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Background: β-catenin is a central component of the cadherin cell adhesion 

complex but also it plays an essential role in the canonical-Wingless/Wnt 

signaling pathway.  

In vertebrates, one of the initial steps for the establishment of the correct 

dorso-ventral (D/V) pattern in the embryo is the cytoplasmic accumulation 

followed by nuclear localization of β-catenin in the cells of the prospective 

dorsal side of the embryo. In zebrafish there are two β-catenins, 92,7% 

identical. The mutant fish line Ichabod (ich), with a mutation in the region of 

the β-catenin2 promoter that causes a decrease in the maternal 

accumulation of β-catenin2 protein in the embryos, fail to nuclear localize β-

catenins and to form a dorsal organizer, so the embryos become ventralized.   

 

Aims: Taking advantage of the zebrafish model and in particular of this fish 

line, we investigated the regulation of β-catenins nucleus-cytoplasm 

translocation and in particular why in ich β-catenin1 cannot compensate for 

the loss of β-catenin2.  

 

Materials and Methods: We analyzed by real-time PCR the levels of six 

genes involved in the canonical Wnt pathway: axin1 and axin2, pygopus1 

and pygopus2, bcl9 and bcl9-2.  

 

Results: Unexpectedly, they are all up-regulated in ich embryos before and 

after mid-blastula-transition (MBT). Thus, ich embryos may have an 

overactive destruction complex, resulting in an increased degradation of β-

catenin1. This is consistent with our finding that microinjection of a dominant 

negative Axin2 (it destroys the degradation complex) in ich embryo partially 

rescue ich phenotype. 

 

Conclusions:  
Our results confirm in vivo, previous in vitro work showing that the two 

zebrafish β-catenins C-terminal domain are important for the stability of the 

protein, probably because shielding it from the β-catenin destruction 

complex. This, results in higher stability of β-Catenin2 than β-Catenin1. 

These data are the first in vivo indication that differences in the β-catenins 

CTD result in different stability of these proteins 

 

 

 



 

 

 

 

 

 

 

 

 

Introduction 

 

 

 

 

 

 

 

 

 

 

 

 



Wnt  molecules 
 
Wnt genes are defined by sequence homology to the original members Wnt-

1 in the mouse (first called int-1; Nusse and Varmus 1982;Van Ooyen and 

Nusse 1984) and wingless (wg) in Drosophila (Cabrera et al.1987; Rijsewijk 

et al. 1987). They encode secreted glycoproteins, usually 350–400 

aminoacids in length. Homologous genes have been found in increasing 

numbers in organisms ranging from mammals to the nematode C. elegans 

(Table 1). Wnt signaling is present in all phyla of the animal kingdom. The 

sequence identity in Wnt proteins is minimally 18%, including a conserved 

pattern of 23–24 cysteine residues, in addition to other invariant aminoacids 

(Cardigan et al, 1997). 
Wnt signaling controls cell proliferation, stem cell maintenance and cell fate 

decisions, as well as organized cell movements and the establishment of 

tissue polarity. It is also frequently deregulated in human cancers and has 

been implicated in degenerative diseases (Nusse, 2005; Carlson et al, 2008; 

Moon et al, 2004; Zhu et al, 2009). 

 

 
Table.1  Wnt genes in vertebrates (Wnt homepage). 

 
Wnt molecules are secreted in the extracellular space, where they can reach 

surrounding cells creating a gradient. In the membrane of the cells, wnt 

molecules bind receptors that transmit a signal inside of the cell. There are 

three different pathways activated by wnt (Fig. 1): Canonical, Planar Cell 

Polarity and Wnt/Ca
2+ pathway. The canonical pathway activates a cascade 

of events leading to the activation of transcription of different genes. 

 

 

 

 



The other two pathways are called non-canonical pathways and are involved 

in cellular adhesion, motility and cytoskeletal changes through small GTPase 

and heterotrimeric G proteins (Onizuka et al, 2011; Qui et al, 2011; De A., 

2011; Lamonica et al, 2012; Pryor et al, 2012). 

 

Fig.1  The three different Wnt pathways (Mosimann C. et al, 2009) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Wnt  Canonical  pathway 
 

Wnt canonical pathway start in the membrane, where wnt molecules binds 

and activate the frizzled seven-pass transmembrane class of receptor and 

the low-density lipoprotein receptor-related protein 5 and 6 (LRP5/6) 

receptor (Pinson et al, 2000; Tolwinski et al, 2003; Clevers, 2006). 

Outside the cell, wnt signaling could be antagonized by wnt inhibitors,  like 

Wnt Inhibitory Factor (WIFs), Dickkopf (Dkk) and secreted Frizzled-related 

proteins (sFRP) (Bafico et al, 1999; Bafico et al, 2001; Pannone et al, 2010). 

Dishevelled (DSH) is a key component of the membrane-associated Wnt 

receptor complex that is assembled in the citosplasmic side of the 

membrane, near the frizzled receptor. Close to this first complex is 

assembled a second complex, called Wnt destruction complex (Fig. 2) . 

 
Fig.2  Wnt canonical pathway (Mosimann C. et al, 2009) 

 

Members of this complex are: Axin, Casein kinase 1 (CK1), glycogen 

syntetase kinase 3 alpha and beta (GSK-3α/β), Adenomatus polyposis coli 

(APC). 

This complex binds and phosphorilate β-catenin in some conserved 

aminoacids of the protein’s amino terminus, this mechanism will be 

thoroughly discussed later in this introduction. The phosphorilated β-catenin 

could be then recognized by beta-TrCP component of the ubiquitin ligase 

complex, polyubiquitinated and sent to proteasome-mediated degradation 

(Aberle et al, 1997; Hart et al, 1999; Liu et al, 1999; Kitagawa et al, 1999).  



During wnt signaling, the membrane-associated Wnt receptor complex  

activate Dsh protein, which in turn bind and disassemble the Wnt destruction 

complex. So, β-catenin is not recognized from beta-TrCP and could 

accumulate in the cytoplasm. 

As a result of its cytoplasmic accumulation, β-catenin is able to go inside of 

the nucleus of the cell apparently through non-mediated transport (Fagotto et 

al, 1998), where interact with the T cell factor (TCF)/ lymphoid enhancer 

factor (LEF) family of transcription factors to promote specific gene 

expression. In the absence of a Wnt signal TCF/LEF family members 

interact with transcriptional inhibitors such as Groucho (Daniels et al, 2005),  

which serve to repress Wnt signaling. The repressing effect of Groucho is 

mediated by interactions with Histone DeACetylases (HDAC) which are 

thought to make DNA refractory to transcriptional activation (Arce et al, 

2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



β-catenin  
β-Catenin belongs to the armadillo family of proteins, which are 

characterized by a central domain consisting of a repeating 42 amino acid 

motif termed the “arm repeat.” These repeats were originally identified in the 

Drosophila segment polarity gene product and β-catenin orthologue 

Armadillo (Riggleman B et al, 1989). The β-catenin protein was initially 

discovered for its role in cell adhesion (Morin PJ, 1999). As a component of 

adherens junctions, it promotes cell adhesion by binding to the intracellular 

domain of the transmembrane protein cadherin, a Ca2+-dependent 

homotypic adhesion molecule, and linking cadherin to the actin cytoskeleton 

through the adaptor protein α-catenin (Fig. 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 β-catenin in wnt canonical pathway Daugherty et al, 2007 

 

This adhesion function is based on a subcellular pool of β-catenin that is 

membrane-associated and stable. Membrane associate β-catenin is 

phosphorylated in specific residues, and this phosphorilation is responsible 

for it localization. 

As discussed previously, β-catenin is also a key component of the canonical 

Wnt pathway. It could be phosphorylated in different aminoacids, and these 

different phosphorylation are responsible for the decision of β-catenin 

adhesion or signaling role, other that for the stability of the protein itself.  

 

 



β-catenin stability and localization 

 
β-catenin stability is regulated by the interaction with different partner, which 

in turn affect the phosphorylation status of β-catenin. The kinases 

responsible for β-catenin phosphorylation are Casein kinase 1 and 2 (CK1 

and CK2), glycogen syntetase kinase 3 alpha and beta (GSK-3α/β), src and 

EGFR family kinases. 

CK1 family members (including α, δ, and ε) phosphorylate β-catenin at 

serine 45. This priming phosphorylation is required for subsequent 

phosphorylations by GSK3 at residues 41, 37, and 33 (Verheyen at al, 

2010). The β-catenin that is phosphorylated at residues 37 and 33 is 

ultimately recognized by the β-TrCP E3 ubiquitin–ligase complex, 

ubiquitinylated, and rapidly degraded by the 26S proteasome (Hart et al., 

1999). 

During Wnt signaling, the phosphorylated LRP6 co-receptor could directly 

inhibits β-catenin phosphorylation by GSK3 at S33, S37, and T41, 

preventing its interaction with the β-TrCP E3 ubiquitin–ligase complex and 

so the degradation. 

Phosphorylation of S675 by PKA may enhance β-catenin transcriptional 

activity by promoting β-catenin stability (Hino et al., 2005) and association 

with Creb Binding Protein (CBP) (Taurin et al., 2006). 

Phosphorylation of β-catenin at S552 by AKT has also been found to 

enhance β-catenin protein levels and nuclear signaling by standard reporter 

assays (Tian et al., 2004; Fang et al., 2007), although the precise 

mechanism remains unclear. Lastly, serines 191 and 605 were recently 

identified as Rac-activated JNK2 sites, and mutations of these residues 

appears to reduce the nuclear accumulation of β-catenin in a murine bone 

marrow-derived stromal cell line, ST2 (Wu et al., 2008). 

β-catenin role is strictly dependent from its localization.  Membrane 

localization is necessary for its adhesive function; cytoplasm localization lead 

to its rapid degradation; the signaling role needs nuclear localization.  

Without Wnt signaling, β-catenin is phosphorylated and then degraded by 

the “destruction complex”, resulting in a low level of cytoplasmic β-catenin.  

Instead in presence of Wnt signaling, there is an accumulation of 

cytoplasmic β-catenin, that can move to the nucleus and act as a 

transcription factor. 

A lot of factors are moved to the nucleus using an importing pathway: they 

possess an NLS (Nuclear Localization Signal) (comprising one or two 



clusters of basic amino acids), and these sequences are recognized by 

soluble receptors. These receptors, generically called “importins/exportins” 

or “karyopherins,” interact directly with the Nuclear Pore complex (NPC) and 

shuttle between the cytoplasm and the nucleus.  The export work in a similar 

manner. There are Nuclear Export Signals (NES) recognized by exportins 

receptors that, interacting with the NPC, provides the nuclear export of the 

factor. These are energy-dependent process involving the small soluble 

GTPase Ran. 

β-catenin protein share a strong sequence similarity with importins, they 

contain similar periodic 42 amino acid repeats, called arm/HEAT repeats. 

The arm repeats are necessary and sufficient for β-catenin nuclear 

localization (Funayama N. et al, 1995). β-catenin have no NLS and it was 

demonstrated that can move to the nucleus in an importins independent 

manner, interacting directly with the NPC (Fagotto et al, 1998).  

The current model is that β-catenin is maintained in the nucleus by retention 

by interaction with many factors that block β-catenin in the nucleus where it 

act as a transcription factor. Several reports (Sustmann et al, 2007; Kennedy 

et al, 2010; Nakamura et al, 2007) show that β-catenin can interact with a 

factors, BCL9/Legless, and this in turn with Pygopus. Pygopus is  nuclear 

localized, instead BCL9/Legless can shuttle between cytoplasm and 

nucleus, and both these factors have NLS. β-catenin remain in the nucleus 

for a small time, blocked by this factors and then is exported to the 

cytoplasm where could be degraded (Takemaru et al, 2009; Neufeld, 2009).  

Others have shown how β-catenin in the nucleus interact also with a lot of 

factors like chibby/14-3-3 (Feng-Quian Li et al, 2010), APC (Henderson, 

2000), axins, that can be responsible for the nuclear export of β-catenin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Zebrafish as a model 
 

The zebrafish, Danio rerio, is a small tropical fish of the Cyprinidae family, 
native to the streams of South-eastern Himalayan region (India, Pakistan, 

Bangladesh) (Mayden et al., 2007). 

There are several important features of zebrafish making it an ideal 

experimental animal. Differences in the appearance between male and 

female make zebrafish easily distinguishable. In the laboratory, a couple of 

zebrafish can produce up to 400 embryos per spawning, throughout the 

whole year depending on the level of maturity. 

Zebrafish eggs are transparent and relative large (~0.7 mm in diameter) 

compared to other teleost of a similar size. Embryogenesis is rapid and all 

major organs develop within 24 hours. The generation time is also relatively 

short requiring 3-4 months. 

The zebrafish has become one of the most important model organisms for 

vertebrate developmental biology, genetic, neurology and cancer, used at 

the beginning from George Streisinger at the University of Oregon, in 1981. 

In the last years the resources available for this system are increasing with 

the number of laboratories that work with it (Table 2). 

 

(Table. 2  http://zfin.org/; Zebrafish Information Network (ZFIN) 2011) 

 
 
 



Zebrafish development 

 
Zebrafish are photoperiodic in their breeding, and produce embryos every 

morning, shortly after sunrise. The fertilization is external, the eggs are 

protected from a chorion membrane that cover the embryo from the zygotic 

stage to the hatching stage (third day). The chorion swells and lifts away 

from the newly fertilized egg. Fertilization also activates cytoplasmic 

movements, easily evident within about 10 minutes. Non-yolky cytoplasm 

begins to stream towards the animal pole, segregating the blastodisc from 

the clearer yolk granule-rich vegetal cytoplasm. The cells start dividing every 

30 minutes, the blastula stage is after 2 ¼ hours, the gastrulation start at 5 ¼ 

h (Fig. 4). 

 

 
Fig. 4 Zebrafish development (Kimmel at al, 1995) 

 

Between 10 and 24h there is the segmentation period in which the somites 

develop, the rudiments of the primary organs become visible, the tail bud 

becomes more prominent and the embryo elongates. The AP and DV axes 

are unambiguous. The first cells differentiate morphologically, and the first 

body movements appear. Between 24 and 48h the embryo is in the 

“Pharyngula” period, and between 48 and 72h instead there is the “Hatching” 

period (Fig. 5), with the embryo that hatch from the corion and start to swim, 

becoming a larva.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 (Kimmel at al, 1995) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A Wnt canonical pathway’s mutant in zebrafish 

 
The wnt canonical pathway is involved in the formation of the major dorsal 

signaling centers in vertebrate embryos, like Nieuwkoop center and 

Spemann organizer (Sokol, 1999; Tao et al., 2005; Schier and Talbot, 2005) 

and the posteriorizing and ventralizing signals that derive from more lateral 

and ventral embryonic regions (Erter et al., 2001; Lekven et al., 2001). In 

zebrafish, this pathway and its component are well conserved. 

Zebrafish embryos obtained from females homozygous for the maternal 

recessive mutation called ichabod are ventralized and fail to develop the 

organizer region. 

This mutation was mapped in the region LG19 (Bellipanni et al, 2006), in the 

same region in which was mapped the gene for a second β-catenin, called β-

catenin2 (Bellipanni et al, 2006; Woods et al., 2005).  

This mutation show variable expressivity and the phenotypes have been 

classified into four groups (Fig. 6)(Kelly et al, 2000). 

 

 
Fig. 6 ich phenotypes (Kelly et al, 2000) 

 

Different experiments showed a reduction in the total quantity of β-catenin2 

and the lack of nuclear localization of β-catenins into the nuclei of the future 

dorsal organizer (Bellipanni et al, 2006; Kelly et al, 2000). Moreover, 

injection of mRNAs coding for Xenopous β-Catenin or for zebrafish β-

Catenin1 or β-Catenin2, or injections of mRNAs coding for  factors 

downstream the Wnt/β-Catenin pathway (znr-2, Bozozok) were able to revert 

the ich mutant phenotype. On the other hand, injection of mRNAs coding  for 

factors that control β-Catenin stability like z-Wnt8; zFzA; kinase dead X-DN-

GSK3, GBP; a fragment of Xenopus  Axin that bind and inhibits GSK3, 

GID2; a dominant negative form of the F-box/ WD40 repeat that recruits 

phosphoriyated β-Catenin for degradation by the ubiquitination-proteosome  

pathway, β-Trcp-∆F, were not able to rescue, even partially, ich phenotype 

(Kelly et al. 2000). 

 



β-Catenins localization in developing zebrafish  
 

To determine if both z-β-Catenins enter in the nucleus and when this is 

happening Dr. Bellipanni took advantage of the specific antibody for zb-

Catenin1 () and used it in combination with an antibody that recognizes both 

z-β-Catenins (Sigma). Using the two z-β-Catenin antibodies (α-pan-β-

Catenin FITC coniugated and α-c-term-β-Catenin Cy5 coniugated) was done 

an immunohistochemistry on embryos at three developmental stages, a pre-

Mid Blastula Transition (pre-MBT) stage (256 cells) and two post-MBT (High 

and Sphere) stages. Were used ich embryos at 256 cell stage as a control. 

The embryos were visualized at a confocal microscope to study the 

localization of the two z-β-Catenin proteins. 

 

 

 

Fig. 7 Immunohistochemistry of WT and ich embryos at 256 cell stage, Wt  embryos 

at high stage, Wt embryos at sphere stage. (Bellipanni and Weimber, unpublished). 

 

At 256 cell stage, in 55% Wt embryos is visible nuclear accumulation of the 

α-pan-β-Catenin FITC coniugated antibody in more nuclei than the of α-c-

term-β-Catenin Cy5 coniugated antibody. Both z-β-Catenins nuclear localize 

in the prospective dorsal side of the 256 cell stage embryo, but also that z-β-

Catenin2 seem to preceeds z-β-Catenin1 nuclear localization. In ich 



embryos, at the same stage, as expected, there is no nuclear localization at 

any z-β-Catenins. In later developmental (High and Sphere) stages in Wt 

embryos, the number of cells positive for both nuclear localized z-β-Catenin 

increase.  

These data clearly show that both z-β-Catenins enter in the nucleous at 

these early embryonic stages and that z-β-Catenin2 might be the first protein 

to nuclear localize in the cells of the future dorsal side but that in later stages 

both z-β-Catenins or only z-β-Catenin1 is nuclear localized. These results 

need to be confirmed by more direct analysis of the z-β-Catenin2 localization 

by the use of not yet available specific antibody for z-β-Catenin2, 

nevertheless they suggest that z-β-Catenin1 nuclear localization mechanism 

may require first the nuclear localization of z-β-Catenin2.  

Quantification of the total z-β-Catenin pool and z-β-Catenin1 pool in wild-type 

and ich embryos at 128 cell stage and High stage. was conduct via Western 

blot analysis. When the α-pan-β-Catenin antibody was used, it  revealed that 

the total pool of z-β-Catenins in ich embryos is not lower of that in Wt 

embryos. Further analysis using the antibody specific for z-β-Catenin1 

showed that z-β-Catenin1 is much more abundant in ich embryos than in the 

Wt. 

An immunohistochemistry with the only α-c-term-β-catenin antibody on 256 

cell stage Wt  and ich embryos shows how in ich there is a bigger quantity of 

z-β-Catenin1 respect to Wt, but z-β-Catenin1 localize in the membrane. 

These analysis foster us to further describe the molecular landscape of the 

ich embryos during early embryogenesis respect the Wt molecular 

landscape to understand how regulation of z-β-Catenins localization in ich 

embryos is impaired. 
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Fig. 8 A:  Western blotting using α-c-term-β-Catenin antibody and pan β-Catenin 

antibody in Wt  and ich embryos at 256 cell stage; B: ich embryos at 256 cell stage. 

(Bellipanni and Weimberg, unpublished). 



Pygopus and BCL9/Legless 

 
Studying the wnt pathway in Drosophila, were identified two genes, called 

Legless, homologus to the human BCL9, and Pygopus (Kramps et al, 2002), 

required for the proper transmission of the wingless signal to the nucleus. 

Later work founds homologous of this genes in different organism, from 

mouse to Xenopus, included Zebrafish. 

Pygopus is a protein containing a PHD domain in the c-terminal domain, 

while BCL9/Legless contain multiple repetition of Homology domains (HD). 

Of this domains, the HD1 mediate the bind of Pygopus, the HD2 the bind of 

β-catenin. 

Both Pygopus and BCL9 contain NLS, and seem that Pygopus is a nuclear 

protein (Belenkaya et al,2002) whereas BCL9 seem shuttling between 

nucleus and cytoplasm, so it seems that BCL9 have the role of adaptor 

between β-catenin and Pygopus, and that Pygopus is required to anchor β-

catenin to the nucleus. 

There are different models about the functions of Pygopus and BCL9.  

One model is that Pygopus and BCL9 in the nucleus bind and anchor β-

catenin in the nucleus, where it can act as transcription factor. Another 

model (Carrera et al, 2008) explain that nuclear β-catenin can bind Pygopus 

and this last one, binding the mediator complex, can activate the 

transcription of the wnt target genes.   

Other studies found two proteins, BCL9-2 and Pygopus2, homologues 

respectively of BCL9 and Pygopus. The switch between the adhesive and 

the transcriptional function of β-catenin depend on the phosphorilation of 

Tyr-142, and a work of 2010 show that this phosphorylated β-catenin favors 

BCL9-2 binding, precluding the α-catenin binding (Brembeck et al, 2010). 

Another work show that Pygopus2 can bind the methylated tails of histone 

H3, and that this function require the binding of BCL9/BCL9-2 (Miller et al, 

2010). A model is that Pygopus and BCL9 can bind the methylated tails of 

Histones, and open the chromatin in the Wnt target genes (Mosimann, 

2009). 

Other studies showed that Pygopus can work as an anti-repressor in 

facilitating Wnt-dependent transcription (Mieszczanek et al, 2008). 

 

 

 



 

 

 

 

 

 

 

 

 

 

Aims of the thesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



In Zebrafish there are two β-catenins, 92,7% identical. The mutant fish line 

Ichabod (ich), with a mutation in the region of the β-catenin2 promoter that 

causes a decrease in the maternal accumulation of β-catenin2 protein in the 

embryos, fail to nuclear localize β-catenin2 and to form a dorsal organizer, 

so the embryos become ventralized. Preliminary results of our laboratory 

have shown that both zebrafish  β-Catenin are nuclear localized in the early 

zebrafish embryo (~256 cell stage), while in ich embryo both β-Catenins fail 

to nuclear localize. Moreover, looking at the protein levels in Wt and ich 

embryos at 128-256 cell stage and High stage we have indications that while 

β-Catenin2 levels in ich are reduced due to the maternal mutation, the levels 

of β-Catenin1 are increased. The increase β-Catenin1 level results in a total 

β-Catenins protein level in ich  slightly higher than in Wt embryos (fig.8A), 

however it appears to be enriched only at the membrane (fig.8B), suggesting 

that the cytoplasmic pool of β-Catenin is still under a strong control by the 

signalosome complex.. 

Taking advantage of the zebrafish model and in particular of this fish line, we 

investigated the regulation of β-catenins nucleus-cytoplasm translocation 

and in particular why in ich β-catenin1 cannot compensate for the loss of β-

catenin2. In particular we investigated the role of factors involved in the 

nuclear localization and in the regulation of β-catenins stability. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Materials and methods 

 

 

 

 

 

 

 

 

 

 

 

 



Zebrafish strains 

Wt and ichabod (ich) fish strains were used during this work. 

They were maintained in a closed system at 28°C, following standard 

husbandry procedures (Westerfield M., 2000). 

Wt were selected as “wild type” because their delayed onset of pigmentation. 

ichabod  embryos were obtained by breeding homozygous ichabod females 

with heterozygous males. For this study were used only ichabod embryos 

obtained from homozygous females that reproducibly gave severely 

ventralized embryos. 

 

Synthetic mRNA in vitro transcription 

mRNA to be used for microinjection on zebrafish embryos was produced 

using as template plasmid DNA digested on the opposite side of the required 

polymerase promoter, present in the plasmid before the gene of interest 

(table 3)  

The DNA was digested and then purified by phenol/chloroform purification, 

and precipitated with ammonium acetate and ethanol. Resuspended 

linearized DNA was used to prepare the synthetic mRNA with the 

mMESSAGE mMACHINE kit (Ambion) in accord with the kit protocol. The 

synthetic mRNA obtained was quantified at the spectofotometer and then 

stored at -80°C. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table.3   Constructs used for mRNA synthesis. 

 



Microinjections on zebrafish embryos 

Microinjection in zebrafish embryos were conducted at 1-2 cell stage or at 4-

16 cell stage in one blastomere. The mRNA for microinjection were mixed 

with an injection solutions prepared by adjusting the RNA concentration to 

twice that desired and then adding an equal volume of Dulbecco’s modified 

phosphate-buffered saline (PBS) containing 0.5% Phenol Red (Sigma). All 

mRNAs were injected at 200 ng/μl, injecting 1-3 pL per embryo. 

 

Total RNA isolation  

RNA was isolated from four different stages of zebrafish embryos: 2-4 cell 

stage; 256-512cell stage; sphere stage; shield stage; The RNA was 

extracted from Wt and from ichabod embryos. 

One hundred embryos raised to the selected stage were moved to an 1,5ml 

tube, washed two times with cold PBS, then smashed with a sterile pestle. 

Then was added 600 μl of cold TRIzol (Invitrogen), mixed and then added 

other 400 μl of Trizol. Then were vortexed for 1 min and  centrifuged at 4°C 

with a refrigerated table centrifuge (eppendorf 5415 R) at max speed (13200 

RPM) for 15 min. Then recovered the aqueous phase, and added 200 μl of 

chloroform:isoamyl alcohol 24:1 (Acros), vortexed 1 min, and  centrifuged at 

4°C with at max speed (13200 RPM) for 10 min. The recovered aqueous 

phase was precipitated with 1 μl Glycogen (Glycoblue, Ambion) and 500 μl 

of isopropanol, 10 min at Room Temperature (RT). After this, centrifuged at 

4°C for 15 min at max speed, removed the liquid phase, the pellet was 

washed with cold 70% ethanol and air dried. The pellet was then 

resuspended with autoclaved milliq sterile water; it was treated with DNase 

(promega) for one hour, and after this purified by classical acid 

phenol/chloroform extraction. The total RNA was tested by PCR for DNA 

contamination, and if pure, aliquoted and stored at -80°C.  

 

cDNA synthesis 

cDNA from 1 μg of total RNA extracts was obtained with SuperScript III First-

Strand Synthesis System for RT-PCR (Invitrogen), using Random hexamers. 

the cDNA was diluted to a final concentration of 100 ng/μl, and then used for 

the subsequent experiments. At the same time, using the same reaction 

mixture and the same conditions, were prepared samples with the same total 

RNA, without adding the Superscript RT enzyme. This samples were called 

Rt- and were used as negative controls. 

 

Real Time PCR 

Quantitative real time PCR where done using a Lightcycler 480 II (Roche). 

cDNAs from two pre-Mid Blastula Transition (pre-MBT) stages (2-4 cells and 



256-512 cells) and two post-MBT (Sphere and Shield) stages were used for 

these experiments. Every reaction was performed in 96well transparent 

plates (Roche) using 100 ng of cDNA, 0,25 μl of 10 μM Gene Specific-

Primers and 2x SYBR Green I master  (Roche) in a final volume of 10 μl.  

For normalization were used primers for two housekeeping genes, ActinB 

and GAPDH. 

The primers used are in table 4. 

Cycling conditions: 

pre-incubation: 95°C 5 min;  

amplification: 95°C 25 sec; 55°C 25 sec; 72°C 25 sec; 

melting curve: 95°C 5 sec; 67°C 1 min; 97°C continuous; 

cooling 

Cycling conditions for real time PCR of z-pygopus2 isoforms: 

pre-incubation: 95°C 5 min;  

amplification: 95°C 25 sec; 57°C 25 sec; 72°C 2 sec; 

melting curve: 95°C 5 sec; 67°C 1 min; 97°C continuous; 

cooling 

 

Analysis with Second Derivate relative method. Data were obtained and 

mediated from real-time experiments done using cDNA preparations 

synthesized from two different total RNA extractions (two biological replica). 

One total RNA extract was used for two independent cDNA synthesis, the 

other total RNA extract was used for one cDNA synthesis, and all the 

samples reaction were in triplicate in each real time PCR. 

Every reaction have the Rt- samples amplified with all the primers, at the 

same condition of the other samples, to ensure no DNA contamination. 

Melting curve analysis was performed to ensure no primer dimmers 

amplification.  

For evaluation of PCR efficiencies of all primers sets, standard curves were 

generated using serial diluted cDNA samples. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Table 4 Primers used in real time pcr 

 

Protein extraction 

Total protein preparations were done from Wt and ichabod embryos in two 

pre-Mid Blastula Transition (pre-MBT) stages (2-8 cells and 256-512 cells) 

and two post-MBT (Sphere and Shield) stage.  

100-150 embryos were dechorionated using Pronase (Sigma) for 5 min at 

RT, then washing twice with embryo medium (Westerfield, 2000) and twice 

with PBS. Then embryos were collected in an agarose-coated plate (with 

agarose dissolved in embryo medium + methylene blue) and deyolked 

manually with glass capillaries. Then moved with a glass pipette to a 1,5ml 

tube and extracted with RIPA buffer + protease inhibitors (Sigma), or 0,5% 

NP-40 extraction buffer + protease inhibitors (Sigma). 

Protein concentration was measured using Bradford protein assay with a  

Biophotometer (eppendorf), then the protein samples were aliquoted and 

stored at -80°C. 



 

 

 

 

SDS-Page and western blotting 

Protein samples were melted on ice, mixed with 2x Laemmli loading buffer, 

boiled for 10 min and then loaded on polyacrilammide gel, using Pageruler 

prestained ladder (Fermentas) as a marker. 

Run was at 100V constant for an hour and half, then the gel was blotted with 

the Trans-Blot Semi-Dry system (Bio-Rad), using the NuPage transfer buffer 

(Invitrogen) for 25-40 min at 20V constant. The membrane was then rinsed 

in blocking buffer (3% milk in PBS-tween 0,1%) for an hour at RT, shacking. 

After an hour, was incubated with the desired antibody dissolved in 3% milk 

on PBS-tween 0,1% overnight (ON) at 4°C shacking. We used as primary 

antybodies anti-pan-β-catenin (Sigma), mAb-Cterminal-β-catenin(BD 

Transduction Laboratories), mouse anti Flag (Rockland), mouse anti-α-

Tubulin and anti-mouse and anti-rabbit peroxidase-conjugated (Amersham) 

as secondary antibodies. 

The day after, was removed the primary antibody, three washes shaking with 

PBS-tween 0,1%, than incubated with the correct secondary antibody for an 

hour at RT, with shaking. After this, the membranes were washed three 

times with PBS-tween 0,1% and then incubated with ECL plus (Amersham). 

After 5 min of incubation, the ECL plus was removed and the film was 

exposed for the requested time.  

 

Chemically-competent cells preparation 

DH5alpha cells were pre-inoculated in 3 ml of LB sterile medium and let 

grown ON at 37°C shaking. 

The day after, 100 μl of this pre-inoculation is transferred in 10 ml of LB 

medium and grown to obtain an absorbance value (measured in the 

Biophotometer at 600 OD) of 0.2 OD. 

Then the 10 ml are inoculated a flask with 500 ml of pre-warmed LB and let 

grown at 37°C shaking to an A600 value of 0.4-0.5 OD. 

Then the flask is chill in ice for 10 min, and then pelleted at 6000 RPM for 10 

min at 4°C. After this, the medium is discarded, and the bacteria are 

resuspended in 200 ml of cold Transforming Buffer (TB: 50 mM CaCl2; 10 

mM MOPS; 15% glycerol; pH > 6.6 ; Autoclaved to sterilize) and left on ice 

for 20 min. Then the bacteria are pelleted at 6000 RPM for 10 min at 4°C, 

the medium discarded and the pellet resuspended in 20 ml of chilled TB. 

Then the bacteria are divided in 200 μl aliquots in pre-chilled 1,5 ml tubes, 

quickly frozen in dry ice and stored at -80°C. 



The transforming efficiency is measured transforming an aliquot of cells with 

10 pg of pUC plasmid and plating it in LB plates, incubate the plate ON at 

37°C and counting the colonies obtained. The efficiency obtained was ≈106
. 

 

Heat-shock transformation of DH5 alpha competent cells  

An aliquot of DH5alpha cells is transferred in ice until is melted, then is 

added the desired amount of plasmid, incubated 30 min on ice, then moved 

to 42°C for 30 sec, then quickly transferred to ice for 2 min, then added 600 

μl of LB and moved to a shacking incubator at 37°C for 1 hour. After an hour, 

the bacteria are spread in a plate of LB plus the selective antibiotic and let 

grow ON at 37°C. 

 

Sub-cloning and constructs preparation 

zpygopus 1 clone was ordered by imaGene (clone IRBOp991B0599D). The 

clone had zpygopus1 gene cloned in pExpress1. I did a PCR using it as a 

template, using the primers z-pygopus1 EcorI forward and z-pygopus1 

XhoI reverse (Table 5), using a mix 0,125:1 respectively of cloned PFU DNA 

Polymerase (stratagene) and taq DNA polymerase recombinant (fermentas) 

with this conditions: pre-denaturation 94°C 5 min; amplification 94°C 30 sec, 

58°C 30 sec, 72°C 2 min, repeated 30 cycles; final extension 72°C 7 min.   

Table 5. Primers used in sub cloning 
 

z-pygopus 2 clone was ordered from imagine (clone IRAKp961D09315Q). 

The clone had zpygopus2 ∆PHD gene cloned in pME18S-FL3. I did a PCR 

using it as a template, using the primers z-pygopus2 ∆PHD EcorI forward 

and z-pygopus2 ∆PHD XhoI reverse, and using a mix 0,125:1 respectively 

of cloned PFU DNA Polymerase (stratagene) and taq DNA polymerase 

recombinant (fermentas) with this conditions: pre-denaturation 94°C 5 min; 

amplification 94°C 30 sec, 58°C 30 sec, 72°C 2 min, repeated 30 cycles; 

final extension 72°C 7 min. 

The PCR product was loaded in a 1% agarose gel, the band was cutted and 

the DNA recovered with Zymoclean Gel DNA Recovery Kit. The DNA was 

then double digested with EcoRI and XhoI (roche), purified by gel cleaning 



and used for the ligase reaction. The same double digestion and purification 

was done for pCS2+2xFlag, that was also dephosphorylated with the rAPid 

alkaline phosphatase kit (Roche). The dephosphorylated pCS2+2xFlag was 

ligated with z-pygopus1 and z-pygopus2 with T4 DNA Ligase kit (Roche). All 

cut plasmid in this study were dephosphorylated and the ligated using these 

kits. 

Our collaborator, Dr Daniele Castiglia from the IDI in Rome, created  through 

PCR mutagenesis the pCSCN DN-axin2 by modification of the nucleotide 

1905 of the ORF  from G > A of the pCSSN-z-axin2. This created an early 

Stop codon, which eliminates the dimerization domain, DIX from the 

translated protein. 

Flagged z-axin clones were obtained with a multi-step reaction: at the 

beginning the first 700bp of the ORF of z-axin1 and z-axin2 were cloned in 

the correct frame in pCS2+2xFlag by PCR amplification of pCSNC zAxin1 or 

zAxin2 using a 5’ oligo which  introduced the EcoRI digestion site few 

nucleotides 5’ of the ATG of the cDNAs. The obtained pCS2+2xFlag-z-axin1 

was cut with BamH1/NruI, and pCS2+2xFlag-z-axin2 was cut with HindIII. 

The digested fragments of ~700bp containing the 5’ of zAxin1 or 2 fused in 

frame with the Flag were cloned using the same digestion sites in pCSSN-z-

axin1, pCSSN-z-axin2, pCSSN-DN-z-axin2. The correct sequence and 

orientation of the clones was confirmed by sequencing.  
 

In vitro transcription/translation  

Both pCS2+Myc+ β-catenin1 and 2 were digested with NotI (Promega), 

purified with phenol/chloroform extraction, precipitated a used for in vitro 

transcription/translation with TnT SP6 High-Yield Wheat Germ Protein 

Expression System (Promega). The obtained protein mix was stored at -

80°C and then used in Western blotting experiments to test the specificity of 

new rabbit bleeds for the identification  antibodies specific for  z-β-Catenin1. 

 

Plasmid preparation 

A single colony from an LB plate in which was plated the desired 

transformed bacteria is inoculated in 5 ml of LB plus the correct antibiotic, 

and let grow ON at 37°C shacking. The day after, the plasmid is recovered 

using the High Pure Plasmid Isolation Kit (Roche). 

The concentration was measured with NanoDrop ND-1000. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Testing of β-catenin1 specific antibodies 
 

In previous studies (G. Bellipanni and E.S. Weinberg unpublished data, see 

Introduction) was used a α-pan-β-catenin antibody that recognize both z-β-

Catenin proteins, and an antibody directed against the carboxy-terminal 

region of z-β-Catenin1 (c-term-β-catenin). The antibody specificity was 

confirmed by western blotting on in vitro transcribed/translated protein and 

on protein extracts obtained from zebrafish embryos injected with the 

mRNAs for the myc-tagged version of the two z-β-Catenins (G. Bellipanni 

and E.S. Weinberg, data not shown). 

The C-terminal β-Catenin antibody resulted sometime difficult to work with so 

we decided to generate a new antibody against a peptide of the C-terminal 

side of z-β-catenin2  (amino acids GQDAMGMDPMMEHEMAGHHPGPDY-

PVDGLPDLGHT), which retains the highest number of differences with the 

z-β-catenin1. The peptide was synthesized on site in the SBARRO 

proteomic facility and then sent to Rockland for rabbit immunizations. We 

obtained serum of 3 different rabbits. We tested the ability of these bleeds to 

recognize β-Catenins in vitro transcribed and translated with TnT SP6 High-

Yield Wheat Germ Protein Expression System (Promega). After ~1 year 

from the first bleeding, we received two aliquots of serum obtained from two 

immunized rabbits (Bleed Rb86 and Rb87) and two aliquots of affinity-

purified antibodies, AP16284 and AP16330, from the respective bleed. We 

tested these two bleeds and the two purified antibodies by western blotting, 

using protein extracts from zebrafish embryos at sphere stage, which were 

injected with either one of the two myc-tagged mRNAs for the 2 z-β-catenins 

forms.  

Of the two antibodies, only the bleed and the AP16330 antibodies from 

rabbit87 recognized in a specific manner z-β-catenin1 (Fig.9). 

 
 

 

 

 

 

 

 

 

 

Fig. 9 Western blotting analysis with AP16339 antibody of protein extracts 

from Wt embryos microinjected with the indicated  mRNA. 



Variation of z-β-catenins mRNA expression levels 

in ichabod embryos 
 

To confirm the down-regulation of z-β-Catenin2 and up-regulation z-β-

Catenin1, we studied the expression levels of both the genes during four 

developmental stages, both in Wt and in ich embryos using relative real time 

PCR .  

To choose the corrects housekeeping genes to be used in the analysis, we 

first tested by real time PCR three different genes, zActinβ, zGapdh and 

zEf1α, using cDNA from WT and ich embryos in the four developmental 

stages. The results were analyzed with three different programs used to 

validate genes used for normalization of real time PCR experiments: geNorm 

(Vandesompele et al., 2002), Normfinder (Andersen et al, 2004), BestKeeper 

(Pfaffl  et al, 2004). Then, we analyzed the Ct data with the Comparative Ct 

method (Livak et al, 2001; Shmittgen et Livak, 2008). All these different 

method gave as a result that zEf1α is not usable as a normalizer gene, while 

zActinβ and zGapdh are optimal for this kind of study. So we choose to use 

both zActinβ and zGapdh as normalizers for the real time PCR analysis.  

Then, we analyzed the two z-β-catenins genes expression by relative real 

time PCR using the Comparative Ct method.  

First, we plotted our results to obtain a measure of the variations of the two 

genes expression levels in the four different stages (Fig. 10), using shield 

stage as a calibrator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 
 

 

 
 

 

Fig. 10   Real time PCR of z-β-catenin1 and 2 on Wt  and ich  during 4 

developmental stages. 
 

In this way, we found that the expression levels of z-β-catenin1 and 2 

change during development in Wt embryos and remains pretty stable in ich. 

Then we plotted our data to analyzed the expression levels of the two z-β-

catenins in ich respect to Wt (Fig. 11). 

 

 

 

 

 

 

 

 
 

 

 

 

 
Fig. 11   Real time PCR of z-

β-catenin1 and 2 in Ich 

respect to Wt during 4 

developmental stages. 
 

 

 

 

 



These data confirm at mRNA level that the expression of z-β-catenin1 

mRNA is increased in ich respect to Wt embryos, conversely expression 

levels of z-β-catenin2  mRNA are lower in ich.  

These results, taken together with that done at the protein level clearly show 

that z-β-catenin1 is up-regulated at transcriptional and translational levels. 

Interesting, while the mRNA level of zβ-catenin1 is up-regulated ~3 folds in 

2-8 cell stage and 256-512 cell stage ich embryos the increase of z-β-

Catenin1 concentration in 128 cell stage embryos is increased of only ~2 

folds respect the Wt suggesting either that not all the mRNA for z-β-catenin1 

is properly translated or that the z-β-Catenin1 stability is largely 

compromised in ich embryos.  Finally mRNA and protein levels data suggest 

us a paradox that despite the increased level of z-β-catenin1 expression and 

stability of the total z-β-Catenin proteins pool in Wt and ich, z-β-Catenin1 is 

not able to compensate for the decrease in z-β-Catenin2 levels in ich 

embryos. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Analysis of the expression levels of genes 

involved in z-β-Catenins stability and nuclear 

anchoring. 
 

To better understand the involvement of other factors in the regulation of z-β-

Catenins nuclear localization or mRNAs stability, we analyzed the relative 

expression levels of genes of the signalosome involved in z-β-Catenins 

stability (zAxin1 and zAxin2) and the zebrafish homologues of the Drosophila 

legless and pygopus (zBCL9, zBCL9-2, z-Pygopus 1 and 2) able to 

respectively bind armadillo and anchor it in the nucleus. (Fig 3). We 

analyzed these genes expression levels by relative real time PCR using the 

Comparative Ct method.  

First, we plotted our results to obtain a measure of the variations of the 

genes expression levels in the four different stages, using shield stage as a 

calibrator (Fig 12).  

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 12  Real time PCR of different genes on Wt  and ich  during 4 

developmental stages. 
 

The results show that in Wt embryos pygopous1 pygopous2 and bcl9-2  

expression levels at 2-8 cell stage, 256-512 cell stage and High stage are 

much higher than in sphere stage. In ich, instead, the expression level of 

these genes but pygopus1 remain similar in all the four stages analyzed.  

Then we  plotted our data to  analyzed the expression levels of all these 

genes in ich respect to Wt (Fig. 13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13  Real time PCR of different genes in ich respect to Wt  during 4 

developmental stages. 
 

We found that all these genes are up-regulated in ich respect to Wt in the 

analyzed developmental stages. Particularly strong appeared the up-

regulation of zpygopus2 mRNA, while we were very surprised to see z-axin2  

up-regulated in ich embryos because its expression is known to be induced 

directly by Wnt/z-β-Catenin signaling. Furthermore, even though we do not 

measured directly the level of concentration of the z-Pygopous and z-BCL9 

group we could infer from the results that the  physiological levels of z-

Pygopus/z-BCL9/z-β-Catenin were probably compromised. 



zpygopus2 splicing variants 
 

In our attempt to obtain the zebrafish homologues of the Drosophila pygopus 

and legless, we found on the web databanks pubmed and Ensembl five 

possible pygopus2 mRNA sequences (Accession numbers: NM_001033111, 

BC159191, BC100039, ENSDART00000104731, ENSDART00000046225 

and ENSDART00000129994). We used a PCR-based approach to confirm 

the real existence of these sequences. Of these five, we confirmed the 

existence of two sequences, NM_001033111, which represent a bona-fide 

homologues of Drosophila pygopous and Human Pygopous2, thus we 

named it, z-pygopus2, and BC159191. We also ordered a z-pygopus2 clone 

from IMAGE  (clone IRAKp961D09315Q), which resulted, after sequencing, 

the same as BC159191. This clone has a different 5’ region, containing the 

ATG, and lacked the PDH domain.  

Fig. 14  Schematization of the two z-pygopus isoforms and the genomic, with the 

primers used.  
 

To finally determine that this cDNA was really expressed in zebrafish 

embryos, we used a PCR based approach using the set of primers indicated 

with a color code in Fig14 and which sequences are listed in table 4. The 

fragments obtained with all the primer sets indicated in the figure, amplified 

by RT-PCR, were sequenced to confirm the identity with the sequence of 

BC159191. The sequence of BC159191 (which is identical to the sequence 

of the IMAGE clone IRAKp961D09315Q) results ~100% identical in the 

common regions with the sequence for the predicted z-pygopus2, thus 



suggesting that the clone we bought was a splicing variant of the predicted 

z-pygopus2. We called this putative splicing variant z-pygo2-∆PHD (Fig. 14). 

The existence of these two isoforms of z-pygopus2 could be really important, 

in fact the PHD domain is fundamental to interact with zBcl9 and therefore to 

anchor the z-β-Catenin in the nucleus. Common regions between the two z-

pygopus2 isoforms contain the NLS and the domain fundamental for the 

interaction with the mediator complex, with CBP, and with chromatin 

remodeling proteins like  histone deacetylases (HAT).  

For real-time PCRs showed in fig 13 we used a set of primers for 

zpygopous2 that would have recognized both isoforms. Thus, we decided to 

investigate the mRNA expression profile of z-pygo2 and z-pygo2-∆PHD by 

real-time PCR. 

First, we ordered primers specific for z-pygo2, see fig 14 red primer set, and 

a set of primers that would amplify only z-pygo2-∆PHD at a certain 

temperature (see material end methods for modifications). We run a real 

time PCR to analyze the differences in gene expression level between this 

two isoforms (Fig. 15).  

 

Fig. 15  Real time PCR of the two zPygopus2 and zPygopus2-∆PHD  isoforms in Wt  

and in ich during 4 developmental stages.  



These experiment show that in Wt z-pygopus2-∆PHD isoform is expressed 

in a very dynamic way. At 2-8 cell stage embryos the z-pygopus2-∆PHD 

isoform is expressed at very low levels (respect to shield stage), the 

following stage we analyzed ,256-512 cell stage, that is very close  to the 

Mid-Blastula Transition, shows a pick of expression. At High stage the level 

of z-pygopus2-∆PHD expression returns below the level at shield stage but 

more than 2-8 cell stage. The isoform with the PHD domain instead have 

less differences in levels, with shield stage the one with the lower level 

respect to the others. 

The situation is different in ich, where  the z-pygopus2 isoform with PHD 

domain remain within a constant level of expression, and the increase of z-

pygopus2-∆PHD isoforms at the 256-512 cell stage instead is much more 

reduced. 

To better understand the expression of these two isoforms between ich and 

Wt, we plotted our real-time PCR data in the four developmental stages of 

the two fish lines , using the data for the  same stages in Wt   as a calibrator 

(Fig. 16). 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16  Real time PCR of the two zPygopus2 splicing variants in Wt and in ich during  

the  early developmental stages 

 

In this way we determined that the isoform with PHD has slight high values 

in ich, but the differences are within the standard error bar for 2-8 cell stage, 

256-512 cell stage and sphere stage. zpygopus levels in ich at shield stage 

are truly almost twice the level in Wt embryos at the same stage. Instead the 

∆PHD isoforms is expressed in ich at very low level respect the same stages 

in Wt embryos. Taking together these data we may hypothesize that the  

∆PHD isoform could have an early developmental role, and its absence in 

ich may be responsible for the inability of z-β-Catenin1 to compensate for the 

reduced levels of z-β-Catenin2.  

 

 

 

 

 

 

 



zAxin2 Dominant Negative form 
 

Work of Mo et al. (Mo et al 2009) showed in vitro, using an heterologous 

system, that the two z-β-Catenins have different stability. As postulated 

previously a difference in stability, in this case having z-β-Catenin1 less 

stable of z-β-Catenin2, could explain the differences between levels of z-β-

catenin1 mRNA measured at 2-8 cell stage and at 256-512 cell stage in ich 

(Fig. 10) and the concentration of z-β-Catenin1 in ich. These results are in 

agreement with the hypothesis that excess of cytoplasmic z-β-Catenin1 in 

ich may be kept to relatively low levels by the signalosome complex, while 

we see more z-β-Catenin1 in ich only because highly localized at cells 

membrane (Fig9B). Thus, this would not allow z-β-Catenin1 to compensate 

for the loss of z-β-Catenin2 in ich. 

To test our hypothesis and that regarding z-pygopus2 ∆PHD we prepared 

Flag-tagged versions of z-pygopus2 and z-pygopus2 ∆PHD, z-axin1, z-axin2 

and the Dominant Negative form of z-axin2 (zDN-axin2). The proper 

transcription of the Axins constructs was checked by western blots of the in 

vitro transcribed and translated proteins (Fig. 17).  

 

 
Fig. 17  Western blotting of the in vitro transcribed/translated z-flag-axin constructs. 

 

We microinjected in 1 or at 4-8 cell stage Wt or ich embryos in vitro 

synthesized mRNA for z-Flag-DN-axin-2, for z-pygopus2 ∆PHD and for z-

pygopus1. The injection in 1 cell stage ich embryos of z-pygopus2 ∆PHD did 

not affected the mutant phenotype even though the injection of the same 



transcript in Wt embryos produced some dorsalized phenotype (Charts in 

fig.:18). Injection of z-pygopus1, as expected because ich embryos already 

have very high level of this transcript, did not affected ich phenotype, while it 

was  inducing severe dorsalized phenotypes when injected in wt embryos 

For the z-DN-axin2 over-expression experiment, we expected that this form 

of zAxin2, which cannot form a dimer, would interact with APC and GSK3 

thus blocking the assembling of the destruction complex. Blocking the 

destruction complex should increase the levels of z-β-Catenin1, thus, this 

microinjection should recover the mutant phenotype.  

 

 

 



Fig. 18 Results of the over-expression experiments in Wt and ich embryos expressed 

as of embryos with a given phenotype. The phenotypes are referring to Kishimoto et 

al, 1997, with a small variation (V4A and  B) to accommodate ichabod  mutant 

phenotype characteristics. 



Over-expression of flag-DN-axin2 mRNA in Wt embryos produced the 

strongest phenotype with virtually no embryo injected having a normal 

phenotype. All the embryos injected were dorsalized from medium (C2 

phenotype in 20% of the injected embryos) to a very severe extent (C5 

phenotype in 70% of the injected embryos). Injection of  flag-pygo1 mRNA 

resulted in similar dorsalized phenotypes, but less severe than the 

expression of DN-Axin2 (30% C3, ~35% C2 and ~15% Wt). It is difficult to 

interpret the result of flag-pygo2-∆PHD mRNA, perhaps due to the low 

number of sampled embryos, only 1 embryo in the injected batch had a C5 

phenotype, 1 embryo had a C4 phenotype and 2 embryos with a C1 

phenotype, while the remaining 19 embryos of this batch were  Wt.  

Injection of flag-pygo2-∆PHD mRNA had no effect in ich as checked in 2 

experiments (exp#1 and exp#4). In particular, referring to experiment #4 

flag-pygo2-∆PHD mRNA was  over-expressed in a mild batch of ich 

embryos, but still it did not rescue the mutant phenotype. 

Only the over-expression of DN-Axin2 determined a reversion of the mutant 

phenotype. This appeared to be dependent on the severity of the mutant 

batch: injection at 1 cell stage of a relative mild batch of ich embryos 

(experiment #1) resulted into a complete reversion from the most ventralized 

phenotype in ich to the most dorsalized phenotype (C5) of ~55% of the 

embryos. When the ich batch was  more severe ( almost all V4A phenotype) 

only ~18% of the embryos injected had a C5 phenotype. Injections in one 

cell at 4-8 cell stage gave a more graded response with embryos falling 

either in the mild ventralized categories (V2 and V3) or in the mild dorsalized 

category (C3).  

Interestingly we never obtained normal reversion to Wt, neither C1 or V1 

phenotypes. One of the possible explanation for the absence of reversion to 

Wt is that the over-expression of DN-Axin2 would probably continue for 

hours after the stage in which we need to induce β-Catenin nuclear 

localization resulting in aberrant dorsalizing effect. Another explanation is 

that DN-Axin2 interferes with other pathways like the Wnt non canonical 

pathway or the Axin/JNK pathway.  

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Canonical-Wnt pathway have a central role in the regulation of transcription 

of many genes, in different tissues. 

To transmit the Canonical-Wnt signaling from outside the cells to the 

nucleus, there are many steps that comprises the formation of a destruction 

complex with Axin1 and 2, APC, GSK3 and CK1, the differential 

phosphorilation of β-Catenin, the regulation of its stability and its movement 

to the nucleus. All these steps have to be tightly regulated, to permit gene 

transcription activation in particular moments and in a particular tissue/set of 

cells. Aberrant nuclear localization of β-Catenin during embryogenesis may 

produce severely deformed embryos, while in the adult mammals induces 

cancer. Therefore, the understanding of the mechanisms involved in the 

regulation of β-Catenin stability and localization could be relevant for bio-

medical studies . 

Due to a recent genome duplication event, in zebrafish are present two 

different genes coding for two almost identical β-Catenins, β-Catenin1 and 2. 

A region close to β-catenins2 gene (we suppose is a maternal enhancer)  

was found mutated in zebrafish, and the line was called ichabod. The 

embryos produced by an homozygous ich mother fail to have a correct 

dorsalization, this because β-Catenins fail to nuclear localize in the nuclei of 

the prospective dorsal organizer, the region responsible for the correct 

induction of the dorsal tissues. 

Looking at the protein levels, we found that in the cells of the prospective 

dorsal organizer, there is a decrease in the β-Catenin2 levels and an 

increase in the β-Catenin1 levels so that the total β-Catenins concentration 

do not change between Wt and ich embryos. We saw similar behaviour  

looking at the mRNA levels, with the expected decrease in the β-catenin2 

mRNA level, and an increase of β-catenin1 level. However, even if there is 

an over-expression of β-Catenin1, this cannot compensate for the small 

reduction of β-Catenin2. To understand better this apparent paradox, we 

studied the levels of other factors involved in the regulation of β-Catenin, two 

factors involved in the regulation of β-Catenin stability, Axin1 and Axin2, and 

four factors involved in the β-Catenin localization, Pygopus1 and 2, Bcl9 and 

Bcl9-2.  

In zebrafish all these genes are expressed during the four stages studied in 

this thesis, and their levels are up-regulated in ich embryos. 

We identified another splicing isoform of z-pygopus2, that we called z-

pygopus2 ∆PHD, because this isoform lack of the PHD domain, essential for 

the interaction with Bcl9/Bcl9-2 and therefore with β-Catenin. Analyzing the 

transcription levels of these two isoforms we found that the isoform with PHD 

domain have an higher level both in Wt and in ich, respect to the ∆PHD, and 



during the embryo development this level remain pretty constant. The 

isoform  lacking the PHD domain is expressed in lower level, but in Wt this 

levels changes, with a peak of expression during the 256-512 cell stage, 

instead this level remain constant in ich, without any peak of expression. 

This let us hypothesize a role of the ∆PHD isoform during the development 

of zebrafish embryos. However, microinjection of in vitro transcribed mRNA 

for this isoform fail to revert the ich phenotype, even if in Wt it cause a small 

dorsalized phenotype. Thus, z-pygopus2 ∆PHD  must be playing some other 

role in the zebrafish embryo.  

Then, we turned to look to factors involved in β-Catenin stability, we know 

from previous works that the two z-β-Catenins have different stability. 

Moreover, the scenario seen through real-time PCR was particularly 

favorable because the levels of the two axins mRNAs were higher in ich , 

suggesting that the β-Catenins in the cytoplasm of ich blastomeres may be 

subjected to higher rates of degradation, while we see more z-β-Catenin1 in 

ich only because highly localized at cells membrane (Fig9B). Thus, this 

would not allow z-β-Catenin1 to compensate for the loss of z-β-Catenin2 in 

ich.  

To confirm this hypothesis we over-expressed a Dominant Negative form of 

z-Axin2 for microinjection in zebrafish embryos and we were able to partially 

revert the ich phenotype and cause dorsalization on Wt embryos. 

From our results it seems that a different sensibility to z-axins protein could 

be responsible for maintaining a low cytosplasmic level of β-Catenin1 in ich 

embryos, so even if over-expressed it could just accumulate in the 

membranes and not move to the nucleus. Coupling this with a decreased 

level of β-Catenin2, there is a fail of activate the transcription of the Wnt 

responsive genes in the prospective organizer, and therefore a fail to induct 

the dorsal tissues. 

Understanding better the role of the pygopus2 ∆PHD isoform, and the 

different sensibility of the two z-β-Catenins to the signalosome complex 

could be really important to unravel the mechanisms involved in the 

regulation of a correct Wnt canonical pathway. 
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The mutant zebrafish line ichabod (ich), with a mutation in the region of the 

zβ-catenin2 promoter that causes a decrease in the maternal accumulation 

of zβ-Catenin2 protein in the embryos, there is not nuclear localization of zβ-

Catenins. So, the embryo fail to form a dorsal organizer and become 

ventralized. To understand why β-Catenins can not go to the nucleus, we 

analyzed by real-time PCR the levels of six genes involved in the canonical 

Wnt pathway: zaxin1 and zaxin2, zpygopus1 and zpygopus2, zbcl9 and 

zbcl9-2. Unexpectedly, they are all up-regulated in ich embryos before and 

after mid-blastula-transition (MBT). The finding of a second isoform of 

zPygopus2 that in Wt embryos is up-regulated at 256-512 cell stage and in 

ich is not, let us hypothesize that this isoforms could be involved in the ich 

phenotype, however we failed to rescue ich by over-expressing z-pygopus2 

∆PHD mRNA. Instead, microinjection of a dominant negative zaxin2 mRNA 

can partially rescue the ich phenotype or revert it to very severe dorsalized 

phenotypes strongly suggesting that the regulation of stability of β-Catenin1 

could be responsible for the ich phenotype. .  
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