships may be biased. However, these two intergenic 

regions give an idea, even partly, of the evolutionary relationships between the 

haplotypes identified in this study. A larger number of isolates representing the range of 

diversity of P. nicotianae is required to verify the usefulness of these mitochondrial 

intergenic regions to highlight different evolutionary pathways.  

Mitochondrial haplotype and phylogenetic clades were not correlated with 

phenotypic traits, such as growth rate and ability to colonize apple tissues. This result 

was partially expected since, according to previous reports, biological and pathogenicity 

tests are key traits for studying and differentiating closely related strains of P. 

nicotianae, however they provided only limited information on the actual diversity and 

genetic potential of pathogen populations since they are likely influenced by a number 

of background factors, including in vitro culture duration, storage conditions and 

culturing media (Powers and Lucas, 1952; Apple, 1957). Many cases of mutation or 

adaptive changes leading to variability have been reported for Phytophthora species 

(Erwin and Ribeiro, 1996) and specifically for isolates of P. nicotianae that lose 

virulence with continuous culturing (Apple, 1957).  

A key step for the development of the present method was the identification of 

genetic regions variable enough to differentiate closely related strains of P. nicotianae. 

The trny-rns region had been previously amplified and sequenced from a number of 

Phytophthora species, but not P. nicotianae (Schena and Cooke, 2006). In their report 

the Authors concluded this region was too variable to align accurately when amplified 
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from different species and suggested its possible use for the examination of intraspecific 

variation and analysis of closely related species. Unlike the trny-rns region, the trnW-

cox2 region had not been amplified from other Phytophthora species but also appears to 

be useful for evaluation of intraspecific variation. Since both regions were amplified 

using primers designed using conserved regions from whole mitochondrial genome 

comparisons of P. infestans, P. ramorum and P. sojae it is likely will also be useful for 

the intraspecific characterization of a number of other Phytophthora species (this has 

been independently confirmed by F. Martin, unpublished).  

In conclusion, a new molecular approach to characterize intraspecific variability in 

P. nicotianae is proposed. This method may be further improved by the identification of 

new target regions and could be easily extended to other species of the genus 

Phytophthora as well as other plant pathogens. Compared to alternative molecular 

methods, such as RAPD-PCR and AFLP, a major advantage of this approach is that 

results are objective (a list of nucleotides) and can be highly reproducible because the 

results are not affected by a number of factors such as the purity of target DNA, 

amplification reagents, thermocyclers, etc. This aspect is particularly important since it 

would enable the comparison of data from different research groups or time periods and 

could be implemented as soon as a molecular database is available from submission of 

sequences to GenBank. Application of this method could also be used in standardized 

protocols to develop a DNA barcoding like strategy for the precise identification of sub-

specific taxa in P. nicotianae as well as in other species of Phytophthora. In fact, 

although more variable than the loci commonly used for barcode analysis of 

Phytophthora spp. (ITS, cox1; C. A. Levesque, personal communication), the regions 

used in this experimentation possess many of the important characteristics of a desirable 

locus for DNA barcoding since they are present in most of the taxa of interest, can be 

amplified without species-specific PCR primers and are short enough to be easily 
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sequenced with current technology (Kress and Erickson, 2008). A limitation to the wide 

exploitation of the method proposed in the present study could be represented by the 

cost of sequencing multiple target genes from a large number of isolates. However, the 

increasing development of high throughput sequencing equipment and the consequent 

reduction of sequencing costs recorded in recent years are encouraging. 
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Chapter III 

 

 

 

   Mitochondrial and nuclear DNA analyses suggests a global         

    panmictic population structure of Phytophthora nicotianae.
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III.1 ABSTRACT 

Genetic variations in mitochondrial and nuclear DNA of the cosmopolitan plant pathogen 

Phytophthora nicotianae were determined by characterizing four mitochondrial regions 

corresponding to the 10% of the genome and three nuclear loci of 96 isolates from a wide 

range of hosts and geographic locations. Fifty-two SNPs (1 every 58 bp) and 313 sites with 

gaps enabled the identification of 50 different mitochondrial haplotypes. Similarly, 24 

SNPs (1 every 69 bp), with heterozigosity observed at each locus, differentiate the isolates 

in 40 nuclear multilocus genotypes. The analyses of both mitochondrial and nuclear data 

sets showed a typical panmictic distribution of P. nicotianae isolates since no specific 

associations between geographic distribution and mitochondrial haplotypes or nuclear 

genotypes were revealed. The most frequent haplotypes (H5, H19) and genotype (g1) were 

shared among isolates from different worldwide geographic locations suggesting a high 

level of dispersal of this pathogen. A specific association was found among mitochondrial 

and nuclear groups and some hosts of origin. In particular, the majority of citrus isolates 

from different geographic locations clustered in the same mitochondrial group and had the 

same or very similar nuclear multilocus genotype. Although less evident a specific 

association was also reveled for isolates from tobacco. On the whole the combined analysis 

of both mitochondrial and nuclear markers showed interesting congruent groupings of 

isolates in relation to both geographic origin and host of provenience. Both markers clearly 

indicated diffused events of migration for this pathogen. In species like P. nicotianae where 

there is no clear evidence of the favorite mechanism of reproduction, the association of 

pattern from different markers could address questions related to the genetic structure and 

migration. 
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III.2 Introduction 

Phytophthora nicotianae can affect a variety of plants and trees causing foliar diseases and 

root rot and crown rot diseases in annual herbaceous and in perennial host plants (Erwin & 

Ribeiro, 1996; Benson & von Broembsen, 2001). On perennial woody plants a single cycle 

of the disease commonly occur, while more cycles per year can be performed on 

herbaceous hosts, especially in nursery where repeated growing of annual crops can favor 

the pathogen (Hu et al., 2008). Despite the great economic importance of this pathogen, 

studies on the genetic structure of population are quite limited. Intraspecific variability has 

been mainly studied in China (Zhang et al., 2001, 2003) and North Carolina (Sullivan et al., 

2010) with isolates from tobacco fields using RAPD and AFLP techniques. AFLP has been 

also utilized to analyze the genetic variability of isolates from ornamental plants in different 

nurseries in Tennessee (Lamour et al., 2003). In this study, different clonal lines specific for 

each nursery were identified. A comprehensive statewide survey conducted throughout 

major tobacco-growing areas of Virginia to determine population structure and mating type 

suggested that it is unlikely that sexual recombination serves as a major mechanism 

enhancing the genetic diversity of the pathogen in this country (Parkunan et al., 2010). 

Similar results have been also obtained by analyzing isolates from citrus fields (Cacciola 

and Magnano di San Lio, 2008).  

All these studies were designed to analyze variability and genetic structure in 

specific fields or within the same geographic region, while there are not specific studies 

about the global distribution of genetic variability of this pathogen in relation to geographic 

origin and the hosts. Furthermore, the populations structure of P. nicotianae has been 

mainly assessed by studying physiological aspects such as resistance to fungicides (mainly 
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mefenoxam  and metalaxyl) and differential pathogenicity on tobacco cultivars which has 

been utilized to identify four different races (0, 1, 2 and 3) of the pathogen (Sullivan et al., 

2005a, 2005b; Hu et al., 2008; Parkunan et al., 2010). It has been demonstrated that the 

aggressiveness of the pathogen changes depending on the races structure in the specific 

fields (Sullivan et al., 2005). Since P. nicotianae was introduced in the tobacco production 

area in South Eastern US in the 1931, race 0 was the most common in these regions (Lucas, 

1975). Single-gene resistant cultivar with a complete resistance against this race of the 

pathogen were obtained by crossing the cultivated Nicotianae tabacum with the wild 

species such as Nicotianae plumbaginifolia and Nicotianae longiflora (Apple, 1967; 

Valleau et al., 1960). However, these single-gene resistant cultivars were susceptible to race 

1 of P. nicotianae and while this initially did not represent a problem given the lower 

population of this race compared to race 0 (Johnson et al., 2002) with the widespread 

deployment of single-gene resistant hybrid flue-cured tobacco cultivars in the 1990s, the 

frequency of race 1 has increased dramatically in Georgia and North Carolina (Csinos et al., 

1994, 2005). It has been demonstrated that the population structure of the pathogen in a 

field varies according to differently resistant tobacco variety (Sullivan et al., 2005a; 2005b).  

Population genetic structure and evolutionary history has rarely been analyzed in plant 

pathogens using both mitochondrial and nuclear genomes (Sommerhalder et al., 2007; 

Gomez-Alpizar et al., 2007). Because of different biological processes at the basis of their 

inheritance and the different model of evolution, the genetic component of variability that is 

found with the two types of markers could be totally different. This aspect has been 

demonstrated in the phytopathogenic fungus Mycosphaerella graminicola (McDonald et 

al., 1995) as well as in other eukaryotes (Bensch et al., 2006). However, because 

mitochondrial DNA is uniparentally inherited and is much smaller compared to nuclear 
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DNA, some evolutionary processes can be explained only through the analyses of nuclear 

markers (Godinho et al., 2008). In particular, mitochondrial analyses conducted with 

species that are not exclusively clonally reproducing may produce contradictory results 

(Zhang and Hewitt, 2003). However, conjunct analysis of nuclear and mitochondrial 

genomes can provide more comprehensive insights into the evolutionary forces acting on 

natural populations (Asmussen and Basten, 1994).  

In the present study both mitochondrial and nuclear markers were utilized to study 

distribution and genetic variability in isolates of P. nicotianae from different hosts and 

geographic origins. Four mitochondrial markers and three nuclear regions containing single 

nucleotide polymorphisms (SNPs) were analyzed. SNP analysis have been rarely applied to 

study the populations of plant pathogens since other techniques such as microsatellites are 

considered more appropriate markers for this purpose. However SNPs are widely 

distributed in all the genomes and can be quite easily identified in a population through 

sequencing of specific loci or using non-sequence method such as melting curve analysis or 

allele-specific oligonucleotides real time PCR. The analysis of patterns of intraspecific 

variation can be used to study the evolution of a species. In particular, the analysis of the 

distribution of the genetic diversity may reveal information about the center of origin of a 

particular species (Gomez-Alpizar et al., 2007; Grunwald and Frier 2005), patterns of 

migration (Stukenbrock et al., 2006, Atallah et al., 2010) and obviously population 

structure (Ivors et al., 2006; Dobrowolski et al., 2003). Similar approaches proved valuable 

for testing phylogenetic and evolutionary divergence at intraspecific level in different 

fungal species (Banke et al., 2004; Stukenbrock et al., 2007; Ceresini 2007). The 

genealogical history of P. infestans that assigned an hypothetical South American origin for 

this species was studied using nucleotide differences in two nuclear genes and in four 



69 

 

mitochondrial regions (Gomez-Alpizar et al., 2007). Similarly, the analysis of five nuclear 

genes applied in coalescent based genealogies, suggested a major role of recombination 

events in modeling the population structure of P. ramorum, until the actual different three 

known lineages (EU1, NA1, NA2; Ivors et al., 2006; Grunwald et al., 2009) indicating that 

the three lineages may have a sexual recombining ancestor population (Goss et al., 2009). 

Rather than looking for SNPs in nuclear genes, Abbott et al (2010), developed a method for 

discovering SNPs in microsatellite flanking regions (MFRs) because of their high rate of 

mutation. Using this method, they were able to identify and genotype 25 different isolates 

of P. infestans on a total of 32 representative of an international panel (Abbott et al., 2010).  

In the present work mitochondrial and nuclear patterns were utilized to study isolates of P. 

nicotianae from a wide range of hosts and geographic locations. The main objectives of this 

work were: (1) the screening of several potential mitochondrial and nuclear marker 

appropriate for population genetic structure studies, (2) the assessment of the 

appropriateness of mitochondrial markers for phylogenetic studies and (3) the comparison 

of the pattern of genetic variation from mitochondrial and nuclear markers. 

 

III.3 Material and Methods 

III.3.1 Strains of Phytophthora nicotianae and DNA extraction 

Ninety-six isolates of Phytophthora nicotianae representing different geographic regions in 

6 continents (Fig. 1) and various hosts (ornamentals, citrus, tobacco and horticultural) were 

used in this study (Table 1). Forty-five isolates were obtained from the World Phytophthora 

Collection at the University of California, Riverside (http://phytophthora.ucr.edu), and 

DNA extracted as described by Blair et al. (Blair et al., 2008). The remaining 51 isolates 

were from the collection of the Department of “Gestione dei Sistemi Agrari e Forestali”, 

http://phytophthora.ucr.edu/
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Mediterranean University, Italy and DNA was extracted according to the procedure 

described by Ippolito et al. (2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 - Geographic origins of the isolates of Phytophthora nicotianae used in this study. 

 

III.3.2 Mitochondrial and nuclear markers analyzed 

To amplify different regions of nuclear and mitochondrial DNA a large number of different 

primers were selected either from the literature or designed on the bases of published DNA 

sequences. Furthermore the complete mitochondrial genome of P. nicotiane was provided 

by Frank Martin at the USDA-ARS, Salinas, CA (unpublished data).  

To design mitochondrial primers the genome of P. nicotianae was compared with other 

mitochondrial genomes available in GenBank for P. infestans (NC_002387, AY894835, 

AY898627, AY898628), P. ramorum (DQ832718) and P. sojae (DQ832717) in order to 
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identify conserved regions flanking variable intergenic regions. Primers were designed on 

conserved regions to facilitate the amplification of the targets from a broader range of 

isolates. Preliminary screenings conducted with a restricted number of representative 

isolates of P. nicotianae enabled the identification of 4 variable mitochondrial regions 

representing the 10% of the whole genome of P. nicotianae (trnG-rns, rns-cox2, cox2-

spacer, atp1-nad5) (Fig. 2). Three of these regions (trnG-rns, rns-cox2, cox2-spacer) were 

already developed and tested for analysis of intraspecific variability in other Phytophthora 

species (Martin et al., 2008; F. Martin, unpublished). 

Similarly 3 nuclear regions were selected during preliminary investigations since 

they had a quite high level of intraspecific variability. A hypothetical conserved protein 

(hyp) was amplified using primers I11F-I12R developed to amplified a SSR marker from a 

panel of 15 Phytophthora species (which not include P. nicotianae; Schena et al., 2008). 

The Scp-like protein (scp) marker was amplified using primers designed on an expressed 

sequence tag (EST) from a cDNA library generated during the appressorium formation of 

P. nicotianae (Kebdani et al., 2008). Finally a couple of β-tubulin (βtub) gene primers 

(Blair et al., 2008) were modified to perfectly match the sequence of this gene in P. 

nicotianae (Fig. 2).  

Amplifications with selected primers (Table 2) were run in a total volume of 25 μl 

containing 1 to 10 ng of genomic DNA, 1X PCR buffer, 0.1 mM dNTPs, 1 unit Taq 

polymerase (Applied Biosystem, USA) and 0.5 μM for each primer. The concentration of 

MgCl2 and the annealing temperature were optimized for each primer pair (Table 2). 

Amplification conditions were 95°C for 3 min, 40 cycles of 95°C for 1min, annealing 

temperature for 1 min, and 72°C for 1 min, with a final extension at 72°C for 5 min.  
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PCR products were purified using ExoSap (USB, Cleveland, OH, USA) in 

accordance with manufacturer’s instructions and sent to the Nucleic Acid Sequencing 

Facility at the Penn State University (University Park, Pennsylvania) for sequencing.  

When the quality of the sequences was not fully satisfactory, additional nested sequencing 

primer specific for P. nicotianae were designed and target regions (mainly cox2-spacer, 

atp1-nad5 region and β tubulin gene) were re-amplified and sequenced. 

Other methods for the identification of intraspecific variability were also investigated 

but preliminary results were not positive. Primers with dinucleotide or trinucleotide repeats 

were used as internal simple sequence repeat method (ISSR) to amplify regions between 

microsatellite repeats, but problems with reproducibility and interpretability of the results 

were encountered. Also, primers amplifying microsatellite regions obtained from a Genome 

Sequence Survey (GSS) in P. nicotianae (J. Blair unpublished) were tested for five isolates 

from different geographic regions, hosts and with a different genetic background 

(mitochondrial and nuclear) but differences in the repeated regions were not identified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 - Schematic representation of mitochondrial regions (A) and βtubulin nuclear gene (B) examined in this 

study with location and orientation of selected primers. Symbol (*) indicates sequencing primer and 

additional sequencing nested primers. Symbol (§) indicates additional amplification primers. The reference 

sequence used for the βtubulin nuclear gene is obtained from the deposited sequence of P. nicotianae 

(EU080504.1) (Blair et al., 2008).  
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Table 1. Isolates of Phytophthora nicotianae included in the study, their designation, host of recovery, geographic origin, mating type mitochondrial 

haplotype and nuclear multilocus genotype.  
 

Isolates 

 

Host Origin 
Mating 
type 

trnG-rns rns-cox2 cox2+ spacer atp1-nad5 Final 
haplotypec 

Multilocus 

nuclear 

genotyped Haplotype Size (bp)b Haplotype Size (bp) Haplotype Size (bp) Haplotype Size (bp) 

P10802 (A144)a Dianthus caryophyllus Japan A2 1 607 1 577 1 910 1 893 H1 g4 

N035 (IMI 207770) Durio zibethinus Malaysia A1 1 607 1 577 1 910 1 893 H1 g4 

P10297 (A550) Dieffenbachia maculata  Florida  2 607 2 464 2 910 2 882 H2 g17 

P6915 (A658) Dieffenbachia maculata Germany  2 607 2 464 2 910 2 882 H2 g17 

N001 (Albic9)     Prunus armeniaca Calabria, Italy A2 3 606 3 577 3 910 3 876 H3 g10 

N002 (Anthurium)  Anthurium sp. Sicily, Italy A1 4 608 4 526 1 910 4 893 H4 g14 

N027 (Pandorea2c) Pandorea jasminoides Sicily, Italy A2 4 608 4 526 1 910 4 893 H4 g14 

P1494 (D1835) Nicotianae tabacco Australia  5 619 3 577 4 910 5 890 H5 g5 

P7665 (C1327) Leucodendron sp.   Australia (WA)  5 619 3 577 4 910 5 890 H5 g5 

P7387 (C1333) Hippeastrum sp.  Netherlands  5 619 3 577 4 910 5 890 H5 g19 

P7330 (C1345) Lavandula sp.  Australia (WA)  5 619 3 577 4 910 5 890 H5 g5 

P1751 (D166) Nicotianae tabacco Australia (Q) A1 5 619 3 577 4 910 5 890 H5 g18 

P1753 (D1832) Nicotianae tabacco Australia (Q) A1 5 619 3 577 4 910 5 890 H5 g5 

P1752 (D1831) Nicotianae tabacco Australia(Q) A1 5 619 3 577 4 910 5 890 H5 g5 

N038 (Sta24) Rhamnus alaternus Sicily, Italy A2 5 619 3 577 4 910 5 890 H5 g19 

P7346 (C1328) Choisya ternata  UK  1 607 4 526 1 910 6 893 H6 g8 

P6113 (C1339) Lilium sp.  Japan A2 6 619 5 577 4 910 7 898 H7 g16 

P7522 (C1346) Catharanthus roseus  California A2 7 607 6 577 1 910 8 893 H8 g34 

P0700 (C1828) Solanum lycopersicum  Ponape A2 4 607 1 577 1 910 1 893 H9 g4 

N003 (C301) Mirtus communis Sicily, Italy A2 8 606 4 526 1 910 4 893 H10 g2 

P3815 (D206) Rosa cv. Sonia  USA  8 606 4 526 1 910 4 893 H10 g31 

N004 (C88) Simmondsia chinensis Puglia, Italy  10 609 1 577 1 910 10 881 H12 g11 

N026 (nic8vasi) Lavandula angustifolia Sicily, Italy A2 10 609 1 577 1 910 10 881 H12 g11 

N039 (Tl8vp) Lavandula angustifolia Sicily, Italy A2 10 609 1 577 1 910 10 881 H12 g11 

N005 (Ceanothus) Ceanothus sp. Sicily, Italy A2 11 619 7 577 5 910 11 891 H13 g6 

N020 (KVB) Howea sp. Sicily, Italy A2 11 619 7 577 5 910 11 891 H13 g6 

N016 (irf26/2) Impatiens sp. North Italy A2 11 619 7 577 5 910 11 891 H13 g6 

N044 (Ph440/00) Cyclamen sp.  North Italy A2 11 619 7 577 5 910 11 891 H13 g6 

N006 (Ciclamino1) Cyclamen sp.  Sicily, Italy A1 12 608 8 577 6 910 12 788 H14 g20 

N007 (correa3) Correa reflexa Sicily, Italy A1 13 608 3 577 6 910 13 785 H15 g7 
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N009 (correa8) Correa reflexa Sicily, Italy A1 13 608 3 577 6 910 13 785 H15 g7 

N008 (correa5) Correa reflexa Sicily, Italy A1 14 607 3 577 6 910 14 785 H16 g7 

P1577 (D1310) Citrus sp. California A1 4 608 6 577 7 912 15 894 H17 g13 

P6115 (D149) Gypsophila sp. Japan A2 15 608 8 577 6 910 16 788 H18 g32 

P1955 (D215) Nicotianae tabacco South Africa A1 15 608 8 577 6 910 16 788 H18 g28 

N028 (PeperoneGJ) Capsicum annum Calabria, Italy A1 1 607 4 526 1 910 4 893 H19 g15 

N029 (PeperoneRC) Capsicum annum Calabria, Italy A2 1 607 4 526 1 910 4 893 H19 g35 

N031 (Pomodoro)   Lycopersicum esculentum Sicily, Italy n.d. 1 607 4 526 1 910 4 893 H19 g8 

P7622 (D161) Gypsophila sp.  South Africa  1 607 4 526 1 910 4 893 H19 X 

N017 (Irf27) Agapanthus sp. North Italy A2 1 607 4 526 1 910 4 893 H19 g8 

N040 (Irf8) Anemone americana North Italy A2 1 607 4 526 1 910 4 893 H19 g8 

P16870 (D2044) Solanum lycopersicum  Spain  1 607 4 526 1 910 4 893 H19 g15 

P16883 (D2047) Solanum lycopersicum  Spain  1 607 4 526 1 910 4 893 H19 g21 

P1083 (D169) Gypsophila sp. California A1 1 607 4 526 1 910 17 893 H20 g25 

P1452 (D1725) Citrus sp. California A1 16 607 6 577 1 910 9 892 H21 g12 

P16824 (D1955) Catharanthus roseus Japan A1 5 619 3 577 4 910 18 890 H22 g18 

P3813 (D173) Vinca sp.  California  5 619 3 577 4 910 18 890 H22 g30 

P1350 (D1834) Nicotiana tabacum North Carolina A1 10 609 1 577 1 910 19 880 H23 g3 

P1495 (D1836) Nicotiana tabacum Australia A2 17 607 8 577 6 910 16 788 H24 g26 

P0583 (D1855) Nicotiana tabacum Kentucky A2 18 608 1 577 8 876 19 880 H26 g24 

P1333 (D1857) Nicotiana tabacum Virginia A2 19 617 3 577 9 910 21 894 H27 g3 

P1334 (D1860) Nicotiana tabacum Virginia A2 19 617 3 577 9 910 21 894 H27 g3 

P1335 (D1870) Nicotiana tabacum Virginia A2 19 617 3 577 9 910 21 894 H27 g3 

P0582 (D1913) Nicotiana tabacum Kentucky A2 19 617 3 577 9 910 21 894 H27 g3 

P16823 (D1961) Karankoe sp.   Japan A2 20 609 4 526 1 910 4 893 H28 g27 

P3234 (D223) Hibiscus sp. China  1 607 1 577 1 910 6 893 H29 g4 

P6832 (D244) Cyclamen sp.  Greece  10 609 1 577 1 910 23 881 H30 g13 

P3549 (D245) Aphelandra sp.  Florida  8 606 1 577 1 910 24 893 H31 g7 

P3456 (D246) Hibiscus sp.  Pakistan  21 607 1 577 1 910 6 893 H32 g4 

P7449 (D256) Chrysanthemum sp.  India  15 608 8 577 6 910 12 788 H33 g33 

P3461  (D273) Solanum lycopersicum UK A2 2 607 1 577 1 910 10 881 H34 g2 

P3118  (D303) Solanum lycopersicum Australia  A2 2 607 1 577 1 910 10 881 H34 g2 

Ph5 Citrus sp. Basilicata, Italy A1 2 607 1 577 1 910 10 881 H34 g37 

N041 (Ph653/03) Choisia Ternata North Italy A2 2 607 1 577 1 910 10 881 H34 g2 

N042 (Ph647b/03) Phormium tenax North Italy A2 2 607 1 577 1 910 10 881 H34 g9 



76 

 

N033 (IMI 379626) Lycopersicum esculentum Chile A1 2 607 1 577 1 910 10 881 H34 g2 

N023 (melanzana1) Solanum melongena Sicily, Italy A2 2 607 1 577 1 910 10 881 H34 g2 

P7561 (D929) Citrus (rough lemon) Philippines A1 9 608 6 577 1 910 25 891 H35 g1 

N011 (Dodrad1) Dodonea viscosa  Sicily, Italy A2 22 605 3 577 6 910 3 876 H36 g10 

N010 (Dodcoll1) Dodonea viscosa  Sicily, Italy A2 22 605 3 577 6 910 3 876 H36 g10 

P1569 (D1837) Citrus sp. California A1 16 607 6 577 1 910 20 893 H25 g12 

Ph3 Citrus sp. Italy A1 16 607 6 577 1 910 20 893 H25 g1 

Ph195 Citrus sp. Syria A1 16 607 6 577 1 910 20 893 H25 g1 

P1325 (C376) Citrus sp. California A2 9 608 6 577 1 910 9 892 H11 g12 

N013 (Ferrara3) Citrus sp. Sicily, Italy A1 16 607 6 577 1 910 26 893 H37 g1 

N014 (Ferrara8) Citrus sp. Sicily, Italy A1 16 607 6 577 1 910 26 893 H37 g1 

N012 (Ferrara11) Citrus sp. Sicily, Italy A1 16 607 6 577 1 910 26 893 H37 g1 

N036 (Serravalle1) Citrus sp. Sicily, Italy A1 16 607 6 577 1 910 26 893 H37 g1 

Ph87 Citrus sp.  Puglia, Italy A1 16 607 6 577 1 910 26 893 H37 g1 

N043 (Ph342/03) Limonium sinensis Liguria, Italy A2 16 607 6 577 1 910 26 893 H37 g36 

Ph142 Citrus sp.  Albania  A1 9 608 6 577 1 910 26 893 H44 g1 

Ph9 Citrus sp. Puglia, Italy A1 9 608 6 577 1 910 26 893 H44 g1 

Pn17 Citrus sp.  Florida  25 609 6 577 1 910 26 893 H46 g39 

N037 (Serravalle3) Citrus sp. Sicily, Italy A1 27 606 6 577 1 910 26 893 H49 g1 

N015 (Hybiscus b) Hybiscus sp. Calabria, Italy A2 4 608 4 526 11 910 27 892 H38 g6 

N018 (irf3) Polygala myrtifolia North Italy A2 1 607 1 577 12 910 6 893 H39 g16 

N019 (irf5) Polygala myrtifolia North Italy A2 23 609 1 577 1 910 23 881 H40 g22 

N021 (lavanda1) Lavandula angustifolia Sicily, Italy A2 18 608 1 577 1 910 10 881 H41 g9 

N025 (mirtus3) Myrtus communis Sicily, Italy A1 18 609 1 577 1 910 10 881 H41 g23 

N022 (lavanda4) Lavandula angustifolia Sicily, Italy A2 24 606 1 577 1 910 10 881 H42 g9 

N024 (mirtop5) Myrtus communis Sicily, Italy A2 1 607 4 526 1 910 28 893 H43 g9 

N030 (Pittosporo) Pittosporum sp. Sicily, Italy A1 1 607 4 526 1 910 28 893 H43 g38 

Ph168 Citrus sp. Tunisia A1 11 619 3 577 9 910 29 894 H45 g13 

N032 (scrp462) Fragaria x ananassa India A1 2 607 9 570 1 910 30 895 H47 g2 

N034 (IMI 268688) Citrus sp. Trinidad  A1 26 607 3 577 13 910 31 876 H48 g40 

P3458 (D212) Carthamus tinctorius Venezuela  28 620 3 577 10 910 22 890 H50 g29 
a 
In parenthesis (in the first column) are reported the original denomination of isolates as reported in chapter 2 or dilution number for the isolates of the World Phytophthora 

Collection (Mike Coffey). 
b 
Size of the fragments obtained by sequencing analysis. 

c 
Final haplotypes are indicated for the combined mitochondrial data set. 

d  
Nuclear multilocus 

genotypes are indicated in the last column for the combined data set of the three nuclear regions (hyp-scp-ß tub). 
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Table 2. Primers and PCR conditions used for the mitochondrial and nuclear loci. 

    
M

it
o

ch
o

n
d

ri
al

 D
N

A
 

Rpl5-Rns 
a
Phy intra-F1 GGTAGAGTATAACCTTGC 

a
Phy intra-R1 ATAGCATTTATTCTGAGCCA 

3 mM Mg, 57ºC T 

Rns-Cox2 
a
RN-CoxF GATGAAGTCGTAACAAGGTA 

a
RN-CoxR AAACCTAATTGCCAAGGTTC 

3 mM Mg, 64ºC T 

Cox2-spacer 
b
FM35 CAGAACCTTGGCAATTAGG 

b
FMphy-10b GCAAAAGCACTAAAAATTAAATATAA 

c
FM78 ACAAATTTCACTACATTGTCC* 

c
FM79 GGACAATGTAGTGAAATTTGT* 

c
FM 82 dTTGGCAATTAGGTTTTCAAGATCC* 

c
FM 80 dAATATCTTTATGATTTGTTGAAA* 

3 mM Mg, 54ºC T 

    

N
u

cl
ea

r 
D

N
A

 

hyp d
I11F TCGTCBGTGTCCTCBACGTC 

d
I12R ACCAGCATCTTRTTCTGRGCAG 

1 mM Mg, 55ºC T 

scp NscpF  TGTGCGGTGATGTCTGTGC 

NscpR   TCACCACCTTTGCGAARCC 

1 mM Mg, 60ºC T 

βtub e
BtubF1 GCCAAGTTCTGGGAGGTCATC 

e
BtubR1 CCTGGTACTGCTGGTACTCAG 

NtubF1 ACGCTTCTTATCTCGAAGATT* 

NtubR1 CTTACGCAGGTCCGAGTTC* 

NtubF2 CTCGGACCTGCAGCTGGA
§ 

NtubR2 CGTAAACTGTTCGGACACAC
§ 

2.5 mM Mg, 60ºC T 

a
Primers from F. Martin (Personal communication); 

b
Martin, 2008; 

c
Martin and Tooley, 2003. 

d
Primers from Schena et al., 2008. 

e
Primers from Blair et al., 2008 

*Additional nested sequencing primer; § Additional amplification and sequencing primer. 

 

 

III.3.3 Analysis of sequences 

Both mitochondrial and nuclear sequence chromatograms were analyzed and consensus 

sequences generated in Sequencher 4.7 (Gene Codes, Ann Arbor, MI). Sequences were 

aligned manually and edited for the presence of single nucleotide polymorphisms (SNPs) and 

indels in MacClade ver 4.02 (Sinaur Associates, Sunderland, MA, USA). All polymorphic 

sites observed in the alignment were checked back in the chromatogram. Heterozygous SNPs 

identified in the nuclear coding regions by the presence of double peaks in both forward and 

reverse sequences were marked with standard degeneracy codes (e.g. W = T or A) (Fig. 3).  

Representative SNPs from genotypes g1, g12, g14, g17, g22, g31, and g40 (Table 1) 

were also analyzed and confirmed by cloning the amplicons with TOPO easy vector kit 
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according to manufacturer’s protocol (Invitrogen, USA). Approximately 10 different clones 

were sequenced per each cloned PCR product using standard T7 and T3 primers. 

 

III.3.4 Genetic diversity 

Genetic diversity was evaluated for each individual mitochondrial region and for the 

combined data set (Table 3). The number of polymorphic sites and haplotypes and the 

nucleotide diversity Pi (π, average number of differences per site between two sequence) were 

analyzed using DnaSP ver. 5.10.01 software (Librado and Rozas, 2009). The number of 

haplotypes and the haplotypes diversity were estimated with gaps included in the analysis. 

Tajima's D (Tajima 1989), Fu and Li's D* and Fu and Li's F* (Fu and Li 1993; Fu 1997) 

neutrality tests were performed to test the deviation from neutral evolution of the mutations 

for the cox2 gene. In this latter analysis the sequenced portion (684 bp) of the cox2 gene was 

used.  

Genetic diversity in nuclear coding region was assessed by determining the number of 

polymorphic sites and genotypes and by estimating synonymous and non-synonymous 

substitution. The number of multilocus genotypes was determined manually and using a SNP 

allele and position calling program (MJBv1.2Gba) edited in python (N. Feau and G. Bilodeau, 

unpublished). The positions of synonymous and non-synonymous substitution were inferred 

using the orthologue sequences of P. infestans retrieved from the genome database 

(http://www.broadinstitute.org/annotation/genome/phytophthora_infestans) at Broad Institute 

for hyp (PITG_18320.2) and scp (PITG_10036.1) genes and a specific sequence of P. 

nicotianae (EU080504) for the βtub gene. 

http://www.broadinstitute.org/annotation/genome/phytophthora_infestans
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Fig. 3 -  Example of hetorozygous SNP loci (arrows) identified in the SCP-like protein region. Forward sequence 

(top) and reverse sequence (bottom) are shown. 

 

 

III.3.5 Population structure analysis  

To analyze the population structure with regard of geographic origin and host of recovery of 

the isolates, a network of the combined mitochondrial data set of haplotypes was generated 

using the program NETWORK 4.2 (http://www.fluxus-engineering.com). Networks were 

calculated with Median Joining method (ε = 0) (Bandelt et al. 1995) and using successive 

maximum parsimony (MP) calculation (Polzin et al., 2003) to delete links in the networks not 

supported by the shortest trees.  

Distance analysis of nuclear sequences in the concatenated data set was analyzed to see 

the relationships between different multilocus genotypes using a neighbour-joining tree. The 

neighbor-joining tree was constructed using absolute measure of distances and a random input 

order of sequences in PAUP v4.0b10 (Sinaur Associates, Sunderland, MA, USA).  

 

III.3.6 Phylogenetic analyses based on mitochondrial DNA 

A partition homogeneity test (PHT) (Farris et al 1995) was performed on the 

concatenated dataset using PAUP v4.0b10 to test the congruence of the combined data set 

using a heuristic search with 1000 replicates. All indels were manually recoded as a single 

mutation event. A maximum parsimony analysis was performed in PAUP using a heuristic 

search algorithm with random stepwise addition of taxa (10 replicates), tree bisection 

reconnection (TBR) branch swapping and multiple trees option. The statistical support was 

http://www.fluxus-engineering.com/
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determined by bootstrap values for 1000 replicates. TOPALi v2 (Milne et al., 2004) was used 

to determine the substitution model that best fit the data. The model HKY+I+G (Hasegawa et 

al., 1985) was selected for the Bayesian and maximum likelihood phylogenetic analysis using 

MrBayes ver 3.1.1 (Ronquist and Huelsenbeck, 2003) and PhyML ver 2.4.5 (Guindon and 

Gascuel, 2003) implemented in TOPALi. Bayesian analysis was performed with four runs 

conducted simultaneously for 500,000 generations with 10% sampling frequency and burn in 

of 30%. Maximum likelihood was performed with 100 bootstrap replicates. 

Phylogenetic analyses for nuclear regions were not inferred because of the high level 

of heterozigosity and the consequent difficulties in the determination of haplotypes. 

 

III.4 Results 

III.4.1 Amplification and sequencing 

Selected mitochondrial (trnG-rns, rns-cox2, cox2-spacer, atp1-nad5) and nuclear (hyp, scp, 

βtub) regions were amplified and sequenced from the complete panel of isolates (Table 1). 

Other mitochondrial regions (secY, rps10 and rpl5) were discarded during preliminary 

screenings because did not show enough variations within the restricted panel of isolates 

analyzed. Similarly, additional nuclear regions among coding and intergenic regions were 

preliminarily screened (ISSR, SSR markers, elicitin, Ras-related protein ypt1, necrosis 

inducing protein pp1), but difficulties during amplification and/or sequencing, the presence of 

heterozygote indels or multiple copy targets or the limited level of polymorphisms, suggested 

their inappropriateness for the present investigation. 

 

III.4.2 Mitochondrial and nuclear genetic diversity  

Intraspecific polymorphisms were observed in each of the four mitochondrial loci (Table 3). 

The rns-cox2 region (length variable from 464 to 577 bp) was the least variable region with a 

nucleotide diversity (π) of 0.00182. The analyzed region consisted of the entire intergenic 
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region and portions of the flanking coding regions of the (rns, 39 bp and cox2, 58 bp). No 

variation was observed in these coding regions and in the trnW (cca) tRNA that is localized 

within the intergenic region. The cox2+spacer region (length from 876 to 912 bp) consisted of 

almost the entire reading frame for the cox2 gene (92 bases at the 5’ end were not included) 

plus 197 bp of the spacer (including the putative orf32), and 31 bp of the cox1 gene. In the 

cox2 coding region 8 SNPs were identified (position 64, 114, 133, 206, 226, 547, 634, 680), 

six of these led to a non-synonymous change in the protein sequence (Table 4). In particular, 

two non-synonymous mutations in nucleotide position 64 (Val to Leu) and 547 (Glu to Lys) 

differentiated 2 isolates from Dieffenbachia maculata sourced in Florida and Germany from 

all other isolates. The trnG-rns intergenic region (length from 605 to 620 bp) contained 12 

SNPs and 33 sites with gaps giving a nucleotide diversity of (π) 0.00510; no variation was 

present in the trnG and trnY genes encoded within the intergenic region. The atp1-nad5 

intergenic region (length from 785 to 895 bp) was the most variable region examined with 23 

SNPs and 124 sites with gaps identified giving a nucleotide diversity (π) of 0.00770. Fifty-

two SNPs (average of 1 SNP every 59 bp) and 313 sites with gaps were observed in the 

combined dataset for the 4 mitochondrial regions (3.023 bp). Neutrality tests for the intergenic 

regions and for the cox2 gene were not significant, indicating that the variation followed the 

model of neutral evolution (Table 5). 

Intraspecific variability was also detected in the three nuclear regions analyzed (Table 

6). Three, 10 and 11 SNPs differentiated 7, 10 and 14 genotypes in the hyp, scp, β-tub nuclear 

loci, respectively. In the concatenated data set (1,654 bp, 24 SNPs total), 1 SNP was identified 

every 69 bp and heterozigosity was observed at each SNP locus (Table 7 and 8). In three 

genotypes (g2, g3, g4) was no observed heterozigosity at all (Table 7). Non synonymous 

substitutions were identified in the hyp locus, where 27 isolates had a SNP in position 101 

that led to a change from Cys to Ser.  For the scp locus there were 41 isolates with a non 

synonymous change in position 238 leading to a change from Ser to Gly as well as a unique 
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SNP in isolate P3815 from Rosa (Table 1) in position 397 of the gene leading to a change 

from Ala to Thr. Non-synonymous substitutions in the β-tubulin gene were not observed. A 

total of 40 genotypes were observed for the combined nuclear data set and 21 of them were 

unique. Cloned and sequenced PCR product for the scp region of two isolates N002 and N034 

showed an unexpected genetic framework for a diploid organism like P. nicotiane since a 

different number of alleles were identified for these isolates (N002, 5 alleles) and (N034, 4 

alleles). 

 

Table 3. Number of characters analyzed, haplotypes, polymorphic sites (single nucleotide 

polymorphisms and gaps), parsimony informative sites and genetic diversity parameters for 

the four mitochondrial regions, the combined data set and the cox2 gene without flanking 

spacer regions. 

  4 region trnG-rns rns-cox2 cox2-spacer cox2 gene atp1-nad5 

Isolates 96 96 96 96 96 96 

Region length (bp) 3023 629 577 912 684 905 

Haplotype number  50 28 9 13 8 31 

Haplotype diversity 0.9735 0.9325 0.8132 0.6243 0.5816 0.9414 

Polymorphic sites excluding gaps 52 12 4 13 8 23 

Site with gaps 313 33 120 36 0 124 

Parsimony informative sites 39 9 3 9 6 18 

Nucleotide diversity (π) 0.00431 0.00510 0.00182 0.00215 0.00144 0.00770 

 

Table 4. Non synonymous substitutions identified in the cox2 gene among the 96 isolates of 

Phytophthora nicotianae analyzed in the present study.  
Nucleotidic position

a 
Codon                                                    Isolates    Amino acid change 

64 21 P10297, P6915 GTT (Val) to ATT (Ile) 

114 38 N034 AAT (Asn) to AAA (Lys) 

133 45 N018 GTA (Val) to ATA (Ile) 

547 183 P10297, P6915 GAA (Glu) to AAA (Lys) 

634 212 N005, N016, N020, N044 GAT (Asp) to AAT (Asn) 

680 227 N034, N001, N006, N007, N008, 

N009, P6115, P1495, P1955, P7449, 

N010, N011 

GCA (Ala) to GTA (Val) 

a 
Considering a total length of the target region of 912 bp wich comprised 684 bp of cox2 gene. 

 

 

Table 5. Neutrality tests for the cox2 gene. 

Tajima's D -0.90265 

 Fu and Li's D* -0.34159 

 Fu and Li's F*  -0.63083 

D, Tajima's statistic (Tajima 1989); Fs, Fu's statistic (Fu 1997); D* and F*, Fu and Li's statistics (Fu & Li  

1993). Values are non-significant for P > 0.1. 
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Table 6. Number of single nucleotide polymorphisms, number and position in the nucleotide 

sequences of the three nuclear regions leading to synonymous and non synonymous 

substitution. 

 

 Polymorphic 

sites (SNPs) 

 Synonymous substitution  Non synonymous substitution 

  Number  Position  Number Position 

hyp 3  2 85; 181  1 101 

scp 10  8 90; 96; 210; 255; 261; 333; 450; 

486 

 2 238; 397 

βtub 10  10 29; 77; 101; 362; 443; 467; 590; 

635; 773; 782; 803 

 -  - 
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Table 7. List of the 24 single nucleotide polymorphisms identified in the pool of 96 isolates of 

Phytophthora nicotianae. Order and nucleotide position of the loci are referred to the 

concatenated sequence data. 
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g2 7 . T . . G . G . . . . A . T . . . . . T . . . A 

g3 5 . . . . A . A . . . . G . T . . . . . T . . . A 

g4 5 . T . . A . A . . . . G . . . . . . . T . . . . 

g5 5 R T . . A . A . . . . G . . . . . . . . . . . . 

g6 5 . T . . . . . . . . . G . . . . . . . . . . . . 

g7 4 . T . . A . A . . . . G . . . . . . . . . . . . 

g8 4 . T . . G . G . . . . A . . Y Y . . . C . . . . 

g9 4 . T . . . . . . . . . . . . . . . . . . . . . R 

g10 3 . T . . A . A . . . . G . . . . . . . C R . . . 

g11 3 . T . . G . G . . . . A . Y . . . . . . . . . R 

g12 3 . W . . . . . . . . . . . . . . . . . . . . . . 

g13 3 . T . . . . . . . . . . . T . . . . . T . . . A 

g14 2 . T . Y . . . Y R R . . K Y . . . . . . . . . R 

g15 2 . T . . . . . . . . . A . Y Y Y . . . . . . . R 

g16 2 . T . . . . . . . . . . . Y . . . . . . R . . R 

g17 2 . T . . A . A . . . . G . T . . R R Y . . R Y R 

g18 2 R T . . A . A . . . . G . . . . . . . T . . . . 

g19 2 . W . . A . A . . . . G . . Y Y . . . C . . . . 

g20 1 . T . . . . . . . . . . . . . . . . . . R . . . 

g21 1 . T . . . . . . . . . . . . Y Y . . . . . . . . 
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g26 1 . T . Y . . . Y R R . . K T . . . . . T . . . A 

g27 1 . T . . . . . . . . . . . Y . . . . . T . . . R 

g28 1 . T . . G . G . . . . A . Y Y Y . . . . . . . R 

g29 1 A T . . . . . . . . . A . . . . . . . C . . . . 

g30 1 R T . . A . A . . . . G . . . . . . . C . . . . 

g31 1 . W . . G . . . . . R . . . . . . . . . . . . . 

g32 1 . T . Y . . . Y R R . . K Y . . . . . . R . . R 

g33 1 . W . . G . G . . . . A . . . . . . . C . . . . 

g34 1 R T . . . . . . . . . . . . . . . . . . . . . . 

g35 1 . T . . . . . . . . . . . Y Y Y . . . . . . . R 

g36 1 . . . . G . G . . . . A . . . . . . . . . . . . 

g37 1 . T . . G . G . . . . . . . . . . . . T . . . . 

g38 1 . T . . A . . . . . . . . T . . . . . T . . . A 

g39 1 . . . . A . A . . . . G . . . . . . . . . . . . 

g40 1 . T . . . R . . . . . . . T . . . . . . . . . R 
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Table 8. Values of observed heterozygosity (HO) for the 24 SNPs loci of the nuclear 

combined data set. 

 

 

 

 

III.4.3 Mitochondrial haplotype analysis  

The polymorphisms observed in the four mitochondrial regions partitioned the isolates in 28, 

9, 13 and 31 haplotypes for trnG-rns, rns-cox2, cox2-spacer and atp1-nad5, respectively. 

Haplotypes diversity for the four mitochondrial regions ranged from 0.6243 to 0.9414. Eight 

haplotypes were also identified in the coding region of cox2 gene among the 96 isolates of P. 

nicotianae. Maximum likelihood phylogenetic tree (substitution model selected GTR+G), 

performed using Mega version 4 (Tamura et al., 2007), of these eight haplotypes with the 

species of clade 1 of Phytophthora spp. (sequences taken from 

http://www.phytophthoradb.org) showed that the high intraspecific variation within the cox2 

gene does not cause any change in terms of phylogenetic placement; in fact the 8 haplotypes 

clustered together in clade 1 of Phytophthora spp. (Fig. 4).  

Fifty haplotypes were identified for the combined dataset of the four mitochondrial 

regions and a high haplotype diversity was determined (0.9735) due to the large number of 

unique multilocus haplotypes (31 unique haplotypes). Haplotypes H5 and H19 were the most 

frequently encountered (Table 1). According to haplotypes and nucleotide diversity (π) the 

intergenic spacers trnG-rns and atp1-nad5 are the most variable regions among those 

investigated in this study. In fact, 47 haplotypes were observed using only these two regions.  
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III.4.4 Population structure 

Network analysis of haplotypes using the combined mitochondrial data set showed a typical 

panmictic distribution of P. nicotianae isolates (Fig. 5a). In fact, excepted for a few tobacco 

isolates from Australia (haplotype H5) and USA (haplotype H27), specific clusters reflective 

of geographical origins of the isolates were not identified in the network (Fig. 5a). For 

example the most frequent haplotype (H5) contained isolates from different geographic 

origins, including 6 sourced from Australia (4 from tobacco, 1 from Lavandula sp. and 1 from 

Leucodendron sp.) one from Italy (Rhamnus alaternus) and one from the Netherlands 

(Hyppeastrum sp.). Interestingly, some haplogroups (H1, H4, H5, H18, H19, H34, H37, H41) 

contained isolates of both mating types from different geographic locations (Table 1). 

Furthermore 4 isolates from Southern Italy (N028, N029 from Calabria and N021, N023 from 

Sicily) had the same mitochondrial haplotype but opposite mating types.  

Although, there was not a clear population structure with regard to the host of origin 

the majority of isolates recovered from citrus plants grouped together even if recovered from 

different geographic regions (Italy, California, Florida, Philippines, Syria and Albania) (Fig. 

5b). Taking into consideration all the isolates from citrus the haplotype diversity (Hd) was 

0.9181 (nucleotide diversity 0.00219) and dropped to 0.8667 (nucleotide diversity 0.00022) 

when examining only these citrus isolates clustering together. Other examples where isolates 

from the same host but from different geographical regions shared the same mitochondrial 

haplotype include isolates from Dieffenbachia maculata from Florida and Germany 

(haplotype H2), isolates from Vinca from Japan and California (haplotype H22), and isolates 

from Solanum lycopersicum from UK and Australia (P3461, P3118, haplotype H34).  

 In accordance with the mitochondrial haplotype network a typical panmictic 

distribution of P. nicotianae isolates was also confirmed by the analysis of the combined 

nuclear data set (Fig. 6). In fact no significant clustering with regards to geographic location 

of recovery were determined by using a neighbour-joining tree. However, the majority of 
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isolates from Australia (4 from tobacco and 1 from Leucodendron sp.) clustered in the same 

group (Fig. 6). Analysis of distance of the combined nuclear data set focused on the host 

confirmed the existence of a group for the majority of the isolates recovered from citrus (Fig. 

6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 - Maximum likelihood tree for the cox2 gene of the eight haplotypes of Phytophthora nicotianae with the 

other clade 1 species (indicated with P collection number of the isolates from the World Phytophthora collection) 

described by Blair et al. (Blair et al., 2008). The eight haplotypes of P. nicotianae tend to cluster together, even 

assuming the high intraspecific variability in the cox2 gene. 
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Fig. 5 - Median Joining network of haplotypes of Phytophthora nicotianae generated in NETWORK 4.2 

(http://www.fluxus-engineering.com) using combined sequences of the 4 mitochondrial regions analyzed in this 

study (trnG-rns, rns-cox2, cox2-spacer, atp1-nad5). The diameter of the circle reflects the number of isolates 

corresponding to the specific haplotype. In (A) the color is indicative of the geographic origins while (B) isolates 

from citrus (orange) and tobacco (green) are differentiated from other isolates (grey). 
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Fig. 6 - Neighbour-joining distance analysis of combined nuclear data set (hyp-scp-ßtub) (1654 bp). The isolates 

were analyzed according to their hosts (left side) or geographic (right side) origin. In the right hemisphere isolate 

N034 from Trinidad and Tobago and isolate P0700 from Ponape (Micronesia) were included with South 

American and Asian Countries respectively. 

 

 

 

III.4.5 Phylogenetic analysis 
 

Since the partition homogeneity test was not significant (p = 0.06) phylogenetic analyses were 

conducted using the concatenated data set of the four mitochondrial regions. The three 

methods of analysis (maximum parsimony, maximum likelihood and Bayesian) generated 

trees with a similar topology, however two clades (4 and 5) were not supported by the 
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from Dieffenbachia maculata recovered from Florida and Germany (Fig. 7).  Clade one (N1) 

consisted of 9 haplotypes representing 12 isolates that can be separated in two sub-clades, 1a 

and 1b. Among isolates of this group there were 15 SNPs (12 parsimony informative) and 149 

sites with gaps. Haplotype diversity within clade N1 was 0.9545. Sub clade 1a had 3 isolates 

from Southern Italy (N001, N010, N011) and 1 citrus isolate from Trinidad (N034). Sub-clade 

1b had isolates from different geographic locations and hosts. Two different haplotypes for 

tobacco isolates from Australia (P1495) and South Africa (P1955) clustered in this group.  

Clade N2 consisted of 7 haplotypes representing 21 isolates. Eighteen SNPs (10 parsimony 

informative) and 30 sites with gaps were observed in this clade with a haplotype diversity of 

0.805. Isolates from various geographic locations and hosts clustered in this clade, including 

the majority of isolates from tobacco (8 of 12 isolates) from Australia and USA (Kentucky 

and Virginia). Seven SNPs differentiated tobacco isolates from Australia (sub clade 2a) from 

those recovered from the USA (sub-clade 2b) (Fig. 7).  

In clade N3 there were 9 haplotypes (17 isolates) mainly recovered from citrus (15 

isolates) in different geographic locations; two other isolates were from Limonium sinensis 

(N043) and Catharanthus roseus (P7522). Isolate N043 had the same mitochondrial 

haplotype (H37) as 5 isolates from citrus, but was the only isolate of this haplotype showing 

an A2 mating type. Isolate P7522 represented a unique haplotype and clustered in a single 

branch basal to the rest of the clade. A total of 5 SNPs (1 parsimony informative) 

differentiated isolates of this clade with a haplotype diversity of 0.8603. However, only 2 

SNPs were observed (1 parsimony informative) in the atp1-nad5 region and haplotypes 

diversity dropped to 0.8417 by excluding isolate P7522 from the analysis. Clade N4 had 

haplotype diversity of 0.8366 and 18 isolates (9 haplotypes) differed by 2 SNPs. This clade 

was heterogeneous for geographic origin, host and mating types. Clade N5 was consisted of 

15 haplotypes representing 26 isolates and had a haplotype diversity of 0.9015. Haplotypes in 

this clade differed by 10 SNPs (2 SNPs parsimony informative) and 89 sites with gaps.  
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Fig. 7 -  Phylogenetic relationships among 96 Phytophthora nicotianae isolates based on the combined data set 

of sequences of the four mitochondrial regions (trnG-rns, rns-cox2, cox2-spacer, atp1-nad5) (left) and their 

association with the nuclear multilocus genotype of the three nuclear regions (hyp, scp, βtub) (right). Numbers 

on nodes represent the statistical support for the maximum parsimony (1000 bootstrap replicates, top number), 

Bayesian method (posterior probabilities, middle number) and maximum likelihood (100 replicates, bottom 

number). Dash on nodes indicates branches not supported by the specific phylogenetic method. Dashed lines 

delimitate the clades and their specific nuclear multilocus genotype. 
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III.4.6 Mitochondrial and nuclear markers association 

The comparison of mitochondrial haplotypes and nuclear multilocus genotypes exhibited the 

existence of several congruent groups, although mitochondrial DNA was more effective in 

differentiating closely related isolates.  

The isolates from citrus that clustered together in the mitochondrial phylogenetic tree 

(clade N4) had nearly identical multilocus nuclear genotype and differed for a single SNP 

(pos. 101) in the hyp nuclear locus for 3 citrus isolates from California (P1325, P1569 and 

P1452) (Figs. 7 and 8) and 3 SNPs in the scp locus (pos. 96, 238, 450) for one isolate from 

Florida (Pn17). Similarly, American tobacco isolates P1333, P1334, P1335 and P0582 had an 

identical mitochondrial haplotype and multilocus genotype. Also the Australian tobacco 

isolates (with the exception for isolate P1751), had the same mitochondrial haplotype and the 

same nuclear multilocus genotype.  

Interestingly, congruent data were also observed in relation to the geographic origin of 

isolates. For example identical mitochondrial haplotypes and multilocus genotypes were 

revealed for isolates P10297 and P6915 from Deffenbachia maculata from Florida and 

Germany, for isolates P3461 and P3118 from Solanum lycopersicum recovered from the UK 

and Australia and for 4 isolates (Ph5, N041, N042, N023) recovered from different regions of 

southern Italy. Furthermore, latter isolates that belonged to the A2 mating type shared 

identical mitochondrial and nuclear markers with an A1 isolates (N033) from Lycopersicum 

esculentum sourced in Chile.  

Although less frequently, examples of non congruent data for mitochondrial and 

nuclear markers were also observed. Isolate P1350 from tobacco (North Carolina) had a 

different mitochondrial haplotype and grouped in a different phylogenetic clade from the 

other American tobacco isolates but exhibited the same nuclear multilocus genotype. 

Furthermore, there were cases where isolates having the same mating type showed different 

mitochondrial haplotypes and identical multilocus genotypes. For example, isolate N001 
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(mating type A2) from Prunus Americana (Calabria, Italy) had a different mitochondrial 

haplotype (H3) as compared to the A2 isolates N010 and N011 from Dodonea viscosa (H36, 

Sicily, Italy) but had the same nuclear multilocus genotype (g10). 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 8 - Aligned chromatograph showing a SNP in the hyp nuclear region (I11F-I12R) that differentiate nuclear 

multilocus genotype of citrus isolates from California (represented by isolate P1452) from the other citrus 

isolates recovered from different geographic regions (represented by N014). 

 

 

 

 

III.5 Discussion 

 

Four mitochondrial markers and three nuclear coding regions were used in this study 

to reveal patterns of genetic variation in 96 isolates of Phytophthora nicotianae representing a 

wide host range and geographic locations. Analysis of haplotypes showed a different level of 

discrimination among the isolates for the four mitochondrial regions.  

The rns-cox2 intergenic region includes a region (trnW-cox2) already analyzed in 

Chapter II but includes an additional 262 bases. The new sequenced portion, did not improve 

the haplotype identification in the 51 isolates discussed in the Chapter II. A new SNP was 

revealed in position 66 characterizing haplotype 7 wich was already identified with the shorter 

region. This region was the least variable with a total of 4 SNPs and 120 sites with gaps and 

enabled the identification of 9 haplotypes, which is 2 additional haplotypes compared to those 
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identified with the trnW-cox2 region from 51 isolates. The cox2+spacer region identified of 

13 haplotypes with 8 of them differentiated by 8 SNPs in the cox2 gene (6 of these were non-

synonymous substitutions). Intraspecific variability has been already identified for the cox2 

gene in Phytophthora species, including two isolates of P. nicotianae (Martin and Tooley, 

2003). Nine out of 14 species with multiple isolates showed genetic variability at an 

intraspecific level for the cox2 gene (Martin and Tooley, 2003). However, maximum 

likelihood analysis of the cox2 gene haplotypes of P. nicotianae in comparison with other 

Phytophthora species of clade 1 revealed a uniform group for all isolates of P. nicotianae that 

can be clearly distinguished from other species of clade 1 (Fig. 4) according to previous 

reports (Kroon et al., 2004; Blair et al., 2008). 

The trnG-rns region included a region (trnY-rns) already analyzed in Chapter II but 

was 275 bp longer. Three SNPs and 4 sites with gaps were identified and enabled the 

differentiation of 28 haplotypes. The atp1-nad5 region was the most variable among the 4 

mitochondrial regions analyzed in the present work and allowed the identification of 31 

haplotypes that were differentiated by 23 SNPs, 124 sites with gaps and length variations in 

homopolymeric regions.  

On the whole the combined data set for the 4 mitochondrial regions identified 50 

haplotypes. The higher number of mitochondrial haplotypes observed in this study as 

compared with those of the previous study (Chapter II) reflects the larger portion of the 

mitochondrial genome of P. nicotianae examined and the broader panel of isolates analyzed. 

In an effort to reduce the amount of sequencing needed for the haplotype discovery, it was 

observed that two mitochondrial regions (trnG-rns, atp1-nad5) identify almost all the 

observed haplotypes for these isolates (47 haplotypes) and represent a valuable tool for the 

analysis of the worldwide distribution of P. nicotianae haplotypes.  

Individual regions as well as the combined data set of mitochondrial regions did not 

revealed a specific association among grouping of isolates and their geographic provenience. 
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As an example, the most frequent haplotypes (H5, H19) were shared among isolates from 

different geographic origins and hosts. The absence of a specific geographic structure most 

probably reflects either a significant gene flow among isolates or migration of isolates of P. 

nicotianae that reduced geographic separation of haplotypes. In other words, the fact that 

haplotypes were shared among different geographic locations represents evidence of the 

panmictic distribution of haplotypes of P. nicotianae and could be the result of recurring 

events of migration favored by the ornamental plants trade. Phytophthora nicotianae is a 

polyphagous pathogen and, despite hardly ever giving rise to epidemic outbreaks, it is 

probably the species that, in general, causes the most damage in nurseries. The ornamental 

plant industry is particularly exposed to the risk of the emergence of new diseases as a 

consequence of their dynamism, the wide range of products, continual innovation in 

procedures or in products and the use of intensive cultivation techniques that characterize it. 

Other particular aspects of the nursery sector are the rapid substitution of varieties to adapt to 

market demand and the use of mono and oligogenic resistances to diseases, which favors the 

rise of new special forms and new families of pathogens. Finally, the sudden, and almost 

contemporary, appearance of ornamental plant diseases in different continents can be traced 

back to structural reasons. In this line of production, in fact, the propagation material is 

produced in just a few big nurseries, which in turn supply small nurseries in other regions or 

countries (Garibaldi et al., 2004). Numerous studies indicate that the critical sector, regarding 

both the outbreak and spread of new diseases in natural and forest ecosystems, is the nursery 

business. In nurseries, migration of pathogenic species from one host to another, contact 

between taxa (genotypes, families, species) and the potential threat of hybridization 

phenomena and the differentiation of new taxa that are sometimes particularly dangerous for 

crops and natural environments are inevitable (Magnano di San Lio e Cacciola, 2002; Brasier 

et al., 2004). The existence of interspecific hybrids has been demonstrated for a number of 

Phytophthora species including P. nicotianae (Man in't Veld et al 1998; Donahoo and 
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Lamour, 2008; Nirenberg et al., 2009). In recent years in Italy more than 20 Phytophthora 

species causing root rots have been reported in ornamental nurseries, the most common being 

P. nicotianae (Cacciola et al., 2008). Similarly, P. nicotianae was one of the most common 

Phytophthora species in a recent survey carried out in nurseries and garden centers in Spain 

(Moralejo et al., 2009). A panmictic distribution similar to that revealed for P. nicotianae has 

been reported for other pathogens such as the wheat pathogen Phaeosphaeria nodorum 

(Stuckenbrock et al., 2006) and the opportunistic coral reefs pathogen Aspergillus sydowii 

(Rypien et al., 2008).  

Although data of the present study clearly indicate a panmictic distribution of P. 

nicotianae, specific associations were found among some genetic groups and hosts of 

provenience. The most interesting association was with citrus since the majority of isolates 

from this host (15 out of 19) clustered together, independent of their geographic origin 

(Philippines, Syria, Albania, California, Florida and Italy). These isolates were characterized 

by a low level of nucleotide diversity that was limited to two SNPs in the atp1-nad5 region 

and length variation in some homopolimeric T regions. A similar host clustering was 

observed for 8 isolates from tobacco recovered from Australia and USA (Kentucky and 

Virginia) although a higher genetic variation (7 SNPs) differentiated these isolates. Similar 

results were also observed for different ornamental and horticultural host species, although a 

limited number of isolates were analyzed for each host. These results seem to be in contrast 

with the above mentioned polyphagy and panmictic distribution of P. nicotianae. However, as 

already speculated in Chapter II, by analyzing a small number of isolates it can be 

hypothesized that P. nicotianae isolates have been spread worldwide due to the nursery trade 

of infected plant materials and afterwards they have progressively diverged on specific hosts. 

A preferential association between subgroups of P. nicotianae and host specificity has been 

reported for several host species (Philips and Baker, 1962; Erwin and Ribeiro, 1996; Allagui 

and Lepoivre, 2000). It was demonstrated that isolates from Citrus spp. were more virulent on 
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roots of rough lemon than isolates from petunia, tomato, walnut, silk tree, jojoba, hibiscus and 

peach. Also, tomato plants exhibited high susceptibility to many isolates including citrus 

isolates (Matheron and Matejka, 1990). Furthermore, the analysis of both mitochondrial and 

nuclear DNA restriction fragments distinguished isolates causing black shank in tobacco from 

other P. nicotianae isolates (Colas et al., 1997). 

 The phylogenetic analysis of the combined mitochondrial data set inferred with 

maximum parsimony (MP), maximum likelihood (ML) and Bayesian analysis (B) revealed 

the existence of different evolutionary patterns and enabled the identification of six 

phylogenetic groups. The tree topology was consistent with the three different phylogenetic 

methods except for clade 5 that was supported only by the Bayesian method. Compared to 

Chapter II, the analysis of a significantly longer target region representing the 10% of the 

mitochondrial genome and a higher number of isolates enabled a more accurate definition of 

genetic groups and the identification of some homogeneous sub-clades. However, basic clades 

largely confirmed those reported in Chapter II (Fig. 7).  

In agreement with the haplotype network none of these clades was associated to the 

geographic origin of isolates. Within each clade different haplotypes were identified, except 

for the clade 1, which consisted of two isolates from Dieffenbachia maculata (P10297, 

P6915) representing a single mitochondrial haplotype. Curiously, two haplotypes from 

tobacco recovered from Australia and USA (H5 and H27) represented by 8 isolates clustered 

in two different sub-clades of the main clade 2 (Fig. 7), indicating a potential common 

ancestral mitochondrial genome and a more recent evolutionary split. Similarly, 8 different 

haplotypes, with a low genetic diversity and representing 15 isolates from citrus from various 

geographic origins were grouped in clade 3, suggesting a common origin of these haplotypes, 

most probably due to the spread of the same or very similar haplotype in the major citrus 

production areas.  
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The analysis of the three nuclear loci led to the identification of 24 SNPs that divided 

the 96 isolates in 40 genotypes. Distance analysis of the combined nuclear data set did not 

show a differentiation of the isolates according to their geographic origin confirming a 

panmictic distribution of genotypes of P. nicotianae agreeing with the results of 

mitochondrial haplotype analyses. Heterozygosity was observed at each locus, which is 

compatible with the probabilities that some of the isolates used in this study were from a 

sexually reproducing population. According to the above remarks on nurseries it could be 

hypothesized their important role in favoring a sexual reproduction system in P. nicotianae by 

facilitating the meeting of different mating types from different populations. This hypothesis 

is supported the lower diversity revealed within isolates from citrus and tobacco as compared 

to isolates from ornamental plants. Eleven isolates recovered from citrus had identical nuclear 

multilocus genotype and another 4 citrus isolates (P1569, P1325, Pn17, P1452) clustered 

together with nearly similar genotypes (Fig. 6). The nuclear multilocus genotype g1 having 4 

heterozygous SNPs was identified in 11 citrus isolates, 8 of which were from South Italy. The 

fact that isolates with this genotype were all mating type A1 and almost all had the same 

mitochondrial haplotype (H37) might suggest that these heterozygous loci were fixed in 

clonal populations. However, the analysis of a large numbers of isolates collected from 

specific citrus fields is still needed to confirm this conclusions. Fixed heterozygosity in clonal 

populations has already been detected in other heterothallic species of Phytophthora. For 

example, the analysis of 13 nuclear coding regions of P. ramorum identified heterozygous 

loci established in the European (EU1) and North American (NA1, NA2) clonal populations 

(Bilodeau, 2008). A similar result was observed for P. capsici where the screening of 6 loci 

identified heterozygous genotypes that were fixed in a clonal population in coastal Peru 

(Hurtado-Gonzales et al., 2008). These observations are in agreement with the tendency for 

heterothallic species to converge more often toward clonal reproduction, especially once the 
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selection favoring certain genotypes are spread and fixed in the population with asexual 

propagules.  

Our data clearly indicate that SNP analysis is a valuable tool for the characterization 

of P. nicotianae populations, however it should be highlighted that heterozigosity represents a 

limitation since it makes haplotype determination challenging and reduces the amount of 

information that can be pulled out from the genetic data. Despite different empirical and 

computational methods that are available (Zhang and Hewitt, 2003; Stephens et al., 2001) 

cloning of PCR products is certainly the most reliable approach for the determination of 

haplotypes that constitute a particular heterozygous genotype. The main limit of this approach 

is the high cost when applied to a large number of samples. Furthermore, errors due to the 

activity of the Taq polymerase used in template amplification and in vitro recombination upon 

transformation of the bacterial cells are issues to consider for this approach (Zhang and 

Hewitt, 2003).  

In the present study PCR products cloned and sequenced for the scp region showed an 

unexpected genetic framework for a diploid organism like P. nicotianae since a different 

number of alleles were identified for isolates N002 (5 alleles observed) and N034 (4 alleles). 

Although 2 genotypes represented by 49 out of 96 isolates were homozygous it can be 

hypothesized that the heterozygous genotypes were characterized by different meiotic 

rearrangements or gene duplication. Hypothesis of polyploidy, aneuploidy or gene duplication 

have been made for P. ramorum using microsatellites (Ivors et al., 2006) and sequencing of 

nuclear coding regions (Bilodeau, 2008). Similarly trisomy and multiple alleles for coding 

region  were observed in P. infestans (Ospina-Giraldo and Jones 2003; van der Lee et al., 

2004) and in P. cinnamomi (Dobrowolski et al., 2002). The possibility of different meiotic 

rearrangements has been demonstrated in Pythium sylvaticum (Martin, 1995). In this latter 

study the analysis of the chromosome size by pulse field gel electrophoresis and Southern 

hybridization of cDNA clones, in progeny derived from sexual crosses, revealed the presence 
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of a different electrophoretic karyotypes compared to the parents. It was proposed that 

translocation and aneuploidy events were the cause of these polymorphic karyotypes. 

Moreover, the evidence of polymorphic karyotypes in isolates collected in field, suggested 

that these meiotic rearrangements were not only due to sexual crossing in the laboratory but 

were also present in the offspring in nature (Martin, 1995).  

The association of mitochondrial haplotypes with the nuclear genotypes revealed 

several interesting patterns that may reflect the above remarks on events of migration between 

different geographic regions. For example, the isolates from citrus clustering in clade 3 had a 

similar mitochondrial haplotype and multilocus genotype. Differences in the nuclear 

multilocus genotype were identified only as 1 SNP in 3 Californian isolates for the hyp region 

(Fig. 8) and 3 SNPs in the scp region for isolate Pn17 from Florida . The same mt haplotypes 

and nuclear genotypes were found for isolates within the same geographic region but also 

between different continents. Shared multilocus genotypes and mitochondrial haplotypes 

among isolates from different geographic regions was also identified for ornamental plants, 

confirming that the shipment of infected plant material from nurseries is the main reason of 

the spread of this cosmopolitan and polyphagous pathogen. For example, isolates from 

Dieffenbachia maculata from Germany shared the same haplotype and nuclear multilocus 

genotype with isolates from Florida. This was also observed for an isolate from Hyppeastrum 

sp. in Netherlands and from Rhamnus alaternus in Italy. Two isolates from Solanum 

lycopersicum from UK and Australia had the same haplotype and nuclear multilocus genotype 

of isolates from ornamental and horticultural plants from different regions in Italy.  

Other data suggests that recombination has occurred for some isolates recovered from 

ornamentals in Sicily. In fact, isolates with opposite mating type but with the same 

mitochondrial haplotype and a different multilocus genotype have been identified (isolates 

N002, N0027, N021, N025, N024, N030). A similar observation was found for isolates 

recovered from tobacco; isolate P1751 from Australia had the same mitochondrial haplotype 
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as other Australian isolates from tobacco but a different nuclear multilocus genotype. An 

isolate from North Carolina from tobacco had a different mitochondrial haplotype of other 

tobacco isolates from Virginia and Kentucky but had the same nuclear multilocus genotype. 

All these examples give a clear evidence of the wide dispersal of this pathogen and a structure 

that is not geographically confined.  

In conclusion, a combined analysis of mitochondrial and nuclear markers has been 

applied in the present study to characterize P. nicotianae. Using these approaches it has been 

possible to have an overview about intraspecific genetic variability within this species and it 

has been possible to formulate motivated hypothesis on the diffusion of gamic and agamic 

reproductive systems and on the role of nurseries and trading of propagating materials in 

favoring different reproductive system, the diffusion and the host specialization of P. 

nicotianae. Obviously much more can be done. Unlike other Phytophthora species such as P. 

infestans, P. ramorum, P. sojae and P. capsici, the nuclear genome of P. nicotianae has not 

been sequenced yet. This limits the ability to design additional nuclear markers, but new 

genomic sequencing projects are already progress for other Phytophthora species including P. 

nicotianae (http://pmgn.vbi.vt.edu/). Considering that approximately 1,600 bp of the nuclear 

genome of P. nicotianae has been screened in the present study, SNPs in the whole genome of 

P. nicotianae may provide an inexhaustible resource for marker development. After 

identifying new markers, the next step could consist in the selection of a larger number of 

isolates with an accurate sampling scheme from different geographic regions to have a clearer 

and more complete picture of the genetic structure and gene flow that characterizes P. 

nicotianae in individual populations. Furthermore, it would be interesting to monitor through 

multiple sampling in several years to evaluate if sexual or clonal reproduction is favored 

within a field (for example a citrus orchard) and follow the possible introduction of new 

genotypes that may determine the emergence of new variability in the population. It would 

also be useful to complement data from these markers with a panel of other markers, such as 
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SSR markers, that are still a primary choice for this type of analysis because of their wide 

distribution in the genome and their high polymorphism.  
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Concluding remarks and future perspectives 

 In the present study an alternative approach based on the analysis of polymorphic 

mitochondrial and nuclear DNA regions has been developed and utilised to study 

intraspecific variability in P. nicotianae. This method may be further improved by the 

identification of new mitochondrial and nuclear target regions taking advantage of the 

increasing number of available Oomycete complete genome sequences and could be 

easily extended to other species of the genus Phytophthora as well as other plant 

pathogens. Unlike other Phytophthora species such as P. infestans, P. ramorum, P. 

sojae and P. capsici, the nuclear genome of P. nicotianae has not been sequenced yet 

but this is currently in progress. A major advantage of the present method is that it 

enables the comparison of data from different research groups or time periods and 

could also be used in standardized protocols to develop a DNA barcoding like strategy 

for the precise identification of sub-specific taxa in P. nicotianae.  

 The application of the present method to characterize worldwide sourced isolates 

of P. nicotianae provided an overview about intraspecific genetic variability within this 

species and enabled the formulation of a hypothesis on the diffusion of gamic and 

agamic reproductive systems, the role of nurseries and trading of propagation materials 

in favouring different reproductive system, and the diffusion and the host specialization 

of P. nicotianae. Obviously much more can be done. A next step could consist of the 

selection of a larger number of isolates with an accurate sampling scheme from 

different geographic regions to have a clearer and more complete picture of the genetic 

structure and gene flow that characterizes P. nicotianae in an individual population and 

between populations. In fact, polymorphisms found in P. nicotianae could be employed 

to study population genetics and to advance knowledge in the evolutionary history of 

this pathogen as well as its potential to adapt to changing environments and migrations. 

Furthermore, it would be interesting to monitor multiple samplings of the same field 

over several years to evaluate if sexual or clonal reproduction is favoured within a field 

(for example a citrus orchard) and follow the possible introduction of new genotypes 

that may determine the emergence of new variability in the population. It would also be 

useful to complement data from these markers with a panel of other markers, such as 

SSR markers, that are still a primary choice for this type of analysis because of their 

wide distribution in the genome and their high level of polymorphism. 
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Appendix 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
Fig. 1 - Life cycle of black shank pathogen Phytophthora nicotianae. Image from apsnet.org (Gallup et 

al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 - Life cycle of root rot and crown rot Phytophthora pathogen. Image adapted from Agrios, 1988. 
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Appendix 2 

Protocol for DNA extraction (adapted from Ippolito et al., 2002) of the 51 

Phytophthora nicotianae isolates (utilized in chapter II and III) from Department 

of “Gestione dei Sistemi Agrari e Forestali”, Mediterranean University, Italy. 

- Isolates were grown in PDB broth at room temperature for ten days; 

- 100-200 mg of mycelia were rinsed with ultra pure water; 

- 100-200 mg of dry mycelia were suspended in 800 μl of breaking buffer (200 mM 

Tri–HCl [pH8], 250 mM NaCl, 25 mM EDTA, 0.5% SDS) with 200 μl of phenol and 

200 μl of chloroform/isoamyl alcohol (24:1) and added of a small quantity of glass 

beads (Sigma - Aldrich); 

- DNA extracted using FastPrep FP120 Instrument (Qbiogene, Inc. Cedex, France) at 

the maximum speed for 1 minute and centrifuged at 14,000 rpm for 10 minutes; 

- The upper phase was extracted twice with 200 μl of phenol and 200 μl of 

chloroform/isoamyl alcohol (25:24:1) and once with 200 μl of chloroform/isoamyl 

alcohol (24:1), respectively; 

- DNA was precipitated with an equal volume of isopropanol and  20 μl of sodium 

acetate 3 M pH 5,2 for 1 h at  -20°C; 

- DNA was centrifuged for 20 min at max speed; 

- DNA was washed with 70% cold ethanol (−20 °C) and centrifuged for 5 min at max 

speed; 

- DNA was dried and stored in ultra pure water at −20 °C. 

 

 

Protocol for DNA extraction (Blair et al., 2008) of 45 P. nicotianae isolates (utilized 

in chapter III) from the World Phytophthora Collection at Riverside, CA, USA. 

- Actively growth mycelia were produced in clarified V8 broth after incubation at room 

temperature for ten days; 

- 200 mg of mycelia were rinsed  with ultra pure water; 

- DNA extracted with FastDNA kit (MP Biomedicals Inc., Irvine, CA) using FastPrep 

FP 120 instrument according to the manufacturer’s instructions, with modifications 

using 1 ml of CLS-VF cell lysis solution and omitting the PPS protein precipitation 

solution; 

- All DNA samples were stored in ultrapure water at - 80 °C. 
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