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Preface 
 
Fruits and vegetables are currently receiving considerable attention because the 

consumers are nowadays more health conscious and pretend high quality products. Moreover, 

the contemporary dietary recommendations encourage a larger consumption of fruits and 

vegetables. 

Fragrance, appearance, and hardness are the major factors in product evaluation by the 

consumers.  

Various analytical and sensory methods have been proposed to evaluate both external 

and internal fruit quality, but many of them are time-consuming, very expensive, destructive, and 

also require trained person and equipped laboratories.  

Aroma is one of the most important quality parameter perceived by consumers. 

Gas Chromatography technique is usually employed to identify the fruit aroma, while 

sensory analysis is used to assess the intensity of aroma descriptors. The chromatographic 

techniques require special equipment and dedicated staff, as sensory analysis presents some 

drawbacks, such as the duration of panel training and, sometimes, dubious objectivity of the 

results. 

Expanding markets of high quality fruits is a key factor for the fruit industry success. 

Therefore, the improvement of flavor properties of fresh fruit reaching the consumer would add 

value, increase consumption and create new markets. But the small fruit companies, which are 

the first step of the whole chain, cannot afford long waiting times for response or spend 

exorbitant costs for quality analysis.  

For this reason it is taking steps to market the Electronic Olfactory Systems, commonly 

known as Electronic Noses, which allow obtaining, in a quick and economic way, quality 

information both close to the analytical determinations and well correlated with the responses of 

sensory analysis.  
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1. Introduction 

 

The term “quality” implies the degree of excellence of a product or its suitability for a 

particular use. To investigate and control the quality, it is necessary to be able to measure quality 

parameters like sensory characteristics, nutritive values, chemical constituents, mechanical and 

functional properties and defects.  

Moreover, the quality is always connected to product and consumer orientation. But one 

must always remember that there is more than one customer in the marketing chain, for 

example: grower, packer, distributor, retailer, produce manager, shelf stocker, shopper, and 

finally the ultimate consumer who actually eats the product. So the component attributes of 

quality vary with the context. 

 The person or institution requiring the measurement determines the choice of the 

quantities to be measured, the measurements techniques and the values of acceptance intervals. 

 Instrumental measurements are often preferred to sensory evaluations in research and 

commercial situations because they reduce variations in judgment among individuals and can 

provide a common language among researchers, industry and consumers.  

The fruit quality is not a single, well-defined attribute but comprises many properties or 

characteristics. In many cases, traditional indicators of fruit maturity, such as color, diameter, 

total soluble solids and tritatable acids, may not be sufficient to determine optimal sensory 

quality (Mehinagic et al. 2006). 

Appearance is one of the major factors that the consumer adopts to evaluate the fruits 

quality. In particular,he color is the first thing that attracts a customer; the concentration of 

pigments gives the better quality index becauseof its correlation with fruit ripening and other 

quality parameters such as sweetness and juiciness. Fruit color is measured by analytical and 

sensorial methods. The colorimeter, one of the available analytical instruments describes the 

colour  by several color coordinate systems (Minolta 1994). Some of the most popular systems 

are RGB (red, green and blue) and CIE (Commission Internationale de l’Eclairage) parameters (L* 

a* b*). According to CIE concepts, the human eye has receptors for three colors (red, green and 

blue) and all the colors are obtained by their combinations. While the color is more directly 

related to consumer pleasure, the pigment concentration may be strictly linked  to maturity and, 

definitely, is an indicative index of the flavor. 

Texture is another important quality factor not only to the final consumer, as an indication 

of hardness, crispness and juiciness, but especially to the food processors and distributors, as an 

indication of freshness. Penetrometer testers, such as the Magness–Taylor (MT) Fruit Firmness 

Tester, often improperly called a ‘pressure tester’, and the similar U.C. Firmness Tester is widely 

used for firm-to-hard fruits and vegetables (Abbott 1999). Penetrometer measurements are 

moderately well correlated with human perception of firmness and with storage life, and 
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consequently this technique has received common acceptance for a number of horticultural 

products, such as apple, cucumber, kiwi, pear and peach.  

The quality of fresh fruit is dependent on other aspects, different from the only 

appearance, for example flavor and nutritional characteristics. 

Sugars, organic acids, phenolic compounds, vitamins and odor-active volatiles influence 

flavor and nutritional characteristics. 

Sweetness is determined by the concentrations of the predominant sugars, such as 

fructose, sucrose and glucose. Sourness or acidity is determined by the concentrations of the 

organic acids as citric, malic, tartaric and amino acids, such as aspartic and glutamic acids (Ezura 

and Hiwasa-Tanase 2010).  

Moreover, fresh fruits play a significant role in human nutrition because they are sources 

of constituents such as flavonoids, carotenoids, vitamin C, vitamin A, vitamin B6 that may lower 

the risk of cancer and other diseases (heart disease and so on). 

Anyway,  continuous improvement in fruit flavor is required to satisfy consumer demands 

(Kader 2004), with particular concern to the aroma, considered to play a dominant role in overall 

flavor.  

Fruits produce distinct volatile compounds during ripening that affect the characteristic 

fresh fruit flavor, required by the consumers.  

Most fruits produce many volatile compounds as indicators of fruit ripening. For example, 

more than 300 volatile compounds are produced by apple, strawberry and melon fruit, which are 

comprised of diverse classes of chemicals, including esters, alcohols, aldehydes, ketones, and 

terpenes (low-molecular-weight compounds) (Dirinck et al. 1989, Latrasse 1991, Beaulieu 2006). 

Many of these volatile compounds are produced in trace amounts, below the thresholds of most 

analytical instruments, but detectable by human olfaction (Goff and Klee 2006), because 

considered odor-active.  

Esters, for example, are the predominant class of compounds giving fruity flavor 

characteristics. Alcohols and aldehydes contribute to flavor and aroma of the fruit as well as 

serve as precursors for ester synthesis, their composition reflect the esters present in the fruit.  

Large numbers of volatile compounds have been identified in many species of fruits, but 

more research is necessary to identify the compounds contributing to a desirable aroma, their 

threshold concentrations, potency, and interactions with other compounds. 

Thus, to improve the quality of fruit through the selection of the best-tasting genotypes to 

be produced, research on flavor is necessary including both non-volatile and volatile constituents 

that contribute to the fruit taste and aroma. 
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The importance of aroma 
 
 Man possesses various sensory organs, which provide five different senses: taste, smell, 

vision, touch and hearing. These senses are our link between the external world and our 

consciousness.  

From the evolutionary point of view, smell is one of the oldest senses, allowing identifying 

food, recognizing danger and so on. Consequently, the olfactory sense has become a key element 

in the development of many commercial industries that manipulate the aroma properties in 

order to improve product appeal and quality, thus consumers identify the individual commodities 

that have unique scents.  

The aroma characteristics have contributed immensely to the value and appeal of many 

commercial products. So, research and quality control of aroma characteristics during product 

manufacturing has become of paramount importance in industrial production operations 

because product consistency and assurance of standard characteristic are essentials for 

consumer satisfaction.   

The olfactory sense has long been intimately linked with human emotions, and, as a 

consequence, consumers are willing to pay for good-aroma products.  

 

Aroma  characteristics 
 
Aromas are mixtures of volatile compounds present in the air at concentration that may 

be detected through the sense of olfaction. In some cases, the aroma is composed of a single 

chemical compound, which is “odor-active”. In others cases only  few compounds are present, 

being only one the dominant or the principal component. However, an aroma derived from 

organic sources in most cases may be composed of hundreds of different compounds all 

contributing to its unique quality and characteristic. 

Aromatic compounds usually have relatively low molecular masses (between 30 and 300 

Da). The volatility of molecules is determined by the strength of bonds between them, being non-

polar molecules more volatile than the polar ones. In fact, most aromatic molecules have no 

more than one or two polar functional groups infact molecules with more polar functional groups 

generally are not volatile. Volatile compounds frequently contain an oxygen molecule, although 

nitrogen and sulphur may also be present (Strike et al. 1999). 

Aromatic compounds are mainly characterized by their chemical structural and functional 

groups, such as heterocyclic or aromatic rings and  double bonds that contribute to the overall 

shape of the molecule and produce a particular aroma or flavor sensation (Gardner & Bartlett 

1999). Hydrocarbons usually do not exhibit odors of interest or of a well defined character, 

although certain unsaturated hydrocarbons such as cyclic alkenes have been identified and 

associated with typical and pleasant notes, such as fruity, green, and floral odors (Anselmi et al. 

2000). 
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Four quantifiable qualitative dimensions in general characterize aromas: threshold, 

intensity, quality, and hedonic assessment. 

The detection threshold value is defined as the lowest concentration of aromatic 

compounds detectable by human subjects as an aroma (Yoshii et al. 2002). The detection 

threshold is determined by diluting the aroma to the point where 50% of the test population or 

human panel cannot longer detect the aroma (Yuwono et al. 2004). The threshold value varies 

with aroma species and between individuals, according to level of training.  

Intensity refers to the perceived strength of the aroma sensation, and increases as a 

function of concentration.  

Quality is the third dimension usually expressed through the use of descriptors, or 

common-use words, that associate the aroma to the aroma qualities of known substances. 

McGinley and McGinley (1998) proposed eight aroma groups with examples of descriptor types, 

representative of each group, as follows: 

(1) earthy aromas (musty, mouldy, musk, stale, grassy, herbal, woody); (2) floral aromas 

(fragrant, flowery, perfume, eucalyptus, lavender); (3) fruity aromas (citrus, orange, lemon, 

apple, pear, pineapple, strawberry); (4) spicy aromas (cinnamon, mint, peppermint, onion, dill, 

garlic, pepper, cloves, vanilla, almond, pine);  (5) fishy aromas (fishy, prawns, amine); (6) sewage 

aromas (septic, putrid, rancid, sulphurous, rotten, decayed, cadaverous, foul, sour, pungent, 

burnt, swampy); (7) medicinal aromas (disinfectant, phenol, camphor, soapy, ammonia, alcohol, 

ether, anesthetic, menthol); (8) chemical aromas (solvent, aromatic, varnish, turpentine, 

petroleum, creosote, tar, oily, plastic).  

Really Linneaus was the first who proposed an aroma classification. He defined seven 

primary aromas: aromatic, fragrant, musky, garlicky, goaty, repulsive and nauseating (Linnaeus 

1756, Wise et al. 2000). 

 The food, beverage and perfume industries that manage and manipulate product aromas, 

have consistently tried to name and classify aromas using the American Society for Testing and 

Materials (ASTM) classification. ASTM has classified 830 aroma descriptors (Ohloff 1990). 

Nevertheless, human panel tests have indicated that human subjects after good training can 

correctly identify an average about 100 aromas (Desor & Beauchamp 1974). 

The last aroma’s dimension is the hedonic assessment. It is associated with the relative 

pleasantness or unpleasantness of the aroma. Hedonic assessment may be quantified using 

values ranging from 1 (completely dislike) to 10 (very good, pleasant, and agreeable) or through 

objective judgments (excellent to terrible) using descriptor terms indicating relative satisfaction 

or agreeableness of the aroma (from very pleasant to completely unpleasant). 

The chemical volatile compounds, transported by the inhaled air, are trapped and 

dissolved into the olfactory epithelium; the latter is a special membrane, in a particular nasal 

region, where the olfactory sensory neurons are located (Bozza & Mombaerts 2001). The 

olfactory signal is thus transmitted to the brain, where the final perceived odor results from a 
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series of neural computations. Odors are recognized thanks to the memory effect of previous 

experienced smells, thus accounting for the high subjectivity of the odor perception (Pearce 

1997, Freeman 1991) (fig. 1). 

Sensitivity to aromas can be improved and varies considerably from person to person.  

Gilbert and Wysosky (1987) tested the sensitivity of about 1,500,000 people to selected 

aromas. They discovered that sensitivity varies widely with the nature of the aroma, sex, age, 

physiological moment and health of the people tested. Some psychophysical studies have clearly 

demonstrated the existence of specific anosmias (lack of olfaction or absence of ability to smell), 

hyposmia (decrease of ability to smell), and parosmia (distorted sense of olfaction, resulting in 

phantom, non-existent and mostly unpleasant smells) (Hutton et al. 2007, Doty et al. 1989, Royet 

et al. 2001).  

The relatively low sensitivity and discrimination capabilities of the human nose, coupled 

with the common occurrence of olfactory fatigue, has led to the need for electronic instruments 

with sensors capable of performing repeated discriminations with high precision. For these 

reasons, there is great interest in the development of electrochemical sensors capable of 

precisely quantify and express the aroma characteristics.  

 

 

 
 
 

 

Fig.1. Description of the human sense of smell. (Rinaldi 2007)                 
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Analysis of flavor and aroma volatiles 

 Many factors can influence the quality and quantity of volatile compounds in fruit 

including cultivar, cultural practices, ripeness and postharvest handling (Fellman et al. 2003, 

Dixon and Hewett 2000, Forney et al. 2000, Lester 2006). Among Of these factors, maturity plays 

a critical role in fruit volatile development. Ideally, fruit should be harvested at optimal eating 

quality to optimize volatile content for flavor. However, immature fruits are often harvested in 

order to increase storage and market life span and minimize physical damage and disorder 

expression. Although immature fruits are more successfully stored and transported, flavor is 

often lacking due to the close relationship between maturity and volatile biosynthesis (Kader 

2004). 

Fruit volatiles molecules can be classified as ‘‘primary’’ or ‘‘secondary’’ compounds, 

indicating whether they are present in intact fruit tissue or produced as a result of tissue 

disruption. Volatile molecules collected from intact fruits reflect the consumer smelling and 

perceiving ripening signals of the fruit. Volatiles generated after tissue disruption may better 

represent the flavor (taste and aroma) perception during eating (Song & Forney 2008). 

Concentrations of volatile compounds in fruit are often below the detection limit of many 

analytical instruments and, therefore, analytical techniques have been developedincrease their 

concentration. 

Volatiles from intact, cut or macerated fruits can be collected using headspace techniques 

and analyzed directly (or after fruit concentration) using various trapping technologies. In 

addition, volatile compounds can be extracted from homogenized fruits using various distillation 

and solvent extraction techniques.  

Extracts of homogenized fruits usually represent the composition of the whole volatile 

compounds present in the fruit, whereas headspace isolates represent the composition of the 

volatiles present in the air above the fruit. 

Prior to collection, fruits are enclosed in inert vessels and volatiles are collected after 

equilibration using either ‘‘static’’ or “purge-and-trap” methods. Purge and trap or dynamic 

headspace techniques have been widely applied by many researchers to isolate volatile fruit 

compounds. A popular method commonly used involves the collection of the volatile compounds 

from the headspace onto adsorbent materials over fruits or fruit tissues. Solid phase micro-

extraction (SPME) is a relatively new technology that has been used in food flavor analysis (Yang 

& Peppard 1994, Pawliszn 1997). Due to its speed, sensitivity (ppbv, parts per billion by volume) 

and lack of extraction solvents, SPME has become one of the most widely used aroma/volatile 

sampling techniques for fruit volatile analysis. However, due to the matrix effects, site 

competition on the adsorbent fiber, poor repeatability and challenges with standard curve 

calibration, SPME can only offer a semi-quantitative analysis of volatiles. 
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Extracted volatiles are typically analyzed using Gas Chromatography (GC) techniques. 

Upon the separation step (chromatographic phase), the molecule may be identify with different 

detector types: Flam Ionization Detector (FID), Thermal Conductivity Detector (TCD), and Electron 

Capture Detector (ECD; where only the first one is a destructive method. 

At the end of a chromatographic column, a Mass Spectrometer (MS) detector is used to 

identify the structure of each one molecule. This technique (GC/MS) offers good sensitivity and a 

wide dynamic range for almost all fruit volatiles. Depending on the method of sample collection, 

a variety of methods of sample introduction can be used. These include liquid injection, cold on-

column injection of headspace samples, thermal desorption of SPME fibers in temperature 

programmable injection ports, and thermal desorption of collection tubes. The latter requires 

specialized equipment, but the use of collection tubes provides many advantages, flexibility in 

collection volumes and storage of collected samples. 

Another techniquenamed Gas Crhomatography-Olfactometry (GCO) is also used to 

identify and describe compounds contributing to aroma of fruits. The use of human nose as 

sensitive detector in GC was proposed by Fuller and co-workers as early as 1964. In this 

technique the relationship between odor activity of single compounds and their behavior in an 

aroma mixture is put in evidence (van Ruth 2001). Human perception of volatile compounds is 

determined by two primary factors: the fruit volatile concentration and the human aroma 

perception threshold.  

The importance of Sensory Analysis to determine fruit quality has recently received 

increasing attention. Both descriptive and consumer panels are used to evaluate and screen 

quality of new genotypes selected by breeding (Hampson et al. 2000). 

The combination of sensory analysis and instrumental provides deep insights into the 

impact of volatile compounds on fruit flavor than either alone. 

Moreover, new technologies have been tested on fruits aiming for fast and, in some cases, 

non-destructive volatile detection. The electronic nose (E-nose) and mass spectrometry-based 

electronic nose (MS E-nose) are new technologies that can be used to predict fruit quality. These 

technologies may offer alternatives to the classical approach of fruit volatile measurement by 

means of GC/MS.  
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2. The Electronic Nose 

 
The first studies reporting measurements on whole aroma were done in the 1920s by 

Zwaardemaker and Hogewind who measured the electricity of a fine spray of water containing 

volatile substances. They noted that the spray-electricity increased when different volatiles 

substances were added to water. The first real instrument for measuring aromas was developed 

by John Hartman 30 years later. The sensitive element of the apparatus was a microelectrode 

measuring the flow of current by a millivoltmeter. Hartman was also the first to propose the idea 

that an aroma-detecting device could operate with several different coated sensitive elements so 

that different electrode-coating substances could be capable of giving differential responses with 

different compounds (Hartman 1954). 

In the early 80’s, the idea of an electronic-nose instrument with a chemical array sensor 

system for aroma classification was suggested by the studies of Persaud and Dodd (1982) and 

Ikegami and Kaneyasu (1985). By that time, the development of computers and electronic 

sensors made  conceptually possible to obtain an electronic device capable of imitating the 

mammalian olfactory system.  

The term “Electronic Nose” was used for the first time in 1988 by Gardner and Bartlett, 

who later defined it as “an instrument which comprises an array of electronic chemical sensors 

with partial specificity and appropriate pattern recognition system, capable of recognizing simple 

or complex odors” (Gardner & Bartlett 1994). 

According to Mielle et al. (1995), this type of system is ‘obviously electronic but not nose’. 

In fact the only aspect in common with human odor sensing organ is its function. Like the 

mammalian nose, it detects gases through sensors that send signals to a recognition organ (the 

brain or a computer), but the operating steps and the number of sensors, as well as the 

sensitivity and selectivity, are very different. This is the reason why some scientists prefer to call 

this instrument in other ways, for example, ‘flavor sensor’, ‘aroma sensor’, ‘odoursensing system’ 

or ‘multi-sensor array technology’. 

As analytical instruments, these systems must be designed to obtain high repeatability 

(the ability to obtain the same pattern for a sample on the same array over short intervals of 

time) and reproducibility (the ability of different sensor array to produce the same pattern for 

the same sample).  

The optimal characteristics of an ideal sensor must be: high sensitivity to chemical 

compounds comparable to that of the human nose, low sensitivity to humidity and temperature, 

medium selectivity, capacity of responding to different compounds present in the headspace of 

the sample, high stability, high reproducibility and reliability, short reaction and recovery time. 

Ideal sensors should be also robust and durable and of small dimensions.  An easy calibration 

procedure and a simple processable data output are highly desired (Shaller et al. 1998). 
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In the recent years much work has been done to understand the principles of odorant 

receptors and the organization of the olfactory system (Firestein 2001, Buck 2005, Mombaerts 

2004) with the aim to developing a device able to mimic the human olfactory system (fig. 2). In 

the latter, in each olfactory receptor cell it is located only one type of odorant receptor capable 

of detecting a limited number of substances. Several olfactory receptors are simultaneously 

activated by a complex odor, composed of multiple odorant molecules.  

In comparison, the electronic nose is at the same time more and less powerful because it 

offers the possibility of detecting some important non-odorant gases, but has a relative small 

number of sensors. One of the main reasons why it has not been possible to make a one to one 

copy of the human nose is the high specificity of the human receptors. 

 

  

 

Fig. 2. Symbolic analogy between the biological and the electronic noses process. 

 

 

After the initial euphoria produced by the prospect of replicating the biological olfaction, 

the limits of electronic nose technology were recognized and linked to the fundamental sensitive 

components (Stetter et al. 2002). The problem is that, in contrast to the nature, the information 

obtained by adding many sensors rapidly saturates. While it is possible, of course, to improve the 

individual sensors and by-pass the problem, the complexity of the electronic nose increases 

because sampling system, sensor array itself, reference data set, and the data evaluation 

algorithms require further attention and improvement.  

For historical reasons, the main research fields for electronic nose technique are still 

related to those areas where the human olfaction system is relevant and where trace 

components are the subject of interest. 

 

 

 

 

 
 

 

 
APPLE ODOUR 
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Even if the modern research has shown that the perception of human noses of some 

odorants is comparable to that of canines and rodents (Laska et al. 2000), the ability of the latter 

is superior in many fields. For instance, dogs are able to identify individuals by their scent, to 

track them, or to track down hidden narcotic drugs or explosives (Lorenzo et al. 2003, Göth et al. 

2003). However, dogs show behavioral variation depending on changes condition, and all animals 

are subject to fatigue. To decrease the complexity of execution, it would be desirable to have an 

artificial system with the same performance and ability to detect dangerous compounds too. 

The human perception is usually sensitive to odor compounds down to the parts per 

billion range (Cometto-Muñiz et al. 1998). However, the detection threshold of some substances 

is several orders of magnitude lower. An example is the case of 2,4,6-trichloroanisole shows 

(Prescott et al. 2005), the target compound for the cork taint in wine quality applications. This 

benchmark established by human perception is the target for an electronic nose detection 

(Ragazzo-Sanchez et al. 2006, Martí et al. 2003, Martí et al. 2005, Santos et al. 2004, Ragazzo-

Sanchez et al. 2005). Additionally, it must show its ability when compared to analytical systems 

too (Buser et al. 1982, Rapp  1998).   

 

2.1. Structure of an electronic nose  

 
To be defined an electronic nose (e-nose); an apparatus should consist of the following 

components: 

1. an aroma delivery system, transfering the volatile aromatic molecules from the source 

material to the sensor array (sampling system); 

2. a measure chamber, where sensors are housed, usually at fixed temperature and 

humidity, otherwise affecting the aroma molecules adsorption; 

3. an electronic transistor, converting the chemical signal into an electrical signal, and 

amplifying  and conditioning it; 

4. a digital converter, transfering the signal from analogical to digital; 

5. a computer, reading the digital signal and displaying the output on which the statistical 

analysis for sample classification or recognition can be done. 

It is important to underline that the sampling and the sensor array system are the most 

important parts of the electronic nose device because volatile compound adsorption or contact 

with the sensor surface is conditio sine qua non for sensing. The typical complete sampling time 

for e-nose analysis is a function of the sensor material, the  elements to be analyzed, the 

operating temperature of the sensor, the ambient humidity, the statistical method used for 

results analysis, and the accuracy of the microprocessor (Gardner & Bartlett 1999) 

Summarizing, the electronic nose instruments are composed of three elements: a sample 

handling system, a detection system and a data processing system.  
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2.1.1. Sample Handling 

 
Sample preparation and sampling are error prone steps and have to be well considered to 

achieve reliable results. Sample handling begins with a representative selection of samples, 

continues with their appropriate pre-treatment including possible pre-concentration and 

separation steps, and ends with a reproducible sample delivery procedure to the sensor array. 

 Each step can cause statistical as well as systematic errors, but, at the same time, the 

sample preparation offers additional opportunities to improve the results. It has the potential to 

considerably increase the sensitivity of the whole system and, in addition, to remove the 

problems caused by background interferences. 

The samples can be solid, liquid, or gaseous and their nature may differ a lot, so it is 

difficult to give a complete overview of the strategies that can be used. For instance, aqueous 

samples can be stirred, heated, or salted out, or the pH can be varied to increase the 

concentration of volatiles in the headspace (Friant & Suffet 1979). When the samples are 

gaseous, the sampling is made according to the vapor partition; a pre-concentration step can be 

useful to make the instrument more sensitive to the system studied, (Landy et al. 2002) and to 

increase the analyte amount in the head space (Baltussen et al. 2002). In this case, the analytes 

follow the concentration gradient according to Fick’s first law of diffusion (capable to quantify the 

movement of molecules from a region of higher concentration to a region of lower 

concentration). 

To introduce the volatile compounds present in the headspace (HS) into the e-noses 

detection system, several sampling techniques have been used in literature (Ampuero et al. 2003, 

Martí et al. 2005, Pèrés et al. 2003): 

 

1. Static headspace (SHS) technique consists in putting the sample in a hermetically sealed 

vial and then, extablished the equilibrium between the matrix (in a liquid or solid state) and the 

gaseous phase, and then sampling the headspace (HS). Sample temperature, equilibration time, 

vial size and sample quantity are the main parameters to be optimized. An automatic HS sampler 

is recommended to improve the poor repeatability of manual HS injection. In some applications a 

vapor-flow system it has been used providing a control better than that obtained in the case of 

manual headspace injection of the operating temperature and of the amount of analyte 

introduced into the detector. 

2. Purge and Trap (P&T) and Dynamic headspace (DHS) techniques are used in some 

applications to increase sensitivity, since they provide a pre-concentration of volatile compounds. 

In these systems, the volatile components are purged by a stream of inert gas and trapped onto 

an adsorbent matrix. In the case of P&T, the gas flow is injected through the sample, whereas, in 

the case of DHS, only the HS is purged by the gas. The trapped molecules are subsequently 

desorbed by heating and introduced into the detection system. Apart from the choice of trap, the 
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main parameters to be optimized are the temperature of the sample, the equilibration time, the 

flow rate of the extractor gas and the purge time of the HS. 

3. Solid-phase microextraction (SPME) is a user-friendly pre-concentration method. It 

consists in exposing a silica fiber covered with a thin layer of adsorbent material in the HS of the 

sample in order to trap the volatile components. The adsorbed compounds are then desorbed by 

heating and introduced into the detection system (fig. 3). Apart from the choices of the covered 

adsorbent, the main parameters to be optimized are the equilibration time, the sample 

temperature and the time exposition. This technique has a considerable concentration capacity 

and it is very simple because, unlike P&T or DHS, it does not require especial equipment to 

desorbs the absorbed molecules.  

 

 

 

Fig. 3. Schematic design of a commercial SPME fiber. The fiber is extended through the 

needle and exposed to the target analytes. After the volatiles have reached equilibrium 

between the fiber coating and the gaseous phase (or after a strongly defined time), the fiber 

is withdrawn into the needle. Desorption will take place in a heated inlet under a similar 

procedure. (Supelco) 

 
 

4. Stir bar sorptive extraction (SBSE) makes use of a magnetic bar coated with polymers. 

Its loading capacity is much higher than that of SPME. Even though it has been developed only 

recently, SBSE is a promising extraction technique when very high sensitivity is required. 

5. Membrane introduction mass spectrometry (MIMS) is based on a sample handling 

system used in mass spectrometry (MS) based e-noses. This technique allows the direct 

introduction of specific compounds of a liquid or gas sample into a mass spectrometer. A thin 

membrane is installed between the sample and the ion source of a mass spectrometer. The 

volatile compounds dissolve in the membrane, diffuse through it and, finally, evaporate directly 

into the ion source (Pérez Pavón et al. 2006).  

Sample handling is a critical point of e-nose analysis whose importance is very often 

ignored. Each of the above described methods can be advantageous and disadvantageous, and 

the choice of one of them depends on the particular application (Batterman  et al. 2002). 

SHS is the most common technique due to its simplicity. Here the aromatic material is 

stored in a closed volume and allowed to build headspace, after that the volatile compounds are 

removed from the sample vessel using a syringe and injected into the sensor chamber 
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maintained at a constant temperature and purged with a clean reference gas (usually 

conditioned or filtered environmental air) after sensor readings. An automatic headspace 

delivery system can significantly reduce the sampling time and standardize the aroma 

concentration. A drawback of SHS technique, in some applications, is the low sensitivity because 

the volatile compounds are not pre-concentrated. The pre-concentration systems improve the 

sensitivity making the detection easier. They also allow to extract semi-volatiles compounds 

which otherwise would be undetectable. However, the introduction of a supplementary step in 

the method increases the time of analysis. Moreover, analytical artifacts (memory effects, 

bleeding or irreversible adsorption) are generated in some cases. In this respect, the pre-

concentration is a good opportunity to increase the measure sensitivity, but it must be carefully 

chosen. 

 

2.1.2. Detection System 

 
The sensor array in an electronic nose performs functions very similar to those of the 

olfactory receptors in the human olfactory system. Thus, the sensor array may be considered the 

heart and most important component of an electronic nose.  

The classical e-nose, consisting of an array of chemical gas sensors as detection system, is 

the most common approach, although new technologies such as Mass Spectrometry (MS) and 

ion mobility spectrometry (IMS) have recently entered new field of application. 

A chemical sensor is a device capable of converting a chemical quantity into an electrical 

signal that can be related to the concentration of specific particles such as atoms, molecules, or 

ions in gases or liquids (Pearce et al. 2003).  

Many types of sensors can be used in an e-nose need to respond to molecules in the gas 

phase, typically formed by volatile organic compounds (VOCs) with different relative molar 

masses. Many categories of sensor arrays have been involved in the development of e-noses. 

A summary of the types and mechanisms present in gas sensor technologies is reported 

below: 

1. Piezoelectric sensors (also called gravimetric or acoustic sensors), based on the 

propagation of acoustic waves produced by piezoelectric materials (i.e. quartz or LiNbO3) in a 

multilayer structure. Surface acoustic wave (SAW), bulk acoustic wave (BAW) and quartz 

microbalance (QMB) are the most common acoustic sensors used in e-nose sensory arrays. 

2. Electrochemical sensors, including amperometric, potentiometric and chemiresistive or 

conductimetric sensors. Among them, chemiresistive sensors such as Metal Oxide 

Semiconductors (MOS) and Conducting Polymer (CP) are widely used to built arrays for gas and 

odor measurements. Several potentiometric gas sensors using Metal Oxide Semiconductor Field 

Effect Transistors (MOSFET) have been also developed and used in e-noses technology. 
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The basis of electrochemical gas sensor operation involves the interaction between 

gaseous molecules and sensor-coating materials.  

This interaction modulates the electrical current passing through the sensor and detected 

by a transducer that converts the modulation into a recordable electronic signal. 

3. Optical sensors, such as optical fibers, as well as the more traditional devices used in 

absorbance, reflectance, luminescence and surface plasmon resonance (SPR) techniques. 

4. Calorimetric or thermal sensors, in which the heat of a chemical reaction involving the 

analyte is monitored by a transducer such as a thermistor.  

For all these types of sensors it is important to take into consideration the parameters 

listed below: 

- Sensitivity: the magnitude of the output signal in response to a given input 

(perturbation/stimulus). 

- Response time: the time that the sensor signal takes to pass from 10% to 90% of its 

excursion in reaching a new steady state, during the response dynamics. 

- Recovery time: the time that the sensor signal takes to pass from 90% to 10% of its 

excursion in reaching a new steady state, during the recovery dynamics. 

- Resolution: the minimal value of the input magnitude to which the sensor is able to 

response for a given signal-to-noise ratio, at a fixed working point. 

- Limit of Detection (LOD): the minimum gas concentration that a sensor is able to detect 

for a given signal-to-noise ratio. 

- Selectivity: the capability of the sensor to distinguish a given aromatic input from another 

one belonging to a different class. 

- Drift:  the progressive change of the sensor output signal caused not by an external input 

but by intrinsic reasons (sensor material, electronics) of the sensor. 

- Stability: the attitude of the sensor to keep constant in the time its metrological 

characteristics; in other words, its response during the measurements’ time. 

- Repeatability: the attitude of the sensor output signal to give an equal response to a 

given fixed input in different repeated measurements (Brattoli et al. 2011). 

The first types of  e-noses tended to be based on an array of gas sensors of the same type, 

but practical experience showed that often their response did not produce enough information in 

many real applications. The growing tendency is that of combining different types of gas sensors 

to produce hybrid systems. However, this involves more complex electronic systems and adds a 

new step necessary to normalize or standardize the different sensor outputs (Martì et al. 2005). 

 The most widely used class of gas sensors is that of metal-oxide gas sensors (fig. 4).  

They were first commercially used in the 1960s in Japan as household gas alarms (Schaller 

et al. 1998). More recent uses include applications in many different industrial processes. 

Basically, a metal-oxide sensor consists of a ceramic support tube containing a heater spiral, 

usually made of platinum. The most widely used coating material is tin-dioxide (SnO2), doped  
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Fig. 4. Example of an MOS technology sensor. The typical dimensions are shown (Simon et 

al. 2001).  

 

with small amounts of catalytic metal additives (also called Taguchi sensors, from the 

name of its inventor). 

Metal-oxide sensors are very high sensitive (sub-ppm levels for some gases) and respond 

to oxidizing compounds (zinc-oxide, tin-dioxide, titanium-dioxide, iron oxide) and some reducing 

compounds, mainly nickel-oxide or cobalt-oxide (Mielle 1996). From a chemical point of view, the 

sensing reaction is based on the oxygen exchange between the volatile gas molecules and the 

metal coating material. The attraction of electrons to the loaded oxygen results in a decrease of 

the sensor conductivity (Demarne et al. 1992). The sorption of gas molecules produces changes in 

conductivity. 

Metal oxide semiconductor (MOS) sensors consist of three layers: a silicon semiconductor, 

a silicon oxide insulator and a catalytic metal through which the applied voltage creates an 

electric field. When polar compounds interact with the metal, the electric field is modulated and 

recorded by the transistor (Schaller et al. 1998). The doping metal (or gate) can be a thick (100-

200 nm) or thin (6-20 nm) film. In the first case, the sensor can only respond to dissociated 

hydrogen. Thus, sensor sensitivity to hydrogen non-releasing molecules such as ammonia or 

carbon monoxide is very low. A thinner layer of metal on the sensor improves the catalytic 

activity towards these kinds of molecules (Winquist  et al. 1985, Åbom et al. 2002a, Åbom et al. 

2002b). These sensors by necessity operate at high temperatures ranging from about 300 °C to 

550 °C, since at lower temperatures, the rate of the reactions on the oxide surface is too low. At 

temperatures below 100 °C, the low vapor pressure of water molecules inhibits the oxidative 

chemical reactions (Yamazoe et al. 1983). 

The functioning of gas sensors-based e-noses is affected by several problems, such as 

sensor poisoning, profile masking by some major constituents of the sample (ethanol for 

example), strong influence of moisture and non-linearity of signals (Pérez Pavón et al. 2006). To 
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overcome some of these problems, the Mass Spectrometry detection technique has been used 

for food aroma profiling (Martí et al. 2005, Pérez Pavón et al. 2006).  

MS-based e-noses are referred to as mass sensors or, sometimes, new-generation 

electronic noses. The volatile compounds are introduced into the ionization chamber of a MS 

instrument (usually a quadrupole mass spectrometer) without prior chromatographic separation. 

Each obtained ion fragment (m/z ratio) of the mass spectrum acts as a “sensor” and its 

abundance is equivalent to the sensor signal. Therefore, the number of sensors in MS-based e-

noses is variable, readily modifiable and high in most cases. Moreover, these “sensors” provide 

chemical information about the sample. It must be mentioned that MS-based e-noses are 

promising instruments for the analysis of alcoholic beverages because ethanol does not cause 

saturation problems in the MS, unlikely than in gas sensors. However, the ethanol fragment ions 

are much more abundant than the other volatile compound fragment. As a consequence, when 

the chemometric analysis is performed, samples may be differentiated by their ethanol content 

alone. This problem can easily be solved if the fragment ions corresponding to ethanol are not 

included in the fragment-ion range selected for the MS analysis (Martí et al. 2005). Thus it is 

possible to say that the alcoholic beverages are one of the examples where MS-based e-noses 

have shown better performance than the classical gas sensor based e-noses. 

However, gas sensors have some advantages such as: larger easiness of use compared to 

that of complex MS devices;cheap cost and easy maintenance; possibility of easy utilization due 

to their portability. Therefore a good approach could be to consider gas sensor based e-noses for 

screening purposes and MS-based sensors for confirmatory purposes. 

In fact, more information on the smell or identity of a sample can only be obtained by 

comparison of the signals of several sensors or receptors. It can be shown that by using sensors 

with different transducer principles the gain in useful information correlates with the increase of 

the sensor set, which, in turn, can be further extended (Ulmer  et al. 1997, Pardo et al. 2005). 

There is a variety of advantages and disadvantages by using various e-nose sensors 

depending on their response and recovery times, sensitivities, detection range, operating 

limitations, physical size, inactivation by certain poisoning agents, and other limitations that are 

specific to individual sensor types. The types and categories of advantages and limitations 

associated with individual types of e-nose sensors are closely linked to the nature of the 

technology that determines the principle for detection and the types of gaseous analytes 

detectable with each sensor type. A list of some of the major advantages and disadvantages 

associated with each type of e-nose sensor is reported in table 1. 

Finally, it is important to note that even by combining all types of available sensors there 

are limits to the useful dimensions of the array; indeed, the increase of the array size may amplify 

the noise instead of provide new information about the gaseous composition. 

The best method to arrange a sensor-based electronic nose is not to use as many different 

sensors as available, but rather to be careful to select the desired application and the knowledge 
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of the analytical data. This is the only way to be sure that the recorded signals truly corresponds 

to the substances to be detected.  

The ideal all-purpose electronic nose does not exist: however, systems that can be applied 

to more than one application field are available (Röck  et al. 2008). 

Thus, the unique combination of advantages and disadvantages related to individual 

sensor types largely determines the range of capabilities and potential applications of each 

sensor type to the analysis of various gaseous analytes in specific operating situations. Some 

other important considerations for sensor selection include operational, maintenance and 

training costs, and easiness of use by the operator. 

 

Tab. 1. Summary of advantages and disadvantages of e-nose sensor types (Wilson & Baietto 2009). 

 
 

Sensor type Advantages Disadvantages 

Calorimetric or  

catalytic bead  (CB) 

Fast response and recovery time, 

high specificity for oxidized 

compounds 

High temperature operation, only 

sensitive to oxygen-containing 

compounds 

Catalytic field-effect 

 sensors  (MOSFET) 

Small sensor size, inexpensive 

operating costs 

Requires environmental control, 

baseline drift, low sensitivity to 

ammonia and carbon dioxide 

Conducting polymer  

Sensors 

Ambient temperature operation, 

sensitive to many VOCs, short 

response time, diverse sensor 

coatings, inexpensive, resistance 

to sensor poisoning 

Sensitive to humidity and 

temperature, sensors can be 

overloaded by certain analytes, 

sensor life is limited 

Electrochemical  

sensors  (EC) 

Ambient temperature operation, 

low power consumption, very 

sensitive to diverse VOCs 

Bulky size, limited sensitivity to 

simple or low mol. wt. gases 

Metal Oxides 

 Semiconducting  (MOS) 

Very high sensitivity, limited 

sensing range, rapid response 

and recovery times for low mol. 

wt. compounds (not high) 

High temperature operation, high 

power consumption, sulfur & 

weak acid poisoning, limited 

sensor coatings, sensitivity to 

humidity, poor precision 

Optical sensors  Very high sensitivity, capability of 

identify individual compounds in 

mixtures, multi-parameter 

detection capabilities 

Complex sensor-array systems, 

more expensive to operate, low 

portability due to delicate optics 

and electrical components 

Quartz crystal 

Microbalance  (QMB) 

Good precision, diverse range of 

sensor coatings, high sensitivity 

Complex circuitry, poor signal-to-

noise ratio, sensitivity to 

humidity and temperature 

Surface Acoustic  

Wave  (SAW) 

High sensitivity, good response 

time, diverse sensor coatings, 

small dimension, low cost, virtual 

sensitivity to all gases 

Complex circuitry, temperature 

sensitive, specificity for analyte 

groups affected by polymeric- 

film sensor coating 
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2.1.3.  Data processing system 

 
The digital outputs generated by e-nose sensors have to be analyzed and interpreted in 

order to provide useful information to the operator.  

The electronic nose often consists of non-selective sensors that interact with volatile 

molecules. The physical or chemical changes generate a signal sent to a computer that makes a 

classification based on a calibration and training process leading to pattern recognition. 

Pattern recognition (PR) techniques are used for data processing of responses generated 

by the sensors of e-nose. The PR methods may be divided into supervised and no supervised 

methods although a combination of both can be used.   

The interpretation of the data sets from e-nose is carried out by use of multivariate 

statistics, no supervised algorithms, such as principal component analyses (PCA), linear 

discriminant analysis (LDA), discriminant function analysis (DFA), hierarchical cluster analysis 

(HCA), soft independent modeling of class analogy (SIMCA) and partial least squares (PLS). Also 

artificial neural networks (NAA), a supervised method, can be used for modeling the data.  

Principal Component Analysis (PCA) is the major used unsupervised technique, while 

artificial neural network (ANN) is the best-known supervised technique.  

The success of PR techniques can be enhanced or simplified by a suitable previous 

treatment of the data such as feature selection and feature extraction. Persaud and Dodd, 25 

years ago, used the value of the steady-state sensor responses for data evaluation. Data obtained 

by modern e-nose are often so complex that they cannot be manually evaluated. Thus PR analysis 

must be preceded by  a pre-processing of the data (Adams 1995).  The main aims of this stage 

are: 

1. The reducting of  the amount of data irrelevant to the study. 

2. The individualization of the significative data  to achieve the desired goal. 

3. The extraction of the information in ( or transform the data to) a form suitable for 

further analysis. 

 

Probably the most common method of pre-processing data is their normalization. More 

complex approaches involve the calculation of a covariance matrix between variables and the 

extraction of the eigenvectors and eigenvalues or a correlation matrix (Appendix A). Eigen 

analysis will provide a set of variables, which are linear combinations of the original ones. This 

has the effect of reducing the dimensionality of the data and making the analysis simpler. 

However, in handling large amounts of data, it is important to consider redundancy. As 

the new techniques increase the dimensions of the data set, the number of theoretical features 

becomes large, and hence, the selection of the right features becomes a challenge (Hajek & 

Havranek  1978). 
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Therefore, a lot of work has been recently performed to select the best features (Perera et 

al. 2001, Pardo et al. 2007, Gualdron et al, 2004, Gualdron et al. 2006, Llobet et al. 2005, Llobet 

et al. 2007) or even the most appropriate sensors (Gardner et al. 2005). 

The choice of the method utilized depends on the type of available input data acquired 

from the sensors and the type of information that is sought. The simplest form of data reduction 

is graphical analysis useful for comparing samples or aroma identification elements of unknown 

analytes with those contained in reference libraries. Multivariate data analysis (MDA) comprises 

a set of techniques for the analysis of data sets with more than one variable. MDA reduces the 

high dimensionality in a multivariate problem when variables are partly correlated, so that they 

can be displayed in two or three dimensions. For electronic-nose data analysis, MDA is very 

useful when sensors have partial-coverage sensitivities to individual compounds present in the 

sample mixture. Multivariate analysis can be divided into untrained or trained techniques. 

Untrained techniques are used when a database of known samples has not been previously built. 

Therefore it is neither necessary nor intended for recognizing the sample itself, but for making 

comparisons between different unknown samples in order to discriminate them (Shaller et al. 

1998). 

The simplest and most widely used unsupervised MDA technique is Principal Component 

Analysis (PCA). PCA is more useful when no known sample is available, or when hidden 

relationships between samples or variables are suspected. On the contrary, trained or supervised 

learning techniques classify unknown samples on the basis of characteristics of known samples or 

sets of samples with known properties contained in a reference library that is accessed during the 

analysis. Briefly, PCA is a linear feature extraction technique, which reduces the dimensionality of 

data with a minimum loss of information. This is achieved by projecting the data onto fewer 

dimensions that are chosen to exploit the relationships between the variables, so that the 

maximum amount of information is retained in the smallest number of dimensions. This 

technique allows to better assess the similarities and differences between samples.  

If we use 20 sensors (one measurement can thus be represented as a point in a 20-

dimensional space) for our measurements, some of them probably will respond in a similar (but 

not identical way). This means that the number of dimensions in the data set can be reduced 

without any loss of information. If we use, for example, only three sensors, the co-variance 

between the sensors can be represented in a three-dimensional graph (one sensor for each axis). 

Let us suppose to observe the data spreading out along a line, as shown in figure 5. 
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Fig. 5. The low-dimensional projection of the data can be used as a simple, but good, 

approximation of the data set. The direction with most of the variance in the data set is the 

first principal component (P1) (Davide et al. 2001). 

 
 

If we project all data on the line drawn in the figure, the three-dimensional problem can 

be reduced to two dimensions with a very little loss of information. The projection corresponds 

to the first principal component in a PCA, defined as the direction along which the data have the 

highest variance. The second principal component, containing most of the remaining variance, is 

directed in a direction orthogonal to the first component. In the case of several sensors, the 

procedure can be repeated up to a total number of principal components equal to the number of 

sensors. Most variation in the sensor signals will be detected in the first few principal 

components that can be conveniently used for visualizing the data. If we plot the first principal 

component as a function of the second one, we will be able to study variations in the data set. 

This type of plot is usually called a principal component analysis score plot (PCA score plot), and if 

desired can also be made by using other principal components. A loading plot of a PCA shows to 

what extent the different sensors contribute to the principal components. In this plot, sensors 

with similar contributions (i.e. containing similar information) will be close together. Sensors that 

are close to the origin have comparably small variance, and therefore probably contain little 

information (see figure 6).  

 

                 

 

Fig. 6. (a.) Principal Component Analysis (PCA) score plot; (b.) PCA loading plot. 
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One of the most popular supervised methods to handle electronic nose data is the 

artificial neural network (ANN), which bears a certain resemblance to the function of the human 

brain. In principle, an ANN is constituted of many (in the order of 50-100) artificial neurons. The 

artificial neurons are organized in different layers (see figure 7), often three, forming a network. 

An artificial neuron is a simple processing element that, similarly to biological neurons, uses 

signals from several inputs to produce one output. 

 

 

 

Fig. 7. Schematic network architecture applied on electronic olfactory system sensor 

responses (Davide et al. 2001). 

 

A linear combination of all the inputs is taken to give a single value. This value is then used 

in a transfer function, which could have an arbitrary shape. One example is the step function, 

which, like the biological neuron, gives a non-zero value out when the calculated value from the 

linear combination is above a certain threshold, and zero otherwise. More common, however, is 

the use of a smooth function, e.g. a sigmoid. The learning in an ANN is performed by changing 

the parameters in the linear combination, and possibly even the shape of the sigmoid. By feeding 

data from known odors into the network, the parameters can be adapted to recognize the sensor 

signals from these odors. In order to adjust the parameters, the training data has to be used 

many times. This is very similar to the humans training for odor recognition.  Once being exposed 

to an odor , we seldom remember it very well, while we are able to recognize odors we have 

experienced in youth even after very long time. It is important to note that an ANN, just like the 

human nose, can not identify odors never experienced before. In this case the ANN can only say 

or it does not recognize the odor. When confronted with the sensor signals from a new odor, the 

ANN can only say which of the known odors the signal are most similar to, or (even better) that it 

does not recognize the odor. A human can easily say if an unknown odor is pleasant or not, while 

an electronic nose cannot make any subjective judgment of that type (Davide et al. 2001). 
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2.2. Commercial devices   

 
Nowadays, many electronic noses are commercially available with a wide range of 

applications in various markets and industries ranging from food processing, industrial 

manufacturing, quality control, environmental protection, security, safety and military 

applications to various pharmaceutical, medical, microbiological and diagnostic uses.  

Some of the most widely used electronic noses including manufacturers, models available 

and technological basis are listed in table 2. 

The list includes instruments with single-technology sensor arrays and instruments with a 

combined-technology of e-noses working in tandem with classical analytical systems. The 

additional need to identify individual chemical species or components within sample mixtures 

has prompted the generation of new  instruments whose borders between electronic noses and 

conventional analytical instruments are confused. These new hybrid devices are not considered 

e-noses in the strictest sense because they do not provide a collective data output from a sensor 

array and are designed to detect and identify individual components of a gaseous mixture. 

The new trends in the odor detection are strongly driven by nanotechnologies and 

nanomaterials (Cheng et al. 2009, Penza et al. 2010, Fryxell et al. 2007, Patolsky & Lieber 2005). 

Nanotechnology has recently attracted a lot of attention, particularly in the research and 

industrial communities. The ability to design, synthesize and manipulate specific materials at 

nanoscale level lies at the very heart of the future promises of nanotechnology (nanotubes, 

nanowires, nanocrystals, nanoparticles, etc.).  

Several studies concerning the use of nanomaterials as gas sensor  have been reported in 

literature. Penza et al. (2010) studied an array of four sensors based on carbon nanotube layers 

functionalized with metal catalysts for landfill gas monitoring applications. Patoslky and Lieber 

(2005) developed an individual silicon-nanowire to implement a field effect transistor (FET) 

functionalized with DNA and proteins for detection of biological and chemical species in the area 

of healthcare and life sciences. This device may be called a nanosensor. However, the 

nanosensors based on individual nanowires have been integrated by Cheng et al. (2009) in an 

array of multiple sensing elements to implement a nanoelectronic nose based on hybrid 

nanowire/nanotubes and micromachining technology for sensitive gas discrimination. 

 This nanoelectronic nose has a great potential for detecting and discriminating a wide 

variety of gases, including explosives and nerve agents. 
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Tab. 2. Some commercially electronic noses, models and technologies (Wilson & Baietto 2009). 
 
 

Instrument type Manufacturer Models produced Technology basis 

Single-technology 
(e-nose sensors only) 

 
Air sense Analytics 
 

 
i-Pen, PEN2, PEN3 

 
MOS sensors 

Alpha MOS FOX 2000, 3000, 4000 MOS sensors 

Applied Sensor Air quality module MOS sensors 

Chemsensing ChemSensing Sensor array 
 

Colorimetric optical 

CogniScent Inc. ScenTrak Dye polymer sensors 

CSIRO Cybernose Receptor-based array 

Dr. Födisch AG OMD 98, 1.10 MOS sensors 

Forschungszentrum 
Karlsruhe 
 

SAGAS SAW sensors 

Gerstel GmbH Co. QSC MOS sensors 

GSG Mess- und 
Analysengeräte 
 

MOSES II Modular gas sensors 

Illumina Inc. oNose Fluorescence optical 

Microsensor Hazmatcad, Fuel Sniffer, SAW sensors 

Systems Inc. SAW MiniCAD mk II  

Osmetech Plc Aromascan A32S Conducting polymers 

Sacmi EOS 
835

 , Ambiente Gas sensor array 

Scensive Technol. Bloodhound ST214 Conducting polymers 

Smiths Group plc Cyranose 320 Carbon black-
polymers 

Sysca AG Artinose MOS sensors 

Technobiochip LibraNose 2.1 QMB sensors 

Combined-technology  
(e-nose + other types) 

 
Airsense Analytics 
 

 
GDA 2 

 
MOS, EC, IMS, PID 

Alpha MOS RQ Box, Prometheus MOS, EC, PID, MS 

Electronic Sensor 
Technology 
 

ZNose 4200, 4300, 7100 SAW, GC 

Microsensor Syst. Hazmatcad Plus  
CW Sentry 3G 

SAW, EC  
SAW, EC 
 

Rae Systems Area RAE monitor CB, O2, EC, PID 

 IAQRAE Thermistor, EC, PID, 
CO2, humidity 
 

RST Rostock FF2, GFD1 MOS, QMB, SAW 
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2.3. Electronic Nose applications in food analysis 
 

In the past two decades, the applicability of electronic noses has been tested in every 

imaginable field where odors or odorless volatiles and gases are thought to play a role (Ampuero 

& Bosset 2003, Strike et al. 1999, Gardner & Bartlett 1994, Casalinuovo et al. 2006). Today, 

electronic noses are used in military, security, and safety and medical applications, food 

processing, and pharmaceutical industry. The electronic nose is also used in quality assurance-

quality control (QA-QC) 

Process control is really a promising application field. Independently on the character of 

the product, it is important to ensure that it has always the same characteristics. Therefore, e-

nose application area ranges from control of industrial production lines as in the pharmaceutical 

industry and in the manufacture of food packaging, to the control of composting processes. 

Besides the control of temperature, humidity, optical appearance, viscosity, etc., the electronic 

nose adds another dimension in the observation and can help to minimize the variability 

between different batches. 

Recently, many efforts have been made in the field of foodstuff and beverages with 

particular concerns for the study of time-dependent processes (Casalinuovo et al. 2006, Capone 

et al. 2005, Deisingh et al. 2004). These include unwanted processes such as changes during 

storage or spoilage, as well as the ripening or fermentation of particular products.  

A very promising application field for the electronic nose is its use in spoilage detection of 

foodstuffs. The fight against the autolysis and growth of microorganisms is the main objective for 

food preservation that and can be pursued in different ways. The most popular approaches are 

pasteurization, refrigeration, removal of water, change in pH, the use of packaging under 

vacuum, the use of food additives, or a combination of them. In all cases, food deterioration 

cannot be prevented but only postponed. Therefore, the challenge is to detect spoilage at earlier 

stages or, alternatively, to predict it (Dainty 1996). The field is quite complex as both the nature 

and origin of the foodstuff and the preservation technique employed influence the species of 

bacteria, fungi, or enzymes responsible for spoilage. Due to the variety of different substances 

that can be produced during spoilage, the biologically evolved human perception is still the best 

detection method for most applications of off-odor and off-taste detection. To use an 

instrumental analysis, one has to be aware of the substances relevant for each sample type, but 

despite our knowledge of the formation of free radicals, influence of enzymes, different bacteria 

produced, yeast and mold strains, and their metabolism products, the experience in their 

detection by an electronic noses is still at the beginning. 

The critical point is the generalization and, closely connected to it, the question of the 

usability of the electronic nose results without a previous thorough exploration of all 

applications’ variables (different samples, different batches, long-term behavior, etc). Because 
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foodstuff is very heterogeneous, there is no warranty that the results will be reproducible for a 

sample set with the varying of an unconsidered parameter. 

In addition to the assessment of food, the human nose gives us further important 

information. For example, it warns us about dangers such as fire, air pollutants, and so on. For 

this reason, electronic noses are being investigated in the security field for the detection of 

hazardous substances and explosives. 

The question from the electronic nose point of view is which additional information can be 

obtained through its use and in which fields it can replace the established techniques. To get a 

feeling on what is feasible, one has to acquire knowledge about the substances detected by the 

human nose, classical analytical detectors and the electronic noses. For this reason, gas 

chromatography experiments are very helpful because they reduce the problem of a whole 

bouquet to single substances. In aroma and odor analysis GC-olfactometry (GC-O) helps to 

identify which volatiles are responsible for the respective odor impression. Direct comparison of 

GC-O results with GC/FID or GC/MS results gives information about which marker substances are 

detectable without a sensory test panel and which are reliably detected only from the human 

nose (fig. 8). This knowledgment is important because measurements on foodstuff such as daedal 

peel oil (Song et al. 2000), green Mexican coffee (Cantergiani et al. 2001), grapefruit oil (Lin et al. 

2001), cooked asparagus (Ulrich et al. 2001), cashew apple nectar (Valim et al. 2003), or Croatian 

Rhine Riesling wine (Komes et al. 2006) have shown that sometimes there is a big discrepancy 

between the substances detectable by the human nose and those detected with commercial 

detectors and vice versa. 

 

 
 

Fig. 8. Comparison of a GC/FID chromatogram (top) with a time-intensity aromagram (GCO) 
of grapefruit oil. It is obvious that the human nose is sensitive to substances the flame 
ionization detector is not able to detect and vice versa (Röck et al. 2008). 
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A search through the recent and relevant literature shows that there are five major 

categories of use for electronic noses in food control. These are (i) process monitoring, (ii) shelf-

life investigation, (iii) freshness evaluation, (iv) authenticity assessment and (v) other quality 

control studies. 

 

 Process monitoring 

 

Several successful applications of the electronic noses to the monitoring of flavor and/or 

aroma components along a food production process have been published. 

García et al. (2005) have made use of an e-nose to identify spoiled Iberian hams during the 

curing process. The sensors used were tin-oxide semiconductor thin films, some of which were 

doped with metal catalysts such as Cr and In. A good discrimination (success rate of 100%) 

between two types of Iberian hams (spoiled and unspoiled) was obtained through the statistical 

methods of PCA and probabilistic ANN (PNN). 

Pani et al. (2008) used a MOS based e-nose (AirSense, Alpha MOS’s technology) for 

monitoring the changes in aroma profile of tomato slices during air dehydration processes. Two 

kinds of samples (untreated and osmodehydrated in corn syrup) were studied. E-nose data 

analysis by means of PCA was able to characterize the process aromatic fingerprint, which could 

be helpful to understand and parameterize the degradative events caused by dehydration. 

Lebrun et al. (2008) undertakook a study to discriminate between mango fruit maturity by 

volatiles using a Fox 4000 e-nose (Alpha MOS’s technology) (with 18 metallic oxide sensors) and 

Gas Chromatography (GC). Three different mango fruit varieties (Mangifera indica L.) were 

harvested at different maturities and with different sizes. Immediately after harvest (green) or 

after 1 week of ripening at room temperature (ripe), fruit were homogenized or left intact and 

evaluated by the e-nose or by GC for aroma and other volatiles as well as for soluble solids and 

acids. Volatile data from the different harvest maturities and ripening stages were discriminated 

by using discriminant factor analysis (DFA). Both the e-nose and GC were able, in most cases, to 

separate fruit from different harvest maturities (at both the green and ripe stages) as well as to 

discriminate green from ripe fruit, and fruit from the different varieties within a maturity stage. 

Solids and acids data indicated that later harvest maturities resulted in sweeter fruit and later-

harvested fruit had a different volatile profile from earlier harvested fruit. These results 

demonstrate the benefit that could be obtained from the development of a hand-held e-nose 

device capable of determining the optimal harvest maturity for mangoes on the tree by the 

volatiles emitted, or an e-nose device that could be used as a screening tool on fruit after 

harvest. 

During black tea manufacturing, tealeaves pass through a fermentation in which the 

grassy smell is transformed into a floral smell. The optimal fermentation is extremely crucial in 

deciding the final quality of finished tea and it is very important to terminate the fermentation 
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process at the right time. Bhattacharya et al. (2008) presented a study on real-time smell 

monitoring of black tea during the fermentation process using an e-nose (Figaro’s, Japan, 

sensors: TGS-832, TGS-823, TGS-831, TGS-816, TGS-2600,TGS-2610, TGS-2611 and TGS-2620) as 

well as prediction of the correct fermentation time. Different time-delay neural networks 

(TDNNs) and self-organizing map (SOM) methods for the prediction of optimum fermentation 

were used and both the methods appeared to be suitable for the purpose. According to the 

authors, the results showed excellent promise for the instrument to be used by the industry. 

A French Alpha MOS e-nose and headspace volatile analysis using SPME were used to 

group 76 commercial and 120 self-prepared citrus juices according to fruit type, cultivar and 

treatment using LDA. In one case, a commercial orange juice grouped close to grapefruit and two 

declared grapefruit juices ended up being miss-assigned to grapefruit and were in fact pummelo, 

exposing wrong or misleading supplier information and human error (Reinhard et al. 2008). 

 

 Shelf-life investigation 

 

Many e-nose applications in the literature are devoted to monitor the ripening process of 

fruits and other vegetables during their shelf-life period (from harvest until consumption) 

(Brezmes et al. 2001, Herrmann et al. 2002, Berna et al. 2004, Saevels et al. 2004, Hernández-

Gómez et al. 2007, Benedetti et al. 2008). Monitoring and controlling ripeness is a very important 

issue in fruit and vegetables management since it is a very important quality indicator for 

consumers. Many methods to monitor fruit ripeness have already been proposed but they are 

not useful for packinghouses and most of them require the destruction of samples used for 

analysis. Therefore, predictions of shelf-life ripeness state are mainly based on practical 

experience. Leaving these critical decisions to subjective interpretation implies that large 

quantities of fruit and vegetables reach consumers markers in poor condition. In this framework, 

e-noses have proved to be promising tools for fruit ripeness assessment. 

Brezmes et al. (2001) used an e-nose, consisting of 21 MOS sensors array, to assess the 

ripeness state of ‘Pinklady’ apples through their shelf life. In order to evaluate the e-nose 

performance, fruit quality indicators, such as firmness, starch index and acidity, were also 

obtained, and results from both techniques were compared. Pinklady apples were harvested at 

their optimal date so that e-nose and fruit quality measurements could be performed on the fruit 

samples during their ripening process. A PCA analysis did not show any clustering behavior that 

might be attributed to ripening. On the other hand, fuzzy art, an unsupervised ANN classification 

algorithm, showed a tendency to classify measurements regarding to their self-life period. Finally, 

good correlation coefficients were obtained between e-nose signals and classical fruit quality 

parameters (firmness and acidity) by means of PLS modeling, thus indicating that e-nose signals 

were related to the ripening process of apples. 
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In the paper by Herrmann et al. (2002), an e-nose based on arrays of differently coated 

QMB was used to discriminate between VOCs formed during the post-harvest ripening of apples. 

The compounds monitored were aldehydes and esters. The relative ratios of these compounds 

change during post-harvest ripening and this allows them to be analyzed by PR methods. This is 

due to the formation of characteristic patterns of sensor responses. During the ripening of 

apples, trans-2-hexenal can serve as an indicator compound because its concentration increases 

significantly. It was found that the detection limit of trans-2-hexenal was 20 ml/m
3
. Both 

qualitative (type of apple) and quantitative identification were possible. However, the correlation 

between the vapor concentration and sensor response was linear within a limited concentration 

range. It was found that the shape of the curve is similar to the Langmuir adsorption model, 

thereby limiting the range, which could be used. 

The performance of LibraNose (a QMB coated by modified metallo-porphyrins and related 

compounds based e-nose) and a MS-based e-nose for tomato aroma profiling was evaluated by 

Berna et al. (2004). SPME headspace sampling combined with GC was used as a reference 

method. In the first experiment, the changes in tomato aroma profiles of two different cultivars 

were monitored during the shelf life (days 1, 8, 12 and 19). The score plot of PCA for the e-nose 

measurements showed a slight shift along the first principal component corresponding to an 

increasing number of days of shelf life. However, the tomato aroma profiles measured on days 1 

and 8 could not be discriminated by the e-nose. In contrast, MS nose score plots indicated an 

evident change in aroma profile with the shelf life. 

The potential of a LibraNose e-nose and a MS-based e-nose to monitor changes in apple 

fruit volatiles during shelf life has been studied by Saevels et al. (2004). These techniques were 

compared with a traditional technique to measure volatiles, GC–MS. Apples were stored for 8 

months under three different storage conditions and the volatile profile changes were followed 

subsequently over a period of 15 days. Analysis of the PCA score plot for the e-nose 

measurements showed no storage history effect and only very little shelf-life effect. In contrast, 

the MSE-nose and GC–MS score plots clearly indicated the presence of both shelf life and storage 

history trend. Moreover, the volatile profile changed during shelf life and it was depending on the 

storage history. The loading plots of the PCA of the GC–MS data revealed which volatiles are 

important to differentiate between storage conditions and which ones are important during 

ripening on the shelf. PLS models based on the three data sets to relate firmness and days of 

shelf life with the volatile production of apples were built based on the three data sets. It was 

found that the models based on the e-nose data had worse prediction performance than those 

based on the MSE-nose data.  

The possibility of exploiting information on the aroma behavior to assess fruit ripening 

stage has been the cornerstone of the work of Hernández-Gómez et al. (2008). The objective of 

this study was to evaluate the capacity of e-noses to monitor the change in volatile production of 

ripeness states for tomato, using a specific e-nose device with 10 different metal oxide sensors 
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(portable e-nose, PEN 2). PCA and linear discriminant analysis (LDA) were used to investigate 

whether the e-nose was able to distinguish among different ripeness states (unripe, half-ripe, 

full-ripe and over-ripe). The loadings analysis was used to identify the sensors responsible for 

discrimination in the current pattern file. The results proved that the PEN 2 e-nose could 

differentiate among the ripeness states of tomato. The electronic nose was able to detect a 

clearer difference in volatile profile of tomato when using LDA analysis than when using PCA 

analysis. Using LDA analysis, it was possible to differentiate and to classify the different tomato 

maturity states, and the method was able to classify 100% of the total samples in each respective 

group. 

Benedetti et al. (2008) evaluated the capability of a PEN 2 e-nose to classify four Prunus 

persica L. cultivars and to assess their ripening stage during shelf life. Firstly, PCA and LDA were 

carried out using the e-nose sensors responses on peach fruits at the first day after the harvest, 

and both analytical methods were able to distinguish the cultivars. Secondly, PCA applied on the 

e-nose data (collected during shelf-life from harvest until senescence) revealed that only one 

sensor (W5S) was relevant to differentiate peaches during ripeness on the basis of their shelf life, 

so allowing to classify them as unripe, ripe and over-ripe. The performance of the e-nose was 

compared with the results of classical and non-destructive techniques such as ethylene 

measurement and color evaluation, frequently used to assess the ripening stage of climacteric 

fruit.  

In addition to the evaluation of fruit and vegetables ripeness states, other e-noses 

applications to shelf-life investigation have been performed in cheese, milk and oil samples 

(Benedetti et al. 2005, Riva & Mannino 2005, Labreche et al. 2005, Cosio et al. 2007, Mildner-

Szkudlarz et al. 2008). 

 

 Freshness evaluation 

 

Freshness is another important quality factor in the food industry. Since a number of 

different volatile compounds are generated during storage of foods, the electronic noses have 

shown their potential in detecting freshness or spoilage of different food raw material and 

products. Electronic noses appear particularly powerful when applied to foods where significant 

release of volatiles occurs during storage due to rapid degradation by bacterial processes, such as 

fish (Di Natale et al. 2001, Du et al. 2002, Olafsdottir et al. 2005, Chantarachoti et al. 2006, Korel 

et al. 2001), shrimps (Luzuriaga et al. 2007), eggs (Dutta et al. 2003) and meats (McElyea  et al. 

2003, El Barbri et al. 2008). 

Most freshness investigations with electronic noses have involved studies with fish and 

fish products. In one of these, Di Natale et al. (2001) used the measurements of two e-noses, 

based on different sensor technologies and sampling methodologies, to detect freshness of 

codfish fillets. One of the  e-noses consisted of an array of eight thickness shear mode resonators 
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coated with various kinds of metaloporphyirns (LibraNose), while the other one (FreshSense) was 

based on five electrochemical sensors each oriented towards a certain gas (CO, H2S, NO, SO2 and 

NH3). E-noses data were analyzed by means of partial least square-discriminant analysis (PLS-DA). 

Over a period of 17 storage days, the two sensor systems showed different resolution, while the 

integration of both e-noses improved the performances allowing an almost complete evaluation 

of the freshness of samples. In comparison, the evaluation with conventional techniques (flow 

injection analysis-gas diffusion method) of Trimethylamine and total volatile basic nitrogen, 

showed a non-monotonic behavior, thus inducing the possibility of large errors in freshness 

estimation. 

An e-nose with 12 CPs sensors was used to measure odors of raw shrimp treated with 

different chemicals (Luzuriaga et al. 2007). Headless shell-on pink shrimp (Pandalus jordani) were 

treated with different amounts of bleach, phosphates and sulfites and stored at 2°C for 48 h. 

Odors were evaluated by sensory panels and the e-nose; moreover aerobic plate counts were 

performed. DFA results showed that the e-nose could discriminate differences in odor due to 

chemicals present in shrimp. The correct classification rates for bleach, phosphate and sulfite 

treated shrimp were 92.7%, 95.8%, and 99.2%, respectively. 

Mc Elyea et al. (2003) used a FOX 3000 e-nose to determine changes in lipid oxidation and 

microbial load of ground beef throughout simulated retail display. Aerobic, vacuum and CO2 

mixing treatments were used to determine their impact on e-nose responses, lipid oxidation and 

microbial characteristics. After grinding and mixing, ground beef was stored under simulated 

retail display, and analyzed at days 0, 1, 2, 3, 6, and 10. Analyses included thiobarbituric acid 

reactive substances (TBARS, a widely used procedure to estimate lipid oxidation of meat), aerobic 

plate count (APC) and e-nose characteristics. The e-nose detected changes in ground beef lipid 

and microbial stability as did conventional TBARS and APC measures. Therefore, the e-nose may 

hold promise for a rapid detection of meat freshness and safety. 

El Barbri et al. (2008) used an e-nose system containing an array of 6 tin-oxide gas sensors 

for the quality control of red meat. E-nose and bacteriological measurements were performed to 

analyze samples of beef and sheep meat stored at 4°C for up to 15 days. First, PCA and Support 

Vector Machine (SVM) based classification techniques were used to investigate the performance 

of the e-nose system in the spoilage classification of red meats. PCA (a linear technique) could be 

used for spoilage classification of beef meat but not in the case of sheep meat. A very good 

success rates in the classification of spoiled or unspoiled beef and sheep meats (98.81% and 

96.43%, respectively) were obtained when SVM (non-linear) were employed. On the other hand, 

PLS regression models showed good correlation coefficients between the e-nose signals and 

bacteriological content for beef and sheep meats. According to these results, an e-nose system 

can become a simple, fast and non-destructive alternative tool to bacterial analysis for shelf-life 

determination (i.e. quality assessment) and spoilage classification (safety assessment) of red 

meats. 
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 Authenticity assessment 

 

There is no doubt that, in terms of identification, alcoholic beverages provide the best-

known example of electronic noses use. 

In a study with the French Alpha MOS e-nose, not-from-concentrate (NFC) orange juice 

was separated from frozen concentrated orange juice (Goodner et al. 2002).  

A study using Alpha MOS e-nose with 18 sensors, shown the ability of this device to 

separate orange juice from fresh squeezed oranges, orange juice from a simulated commercial 

process (including pasteurization), orange juice from fruit harvested from healthy trees and the 

same commercially processed juice made from fruit harvested from Huanglonbing (HLB) infected 

trees and fresh squeezed tangerine juice (fig. 9). Using PCA, the e-nose was able to separate all 

these juices, even the juice from HLB-infected trees, which were shown to have fruit with off-

aroma and a bitter-metallic flavor (Baldwin et al. 2011, Plotto et al. 2010). 

 

 

 

Fig. 9. PCA plot of citrus juices based on the electronic nose signals. The observations are 

grouped by juice type, fresh squeezed orange juice (OJ) with high peel oil, processed OJ, 

processed OJ from Huanglongbing (HLB) infected fruit, and fresh squeezed tangerine juice 

(Baldwin et al. 2011). 

 

 

Successful applications to differentiation of wines on the basis of geographical origin and 

grape variety have been reported in the literature, as well as for the recognition of adulterations 

(Ragazzo et al. 2001, Penza & Cassano 2004, Lozano et al. 2007, Aleixandre et al. 2008, Lozano et 

al. 2006, Martí et al. 2004). 

 Penza and Cassano (2004) fabricated a set of 4 thin-film (WO3) metal oxide sensors, 

surface-activated by Pt, Au, Pd, Bi metal catalysts, for the recognition of some adulterated Italian 

wines (two white, four red, two rosè from different denominations of origin and vintages) added 

with methanol, ethanol or another same-color primary wine. Multivariate analysis including PCA 

and BP-ANNs (Back-Propagation Artificial Neural Networks) were used to identify both the 
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adulteration of wines and to determine the added content of adulterant agent of methanol or 

ethanol up to 10% volume. The cross-validated ANNs provided the highest achieved percentage 

of correct classification of 93% and the highest achieved correlation coefficient of 0.997 and 

0.921 for predicted vs. true concentration of methanol and ethanol adulterant agent, 

respectively. 

Moreover, other foods were analyzed for identification purposes, include olive oil, cheese, 

honey, vegetable oil, fruit juices and vinegars (Reid et al. 2006). For example, authenticity studies 

with e-noses have been successfully carried out for the determination of the geographical origins 

of Valencia orange juices (Steine et al. 2001) and Emmental cheese (Pillonel et al. 2003), for the 

differentiation of unifloral honey samples (Ampuero et al. 2004) as well as for the discrimination 

of  ‘Aceto Balsamico Tradizionale di Modena’ on age basis (Cocchi et al. 2007).  
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3. Aim of work 

 
Several studies have demonstrated that the aroma emanating from fruits can indicate the 

maturity level and thus the quality and shelf life of the marketed product. 

 The volatile composition of fruits is extremely complex and the Gas Chromatography 

coupled to Mass Spectrometer detector is the major analytical technique used today to separate 

and identify, one by one, these volatiles. Many volatile components are flavor active, but the 

most difficult problem is to understand which combination of components and in what 

proportion are responsible for the perceived aroma. Sensory scientists studying this topic have 

become increasingly inclined to characterize flavors using trained human judges.  

Because the analytical technique and the sensorial analysis are very time consuming to 

monitor fruit freshness and shelf life product, it could be advantageous to utilize e-noses to 

maximize corporate profits and optimize customer satisfaction, before and during the marketing.  

In this research several experiments were carried out in three different countries (Italy, 

Argentina and Spain) with the aim to studying the application of different Electronic Olfactory 

Systems  (EOSs) to evaluate the aroma of some fruits as quality parameter.   

Three different EOSs, one made in Italy, one in Argentina and one in Spain, were used. 

These EOSs, with different sampling and sensors technology, detected the aroma of fresh fruit, 

fresh squeezed fruit juice and minimally transformed fruit, named  “IV Gamma” or “ready-to-eat 

products”. 

Becouse different fruit cultivars can deliver very different flavor characters, the 

characterization and discrimination among differences of flavor volatile components has been 

conducted by using traditional analytical techniques, like gas chromatography technique, 

sensorial analysis, and EOSs.  

We also used the EOS on the ready-to-eat products to evaluate, in a rapid way, the 

aroma’s changes during the shelf life period. 
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4. Experiments in Italy (EOS835, Sacmi) 

 
A commercial Electronic Nose, EOS

835
 (Sacmi, Imola, Italy) available at the Institute of 

Biophysics (IBF), National Research Council (CNR), of Palermo (Italy) has been used for the 

experiments carried out in Italy. This device was used to discriminate the aroma of some fruits 

grown in Sicily. EOS
835

 was also used for monitoring and control of fresh-cut fruits (IV Gamma). In 

particular the experiments carried out in Italy were the following: 

 

-  Discrimination of fruit aroma of 5 Malus comunis cultivars by electronic nose. 

 

-  Shelf life monitoring by electronic nose, chemical, physical and sensorial 

analysis, of ready-to-eat fresh-cut apples (cv. Fuji) (samples were packaged with air 

and with nitrogen); the study was carried out in collaboration with Department Pr.I.M.E. 

University of Foggia (Italy). 

 

-  Use of the electronic nose to discriminate 3 Eriobotrya Japonica Lindl. cultivars; 

in this case Gas Chromatography analysis was also applied and results obtained by both 

techniques were compared. 

 

-  Fruit quality evaluation of 4 loquat (Eriabotrya japonica Lindl.) cultivars grown 

in Sicily (Italy); in this study the e-nose’s results were compared with Sensory Analysis 

results obtained using Panel Test. The research was carried out in collaboration with the 

Department DOFATA, University of Catania (Italy). 

 

-  Preliminary study on quality and healthy characteristic of 4 mango (Mangifera 

indica L.) cultivars grown in Sicily; in this case the determination of classic parameters 

of quality and nutritional components (such as antioxidants with health benefits) was 

carried out through classical chemical analysis. This study was carried out in collaboration 

with the CRA-ACM, Consiglio per la Ricerca e la Sperimentazione in Agricoltura – Centro di 

Ricerca per l’Agrumicoltura e le Colture Mediterranee, Acireale (CT), (Italy). 

 
 

At the beginning of XX century several studies were made by Italian University research 

centers operating in the innovative materials field; thanks to these studies Sacmi, an Italian 

company, identified a series of advanced technologies with the potential for industrial-scale 

development. 

One of the major themes of Sacmi Company was the manufacturing technology to make 

metal oxide semi-conductor (MOS) gas sensors. This technology was developed by the Gas 

Sensors Lab of the Material Engineering Chemistry-Physics Department at the University of 
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Brescia, by the Prof. Sberveglieri’s group. Thus a transfer of technology began from research 

center to company.  

From this collaboration derived the belief that complex industrial problems (e.g. foodstuff 

quality control through odor monitoring) can be solved only through a total control of the 

measuring system, in this case by the sensors. This means be able to select and modify the 

sensors characteristics by acting on the materials they are made,  the semi-conductor oxide 

(MOS) films. Equally important from an industrial reliability viewpoint is the need to ensure 

consistent, repeatable sensor response over time. So the EOS
835 

was built: an electronic olfactory 

systems made by Sacmi that can in-line sample and monitor odors , acquire and quickly process 

data by using a new software capable of analyzing complex situations and singling out the quality 

determinant factors. 

Some papers in literature (report below)have been performed using this type of electronic 

olfactory system, EOS
835

, for detecting the food aroma. 

One of the first works was for the determination of the ripening level of a roasted coffee 

blend inside the production chain of an Italian company (Falasconi et al. 2005). 

Bianchi et al. (2009) tested EOS
835

 capability to distinguish pure and microbiologically 

contaminated canned tomatoes. 

 Concina et al. (2009) investigated EOS
835

 ability to perform an early diagnosis of microbial 

contamination of canned peeled tomatoes with the aim to design an analytical protocol for an 

objective quality control at the end of the production chain. Processed tomatoes are a food 

category extremely exposed to safety risks related to the presence of both chemical residuals, 

like pesticides and herbicides, and microbial contaminants such as bacteria and fungi. Therefore, 

the improvement of tomato quality is of prior importance for customer’s safety. To assure the 

commercial saleability of the end product, the presence of microbial contaminants in canned 

tomatoes is usually controlled through a stability test. It consists in incubating the cans at 30 °C 

for 2 weeks and at 55 °C for 1 week in order to favor, if present, the microbial growth; the 

possible consequent package swelling is used as indicator of the microbial presence. However 

such test is not completely reliable because not always the absence of swelling implies absence 

of spoilage; for this reason it is necessary to control product’s pH value and sensorial parameters 

in order to ascertain the absence of non-gas producer microorganisms. These procedures force 

to a noteworthy delay between the end of production and the actual trading, with consequent 

economic losses and logistic problems for the producers. This motivates producer companies in 

demanding for tools that allow an early screening of microbial contamination, and provide a 

quick response in few hours, as an electronic nose. 

EOS
835  

was also used by Concina et al. (2010),  as a diagnostic tool of the presence of  

Alicyclobacillus spp. (ACB) in some commercial soft drinks. Contamination by ACB was firstly 

observed in apple juice (1982 in Germany), but since then a larger variety of fruit juices as well as 

herbal drinks and vegetable-derived products, such as canned tomatoes, have been involved. Soil 
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is considered to be the main source of A. acidocterrestris spores and it is believed that fruits in 

contact with the soil during harvest become contaminated. Fruit contamination is not the unique 

source of contamination of final products: beverage contamination can also result from waters 

and raw material contaminated used during the production of fruit beverages. It is manifested by 

off-flavors, due mainly to the production of 2-methoxyphenol (guaiacol), 2,6-bromophenol , 2,6-

chlorophenol, and a light sediment. Recently, some strategies have emerged devoted to inhibit 

the ACB metabolism, thus preventing the contamination appears a goal not yet accomplishable. 

Among the strategies used, the application of high hydrostatic pressure during the pasteurization 

step, the addition of preservatives such as sodium benzoate or potassium sorbate and nisin, the 

use of some plant extracts, such as rosemary, the use of active packaging, such as Ag-containing 

polymers seem to be promising at laboratory level, but no actual solution has been yet envisaged 

at industrial scale. Therefore producer companies are demanding tools capable of providing a 

more rapid and simple screening, and a yes/no response on contamination that could help to 

identify and isolate spoiled lots. Being based on unspecific chemical interaction between the 

sample volatile compounds and the sensor surfaces, the EN present some limits, such as low 

sensitivity and selectivity, and inability to identify specific compounds. Still EN can be very useful 

when the interest is addressed to a yes/no response rather than a specific analysis, as for a 

producer company looking for line monitoring tools. This study demonstrates the possibility of 

exploiting an electronic olfactory system to identify the presence of Alicyclobacillus spp. (ACB) at 

very low levels in selected soft drinks. Tests have been performed on naturally contaminated 

matrices, ready for the market, without any previous treatment. The EOS
835 

system demonstrated 

the ability to perform an excellent identification of contaminated samples, providing almost 

100% of correct classification rate. These results open the way to the possibility of performing an 

early diagnosis of ACB. 

Gobbi et al. (2010) used EOS
835

 for the detection of A. acidoterris and A. acidocaldarius 

artificially inoculated in peach, orange and apple fruit juices. The system was able to detect the 

presence of Alicyclobacillus spp. in all the tested fruit juices at 24 h from inoculation. The EOS
835

 

could detect bacterial concentration as low as <102 colony forming unit/ml and it was also able 

to classify bacterial contamination independently of the Alicyclobacillus species. 

 

Device description  
 
The EOS

835
 (fig. 4.a) system employs gas sensors of the metallic oxide semiconductor 

(MOS) resistive type installed inside a patented measuring cell (sensor chamber). The interaction 

with odors molecules causes variation in their electrical conductivity. The EOS
835 

system features 

6 sensors with different metallic oxides (tab. 4.A) that react differently to the same odorous 

molecules, thus generating a set of signal (olfactory imprint or aromatic fingerprint) characteristic 

of the sample analyzed.  
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Tab. 4.A. MOS Sensor array configuration of the  EOS
835 

(Sacmi Imola, Italy) 

Sensor No. Sensor Code Sensing layer 
Operating 

Temperature 

1 CJ1316 SnO2 cat SiO2 450 °C 

2 SB0225 SnO2 cat Ag 400 °C 
3 SD0515 SnO2 cat Mo 400 °C 
4 SH0612 WO3 375 °C 
5 SJ0717 SnO2 450 °C 
6 WHT19 WO3 400 °C 

 

 

The EOS
835 

hardware and software consist of: 

- an HT200H autosampler (HTA s.r.l., Brescia, Italy) with a forty position try and six 

position oven that allow optimizing the preparation time. The sample is heated and 

simultaneously shaken to facilitate the state change of the volatile compounds. The extraction is 

made inside the oven to assure the sample thermal stability and avoid sample condensation in 

the case of long extraction times. 

- a pneumatic section, designed to aspirate the vapors of the sample being analyzed and 

regulate the carrier gas flow; 

- a sensor chamber (thermally controlled) with 35cc of internal volume  

- an electronic section to control and to start and stop the sample measurement  

- a Windows-compatible software (NosePatternEditor) that controls the experimental 

setting and processes the data using specific algorithms as Principal Component Analysis. 

 

 

 

 

Fig. 4.a. EOS
835 

(Sacmi, Imola, Italy) at IBF-CNR Palermo (Italy). 
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4.1. Discrimination of fruit aroma of 5 Malus comunis cultivars by 

electronic nose. 

 
Apple (Malus domestica) is one of the most frequently consumed fruit. The fruit quality in 

the shelf market is determined not only by its appearance (color, surface damage), firmness and 

texture, but also by its flavor. Fruit aroma is a complex mixture of a large number of volatile 

compounds all contributing to the wholel sensory quality of fruit, specific to species and cultivar 

(Sanz et al. 1997). Over 300 volatile compounds have been measured in the apple aroma profile. 

These compounds include alcohols, aldehydes, carboxylic esters, ketones, and ethers (Dimick & 

Hoskin 1983). About 20 of these chemicals are "character impact" compounds. Although they are 

present in very low concentrations and potently contribute to the characteristics of apple 

aroma/flavor (e.g., ethyl-2-methyl butanoate) (Flath et al. 1967). Others contribute to the aroma 

intensity (e.g., trans -2-hexenal) or are related to aroma quality (e.g., ethanol) (Dürr & Schobinger 

1981). 

Typical apple flavor develops during ripening. Maximum endogenous volatile 

concentration occurs at the climacteric peak but it is not known whether the volatile biosynthetic 

enzymes are constitutive or induced during the climacteric. 

Volatile production is greater at higher temperatures in the range from 0 to 30°C but 

exposure to low temperatures (< 3°C) for more than 3 months decreases production. 

Until the late 1970s most research on aroma and flavours of apple fruit focused on 

identifying the volatiles produced by ripening (Tressl et al. 1975). Recent reviews have discussed 

the biochemical origin of aroma volatiles and the improvements of methods for separation and 

identification of volatile compounds, often in amount of  few parts per million (Dimick & Hoskin 

1983; Yahia 1994; Sanz et al. 1997).  

Traditionally, the aroma of horticultural products is measured by means of sensory panels. 

Alternatively, gas chromatography, which separates volatiles into their individual components, is 

used to quantify the different volatiles constituting the fruit aroma (Pathange et al. 2006).  

Some studies used the electronic nose technique as potential maturity indicator for 

determining the ripeness stage (Hines et al. 1999, Young et al. 1999), and monitoring changes in 

apple fruit volatiles during shelf life (Saevels et al. 2004). In our knowledge, there are no studies 

on the differentiation of apple’s cultivar aroma by electronic nose.  

A preliminary trial has been carried out to test the EOS
835

‘s MOS sensors array on 5 

cultivars of Malus comunis to evaluate if the sensors response, analysed with a multivariate 

statistical analysis (Principal Component Analysis), was able to discriminate and cluster the 

aromatic patterns of the different cultivars. 
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4.1.1. Materials and Methods 
 
Apple fruits of five cultivars (‘Granny Smith’, ’Pinklady’, ‘Fuji’, ‘Royal Gala’, ‘Golden’) were 

studied.  

 

 

 

 

Measurements on apple aroma were carried out using EOS
835

. Instrument details had 

been reported above. 

The samples were prepared in 20 ml glass vials. A small part of fruits (3g of pulp and peel) 

was sealed into vials with pierceable top. The vials were placed for 10 min at 40°C to obtain an 

homogeneous headspace. The autosampler (HTA s.r.l., Italy) automatically drew in 4 ml of 

headspace and injected it into the EOS
835

’s injector. A chromatographic air flow (10 ml/min) 

carried the sample in the sensors chamber kept at a constant temperature of 55°C. When the 

aroma went through the sensors layer the initial resistance (R0) fell down to a minimum value (R). 

The measurement duration was 15min. A set of six values {R1, …, R6} was obtained in each 

measurement and data pre-processing was carried out. The feature Classica = R/R0 was extracted 

from the sensors response curve. Principal Component Analysis (PCA) was used as unsupervised 

statistic method to reduce the dimensional space by a correlation matrix of data (using the 

NosePatternEditor software) and plot the data.  

The aroma determination was also performed by a gas chromatograph mass spectrometer 

with single quadrupole GCMS-QP2010S (Shimadzu) equipped with a capillary column SLB
TM

-5ms  

(30 m x 0.25 mm x 0.25 μm) (Supelco). The head-space solid-phase micro extraction technique 

(HS-SPME) with Polidimetilsiloxano fibers (100μm x 1cm by Supelco) was used for sampling the 

volatile fraction on samples prepared as above reported (3 g of apple pulp and peel in sealed 

20ml vials). 

cv.  GRANNY SMITH cv.  PINKLADY

cv.  ROYAL GALA cv.  GOLDENcv.  FUJI
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After 10 min of warming in a water bath at 40°C, the fiber was introduced in the vial and 

drawn out after 30 min of adsorption of volatile molecules. The desorption of all adsorbed 

molecules was allowed in the GC- injector at a temperature of 250°C. The GC-oven temperature 

was programmed as follows: an isothermal at  50°C for 2.5 min, then an increase to 200°C at a 

rate of 10°C/min, and again an isothermal at 200°C for 15 min. Other system settings were: 1 

ml/min of speed of the mobile phase (He), 70eV of ionization energy, 33-500 m/z range. 

 

4.1.2. Results and Discussion 
 
The EOS

835
’s MOS sensors array  showed a good sensitivity. Its is defined as S=R0/R, where 

R0 and R are electric resistances in air and sample gas respectively. The figure 4.1.a shows a score 

plot in two-dimensional space for the five cultivars analyzed with PCA. PC1 and PC2 accounted 

for 87.54% of the score plot’s total variance, thus evidencing a scarce capability of the instrument 

to discriminate between single cultivars. However the figure indicates a possible discrimination 

on PC2 axis. 

According to gas chromatographic aroma analysis (with Mass Spectrometer detector) 

carried out on the same apple samples after electronic nose experiments, the identified volatile 

molecules were similar for ‘Gala’, ‘Fuji’, ‘Granny Smith’ and Pinklady’, and different for ‘Golden’ 

(data no reported).  

PC2  14.04%
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Fig. 4.1.a. PCA score plot by taking EOS
835’

s data for five cultivars of apple: ‘Gala’, ‘Fuji’, 

‘Granny Smith’, Pinklady’ and ‘Golden’. 
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4.1.3. Conclusions 
 

In the present work the EOS
835

 showed a scarce capabilities to discriminate between the 5 

cultivars: ‘Gala’, ‘Fuji’, ‘Granny Smith’, Pinklady’ and ‘Golden’. The cultivar ‘Golden’, according to 

the multivariate analysis seems to be different from the other cultivars and this was also 

confirmed by the GC-MS analysis.  

The study suggests that EOS
835

 was sensitive to the apple aroma but low selective for 

differentiating the different cultivars.  
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4.2.  Shelf life monitoring by electronic nose, chemical, physical 

and sensorial analysis, of ready-to-eat fresh-cut apples (cv. 

Fuji). 

 
Recently the demand for minimally processed fruits and vegetables is greatly increasing 

because of the lifestyles, increasing purchasing power and health-consciousness of the 

consumers (Baldwin et al. 1995). Consumers request fresh-like processed products with quality 

attributes (such as appearance, texture, and flavor) similar to those of the raw products (Wong et 

al. 1994). Minimal processing has been defined as a combination of procedures, such as washing, 

sorting, trimming, peeling, and slicing or chopping, that do not affect the fresh-like quality of the 

food (Burns 1995). However, fresh-cut fruits are more difficult to produce than other minimally 

processed products, because the tissue integrity of fruits is more easily altered during processing 

(Rolle & Chism 1987). Fruit shelf life is affected by many factors, including cultivar, stage of 

ripeness at cutting, and storage atmosphere or temperature (Gorny et al. 1998). 

 Fresh-cut apples (slices, wedges, or cubes) are potential lightly-processed products and, 

although they are poorly commercially produced, fruit marketers have shown a great interest in 

their development. From a microbiological point of view, their shelf life has been estimated in 

the range of 2-3 weeks (Hoover 1997). But, in a few days they undergo biochemical 

deteriorations such as enzymatic browning, off-flavors, and texture breakdown (Varoquaux 

1991). The Nicoli’s group first proposed the use of a modified atmosphere (80% N2/20% CO2) to 

better preserve the apple slices from quality losses (Nicoli et al. 1994). 

In this work, we studied by the electronic nose, the changes of aromatic fingerprint of 

apple slices, packaged in atmospheric air and in a modified atmosphere (100% N2), stored at 4°C 

for 0, 4, 8 and 12 days. Moreover we determined classical quality parameters, such as total 

acidity, total soluble solids, firmness and sensorial profile by trained judges. 

 

4.2.1. Materials and Methods 
 
Fruits of the apple cultivar (‘Fuji’) were harvested in September (2009) in Caltavuturo, 

(Palermo, Italy), in a farm organically cultivated. 30 fruits were collected and selected for regular 

shape and uniform size. The apples were washed in distiller water and cut into slices of 1 cm 

thickness using a sharp knife. The slices were put, individually, in bags (10 cm x 10 cm) and 

sealed, by a thermal shutdown, in atmospheric air (100%Air) or in nitrogen saturated (N2) 

ambient. The bags (Reber, Italy) presented a declared permeability to O2 of 70.5 cm
3
/m

2
 24h atm 

(at 23°C and 0% RH), and of 10.5 cm
3
/m

2
 24h atm to N2 (at 23°C and 0% RH). .All the bags were 

stored in refrigerator at 4°C. The apples were analyzed just before packaging (zero time) and 

after 4, 8 and 12 days from storage at 4°C. At each storage time, 10 packages for trial (Air or N2) 

were randomly taken and analyzed. 
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The Soluble Solids Content (SSC) was determined by an optical refractometer (Atago Co., 

Ltd., Japan); the total acidity (TA) and the pH were measured with an automatic titrator (Crison 

Instruments, Alella, Spain). Firmness measurement was performed by EFFEGI texture analyzer 

(fig. 4.2.a) by measuring the maximum force registered during penetration of a 6mm diameter 

stainless steel cylinder into the apple slice tissue for 6mm. 

 

 

Fig. 4.2.a.  EFFEGI texture analyzer. 

 

A judge’s panel was engaged. The judges were trained in some preliminary sessions, using 

different samples of apples, in order to develop a common vocabulary for the description of the 

sensory attributes. Eight descriptors were selected to describe the quality state of apple’s slices: 

appearance, browning, flavor, consistency, juiciness, sweetness, acidity, and pleasantness. 

Samples were evaluated by assigning a score between 1 (absence of the sensation) and 5 

(extremely intense), except for the descriptor ‘browning’ where a reverse evaluation (1= 

maximum; 5= minimum) was adopted. Water at room temperature was used to rinse the sample 

before tasting. 

The EOS
835

, above described, was used for monitoring the aromatic fingerprint at different 

storage time. Samples were prepared in triplicate, cutting 3g slices and placing them in sealed 

vials. Samples were conditioned in the oven at 40°C for 10 minutes. After reaching the 

equilibration state, the headspace of the vial (4 ml) was drawn in by using an automated 

sampling system (HTA s.r.l., Italy) and carried out by a continuous flow of 10 ml/min of 

chromatographic air to the sensors chamber kept at a constant temperature of 55°C. When the 

aroma went through the sensors layer, the initial resistance (R0) fell down to a minimum value 

(R). The measure duration was 15min. A set of six values {R1, …, R6} was obtained in each 

measurement and data pre-processing was carried out. The feature Delta = R0-R was extract from 

the sensors response curve. Principal Component Analysis (PCA) was used as unsupervised 

statistic method to reduce the dimensional space and plot the data, by a correlation matrix of 

data (using S-Plus software). 

 

4.2.2. Results and Discussion 
 
Results of some physical-chemical characteristics of apples samples processed in 100%Air 

and in 100%N2 and cold stored for 0, 4, 8 and 12 days are reported in table 4.2.A. In both 
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conditions the soluble solids content values decreased and the total acidity increased linearly 

with the storage time. The behavior of firmness, measured by penetration test, showed little 

differences between slices storage in Air or in N2. After 12 days, the texture of samples stored in 

Air was softer than that of the sample stored in N2, thus indicating that a modified atmosphere 

(with N2) was more able to preserve the sample’s hardness. 

Tab. 4.2.A. Comparison physical-chemical parameters of apple’s slices stored in 100% Air and in 100% N2 

Storage time 
(at 4°C) 

Soluble Solid (%) Tot. Acidity (g/L citric ac.) Firmness (Kgf) 

100% Air 100% N2 100% Air 100% N2 100% Air 100% N2 

0 days 14.14 ± 1.29 12.97 ± 1.21 2.80 ± 0.65 2.59 ± 0.67 3.34 ± 0.34 3.23 ± 0.46 

4 days 13.02 ± 1.03 12.40 ± 0.76 2.66 ± 0.55 2.52 ± 0.58 3.43 ± 0.41 3.35 ± 0.40 

8 days 13.42 ± 0.98 12.55 ± 1.05 3.29 ± 0.47 3.19 ± 0.40 3.48 ± 0.39 3.55 ± 0.33 

12 days 13.27 ± 1.12 12.50 ± 0.79 3.15 ± 0.59 3.05 ± 0.51 2.75 ± 0.55 3.30 ± 0.41 

 

Results regarding sensory analysis are shown in the radar plot of the values for the 8 

chosen descriptors (fig. 4.2.a). The global ‘appearance’ of samples stored in Air, at 8 and 12 days 

storage time, were the same.  Samples stored in N2 showed the lowest values of ‘appearance’ 

only at 12 days storing time. The perception of ‘sweetness’ was different for  both types of 

storage atmosphere (Air and N2); the values of ‘sweetness’ for storage time of 0 and 4 days were 

different from those of sample at 8 and 12 days storage time. 

  

 

 

Fig. 4.2.b. Radar plot of sensorial profile for samples stored in 100% of atmospheric air and 

in 100% of nitrogen. 
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The pictures below help to better understand the values of descriptor as ‘appearance’ and 

‘browning’ for both storage atmospheres (fig. 4.2.c).  

Apples cv. Fuji - IV Gamma in 100% Air 
0 days 

 

4 days 

 

8 days 

 

12 days 

 
 

Apples cv. Fuji - IV Gamma in 100% N2 

0 days 

 

4 days 

 

8 days 

 

12 days 

 
 

Fig. 4.2.c Pictures of apple’s slices, stored at 4°C in sealed bags saturated with atmospheric 

air and nitrogen, taken at different storing time: 0, 4, 8, 12 days. 
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With respect to the EN analysis, by EOS
835

, the first two principal components (PC1 and 

PC2), for the sample in 100% Air took into account 94.07% of the total variance in the score plot 

(fig. 4.2.d). The aroma fingerprint showed changes from 0 to 12 days of storage. At 0 and 4 days, 

as well as at 8 and 12 days, the aromatic fingerprint seems to be the same, or at least the MOS 

sensors responses of electronic nose EOS
835 

were very similar. The aromatic fingerprint behavior 

for samples packaged in atmospheric air was different from that of samples packaged in nitrogen 

saturated atmosphere. In the latter, in fact, the aroma seemed better preserved. The aromatic 

fingerprint of samples stored for 0, 4, and 8 days (in 100% N2 ) was separated in a cluster 

independent from that relative to samples stored for 12 days. In this case the first two principal 

components (PC1 and PC2), for sample in 100% N2, take into account 94.60% of the total variance 

in the score plot (fig. 4.2.e). 

 

4.2.3. Conclusions 

The electronic nose is able to discriminate changes in the aromatic pattern. Indeed, it 

showed a good sensitivity to changes in minimally processed fruit aroma, such as fresh-cut fruit 

(in this case fresh-cut apples slices) that resulted higher than the judges’ human nose. 
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Fig. 4.2.d. Principal Component Analysis determined by the electronic nose system EOS
835

, at 

different storage time (0, 4, 8, 12 days) for apple’s slice stored at 100% of Air, using feature 

Delta (R0-R) and a correlation matrix. 
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Fig. 4.2.e. Principal Component Analysis determined by the electronic nose system EOS
835

, at 

different storage time (0, 4, 8, 12 days) for apple’s slice stored at 100% of N2 , using feature 

Delta (R0-R) and a correlation matrix. 
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4.3. Use of the electronic nose to discriminate 3 Eriobotrya 

Japonica Lindl. cultivars. 

 

 Loquat (Eriobotrya japonica Lind.) is a subtropical evergreen tree crop, probably 

originated in southeastern China and well adapted to mild-winter areas of the Mediterranean 

basin. It was introduced to Italy at the beginning of last century (Monastra et al. 1995) and its 

cultivation is located for 90% in Sicily, mainly in the province of Palermo (ISTAT 2008). The Italian 

consumers choose loquat fruits for their excellent quality. Shape, color, size and absence of skin 

defects are the main parameters determining the consumer’s preference (Cañete et al. 2007). 

Weight, size, seed number and flesh thickness are relevant factors influencing the storage and 

the marketing of the fruits (Fu et al. 2009). Other characteristics playing an important role in 

loquat fruit quality are flavor and taste. The latter are linked to the concentration of sugars, acids 

and volatile compounds, and consequently, to the sensorial perception of sweetness, sourness 

and aroma (Baldwin 2004). 

In Sicily, the fruit ripening period is concentrated in few months of the year: March, April 

and May (Calabrese et al. 2002), with a total loquat production of about 7.000 – 7.500 t (ISTAT 

2008), destined to local and national markets. 

Italian consumers for their excellent quality, sourness, and aroma appreciate loquat fruits.  

 

In this study we used the EOS
835

 with an array of six non-specific Metal Oxide 

Semiconductors (MOS) sensors, to discriminate the aromatic pattern of fruits of three different 

loquat cultivars: ‘Algerie’, ‘Claudia’ and ‘Nespolone di Trabia’. The EOS
835

 raw data were treated 

with an unsupervised exploratory analysis, the Principal Component Analysis (PCA). The 

differences in aromatic “fingerprints” were assigned to variation of the chemical class 

composition by using the Gas Chromatographic-Mass Spectrometry analysis. 

 

4.3.1. Materials and Methods 
 
The study was conducted in 2009, with fruits collected from loquat trees grown in Sicily. 

The field was located in the Palermo area at 150 m a.s.l.. The cultivars tested were ‘Algerie', 

'Claudia' and 'Nespolone di Trabia'. The trees were planted in 1994 at a 5 x 5 m distance and 

since 1998 the farm has been organically cultivated. For each cultivar, a sample of 80 fruits was 

randomly handpicked at the ripe stage (light orange), suitable for the fresh fruit market, and 

taken to the laboratory for analyses. 
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The Soluble Solids Content (SSC) was determined by an optical refractometer (Atago Co., 

Ltd., Japan); the titratable acidity (TA) and the pH were measured with an automatic titrator 

(Crison Instruments, Alella, Spain). The fruit weight was determined by an analytical balance 

while the longitudinal and transversal diameter and the flesh thickness were measured with a 

digital caliper. Other pomological variables such as seed number and peel rustiness (for the latter 

using a range from 5: none to 20: very much) were directly evaluated. The peel color was 

determined according to the method developed by Infantino and Lo Bianco (2004). The method 

uses an algorithm written on Matlab 6.1 (MathWorks Inc., Natick, MA, USA), which converts 

images from the original format (RGB) to the CIE 1976 (L*, a*, b*) colours space, separating the 

fruit from the background. The colors characteristics were calculated in terms of the distance of 

each pixel of a fruit color from an optimal reference. The color index can be between 1 (perfect 

color reference) and 0 (staining most distant from the reference). It provides an integrated data 

quality (color) and quantity (intensity) of the fruit exterior. 

To identify the aromatic fingerprint of the different cultivars, the EOS
835

, above described, was 

used.  

Parts of the fruits (3g for each sample) were placed in triplicate in vials sealed in 

atmospheric air and satured with nitrogen (fig. 4.3.a). The headspace of the vial (4 ml) was drawn 

in by using an automated sampling system (HTA s.r.l., Italy) and carried out by a continuous flow 

of 10 ml/min of chromatographic air to the sensors chamber (constant temperature of 55°C). 

When the aroma went through the sensors layer, the initial resistance (R0) fell down to a 

minimum value (R). The measurements were done on samples prepared either in ambient air and 

in saturated nitrogen atmosphere with the aim of testing the possible discriminatory effect of 

aromatic compounds derived from secondary oxidation processes (Colelli & Elia, 2009). 

 

 

 
 

 

Fig. 4.3.a Electronic nose samples: vials sealed in atmosphere air (R) or satured of nitrogen (L). 
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For a better interpretation of EOS
835

’s results, the response curve of sensors was 

transformed into a unique variable (Feature) taken as the difference between the electrical 

resistance of the sensor in the absence and presence of volatile substances (Delta=R0-R). The 

Feature calculated for each sensor was processed using the Principal Component Analysis (PCA) 

based on a correlation matrix. The software used was provided by NosePatternEditor (Sacmi, 

Italy)  

To better characterize the aroma of the three cultivars, the molecular profiles were 

determined by gas chromatography analysis. 

The aroma analytical determination was performed by a gas chromatograph mass 

spectrometer with single quadrupole GCMS-QP2010S (Shimadzu) equipped with a capillary 

column SLB
TM

-5ms  (30 m x 0.25 mm x 0.25 μm) (Supelco). The headspace solid-phase micro 

extraction technique (HS-SPME) with Polidimetilsiloxano fibers (100μm x 1cm by Supelco) was 

used for sampling the volatile fraction. In the sample preparation, 3 gr of fruit, including pulp and 

peel, were put in 20 ml volume vials, sealed with pierceable caps. The analysis wasdone in 

triplicate.  

After 10 min of warming in a water bath set at 40°C, the fiber was introduced in the vial, 

and drawn out after 30 min of adsorption of volatile molecules. The desorption of all adsorbed 

molecules was allowed in the GC- injector at a temperature of 250°C.  

The GC-oven temperature was programmed as follows: an isothermal at  50°C for 2.5 min, 

then an increase to 200°C at a rate of 10°C/min, and again an isothermal at 200°C for 15 min. 

Other system settings were: 1 ml/min of speed of the mobile phase (helium), 70eV of ionization   

energy, 33-500 m/z range. 

 

4.3.2. Results and Discussion 
 
The ‘Nespolone di Trabia’ fruits showed highest size, highest color index of the skin and 

limited rusting. According to the qualitative characteristics (tab. 4.3.A), it also had a subacid pulp. 

‘Claudia’ stood out for a balanced ratio of soluble solids content and acidity, big thick flesh and 

low number of seeds, thus resulting excellent as edible fruit. ‘Algerie’ fruits had good 

organoleptic characteristics but small size differently from literature data. 

R0-R was taken as feature for all array MOS sensors. The PCA score plot for air and 

nitrogen prepared samples, showed a good discrimination between the three cultivars. 

The PCA score plot, PC1 vs. PC2, for the samples prepared in atmospheric air showed a 

good discrimination along the first principal component (PC1) accounting for 83.78% of total 

variance (fig. 4.3.b). Also the PCA of the samples prepared in nitrogen provided a good 

discrimination with a percentage value of total variance not very different from that in air (PC1 = 

86.23%) (figure not reported). This indicated that the variations in the aroma due to oxidation 

were similar for air and nitrogen packaged samples.  
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For this reason, it was decided to conduct measurements with Gas Chromatography/Mass 

Spectrometer only on the samples prepared in air.  

Gas chromatographic profiles of the three cultivars are shown in figure 4.3.c : ‘Nespolone 

di Trabia’ presents the greatest number of molecules. After the recognition of individual 

chromatographic peaks by NIST library, the molecules identified were divided into chemical 

classes. The radial plot of chemical classes expressed as percentage area relative to single 

chromatographic run is shown in figure 4.3.d. The principal differences in the aroma of the 

different cultivars are the percentage of esters, acids and ketones. Figure 4.3.e shows the aroma 

fingerprint, determined by the signals of the individual MOS sensor. The sensors 1, 3 and 6 

appear the most sensitive to the passage of headspace samples from the three cultivars. 

Multivariate analysis on the EOS
835

’s data is potentially discriminatory for the different 

cultivars ‘Algerie’, ‘Claudia’ and ‘Nespolone di Trabia’. 

 

Tab. 4.3.A Quality parameters of three loquat cultivars 
 

Quality Parameters  
Cultivar 

‘Algerie’ ‘Claudia’ ‘Nespolone di Trabia’ 

Weigh (g) 38.26 ± 1.73 37.07 ± 1.93 46.12 ± 2.05 

LD (mm) 38.38 ± 1.31 43.96 ± 0.75 46.04 ± 0.70 

TD (mm) 36.28 ± 1.41 36.41 ± 0.81 40.43 ± 0.70 

FT (mm) 8.86 ± 0.77 13.79 ± 4.54 9.87 ± 0.25 

Seed No. 2.60 ± 0.32 1.83 ± 0.17 2.11 ± 0.19 

SS (Brix°) 13.33 ± 0.09 13.36 ± 0.22 12.40 ± 0.42 

TOT. AC. (g/l) 19.77 ± 1.17 10.54 ± 0.74 25.92 ± 1.51 

pH 3.28 ± 0.06 3.83 ± 0.10 3.19 ± 0.04 

COL. IND.  0.97 ± 0.01 0.95 ± 0.01 0.97 ± 0.01 

RUS. (%) 10.00 ± 1.58 12.67 ± 2.88 7.63 ± 1.35 

Mean value of characteristics of loquat fruit ± Standard Error. Abbreviation: LD= longitudinal diameter; 
TD= transversal diameter; RUG= rustiness; COL.IND. = colors index; FT = thickness of the flesh; SS = 
soluble solids content; TOT. AC. = titratable acidity in equivalent of malic acid. 

 

4.3.3. Conclusions 
 

The electronic nose EOS
835

 equipped with MOS sensors array has showed to be sensitive 

and selective regarding the loquat aroma, allowing to discriminate among of three cultivars of 

Eriobotrya japonica Lindl.. The GC-MS analysis showed significant differences in the 

chromatographic profile for aroma of Algerie, Claudia and Nespolone of Trabia cultivars. The 

multivariate analysis of EOS
835 

data could be potentially discriminant for these different cultivars.  
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Fig. 4.3.b  Discrimination of aromatic patterns of three Eriobotrya japonica Lindl.  cultivars, 

with PCA of Electronic Nose (EOS
835

). Data are relative to samples in atmospheric air. 

 
 

 
Fig.4.3.c  GC-MS analysis of the three different cultivars studied (‘Algerie’, ‘Claudia’, 

‘Nespolone di Trabia’). 
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Fig. 4.3.d  Radar plot of percentage content of chemical compound as determined by the 

qualitative analysis of the chromatographic peaks. The recognition of chemical compounds 

was performed by using GC-Solution Lib.Nist. Samples prepared in atmospheric air. 

 

 

 
 
 

Fig. 4.3.e  Radar plot of the features extracted from the signal of the MOS sensor array 

mounted on the sensor chamber of the EOS
835

: Sensor 1= Delta-CJ1316*100; Sensor 2= 

Delta-SB0225*10; Sensor 3= Delta-SD0515*100; Sensor 4= Delta-SH0612; Sensor 5= Delta-

SJ0717*10; Sensor 6= Delta-WHT19. Samples prepared in atmospheric air.  
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4.4.   Fruit quality evaluation of four loquat (Eriabotrya japonica 

Lindl.) cultivars grown in Sicily (Italy). 

 
In this work chemical, morphological, and sensorial characteristics of four loquat cultivars 

(‘Algerie’, ‘Claudia’, ‘Nespolone di Trabia’ and ‘Sanfilippara’) from mature, organically-grown 

trees in Sicily, were analyzed. The determinations were carried out by traditional instrumental 

techniques, by a panel test and by EOS
835

. A panel of 10 trained judges was used to determine 

intensity of some attributes in the sensory profile of the different cultivars, while the e-nose was 

used to identify possible differences in the aromatic “fingerprint”. The e-nose results were 

compared with sensory analysis results obtained using Panel Test. 

 

4.4.1. Materials and Methods 
 
This study was conducted in 2009 on loquat fruits collected. The field is the same above 

mentioned. The cultivars tested were ‘Algeria', 'Claudia', 'Nespolone di Trabia' and 'Sanfillippara'. 

For each cultivar, a sample of 80 fruits was randomly handpicked at the ripe stage. 

 

The Soluble Solids Content (SSC), the titratable acidity (TA), the pH, the weight, the 

longitudinal and transversal diameter, and the flesh thickness were measured as previously 

described (4.3.1 section). Other pomological variables such as seed number and peel rustiness 

(for the latter using an indicative scale with a range from 5: none to 20: very much) were directly 

evaluated. The peel color was determined according to the method developed by Infantino and 

Lo Bianco (2004).  

A descriptive method (UNI 10957, 2003) was used to define the sensory profile of loquat 

samples. A panel of ten judges was employed. The judges were trained in some preliminary 

sessions, using different samples of loquat fruit, in order to develop a common vocabulary for the 

description of the sensory attributes characterizing loquat and to familiarize themselves with 

scales and procedures. On the basis of the frequency of citation (> 60%), fifteen descriptors were 
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selected to be inserted in the card: flesh color, easy peeling, easy stone, loquat, herbaceous and 

floral odor and flavor, sweet, sour, bitter and global preference. Random samples were evaluated 

by assigning a score ranging from 1 (absence of the sensation) to 9 (extremely intense) in 

individual booths under incandescent white lighting at the sensory laboratory of  DOFATA 

Department (Catania, Sicily). Water at room temperature was used to rinse the sample before 

tasting. A computerized data collection program was used (FIZZ, Software Solutions for Sensory 

Analysis and Consumer Tests, Biosystemes, Couternon, France). The sensory data for each 

attribute were subjected to one-way Analysis of Variance (ANOVA), considering the cultivars as 

an independent variable and the sensory attribute as a dependentone. Significance was tested 

with the F test. The mean values were submitted to the multiple comparison tests using the LSD 

(Least Significant Difference) procedure. A correlation between the attributes, which 

differentiate the samples, was determined. 

To identify the aromatic fingerprint of the cultivars, the EOS
835

 was used. The description of the 

instrument was above reported. 

Parts of the fruit (3g for each sample with peel) were placed in triplicate in sealed vials. 

The headspace of the vial (4 ml) was drawn in by using an automated sampling system (HT200H, 

HTA s.r.l., Italy) and carried out by a continuous flow of 10 ml/min of chromatographic air to the 

sensors chamber kept at 55°C. When the aroma goes through the sensors layer the initial 

resistance (R0) falls down to a minimum value (R). The first step of data pre-processing was to 

extract from the sensors response curve the R/R0 features (named ‘Classica’ according to the 

software NosePatternEditor). Principal Component Analysis (PCA) was used to reduce the 

multidimensional space and plot the data, by a correlation data matrix.  

 

4.4.2. Results and Discussion 
 
‘Nespolone di Trabia’ resulted the heaviest fruit, but its flesh was thinner than that of 

Claudia, which instead had the lowest weight. The largest chemical differences among the four 

cultivars were a highest acidity and a lowest fraction of soluble solids of ‘Sanfilippara’ and 

‘Nespolone di Trabia’; while the highest value of soluble solids was observed in ‘Algerie’ and, 

mainly, in ‘Claudia’ (tab. 4.4.A).  

ANOVA results (tab. 4.4.B) showed significant differences in sour (p ≤ 0.001), flesh color, 

firmness, sweet (p ≤ 0.01) and global preference (p ≤ 0.05). In particular, the cultivar ‘Claudia’ 

showed the lowest intensity of sour and the highest intensity of sweet and global preference (in 

fact ‘Claudia’ is also called "Vanilla") (fig. 4.4.a). The lowest flesh color score for ‘Claudia’ was 

normal, because it is a white-fleshed variety. All these results suggest that human senses are not 

able to discriminate loquat cultivars on the basis of their aroma (odor and flavor merger). On the 

contrary, the PCA score plot of EOS
835

 determinations provided a good discrimination between 

the aroma cultivars with 88.60% of total variance  (fig. 4.4.b).  
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The results showed that although the human nose is a powerful tool in the perception of 

volatile compounds,  allowing to evaluate the quality of loquat fruits, electronic nose is able to 

discriminate between different cultivars. 

 

Tab. 4.4.A. Quality parameters of the four loquat cultivars 

Quality parameters 
Cultivars

1
 

‘Algeria’ ‘Claudia’ ‘Nesp. di Trabia’ ‘Sanfilippara’ 

Weight (g) 34.49 ± 1.61 32.44 ± 1.58 43.95 ± 2.17 41.72 ± 1.89 

TD (mm)
 2

 34.93 ± 0.97 34.20 ± 0.79 39.51 ± 0.74 38.82 ± 0.74 

LD (mm)
 2

 39.30 ± 0.88 42.64 ± 0.60 45.29 ± 0.83 45.84 ± 0.80 

FT (mm)
 2

   8.86 ± 0.15 11.66 ± 2.73   9.73 ± 0.24   9.95 ± 0.16 

Seed No.   2.60 ± 0.32   1.83 ± 0.17   2.11 ± 0.19   1.73 ± 0.21 

SSC (Brix°)
2
 13.33 ± 0.09 13.36 ± 0.22 12.40 ± 0.42 12.13 ± 0.25 

TA (g/l)
 2

 19.77 ± 1.17 10.54 ± 0.74 25.92 ± 1.51 26.75 ± 0.98 

pH   3.28 ± 0.06   3.83 ± 0.10   3.19 ± 0.04   3.06 ± 0.12 

Color Index 0.966 ± 0.010   0.945 ± 0.010   0.969 ± 0.010   0.965 ± 0.010 

Peel Rustines (%) 10.00 ± 1.58 12.67 ± 2.88   7.63 ± 1.35   8.42 ± 1.62 
1 Mean value of characteristics of loquat fruit ± Standard Error. 
2 LD = longitudinal diameter; TD = transversal diameter; FT = thickness of the flesh;  
  SSC = soluble solids content; TA = titratable acidity in equivalent of malic acid. 

 

Tab. 4.4.B. Attributes scored by sensory evaluation panel. 

Attributes F values 
Mean scores 

‘Algeria’ ‘Claudia’ ‘Nesp. di Trabia’ ‘Sanfilippara’ 

Flesh color 5.09 **
1
 5.7b

2
 3.1a 5.0b 6.2b 

Easy peeling 0.54 n.s. 4.9 5.7 6.0 5.7 

Easy stone 0.29 n.s. 5.7 6.4 6.0 6.3 

Loquat odor 0.57 n.s. 5.8 5.0 5.3 6.1 

Herbaceous odor 0.49 n.s. 4.7 5.0 5.9 5.4 

Floreal odor 0.47 n.s. 3.1 3.3 4.0 3.9 

Firmness 6.32 ** 7.6b 4.8a 7.5b 5.9a 

Juiciness 1.25 n.s. 6.3 7.5 6.5 6.2 

Sweet 5.36 ** 4.7a 7.2b 3.8a 4.6a 

Sour 7.64*** 5.7b 2.2a 5.6b 5.1b 

Bitter 1.34 n.s. 2.9 1.4 2.9 2.6 

Loquat flavor 0.31 n.s. 5.8 5.7 5.1 5.8 

Herbaceous flavor 0.66 n.s. 4.8 4.1 5.3 4.5 

Floral flavor 0.18 n.s. 3.0 3.4 3.6 3.2 

Global preference 2.86 * 4.7a 6.7b 4.5a 5.2ab 
1 F-test: *** significant difference for p ≤ 0.001; ** significant difference for p ≤ 0.01; *  significant   

difference for p ≤ 0.05; n.s. for no significant difference  
 2 Mean comparison test using LSD procedure. Values within each row followed by different letters are 

significantly different. 

 

 



 
Electronic Olfactory System to Evaluate the Fruit Quality    

61 
 

 

 

 

 

 

 

 

 

  

1 

5 

9 

Global 

preference * 

Sweet ** 

Sour ** 

Bitter *** 

Juiciness 

Loquat flavor 

Herbaceous 

flavor 

Floreal flavor Firmness ** 

Flesh color ** 

Easy peeling 

Easy stone 

Loquat odor 

Herbaceous 

odor 

Floreal odor 

Algerie 

Claudia 

N. di Trabia 

Sanfilippara 

PCA

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-4 -3 -2 -1 0 1 2 3 4

PC 1  72.58%

P
C

 2
  

 1
6

.0
1
%

Sanfilippara

Claudia

Algerie

Nesp. di Trabia

Sensory profile 

Electronic nose PCA plot 

Fig. 4.4.b. PCA plot of  EOS
835

 data, using as features Rm/ R0 ratio for each sensor. 

Fig. 4.4.a. Spider plot of sensory evaluation score; Oneway ANOVA: ***p≤0.001; 

**p≤0.01; *p≤0.05. 
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4.4.3. Conclusions 
 

Sensory evaluation demonstrated that the judges preferred ‘Claudia’ cultivar because of 

its sweetness and juiciness. This is in agreement with chemical determinations: ‘Claudia’ showed 

a higher SSC and a lower TA in comparison with the other tested cultivars. The good weight and 

size of the ‘Nespolone di Trabia’ resulted not determinant attributes for the judge’s global 

preference. The MOS sensors of EOS
835

 are able to detect the loquat aroma better than that of 

the humane nose. In fact the preliminary results about electronic olfactory system show that a 

discrimination between the aromatic fingerprint of ‘Algeria', 'Claudia', 'Nespolone di Trabia' and 

'Sanfillippara' loquat cultivars exists, but more experiments are necessary to confirm these data. 
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4.5. Preliminary study on quality and healthy characteristic of 4 

mango (Mangifera indica L.) cultivars grown in Sicily. 

 
Mango (Mangifera indica L.) originating in India, is widely grown in many tropical areas of 

the world. In Sicily some localities characterized by favorable climatic conditions are particularly 

suitable for its growth. In the Catania, Palermo and Messina areas different cultivars of mango 

are grown  and fruits are collected from August (‘Glenn’ is the earliest cultivar) up to late 

November (‘Keitt’ is the last one). The mango fruits, used fresh or processed, are especially 

appreciated for their juiciness and sweetness.  

Many literature report the use of electronic nose as a useful experimental method to 

determinate the fruit ripening (Lebrun et al. 2008, Brezmes et al. 2000). The experiments 

reported in the present work has been carried out to verify the capability of this technique to 

discriminate between the aromatic patterns of 4 cultivars of mango grown in Sicily. Besides the 

volatile components, we also determined some classical quality parameters such as the presence 

of components with nutritional and health properties and the antioxidant activity. We thank 

Cupitur Company for kindly providing the fruits of the present research. 

 

4.5.1. Materials and Methods 
 

Experiments were conducted in 2009 on fruits collected from a field located in Furano 

(province of Messina, Italy). Four mango cultivars: 'Irwin', 'Glenn', 'Kensington Pride' and 'Maya' 

(fig. 4.5.a) were observed and for each cultivar 4 fruits were collected.  

 

 

 

Fig. 4.5.a Four mango cultivars grown in Sicily: ‘Glenn’, ‘Irwin’, ‘Kensington Pride’ and ‘Maya’. 
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Physical parameters such as weight, equatorial and longitudinal diameters were detected. 

Moreover, by standard methods, chemical parameters such as total acidity (TA) and total soluble 

solids (TSS) were determined. The determination of ascorbic acid content was performed by 

HPLC method (Rapisarda & Intelisano 1996), using a Waters (mod. 600E) liquid chromatography 

interfaced with a photodiode array detector (PDA) and managed by Waters Millennium Waters 

software. The column used was a Hypersil C18 250mm x 4.6mm x 5μm (Phenomenex, Torrence, 

CA), maintained at a temperature of 35°C and elution was performed with 0.02 M phosphoric 

acid at a flow rate of 1.0 ml/min. The wavelength was set at 260 nm.  

Fruits, without peel, were reduced to a puree, 10 g of puree were treated with a solution 

of 3% metaphosphoric acid (100 ml). The sample was centrifuged at 5000 rpm for 20 min and 

filtered using a 0.45 μm filter befor  HPLC analysis . The total carotenoids were determined 

spectrophotometrically at λ = 450 nm, after extraction of pigments from 10 g of puree with 20 ml 

of hexane: acetone: ethanol (50:25:25) and expressed as mg of β-carotene/100g flesh (De Ritter 

& Purcell 1981). 

The total polyphenols in the juice were assessed by the rate of Folin-Ciocalteau (FC) 

(Singleton & Rossi 1965). A sample of juice (0.5 ml), obtained after centrifugation of the puree 

was diluted in 10 ml of water and then 1 ml of this solution was mixed with 5 ml of FC reagent 

(previously diluted with water 1:10 v/v) and 4 ml of 7.5% sodium carbonate solution. Total 

polyphenols amount  was obtained by spectrophotometric measurements at λ= 740 nm and 

expressed as mg gallic acid/L juice. The antioxidant activity was measured using the ORAC assay 

(Ou et al. 2001), with slight modifications. The measurements were performed with a 

spectrofluorimeter Wallac 1420 Victor III.96, with a plate reader (EG & Wallac, Turku, Finland) 

with a fluorescence filter (excitation 485 nm, emission 535 nm). The reaction was conducted at 

37 °C at pH 7.0, using as a standard Trolox (10 μM) and 75 mm phosphate buffer as a blank. The 

ORAC values were expressed as Trolox equivalenti/100g μmoli of pulp. 

The statistical treatment of the results was performed by analysis of variance (ANOVA) 

using the software Statsoft 6.0. 

The volatile component of the 4 considered cultivars were determined by molecular 

profiles with a system-QP2010S GCMS (Shimadzu, Tokyo, Japan), equipped with a capillary 

column SLBTM-5ms 30m x 0.25mm x 0.25μm (Supelco, Bellefonte, PA). For the sampling 

technique, adsorption on fiber headspace (HS-SPME), using fibers from Polidimetilsiloxano 

(PDMS) 100µm x 1cm (Supelco, Bellefonte, PA) was adopted. 

The aroma of mango fruits was analyzed using the EOS
835 

described above (chapter 4). 

Samples were prepared as previously. After thermal conditioning, 4 ml of headspace were 

collected and then introduced into the measurement EOS
835

 chamber with an autosampler 

HT200H (HTA srl, Italy). The response curves of the sensors has been transformed into unique 

variables (feature), processed using Principal Component Analysis (PCA),  based on correlation 

matrices. The feature, calculated for each sensor and used in the statistical analysis carried out by 
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the system software (NosePatternEditor), is the difference between the electrical resistance of 

the sensor in the absence of volatile substances and the same sensor resistance measured in the 

presence of volatile substances (Delta=R0-R). 

 

4.5.2. Results and Discussion 
 
In table 4.5.A the quality, nutritional and health parameters of the analyzed cultivars are 

reported. The acidity (g/L malic ac. equivalent) level was found significantly lower in ‘Glenn’, 

when compared with to ‘Kensington Pride’. The pH value has showsn a reverse trend. The SST 

was higher in ‘Maya’. This cultivar also presented a content of ascorbic acid and carotenoids 

much higher than the other cultivars. The concentration of phenolic compounds is statistically 

higher in ‘Maya’ with a value of 367.74 mg/l eq. of gallic acid. This parameter, together with the 

high content of ascorbic acid and carotenoids, influences the antioxidant activity. In fact, ORAC 

(Oxygen Radical Absorbance Capacity) value in the ‘Maya’ cultivar is 1871μmolTE/100g, 

significantly higher than values  observed in ‘Irwin’ and ‘Kensington Pride’, and similar to that one 

found in ‘Glenn’. Probably the latter cultivar has other antioxidant molecules, different from 

ascorbic acid and carotenoids, not characterized (e.g., vitamin E).  
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Tab. 4.5.A. Quality parameters of four mango cultivars 

 

Quality Parameter 
Cultivar 

‘Glenn’ ‘Irwin’ ‘Kensington Pride’ ‘Maya’ 

Weight  (g) 416.2 ± 82.4 ns 432.3 ± 72.1 ns 520.2 ± 36.1 ns 606.1 ± 70.5 ns 

LD (mm) 11.1 ± 0.8 ns 10.8 ± 0.8 ns 11.3 ± 0.6 ns   12.2 ± 0.5 ns 

TD (mm)   8.1 ± 0.5 ns   8.3 ± 0.6 ns   8.8 ± 0.3 ns   9.0 ± 0.3 ns 

pH 6.1 ± 0.1 A 5.4 ± 0.1 B 5.2 ± 0.1 B   5.7 ± 0.1AB 

Total acidity (g /L) 0.26 ± 0.01 B    0.30 ± 0.01 AB 0.32 ± 0.01 A    0.30 ± 0.01 AB 

SST  (%) 15.61 ± 0.06 CB   16.35 ± 0.02 B 15.30 ± 0.01 C     18.02 ± 0.26 A   

Total Polyphenols     

(mg /L GAE) 
294.88 B 216.90 C 304.76 B 367.74 A 

Ascorbic acid       

(mg/100 g) 
23.66 B 20.14 CB 17.67 C 41.05 A 

Carotenoids          

(mg/100 g) 
3.07C 4.09 B 2.95 C 6.11 A 

ORAC units               

(µmol TE/100)              
1864 A 1639 B 1152 C 1871 A 

Mean value ± SD. The different significantly was carried out with ANOVA (p≤ 0.01). 
Abbreviation: LD= longitudinal diameter, TD= transversal diameter, SST = total soluble solids.  
 
 
 

Gas chromatography measurements revealed and identified 50, 34, 41 and 44 volatile 

compounds, for ‘Glenn’, ‘Irwin’, ‘Kensington Pride’ and ‘Maya’ respectively. In the identified 

aromatic pattern it is important to note that δ-3-carene is the major component in ‘Glenn’, 

‘Irwin’ and ‘Maya’, but it shows a low olfactory activity (Pino et al. 2005), and terpinolene was 

found to have high concentration in ‘Kensington Pride’ (data no reported). This molecule 

presenting specific olfactory smell of ‘sweet’, is relevant in determining the mango fruit flavour 

(Pino & Mesa 2006). Other monoterpenes and sesquiterpenes have been identified, such as d-

limonene, α-pinene, β-mircene, α-ocimene, β-phellandrene, β-cayophyllene, α-bergamotene, α-

gurjunene, d-germacrene, and β-selinene. Many of them are responsible for olfactory smell such 

as ‘herbaceous’, ‘floral’ ‘spicy’, ‘forest’ (Rezende 1999). The presence of Ethyl acetate and ethyl 

butanoate was also identified. The first one was found in the aroma of ‘Glenn’, ‘Kensington pride’ 

and ‘Maya’, while the second one was present in ‘Irwin’ only.  

Figure 4.5.b shows the sum of peak areas of each chemical class (in percent of the total 

chromatogram area).   
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Fig. 4.5.b. Percentage contribution of each chemical family of compounds to the 

chromatographic area. 

 

The applied multivariate statistical analysis, the Principal Component Analysis, shows a 

predominance of discrimination on the first principal component (PC1) that has a percentage of 

variance of 71.13% (fig. 4.5.c). This is probably due to different percentages of the major 

chemical classes present in the aroma of mango: terpens and ester compounds. Probably the 

non-specific sensors have perceived a difference in the flavor of four cultivars not for single 

molecules, but for the percentage value of chemical class. On PC1, in fact, it is possible to note a 

direct proportionality to the relative percentage of total terpenes (the results are show on fig. 

4.5.d: 65.0% for 'Maya' and 'Irwin', 72.5% for 'Glenn', 78.6% for 'Kensington Pride'); on the 

contrary, the PC1 seems to present an indirect proportionality with regard to the percentages of 

esters (the results are show on fig. 4.5.d: 31.5% for 'Maya', 27.2% for 'Irwin', 21.1% for 'Glenn', 

20.9% for 'Kensington Pride'). 

 

4.1.1. Conclusions 
 

This work shows that the cultivars studied have a varied pattern aroma. The MOS 

sensor array, on EOS
835

, used for the evaluation of the aroma is sensitive to the mango 

aroma and reports an appreciable discrimination between the cultivars. The study also 

underlines that the mango fruits produced in Sicily can be considered an excellent source 

of bioactive compounds, such as polyphenols, carotenoids and vitamin C, all substances 

with strong antioxidant properties and health benefits. In particular, the cv. 'Maya' is the 

richest variety of nutraceutical compounds.  

Esteri %rel

Alcool %rel

Chetoni %relTerpeni %rel

Lattoni %rel
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Fig. 4.5.d. Relative percentage of chemical classes ofterpens and esters in the four cultivars 

of mango grown in Sicily. 

  

Fig. 4.5.c. PCA score plot of EOS
835 

data relative to the aromatic pattern of Mangifera 

indica L. cultivars: ‘Glenn’, ‘Irwin’, ‘Kensington pride’, ‘Maya’. 
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5. Experiments in Argentina (E-nose INQUIMAE,  U.B.A.) 

 
From March to June 2011, I carried out experiments with the group of Prof. Martín Negri 

and Delia L. Bernik at the Dep. INQUIMAE, University of Buenos Aires (UBA) (Argentina). During 

this period we studied the aroma characteristics of different cultivars of grapefruit (Citrus 

paradisi). Two different home-made electronic noses (“Nariz Estanca” and “Nariz por 

Aspiración”), with a static and a dynamic headspace sampling respectively, were used with the 

aim of identifying the best one in discriminating between the aroma of fresh squeezed and 

commercial juice of grapefruit. We also tested the "Flavormeter", patented by Profs. Negri and 

Bernik, which is able to simultaneously measure the soluble constituents and the volatile 

components responsible for the aroma (as a electronic nose and electronic tongue).  

 
In the latter ten years, Martin Negri, adjunct Professor at the Department of Inorganic, 

Physical and Analytical Chemistry (INQUIMAE) University of Buenos Aires, and colleges developed 

different Electronic Nose (EN) models for the analysis of complex aroma composition systems in 

perfumery, food science, flavor release. EN was also used in the detection of volatiles compounds 

in water (Rodriguez et al. 2010, Monge et al. 2008, Negri & Bernik 2008, Diz et al. 2006, Monge et 

al. 2004a, Monge et al. 2004b, Branca et al. 2003).  

In 2005 Prof. Martin Negri and Delia Bernik, Associate Professor in the Biotechnology and 

Food Technology Department, Engineering Faculty, Universidad Argentina de la Empresa, 

designed and implemented an electronic device for discriminating, identifying and analyzing 

liquid, semi-liquid and solid samples containing volatile components. The device has a closable 

and thermally stable chamber where the sample is placed. The presence of both gas sensors and 

electrodes allow performing a simultaneous evaluation of odor and taste of the samples. The 

authors patented this device that was called “Flavometer”. 

In the 2001, Negri’s group carried out a work on the determination of fish freshness. They 

developed a portable electronic nose, with 11 Metal Oxide Semiconductor (MOS) sensors, 

purchased from Figaro, and applied it to Argentinean hake freshness determinations. They tested 

a new sample methodology, different from that based on the headspace method or glass syringe 

manipulation. The sample was directly introduced into the measuring chamber and the signals of 

the sensors, due to the fish emission, were recorded as function of time. The change of the 

sample's aroma was monitored after some days of storage. Two different pattern responses were 

obtained associated to rotten and non-rotten samples. This study showed that the experimental 

approach had an excellent potentiality for applications, such as in situ quality control of fish 

freshness at fish markets. The experimental procedure is simple and can be performed by 

intermediate technical staff (O’Connell et al. 2001). 

Few years later, in 2004, the group studied the flavor release by the electronic nose. The 

release of volatile essences from gels is an issue of high relevance in food technology and food 
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colloids science, particularly in the case of a multi-component flavoring essence encapsulated in a 

biocompatible gel. The most popular methods for analyzing the flavor release are based on static 

headspace, followed by gas chromatography with flame ionization detection (GC/FID) or gas 

chromatography combined with mass spectrometry (GC/MS). Martin Negri and Delia Bernik, in 

collaboration with other colleges, used an electronic nose device consisting of an array of 10 non-

specific Figaro’s gas sensors and a sample chamber developed in their laboratory. The device was 

used to follow the flavor release kinetics of a multi-component essence encapsulated in gels 

made of commercial citrus hight-methoxylated pectin and “tutti-frutti” commercial essence. The 

whole data obtained from “tutti-frutti” release, detected with the e-nose, were analyzed by PCA. 

The results showed that PCA provided a good graphical description of the release behavior in 

different samples and that this type of analysis could be used to follow the flavor release over 

different days (Monge et al. 2004a) 

Later, the group studied by the same tool the flavor release of other odorant molecules, 

such as limonene and multicomponent essential oils from flowers and leaves of Tagetes minuta L. 

and Mentha pulegium L. (Poleo). The electronic nose allowed discriminating samples according to 

a high or low limonene content. It is remarkable that the fingerprint of encapsulated complex 

mixtures differs from that obtained for the non-encapsulated oils, showing a preferential release 

of some encapsulated components (Monge et al. 2004b).  

Moreover, they studied the influence of matrix viscoelastic properties on flavor release. 

The electronic nose technique and PCA were used for detecting changes in the fingerprint of the 

released vapor as a function of pectin concentration. The parallel study of the viscoelastic 

properties (by rheometry) and flavor release (by E-nose) provided a direct relation between the 

decrease of flavor release and the increased solid-like character of the matrix. This result showed 

the potentiality of E-nose in flavor release studies from encapsulation matrixes, a relevant issue 

in food technology, cosmetic chemistry and pharmacology (Monge et al. 2008). 

Another electronic nose device, even developed at Negri’s laboratory, was used for 

discriminating between samples of n-primary alcohols and phenol in water. Primary alcohols and 

phenol are some of the volatile organic compounds (VOCs) commonly found in wastewaters. 

Phenol is highly toxic for the microorganisms employed for the biological wastewater treatments. 

Traditional methodologies to detect the VOCs normally require collecting samples (with bag 

samplers, canisters or passive tube) and process them afterward in the laboratory by gas 

chromatography for separation and with mass spectroscopy for quantification and/or 

identification of the components. By using an electronic nose, an approximate indication of the 

dissolved VOC constitutes is obtained rather than an accurate determination that was usually 

determined only after concentrating one or many of the compounds present in the sample. In 

fact, EN tries to discriminate among different samples by associating a fingerprint to each one. 

The results show that the different alcohol can be discriminated by electronic nose 

methodologies responses. These results show the EN ability to establish the presence of primary 
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alcohols and phenol in wastewaters, including threshold limits for alarms in control of effluents 

(Diz et al. 2006). 

In the 2008, Bernik and Negri used an electronic nose to detect and discriminate low 

amounts of codling moth pheromone (codlemone) immersed in a background odor of plants and 

fruit volatiles. The codlemone is a sex pheromone releases by female of Cydia pomonella, one of 

the most damaging pest insects in apple orchards worldwide. A fast and reliable methodology to 

detect changes in pheromone concentrations in the air would be desirable so that management 

decisions such as reinforcing with more dispensers and/or spraying prophylactic pesticide doses 

can be made rapidly. The authors trained an electronic nose to detect the cadlemone molecule in 

presence of other aromatic compound. The results of this work showed the feasibility of the use 

of an electronic nose to monitor low codlemone levels in the air of apple orchards with the 

presence of other potential masking agents, and opened a new way for the application of e-nose 

in pheromone control for pest management (Negri & Bernik 2008). 

In the 2010 thegroup studied the changes along days of the aroma released from a flavor 

(“tutti-frutti” essence) encapsulated in a polysaccharide gel matrix using the electronic nose 

methodology. The purpose is to explore the capacity of the sensor array to assign a pattern of 

aroma to the corresponding release over time within a total period of five days. Different 

procedures of data treatment and analysis were compared in order to achieve the maximum of 

information on the system under study in conditions of limited number of measurements. The 

electronic nose device allowed a highly satisfactory classification of the samples according to 

their aging ( 0, 1, 2,  3 and ≥4 days respectively) (Rodriguez et al. 2010). 

 
 
Device description 
 
The ENs used at the University of Buenos Aires are very simple home-made devices and 

consist of an array of non-specific commercial gas sensors and a sampling chamber.  

The array, which is the heart of the instrument, consist of 12 gas sensor (tab. 5.A), 

purchased from Figaro company,  based on tinoxide, whose electrical conductivity changes when 

exposed to the volatile compounds (thus, signal are indicated in volts). For each sensor, a voltage 

proportional to the respective electrical conductance is digitalized (12 bits resolution with 

voltages within 0–5 V).  
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Tab. 5.A. MOS Sensor array configuration of the  E-nose INQUIMAE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sensors’ signals were continuously recorded after closing the chamber, up to a steady 

state was reached by each sensor signal, and stored on a laptop (fig. 5.a). 

 

 

Fig. 5.a. A representative e-nose measurement. Each curve represents the signal of one 
individual sensor of the array. The vapors were aspirated since time zero and the signals 
increase up to reach a plateau. The value of signals at the plateau is the information used for 
the chemometric data analysis. 
 
 

A home-made software allows to plot the responses of the sensors during the 

measurement. The same software is not able to perform a multivariate statistical analysis that is 

usually constructed with commercial software after determining which feature has to be used for 

representing the sensor’s signal. Normally data normalization is the only pre-processing step. 

With this type of EN, the discrimination of samples with differences in composition can be 

performed by simple visual check of the raw sensors data in the simplest cases (with radar plot of 

sensors’ responses) or, when this not is possible, the multivariate data analysis methods can be 

Sensor No. Sensor Code Specificity from Figaro Inc,  Japan 

S1 

S2 

S3 

S4 

S5 

S6 

S7 

S8 

S9 

S10 

S11 

S12 

TGS 880 

TGS 816 

TGS 823 

TGS 826 

TGS 825 

TGS 882 

TGS 842 

TGS 2602 

TGS 2600 

TGS 2620 

TGS 2610 

TGS 2611 

Organic Solvent Vapors 

Natural gas and LPG monitoring 

Organic Solvent Vapors 

Amines  

Sulfur volatiles  

Organic solvent (alcohol) 

Methane 

Air Contaminants 

Air Contaminants 

Volatile Organic Compound 

LP gas (e.g. propane and butane). 

Methane 
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applied such as Principal Components Analysis (PCA) or Cluster Analysis (CA) among many others. 

Both PCA and CA are unsupervised methods, which group the input data according to similarities 

following user defined criteria for variance analysis. 

 

The use of home-made e-nose provides many advantages similar to other commercial 

devices such as: 

 Low operational costs 

 Selection of sensors according to the analytical problem (non-specific chemical 

sensors find a large field of application when the analytical problem is that of 

comparing different samples, searching for similarities and differences)  

 No destruction of the sample 

 Transportability of device. 

 

 

 In our studies we used two different INQUIMAE’s EN, with the same gas sensor array, but 

with different volatile sampling methods. One of them is a static sampling of volatile compound 

while the other one is a dynamic sampling by an aspiration pump of volatiles. 

 

- Static sampling 

In this system the sample chamber is cylindrical (10cm i.d. x 8.5cm). The samples are 

introduced directly into the sealed chamber where on the top the sensors are placed. The 

sensors clean, between a measure and the other was made manually with hot forced air.  

This approach has the advantages of instrumental simplicity, and of low influence of 

external environmental factors during the measurement. 

 The name for this type of device is “Nariz Estanca”(fig. 5.b) 

 

                    

             

 Fig. 5.b. Nariz Estanca (L); MOS sensor array of Nariz Estanca (R). 
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- Dynamic sampling 

The sample is putted in a sealed vials and an aspiration pump draw the headspace by a 

needle inserted into the silicon top. The aspiration flow was of 1 dm
3
/min and it starts when the 

regulating valve is on switch-on. The sensors purge is made with pure air. The air is sufficient to 

completely remove odors from the sensors and sensor chamber. 

 The name for this type of device is “Nariz por Aspiracion” (fig. 5.c). 

 

           

  

Fig. 5.c Nariz por Aspiracion. 
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5.1. Discrimination of hand fresh squeezed and commercial 

grapefruit juices. 
 

Authentication of fruit flavors as natural is important in assuring compliance with labeling 

regulations. Methods of adulteration become sophisticated in response to the developing of new 

detection methodologies.  

For example, significant research has been conducted to detect the adulteration of citrus 

essential oils. Methods of adulteration detection include the analysis of the ratio of key terpene 

components, enantiomeric compounds such as linalool, and non-volatile components such as 

coumarin. Testing the presence of flavor solvents is also a useful practice for detecting 

adulteration of citrus and other natural fruit essences, oils and extractives (Rouseff & Leahy 

1995). However, all of these methodologies are time-consuming. In recent times, many 

researchers have employed EN for discriminating natural from commercial products. 

 We used two different types of EN for differentiating the hand fresh squeezed from 

commercial grapefruit juice.  

 

5.1.1. Materials and Methods 
 
A brick of 100% grapefruit juice was purchased at a local market (“Citric” juice). Fresh 

grapefruit (Citrus paradisi Macf. ) fruits of the cultivars ‘Star Ruby’ (grown at Santiago del Estero), 

‘Rouge La Toma’ (grown in Salta), ‘Rio Red’ (grown in Entre Rios) were purchased at Central 

Market of Buenos Aires (fig. 5.1.a).   
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cv. ‘Rouge la Toma’ (grown in Salta) 

 
 

cv. ‘Star Ruby’ (grown in Santiago del Esteso) 
 

 
 

cv. ‘Rio Red’ (grown in Entre Ríos) 

 

 
 

“Citric”  (commercial grapefruit juice) 
              

 
 

Fig. 5.1.a Materials used: grapefruit’s fruits of different cultivars samples cv. grown in Argentina and 
commercial grapefruit juice. 

 

 
Chemical parameters (e.g., soluble solids content, titratable acidity, pH) and other fruit’s  

characteristics (e.g., weight, longitudinal and transversal diameter) were analysed with classical 

methods. Fresh grapefruit juice was obtained by careful hand-squeezing of five fruits for each 

cultivar, in a home juicer. The juice percentage (w/w) was also detected.  
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Electronic nose (static): “Nariz Estanca”  

An open Petri’s dish with the sample (6ml of juice) was placed into the closed chamber of 

the e-nose for each measurement.  On the top of the chamber an array of sensor was positioned, 

as above described, with a fan to homogenize the air inside the chamber. Sensors’ signals were 

continuously recorded (a point of each 5 sec.) after closing the chamber, up to a steady-state 

situation for which the sensor signals reached a plateau (total time measurement: 10min). A set 

of 12 signals {S1 ,..., S12} was obtained for each experiment. The values of the sensor’s signals at 

the plateau were used for the analysis after subtraction of the corresponding baseline (made 

with water as blank) (Fe = R600s-RLBA(600s)). Each sensors’ signal (R1..... R11) is indicative of the 

electrical conductance increase in the respective sensor due to the presence of volatile aromatic 

compounds. 

The Principal Component Analysis was calculated with covariance matrix of data (by S-

Plus2000 software). 

  

Electronic nose (dinamic): “Nariz por Aspiracion” 

The sample (3ml of juice) was put in a sealed glass vial (10ml volume). Then it was 

attached to the sensor chamber pearcing the top with a needle linked to a tube non-reactive to 

flavor compounds. Sensors’ signals were continuously recorded (a point of each 5 sec.) up to a 

steady-state situation for which the sensor signals reached a plateau (total time measurement: 

5min). A set of 12 signals {S1 ,..., S12} was obtained for each experiment. The values of the 

sensor’s signals at the plateau were used for the analysis after subtraction of the corresponding 

baseline (made with water as blank) (Fa = R300s-RLBA(300s)), in some cases different feature was used 

(F4 =(R25s-RLBA(25s))(R50s-RLBA(50s))(R75s-RLBA(75s))(R300s-RLBA(300s))). 

 Each sensors‘s signal (R1..... R11) is indicative of the electrical conductance increase in the 

respective sensor due to the presence of volatile aromatic compounds.  

The Principal Component Analysis was calculated with covariance matrix of data. In some 

situation, Cluster Analysis was used to better understand the results (by S-Plus2000 Software). 

 
 

5.1.2. Results and Discussion 
 

The quality parameters studied (‘Rouge la Toma’, ‘Star Ruby’, ‘Rio Red’, “Citric” 

commercial juice) for the sample are shown in table 5.1.A. Comparing the fresh samples, the 

highest percentage of juice was found for  ‘Rio Red’ with 47.00 ±0.94 % (w/w) value. Comparing 

parameters common to all samples, the lowest acidity was observed in “Citric” sample, while the 

highest soluble solid (SS) was found for ‘Star Ruby’.  

The value of conductivity, expressed in milli-Siemens (mS), that reflects the concentration 

of electrolytes like sodium and chloride ions in the samples and is correlated to acidity value, was 

lowest for “Citric”. 
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Tab. 5.1.A Quality parameters of grapefruit fruits and their juices and commercial juice 
 

Quality Parameters: 
Samples: 

‘Rouge la Toma’ ‘Star Ruby’ ‘Rio Red’ “Citric” 

Weight (g)
 

318.32 ± 18.25 208.22 ± 14.28 2.32 ± 25.19 / 

DT (cm)   9.12 ± 0,29   7.81 ± 0.22 8.14 ± 0.35 / 

DL (cm)   8.66 ± 0.33   7.44 ± 0.24 7.20 ± 0.37 / 

% juice (w/w)      41.70 ± 0.72 38.71 ± 0.81    47.00 ± 0.94 / 

pH  2.83 ± 0.1   2.73 ± 0.1      2.75 ± 0.1       2.70 ± 0.1 

Acidity (g/L citric ac.)  5.51 ± 0.37   5.68 ± 0.20 6.73 ± 0.23 4.02 ± 0.30 

SS (°Brix20)      17.02 ± 0.11   19.1 ± 0.20 17.1 ± 0.25 17.6 ± 0.15 

Conductivity (mS) 4.06 3.89 4.12 2.88 

 

 

The aromatic patter was carried out using both type of INQUIMAE’s EN above described. 

Nariz Estanca results: 

Figure 5.1.b shows the PCA score plot of data pre-processed by taking the feature Fe (R600s-

RLBA(600s)).  The two principal component (PC1 and PC2) account for about 99.0% of the total 

variance and it is possible to note a clusterization between the samples that appeared well 

distinct. The commercial sample (“Citric”) is well distinct from the fresh hand squeezed samples 

on the PC2. Moreover the latter appeared well discriminate among them on PC1.  

 
 

 

Fig. 5.1.b. PCA score plot of Nariz Estanca’s data (Feature Fe) for three fresh squeezed juices 

(from ‘Rio Red’, Rouge La Toma’, Star Ruby’ grapefruit cultivars) and a commercial grapefruit 

juice (“Citric”) 
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Nariz por Aspiracion results:  

Figure 5.1.c shows the PCA score plot of data pre-processed by taking the feature Fad 

(R300s-RLBA (300s)). Even though the two principal components (PC1 and PC2) account for about 

96.0% of the total variance, only the commercial sample (“Citric”) appeared well distinct from the 

fresh hand squeezed ones and from the water, used as standard. In fact, the fresh squeezed 

sample can be discriminated, only when the third principal component is included, as shown in 

3D sore plot PCA.  

 

 

Fig. 5.1.c PCA score plot of Nariz Aspiracion’s data (Feature Fa) for three fresh squeezed 

juices (from ‘Rio Red’, Rouge La Toma’, Star Ruby’ grapefruit cultivars), commercial 

grapefruit juice (“Citric”) and water, used as Standard. 2D (on L.) and 3D (on R.) 

 

To check if the exclusion of data relative to the standard may help for providing a better 

discrimination, PCA analysis was repeated without including water’s data. The results are shows 

on figure 5.1.d , but this was not the case.  
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Fig. 5.1.d PCA score plot of Nariz Aspiracion’s data (Feature Fa) for three fresh squeezed juices (‘Rio Red’, 

‘Rouge La Toma’, ‘Star Ruby’ grapefruit cultivars) and a commercial grapefruit juice (“Citric”) without 

Standard. 2D (on L.) and 3D (on R.) 

A further attempt to obtain a better discrimination was done by increasing the 

information amount of raw data. We extracted a new feature by taking the sensors response at 

different time (F4= (R25s-RLBA(25s)),(R50s-RLBA(50s)),(R75s-RLBA(75s)),(R300s-RLBA(300s)) as show here: 

 

Than a PCA was calculated. The figure 5.1.e shows the PCA score plot with the two 

principal components (PC1 vs. PC2). The two principal components account for 86% of the total 

variance, so that the third component was also considered as show in figure e. Samples appear 

even worse discriminated, thus indicating that the new added information were poorly 

correlated. 

Moreover a Cluster Analysis (with Partitioning Around Medoids, number of clusters: 4) 

was calculated by the PCA data provided from the feature F4, to find the optimal method for the 

discrimination. Even the Cluster Analysis fails to correctly distinguish the fresh squeezed samples 

from the commercial juice (figure 5.1.f). 
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Fig. 5.1.e PCA score plot of Nariz Aspiracion’s data (Feature F4) for three fresh squeezed 

juices (‘Rio Red’, ‘Rouge La Toma’, ‘Star Ruby’ grapefruit cultivars) and a commercial 

grapefruit juice (“Citric”) without Standard. 2D (on L.) and 3D (on R.) 

 

Fig. 5.1.f Results of cluster analysis (cluster id.) for the three fresh squeezed and commercial 

grapefruit juices PCA data (feature F4). Graphic representation of clusters from the cluster 

analysis.   

5.1.3. Conclusions 
 

Overall results suggest that although the Nariz por Aspiracion is able to discriminate 

between fresh squeezed juice and commercial juice, it is less powerful than Nariz Estanca in 

distinguish fresh squeezed juices from different cultivars, at least under the experimental 

conditions assayed.  
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5.2. Discrimination of 3 grapefruit (Citrus paradisi Macf.) 

cultivars, white and red pulp fruits, stored for 10 days at 

room temperature. 

 
The characteristics of grapefruit juice as flavor and smell are extremely important in 

conferring value to the product. 

 We tested the capability of EN to distinguish between juices of different cultivars. 

Moreover we tested the capability of EN to discriminate samples of the cultivars that are stored 

at room temperature for 10 days.  

 

5.2.1. Materials and Methods 
 
Fresh grapefruit (Citrus paradisi Macf.) fruits of the cvs. ‘Star Ruby’ (Entre Ríos), ‘Marsh 

Seedless’ (know in Buenos Aires as ‘Marshall’) and ‘Thompson’ grown in Argentina were 

purchased at Central Market of Buenos Aires (fig. 5.2.a).   

 

 

 
 

cv. ‘Marshall’ (grown in Corrientes) 

 

 
 

cv. ‘Thompson’ (grown in Formosa) 
 

 

 
 

cv. ‘Star Ruby’ (grown in Entre Ríos) 
 

 
Fig. 5.2.a  Sample: cultivar of grapefruit grown in Argentina.  
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5.2.2. Results and Discussion 
 
The quality parameters for ‘Marshall’ and ‘Thompson’ (both white pulp fruits) and ‘Star 

Ruby’ (red pulp fruit) cultivars have been studied, when the fruit arrived in the laboratory (Time: 

2nd June 2011). The results are shown in table 5.2.A.  

The heaviest fruit was recorded in ‘Star Ruby’ (405.20 ± 30.00 g), but the major % of juice 

(weight/weight) was obtained from ‘Thompson’ (46.48 ± 1.2).   

The lowest acidity (g/L citric ac.) and soluble solid (°Brix20) was observed in ‘Thompson’ 

samples, while the highest soluble solid was found for ‘Marshall’ which has an acidity value 

comparable to ‘Star Ruby’s value. 

The conductivity value, expressed in milli-Siemens (mS), that reflects the concentration of 

electrolytes like sodium and chloride ions in the samples and it is correlate to acidity value, was 

found lower for ‘Marshall’ and higher for ‘Thompson’. 

The Oxidation Reduction Potential (ORP), measured in milli-volts (mV) and indicating 

whether a solution is oxidizing or reducing, was also calculated. Any positive number indicates 

that the solution is oxidizing and of course, any negative number indicates a reducing or 

deoxidizing tendency. The highest ORP value was observed in ‘Thompson’. 

 

Tab. 5.2.A Quality parameters of three grapefruit cultivars 

Quality Parameters: 
Samples: 

‘Marshall’ ‘Thompson’ ‘Star Ruby’ 

Weight (g)
 

374.60 ± 15.00 282.13 ± 17.50 405.20 ± 30.00 

DT (cm)   9.86 ± 0.24   8.79 ± 0.30 10.24 ± 0.25 

DL (cm)   8.30 ± 0.16   8.44 ± 0.22   8.82 ± 0.28 

% Juice (w/w)        42.40 ± 1.30        46.48 ± 1.20 44.14 ± 0.90 

pH 3.00 ± 0.1 3.23 ± 0.1 3.10 ± 0.1 

Acidity (g/L citric ac.)   7.18 ± 0.25   5.43 ± 0.35   7.26 ± 0.29 

SS (°Brix20) 19.46 ± 0.95 16.88 ± 0.55 18.19 ± 0.30 

Conductivity (mS) 4.14 5.02 4.48 

ORP (mV) - 138.70 - 117.70 - 155.80 

 

The aromatic patter was carried out using both type of INQUIMAE’s EN above described to 

discriminate the differences between aroma cultivars. 

 The fruit was stored at room temperature for 10 days (from 2nd to 13th June 2011) and 

the aromatic patter was monitoring. 
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Nariz Estanca results:  

Figure 5.2.b shows the PCA score plot of data pre-processed by taking the feature Fe (R600s-

RLBA(600s)) when the fruits arrived in the laboratory (2nd June 2011).  The two principal 

components (PC1 and PC2) account a total variance of 99.7%. An appreciable clusterization 

between the different cultivars was found. 

 Considering the intensity of each sensor’s signal (data no reported), the PC1 showed a 

linear trend from water, with no volatile compounds, to ‘Thompson’, with, probably, most 

volatile compounds. 

 

 

 

Fig. 5.2.b PCA score plot of Nariz Estanca’s data (Feature Fe) for three grapefruit cultivars 

and tap water as Standard (STD). 

 

The grapefruit’s cultivar aromatic pattern after 10 days was measured by Nariz por 

Estanca. The PCA score plot is shown in figure 5.2.c.  

The total variance percentage values (PC1 and PC2) did not change. 

The storage time, of the grapefruit samples, was mostly reflected on PC1, where the 

‘Thompson’ and ‘Star Ruby’ samples at 10 days of storage present an appreciable shift. The  

‘Marshall’ samples showed a little different behavior: they have an appreciable shift only on PC2.  

An additional consideration, down reported, explains better the reason of these different 

behaviors.  
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Fig. 5.2.c PCA score plot of Nariz Estanca’s data (Feature Fe) for samples of three grapefruit 

cultivars and tap water (as Standard - STD) at two different storage time: when the fruit 

arrived in the laboratory (02-06-2011) and after 10 days (13-06-2011).  

 

Nariz por Aspiracion results:  

Figure 5.2.d shows the PCA score plot of data pre-processed by taking the feature Fa (R300s-

RLBA(300s)) when the fruit arrived in the laboratory at the first day (2nd June 2011).   The two 

principal components (PC1 and PC2) account a total variance of 92.31%. A clustering is 

conceivable among the different cultivars. 

The grapefruit’s cultivar aromatic pattern after 10 days was measured by Nariz por 

Aspiracion. The PCA score plot is shown in figure 5.2.e.  

It is possible to note a variance percentage values change on PC1 and on PC2: the PC1 

value decreases and the PC2 increases. The third component was also considered to a clear data 

vision. The storage time, of the grapefruit samples, was most reflected on PC2, where the 

samples after 10 days of storage present a shift. According to this result explaining, the Marshall’ 

samples doesn’t change the aromatic pattern during the storage time. 
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Fig. 5.2.d PCA score plot of Nariz por Aspiracion’s data (Feature Fa) for three grapefruit 

cultivars and tap water as Standard (STD).  

 

 

Fig. 5.2.e PCA score plot of Nariz por Aspiracion’s data (Feature Fa) for samples of three 

grapefruit cultivars and tap water (as Standard - STD) at two different storage time: when 

the fruits arrived in the laboratory (02-06-2011) and after 10 days (13-06-2011). 
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For both EN (Nariz Estanca and Nariz por Aspiracion) a closer comparison between the 

sensor’s responses has been performed by radar plot. Nariz Estanca responses show that 

increases the intensity of the signal for each sensor maintaining a quite similar pattern (fig. 5.2.f). 

Instead Nariz por Aspiracion  the increase of sensor’s signal intensity is small and can be seen a 

little change in the pattern shape (fig. 5.2.g). 

 

Fig. 5.2.f  Sensors’ responses at steady state for Nariz Estanca (600sec); the signal of S8, S11, 

S12 were multiplied by an arbitrary factor (respect 10, 5, 10) to better highlight the response 

on radial axis. 

 

Fig. 5.2.g Sensors’ responses at steady state for Nariz por Aspiracion (300sec).  
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For both EN (Nariz Estanca and Nariz por Aspiracion) the % change of each sensors 

response with time increasing was calculated for the three different cultivars (‘Star Ruby’, 

‘Thompson’, ‘Marshall’). The % change was calculated: 

 

 

 
 The results, plotted in figure 5.2.h and 5.2.i, evidence that the Nariz Estanca has 

sensitivity much higher than Nariz por Aspiracion, for fresh squeezed grapefruit juice. 

Probably due to the sampling method, the results obtained with Nariz por Aspiracion are 

affected by the presence of environmental volatile compounds. 

 

 

Fig. 5.2.h Percentage of intensity variation, for each Nariz Estanca’s sensor, measuring 

grapefruit fruit samples at two different storage time: when the fruit arrived in the 

laboratory (02-06-2011) and after 10 days (13-06-2011).  

 

Fig. 5.2.i Percentage of intensity variation, for each Nariz por Aspiracion’s sensor, measuring 

grapefruit fruit samples at two different storage time: when the fruit arrived in the 

laboratory (02-06-2011) and after 10 days (13-06-2011). 
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5.2.3. Conclusions 
 
The changes observed in the aroma pattern obtained with fresh fruits and the same lot of fruits 

measured after 10 days can be ascribed to different factors, such as light incidence, humidity 

changes, and the consequent natural oxidation and changes in hydration of the fruits. It seems to 

be a combination of factors, difficult to identify due to the large amount of components usually 

found in natural fruits.  The study reflects the importance of the time of storage, even for non-

climateric fruits. 
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6. Experiments in Spain (E-nose IQMA,  U.P.V.) 

 
From August to October 2011, I worked at the Instituto Agroforestal Mediterráneo (IAM), 

Polytechnic University of Valencia (U.P.V.) (Spain), with the group of Prof. Manuel Agusti 

Fonfría. We studied the volatile components of persimmon (Diospyros kaki L.) and quince 

(Cydonia oblonga) fruits, through the use of a homemade electronic nose and Gas 

Chromatography analysis with Mass Spectrometer detector.  

 

Edoardo Garcia-Breijo and co-workers, from the Institute of Applied Molecular Chemistry 

(IQMA), Polytechnic University of Valencia, in 2009, designed and developed a homemade 

Electronic Nose System. They used commercial standard sensors to establish if some odors 

produced a characteristic response when the sensors worked in non-standard conditions.  

After the initial test of the instrument, Garcia-Breijo’s group applied E-nose IQMA to 

discriminate fish samples at different freshness levels.  

At the moment Garcia-Breijo’s group is working to improve the device performances so 

opening new fields of application. For example, they are planning to use this system for military 

application such as the monitoring of the presence of explosive and toxic gas. 

 

Device description 
 

The E-nose IQMA consists of 15 commercial sensors (FIGARO Engineering Inc., Japan), a 

homemade data acquisition system and a laptop in-line with the data acquisition system. 

The sensors showed in table 6.A are of the MOS type and presents a commercial declared 

specificity for different gases (hydrogen, carbon, monoxide, butane, methane, etc.).  

The measurement cycle for each sensor includes several steps: warming the heater, 

powering the sensor and measuring the sensor voltage. 

The gas manager system includes two chambers: the concentration chamber (were the 

samples are introduced) and the measurement chamber (were the sensors are placed) (fig. 6.a). 

 The concentration chamber, where it is possible to put the whole fruit, has cylindrical 

shape (12cm i.d x 16cm h.) and it is connected to the measuring chamber with a pump. Once  

establishedAfter the equilibrium between the sample volatile molecules and the headspace has 

been established, the small pump draws the headspace from the chamber concentration and 

transfers it to the measuring chamber (12cm i.d x 14cm h.). A hard flow of air is used to purge the 

sensors. 

To give flexibility to the equipment, the data acquisition system has been designed with a 

master-slave architecture (fig. 6.b and 6.c):  each slave processor controls the measurement cycle 

of one sensor and the master processor collects the data from the 15 slaves and sends them to 

the laptop. The software used, Soft Nariz, homemade too, is able to record and plot the sensors 
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signal in a simple way (Masot et al. 2009). Really the device is not portable since it has been 

thought for laboratory measurements.  

 

 Tab. 6.A  MOS Sensor array configuration of the E-nose IQMA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.a E-nose IQMA
 
at the Institute of Applied Molecular Chemistry (U.P.V.) (Spain). 

 

 

 

              

           Fig. 6.b Acquisition system.                    Fig 6.c Slave processors.  
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6.1. Discrimination of fruits aroma of 2 Diospyros kaki L. cultivars. 

 
Persimmon (Diospyros kaki L.) is believed to be originated in China (Luo & Wang 2008), 

subsequently spread to Korea and Japan (Sugiura 1997), where it is a traditional crop, and then to 

other regions of the world. It gained popularity in Europe and in particular in the Mediterranean 

countries (Spain and Italy). In 2008 the main producers of persimmon are China (2,533,899 t), 

Korea (430,521 t), Japan (244,800 t), Brazil (169,000 t), Azerbaijan (132,179 t), Spain (70,000 t), 

Italy (50,000 t), Israel (30,089 t) and Uzbekistan (31,000 t) (FAOSTAT, 2010). 

The persimmon color generally ranges from light yellow- orange to dark red-orange.  

Depending on the species, persimmons vary in size from 1.5 to 9 cm diameter, and may be 

spherical, acorn-, or pumpkin shaped. The calyx often remains attached to the fruit after 

harvesting, but becomes easier to be removed upon ripening. Persimmon fruits have high 

content of glucose, with a balanced protein profile, and present various medicinal and chemical 

uses (Ragazzini, 1985). These fruits are of great interest due to their content of biologically active 

important compounds (different types of carotenoids and vitamin C). 

 Persimmon cultivars are usually classified into two groups, astringent and non-astringent 

type, depending on the degree of astringency at the mature stage (Arnal & Del Rìo 2005, Matsuo 

1998, Ragazzini 1985). When an astringent persimmon is eaten, the tannin cells in the flesh are 

crushed and soluble tannins are released, giving a strong astringent sensation (Taira 1996). The 

astringency disappears when soluble tannins become insoluble (Matsuo, 1998; Taira et al., 1997), 

at the mature stage. Persimmons are climacteric fruits whose ripening is regulated by ethylene 

(Wills et al., 1998). They are at their best quality at the end of the preclimacteric stage, when the 

sugar content reaches its maximum value and the required orange color of the fruit has 

developed just before the onset of the respiratory climacteric and the induction of ethylene. 

When astringent persimmons with firm texture are harvested, the fruit has not suffered the 

overripening that naturally removes their astringency. For this reason, astringent varieties of 

persimmon have a limited consumption as a fresh product and their features must be improved 

by technological processes (Agustì et al. 2006, Arnal & Del Rìo 2005, Hernàndiz 1999). Persimmon 

production is now increasing due to the application of techniques to remove astringency. This 

allows to commercialize and transport fruits still having a firm consistency (Arnal & Del Rìo 2003, 

Llàcer & Badenes 2002). 

A few literature exists on the aroma characteristic of persimmon fruits, whereas the 

marketing of many products derived from persimmon flavor is continuously growing. We used 

gas chromatography with mass spectrometry technique to identify the aromatic pathway and the 

electronic nose, IQMA, to test its ability in discriminating the odor fingerprint of two different 

cultivar of D. kaki produced in Spain. 
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6.1.1. Materials and Methods 
 
Two cultivars of persimmon (D. kaki) were used for the experiments. Samples of ‘Rojo 

Brillante’ (fig. 6.1.a) and ‘Triumph’ (fig. 6.1.b) were obtained from IAM’s experimental orchard 

(near the Polytechnic University of Valencia). Twenty fruits for each cultivar were collected in 

October 2011. The fruits were ripened for commercial picking (Stage 8. 85 – BBCH scale; Garcia 

Carbonell et al. 2002). The fruits were selected with the aim of having high homogeneity in 

samples thus reducing the variability of the results. 

 

   

      Fig. 6.1.a D. Kaki cv. ‘Rojo Brillante’.          Fig. 6.1.b D. Kaki cv. ‘Triumph’.  

 

Gas – chromatography 

Purge and trap thermal desorption was used to extract the volatile compounds. Samples 

of each variety of kaki (30 g) were placed in a purging vessel flask and left in a water bath at 50 °C 

for 10 min. Purified nitrogen (100 mL/min) was forced through a porous frit placed at the bottom 

of the vessel. The stream of bubbles produced passed through the sample and collected the 

volatile compounds, which were trapped in 100 mg porous polymer (Tenax TA, 20-35mesh) 

packed into a glass tube placed at the end of the system. The volatile compounds were thermally 

desorbed using a direct thermal desorber (TurboMatrix TD, Perkin ElmerTM, CT-USA). Desorption 

was performed under a 10 mL/min helium flow at 220°C for 10 min. The volatiles were then 

cryofocused in a cold trap at −30°C and directly transferred onto the head of the capillary column 

by heating the cold trap to 250 °C (at a rate of 99 °C/s) (Escriche et al. 2011).  

Finnigan TRACETMMS (TermoQuest, Austin, USA) was used to carry out the GC–MS 

analysis. Volatile compounds were separated using a DB-WAX capillary column (SGE, Australia) 

(60 m length, 0.32 mm i.d., 1.0 μm film thickness). Helium at a constant flow rate of 1 mL/min 

was used as a gas carrier. The temperature was programmed to increase from 40°C (2-minute 

hold time) to 190°C at 4°C/min (11-minute hold time) and finally to 220°C at 8 °C/min (8-minute 

hold time). The MS interface and source temperature was 250°C and 200°C, respectively. 

Electron impact mass spectra were recorded in impact ionization mode at 70eV and a mass range 

of m/z 33–433. A total of 3 extracts were obtained for each sample (Escriche et al, 2011). 

Identification of each molecule was carried out by comparing mass spectra with those contained 

in NIST and Wiley library databank. 
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Electronic Nose 

The E-nose IQMA, whose detailed description is given above (Section 6.3.1 “Device 

description”), was used. A change of the apparatus was required for our experiments. In fact we 

directly connected the concentration and the measure chambers, bypassing the pump. This was 

done because in testing the method operations we noticed that the pump was not absolutely 

inert to the volatile molecules, but it absorbed part of them. Therefore a cross-contamination of 

aroma between subsequent measurements occurred. The new design of the system, with 

concentration and measurement chambers joint, is show on figure 6.1.c. 

 

 

Fig. 6.1.c E-nose IQMA with joint concentration and measure chambers. 

 

The measurement was carried out by putting inside the ‘double chamber’ half of cut 

persimmon fruit (40 g, pulp and skin), closing the top and starting to record data from sensors. 

Each measurement was stopped after 20min, when all sensors reached a steady-state (stable 

maximum value).  

As a first step of EN's data pre-processing, the significant features were extracted from the 

sensors' response curves. In the present study, the feature considered was R, that is the 

maximum of sensor resistance during the exposure to sample headspace. Explorative data 

analysis was performed by Principal Component Analysis (PCA). The raw data matrix was a 

Covariance Matrix. 

 

Colorimetric measurements 

Changes in color were studied too. Color values were acquired by measuring the reflection 

spectrum in CIE-L*a*b* uniform colors space, with a spectrocolorimeter (Minolta, CM 3600D, 

Tokyo, Japan). In CIE-L*a*b*, L* indicates lightness while a* and  b* indicate the chromaticity on 

axes ranging from green (–) to red (+) and from blue (–) to yellow (+), respectively. 
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6.1.2. Results and Discussion 
 
GC analysis of the extracted volatiles showed relatively few compounds contributing to 

persimmons aroma. Table 6.1.A reports the integrated areas of all the molecules identified in the 

two cultivars, following their elution time from the GC column. The major present molecule is 

Ethanol. The aromatic pattern is qualitatively different for the two cultivars.  

 

Tab. 6.1.A. Volatile compounds of Persimmon (Diospyros kaki L.)         

R.T. 
 (min)* 

Identification 
(% Similarity)** 

Chemical compounds  
% Area *** 

 ‘Rojo Brillante’ ‘Triumph’ 

1.92 68.79 Acetic acid. Anhydride - 0.27 ± 0.16 

2.03 44.99 Hidrogen azide 0.23 ± 0.11 - 

2.07 60.44 Folic Acid - 0.24 ± 0.13 

2.23 79.09 Pentane 0.21 ± 0.15 - 

2.30 23.41 1-propanol.2-methyl - 0.27 ±0.06 

2.44 65.39 Hexane 0.16 ± 0.10 0.30 ± 0.17 

2.55 53.76 Ethyl Ether 0.10 ± 0.07 - 

2.72 17.14 3-methyl Hexane tr. - 

2.89 64.96 Heptane 0.13 ± 0.10 - 

3.03 70.05 Propane + Acetaldeide 37.00 ± 3.05 19.84 ± 5.19 

3.96 53.61 Propilene oxide 0.22 ± 0.04 - 

4.32 89.09 Propanenitrile.2hydroxy.2 methyl - 0.90 ± 0.09 

4.35 76.43 Acetone 1.38 ± 0.32 - 

4.47 75.56 1-propanol.2-methyl - 1.26 ± 0.43 

4.50 75.49 hydrazide-Acetic acid 1.11 ± 0.31 - 

5.50 98.74 Ethyl Acetate 1.11 ± 0.14 10.22 ± 4.06 

5.68 61.81 3-methyl Furan 0.57 ± 0.12 - 

5.89 33.94 Ethoxy Ethene 0.16 ± 0.01 - 

6.20 32.68 3-methyl Butanal 0.13 ± 0.09 - 

6.40 65.86 Propil estere 2-hydroxy Propanoic Acid 0.17 ± 0.01 - 

6.61 90.6 Ethanol 52.19 ± 3.00 59.89 ± 7.76 

7.72 24.78 2-Pentanone 0.17 ± 0.01 - 

8.72 51.04 trichloro-Acetaldehyde 0.27 ± 0.16 - 

9.27 95.06 1-Propanol 0.20 ± 0.03 0.33 ± 0.28 

9.50 30.08 2-propenilidene-Cyclobutene 0.20 ± 0.03 - 

10.41 15 Acetyl bromide - 0.64 ± 0.57 

10.59 73.71 Ethanol. 2-2-(2 butoxyethoxy )ethoxy - 1.22 ± 0.96 

10.87 51.3 1-propanol.2-methyl - 0.34 ± 0.14 

13.20 72.67 1 butanol 0.12 ± 0.02 0.40 ± 0.14 

13.99 85.25 Ciclohexene. 1 methyl 4 (1-methylethyldene) - 1.30 ± 1.20 

14.35 90.34 3-methyl-1-Butanol 0.16 ± 0.06 0.76 ± 0.20 

17.33 41.5 Isopropyl alcohol - 0.85 ± 0.50 

17.39 79.23 3-hydroxy-2-Butanone 0.48 ± 0.27 - 

17.46 38.52 Ethanol 2 methoxy - 0.63 ± 0.36 

             * Mean of Retention Time;  ** According to Nist and Wiley library; *** Mean value of relativity  percentage of Area ± SD   
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The PCA score plot (fig. 6.1.d) showed not only a distinct separation of fruit’s aroma from 

atmospheric air (used as control), but also the distinguish ability of the two different cultivars of 

D.kaki. The first separation was on PC1 with 95.20% of variance and the second one on PC2 with 

2.97% of variance. In this case it was not necessary to use more principal components. 

 
 

Fig. 6.1.d. PCA score plot of E-nose IQMA data for two cultivars Diospyros kaki L. : ‘Rojo 

Brillante’ and ‘Triumph’. 

 
 

Fig. 6.1.e. PCA score plot of E-nose IQMA data for ‘Rojo Brillante’ and ‘Triumph’ cultivar 

according different ripe state. 
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Within cultivar’s cluster it is possible to note two sub-clusters, according to the ripe state 

of fruit. The EN seems to be able to distinguish also the fruits according to the ripe state (fig. 

6.1.e). The time evolution of color parameters and differences in samples of ‘Rojo Brillante’ and 

‘Triumph’ persimmon is recorded in table 6.1.B. In both cases an increase of color parameters is 

observed over 4 days due to the ripening of these climacteric fruits.  

 

Tab. 6.1.B Color parameters values of the two Diospyros kaki L. cultivars: time evolution. 

 
 

 

 

 

 

 

1Mean value ± SD  

 

Cv. ‘Rojo Brillante’ taken pictures at :    
          

 
            24/10/2011                                28/10/2011 

 

Cv. ‘Triumph’ taken pictures at :  
          

  

            24/10/2011                                   28/10/2011 

 

6.1.3. Conclusion 
 

The E-nose IQMA  data show the ability of the instrument to distinguish two different 

cltivars of D.kaki, according to the GC-MS data. Moreover the instrument is capable to distinguish 

the fruits, inside the cultivar cluster, according to the ripe state after few days of storage.  

Cultivar: Data: 
Color parameters1: 

a* b* L* 

‘Rojo Brillante’ 24/10/2011 15.65 ±0.68 33.84 ±0.77 57.53 ±1.05 

 26/10/2011 19.16 ±0.34 33.43 ±0.17 57.12 ±0.28 

 28/10/2011 22.90 ±0.97 32.80 ±0.70 56.43 ±0.77 

‘Triumph’ 24/10/2011   8.55 ±1.07  29.17 ±0.52 52.75 ±0.35 

 26/10/2011 10.17 ±1.34 31.10 ±2.53 54.57 ±3.01 

 28/10/2011 10.47 ±1.73 30.15 ±0.17 53.68 ±0.33 
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6.2. Discrimination of fruits aroma of 2 Cydonia oblonga M. 

genotypes. 
 

The study of particular flavor notes in uncommonly used vegetables and fruits receive the 

interest of the flavorist, who often searches and finds inspiration in natural sources not widely 

available. A rarely used flavor note is that of Cydonia oblonga Miller, fruit of the Rosaceae family, 

known in Italy as “mela-cotogna” (“quince” apple) and in Spain as “membrillo”.  

Quince fruit is a seasonal fruit. It has also recently received interest for its phenolic 

content (Silva et al. 2002, Silva et al. 2004) responsible for its antioxidant and free scavenging 

activities. A brief review of medical literature revealed that preparations from different parts of 

quince have been used as traditional remedies against cough, bronchitis, nausea, fever, diarrhea, 

cystitis, constipation, hemorrhoids, diabetes, hypertension. Their efficacy has been tested in 

several experimental or clinical studies. 

Quince fruit is also widely used as a food, but being too astringent to be consumed fresh, 

it is frequently processed into a jam or jelly.  

Few are the studies on the volatiles fraction of quince fruit. Some of them are focused on 

steam-distilled quince fruit oil (Tsuneya et al. 1983, Ishiara et al. 1986), in which a relevant 

number of C13 norisoprenoids were identified. But it is well know that the crushing process 

introduces flavor changes, presumably due mainly to the difference in the volatility of 

compounds such as esters and the monoterpene and sesquiterpene hydrocarbons. On the other 

hand,  monoterpens and oxygenated compounds are vulnerable to steam distillation condition. 

Therefore, recent scientific literature has proposed alternative methods for the determination of 

volatile compounds, like HS-SPME (head-space solid-phase microextraction), that does not need 

particular treatments of fruits (Tateo et al. 2010). In more recent studies, more than 40 volatiles 

compounds were extracted, most of them was identified. Many compounds belonging to 

chemical classes as acetates, esters and sesquiterpens were found. Some of them, like ethyl 

octanoate, ethyl hexanoate, ethyl decanoate, ethyl 2-octenoate, 5-hesenyl acetate and ethyl 

acetate increase with ripeness; instead, 3-hexenyl acetate, α-bergamotene and α-farnesene 

decrease with ripeness.  

A lot of interest has recently arisen from the possibility of revealing quince product 

adulteration by addition of apple and pear that have lower cost and similar texture. This type of 

adulterations can be monitored by detecting the presence of phloretin 2-xylosylosylglucoside and 

phloretin 2-glucoside, two dihydrochalcons found in apple, and arbutin found in pear and in 

another fruit from Rosaceae family (Andrade et al. 1998). It should be also possible to detect 

quince product adulteration by discriminating the volatiles compounds. 

Solicited by the current adulteration problem and, more in general, by the request of 

modern technological approaches to be employed in the development of new flavors and 

fragrances, we checked the suitability of an electronic nose as rapid tool for identifying 
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adulteration agents or projecting new types of aroma. As preliminary step of this work we tested 

the EN sensibility to quince fruit’s aroma. 

 

6.2.1. Materials and Methods 
 

Two genotypes of quince (D. kaki) were used for the experiments. Fruits of  ‘Vranja’ and 

from a seedling tree (called in italian “Franco”) (fig. 6.2.a), were obtained from IAM’s 

experimental orchard (near the Polytechnic University of Valencia). Six fruits from the two 

genotypes were collected in October 2011. The fruits were harvested in a semi-ripening state, 

still turning color from green to yellow state. 

 

 

Cv.Vranja 

 

 

“Franco” 
 

Fig. 6.2.a Materials used: quince fruits grown in Valencia. 

   

Gas Chromatography 

The volatile compounds were analyzed in the same way of persimmon fruits, as above 

described. Identification of the aromatic components was carried out by comparing the obtained 

mass spectra with those contained in NIST e Wiley library. 

 

Electronic Nose 

The instrument setting was the same used for the persimmon fruits analysis. The sample 

preparing was instead different: the mesocarp of quince was cut in small pieces and 40g were put 

inside the sealed ‘concentration-measure chamber’  (fig. 6.2.b).  The analysis time was 20 min.  
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Explorative data analysis was performed by Principal Component Analysis (PCA), where 

the raw data matrix was a Covariance Matrix. The feature extracted from each sensors response 

curves was R,  that is the maximum of sensor resistance during the exposure to sample 

headspace.  

 

 
 

Fig. 6.2.b E-nose IQMA with joint concentration and measure chambers. 

 
6.2.2. Results and Discussion 

 
GC analysis, by purge and trap sampling method, was able to extract 42 molecules from 

aroma of quince fruits. The ‘Vranja’ contains all these molecules, more or less, whereas in 

“Franco” some are present only in trace. The major compound, in both genotypes, is Hexanal, an 

alkyl aldehyde used in the flavor industry to produce fruity flavours.  The second molecule, with 

relative high percentage of area, is 1-Hexanol, which is believed to be a component of the odor of 

freshly mown grass. Several identified compounds are present in trace (tab. 6.2.A). 

The PCA score plot (PC1 vs. PC2) (fig. 6.2.c) shows that the electronic nose, E-nose IQMA, 

discriminates between the aroma of quince and the reference (atmospheric air). But while in the 

persimmons case E-nose IQMA was able to discriminate among the aromas of two different 

cultivars, this doesn’t happen with quince fruits. To better verify the results, the third principal 

component was considered and the PC2 versus PC3 was plotted (fig. 6.2.d), but the 

discrimination was not improved.  

 

4.1.1. Conclusion 
 
We conclude that for the quince aroma, the E-nose IQMA has an appreciable sensitivity 

but a poor selectivity. In fact it is able to distinguish between air and quince aroma, but no 

differences between the two quince genotype aroma is observed, even if data from GC-MS show 

large differences between the volatile compounds inside the two quince genotype aroma. 

http://en.wikipedia.org/wiki/Alkyl
http://en.wikipedia.org/wiki/Aldehyde
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Tab. 6.2.A Volatile compounds of Quince Fruits          

R.T. 
 (min)* 

Identification 
(% Similarity)** 

Chemical compounds  
% Area *** 

‘Vranja’  “Franco” 

2.25 63.3 Hexane 0.14 ± 0.04 0.26 ± 0.18 

2.76 73.2 Acetaldehyde 1.07 ± 0.44 2.04 ± 1.44 

2.78 60.0 Propane - 4.46 ± 1.15 

3.23 60.6 Dimethyl sulfide 0.56 ± 0.05 1.54 ± 0.06 

4.03 75.2 Propanal. 2 methyl 0.43 ± 0.09 1.74 ± 1.14 

4.24 80.3 Acetone 0.22 ± 0.10 - 

4.66 92.0 2-Propenal 0.18 ± 0.07 0.52 ± 0.19 

4.90 72.0 Furan tetrahydro 0.26 ± 0.04 0.38 ± 0.09 

5.23 31.4 Butanal tr. - 

5.32 52.6 Ethyl acetate tr. 0.63 ± 0.23 

5.72 74.0 2-Propen 1-ol - 1.21 ± 0.85 

5.78 86.0 2-Butanone 0.33 ± 0.07 - 

6.01 73.2 Butanal 2 methyl 0.46 ± 0.19 2.37 ± 1.67 

6.17 32.9 Isopropyl alcohol tr. 0.20 ± 0.14 

6.43 83.0 Ethanol 0.35 ± 0.24 2.92 ± 0.37 

7.19 59.7 n-Propil acetate - 0.19 ± 0.13 

7.56 79.5 Pentanal 0.17 ± 0.03 0.35 ± 0.01 

8.29 50.5 Acetic acid. 2 methylpropyl ester - 0.17 ± 0.01 

8.61 39.0 Trichloro Acetaldehyde tr. - 

8.96 74.0 1-Propanol - 0.23 ± 0.16 

9.16 33.0 Cyclobutene. 2 propenylidene - 0.20 ± 0.14 

9.49 44.8 2-Butenal Z 0.12 ± 0.03 0.16 ± 0.11 

9.91 46.0 Acetic acid. butyl ester - 0.23 ± 0.16 

10.09 57.0 Tetraacetyl-d-xylonic nitrile - 0.15 ± 0.10 

10.46 53.9 Hexanal 56.80 ± 22.2 36.41 ± 13.32 

11.02 40.3 1.2 Cyclopentanediol. trans- 19.56 ± 9.48 2.08 ± 0.26 

11.40 19.5 3-Methylheptyl acetate - 2.05 ± 0.80 

12.31 19.9 3-Hexenal Z 12.45 ± 4.91 2.26 ± 1.59 

12.36 51.4 4-pentenal. 2 methyl - 2.51 ± 0.53 

14.16 67.6 1-Butanol.2 methyl - 9.28 ± 5.09 

14.88 35.7 2-Hexenal 0.76 ± 0.7 1.02 ± 0.09 

15.23 70.7 2-Butenoic acid. 2 methyl- ethyl ester - 0.49 ± 0.20 

15.48 43.0 2-Penten 1 ol. acetate.Z - 0.69 ± 0.21 

15.59 35.8 1-Pentanol tr. - 

16.97 61.0 Octanal - 0.41 ± 0.28 

17.25 17.4 1-bromo-2-fluoro Ethane tr. - 

17.73 84.5 2-Buten 1 ol. 2 methyl - 3.12 ± 2.34 

17.93 48.1 1-Hydroxy-2-Propanone tr. - 

18.42 44.0 6-Methyl-5-Hepten-2-one tr. - 

18.53 46.5 1-Hexanol 9.38 ± 4.24 17.35 ± 1.99 

19.43 36.1 3-Hexen 1 ol  1.95 ± 0.39 4.72 ± 3.52 

19.82 54.8 Nonanal tr. - 

     * Mean  Retention Time;  ** According to Nist and Wiley library; *** Mean value of relativity  percentage of Area ± SD   
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Fig. 6.2.c. PCA score plot (PC1 vs PC2) of E-nose IQMA data for two quince fruit:  ‘Vranja’ 

cultivar and ”Franco” and atmospheric air. 
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Fig. 6.2.d. PCA score plot (PC2 vs PC3) of E-nose IQMA data for two quince fruit:  ‘Vranja’ 

cultivar and ”Franco” and atmospheric air. 
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7. Conclusions 

 
People use all their senses to evaluate fruit quality: sight, smell, taste, touch, and even 

hearing. The consumer integrates all these sensory inputs into a final judgment of the fruit 

acceptability.  

Instruments that measure quality attributes like human senses, are very important for 

several applicative purposes. Indeed, instrumental measurements are to be preferred to sensory 

evaluations in many research and commercial applications because instruments reduce 

variations among individuals, are more precise, and can provide a common language among 

researchers, industry and consumers. 

The electronic nose can be considered a supplementary tool to human sensory panel 

assessment especially in food quality assurance and food quality control.  

An ‘electronic nose’ is a system originally created to mimic the function of the animal 

nose. However, this analytical instrument is more a ‘multi-sensor array technology’ than a real 

‘nose’. Whatever the sensor technology, it is still far from the sensitivity and selectivity of a 

mammalian nose. Therefore, its aim is not that of totally replace the human nose or other 

analytical methods. A sensory panel is always necessary to define the desired product quality 

that can be used to train the system. Traditional analytical methods such as GC-analysis to 

determine on a qualitative or/and quantitative base in what one food sample differs from others. 

The ‘electronic nose’ can only perform quick ‘yes or no’ tests of comparison with other products. 

Therefore, an ‘electronic nose’ can be regarded as an interesting tool for a quick quality test in 

various food applications. 

Today many electronic noses are commercially available for quality investigation and 

control. They have a wide range of applications in various markets and industries ranging from 

food processing, industrial manufacturing, quality control, environmental protection, security, 

safety and military applications to various pharmaceutical, medical, microbiological and 

diagnostic applications. 

An universal electronic nose capable of identifying or discriminating any type of gas 

sample with high efficiency in all possible applications has not yet been built. This is largely due 

to the limitations in selectivity and sensitivity of e-nose sensor arrays for specific analytic gases. 

Electronic noses are not designed to be universally appropriate sensor systems for every 

conceivable gas-sensing application nor they are capable of serving every possible analytical 

need. Thus, the suitability of an electronic nose for a specific application is highly dependent on 

the required operating conditions of the sensors in the array and the composition of the analyte 

gases being detected.  

Consequently, the process of electronic-nose sensing of analyte gases is a part of an art 

form involving not only proper instrument and sensor-array selection, but also some experience 
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and training in proper e-nose operational protocols, although training requirements for 

electronic noses are much less rigorous than those for complex analytical instruments. 

Electronic nose sensors do not require chemical reagents, have good sensitivity and 

specificity and provide rapid results. Furthermore, e-noses generally are far less expensive than 

analytical systems, easier and cheaper to be operated, have greater potential for portability and 

larger field of use compared with complex analytical laboratory instruments. 

The electronic noses will never completely replace complex analytical equipment or odor 

panels in all applications, because they presents real problems with reproducibility, recovery, and 

negative effects of humidity and temperature on the sensor responses. Anyway, new emerging 

technologies are continuously providing means for e-noses improvement.  

The current trend is toward the development of electronic noses for specific purposes in a 

fairly narrow range of applications. This strategy points to increase the e-nose efficiency by 

minimizing the number of sensors, thus reducing the instrument cost and allowing for greater 

portability through miniaturization. New potential discoveries are expected in this relatively new 

sector of sensor technology as new products, machines, and industrial processes are 

continuously developing. This could provide future advantages for the use of electronic noses in 

the field of fruit quality control. 
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Appendix A : 

 Mathematical descriptions of covariance and correlation. 

In probability theory and statistics, the mathematical descriptions of covariance and 

correlation are very similar. Both describe the degree of similarity between two random variables 

or sets of random variables. 

Correlation:   
 

Covariance: 
 

where σX and σY are the standard deviations of X and Y respectively. Notably, correlation is 

dimensionless while covariance is in units obtained by multiplying the units of the two variables. 

The correlation of a variable with itself is always 1 (except in the degenerate case where the two 

variances are zero, in which case the correlation does not exist). The covariance of a variable with 

itself (i.e. X = Y) is called the variance. 

 

  

http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Correlation
http://en.wikipedia.org/wiki/Covariance
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Dimensionless
http://en.wikipedia.org/wiki/Variance
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