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Chapter 1

Introduction

Estimating the structures of dynamic networks from data is an active research area
which has many potential applications in various domains, including molecular bi-
ology, social science and marketing data analysis. For example, discovering gene
regulatory networks from microarrays is one important direction in system biology.
Estimating the structure of a network is about deciding the presence or absence of
relationships between random variables. Graphical models are a class of models
that describe conditional independence relationships. Gaussian graphical models
are graphical models where it is assumed that the random variables follow a multi-
variate normal distribution. When Gaussian graphical models are applied in order
to study large networks, they typically fail because the number of variables is much
greater than the number of observations. Recently, penalized Gaussian graphical
models have been proposed to estimate static networks in high-dimensional studies
because of their statistical properties and computational tractability.

We propose to use penalized Gaussian graphical models to estimate structured
dynamic networks, for detecting time evolution of dynamic networks, and to es-
timate particular structures such as scale-free dynamic networks in a small world
setting. These models can be applied when estimating dynamic networks in high-
dimensional environments.

When multivariate dynamic data are binary or ordinal random variables, trans-
formations based on probability distribution with fixed marginals can be used to do
inference. We consider the Gaussian copula for non-Gaussian graphical models to
overcome the assumption of Gaussianity.

The problem of estimating dynamic networks becomes even more challenging
when latent or hidden variables are involved in larger systems, i.e. when some
components of a network can not be observed. This is often the case in biological
systems, but it is also a feature of many real-world causal systems. State-space
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models have been proposed in order to study dynamic networks with latent vari-
ables. However, expectation maximization combined with Kalman filters for esti-
mating dynamic networks with latent variables can be very unstable. We propose
a penalized Gaussian graphical models to estimate dynamic networks with latent
structures.

We apply the proposed methodologies to a “human T-cell” dataset, that is a
time-course microarray experiment.

1.1 Our work and contribution

The contribution of this thesis involves several aspects of graphical modelling and
it is summarized in the following.

e Gaussian graphical models for structured dynamic networks. In the first
part of this thesis we propose penalized likelihood methods for Gaussian
graphical models. In particular, we propose model-based Gaussian graphical
models for detecting different time dynamic structures of the networks.

e Copula Gaussian graphical models. We propose structured non-canonical
Gaussian copula graphical models for non Gaussian graphical models. This
extension allows to overcome the assumption of Gaussianity for the random
variables. Copula are powerful tools to deal with complex multivariate prob-
lems, such as in graphical models for mixed random variables (Lauritzen,
1996).

¢ Additional model-based GGMs and GGMs with latent variables. In the
last part of this thesis we propose using penalized likelihood methods for
detect the evolution of networks through time and scale-free dynamic struc-
tures. Moreover, we propose a penalized likelihood approach for estimating
dynamic networks with latent variables. Our aim is to separate networks of
observed random variables (for example expression genes) from networks of
unobserved random variables (for example transcription factors). Moreover,
we infer the number of hidden components.

We note that methodologies, as proposed in this thesis, should be considered
high level microarray data analysis. These methodologies are useful after other pre-
liminary analyses have been carried out. In particular we can consider four analysis
levels: experimental design, data analysis, pattern recognition and network anal-
ysis. Each of these levels addresses specific biological and computational issues,
and also serves as a preprocessing stage for higher analysis levels. See Bar-Joseph
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(2004) for a review paper in which all these four analysis leveles have been dis-
cussed.

Our aim in this thesis is to estimate the structure of the networks as close as
possible to the true one. It turns out that learning networks from the data is a really
complex problem and we want to advise the reader that all the proposed method-
ologies should be seen as explorative ways to understand some characteristics of
the underlying structure of the dynamic network.

1.2 Outline of the thesis

The rest of this thesis is organized as follows. In Chapter 2] we give an overview of
Graphical models, biological networks, and we introduce the regularization frame-
work for graphical models. Chapter |3| describes model-based networks to learn
undirected graphs with dynamic structures (SGL). We take advantage of copula
theory to extend the use of the SGL model (Chapter ). In the first part of Chapter
additional model-based Gaussian graphical models are described. In the second
part of Chapter [5|methodologies to learn undirected and directed graphs with latent
variables are described. In particular, we have considered latent Gaussian graphi-
cal models and state-space models to recover networks of observed variables which
take into account effects of latent variables. Motivating examples are used through
this thesis to show the proposed methodologies. In particular, a real time-course
microarray dataset “human T-cell data’’ is studied.






Chapter 2

Graphical models for biological
networks

Networks are important models to address specific questions in genomics. Dy-
namic gene-regulatory networks are complex objects since the number of potential
components involved in the system is very large. For example, one important di-
rection in systems biology is to discover gene regulatory networks from microarray
data based on the observed mRNA levels of thousands of genes under various con-
ditions. We shall show that one solution to such problem is the use of penalized
Gaussian graphical models, which have been extensively used to estimate sparse
static graphs.

In this chapter we describe basic principles of gene transcription and genetic
regulatory networks. Then, a review on graphical models and several summary
measures of networks are given. Finally penalized graphical models with a #; norm
penalty or the so called “graphical lasso” are described. For more details on graph-
ical models see for example [Lauritzen (1996)) or [Whittaker (1990). Bishop (1995))
gives a good introduction on Bayesian networks and undirected graphical mod-
els. More information on gene transcription can be found in [Barabdsi and Oltvai
(2004). Newman (2010) considers biological networks with respect to their scales.
Metabolic networks, protein-protein interaction networks and genetic regulatory
networks are examples of microscopic scale networks while ecological networks
are examples of macroscopic scale networks. We focus exclusively in the former.

2.1 Introduction to gene transcription

Proteins are essential parts of the cell that determine the cell’s structure and execute
nearly all its functions. The production of proteins is carried out by the ribosomes,
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but the information needed for their production is encoded in genes which are
the segments of DNA. DNA contains valuable genetic information, that must be
preserved. Transient RNA is used to carry the message from DNA to ribosomes. In
all living cells, the flow of genetic information is thoght to go in this way

DNA — RNA — PROTEIN.

This fundamental principle in biology is called the central dogma of molecular
biology. The step from DNA to RNA consists of copying the information from
genes to RNA and it is called transcription. The step from RNA to protein consists
of decoding the information from RNA by ribosomes and it is called translation.
Together these two processes are known as gene expression.

The process of transcription is carried out by special enzymes called RNA poly-
merases (RNAp). RNA polymerase binds to the promoter and then opens up the
double helix of the DNA sequence immediately in front of it and slides down the
gene producing the RNA molecule. The promoter is a region of DNA that facil-
itates the transaction of a particular gene and contains a sequence of nucleotides
indicating the starting point for RNA synthesis. Chain elongation continues until
enzyme encounters a second signal in DNA, the terminator, where RNAp halts and
releases both the DNA chain and the newly made RNA chain. RNA which encodes
information for production of a certain protein is called messenger RNA(mRNA).

However, to do all of this RNAp needs help from special proteins called tran-
scription factors. Transcription factors bind at the promoter and form a transcrip-
tion initiation complex. They position the RNAp correctly on the promoter and
aid in pulling apart the two strands of DNA to allow transcription to begin and to
allow RNAp to leave promoter as transcription begins. After RNAp is released
from the complex it starts making RNA. Once transcription has begun, most of the
transcription factors are released from the DNA so that they are available to initiate
another round of transcription with a new RNAp molecule. The synthesis of the
next RNA usually starts before the first RNA is completed. There maybe several
polymerases moving along a single stretch of DNA and RNAs.

The main goal of gene transcription is to produce mRNA which will be trans-
lated by ribosomes to make proteins. Each mRNA can be translated several times
by ribosome in order to make proteins. This is done until mRNA reaches the end
of its life-span.

2.1.1 Transcription factors and gene regulatory networks

In the previous section we have mentioned special proteins called transcription fac-
tors that help RNAp to initiate transcription. These transcription factors are called
general transcription factors because the same ones are required for the initiation
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of transcription of various genes in a wide variety of different organisms. There
is also a group of transcription factors that bind to special regions of a target gene
called the regulatory region in order to regulate its transcription. This latter group
of transcription factors can act either as transcriptional activators that stimulate
transcription of the target gene or as transcriptional repressors that inhibit its tran-
scription. Enhancers are the binding sites of the activators and silencers are the
binding sites of the repressors. In the regulatory region there are multiple binding
sites where several TFs are able to bind. Therefore, regulation of transcription in-
volves various interactions between several TFs. Non-cooperativity occurs when
TFs are independently bound to a regulatory region. Cooperativity occurs when the
affinity of the TF to a binding site depends on the amount of TFs already bound.
The cooperative binding can be either positive or negative, indicating that the affin-
ity is either increased or decreased by the binding of other TFs. Competition is also
possible when two different TFs bind to one and the same site.

In case of multiple transcription factors, the regulation of gene transcription
can be modulated in many ways. In some cases all the transcription factors need
to bind in order for transcription to occur, and in other cases only one of them is
enough. Transcription factors can form protein complexes, which serve to activate
or inhibit one or more complex members. Also, some of the transcription fac-
tors are not active until they are switched “on” by addition of the phosphate group
to them. This process is called phosphorylation. This is an important regulatory
mechanism since transcription can be regulated by turning a TF “on” or “off”.

Proteins that perform regulatory functions to direct the expression of a gene are
in turn produced by other genes or even by itself. This gives rise to a gene regu-
latory network (GRN), which consists of a set of DNA, RNA, proteins and other
small molecules, and is structured by mutual regulatory interactions between these
components.

The network of gene regulation can be very complex, where one regulatory pro-
tein controls genes that produce other regulators that in turn control other genes.
As we already mentioned, protein can either activate or repress its own synthesis,
which further increases the complexity of the GRN.

Gene regulatory network models are a logical way to describe phenomena ob-
served with transcription profiling, such as is done with the popular microarray
technology. GRN models can be represented as directed or undirected graphs,
where nodes are the elements of the networks DNA, RNA, proteins etc. The di-
rected or undirected edges from one node to another represent the corresponding
interaction, for example, activation, repression or translation. Being able to create
gene regulatory networks from experimental data and to use them to think about
their dynamics will contribute to increase our understanding of cellular functions.
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2.2 Graphical models

Graphical models blend probability theory and graph theory together. They are
powerful tools for analysing relationships between a large number of random vari-
ables. Their fundamental importance and universal applicability is due to a number
of factors. Not only can graphs be used to represent conditional (in)dependence
between random variables, but their structure is also modular so that complex net-
works can be described and handled by careful inspection of simple components.

In this thesis we define a graph as a couple G = (V,E) where V = (1,...,p) is
a finite set of vertices and E C V X V is a subset of ordered pairs of distinct vertices
(i,7). Anedge is undirected if (i, j) € E implies (j,i) € E. An undirected graph is a
graph with undirected edges only. We denote the set of neighbours of a node i with
ne(i) that is the set of j € V such that (i, j) € E and (j,i) € E. A graph is called
a directed graph if it contains directed edges. An edge is directed from vertex i to
j if it is possible that (i,j) € E and (j,i) ¢ E. The set of nodes j € V such that
(i,7) € E is called the set of parents and denoted by pa(i). In other words, the set
of parents is the set of directed links going from i to j. In graph theory i is said to
be a parent of j and j is said to be a child of .

Let Y = (Y1,...,Y,) be a set of random variables, where a vertex i, (i =
1,...,p) of the graph correspond to a random variable ¥;.

Definition 2.2.1. A graphical model for Y is a set of probability distributions P
for'Y, that satisfies the pairwise conditional restriction on G, but are otherwise
arbitrary (Whittaker, 1990).

A graphical model is a representation of a joint probability distribution P in
terms of a graph and a corresponding set of function f defined with respect to that
graph. The graph encodes a set of conditional independence relations between the
underlying random variables, which allow, under appropriate conditions, for the
joint distribution to be decomposed in a product form (i.e. to be factorized). This
decomposition implies a certain Markov property among the random variables Y.

We can distinguish graphical models according to the type of links represented
in the graph in directed and undirected graphical models.

2.2.1 Undirected graphical models

An undirected graphical model is also called Markov random field. It is defined as
a pair (G,P) that specifies a probability density function f for their joint distribu-
tion P in the form

® P = TTWe(xo) exy

ceC



2.2 Graphical models 9

where C is a set of cliques, i.e. complete subsets of V that are maximal, in G,
y.(y.) is a potential function, which is a positive function of the variables {y; };cc,

and
= Z H Ve(ye)

y ceC
is a normalization factor. If the factorization (F) is possible, then it implies the
global Markov property. A probability distribution [P function is said to obey the
global Markov property, relative to G, if for any triple (A,B,S) of disjoint subset of
V such that S separates A from Bin G

(G) Y, L Yg|Ys.

The global Markov property in turn implies the local and pairwise Markov proper-
ties. A probability distribution function is said to obey:

(L) the local Markov property, relative to G, if for any vertex i € V
Yi LYy qea(ipy| Yoagis

(P) the pairwise Markov property, relative to G, if for any pair (i, j) of non-
adjacent vertices
Y LYYy

The boundary of i is the set of nodes such that bd (i) = pa(i) Une(i), and the closure
of i is the set of nodes such that c/(i) = iUbd(i). The expression V' \ {i, j} indicates
the set of nodes V except nodes i and j. The expression ¥; L Y j|YV\{i,j} means that
the probability distribution function can be factorized as follows:

inst|YV\{i.j} (vi,¥j ’y‘/\{l}j}) = in\YV\{i,j} (yi|yV\{iJ})ij\YV\{i,j} (yj|yv\{i~,j})'

It can be shown that (F) = (G) = (L) = (P) (Lauritzen, 1996). Moreover, Ham-
mersley and Clifford’s theorem states that:

Theorem 2.2.1 (Hammersley and Clifford). A probability distribution P with pos-
itive and continuous density f with respect to a product measure [ satisfies the
pairwise Markov property with respect to an undirected graph G if and only if it
factorizes according to G.

This theorem gives the necessary and sufficient condition for (P) < (F), and
under this condition we have that all Markov properties are equivalent:

(F) < (G) & (L) < (P).

Undirected graphical models are useful when random variables can be anal-
ysed symmetrically. Specific undirected graphical models are distinguished by the
choice of the undirected graph G and the potential functions y,.
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Gaussian graphical models.

A graphical model (G,P) where P is a multivariate normal distribution N(u,X)
with mean ( and variance covariance matrix X is called a Gaussian graphical model
or a covariance selection model (Dempster, 1972)). Let @ = ! be the precision or
concentration matrix then @ contains all conditional (in)dependence information
for the Gaussian graphical model. In fact, if 6;; = O then Y; is independent of Y;
given the rest, i.e. the pairwise Markov property ¥; 1 Y;|Yy\y; j;. Moreover, 6;; is
proportional to f3;;, where B; is a vector of regression coefficients when Yi[Yy\ iy
is considered. To see that all the information on the conditional independence is
contained in ® we need to show that given the set of 6;; = 0 we can factorize the
joint normal probability distribution f(y) as a product of functions f which do not
jointly depend to y; and y; when 6;; = 0.

Consider the example in which a random variable Y = (Y¥1,Y»,Y3) is multivari-
ate normal N(g, @) and

61 612 O
O=| 6, 6n 06
0 6, 65

The multivariate normal distribution function is:

f(y) = const|Z| " 2exp (y—p)O(y—mn))). (2.2)

Let z =y — i, then by expanding the exponent we have:

70z = 71011+ 212200 + 21236031 + 2221012 + 2300 + 2023032 +
2
2321013 + 23226023 + 23633
2 2 2
= 21011 + 21226021 + 2221012 + 25002 + 2223032 + 2322023 + 25633

Now we can factorize (2.2)) into a product of terms which do not jointly involve Y;
and Y3, i.e.

f(y) = fifiafaf3 fs,

which means that ¥; | Y3|¥, and shows that this conditional independence informa-
tion is contained in 6;3. This can be generalized straightforward by to an arbitrary
normal vector Y.

Here we shall consider the relation between the conditional independence and
the regression coefficient. Let’s partition Y as (Y;,Y,) with mean vector g =
(4, 42) and variance-covariance matrix partitioned as follow:

v _ < 2}1 C12 >7®: < 9/11 ) )
O, On 1 6n
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From standard theory of Gaussian distribution (Tong, 1990), we can derive the
conditional PDF for node 2 given the rest, i.e. ¥|Y| =y; which is normal with
mean:

fA=uw+010(y1 — 1),

and variance:
6 =00n—0200,

where 6, = 0"12. Since £O = I, by definition of the inverse of a matrix, we can
use partitioned inverses to get the following result:

010=-X,/61200n=—B,6n =B, (2.3)

where B, = £,/ 61 is a vector of regression coefficients that determines the con-
ditional independence structures, and 6, = (02 — 0'219110‘12)_1. If we consider
a particular element of B, for example the i-th and f3,; = 0, then 6,; = 0.

We have obtained the important results that for Gaussian graphical models:

(i,])) €E < 6;;#0 < B;; #0,

which means that conditional independence for a Gaussian graphical models can
be detected from the estimated precision matrix and regression coefficients.

Let us consider the problem of estimating ® from two different points of view:
a likelihood and regression approach. Suppose that Y(V ... Y with Y() € R?
are independent and identically distributed as a multivariate normal distribution
with mean 0 and variance X. The profile likelihood function is:

_ L 1 e _
L(y,X) :const‘H\)2| 1/zexp (—z(yi—y)/): 1()’i—)’)>

i=1

and,

N\'—‘
M=

Il
_

L(V,E) o« [E|"?exp

(L
= [Z"exp (
s
(-3

-¥'Z (y; —Y)>

NM—*
1=

tr ((yi =¥ (¥i —y)’Zl))>
1

it (Z y)(m—y)'zl))
i=1

) 2.4)

=[5 "Pexp

N\E l\)\*—‘

= [T/ "exp
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where

$=) (i-y-y)/n (2.5)

with S € RP*P. Our main interest is on the precision matrix ® so we parametrize
with respect to ® and consider the log-likelihood for mathematical conve-
nience, 1.€.:

1(¥,0) glog\ey - gtr(SG)). (2.6)

The score function with respect to ® is given by:
21(®)
20
for some constant C. The maximum likelihood estimator is @ =S~ !, provided that
S is positive definite. On the other hand, from (2.3),

= (@ '-8)C,

By =snsp),
and therefore
6, = —329227
where the diagonal elements of @ can be estimated as follows:
1
8§22 + 21 Bz .

MLE and regression perspectives are both useful in the remainder of the thesis.

0 =

2.2.2 Directed acyclic graphs or Bayesian networks

A directed graphical model without any cycle in the graph is also called Bayesian
network (BN). We say that a probability distribution P admits a recursive factor-
ization according to a directed acyclic graph G if P can be factorized as:

14
PO, yp) = [ [ pGilpali)), (2.7)
i=1

where pa(i) is the set of parents for the node i. Conversely, a directed graphical
model defines a joint probability density function for P in the form (2.7). An
important implication of this factorization is that every variable Y; is conditional
independent, given its set of parents pa(y;), of all other variables Y; that are neither
parents nor descendants. This property is known as the Markov condition, and in
fact it can be shown that the factorization and this condition hold in an if and only
if manner. To see this, consider a moral graph of G which is given by marrying
parents and deleting directions of G.
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Lemma 2.2.1. If P admits a recursive factorization according to the directed,
acyclic graph G, it factorize according to the moral graph G and obeys there-
fore the global Markov property to G™ (Lauritzen, 1996)).

Specific directed graphical models are distinguished from each other by (i) the
structures of their underlying DAGs and (ii) the form of their conditional density

functions f(yi|pa(yi)).

Linear Gaussian models.

Let’s consider linear Gaussian models as a simple example of BN. Note that several
widely used techniques, such as factor analysis, principal component analysis and
linear dynamical systems, are examples of linear Gaussian models. Let’s consider
p random variables where each of these random variables conditionally on the set
of parents is assumed to be Gaussian with mean taken as a linear combination of
the states of its parents nodes, i.e.

Yi|x; ~ N(at + Bixi, 67),
where x; = pa(y;), then the logarithm of the joint PDF is given by:

p p 1
logp(y) = ). loa(p(yifxi)) = const— Y- >— (i — ),
i=1

i=1 i

where u; = o; + ngi. This is a quadratic function of the components y;, (i =
1,...,p), and hence the joint distribution p(y) is a multivariate Gaussian with ex-
pectations:

E(Y;) = a; + BiE(X)),
and variance-covariance matrix:
Cov(Y;,Y;) = E[(Y;—EM))(Y;—E(Y)))]

E[(Y; — E(Y;)) (Y — Byxx — 0%))]
= B;(COV(YI', Yk) — O

We can estimate B; and represent a BN drawing an arrow from j (j € pa(y;)) to i if
the coefficient 3;; # 0. We can readily extend the linear-Gaussian model to the case
in which the nodes of the graph represent multivariate Gaussian random variables.
In this case, we can write the conditional distribution for node i as:

Y,'|Xi NN(BiXi—l- ai,Zi) (2.8)
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where B; is a matrix with dimension depending of length of y; and x;. It can be
shown that the joint PDF over all variables is multivariate Gaussian.

Note that Bayesian networks do not allow directed cycles appears in the graph.
This means that we cannot have feed-back effects, i.e. Y; effects Y» which effects
Y3 which in turn effects Y;. In fact there is no suitable joint probability distribution
to model this situation (Whittaker, 1990). On the other hand, undirected graphical
models do not allow for induced dependence, i.e. Y effects Y.

2.2.3 Ising models

Another class of graphical models is the class of Ising models. In this subsection,
we give a brief description of the Ising model and we show that the number of
nodes of the set vertex V, which are called bonds, can be let go to infinity. This
means that graphical models can be applied both for finite set of vertex and infinite
set of nodes. Moreover, we show in this subsection that a specific choice of the
potential function can be the Hamiltonian function. In this case we need to derive a
normalization constant which is denoted by Z in order to have a proper probability
distribution function. This subsection is only a brief overview of the Ising model.
The notion of infinite graph will not be used in this thesis. However, we think
that it is important to know that possible generalization of finite graph exit. Note
that Ising models are also known as tree models. We kept the terminology adopted
in physics to describe the Ising model since it is not difficult to compare with the
preview terminology given for the graph theory.

Ising model was originally proposed in physics to study phase transitions,
which occur when a small change in a parameter such as temperature or pressure
causes a large-scale qualitative change in the state of a system. One purpose of the
Ising model is to explain how short-range interactions between, say, molecules in a
crystal give rise to long-range, correlation behaviour, and to predict in some sense
the potential for a phase transition. Before describing the Ising model we need to
give the notion of lattice and partition function. A lattice is a finite set of regularly
spaced points in a space of dimension d=1,2, or 3. In dimension 1 we simply have
a string of points on a line, which we can enumerate from 1 to N (N will always
denote the number of lattice sites, regardless of dimension). In dimension 2 we
shall consider the lattice square and in dimension 3 we shall consider the lattice
whose repeating units are cubes. Each line segment between lattice sites is called
a bond (or link), and lattice sites are called nearest neighbours if there is a bond
connecting them. Here we consider wrap around Ising model, i.e. simply add ex-
tra bounds connecting lattice sites on opposite boundary. The wrap-around Ising
model has dN bonds connecting the N lattice sites.

For each lattice site an independent variable o; is assigned, i = 1,...,N. The
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variables o; take on only two variables, —1 and 1, which are, for example, possible
states of the lattice site. A realization of the state for (oy,...,0y) is called a con-
figuration, and the total number of possible configuration is given by 2. The sum
of all the possible configuration is called the potential function and it is given:

Z(B,E,J,N) Zexp G)),

where H (o) is the Hamiltonian function, i.e.

— ) Eocic;— ZJG,,

<i,j>

where E and J are parameters, the first sum is over all pairs of nearest neighbours
in the lattice, and the second sum is over all over the lattice sites. The strong as-
sumption is that only nearest-neighbour interactions and interactions of the lattice
sites contribute to the system. Then the probability to be in a specific configuration
is given by:

plo)_ SPBH(E))
V4

A small value of f tends to flatten out the distribution, making all configurations

more or less equally likely, while a large value of  tends to accentuate the proba-

bilities of the lowest energy states.

Many of the quantities one computes from the partition function turn out to
depend on the logarithm of Z. This is natural, since Z, being a sum over 2" con-
figurations, tends to grow exponentially with the size of the lattice. This brings to
define the Ising model to be:

1
=F(B,E,J)= limN%mﬁlogZ(B,E,J,N).

The main problem in the Ising model is to find a closed-form, analytic expression
for the function F. The fact that we can increase the number of lattice sites brings
at the concept of graphs with infinite number of vertices, i.e. N — c. Note that the
Ising model is defined for Bernoulli random variables but we are mostly interested
in continuous ones.

2.3 Regularization framework

Gene regulatory networks (GRNs) are highly complex and structured phenomenon.
A characteristic of GRNs is that the number of observations is smaller than the
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number of random variables. In fact, it is common to collect thousands of vari-
ables and hundreds of observations. Another important characteristic of GRNs is
that only a small number of interactions between genes are presents. Classical
Gaussian graphical models cannot be used to estimate the graph of conditional in-
dependence. As shown by (Buhl, 1993), Gaussian graphical models do not work
under high-dimensionality that is when the number of variables is much larger than
the number of observations. It turns out that in Gaussian graphical models, maxi-
mum likelihood estimator exists with probability of one if the number of replicates
is at least as large as the number of random variables (Buhl, 1993). One solution
to such problem is to use penalized Gaussian graphical models. In fact (Mein-
shausen and Biihlmann, 2006)) showed that gene regulatory networks are treatable
with high-dimensional statistical inference, but sparsity is a necessary assumption
to deal with these problems.

Informally, a graph with few edges is sparse, and a graph with many edges
is dense. More precisely a graph G = (V,E) where |V| is the number of vertices
and |E| is the number of links (couple of vertex or nodes) is said to be sparse if
|E| = O(]V]). A graph that is not sparse is said to be dense. More precisely a graph
G is said to be dense if |E| = O(|V|?). These two definitions are given by Preiss
(2008). Bruno Preiss’s definition has problems, but it may help. For one graph,
one can always choose a k, and second a class of graphs might be consider to be
sparse if |[E| = O(|[V[}), 1 <k < 2.

Roughly speaking, high dimensional statistical inference is possible, in the
sense of leading to reasonable accuracy or asymptotic consistency, if

log(p)(sparsity(®)) << n,

where p is the number of random variables and 7 is the number of observations
(Meinshausen and Biihlmann, 2006). Here with sparsity(®) we mean that the
graph associated with the matrix @ is sparse (see definition above). In other words,
accuracy and consistency of the results depend on how one define sparsity.

Much of methodology and techniques, in high-dimensional analysis, relies on
the idea of penalizing the £;-norm of the precision matrix @, i.e. Y| ¥'7_, [6; ;| <
p, for i > j where p is a tuning parameter that regulates the sparsity. The smaller
the value of the tuning parameter p is the most sparse is the estimated matrix .
Such /¢;-penalization has become tremendously popular due to its computational
attractiveness (i.e. convex function) and its statistical properties which reach op-
timality under certain conditions. Mainly, we want to minimize a prediction error
while we are choosing a model as simple as possible. It is important that model
selection and parameter estimation are done contemporaneously. In fact, [Breiman
(1996) showed that this two steps procedure brings at instability of the model,
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i.e. if we slightly perturb the data our results can change considerably. Whereas,
{1-penalized methodologies allow us to do model selection and estimation, simul-
taneously.

The most popular method to estimate a sparse precision matrix is probably the
graphical lasso proposed by [Tibshirani (1996). Here we briefly review graphical
lasso. Suppose we have n multivariate normal observations of dimension p, with
mean 0 and covariance . Let ® = £™!, and let S be the empirical covariance
matrix, the problem is to maximize the log-likelihood

(©) := argmaxg{/(®) — 1||®||; : © = 0}, (2.9)

over non-negative definite matrices, i.e @ > 0. [(®) is given in . Yuan and Lin
(2007) solved this problem using the interior point method for the maxdet problem,
proposed by Boyd and Vandenberghe (2004). |Banerjee et al. (2008)) developed a
different framework for the optimization and solved the problem by optimizing
over each row and corresponding column of X in a block coordinate descent
fashion. Partitioning £ and S

¥ 211 o112 S — Sll S12
- / 9 - / I
0, Oxn Sip S22
they show that the solution for 6, satisfies

(o12) := argminy{y'Zflly ly—si2lle < p}. (2.10)

This is a box-constrained quadratic program which they solve using an interior
point procedure. Permuting the rows and columns so the target column is always
the last, Banerjee et al. (2008)) solve problem for each column, updating their
estimate of X after each stage. This is repeated until convergence. If this procedure
is initialized with a positive definite matrix, they show that the iterates from this
procedure remains positive definite and invertible, even if p > n. Using convex
duality, Banerjee et al. (2008) go on to show that solving is equivalent to
solving the dual problem:

(B) := argming {||="/2B —b||*+ p||B||:}, 2.11)

where b = 21—11/2812 ; if B solves (2.11)), then 61, = X1 B solves |D Expres-
sion (2.T1)) resembles a lasso regression (Tibshirani, 1996)), and it is the basis for

graphical lasso (Friedman ef al., 2008). Expanding the relation £® = I gives an
expression that will be useful below:

Ly on ®, 6\ (I 0
( ol On ) ( 021 6 >_ ( 01 > @12
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Now the sub-gradient equation for maximization of the log-likelihood (2.9) is
T-S—pr=0, (2.13)

using the fact that the derivative of log|@| equals ® ' = X, see (Boyd and Van-
denberghe, 2004) for the derivation. Here I';; € sign(6;;); i.e. I'y; = sign(6;;) if
0;j # 0, else I';; € [—1,1] if 6;; = 0. Now the upper right block of equation (2.12)
is

0'12—812—[)’}'12:0. (2.14)
On the other hand, the sub-gradient equation from (2.11) works out to be

LB —si+pv=0, (2.15)

where v € sign(B) element-wise. Now suppose (X,I") solves (2.13), and hence
(0,7) solves (2.14). Then B = £, 'wi2 and v = —y solves (2.15). The equivalence

of the first two terms is obvious. For the sign terms, since £11 61 + 612622 =0 from
(2.12), we have that 6;, = —6», %, 615. Since 62 > 0, it follows that sign(6;2) =
—sign(X;'612) = —sign(B). This proves the equivalence.

Problem looks like a lasso problem, which means one want to minimize
the sum of squares subject to the sum of absolute value of the coefficient being
less than a constant. In fact if £;; = Sy, then the solutions [§ are easily seen to
equal the lasso estimates for the p-th variable on the others, and hence related to
the Meinshausen and Biithimann (2006) proposal. As pointed out by |[Banerjee ef al.
(2008), £11 # S1; in general and hence the approach proposed by Meinshausen and
Biihlmann (2006) does not yield the maximum likelihood estimator.

To solve (2.11)), Friedman ez al. (2008) use £, and s1», where X; is our current
estimate of the upper block of £. Then update £ and cycle through all of the
variables until convergence. The algorithm is described in[2.1]in detail.

Algorithm 2.1: Glasso for known zero elements in the precision matrix.

Require: X.
1. Start with £ = S+ pI. The diagonal of X remains unchanged in what
follows.
2. Foreach j=1,2,...,p,1,2,...p,..., solve the lasso problem (2.15]),
which takes as input the inner products X;; and s;». This givesa p — 1
vector solution ﬁ . Fill in the corresponding row and column of ¥ using
cn=XB.
3. Continue until convergence.
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This algorithm is extremely fast but it is not possible to impose symmetric
constraints. Instead, one can consider the idea of 'Yuan and Lin (2007) which con-
sider the convex optimization problem (2.9) with positive definite constraint on the
precision matrix. In particular, |Yuan and Lin (2007) use interior point algorithm
to solve the optimization problem. However, the algorithm is feasible for small-
medium size problems since it necessary to compute the second derivative at each
step. Instead, an efficient solver to solve convex optimization problem with linear
constraints is LogDetPPA. We will do a large use of this solver which is described
in the next Section 2.4]

2.4 Optimization Algorithm

We will take advantage of an algorithm proposed in convex optimization, which is
called LogDetPPA and it was proposed by |Wang et al. (2009) to solve the general
convex optimization problem in (2.16) subject to linear constraints on the precision
matrix. Our main idea is to impose symmetric constraints on the precision matrix
such that specific parameters will be constrained to be equals. This will bring spe-
cific structures that come natural for dynamical networks. We will explain in detail
this idea in Chapter [3] The number of parameters to be estimated is reduced which
is particular important in biological network estimation since the number of repli-
cates of the experiment is very small especially if one compare with the number
of variables that are collected (genes). We will see that this is not the only ad-
vantage to use the solver LogDetPPA but other model-based graphical models can
be implemented. Here, we give a brief overview of the methodology behind the
solver LogDetPPA. In particular we describe the optimization problem in its stan-
dard form. More details on LogDetPPA can be found in [Wang et al. (2009). Note
that [Toh et al. (1999) and [Tiitiinct et al. (2003) proposed a more general solver
which is called SDPT3. They describe two methods to solve conic programming
problems whose constraint cone is a product of semidefinite cones, second-order
cones, nonnegative orthants and Euclidean spaces; and whose objective function
is the sum of linear functions and log-barrier terms associated with the constraint
cones. This includes the special case of determinant maximization problems with
linear matrix inequalities. However, we focus on LogDetPPA which can solve less
general optimization problems with linear constraints but it is more efficient and
sufficient for the purpose of this thesis. According to the authors (Wang ef al.,
2009), sparse covariance selection problems with p up to 2000 and 1.8 x 10° linear
constraints can be solved in a reasonable amount of time (about 26 minutes).
LogDetPPA employs the idea of a Newton-CG primal proximal point algorithm
for solving large scale log-determinant optimization problems. This algorithms
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employs the essential idea of the proximal point algorithm, the Newton method and
the preconditioned conjugate gradient solver. LogDetPPA can solve the following
optimization problem:

(©) := argmin{—ylog |@®| +tr(@S) : A(®) =b,® > 0}. (2.16)
0

where ® € RP*? is a parameter matrix that needs to be estimated, S € R”*? is a
known matrix, b € R”, ¥ € R is a non negative scalar, A : RP*? — R™ is a linear
map and it can be expressed as:

A(®) =[(A1,0),....(A,,0)], (2.17)

where (A;,®), fori = 1,...,m, is the Frobenius inner product between matrices A;
and @. In other words the linear map transforms the constraints from a matrix form
to a system of linear equations. This is a convex optimization problem since log|®|
and tr(®S) are convex functions, with linear constraints. Moreover, we need to be
sure that @ is a semi positive definite matrix and this is expressed by ® > 0.

The algorithm is slower than glasso proposed by [Friedman ez al. (2008)) but it is
much more flexible and we will show that many graphs structures can be imposed
by re-writing problems in the form (2.16).

2.5 Descriptive measures of networks

In this section, we initially explain some characteristics of biological networks
which enable us to better understand the distinction among different types of sys-
tems. Moreover, we describe the major mathematical approaches to detect these
properties. These approaches are useful to do statistical analysis of networks or
graphs. In other words, we want to summarize the characteristics of the network.
Then, we focus on the differences between homogeneous and non-homogeneous
networks.

2.5.1 Summary measures of networks

Biological networks indicate varieties in terms of their types of connections and
structure of nodes like their modularity and randomness. Hereby in order to distin-
guish them, we define some network measures which are the quantitative criteria
describing the general pattern of the genomic connectivities such us degree dis-
tribution, clustering coefficient, characteristic path length and diameter, existence
of hubs and network robustness, flux of the reaction, existence of the hierarchical
modularity. These features can differently be indicated based on the directed and
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undirected networks. The degree distribution, flux mode, and the execution of the
hierarchical modularity can be computed under directed networks since their cal-
culations are found by the directions of connections. Whereas the remaining can
be used for both types. In the following part we describe each measure in details
and present how they can be tested for their statistical significance in a system.

Degree distribution. In a system the number of connections of each node can be
described by a probability distribution. If we assume that this marginal probability
p(k) is independent for every node in a p-dimensional system where p denotes the
total number of nodes, the joint multivariate distribution of nodes p(ki,...,k,) for
a system can be found from the product of their marginal densities such that

plki,....kp) = p(k1)p(ka)...p(kp).

But since the genes are functionally connected to each other, the independence
assumption, which can simplify the probabilistic calculation, becomes unrealistic.
Whereas we can still consider the conditional independence of the genes. If we are
interested in undirected networks the probability distribution of links for a node
can be found by giving to k other nodes. This conditional probability is called the
connectivity distribution, denoted by p; and the total number of links attached to
the ith gene or node (i = 1,...,p) is named as the degree or connectivity of node
i, shown by k. On the other hand if the system is directed, we can compute two
types of connectivity, hereby, conditional distributions: one from the number of
links coming to the target gene and one from the number of links departing from
the target gene. If we count the number of genes which regulate, i.e. come to,
the same gene or node, this number is called the incoming connectivity, arriving
connectivity or in-degree, presented by k;,. On the contrary, if the interest is the
number of genes which are regulated, i.e. departing from the target gene, by the
same node or gene, this is called the outgoing connectivity, departing connectivity
or out-degree, denoted by k,,, (Barabdsi and Oltvai, 2004). For every directed

1 2 3 45 6 7
k 0 2 3 2 0 2 3 171
kn 0 2 0 2 0 2 0 085
kst 0 0 3 0 0 0 3 085

Table 2.1. Degree for directed and undirected graph in Figure

network we can write k in undirected network via k = kj;, + ko, In biological
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Figure 2.1. Directed and undirected network.

networks the distribution of k,,, is generally referred by the power-law density
Newman (2010) with the following expression:

px = cok ™, (2.18)

where A is named as the power-law exponent and stands for the average distance
between any two nodes in a system. Apart from the density expression in Equation
(2.18), the truncated power-law in Equation (2.19) can be another strong alternative
density for biological system.:

B exp(—k/ke)k=*

Dk = —cl(k,kc) ) (2.19)

where ¢ (A, k) represents the normalizing factor, A refers to the power-law expo-
nent, and k. denotes the cut-off parameter.

The main property of power laws that makes them interesting is their scale
invariance. Given a relation p = cok™*, scaling the argument k by a constant
factor causes only a proportionate scaling of the function itself, i.e.:

cpr = c(cok) ™ = c1px o< p. (2.20)

Thus, it follows that all power laws with a particular scaling exponent are equiva-
lent up to constant factors, since each is simply a scaled version of the others. This
behaviour is what produces the linear relationship when logarithms are taken of
both p; and k, and the straight-line on the log-log plot is often called the signature
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of a power law. With real data, such straightness is necessary, but not a sufficient
condition for the data following a power-law relation. In fact, there are many ways
to generate finite amounts of data that mimic this signature behaviour, but, in their
asymptotic limit, are not true power laws. Thus, accurately fitting and validating
power-law models is an active area of research in statistics.

The idea of the connectivity information can be also combined by the average
number of degree for both directed and undirected system. This topological mea-
sure is called the average degree or connectivity of the network and is computed
by the ug expression below:

Pk
i=1™

p

Uk =

where p displays the total number of nodes and &; shows the number of links asso-
ciated to the ith node.

Besides power-law and truncated power-law distributions, the generalized Pareto
law, stretched exponential, geometric, and combination of these densities can also
satisfy other characteristics of biological networks, which are the small-world, cen-
trality, and lethality properties, without the scale-free feature. A small-world net-
work is a type of mathematical graph in which most nodes are not neighbors of
one another, but most nodes can be reached from every other by a small number
of steps. There are various measures of the centrality of a vertex within a graph
that determine the relative importance of a vertex within the graph. For a review as
well as generalizations to these topics see (Opsahl et al. (2010).

In order to detect the degree or average degree distribution of a system which
enables us to distinguish different networks via their connectivities, we can define
different approaches. These methods are based on the idea of the goodness of
fit test in the sense that they can compare the observed number of links with the
theoretical ones by Q-Q (Quantile-Quantile) plots of the data. More details about
the calculations are presented in the following.

Mathematical Details. We describe two techniques to control whether the bi-
ological networks satisfy the scale-freeness. The first approach is to draw a Q-Q
plot between the connectivity relative distribution py, which can be a power-law
distribution, and the observed number of connections of the node, k. If the graph
fits a straight line on the log-log scale, we can conclude the evidence of the power-
law density. A similar graphical test can be done via the correlation coefficient
R*(0 < R* < 1) between the number of connection for each node and k on the log
scale. Accordingly, the straight line, i.e. R? closes to 1, can be seen the proof of
the power-law density, whereas, the skewness from the straight line, i.e. R* closes
to 0, demonstrates against this evidence. As the second approach, the test can be
directly conducted by estimating the power-law exponent A in py o k* (k > 1) for
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the dataset. The inference for A is derived by the maximum likelihood method
under the independence assumption of connectivity for node i (i =1,...,p) in a
large network by using the likelihood function below:

p—1
L(Alk) = [Tk */w(d), (2.21)
i=1

where (p — 1) shows the maximum number of connectivity in a p-dimensional
system and y(A) is called the Riemann zeta function. If we take the partial deriva-
tive of Equation (2.21) on the logarithmic scale and equate it to zero, the normal
equation of A can be found. For the power-law distribution, as the solution of this
equation does not have a closed form, the estimate for A can be computed by differ-
ent iterative techniques such as Newton-Raphson or Grid search (Newman, 2010).
Once the estimate of A, i.e i, is found, the scale-freeness is checked by the chi-
square goodness of fit test power-law with exponent A. In the testing procedure,
a chi-square statistics, x*?, is obtained from the data by computing Oy and Ej,
(k=1,...,k*) that describe the observed connectivity and estimated connectivity
under power-law, respectively. We can compute

in which Xé o presents the chi-square critical value with k* — 2 degrees of free-
dom for a given significance level .

Implementation. For the assessment of the degree distributions, we initially de-
fine the adjacency matrix and then compute the associated degrees via degree func-
tion within the igraph R package. We present the coding of the in-degree distri-
bution &,

setl < graph.adjacency(obj),
degree(setl,v=V(setl), mode= '"in’’),

where obj must be an adjacency matrix. An adjacency matrix is a p X k matrix A
where the generic element a;; = 1 if an edge is present between node i and j and
a;j = 0 if an edge is not present in the graph. In our small example *2 = 10 with
a p-value equal to 0.0015, an acceptance region from 0.0009 to 5.0239, and A is
1.75. We have used the library powerlaw to calculate theoretical values Ej, while
A was estimated with the function power.law.fit.

When we compute the exponent of the degree distribution of a system in or-
der to detect whether it has power-law components A, we can use the following
function:
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degree.distribution (adj, cumulative=T),

where cumulative stands for the calculation of the cumulative probability distri-
bution of the degree of nodes whose graph is described via adj.If we plot the
underlying cumulative densities versus the cumulative power-law exponent A un-
der A = 1,2,3,4 and if the cumulative density lies within the boundary of the given
A, we can decide on the validity of the small-world property.

Clustering coefficient. The clustering coefficient, typically denoted by C;, repre-
sents the inter-connectivity of anode i (i = 1,..., p) in a network and is computed
by the total number of existing links between node’s neighbours e; over the maxi-
mum number of links between the neighbours of this node. Hereby, it lies from 0
to 1 in which C; = 0 represents totally unconnected nodes, on the contrary C; = 1
shows totally connected nodes. Since the number of total connections in a system
changes with respect to the type of links, i.e. directed or undirected networks, and
the appearance of the auto-regulation motifs, i.e. self-loops, the calculation of C;
varies for different choices of networks. For instance, if the network is directed
and has no self-loops, C; can be found via

26,‘

Ci=—1"
kil —1)

, i=1,...,p,

where k; denotes the degree, i.e. number of links, for the ith node and e; is the
total number of existing links between node’s neighbours. But if the network is
undirected and still has no self-loops, the denominator of C; is changed by k;(k; +
1). We list the expression of C; for all the types of networks:

i

o directed self-loops C; = 2

€i

e directed no self-loops C; = 1)’

2e;

e undirected self-loops C; = k1)

e undirected no self-loops C; = k(,%%l)

In other words, clustering coefficient of a node is the ratio of number of connections
in the neighbourhood of a node and the number of connections if the neighbour-
hood was fully connected. Here neighbourhood of node i means the nodes that are
connected to i but does not include i itself. Note that a fully connected group of k;
nodes has k; * (k; — 1) /2 connections.

As the clustering coefficients can be computed for individual nodes, we can
also get a unique value for whole system by averaging these coefficients. This new
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statistics is called the average clustering coefficient and denoted by i, and it is

calculated as follows: ,
1

He = —ZCi-

Pi3

Implementation. For the calculation of the clustering coefficient we use clusters
function in the PCIT package

clusteringCoefficient (adj),

where adj is an adjacent matrix. Finally in order to compute the average clustering
coefficient lc, we can take the mean of C;.

In Figure [2.1) we showed a directed and an undirected graph. We can compute
e={0,0,0,0,0,0,0} and k = {0,2,3,2,0,2,2}.

We give another example to clarify better this concept where nodes are repre-
sented by topics. In Figure [2.2]neighbourhood of topic 6 consists of topics 9, 12, 2

Figure 2.2. Example of clustering connected topics.

and 1. Between these topics there is only one connection, from topic 2 to topic 12.
If the four topics were fully connected, that is there would be a connection from
each topic to every other topic, there would be 4 %3 /2 = 6 connections. Clustering
coefficient of topic 6 is therefore 1/6 = 0.17. Clustering coefficient of topic 1 is 0
because there is no connections at all between topics 0, 6, 11 and 19. Clustering
coefficient of topic 3 is 1 because the neighbourhood consisting of topics 12, 4 and
13 is fully connected.



2.5 Descriptive measures of networks 27

Characteristic path length and diameter. The characteristic path length or short-
est path length, denoted by L, presents the shortest distance between any two
nodes. In a graphical representation, this measure refers to the minimum number
of links or edges to go from one node to other and is computed by

_ 22?:1 Z?:l dij
p(p—1)

I

where d;; stands for the shortest path length between the ith and the jth node. In
directed networks since the path length between node i and j, i.e. d;;, may not be
equal to the path length between node j and i, i.e. d;, the smallest distance between
these nodes in L is found by min{d;;,d;;}. Whereas for undirected network, we
can accept d;; = dj; as the destination is not our interest. On the other hand if we
deal with the longest, rather than the shortest, path length, this measure is called
as the diameter, D, and can be formulated by D = max{d; j}. In a system, small
L implies dense connections between nodes generating the hubs. If L is close
to Uc, the connections become sparse and the nodes have almost equal number
of links. Accordingly in a biological sense, for both L and D, the small values
present the fast actions and the big ones refer to slower actions within intermediate
stages of the system. In other words, we can analyze L and D for the interpretation
of the speed of communication between nodes as well. If the system has very
small L and D while the clustering coefficients are large and the power exponent
of the out-degree distribution A satisfies A > 3, we name that the system maintains
the small-world property. But the biological network typically displays shorter L
than this, resulting in A between 2 and 3. We call this feature as the ultra small-
world property. Both small-world and ultra small-world properties also stand for
the modular structure in a system which is another common feature of biological
networks. The investigation of L and D values are computed by the breadth-search
method (Barabasi and Oltvai, 2004). Let’s consider the small undirected graph
given in Figure|2.1| Table 2.2 shows the matrix of the shortest path length L. among
the seven nodes present in Figure 2.1} Note that if no path is present between two
nodes i and j then /;; = Inf which means one cannot reach j from i and vice versa.
The average path length yy is 1.4.

Mathematical Details. In the calculation of the diameter via the breadth-search
algorithm, we initially consider each node separately such that for each transcrip-
tion factor, node or gene, all of its neighbours are labelled by 1 as the distance mea-
sure. Then the nodes which have connections with these neighbours are labelled
as having a distance of 2. This procedure iteratively continues until all nodes are
encountered. In the computation if the same node is needed to be counted several
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1 2 3 4 5 6 7
1 0O Inf Inf Inf Inf Inf Inf
2 Inf O 1 2 Inf 2 1
3 Inf 1 0 1 Inf 1 2
4 Inf 2 1 0 Inf 2 1
5
6
7

Inf Inf Inf Inf 0 Inf Inf
Inf 2 1 2 Inf 0 1
Inf 1 2 1 Inf 1 0

Table 2.2. Short path length for undirected graph in Figure

times, the first distance is taken for that node. On the other hand if we are inter-
ested in the shortest path length, we need to consider all possible paths between
any two nodes. In the detection, we perform the algorithm in two stages in the
sense that first of all we apply the same algorithm for the source node as described
above and then we conduct another breadth-search algorithm for the target genes.
By this way, a path is constructed among nodes from the transcription factor to its
target genes. Then the nodes, which are the neighbours of the transcription factor,
are taken in the same layer, whereas the nodes that are the neighbours of these
nodes are placed in a further layer. This process is repeated iteratively till all nodes
are covered. Finally to compute the shortest path length, each node is scored with
its shortest distance from the transcription factor to the target gene and other way
around. We choose the minimum one as the shortest path length.

Implementation. In a network, the calculation of the characteristic path length
for each node can be calculated via shortest.paths function within the igraph
package by the following inputs:

shortest.paths(setl, mode= "all")

where set1 denotes the graphical representation of the system as previously per-
formed and mode presents the option whether the path length is investigated from a
particular node or it is calculated to a particular species, or alternatively it is found
without directional information. With respect to the question of interest, hereby,
the mode can be equated as mode="in", "out",or "all",respectively. But if the
graph is undirected, the function merely computes the option mode="out "as the
default. On the other side for the calculation of average shortest path length y; and
diameter D, we can call

average.path.length(setl)
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diameter (setl, directed=T)

in order. In the calculation of diameter, if the graph is undirected, the function
considers the option of directed=F as the default.

Existence of hubs and network robustness. In biological networks, the number
of connections for the nodes indicates a heterogeneous structure in the sense that
the majority of the genes has very few links with other nodes and only a small group
of genes possesses many links with others. We call these highly connected nodes
as the hubs or global regulators. The small value of the shortest path length L can
display the validity of this feature in the system. In fact the presence of hubs also
enables us to observe the network robustness which represents the invariance of
the network from the removal of random nodes. Because the connections between
the major functional groups, i.e. modules, in the system are kept by hubs and
unless we do not exclude them, the system behaves resistantly to such attacks. On
the other hand if we kick off them, then the system is splitted into isolated node
clusters which causes lethal disability in certain functions. Hereby in a network,
the presence of hubs, controlling the actual connectivity of the pathway, can be also
remarked as the centrality principle and their abilities to direct the overall system
are presented by the lethality principle. To detect the robustness in a network,
we can use different approaches. For instance we can compute the characteristic
path length since it indicates the connectivity in a system. If the system keeps
the same path length after the removal of random nodes, we can conclude as the
evidence of the robustness. Moreover we can also implement the entropy measure
to observe the change in the system after the random attacks. More details about
these measures are given in the following Mathematical Details.

In biological networks, since the hubs have crucial roles, they are investigated
extensively. From empirical studies it has been found that we can define them into
two types with respect to their connected nodes, also called partners, expression
profiles. These are the date and party hubs. The former is generally sensitive
to the time and sub-cellular localization, i.e. spatial distribution, of its partners.
Moreover it can work inside of the modules and its removals affect whole network.
On the contrary the latter is typically observed as insensitive to the time and can
interact with many nodes simultaneously. Furthermore it is seen that these hubs
are active outside of the modules and regulate the interactions between different
clusters. Hereby their exclusions from the system do not lead to any lethal effect
which causes to collapse whole major functions of the system. On the other hand,
the presence of these two types is still the discussion topic since the recent stud-
ies in yeast protein-protein interaction network report that there is no very clear
difference between party and date hubs, rather, they behave more homogeneously
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than we may consider. In order to classify hubs as date or party, Han et al. (2004)
suggest to use the average Pearson correlation coefficient (PCC). In this division
we calculate PCC for each hubs having five or more connections. Since the signif-
icance of PCC can change regarding the selected cut-off value such 0.8 or greater
than this, the plots of PCC can alter based on the cut-off point. If there is no bio-
logical knowledge about this critical point in the average PCC, we can choose 0.5
as the natural choice to distinguish the groups. Once they are classified, we can
analyze the common behaviours of these groups under distinct conditions, such as
toward the change in time or their abilities of simultaneous actions. In these calcu-
lations, Han et al. (2004) suggest the entropy measure to capture the group differ-
ences. On the other side, Agarwal et al. (2010) categorize hubs into two groups,
namely, the permanent and transient, with respect to their effects under different
conditions. The permanent hubs connect the essential transcription factors or nodes
to each other so that the action between vital nodes can be maintained. Therefore
they can be composed of multiple functional transcription factors and are invariant
to cellular states or phases. Whereas the transient hubs constitute the majority of
the network and are highly sensitive to one condition and less sensitive to others.
Due to their specificities of cellular phases, they can be important, in particular,
for producing drug targets. For the detection of two groups, |Agarwal et al. (2010)
perform the trace-back algorithm which is used for the identification of the motifs
in a system.

Mathematical Details. The investigation of the network robustness in biological
systems can be implemented by the entropy via measuring the rate of information
flow within the system, as suggested by [Demetrius and Manke (2005). Actually
the entropy is a well-known measure, especially, in physics which shows the mea-
surements of the available energy in a system. In statistical thermodynamics, it
represents the amounts of the uncertainty within the relation of unobservable par-
ticles in a network while the observable properties or system parameters such as
the pressure, temperature or volume change. Hereby when the entropy increases,
the uncertainty of the system raises too. Demetrius and Manke (2005) defines the
following entropies in order to measure the functional and structural variability in
the system after the removal of random nodes.

e [ocalization entropy of nodes: This entropy Ej,. can be found as
s
Ejpe = — ZL,'IOg(Lj)
i=1

where L; = T;/Y.;* | T; and displays the fraction of the specific ith localiza-
tion, apart from very large scale localization such as the cytoplasm or cell
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membrane. On the other hand T; represents the frequency of the ith subcel-
lular localization within all connected nodes, i.e. partners, of a hubs and n;
denotes the total number of different sub-cellular localizations for all con-
nected nodes of this hubs.

e Function entropy and diversity of the module: The entropy Ef,,. can be used
to measure the functional diversity of the modules after removing the random
nodes and is calculated by

1
Efunc = Z Fllog(Fl)
i=1

in which F; = T;/ Z;’;l T; and gives the fraction of the specific ith function
category, except from very large scale categories such as the mitochondrial
and nucleus. 7; stands for the frequency of the ith function category within
all connected nodes of the selected hubs and ng; shows the total number of
different function category in the module. Accordingly in order to find the
diversity of this sub-network, we can take the ratio of the unique function
category over the total number of function categories in that module.

Once Ej,. and Ey,y,. are obtained as the estimates of the actual module parameters,
their statistical significances are tested by comparing the results of random mod-
ules with the same size and the same amount of random nodes removals from the
system.

Flux of the reaction. In biological networks, to understand the true description
of the system, the knowledge of the strength of interactions under different bio-
logical and environmental conditions becomes important. The flux of the reaction
is a measurement of the intensity or strength of the interaction in metabolic net-
works and refers to the amount of products per unit of time in a reaction. In the
system this information can help us to find essential reactions in the activation and
make prediction about them. On the other hand in genetic networks, the idea of
the strength is typically controlled by the correlations. The pair of nodes or genes
which has a high correlation coefficient can display the direct interaction between
the proteins and can be seen as an indication of the strong strength with respect to
other genes whose interactions can be indirect.

Other measures. Apart from the listed topological measurements, there are some
other features which can be chosen to evaluate the networks. But due to their com-
putational demands, they do not have common application. One of these measures
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is called the graphlet degree distribution). Similar to the degree distribution, it com-
putes the distribution of the number of nodes connecting to k clusters or graphlets,
rather than k connections, as the degree distribution. The correlation profile is an-
other measure of networks which computes the correlations between degrees of
its neighbour nodes. In the calculation, we find the number of connections be-
tween two nodes having degrees k; and k, i.e. N(kj, k), and compare it with
a random network by Nr(ki,k») £ ANr(ky,kz) generated by simulation. Here A
displays the change in the given expression. In order to investigate the statistical
significance, the method initially converts both N(k;,k») and Nr(k;,kz) into the
joint probability by dividing these values to &, total number of connections such
that P(ki,k2) = N(ki,k2)/k and Pr(k;,k2) = Nr(ki,k2)/K, respectively. Then a
z-score is calculated by the following expression:

P(ky,kp) — Pr(ky,k7)
Gr(kl 7k2) 7

Z(ky,ky) =
where o, (ki,k,) is the standard deviation of Pr(ky,k3).

2.5.2 Characteristic of different networks

Networks interpretation is usually related to the distribution of the links which
can be classified as homogeneous networks and non-homogeneous networks. The
networks, classified based on the distribution of the links, display major differences
on their topological features. These differences help us to distinguish whether the
network is random, scale-free, hierarchical, or modular. We present the topological
properties of each network type in the following part.

Random network. The random network belongs to the homogeneous type of
networks in the sense that every node in the system owns a similar number of in-
teractions K whose degree may be Poisson distributed with mean g = A. Hereby
the in-degree of the ith node is described by the distribution function below:

Akexp=

Pk = I

where A denotes the mean number of connections per node. On the other side the
clustering coefficient C;, where i = 1,..., p and p is the total number of nodes in
the system, also indicates differences in distinct networks. Accordingly the random
networks, different from most of the non-homogeneous networks, have C; which
is invariant to the degree of the node and the most of C; is approximately close to
each other. This feature means that there is no highly connected nodes, resulting
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in no hubs and no clusters in the system. Hereby the average clustering coefficient
of the system L is independent on the number of connections K. Therefore, if we
draw the plot of C; as a function of k;, we can observe a horizontal straight line on
the original scale, showing that there is no inherent modularity in the construction
of the network. Moreover, with respect to the average distance between any two
nodes, ,, we can detect a proportional relation between the mean of path length
L and the logarithm of p, i.e. 1, < log(p).

We present a basic form of the random network in Figure [2.3] for simplicity
as well the the figure of C; as a function of k; for this random network. Here the

Figure 2.3. Random graph (left) and relation between clustering coefficient and
degree for a random graph (right)

average short path is 3.18 and the log of the number of node is 3.91.

This proportional relation implies that the random networks do not show the
small-world property as the consequence of the Poisson distributed links for each
node. Moreover due to this feature, the fluxes of the metabolic reactions in these
systems can carry in a linear pathway under the steady-state concentrations of all
metabolites and do not show any exponential behaviour such as the power-law
property in the flux of the distribution for the ith reaction.

Scale-free networks. Scale-free or Barabasi-Albert networks are common net-
work types in biology. These networks remark a non-homogeneous structure in
the distribution of links, meaning that the number of connections of each node i
(i=1,...,p) can change a lot. For instance, in a very typical graph for genomic
networks, most of the genes interacts with one or two other genes whereas, only
some of them are bounded with many genes. Hereby, in scale-free networks, to
capture the underlying variety in the number of connections for every node, the de-
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gree distribution of nodes is explained by exponential functions. The exponential
function for the degree distribution of node k, which allows us to construct both
highly connected and very sparse nodes with heavy tailed densities, is written as:

Pk = coexp(Bk),

where ¢ is a normalization factor and 3 denotes the exponential exponent. In py,
B describes the number of the regulating genes which arrives at the same gene or
node. When f3 increases, it is observed that many genes direct the same target
genes, thereby cause less target genes and many regulators in the network. On the
other side one can describe the density by power-law

Pk = Cokil7

even though this density is not unique in all biological networks. Indeed, from
the detection of true distribution in certain empirical studies it is shown that the
truncated power-law better fits the biological data without loosing other character-
istics of the biological networks like centrality and lethality principles. Moreover,
other possible distributions such as the generalized Pareto law, stretched exponen-
tial, geometric, and their combined densities can be alternatives of the power-law
by maintaining the properties of the network except for the scale-freeness. These
results show us that maybe the scale-free considered data are not in fact scale-free,
but still satisfy the exponential density in the probability of the number of con-
nections per node. On the other hand still considering that the scale-free networks
have power-law distribution as the degree of each node which can be proportion-
ally formulated by k~* while A represents the degree exponent of the power-law
and k displays the number of links related to the nodes, we can find the possible
range for A in biological networks. Although A can take any number from 2 to oo
by definition, we can observe the following types of A in biological networks:

e if 2 < A < 3, the network has highly connected nodes which indicates a
shortest path length proportional to log(log(p)) where p stands for the total
number of nodes in the system. Such a short distance between two nodes
implies that the system owes the ultra-small world characteristics and most
of the known biological networks possesses this feature.

e If A = 3, the system has relatively less densely connected nodes in the sense
that the shortest path length becomes proportional to log(p)/log(log(p)).

e If A > 3, the network indicates a shortest path length proportional to log(p),
which describes moderately less connected nodes with respect to the net-
works in the previous two choices.
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Moreover, as a consequence of such dense connections, in scale-free networks, we
cannot find an average number of links per node, L, in opposite to the random
networks and this feature also implies the presence of hubs in such structures. As a
result if we plot a graph of the degree distribution p; versus the number of connec-
tions k, we can obtain a linear decreasing function on the logarithmic scale showing
that even though most of nodes has few links, very dense connections are belong-
ing to only a small amount of nodes. Figure shows a scale free networks and

density.default(x = tot1)

Density

N =50 Bandwidth = 0.3071

Figure 2.4. Example of scale free networks (left) and estimate degree distribu-
tion(right).

its degree distribution. Note that we have approximate with a continuous function
whereas k € N. The maximum likelihood estimate for A is 2.39, the shortest path
length average is 3.72, and log(log(p)) is equal to 1.36.

Hierarchical and modular networks. The hierarchical and modular networks
are the other two types of non-homogeneous networks classified based on the dis-
tribution of links. Thereby different from the scale-free systems, they display an
inherent clustering in their constructions. If the system possesses iterative con-
nections of clusters linked to each other, resulting in a tree structure, this type of
networks can generate the hierarchical networks without scale-freeness. Whereas
if the nodes are connected to each other iteratively in absence of the hierarchy as
well as scale-freeness, we can observe a modular network. In both hierarchical
and modular systems, since the modularity design is detected from their construc-
tions, their average clustering coefficients ug are linearly proportional to the total
number of connections K with the ratio of 1/K on the logarithmic scale, different
from the scale-free networks. This feature presents that sparsely connected nodes
are linked to highly clustered areas and the connections between clusters of nodes
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Figure 2.5. Hierarchical (left) and modular networks (right).

are hold by few nodes that display the presence of hubs. Hereby if we draw the
plot of C; versus k;, we observe a straight line with slope —1 on the logarithmic
scale. But similar to the scale-free systems, most of Ci’s has non-homogeneous
values. On the other hand for their other topological features, we can accept the
characteristic of the scale-free networks as long as the hierarchical architectures of
these systems are generated inherently since the high connections of the underlying
sub-networks already produce scale-free systems ultimately. Figure [2.3]is drawn
to present a hierarchical and a modular structure.

2.6 Summary

In this chapter we have introduced graphical models. In particular, Gaussian graph-
ical models, Bayesian networks and Ising models have been considered. Gaussian
graphical models can be used to model conditional independence relationships
when the direction of the link is not known. In other words Gaussian graphical
models do not consider causal implication. Instead, Bayesian networks can be
used when the direction of links is known a priori. This means that implication
relationships maybe argued from the directed graph. The Ising model has shown
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that graphical models can be extend when the set of links is non finite. How-
ever, classical graphical models are not suitable for high-dimensional setting. For
this reason penalized Gaussian graphical models have been introduced. After hav-
ing estimated a graph we may want to have summary statistics to described the
obtained results. We described some measures which can be used to summarize
graph characteristics.






Chapter 3

Factorial graphical lasso for
biologycal dynamic networks

Graphical models are a powerful tool for analysing relationships between a large
number of random variables. Their fundamental importance and universal applica-
bility are due to a number of factors. Graphs can be used to represent conditional
dependence between random variables. Besides, their structure is also modular
which means that complex graphs can be built from many single graphs or com-
ponents. This modular structure is useful to describe complex systems in a simple
way. Gaussian graphical models (GGMs) are graphical models in which it is as-
sumed that nodes of the graph are in a one-to-one correspondence with continuous
random variables which follow a multivariate normal distribution. The most im-
portant property for GGMs is that the concentration matrix, i.e. the inverse of the
covariance matrix, represents the conditional independence. The inverse covari-
ance matrix can be estimated by maximizing the likelihood function over all the
space of the precision matrices such that the result estimator is positive definite.
The maximum likelihood estimator (MLE) for the concentration matrix is the in-
verse of the sample covariance matrix, and it exits when the number of observations
is greater than the number of random variables.

The literature on estimating an inverse covariance matrix goes back to Demp-
ster (1972)), who advocated the estimation of a sparse dependence structure, i.e.,
setting some elements of the inverse covariance matrix to zero. The complexity of
the covariance matrix is reduced when elements in the inverse of this matrix are
fixed at zero. Moreover, it has been shown that most of the networks in biology are
sparse, which means that most of the elements in the precision matrix are equal to
zero. The standard approach in statistical modeling to identify zeros in the preci-
sion matrix is the backward stepwise selection method, which starts by removing
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the least significant edges from a fully connected graph, and continues removing
edges until all remaining edges are significant according to an individual partial
correlation test.

This procedure does not take into account for multiple testing i.e. many of
the links will be estimated to be different from zero when they are not and vice
versa. A conservative simultaneous testing procedure was proposed by [Drton and
Perlman (2004). However, Breiman (1996)) showed that this two-steps procedure,
in which parameter estimation and model selection are done separately, can lead to
instability. For instability Breiman (1996) means that small changes in the dataset
or small perturbations results in completely different estimated graph structures.

The idea of Tibshirani (1996), which has been extensively and successfully
applied in regression models, can be used to estimate sparse graphs, i.e. to in-
duce zeros in the estimated inverse covariance matrix. This idea is based on the /¢,
norm penalty, i.e. the sum of the absolute values of the inverse of the covariance
matrix has to be less or equal to a tuning parameter. The smaller the tuning param-
eter is, the more zero will be estimated in the precision matrix. |[Meinshausen and
Biihlmann (2006) proposed to select edges for each node in the graph by regressing
the variable on all other variables using ¢, penalized regression. This method re-
duces to solving p separate regression problems, and does not provide an estimate
of the matrix itself. Penalized maximum likelihood approaches using the ¢; penalty
have been considered by|Yuan and Lin (2007); Banerjee et al. (2008));|d” Aspremont
et al. (2006)); Friedman et al. (2008)); |Rothman et al. (2008), who have all proposed
different algorithms for computing this estimator. This approach produces a sparse
estimate of the inverse covariance matrix, which can then be used to estimate a
graph, and has been referred to as the graphical lasso (Friedman et al., 2008)), or
sparse permutation invariant covariance estimator (Rothman ez al., 2008). Theo-
retical properties of the ¢ penalized maximum likelihood estimator in the large p
scenario were derived by Rothman ef al. (2008)); Meinshausen (2008)). This method
has been extended by several research group. |[Fan and Li (2001) introduced clipped
absolute deviation penalty. On the other hand, Lam and Fan (2009) extended this
penalized maximum likelihood approach to general nonconvex penalties. The lat-
ter authors also established a so called “’sparsistency” property of the penalized
likelihood estimator, implying that it estimates true zeros correctly with probabil-
ity tending to one. Alternative penalized estimators based on the pseudolikelihood
instead of the likelihood were recently proposed by [Peng et al. (2009); the latter
paper also established consistency in terms of both estimation and model selection.

The complexity of the model can be reduced if one imposes some symmetry
constraints on the precision matrix, i.e. the number of parameters to be estimated
is reduced by intruding equality constraints. Recently, Hgjsgaard and Lauritzen
(2008)) proposed Gaussian graphical models with symmetry. An important motiva-
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tion for considering structured GGMs is that conditions for maximum likelihood
estimates to exist are less restrictive than for standard GGMs. |Lauritzen (1996)
showed that without any restriction on the concentration matrix, the existence of
the MLE for graphical Gaussian models is ensured with probability of one if the
number of observations is larger than the cardinality of the largest clique in the
graph. Hgjsgaard and Lauritzen (2008) showed that imposing restriction on the
concentration matrix ensure the existence of the MLE even if the number of ob-
servations is less than the number of variables. However, Gaussian graphical mod-
els with symmetries perform parameter estimation and model selection separately,
which brings, to instability of the estimation as shown by Breiman (1996).

Penalized graphical models and GGMs with symmetries lack specific time dy-
namic structures, which results in a lack of a consistent interpretation of the con-
centration parameters across time-points. Our idea is to combine symmetry models
and graphical lasso to reach the important result to estimate dynamic networks in
biological systems. In particular, we propose two models that specify penalized
time-dynamic structures on the precision matrix (SGLg) and on the conditional
correlation matrix (SGLg), which is the negative scaled concentration matrix. The
latter model is useful when random variables are not measured on the same scale.
We structure graphical models in a way that comes naturally to time-course data
and we use the idea of coloured graphs so that links in the same colour set represent
equality constraints on the precision matrix.

In this chapter we focus on constrained Gaussian graphical models since our
aim is to model graphs with dynamic structures for time-course genetic data. Sec-
tion [3.1] decribes two motivating examples. Section [3.2]introduces notations, pre-
liminaries and definitions. In Section SGLg and SGL(, are descibed. Section
[3.4] addresses model selection and parameter smoothing selection, which are im-
portant issues in graphical lasso. In particular, classical approaches such as AIC,
BIC are derived to do model selection, and stability selection (Meinshausen and
Biihlmann, 2010) has been adapted to factorial graphical lasso models. Section[3.3]
shows encouraging numerical results. A time-course microarry data set on human
T-cells is studied.

3.1 Motivating examples

DNA microarray are essential tools in genetic to measure the expression levels of
genes simultaneously or to genotype multiple regions of a genome. Since an array
can contain tens of thousands of probes, a microarray experiment can accomplish
many genetic tests in parallel. Therefore arrays have dramatically accelerated many
types of investigation. In standard microarrays, the probes are synthesized and then
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attached via surface engineering to a solid surface by a covalent bond to a chem-
ical matrix. The solid surface can be glass or a silicon chip, in which case they
are colloquially known as an Affy chip when an Affymetrix chip is used. Other
microarray platforms, such as [llumina, use microscopic beads, instead of the large
solid support. Alternatively, microarrays can be constructed by the direct synthesis
of oligonucleotide probes on solid surfaces. DNA arrays are different from other
types of microarray only in that they either measure DNA or use DNA as part of
its detection system. DNA microarrays can be used to measure changes in ex-
pression levels, to detect single nucleotide polymorphisms (SNPs), or to genotype
or resequence mutant genomes. A good introduction on microarray experiments
and statistical analysis for microarray is given by Wit and McClure (2004)). Statis-
tic microarray experiments are snapshots of the expression of genes in different
samples. However, gene expression is a temporal process. Different proteins are
required (and synthesized) for different functions and under different conditions.
Even under stable conditions, due to the degradation of proteins, mRNA is tran-
scribed continuously and new proteins are generated. This process is highly regu-
lated. One of the most important ways in which the cell regulates gene expression
is by using a feedback loop. Some of the proteins are transcrip- tion factors (TFs).
These proteins regulate the expression of other genes (and possibly, their own ex-
pression) by either initiating or repressing transcription. When cells are faced with
a new condition [such as starvation (Natarajan et al., 2001), infection (Nau et al.,
2002) and stress (Gasch et al., 2000)], they react by activating a new expression
program. In many cases, the expression program starts by activating a few TFs,
which in turn activate many other genes that act in response to the new condition.
Taking a snapshot of the expression profile following a new condition can reveal
some of the genes that are specifically expressed under the new condition. How-
ever, in order to determine the complete set of genes that are expressed under these
conditions, and to determine the interaction between these genes, it is necessary to
measure a time course of expression experiments. This allows us to determine not
only the stable state following a new condition, but also the pathway and networks
that were activated in order to arrive at this new state.

To summarize time-course information provides valuable insight into the dy-
namic mechanisms underlying the biological processes being observed, and dy-
namic graphs can be used to visualize this information. A time-course genetic
dataset T-cell is our first motivating example.

Example 1: Human T-cell microarray data. T-cell dataset is a large time-
course experiment to characterize the response of a human time-cell line (Jurkat) to
PMA and ionomycin treatment (Beal et al., 2005} Rangel et al., 2004). Two experi-
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ments were conducted (tcell.34) and (tcell.10). The first data set (tcell.34) contains
the temporal expression levels of 58 genes for 10 unequally spaced time points. At
each time point there are 34 separate measurements. The second data set (tcell.10)
stems from a related experiment which considers the same genes and identical time
points (0, 2, 4, 6, 8, 18, 24, 32, 48, 72 hours). For illustrative purpose, we select a
subset of 4 genes I' = {ZFN,CGN, SIV,SCY } across 2 time points 7 = {1,2} and
show the empirical concentration matrix S~! for the selected subset based on 44
observations in Table S~! can be partitioned as follows:

0 I D 0 0 D
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where © is the element-wise matrix multiplication, Irr, It are identity matrices,
and Drr is a square matrix with one off-diagonal. Four terms are showed in the
summation: The first one indicates how well the variance of (gene;;)icr, jer is
predicted given the rest; the second and the fourth ones indicate self conditional
independence at temporal lag 0 and 1, respectively; the third one indicates networks
at lag interaction 1. In Section we partion the concentration according to the
natural partitions.

Time 1 2
Gene ZNF CCN SIV SCY | ZNF CCN SIV SCY
ZNF 138 -0.05 -050 0.25]-020 -0.12 -0.01 -0.11
J CCN - 1.58 0.02 -039|-0.12 -0.93 -0.02 0.07
S1vV - - 1.61 -0.13]-0.17 0.12 -0.78 -0.02
SCY - - - 129 ] 005 025 049 -0.09
ZNF - - - -| 1.10 -0.18 0.04 0.08
5 CCN - - - - - 1.78 0.06 042
SIvV - - - - - - 1.58 0.09
SCY - - - - - - - 1.16

Table 3.1. Maximum likelihood estimator of the precision matrix or empirical
concentration matrix S~ based on 44 replicates for 4 genes measured across 2
time points. The number of genes measured in the T-cell experiment was 58 across
10 time points but we randomly selected four genes to give an illustration of the
estimated precision matrix.

Note that (Beal et al., 2005; Rangel et al., 2004)) estimated a directed graph
with latent structures which result in a summary of the 9 dynamic directed possible
graphs. To compare our graph with the graph proposed by these authors we will
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use a specific factorial graphical lasso. However, SGLg is much more general since
the 9 graphs could be estimated.

Example 2: Educational study. A different field in which factorial graphical
models can be applied to estimate dynamic graphs is in social science. Here we
give an example of application for the Edu dataset. Edu dataset is a longitudinal
dataset in which a set of scores to analyse teacher-student relationship were col-
lected accros differnt time points 0, 1,4,7,10 months. The study were conducted
in the Netherlands and the students were follow up from their first year of the
secondary school (Opdenakker and Maulana, 2012; (Opdenakker et al., 2011). In
particular, 20 classes of students and 24 educational scores were considered. For
illustrative purpose, we consider a subset of four scores by naming the variables:
Controlled (Contr), Autonomies (Auton), Influence (Infl) and Proximity (Prox).
The first two scores concern student behaviours, taking values between -3 and 3.
The last two scores measure teacher behaviours and take values between 0 and
5. The scale for these variables is not compatible and conditional correlations are
therefore more meaningful than the concentrations. In section we show that
conditional correlations are invariant under changes of scale for individual vari-
ables.

Time 1 2
Subject Contr Auton Infl Prox | Contr Auton Infl  Prox
Contr 179 031 -0.07 -0.00| 0.61 -023 0.18 -0.06
] Auton  -0.57 1.86 0.03 022\ -019 057 -0.07 -0.03
Infl 011 -005 125 -0.04| 000 -0.01 041 0.09
Prox 0.01 -037 005 155| 004 -003 -0.12 0.51
Contr2 -1.09 035 -0.00 -0.07 1.76  0.31 -0.08 -0.01
5 Auton 043 -1.09 0.02 0.05 | -0.58 1.96 0.13 021
Infl -028 0.11 -053 0.18 | 0.12 -021 137 0.21
Prox 010 0.06 -0.13 -0.82| 0.02 -039 -032 1.68

Table 3.2. Empirical conditional correlations (upper triangular and diagonal) and
conditional covariance (lower triangular) based on 20 replicates for 4 score mea-
sures measured across 2 time points. The number of educational measures in the
experiment was 24 across 4 time points but we randomly selected four measures
to give an illustration of the estimated precision matrix and the estimated scaled
precision matrix.

The empirical conditional correlations based on 20 classes of students for 4
scores measured across 2 time points are shown in the upper triangular block (italic
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numbers) of the matrix in Table[3.2] while the conditional covariances are shown in
the lower triangular block.

3.2 Preliminaries and notation

In this section, we introduce definitions and notations of dynamic graphs, natural
partitions, coloured graphs and Gaussian graphical models for longitudinal or time-
course datasets.

Let G = (V,E) be a graph where V = (v;;) jerscr is a finite set of vertices and
E CV xV is a subset of ordered pairs of distinct vertices. Here, I' = {1,...,nr}
is a set of nodes which we call natural vertices and 7 = {1,...,n7} is an ordered
set, typically describing time points. Note that the set I" is unlabelled, but here
described as an ordered set for convenience of notation.

Definition 3.2.1 (Dynamic graphs). A dynamic graph is a pair G = (V,E), where
V= {Vif}ier jer is a finite set of vertices and E C'V XV is a set of ordered couples
of elements. 1" and T are finite sets.

The main characteristic of dynamic graphs is that the same vertices are mea-
sured accross different time points. In the T-cell example the same 56 genes
were measured accross 10 time points and between time point ¢ and ¢ + 1 the ex-
perimental conditions were changed. For a dynamic graph we draw a directed
link if {(vij,vu)} € E and j <[, i.e. vij = vy. A undirected link is drawn if
{(V,'j,vk[), (vkl,vij)} €E,ie. Vij <7 Vil-

Definition 3.2.2 (Coloured Graph). A coloured graph G = (V,E,F) is a triplet,
where G = (V,E) is a graph and F is a mapping on the links, i.e.

F.:E—C,
where C is a finite set of colours.

In other words, coloured graphs induce partitions on the graph by F, that is
different subsets of E are visualized with different coloures. Since we are interested
in analysing specific subpartitions of the vertex set E. We denote the partitions
induced by coloured graphs F by E < F, i.e.:

E<F=U.cF 'NE,

where E < F indicates that the partition is induced on E, and E stands for the
complete set of links. The mapping can be apllied to subsets of E. In particular
we consider specific subsets called natural partitions S; and N;. Each partition
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represents relationships between natural vertices at some time point ¢ € 7. Let
{Si}iry ! and {N}TS ! be subsets of vertices and links where S;,N; are natural
partitions such that:

S,‘ e {{(le7vj7t+i)7(Vj7l+i7vjt)}|j S F,l = 1,...,I’lT —i},

and
Ni = {{(Vjtavk,l+i)7(Vk,t-i-iavjt)}‘vj 7& ke th = 1,...,I’lT _l}

Each of these partitions is interpreted as follows: S; considers the lag i interactions
between the same natural vertices, and N; is a graph at time lag i. We induce
further partitions on S; and NV; by using the idea of coloured graphs in order to give
more consistent interpretations of dynamic graphs. In particular we consider the
following mappings: E < Fj indicates that all edges in the partition are coloured
with the same colour; E < Fr indicates that all edges in the partition are coloured
with colours which are the same within natural vertices; E < Fr indicates that all
edges in the partition are coloured with the same colour within time points and
different colours across natural vertices; E < Frr indicates that all edges in the
partition are coloured differently across time points and natural vertices. This can
be summarize with the following functions:

F:E —>C,Vvl-,vj EE,FI(W) :Fl(Vj),

Fr:E— Cavvit,jSaVku,lv € EyFT(Vit,js) = FT(Vku,lv)7 iff =u and s=v,
Fr E — C,Yit js,Viuiv € E, Fr(Vir js) = Fr (Vi v),if i=k and j=1,
Frr : E — C,no restriction.

where we can substitute at £ a specific natural partition S; or N; fori=1,..., 7 — 1.
Let’s consider coloured graphs for S; < F; and N; < F, where i, j = Fy, Fr, Iy, Frr
such that further partitions are induced as follows:

Si= {S;n};i:u
and
Ni = {N"}ni_,.

For example, S; < Fr induces the following partition of S;:
Si={Slu...usI "},

where St = {{(vje,vji+i), (Vjr+i,vjie) }j €T, t =1,...,ny —i}. Edges belonging to
St are coloured with the ny —i colours C = {Cy,...,C,,_;}, respectively. We abuse
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Factor So No S1 N A\Y) N>
Fi 1 1 1 1 1 1
FT nr nr I’lT—l I’lT—l nT—2 nT—2
Fr nr %nr(nr —1) nr nr(nr—1) nr nr(nr—1)
Frr nrar %nr(l’l[‘ —Unr nr(nr—1) np(nr—1) nr(nr—2) nr(npr—1)
X(I’lT—l) x(nT—Z)

Table 3.3. Number of colours for any combination of S;,N; and graph colouring.
Si, N; represent natural partitions of E, where E is a set of links. The natural parti-
tions are sub partitions of the set E.

notation and let N; < 0 and S; < 0 in order to express that N; =@ and S; = 0, i.e.
the graph G does not contain such edges.
In Table we show the number of colours for any combination of S;, N; and
graph colouring. The total number of colours ¢ can be calculate from Table[3.3]
Figure shows an example of “coloured graph” where vertices (v;j)ier, jer
are all of the same colour and edges with the same line styles are of the same
colours. The graph resembles the following model:

[S()<F1,N()<FT,51 —<F1,N1 —<0], (31)

where, firstly the following natural partitions (sub-partitions) are created:

So = {vir,viz,...,vpr},
S = {i,vi2), (va1,v22), (v31,v32), (va1,v42) },
Ny = {(V117V21)7(V21;V41)7(V417V31)7(V31;V11)7(V117V41)7(V21av31)7

= (V12,V22),(V227V42),(V42,V32)7(V32,V12),(V12,V42)7(V22,V32)}-

Note that if a couple (v;j,vi) is present then the couple (v;j,vy) is present too.
We have omitted the symmetric couples from the sets to simplify the notation.
Secondly, So < F; induces the following sub-set:

S(l) = {v“,vlz,...,vl,r},

so that a colour is created. Then, Ny < Fr brings the following two sub-partitions:

Ny = {(v11,v21), (var,va1)s (var,va1), (Va,vin)s (vin, var), (v, van) b,
N, = {(viz,v22), (v22,va2), (va2,v32), (V32,v12), (Vi2,va2), (v22,v32) },
so that two colours are created.

Let Y = (Y,;)v;ev € R be a set of random variables. Each vertices V =
(vij)ier jer is related to a random variable Y, .
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Figure 3.1. Example of coloured graph with four natural vertices and two time
points. The natural partitions Ny, S; and N are represented. Ny is represented by
discontinuous and continuous links. S; is represented by points which connect the
same natural vertices. Nj is assumed to be empty set so no link is represented for
the networks at lag 1. Moreover, Ny < Fr is used to partition the natural parti-
tion Ny such that these two natural partitions are represented by two colours. The
two colours are represented in the graph by continuous and discontinuous lines,
respectively. S; < Fr produce one colour which is represented by dot line in the
graph.

Definition 3.2.3 (Dynamic graphical models). A graphical model M = (G,P) is a
couple G and P, where G is a dynamic graph and P is a probability distribution
on'Y satisfying some Markovian properties, i.e. set of conditional independence
relations encoded by the (un)directed edges E.

In order to connet the idea of coloured graphs and graphical models we give
the following definition:

Definition 3.2.4 (Factorial dynamic graphical models). A factorial graphical model
M = (G,P,F) is a triplet (G,P,F), where G is a dynamic graph, P is a prob-
ability distribution and F is a mapping on the natural partitions S; and N;, for
i=1,...,T —1and T is the total number of time points.

Assume that Y ~ N(u,X) follows a multivariate normal distribution then we
have a factorial Gaussian graphical models where pairwise conditional indepen-



3.3 Sparse Gaussian graphical models for coloured graphs 49

dences are equivalent to zeros in the concentration matrix @ = X!, i.e:

Yy, LYy, |YV\{Vij7VkI} = 6{iJ'Jd’} =0.

— %k are the negative of
v/ 6ij.ij O ki
conditional correlation coefficients, where i,k € I"and j,l € T for i # j and k # .

For future use, we denote Q = ((Uij,kl\v\{ij,kl}) be a matrix of scaled elements of ®.

For example, the factorial Graphical model with graph represented in Figure
Y = (Y11,Y12,...,Ya) vector of random variables which correspond to vertices
{vi1,v12,...,va2} and relations [Sy < Fi,No < Fr,S; < F;,N; < 0] given in (3.1)
imply the following precision matrix:

The scaled off diagonal elements @;; x v\ {ijxy = —

6 66 6,63 0 O
6, 60 6|0 6; O
6 6, 6|0 0 6
6 0 0|6, 64 64
0 63 0|64 6, 64
0 0 63|64 64 6

3.3 Sparse Gaussian graphical models for coloured graphs

We have described the idea of coloured graphs which allows us to create sub-
partitions of natural partitions. Moreover, equality constraints on conditional cor-
relations can be imposed such that edges with the same colours imply these equality
restrictions. Here, we define a set of design matrices X which is useful to directly
connect elements of a coloured graph with concentration or conditional correlation
matrix parameters.

Let’s consider a coloured graph which defines partitions on E, i.e. {S/"} and,
{N}, then two sets of design matrices X5 = {X5" Fitohmey and XN = {(xN }galr:’:l

where X5 X" € RI'T and X5 can be uniquely identified such that:

S 1 if (vjr,ves) € ST
Jh8s 0 otherwise

and,

M L if (v, ves) € NP
jtgs 71 0 otherwise

We re-define the set of design matrices has:
X ={X% X"} = {Xy,....X,,. },

where X5 = UXS", XV = UXM", and n. is the total number of colours.
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3.3.1 Modelling the concentration matrix with graph colouring.

The design matrix X can be used to induce the following parametrization on @, i.e.

where @ = (6,,)"_, is a vector of unknown parameters. Because X,, are induced
by the graph the specific elements of the concentration matrix which correspond to
edges with the same colours are constraint to be equal. Note that the restrictions so

defined are linear in the concentration matrix.

Example 1: Human T-cell. Consider the following factorial graphical model
for human T-cell microarray data (see Section [3.1|for a description):

[S() —<F1,N0 -<F1,S] -<F1,N1 -<0],

then the design matrices X = {X5 X"} = {X|,X,,X3} are:

Sl_ Sl_ OI Nl_ DO Nl_ 00
XO_I’XI_(I 0>’X0_< o)X “loo

where D is a square matrix with 1 off-diagonal and O on the diagonal. Note that
XM is an empty matrix since S} is an empty set which implies O colours. Table
3.4] shows the estimated concentration matrix based on 44 replicates for 4 genes
measure across 2 time points. The model induces n¢c = 3 colours. For the estima-
tion procedure see Hgjsgaard and Lauritzen (2008)). For a faster and more general
estimation procedure see the algorithm in subsection[3.3.3]

3.3.2 Modelling the conditional correlation matrix with graph colour-
ing.

It is generally important that all variables are on comparable scales if a struc-
tured model on the concentration matrix is considered so that conclusions are in-
terpretable. In contrast, model based on the conditional correlation matrix have
proprieties of invariance under rescaling as showed in Lemma[3.3.1

Lemma 3.3.1. (Invariance) The inverse variance matrix © is not invariant under
rescaling Y by D. Let D be a diagonal matrix with diagonal entries the scaled
precision matrix  is invariant.
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Time 1 2
Gene ZNF CCN SIV SCY | ZNF CCN SIV SCY
ZNF 1.11 0.01 0.01 0.01 | -0.42 0 0 0
CCN 001 1.11 0.01 0.01 0 -042 0 0
SV 0.01 001 1.11 0.01 0 0 -042 0
scy 0.01 0.01 0.01 1.11 0 0 0 -042

ZNF -042 0 0 0 1.11 0.01 0.01 0.01
CCN 0 -042 0 0] 001 1.11 0.01 0.01
S1v 0 0 -042 0| 001 001 111 001
SCY 0 0 0 -042| 0.01 001 0.01 1.11

Table 3.4. Estimated conditional covariance based on 44 replicates for 4 genes
measured across 2 time points. The number of parameter estimated is 3, that is the
number of colour in the graph is 3. Note that the following model Sy < F1,Np <
F1,S81 < Fy with the rest S;, N; < 0 has been imposed.

Proof. The inverse variance matrix @ of Y* = DY is given by
@ =DzD) '=D's'D!'=D'@D !,
SO
© =var(Y) ! #£var(Y*) ! = @*,

so O is not invariant under rescaling of Y. Now, we will proof that Q is invariant
under rescaling, i.e Q = Q*, where

* *

_1 sl _1 't _1 _1
Q*:zo 2@*20 2 :20 2D71®D7120 22022029202 :Q,
and £ = LoD, O

A factorial graphical model with structured conditional correlation matrix is
obtained by restricting elements of Q such that:

e all diagonal elements of Q (inverse partial variances) must be identical, and

e all partial correlations corresponding to edges in the same colour class must
be identical.

Let ® = £)QX, be the concentration matrix, where g =Y, X5 6™, and

nr—1 s nr—1  ne

e=1+) Y x¥,+ Y Y} xVg.

i=1 m=1 i=0 I=m+1
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Time 1 2
Subject Contr Auton Infl. Prox | Contr Auton Infl Prox
Contr 132 013 021 -0.14| 034 0 0 0
] Auton  -0.15 1.08 -0.07 -0.07 0 034 0 0
Infl -026 0.08 1.18 -0.07 0 0 034 0
Prox 0.17 0.08 0.08 1.13 0 0 0 034
Contr  -0.43 0 0 0 1.22 013 021 -0.14
5 Auton 0 -0.37 0 0] -0.15 1.12  -0.07 -0.07
Infl 0 0 -0.40 0] -025 0.08 1.18 -0.07
Prox 0 0 0 -038| 0.16 0.08 0.08 1.14

Table 3.5. Estimated conditional correlations (upper triangular) and conditional
covariance (lower triangular and diagonal). The number of parameter estimated
is 8 for the diagonal elements (natural partions Sp), 6 for the natural partition Ny
and 4 for the natural partition S;. The total number of estimated parameter is 16,
that is the number of colours in the graph is 16. Note that the following model
So < Frr,Ng < Fr,S1 < F| with the rest S;, N; < 0 has been imposed.

A structured graphical model for the conditional correlation matrix is obtained by
partitioning Q, i.e.:

Elements of the conditional correlation matrix Q are related to elements of the nat-
ural partitions S;, V;. Note that edges with the same colours correspond to specific
elements of the conditional correlation matrix which are constrained to be equal.
Restrictions are non linear in the conditional correlation matrix and an iterative al-
gorithm is considered in subsection [3.3.3]to estimate ® such that specific elements
in the conditional correlation matrix € are constrained to be equal.

Example 2: Educational study. Consider the following factorial graphical
model for educational study dataset (see Section [3.1]for the description):

[So < Frr,Nyg < Fr, 81 < F1,N; < O].

Table [3.4] shows the estimated conditional concentration elements (upper triangu-
lar) and conditional covariance elements (lower triangular and diagonal). Note
that conditional correlation elements are constraint to be equal while concentration
elements are different.
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fi-norm. We have reached some important results by considering constraints on
the concentration (or conditional correlation) matrix. The number of parameters to
be estimated can be considerable reduced. Each sub-network can be interpreted as
its corresponding natural partition. However, dynamic genetic graphs are usually
sparse which means that few vertices will be connected. We have given the con-
cepts of sparse and dense graphs in Section [2.3] when the number of nodes tends
to infinity. A measure of the density of a graph in the finite case can be defined as
follow. For undirected graphs, density is:

p— 2|IT]
ICT|(TT] 1)

The maximum number of edges is |T'T|(|TT|— 1), so the maximal density is 1
(for complete graphs) and the minimal density is 0.

We could think to estimate a complete graph and to produce multiple hypoth-
esis testing on the edges of the graph. However, model selection and parameter
estimation would be done separately in this case and it would bring at instability
of the model Breiman (1996)). Alternatively, we consider ¢;-norm penalty on the
concentration (or conditional correlation) matrix to induce sparsity. The choice of
a £1-norm can be considered the unique one since other £,-norm, where p is typ-
ically in the range [0,2], are not suitable in high-dimensional data analysis. The
estimates being exactly zero for p < 1 only, while the optimization problem is con-
vex for p > 1. Hence ¢-norm occupies a unique position, as k = 1 is the only value
of k for which variable selection takes place while the optimization problem is still
convex and hence feasible for high-dimensional problems Banerjee et al. (2008).

3.3.3 Penalized likelihood for coloured graphs

Consider a coloured graph that specifies a partition of @, then a set of design ma-
trices X is used to produce linear operators which are necessary to impose linear
restrictions on ®. Every design matrix X", m = 1,...,n. consists of zeroes and
ones and induce p — 1 linear constraints on ® when the number of 1 in X is p.
We define a linear map A = (Ay,...,A, ) where each X (™) induces a set of matri-
ces Aj,...,A,, and an element in A = 1,...,n, assumes value —1, O or 1 as
described below:

1 if ¥, ¥, XY, before jt,gs=p— 1
(0 i

jugs =4 —1 if ;XX before jt,gs = p
0 otherwise,

a

where ‘before’ is meant with respect to the total row-major ordering of the matri-
ces. Now let n, be the total number of linear constraints, then A = {Ay,..., A, }
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and the linear map is expressed as A : Rg{,m — R with:
A(@) =[(A1,0),...,(A,,,0)]

where (,) is the Frobenius inner product.

When we derive the objective function we want to take into account the sparsity
assumption, i.e. the sum of the absolute values of the precision matrix should be
less than p. The ¢;-norm constraint ||@®|| < p can be written as a set of linear
equality constraints by introducing slack variables x™,x~ € R, i.e.

(©) := argmin{—[(®)+Ax" +Ax"} (3.2)
o

subject to B(@®)—x"+x =0
®>0,x",x >0.

where B;, for i = 1,...k, are symmetric matrices with just element b, ; = b, , = 1
and the rest equal to zero, and k = |[I'T|(|[I'T|+1)/2 or k = |I'T|(|TT|—1)/2 if
diagonal elements are penalized or not, respectively.

Now we want to include the set of linear constraints A(®) which are derived
by imposing a specific coloured graph. To achieve sparse graph structures with a
structured a priori graph one can minimize a convex log-likelihood function, i.e.:

(©) := argmin{—I/(®)+Ax" +Ax"} (3.3)
(C]

subject to A®)=0
B(O®)—x"+x =0
®>0,x",x >0.

We have re-written the convex optimization problem in the standard form. This is
a quadratic semi-definite log-determinant programming problem which allows to
impose factorial graphical models.

The non linearity of the objective function and the positive definiteness of the
constraint make the optimization problem not trivial. We use an algorithm
called LogDetPPA to find a solution of (3.3). LogDetPPA employs the essential
ideas of the proximal point algorithm (PPA), the Newton method and the precon-
ditioned conjugate gradient solver (Wang et al., 2009).

Note that LogDetPPA algorithm was developed into Matlab and it gives the
opportunity to solve convex optimization problems with linear constraints which
need to be implemented. We implemented linear constraints for factorial graphical
models as described in Section Moreover, it is possible to use function of
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Matlab within R. In fact, the package R.Matlab allows to connect Matlab and R. R
is more suitable for statistical analysis and it is an open source software so source
codes of packages are available. We took advantage from R.Matlab to create a
virtual connection between R and Matlab so that we are able to solve the constraint
optimization problem within R.

LogdetPPA optimization of SGL concentration model. For SGLg problems,
we can apply the algorithm logdetPPA after having create the linear operators A
and B. Then, ® is the matrix that minimizes the penalized log-likelihood
among the space of all symmetric I'T x I'T matrices for whom the non linear re-
striction on @ holds. For example we used SGLg to estimate the matrix represented
in Table

LogdetPPA optimization of SGL conditional correlation model. This algo-
rithm allows to introduce linear constraint but in case we are modelling conditional
correlations the constraints are not linear. However, we overcome this problem by
using an iterative algorithm which make use of logdetPPA after having found an
initial guess for diag(®). The pseudo-code is described in Algorithm Usually,

Algorithm 3.1: Calculate sparse ® with structured on Q

Require: Coloured graph S; < *,N; < * and set an initial vector X.
1. Find the linear maps Aq,...,A,,.
2. k=0,...,.
3. Estimate @),

4. Set £y = diag(@™X).

5. Replay E(()k) with ZE)H]) and estimate (:)(kﬂ).

6. 1£/6“" 0", < e stop
elsek=k+1,goto3

end.

the convergence is reached after few iterations (4-10). By taking a starting point X
the optimization problem (3.3)) is a convex optimization problem, i.e., the objective
function is convex on @, and the feasible region is convex.
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3.4 Model selection and stability selection

We have seen that estimation of @ considering different coloured graphs given a
smoothing parameter A is possible inside a convex optimization framework. We
have also proposed several factorial graphical models. In this subsection we ad-
dress same issues on how to choose the *best’ coloured graph, and what should be
a good compromise between a sparse and a dense graph. In particular, according
to/Meinshausen and Biithlmann (2010) we want to find a smoothing parameter such
that the expected number of false positive links is taken under control. This aim
can be reached through stability selection. Stability selection is similar to boot-
strap idea which consists of a re-sampling procedure. For example we used SGLg
to estimate the matrix represented in Table

3.4.1 Model selection.

Let’s assume that the smoothing parameter is fixed (point-wise control) A = 4,
and two coloured graphs need to be compared:

[S() < Frr,Ng < Fr,S1 < F1,N; < O],

and
[So < Frr,Nyg < Fr, 81 < Fr,N; < 0].

An information criterion such as AIC, BIC and AICc can be used to compare dif-
ferent factorial graphical models. AIC typically will select more and more com-
plex models as the sample size increases, because the maximum log-likelihood
increases linearly with n while the penalty term for complexity is proportional to
the number of degrees of freedom. Note that for factorial graphical models the
number of degrees of freedom is approximated by the number of ’free” parameters
different from zero, i.e. the estimated elements different from zero which do not
belong to the same partition. AICc penalizes complexity more strongly than AIC,
with less chance of over-fitting the model. BIC is constructed in a manner quite
similar to AIC with stronger penalty for complexity (Claeskens and Hjort, 2008)).

3.4.2 Stability selection.

Usually, the choice of smoothing parameter A is crucial as it leads to the structure
of the network. In particular, if A = 0 and there are no constraints, the maximum
likelihood estimator is ® = S~! Lif A — oo, Ois diagonal which means all random
variables are independent. Generalized cross validation can be used to select the
tuning parameter A = A, but|Leng ef al. (2006) showed that given A, the estima-
tor of @ is not consistent in terms of variables selection. Alternatively, bootstrap
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(Breiman, 1999) can be considered to estimate empirical distribution of each el-
emtent of @. We prefer stability selection (Meinshausen and Biihlmann, 2010)
because the expected number of links falsely estimated is controlled and variables
selection is consistent. Moreover, the choice of a smoothing parameter A becomes
less important Meinshausen and Biihlmann (2010). We adapt stability selection to
factorial graphical models.

Let’s consider a vector of smoothing parameters such that A € A C R* that
determines the amount of regularization.

Theorem 3.4.1. A necessary and sufficient condition for 6;;;; = 0 for all i,k € I'
and j,1 € T is that |Sij | < A for alli # k and | # j Mazumder and Hastie (2011).

Upper and lower bounds of A, u; and [; respectively, are calculated such that
uy, = max(|S;jx|) and [y = min(|S;ju|) fori # k1 # j, wherei,k€I'and j,l €T.
Then, for all A > u; an empty graph is estimated while for A < [; a fully connected
graph is estimated. We search the solution of the optimization problem (3.3) for
value of A into the range [/}, u,]. The “optimal” value of A = 4,,, can be chosen
by minimizing a score which measures the goodness-of-fit.

Let’s suppose a graph G = (V,E) has been inferred, where

A

Ezfupf = {(vl-,v.,-) . é[ﬂj 75 0}
is the estimated edge set and,
E ={(vi,vj):6:;# 0}

denotes the active set. Let I = {1,...,n} be the index set for sample y(*), i € I, then:
The set of stable edges is indicated as:

Algorithm 3.2: Stability selection for graphical models.

Require: n.

e Draw sub-samples of size [n/2] without replacement, denoted by
I c {1,...,n}, where |I*| = [n/2].

e Run the selection algorithm £ Ao () O T

e Do these steps many times and compute the relative frequencies,

Alou k A ..
Hiji =P ((Vi,Vj)EEA),fOI' iLj=1,...,p.
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N

Esapie = {(vi,vj) : ﬁilj > M }s

and it depends on lop, via IQI?].””’. The tuning parameter 7, indicates a threshold
and controls the expected number of falsely selected links. Assume that the joint
distribution of the random variables is exchangeable and E is a better choice than
a random guessing, then it can be shown that

1 q2
E(FP) < —— 2
( )_27%,—1 k’

where k is the dimension of the model (it depends on the factorial model), ¢ is the
number of selected variables (e.g. |E|), and FP = |E° N Egape| is the number of
falsely positive selected. This is a finite sample control, even if k >> N. Choose
E(FP) <v, then if ¢> < vk:

o = (14 ¢ /Vk) /2,

and 7, € (%, 1) is bounded.

Graphi ql_ !Tasso

Stabilit_yws_b_e‘l_gclion

Figure 3.2. Graph selection with cross validation and stability selection procedure.

Figure [3.2]is taken from [Meinshausen and BiihImann (2010) and it illustrates
that the choice of a tuning parameter A is less important with stability selection
than cross validation.
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3.5 Application

3.5.1 Real data set example T-cell

We have seen that several coloured graphs can be imposed on a graphical model
and a model selection procedure is necessary to select the ’best” coloured graph.
Moreover, a smoothing parameter A that regulates the sparsity needs to be selected.

Let’s consider several coloured graphs for Human T-cell dataset. Information
criterion measures, for each of the top ten models, are showed in Table[3.6] We se-

Model AIC AICc
So~Fr Ny~F Si~F N ~F S ~F 17582 178.19
So~F Ny~0 Si~F N ~F S~0 17584 17842
So~F Ny~Fr Si~F N ~Fr S~0 17632 178.60
So~F Ny~F Si~F N ~0 S, ~0 176.78 178.93
So~1 No~F Si~F N ~F S~0 177.04 179.19
So~1 No~Fr Si~F N ~Fr S~0 17681 179.81

Table 3.6. Model ordering according to AICc for tcell dataset

lect the first coloured graph since it has the smallest AICc. This model is described
in Figure[3.3] According to the coloured graph this scheme summarize the charac-

Time; Time, Timey Time;

Figure 3.3. Selected model after model selection for T-cell dataset.

teristics of the estimated graph. The networks at temporal lag 0 are constrained to
be equal across the five observed time points. Moreover, the networks at temporal
lag 1 are constrained to be equal across time. There are no links between time ¢
and ¢ + 2 since we are assuming conditional independence between time ¢ and ¢ + 2
except for self interactions, i.e. interactions between the same couple of genes.
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Figure[3.4]shows interactions between genes at lag O (left part of the figure), and it
shows interactions between genes at lag 1 (right part of the figure).

3.5.2 Simulation study for SGL models

We considered a simulation study to show the performance of the proposed model.
Table shows the simulation study scheme in which four different scenarios are
studied. Here for different scenarios we mean that the number of nodes, links or
time points change while the structure of the networks is the same. We are mainly

ID g gt t p n
1 20 0 3 60 50
2 - 20 - 120 -
3 - 40 - 180 -
4 - 60 - 240 -

Table 3.7. Simulation study scheme in which four scenarios are represented. The
first column is an identification number, the second one indicates the number of
variables per each time point (third column). The number of independent samples
are represented in the last column.

interested in the performance of our estimator in terms of false positive (FP), false
negative (FN), true positive (TP) and true negative (TN). Let ® be the true and @
be the estimated precision matrix. These measure summarize:

o the percentage of links that are falsely estimated, i.e. an element in @ is zero
but is not zero in ® (FP) and an element in ® is not zero but is zero in @
(EN),

e the percentage of links that are positively estimated, i.e. an element in ® is
not zero and it is not zero in ® (TP) and an element in O is zero and it is zero
in @ (TN).

Other measure like these are the false discovery and false not discovered.

Whereas, we are not looking at the performance of our estimator in terms of
distances between the “true” parameter ® and the estimated ones 6. Another el-
ement of interest is the sign of the estimated conditional covariance. In fact, this
element is not zero, if —sign(6;;) is positive this indicates a positive dependence
whereas if —sign(6;;) is negative it indicates a negative dependence.

For each scenario we simulate 100 datasets from a multivariate normal distri-
bution with g equal to zero and X equal to the inverse of a precision matrices @
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SMN1

CCNA2

MCL1

CSF2RA

CYP19

CCNA2

Figure 3.4. Representation of interactions between genes at temporal lag 0. Note
that networks at lag O at time 1,2,3,...,5 are equal since we impose Ny ~ Fr(top).
Representation of interaction between genes at temporal lag 1. Note that networks
at lag 1 between time (1,2),(2,3),(3,4),(4,5) are equal since we impose N; ~
Fr(botton).
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where the coloured graph is simulated from the following model:
[SO ~ FFT;NO ~ Fr,S] ~ F]],

while the rest is zero. Note that we keep the true network constant but we increase
the number of nodes in the graph. Random variables associated with these added
nodes are independent. We keep the number of replicates and time points constants.
The number of replicates is fewer than the number of random variables. Table|3.8

FP FN FD FnD
AlCc | 0.0092 0.0811 0.2000 0.0031

1 BIC | 0.0363 0.0139 0.4873 0.0005
AIC | 0.0698 0.0069 0.6470 0.0003
AlCc | 0.0057 0.0447 0.2899 0.0006

2 BIC | 0.0088 0.0321 0.3826 0.0005
AIC | 0.0437 0.0041 0.7514 0.0001
AlCc | 0.0016 0.4585 0.2730 0.0036

3 BIC | 0.0016 0.4585 0.2730 0.0036
AIC | 0.0288 0.1452 0.8088 0.0012
AICc | 0.0091 0.1034 0.1680 0.0052

4 BIC | 0.0396 0.0517 0.4527 0.0027
AIC | 0.0670 0.0000 0.5704 0.0000

Table 3.8. The average of the proportions of how many links have been correctly
estimated were calculated by the False Positive (FP), False Negative (FN), False
Discovery (FD) and False not Discovery (FnD).

shows the average over 100 of measures that is FP = Y0 FP, FD = Y% FD,
and so on. Moreover we show that AICc performs better on average and other
graphical lasso such us proposed by [Tibshirani (1996) does not perform well in
case of structured dynamic graphical models (see Table[3.9).

3.6 Summary

As more and more large dataset become available, the need for efficient tools to
analyse such data has become imperative. In this chapter, we have considered
sparse dynamic Gaussian graphical model with £;-norm penalty. This type of mod-
elling offers a straightforward interpretation, i.e. the edges of the graph defining
the partial conditional correlations among the nodes. In particular, under the spar-
sity assumption, a large part of the precision matrix can be filled with zeros a priori.
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FP FN FD FnD
1 glasso | 0.002 0977 0.667 0.035

SGL | 0.006 0 0.137 0
2 glasso | 0.001 0.964 0.620 0.013
SGL | 0.005 0 0263 0

3 glasso | 0.001 0.988 0.906 0.008
SGL | 0.001 0.458 0.273 0.004

Table 3.9. Average performs for neighbourhood selection model, graphical lasso
and structured graphical lasso.

Based on the consideration of dynamic and model-oriented definitions, we are able
to reduce the number of parameters to be estimated. We have shown that SGLg
proved to be powerful on both simulated and real data analysis.






Chapter 4

Copula Gaussian graphical
models

Most of the research efforts in the graphical models literature have been focused on
multivariate normal models or on log-linear models; see, for example, the mono-
graph of |Lauritzen (1996). These models relate to datasets that contain exclusively
continuous or categorical variables. CG distributions (Lauritzen, 1996) constitute
the basis of a class of graphical models for mixed variables, but they impose an
overly restrictive assumption; i.e. the conditional distribution of the continuous
variables given the discrete variables must be multivariate normal. As such, the
three main classes of graphical models are too restrictive to be widely applicable.

Since multivariate datasets typically contain variables of many types, our goal
is to consider approaches to graphical model determination that are broad enough
to be applicable to any study that involves a mixture of binary, ordinal, count and
continuous variables. Moreover, we want to develop graphical model for estimat-
ing dynamic networks given some a priori structures.

Copulas (Nelsen, 2006) provide the theoretical framework in which multivari-
ate associations can be modelled separately from the univariate distributions of the
observed variables. The seminal work of Sklar (1959) that formally introduced the
notion of copula provides the theoretical framework in which a joint probability
distribution can be represented by its univariate marginal distribution and a copula.
As a result multivariate association which is fully described by a copula function
can be modelled separately from the univariate marginal distributions.

Although many types of two dimensional copulas exist; see, for example, the
monographs by Joe (1997)) and [Nelsen (2000), their extension to multivariate cop-
ulas has been limited. Recently, new and extension of families of multivariate
copulas have been proposed, see for example, |Fischer et al. (2009) for a detailed
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discussion. Examples of multivariate copulas are: elliptical copulas that include
Gaussian and t-copulas, multivariate Archimedean copulas (Joe, 1997), Koehler-
Symanowski copulas (Palmitesta and Provasi, 2005)), Liebscher copula (Liebscher,
2008)), and Pair-copula decompositions (Aas ef al., 2009). However, the applica-
tions of these copulas to multivariate data analysis and graphical models in high
dimensional setting have been limited due to the complexity of the copula densi-
ties.

In what follows we employ the Gaussian copula and further require conditional
independence constraints on the inverse of its correlation matrix. The resulting
models are called copula Gaussian graphical models because they only impose a
multivariate normal assumption for a set of latent variables which are in a one-to-
one correspondence with the set of observed variables. Gaussian copula seems a
natural choice beyond the bivariate case.

Genest et al. (19935)) develop a popular semiparametric estimation or rank based
estimation in which the association among the variables are represented with a
parametric copula but the marginals are treated as nuisance parameters and esti-
mated non parametrically. The resulting semiparametric estimators are well be-
haved for continuous data but fail for discrete data for which the distribution of
the rank depends on the univariate marginal distributions, making them somewhat
inappropriate for the analysis of mixed continuous and discrete data (Hoff, 2007).
Hoff (2007) proposed the extended rank likelihood which is a type of marginal like-
lihood that does not depend on the marginal distribution of the observed variables.
Under the extended rank likelihood approach the ranks are free of the nuisance pa-
rameters (or marginal likelihood distributions) of the discrete data. This makes the
extended rank likelihood approach more focused on the determination of graphical
models (or multivariate association) and avoids the difficult problem of modelling
marginal distribution (Dobra and Lenkoski, 2011)).

The extended rank likelihood was implemented for studying of association
among mixed variables under a Bayesian framework by Hoff (2007) and further
studied in the graphical model setting by [Dobra and Lenkoski (2011)) who used
Bayesian model averaging approach to estimate the graph under the assumption of
copula Gaussian density. Since the marginal are treated as nuisance parameters, the
parameter of interest is the the correlation matrix or its inverse the precision ma-
trix. |/Ambroise et al. (2009) raised their concern on the challenging task involved
in Bayesian framework to construct prior distribution on the precision matrix.

In this chapter, we propose Gaussian copula modelling to estimate conditional
(in)dependence structures among continuous and discrete random variables of type:
binary, ordinal and count. Various approaches were proposed to study association
among discrete variables that include latent models and rank based methods; see,
for example Hoff (2007)) for a brief review. Under the latent models approach,
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discrete ordinal data are considered as a realization of a continuous vector of la-
tent variables usually assumed to follow a multivariate normal distribution. The
assumption of normality is too restrictive and it can be relaxed via copulas. A
copula based multivariate distribution has the advantage to allow arbitrary or un-
specified univariate marginal distributions. In the graphical model setting, |Dobra
and Lenkoski (2011)) refereed to Gaussian copula graphical models as an extension
of Gaussian graphical models for mixed variables under the assumption of Gaus-
sian copula density for the joint distribution of the entire set of random variables.

In section|d. T|we illustrate the static copula Gaussian model proposed by Abegaz
and Wit (2012). In section 4.2| we propose coloured graphs to estimate dynamic
networks where random variables corresponding to the nodes of the networks
can be continuous, binary, ordinal, counts or a mix of the former types. We
use the Gaussian copula density and we take advantage from the efficient solver
LogDetPPA solver developed in convex optimization (Wang et al., 2009) to imple-
ment the relative software.

4.1 Introduction to copula

In this section we briefly introduce copula modelling for multivariate data.

What are copulas? From one point of view, copulas are functions that join
or ’couple’ multivariate distribution functions to their one dimensional marginal
distribution functions. Alternatively, copulas are multivariate distribution functions
whose one-dimensional margins are uniform on the interval [0,1].

Copulas are of interest for two main reasons: firstly, as a way of studying scale-
free measures of dependence; and secondly, as a starting point for constructing
families of bivariate distributions, sometimes with a view to simulation.

Sklar (1959) in the theorem, which now bears his name, describing the func-
tions that ’join together’ one-dimensional distribution functions to form multivari-
ate distribution functions. The earliest paper explicitly relating copulas to the study
of dependence among random variables appears was written by Schweizer and
Wolff (1981). In that paper, Schweizer and Wolff discussed and modified Renyi’s
(1959) criteria for measures of dependence between pairs of random variables,
presented the basic invariance properties of copulas under strictly monotone trans-
formations of random variables, and introduced the measure of dependence now
known as Schweizer and Wolff’s. In their words, since
...under almost surely increasing transformations of (the random variables), the
copula is invariant while the margins may be changed at will, it follows that it is
precisely the copula which captures those properties of the joint distribution which
are invariant under almost surely strictly increasing transformations. Hence the
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study of rank statistics insofar as it is the study of properties invariant under such
transformations may be characterized as the study of copulas and copula-invariant
properties.

Suppose we have p random variables Y1,...,Y), resulting a p x 1 vector of vari-
ables (V1,...,Y,)". Denote the cumulative distribution function for these variables
by

H(yla"'vyp):P(Yl §y17"'aYl S)’p),

and marginal distributions by F;(y;) = P(Y; <y;), j=1,...,p. Then, according
to Sklar’s theorem there exists a copula C such that the joint distribution is given
by

H(y1,..,yp) = C(Fi(y1),-- -, Fp(yp)),

or the copula is given by

C(ui,...,up) :H(Ffl(ul),...,prl(up)), (ur,...,up) €[0,1]7,

where Fj_l(uj) =inf{y;: Fj(y;) > u;} is the quantile function of Y;.
The probability density function corresponding to the joint distribution H can

be written in the following way:
p
h(y1,- o 9p) = c(FL 1), - Fp(0p)) [T 5 000),
j=1

where ¢(Fi(y1),...,F»(yp)) is the copula density and fj(y;) is the jth marginal
probability density function.

We would consider a parametric family of copulas denoted by cx(ui,...,up),
where ¥ is a dependence parameter, and its inverse @ is a conditional (in)dependence
parameter.

Suppose we observe a sample of n replicates of Y() = (Y(l), . ,Y("))’ where
YO = (Y1,...,Y,). The Gaussian copula is constructed by projection of a multi-
variate normal distribution on R” by means of the probability integral transform to
the unit cube [0, 1]7. For a given correlation matrix £ € R”*” the Gaussian copula
can be written as

Ce(u) =P (¢ " (u1),....0 " (up)),

where ¢! is the inverse CDF of a standard normal, @5 is the joint CDF of a
multivariate normal distribution, and u = (uy,...,u,) = (Fi(y1),...,F(yp)). The
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density can be written as:

/

cxlw = [z e (<5 (070 1)
~ [olexp (-3¢ W(©-1¢ W)
|®lexp (—;Z(G—I)z> :

The log-likelihood for a sample of n independent ad identically distributed repli-
cates is given by

n n p

(OY) =Y logc(Fi(y1i)s- - Fpvpi) | Y)+ X Y fiin)s

i=1 i=1j=1

Now we could consider some parametric form for the unknown functions F;(y;)
but we would rather focus on the conditional independence structures. Using the
semiparametric estimation proposed in (Genest et al. (1995), one can proceed first
by estimating the marginal distributions nonparametrically, for example using the
rescaled empirical distribution:

A 1 &
i) nt1& {Yji <y}
where j =1,..., p, and then estimate the dependence parameter by maximizing the

profile Gaussian copula log-likelihood which is given by

EP(G)»ﬁla"'aﬁp | Y) = Zlogc(ﬁl(yli)v"’Fp(ypi))'
i=1

Note that we have omitted the )\, 25'7:1 fj(yji) since it does not involve the pa-
rameter ® to respect with the profile likelihood needs to be maximized.

Under the condition that the univariate marginals Fy(Y1),...,F,(Y,) are con-
tinuous, (Genest et al. (1995) showed that the resulting semiparametric dependence
parameters @ is consistent and asymptotically normal. However, [Hoff (2007) ar-
gued that imposing such continuity condition on the marginal distributions calls to
question the appropriateness of this approach for discrete data. To remedy this, he
introduced the extended rank likelihood approach for mixed type of data which is
discussed in subsection [4.1.2

(= <¢1<u1>,...,¢1<up>))

4.1)
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4.1.1 Gaussian copula graphical models

Let us recall Gaussian graphical models before moving to copula Gaussian graph-
ical models.

Graphical models are efficient tools for studying of statistical models through
a compact representation of the joint probability distribution of the underlying ran-
dom variables. Consider an undirected graph G = (V,E), where V corresponds
to the set of nodes or vertices of the graph G with p elements and E C V XV of
ordered pairs of distinct nodes called the edges of G. The nodes of the graph rep-
resent the random variables Y1, .. .,Y,. Let the random vector Y = (¥, ... ,Yp)T be
assumed to be Gaussian with a positive definite covariance matrix £ of dimension
p % p. Without loss of generality, we assume Y follows a p-dimensional multi-
variate normal distribution with mean zero and covariance matrix £, N(0,X). A
graphical model G = (V,E) for Y ~ N(0,X) is called a Gaussian graphical model.

On the graph G, the edges represent conditional dependence among the random
variables. Absence of an edge between any pairs of entries Y,, and ¥, corresponds
with the conditional independence of these two random variables ¥,, and ¥,; given
the remaining variables Yy, ,,; where the index V' \ {v;,v;} refers to variables
other than those indexed by Y, and Y,,. Such conditional independence is usually
denoted by

Yo L0 [ Y\ -

Consider the precision matrix also known as concentration matrix which is the
inverse of the covariance matrix, ® = £~!. Each entry of the precision matrix 6 ij>
i # jis related to the partial correlation coefficient P{ij}v\{vw;} between variables
Y,, and Y, by

__ Yy
Pl = — NI
and the it holds that
Yv,- 1 ij | YV\v,-,v_,- = Oj’j =0.

In practice, we encounter both discrete and continuous variables that may not
be Gaussian. Thus, the assumption of multivariate normal distribution would be
too restrictive. To relax the normality requirement, we use the copula framework
to construct multivariate distributions for given marginals. For computational con-
venience, we consider Gaussian copula, however, other copulas can be used in a
similar way.

Firstly, we assume that all the random variables are continuous and we show
that the conditional (in)dependence are encoded in ® while in the next subsection
we consider mixed random variables and argue about problem and solutions.
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The Gaussian copula with parameter X of dimension p X p having p(p —1)/2
parameters is given by

We note that under the Gaussian copula the correlation matrix X is the matrix of
correlation coefficients among the transformed variables ¢~ (F;(y;)),j = 1,...,p
which represent the maximum pairwise correlation of ¥;s, j=1,..., p. However, if
the univariate marginal distributions are normal, then entries of the correlation ma-
trix represent pairwise correlation coefficients of the variables. We now define the
precision matrix as the inverse of the correlation matrix ® = £~ to represent con-
ditional (in)dependence among the transformed variables ! (F;(y;))s and hence
the observed variables y;s if the observed variables are continuous. This is as a
result of the invariance property of conditional independence relation over equiv-
alent probability measures as shown by [Van Putten and Van Schuppen (1985) in
Theorem 3.6.

4.1.2 Gaussian copula for mixed variables

We now focus on graphical modeling for observed variables Y of mixed (contin-
uous, binary, ordinal or count) types. Suppose the j-th variable Y; has univari-
ate distribution F; with its pseudo-inverse F ]71. A Gaussian copula model dis-
cussed above can also be constructed by introducing a vector of latent variables
Z ~ N(0,,0) that are related to the observed variables Y as ¥; = F j’l(dD(Z}‘)),
j=1,...,p, where Z; is a value from some defined interval on Z;. This could be
achieved by specifying a mapping of the discrete values of Y; into some defined
intervals expressed through some thresholds on the continuous latent variable Z;.
The main assumption to be made on the treatment of mixed variables is that
reconstructing the graphical structure implied by the discrete data relies on the con-
ditional dependence induced by the precision matrix of the latent variables. Thus,
inference about the precision matrix involves the unobservable latent variable Z.
Though the Zs are not observable, according to|Hoff (2007)) argument the observed
Y;s do provide a limited amount of information about them. Since the Fjs are non-
decreasing, observing Y7 < Y, implies that Z; < Z,. More generally, observing the
ordered data Y = (Y1,...,Y,)’ tells us that Z = (Z;,...,Z,)" must lie in the set

D(Y],. .. ,Yn) = {Zl,.. Ly € R™P :Lji(Z1,.. . ,Zn) < Z(ji) < Uji(Z1,.. . ,Zn)},
4.2)
where Lji(Zl . ,Zn) = max{z(jk) 2 Y(jk) < y(”)} and Uji(Zl oo 7Zn> = min{z(jk) :
YGiy <Yt
To determine the intervals (L,U) in (4.2) in a form convenient for further anal-
ysis we consider the typical relationship between Y; and Z; which is expressed
through some thresholds 7; = (‘L’jo, Tilyeers Tjwj) with —eo = Tjp < 7j1 <-+- < Tjw;-
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Let the observed values of Y; be ranked in increasing order as {c 1<---<c jwj}
so that y; is the set:

Wj
yji = Z Cjr X I{Tj,r—l <zji< Tjr} .
r=1
It follows that the mapping of the discrete values of Y; into some defined intervals
and the corresponding values to be taken by the latent variable Z; explicitly given
by

zji € (—oo, @7 (Fi(cn))) if yji=cp
zji € (@7 (Fi(cjn)), @ (Fi(cn))) if yji=cp

2ji € (P (Fj(cjuy1))so) if yji = ch,.
The collection of these intervals is the set D = D(Y1,...,Y,) in (¢.2). Finally we
take the occurrence of event Z € D = D(Y},...,Y,) as our data to infer about the
precision matrix of the Gaussian copula separately from the marginal distributions.
Such inference approach is referred to as extended rank likelihood by [Hoft (2007)
and in the graphical modeling setting copula Gaussian graphical modeling by Do-
bra and Lenkoski (2011]).

/1 penalized EM estimation. Now we consider the implementation of the Expectation-
Maximization (EM) algorithm Dempster et al. (1977) jointly with and without ¢;
penalized likelihood approach. EM algorithm is a popular approach to maximum
likelihood estimation. |Green (1990) studied convergence properties of the EM al-
gorithm for penalized likelihood. Following the argument of Dempster et al. (1977)

and (Green (1990), for our data setting, the EM algorithm complete data represen-
tation involves to consider the observed discrete data Y as a statistic calculated

from the unobserved vector Z which is assumed to follow a multivariate normal
distribution, satisfying:

P(Y\@,Fl,...,Fp):/ 0,(z|©,F,...,F,)dz.
zeD

Under the Gaussian copula where we consider Fy,...,F), as nuisance parameters,
the likelihood function using [4.1]is

L(®) = P(z|O,F,...,F,)dz
zeD

= / P(z|O)dz. (4.3)
zeD
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Then, for large sample sizes the precision matrix @ is estimated by maximizing the
log-likelihood log L(®) as a function of ®. Whereas for high dimensional data, we
add an /;-norm penalty to encourage sparsity in the precision matrix. That is, the
{1 penalized log-likelihood takes the form

logLpen (@) = logL(®) -1 (/@] (4.4)

where the scalar parameter A > 0 controls the size of the penalty.

However, due to the complexity of maximizing the log-likelihood log L(®) in
(@.3) and the penalized log-likelihood (4.4) we use EM algorithm that alternate
iteratively between the E-step computing conditional expectation, Q(-|-) defined as

0(©]0M), 4.5)
or and it is defined on
0®©0Mm)-1]e|,, (4.6)

for the ¢; penalized likelihood (@4), where Q(® | ™)) = E[logL.(Z | ®) | z € D]
is the conditional expectation of the complete data log-likelihood given observed
data and ®™ is an estimate of @ from the previous step of the algorithm. The
complete data log-likelihood is logL.(Z | ®) =[]\-; ¢, (Z; | ®,F,...,F,). In the
M-step we want to maximize the quantity {.5] or the penalized conditional expec-
tation 4.6l over @, i.c:

(O 1)) .= argmax,Q(@ | @™), 4.7)
or for the penalized case
(@) .= argmaxeQ(@ | ™) — 1 (|0, (4.8)

Remark 4.1.1. We note that the EM algorithm based on (.3) is the maximum
likelihood approach to that of the Bayesian inference in \Hoff (2007)).

Given in more details in the EM algorithm we have the following computa-
tional strategy:
E-step: This step involves computing conditional expectation of the complete data
log-likelihood given the observed data. Given the complete data log-likelihood

logL.(Z|®,F,...,F,) =logL.(Z|®),

that focuses only on the parameter of interest @, then the conditional expectation
given the data z € D is obtained as follows:

0©[0") = E[logL.(7]©)|z£D,0")]

= E

Y log¢,(Zi | @) |z € D,®<m>] :

i=1
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Under Gaussian copula with density given in[4.1] it follows that:

n

1 1 1
Y <2102 ©] — EZ;'@ZI' + Z/'Zi> |z€D,0™

o@|e") = E i
i=1 2

NS

log|®| — % itr (@E [Z,Z; |zi € D,@)(’")D
i=1

(e [Zizﬂz,-eD,@(’")D}

i=1

- g {log|®| — tr (OR) +tr (R)}, (4.9)
where tr stands for a trace of a matrix and

iE [z,-z; |zi € D,®<’”)} : (4.10)

Note that in (4.9) we need to calculate |E {ZiZiT |z €D, G)(m)} , where the expecta-

tion is defined on the truncated multivariate normal distribution for Z; given z; € D
for subject i. The truncated multivariate normal density is given by

_0z10")

(m)
Olelze DO = e p)

(4.11)

For singly truncated multivariate normal distribution, moment generating func-
tions and explicit expressions for moments were derived using correlation matrix
by [Tallis (1961). Extension to doubly truncated multivariate normal is consid-
ered by Wilhelm and BG (2010) who provided an algorithm to compute mean
and covariance for the truncated normal random vector using the moment for-
mulas given below and also based on MCMC Gibbs sampling. We present here
the expressions for the first two moments from Wilhelm and BG (2010) in terms

iy
of the correlation matrix <®(m)) = ((p,gn))), k,l =1,...,p, that corresponds

to the precision matrix ©"). Let the lower and upper truncation points of Z be



4.1 Introduction to copula 75

(L,U) ={(Lx,Ux), k=1,...,p} € D. The first and second moments are:

P

B|Z|(.0) D8] = Yoy (Gl - GulU], s =1.op,
k=

E[ZSZIHL,U)ED,@(”’)} = Z P ptk Lka(Lk)—Uka(Uk>]
+letk #Zk(pzl ~pi"p")

X {[Gu (L, Ly) — G (L, Up)]
—[Gu(Uk,L;) — G (Ux, L)}

where s,t =1,...,p and
U, U1 Uk Up (m)
Gi(w) = / / / / Op (2,21 | ©™)dz g
L, Ly JLi L,
U, U1 Uk U1 U
Ly Ly L Ly JLi

U]’
Op 2y, 211 | O™)dz g 4,
P

with Z_ stands for all variables except z; and and z_ _; for all except zx and z;.
M-step: Update the parameter estimate using the likelihood in (4.9):

(@)(m+l)> '= argmaxg {Q(@ | @)(’"))} (4.12)
or the ¢; penalized likelihood in (4.9):
A (m+1 m
(@)( * )) ::argmaxe{Q(G 1@y — 2 ||®||1} 4.13)

Substituting (4.9) into (4.12) or (4.13) and ignoring constants with respect to @, it
follows for the unpenalized likelihood from (#.12)) that

(C:)("Hl)) := argmaxg {log |®| —tr(BR)} . (4.14)
and for the ¢, penalized likelihood from (#.13))

(@(m+1)) := argmaxg {log |®| — tr(®R) — 1 ||©||, } . (4.15)
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Remark 4.1.2. Computation of R from the E-step can be done using the package
tmvtnorm in R developed by |\Wilhelm and BG (2010). We note that use of the Gibbs
sampling option leads to fast computational time specially when p is very large.

Remark 4.1.3. The maximization problem in (@.14) and (4.13) can be implemented
using the package glasso in R developed by Friedman et al. (2008), where for the
unpenalized estimation in (4.14) we set the penalty parameter A = 0 and for the
¢ penalized maximization we determine A based on the formula given in Banerjee

et al. (2008) but adopted fo scaled latent variables, A = \/%, where t, /p?
a/p?

denotes the (100 — at/p?)% point of the Student’s t-distribution for n-2 degrees

of freedom. However, one can proceed with the choice of A using information

criteria based methods like AIC and BIC, or by using cross-validation that we

have not formally addressed in this thesis, or by using stability selection that we

have addressed in Chapterd.3.2]

4.1.3 Examples

In this sub-section we apply copula based EM estimation on two multivariate
datasets where the analysis can be done with and without ¢; penalized likelihood.

4.1.4 General Social Survey

Using labour force data from the General Social Survey (GSS) that is available
from http://webapp.icpsr.umich.edu/GSSS/, Hoft (2007) studied the dependencies
among seven relevant variables of interest from 1002 males in the U.S. labor force.
These variables include the income, education and number of children of the survey
respondent, as well as similar variables for the respondent’s parents. Age of the
survey respondent is additionally included, as it is typically strongly related to
income and number of children. The measurement scales for these variables are as
follows:

INC: income of the respondent in 1000s of dollars, binned into 21 ordered
categories.

DEG: highest degree ever obtained, ordered as None, HS, Associates, Bach-
elors, Graduate.

CHILD: number of children ever had by the respondent.

PINC: financial status of respondent’s parents when respondent was 16 (on
a 5-point scale).
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PDEG: maximum of mother’s and father’s highest degree, ordered in five
categories.

PCHILD: number of siblings of the respondent plus one.
AGE: age of the respondent in years.

There is a certain amount of missing data with higher rates for INC and PINC. It is
suggested that the missing values in these variables can be reasonably considered
as missing at random. The heterogeneity in the marginal distributions of the seven
observed variables makes the study of their joint distribution very difficult. How-
ever, the copula-based inference that consider the marginal distributions as nui-
sance parameters have been applied successfully on this dataset using the Bayesian
framework (Hoff, 2007). We analysed this data using the Gaussian copula-based
EM proposed in this work.

We present the partial correlation and partial regression coefficient estimates
of the seven variables induced by the multivariate normal latent variables in Ta-
ble Elements above the main diagonal shows partial correlation coefficients
and elements below the main diagonal represent partial regression coefficients. To
assess conditional independence between the variables in this dataset we consider
tests based on partial correlations and also partial regression coefficients. Those
estimates significant at 5% level taking into account multiple comparison are indi-
cated by asterisks(*). We remark that the relationships among income, degree and
fertility seem to hold across generations. Though, this conclusion is in agreement
with Bayesian inference in [Hoff (2007), our findings slightly differ as we found
a significant positive relationship between INC and PINC in the presence of inter-
generational relationships of DEG, PDEG, CHILD and PCHILD. In addition, there
is no significant relationship between DEG and PCHILD.

The conditional independence tests help to determine the presence or absence
of edges or links for graphical visualization. Figure displays the links among
the six variables implicitly conditioning on age of respondent, see Hoft (2007).

4.1.5 CHIP-seq count data

CHIP-Seq (Chromatin Immunoprecipitation followed by sequencing) is used to an-
alyze protein interactions with DNA. It combines chromatin immunoprecipitation
(CHIP) with massively parallel DNA sequencing to identify the cistrome of DNA-
associated proteins. It can be used to precisely map global binding sites for any
protein of interest. |[Kasowski et al. (2010) compared protein occupation of DNA
regions between ten human individuals: 9 females and 1 male by CHIP-Seq to map
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INC DEG CHILD PINC PDEG PCHILD AGE

INC - 0.4516*  0.2146*  0.0988*  0.0191 -0.0028  0.1875%
DEG 0.4398* - -0.1009*  -0.0487 0.3733*  -0.0848  0.0484
CHILD  0.2075* -0.1002%* - -0.0442  -0.0748  0.1489*  0.4959*
PINC 0.1085*  -0.0560  -0.0512 - 0.3449*  -0.0970* -0.0278
PDEG 0.0186  0.3740*  -0.0792  0.3004* - -0.1356* -0.1578*
PCHILD -0.0033 -0.1023  0.1809* -0.1017* -0.1633* - -0.0304
AGE 0.1834*  0.0486  0.5013*  -0.0242 -0.1581* -0.0253 -

Table 4.1. Estimated partial correlations (elements above the main diagonal) and
partial regression coefficients (elements below the main diagonal) in the GSS data.

PCHILD

Figure 4.1. Conditional dependence reduced graph for the GSS data.
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nuclear factor kB (NFkB) and RNA polymerase II (polll) binding sites. They com-
piled a list of binding regions for polymerase 1I and FNkB, and counted, for each
sample, the number of reads that mapped onto each predetermined binding region.
The aim of their study was to investigate how much the regions occupation differed
between individuals. Significant differences in binding were observed. Moreover,
they suggested that adjacent binding sites and binding regions may influence one
another, perhaps through cooperative binding or interactions with other proteins.

Our aim is to assess how binding regions influence each other through graphical
modelling using count data from CHIP-seq. We consider a small portion of the
19011 binding regions for polymerase Il. In particular, to illustrate our approach we
consider the 555 binding regions labelled as ’chrX”. In practice in many CHIP-seq
datasets only few replications are provided. This dataset includes 10 individuals
with varied number of repeated measurements. To increase the sample size we
considered all n = 39 replications ignoring the correlations among the repeated
measures. To obtain a sparse graphs we used the Gaussian copula EM with ¢;
penalized likelihood estimation. The resulting graph that provide the main links
among 36 binding sites of "chrX” for A = 0.93 are displayed in Figure

520 Y

5!
S a—

=Tk
avd

47

Figure 4.2. Conditional dependence graph for the CHIP-seq data.
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4.2 Coloured graphs for estimating dynamic networks

In this section we address the problem of estimating dynamic networks when ran-
dom variables are continuous but the multivariate normality cannot be assumed or
mixed (binary, ordinal and counts). In order to take into account the dynamic of the
networks we consider coloured graphs which are graphs where vertices and nodes
in the same partitions have the same colours. Coloured graphs allow to define sev-
eral model-based graphical models. In the case of Gaussian graphical models we
have seen that specific “dynamic constraints” can be imposed on the precision ma-
trix by assuming a specific coloured graph. Now we apply the same idea to the
Gaussian coloured graph. Firstly, we recall some definition about coloured graphs
and natural partitions. Secondly, we connect Gaussian copula graphical models
with coloured graphs. This results in an extension of the model proposed in Chap-

ter

Definition 4.2.1 (Coloured Graph). A coloured graph G = (V,E,F) is a triplet,
where G = (V,E) is a graph and F is a mapping on the links, i.e.

F:E—C,
where C is a finite set of colours.

Suppose we have g genes (Y1,...,Y,) observed at time ¢ resulting in a gr x 1
vector of variables Y = (Y11,...,Y1,...,Y1s,...,Y,) and denote the CDF:

H(ylla"'7yg17"'7y117"'aygt) :P(Yll Sylla"'7Ygt Sygt) (416)

and marginal distributions by Fix(yjx) = P(Yjx <yjx), j=1,...,gandk=1,... ¢
According to Sklar’s theorem there exists a copula C such that the joint distribution
is given by

H(ylla"'7yg17"'7yll7"'7ygl‘):C(Fll(yH?'"7Fg1(ygl)7"'7F11(y1f)7"'7Fgl‘(ygf))7

and the density function corresponding to the joint distribution H can be written in
the following way:

p ot
h(ylla 7Ygt)—C(Fll()’11 gt Ygt HHfjk YJk (4.17)
j=lk=1

where c(Fi1(y11),-., Fer (ygr)) is the copula density and fj(yjx) is the jk-th marginal
pdf.

We have seen that we can consider Gaussian copula graphical models with as-
sociation parameters ¥ which is a correlation matrix parametric. However, this
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would imply some constraints on £ when we consider to solve the optimization
problem. In particular we should impose constraints on the diagonal elements
which must be ones and on the off-diagonal elements which must be in the range
[—1,1]. However, we are more interested in ® and to impose such constraints
on £ = O ! would be a difficult task. Instead, we assume that Y follows a non-
canonical Gaussian copula distribution denoted by C(u;1, ... yUgrs ®) where we de-
fine the canonical Gaussian copula as:

Definition 4.2.2 (Non-canonical Gaussian copula). The non canonical Gaussian
copula with matrix © is given by

Clurt, ... ug|E) = Bg (D7 (u11),..., D' (ugr)|X), (4.18)
where ¢; is the CDF of normal distribution with mean 0 and with variance G;;, ®g;

is the CDF of a multivariate normal distribution N(0,X) with diagonal elements
oii, and the precision matrix ® = £~ has diagonal equal one.

Here @ is refereed as dependence or association parameter of dimension gt x gt
and it has @ has gr(gr — 1)/2 parameters since we impose a constraint on the diag-
onal of @, i.e. the diagonal elements must be one. Suppose we observe a sample
of n replicates of (Yi,...,Y,). The Gaussian copula with matrix £ of dimension
gt X gt is given by:

Cluty,. .., uy|E) = ®g (P! (u11),. .. ,cp;,l(ugt)m), (4.19)

where ¢; is the CDF of normal distribution with mean 0 and with variance o;;, and
® is the CDF of multivariate normal distribution N(0,X).

There is a crucial difference between this approach and the previous one. In
fact, this function cannot be defined to be a Gaussian copula function since its
arguments ¢;; are normal density with variance range 0 and o;;. However, we need
still to impose a constraint on the precision matrix to avoid identifiability problems.
This is easier than impose constraints on X.

Note that we have defined the precision matrix as the inverse of the variance
matrix @ = £7!. The precision matrix has the characteristic to be scale free
since the diagonal elements are constraint to be one. It represents conditional
(in)dependence among the transformed variables and hence the observed variables.
This is because of the invariance property of conditional independence relation over
equivalent probability measures as shown by |Van Putten and Van Schuppen (1985).

The corresponding copula-based distribution function is

H(ylla- - 7ygt|27Flla e 7th) = q)gt((bl_ll (Fll()’ll))y- - 7CI);11 (th(ygt)))- (4.20)
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Differentiating the Gaussian copula C(-|®) with respect to u = (uy1,...,ugy)
yields the non-canonical Gaussian copula density function given by,

9Py (un1),.... Py (ugr)|©)

c(uin,...,ugy|®) = ¢gt(‘b71(“11) m’q);tl(ugt)
— 101" (3,000 () ) exp (30, )0, W)
— (00" exp (14, (@14, ') ). @21)
For convenience, we denote z = 4’; (w) = (¢;7" (u11), ..., 94 ' (ug)), and the alter-

native Gaussian copula density by

¢Gc()—\®\1/2exp< ACE I)) (4.22)

Now we consider the expectation maximization steps for ¢;-penalized likeli-
hood approach for non-canonical copula Gaussian graphical models. This allows
us to dealt with dynamic graphical modelling for mixed random variables Y. Un-
der the Gaussian copula where we consider Fy, ..., Fy as nuisance parameters, the
likelihood function in the expectation step is:

Z; <1ogy®|—z’®z + 1zz z; €D, O™ >>
i=1

o@e") = E

glog]®| - g i (tr(@E [Z,Zﬂz,- € D,®(’")]>

i=1

- g (log|®| — tr(®R)) (4.23)

where Z ~ N(0,@ ') is the continuous latent variable, D is the range of value lower
and upper bounds for Y the observed variable, tr stands for a trace of a matrix and
R=1y" E [Z,'Zg |zi € D,®(m)} . Wecancalculate R=1%7 | E [Z,-Zﬁ |z €D,0™|,
where the expectation is defined on the truncated multivariate normal distribution
for Z; given z; € D for subject i with MCMC Gibbs sampling Wilhelm and BG
(2010).

Now we can impose specific constraints on the precision matrix, as we have
seen in Chapter [2] and we will use the idea of natural partitions, i.e. given a graph
G = (V,E) we can partition V and E such that:

Si={{j,vjisi) Vjrivi) Hielt =1,...,ny —i},
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and
N; = {{(Vj,,vk,tﬂ), (Vk,t+i’vjt)}|\v/j 75 ke F,l = 1,. ..,nT —i}.

where {S;}/7,!, and {N;}," are subsets of vertices V and links E. Each of
these partitions is interpreted as follows: S; considers the lag i interactions be-
tween the same natural vertices, and N; is a graph at time lag i. As we show in
Chapter@ specific maps can be imposed on the natural partitions, i.e. S;,N; < F},
where i =1,...,T—1and j=1,7,T or I'T. Then, two sets of design matrices
XS = (XS P and XN = (XM where XS, XM € RIT and X5 can

be uniquely identified such that:

smo 1 if (vj,ve) €8T
Jt.gs 0 otherwise

and,

0 otherwise

N 1 if (v, ve) €N
Yjtigs =

We re-define the set of design matrices has:
X = {X5 X"} = {Xy,....X,,. },

where X5 = UXS", XV = UXM", and n. is the total number of colours.

Consider a coloured graph that specifies a partition of @, then a set of design
matrices X is used to produce linear operators which are necessary to impose linear
restrictions on @. Every design matrix X", m = 1,...,n. consists of zeroes and
ones and induce p — 1 linear constraints on @ when the number of 1 in X(m) g
p. We define a linear map A = (Ay,...,A, ) where each X induces a set of
matrices Aj,...,A, and an element in Al = 1,...,n, assumes value —1, 0 or
1 as described below:

1t Y, Z,SXEQgS before jt,gs=p—1

Aies = —1 if Y ¥y Xi-ggs before jt,gs = p
0 otherwise,

where "before’ is meant with respect to the total row-major ordering of the matri-
ces. Now let n, be the total number of linear constraints, then A = {Ay,..., A, }
and the linear map is expressed as A : R£§m — R with:

A(©)=[(A1.8).....(A,,.©)

where (,) is the Frobenius inner product.
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When we derive the objective function we want to take into account the spar-
sity assumption as well as the linear constraints deriving by imposing a specific
coloured graph. To achieve sparse graph structures one can minimize a penalized
log-likelihood function, i.e.:

@) = argmin{—g—log|®\+tr(®l_l)+7tx++7tx*} (4.24)
(&}

subject to AO®)=0
BO®)—x"+x =0
®>0,x"x >0.

where A and B and x*, x~ are derived in Section Here the objective function
is represented by the conditional expectation function Q(®|@"™) from the E-step
and we want to maximize this function over @. Note that the diagonal elements of
O are constraints to be one.

4.3 Application

4.3.1 Simulation study for copula model

Example 1. Consider a dynamic graph with p = 10 variables and r = 2 time
points. Simulate z()) ~ N (0, o' ), where @ is the precision matrix with diagonal
one, i = 1,...,100 is the number of independent replicates. We transform z such
that:

where F; is the CDF of an exponential distribution with parameter A = 2. The
pseudo-inverse of F is given by

_log(1—x;)
zj=—

where i = 1,...,20, x; = ®;(0;)(z;) is the standard normal CDF with mean zero
and variance o;;.

We can use copula theory that is we consider the inverse transformation ®; ' (£ (y:))
to find a new variable z; which is marginally Gaussian. Here F;is a scaled empirical
CDF. Marginal densities for the first variable of the simulated data z, the exponen-
tial data y, and copula transformed data z* are shown in Figure We can see
that exponential data are highly skewed distributed.
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Figure 4.3. Smooth density estimates based on 100 replicates for latent z;, ob-
served yi, and the copula back-transformed z;".

Now we are ready to apply a structured Gaussian graphical model for the expo-
nential data and a structured copula Gaussian graphical model for the transformed
data. We consider the following model:

SO =< Fl,N() -<Fr,S] =< 07

which includes the true dynamic networks where the data z were generated from.
Figure {.4] shows the true network while the recovered graphs for the exponential
data and the copula transformed data are shown in Figure £.5] Indeed, we can
recover a much closer structure to the true one by considering the copula transfor-
mation. An empty graph was estimated from the data y which are non Gaussian
distributed and graph with almost the same structure as the true graph was esti-
mated by considering the copula transformation. Note that the nodes involved in
the right graph of Figure are the same involved in the true graph Figure 4.4
Note that we showed the networks at the first time point in Figure 4.5] and {.4]
since at the second time point the structures are identical due to the coloured graph
constraints.

4.3.2 Real data application T-cell

In chapter , we applied several structured Gaussian graphical models for the data
set T-cell which is a time-course dataset where expression levels of 58 genes were
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Figure 4.4. True networks.

collected across 10 time points. A better description of this data set is given in
Rangel ef al. (2004). Here we apply structured copula Graphical model for es-
timating the structure of the dynamic networks. Figure shows the approximate
marginal densities for the original data T-cell where 47 genes were considered.

Since the application is mainly meant to be an illustration we consider the same
model as in Section[3.3] i.e.:

[So ~ F1,No ~ Fr, S| ~ Fr,Ny ~ Fr, S ~ Fr],

that implies that the networks at temporal lag 0 are constrained to be equal across
the five observed time points. Moreover, the networks at temporal lag 1 are con-
strained to be equal across time, no links are presents between time ¢ and time
t + 2 except for the self-self interactions, i.e. interactions between the same couple
of genes. The recovered network structures after copula transformation are com-
pletely different from the recovered network structures from the non transformed
data (see Section[3.5] Figure[5.6). This is due the non normality of the data which
is shown in the approximate marginal densities in Figure 4.6]and We use the
non-canonical Gaussian copula graphical models proposed in Section 4.2f so data
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Recovered Network for exponantial transformed data Recovered Network for copula transformed data
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Figure 4.5. Recovered network structure at time one ignoring non-normaility (left)
and implementing the copula method (rigth).

are transformed and the assumption of Gaussianity holds. The non-normality in-
troduces spurious relationships which are reduced in our last analysis.

4.4 Summary

Large dataset often involves not continuous data set and biological data are often
continuous but non Gaussian. In order to avoid spurious relationship in the recov-
ered or estimated graphs and to deal with mixed random variables we have intro-
duced Gaussian copula graphical models. First of all we have seen that it possible
to estimate graphs for non normal but still continuous random variables. In order
to solve the optimization problem when mixed random variables are considered we
have used Expectation Maximization algorithm. Then moved on dynamic graphs
and we have seen that it is possible to impose specific structures for estimating the
graph in case we assume a non-canonical Gaussian copula graphical models. The
non-canonical distribution it is necessary to consider constraints on the precision
matrix instead that in the inverse of this matrix which in the Gaussian copula cor-
responds to a correlation matrix while in the non-canonical Gaussian copula is a
covariance matrix. Finally, we have shown that these models can be applied for a
real dataset analysis.
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Figure 4.6. Approximate marginal density for the first 25 genes at time point one.
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Figure 4.7. Approximate marginal density for genes 26 to 47 at time point one.
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Figure 4.8. Recovered network structures after copula transformation. Represen-
tation of interactions between genes at temporal lag 0. Note that networks at lag
0 at time 1,2,3,...,5 are equal since we impose Ny ~ Fr(left). Representation of
interaction between genes at temporal lag 1. Note that networks at lag 1 between
time (1,2),(2,3),(3,4),(4,5) are equal since we impose N; ~ Fr(right).



Chapter 5

Additional topics for dynamic
network modelling

In this chapter we consider further characteristics of networks that can be modelled
with Gaussian graphical models. In particular we focus on modelling dynamic
networks evolution, scale free networks and partially unobserved networks.

Modelling dynamic networks evolution is about to decide which links are sta-
tistically different from a network at a given time point ¢ to ¢ + i, where ¢ denotes
temporal points in which random variables has been observed and i denotes some
temporal lag in which we assume the changes happened. This is slightly different
approach that the one we proposed in Section[5.1} Our aim is to develop an estima-
tor for such Gaussian graphical models appropriate for data from several graphical
models that share the same variables and some of the dependence structure. In
this setting, estimating a single graphical model would mask the underlying het-
erogeneity, while estimating separate models for each time point does not take ad-
vantage of the common structure. We called this model sparse Gaussian graphical
models for estimating evolution of networks (GL,).

Scale-free networks are common network structures in biology. The scale free
property indicates that we can reach a node in the networks from another in few
steps. The characteristic of a scale-free network is that few steps are necessary to
reach a node from another. A node which is connected with many others is called
hub node. For some experiment the scale-free assumption can be seen as a normal a
priori assumption to estimate graphs. We propose a methodology to estimate these
networks. We called this model graphical lasso for scale-free networks (GLjy).

Partially unobservable networks are networks in which some nodes cannot be
observed. This can happen for many reasons, for example, concepts cannot be ob-
served in social science, or protein interaction and metabolic interaction cannot be
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directly observed when we consider microarray experiments in which the expres-
sion levels of some genes are collected. Relations between nodes can be the effect
of spurious relations and our aim is to propose methods in which the effect of latent
variable is separated from the effect of the observed variable so that the recovered
networks contain as few spurious relationship as possible.

5.1 Sparse Gaussian graphical models for detecting evo-
lution of networks

Gaussian graphical models explore dependence relationships between random vari-
ables, through the estimation of the corresponding inverse covariance matrices.

Suppose we have data from several categories that share the same variables but
differ in their dependence structure, with some edges common across all categories
and other edges unique to each category. For example, consider education data
set (see Section3.1) in which different schools are considered. Or suppose we
have data from several time points that share the same variables but differ in their
dependence structure. For example, time-course t-cell dataset (see Section [3.1)
in which several time points were consider and the experimental conditions are
supposed to change from time point ¢ to time 4+ 1. In such cases, a common
structure could hold at two different points but some pathways will be changed
due to the different combinations. Investigate such changes and discover common
structure is an interesting challenging and it is useful in real application. However,
the focus so far in the literature has been on estimating a single Gaussian graphical
model [Banerjee ef al. (2008)), [Meinshausen and Biihimann (2006), |d’ Aspremont
et al. (2006) but in many applications it is more realistic to fit a collection of such
models, due to the "heterogeneity’ of the data involved.

To accomplish this joint estimation, |Guo et al. (2011) propose a method that
links the estimation of separate graphical models through a hierarchical penalty. Its
main advantage is the ability to discover a common structure and jointly estimate
common links across graphs, which leads to improvements compared to fitting
separate models, since it borrows information from other related graphs.

Copula Gaussian graphical models can be used to extend to graphical models
with count, ordinal or binary data as well as mixed random variables (see Chapter
H). Hofling and Tibshirani (2009) and Ravikumar et al. (2010) propose similar
models to estimate the graph when categorical variables are considered

In this Section we propose a model to estimate dynamic graphs using /-
regularization framework. The main idea is to impose ¢;-norm to penalize chang-
ing in the networks through time or for different categories. Since we are mainly
interested in time-course genetic data we focus on changing in time. Given a lon-
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gitudinal graph G = (V,E) the edge set E can be partitioned into natural partitions
Ss,Ns, where S; and N; are interpretable as self-self interactions at lag s and net-
works interactions at lag s. Each of this subset can be further partitioned and we
indicate with S;, and N;, these new sub-partitions. Sy, is the self-self term at lag s
and time 7 and N, is the network at lag s and time 7. Consider a Gaussian graphical
model M = (G,P) where P is a multivariate normal distribution parametrized by
2! =@, then we consider the following decomposition of the precision matrix @:

[ So1 Nojg | Sii Nigp | S21 N
SO,l Nl,l 5111 N21 Sz‘,l
So2 Noz | Si2 Nip | S22 Nap
Sop2 | N1z Si12 [ Nap S2p
0= Soz Noz | S13 Niz |
So3 | Nig Si3

)

where S;; are self-self conditional correlations of the genes across time lag s and
time ¢, and Ny, is a genetic network with time lag s and time 7. Our interest is
detecting evolution of the networks, where the evolution is evaluated from the
element-wise differences between N, ; and Ny, 1, 1.e

Ns,t _Ns,t-i-l .

Our aim is to estimate “significance” differences between these elements while the
general structure is still sparse.

5.1.1 Maximum likelihood estimation for delta graphical lasso.

Suppose that Y ... Y with Y € R¢, where g is the number of random vari-
ables per each time point and ¢ is the number of time points, are independent and
identically distributed as a multivariate normal distribution with mean 0 and vari-
ance X. We have seen in Chapter 2] that to reach sparse structures one can minimize
a penalized log-likelihood [3.3] Moreover, we proposed copula Gaussian graphical
models (see Chapter |4) to deal with mixed random variables. In the latter case
the objective function to be minimized was given in [4.24] Let us indicate these
optimization problems with the following objective function:

(®) := argmin{—log|®|+tr(SO)+A;x" +A;x "} (5.1
)

subject to B(®)-—x"+x =0
®>-0x",x >0.



94 Chapter 5. Additional topics for dynamic network modelling

where B indicates the usual ¢; constraint, i.e. ||®||; < p;. Note that x™ and x~ are
slack variables in R™ where m = gt(gt — 1)/2. Here A, is a smoothing parameter
which regulates the sparsity in the precision matrix @ and S is given in or
(#.10) for sparse Gaussian graphical models or sparse copula Gaussian graphical
models, respectively.

Now we want to penalize the difference between networks with lag s at time ¢
and the same networks at time ¢ + 1, i.e.

t—1t—1 t—11—1

1281 =Y Y [Ny —Nesrilli = Y Y Y 1660, Govs) = Oiosn) ()| < P2
s=07=0 s=0t=01i,j
(5.2)

We want to take advantage from LogDetPPA so we need to write the linear map
A such that the system of linear equations is included in the optimization problem
(5.1). Since the inequality constraints needs to be converted in equality constraints
we need to introduce another vector of slake variables in the optimization problem
such that:

t—1t—1

Yo X Y 1660, Grs) = Blisr),us )| =Y+ =0 (5.3)

s=01=0 i,
where k=1,...,K,and y",y~ > 0. The optimization problem is now written
as:

(@) := argmin{—log|®|+t(S®)+A;x" +A1x 4+ Ay + Ay}
(C]

subject to B(®)—x"+x =0 (5.4)
A@)—y"+y =0
0~ 0,x",x,y ",y >0.

The optimization problem (5.1)) subject to (5.2) is a convex optimization prob-
lem which we have re-written in a standard from.

It should be notice that both A; and A, are non-negative smoothing parame-
ters that need to be selected. We consider a grid of values (A;,4,) and minimize
information criterion scores such as AIC, AICc, and BIC. Then we use stability
selection to select a more stable graph, i.e. we re-sample and select the graph such
that an edge is present more than o times in the selection procedure (see Section
for further details or Meinshausen and Biihlmann (2010)).

Example: T-cell We apply A to T-cell dataset where 4 genes and 2 time points
were considered to show a small example of real data. Table [5.1] shows the esti-
mated precision matrix. Here, we fixed tuning parameters A; = 0.01 and A, = 0.1.
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Let’s consider differences between elements of network at lag 0 at time 1 and at

Time 1 2
Gene ZNF CCN SIV SCY | ZNF CCN SIV SCY
ZNF 124 0 -026 018 |-022 -0.11 -0.11 -0.07
] CCN - 149 0 -0.17 | -0.18 -0.84 0.06 0.12
SIV - - 144 0|-0.15 0.08 -0.69 -0.01
SCY - - - 1.19 | 0.02 0.13 041 -0.10
ZNF - - - - 1.07 -0.02 0 0.12
5 CCN - - - - - 155 0 024
SIV - - - - - - 1.52 0
SCY - - - - - - - 1.08

Table 5.1. Conditional covariance @ based on 44 replicates for 4 genes measured
across 2 time points. A; = 0.01 and A, =0.1.

time 2, then Table [5.1] shows that “significance” differences were estimated be-
tween ZNF-CCN and ZNF-SIV. While an edge was absent between ZNF and CCN
at time 1 the same was present at lag 2. Opposite is the situation for ZNF-SIV.

5.1.2 Simulation study for delta graphical lasso model

We considered a simulation study to show the performance of the proposed model.
Table [5.2] shows the simulation study scheme in which four different scenarios are
studied. Here for different scenarios we mean that the number of nodes, links or
time points change while the structure of the networks is the same.

ID g gt t p n
1 20 0 3 60 50
2 - 20 - 120 -
3 - 40 - 180 -
4 - 60 - 240 -

Table 5.2. Simulation study scheme in which four scenarios are represented. The
first column is an identification number, the second one indicates the number of
variables per each time point (third column). The number of independent samples
are represented in the last column.

For each scenario we simulate 100 datasets from a multivariate normal dis-
tribution with g equal to zero and X equal to the inverse of a precision matrices
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®. The structure of the graph changes across time. In fact, we want to consider
graph with similar structures across some time points. Let us consider a graph with
gt x gt nodes and m connections and let’s say that these g nodes are observed at ¢
time points. In order to build our matrix ® we start to build Ny 1, i.e. the network at
lag 0 and time point 1. We can refer at this network as the starting point networks.
Then for Ny, we assume that few changes happened and most of the structure it
is equal to the starting point network. For example we allow n; edges to be birth
and ny edges to be death. We repeat this procedure for # — 1 times and then we put
the Np; sub-matrices into the matrix @. Note that we assume networks in which
vi,t and y;,t + 1 are independent so that N;,s with j > 0 are filled with zeros. We
increase the number of nodes in the graph from scenarios 1 to 4. Random variables
associated with these added nodes are independent. We keep the number of repli-
cates and time points constants. The number of replicates is fewer than the number
of random variables.

We take advantage of the R package simone to simulate networks with few
changing points. The function coNetworks gives the opportunity to create such
structures with n = nj + ny links different from a given structure. Note that we
have implemented the constraints and used R.Matlab to connect Matlab and R.
Table [5.3] shows the average of false positive, false negative and false discovery

FP FN FD FnD
AlICc | 0.0092 0.0811 0.2000 0.0031

1 BIC | 0.0363 0.0139 0.4873 0.0005
AIC | 0.0698 0.0069 0.6470 0.0003
AlICc | 0.0057 0.0447 0.2899 0.0006

2 BIC | 0.0088 0.0321 0.3826 0.0005
AIC | 0.0437 0.0041 0.7514 0.0001
AlCc | 0.0016 0.4585 0.2730 0.0036

3 BIC | 0.0016 0.4585 0.2730 0.0036
AIC | 0.0288 0.1452 0.8088 0.0012
AlCc | 0.0091 0.1034 0.1680 0.0052

4  BIC | 0.0396 0.0517 0.4527 0.0027
AIC | 0.0670 0.0000 0.5704 0.0000

Table 5.3. The average of the proportions of how many links have been correctly
estimated were calculated by the False Positive (FP), False Negative (FN), False
Discovery (FD) and False not Discovery (FnD).

after 100 simulation were run. These results show that the model is reliable and it
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can be used for real applications when small changes in different time points are
present. Indeed, the assumption given in Section [2.3]should still be satisfied.

5.1.3 Application of difference graphical lasso to Tcell

In this subsection we consider human T-cell dataset and apply Ag;. We assume that
genes Y;; and Y ;1 are conditional independent given the rest. This means that the
edge set for networks at lag 2, i.e. N;, is an empty set. We define the following Ay,
model:

[N] < Fi,N, < 0],

where we allow the following constraints V; < 0,1 or 2, i.e elements in N; are all
zero, penalized as described in formula (5.2)), or 2 no constraint is imposed. Figures
[5.1) 5.2 [5.3] are obtained from the estimation procedure where two graphs (upper-
left, upper right), intersection (bottom-left) and difference (bottom-right) between
time 1 and time 2, time 2 and time 3, and time 3 and time 4 are represented.

Once a graph has been estimated several question on how to analyse time-
evolution networks might be asked. In what way do new entities enter a network?
Does the network retain certain graph properties as it grows and evolves? Does
the graph undergo a phase transition, in which its behaviour suddenly changes?
In answering these questions it is of interest to have a diagnostic tool for tracking
graph properties and noting anomalies and graph characteristics of interest. We
take advantage of ADAGE (McGlohon and Faloutsos, 2007)), a software package
that analyse: number of edges over time, number of nodes over time, densification
law, eigenvalues over increasing nodes, size of largest connected component vs.
nodes, number of connected components vs. nodes and time, comparative sizes
of connected components over time. The densification law states that number of
edges vs. number of nodes should follow a power law. The eigenvalues of a graph
are of interest, as they might indicate a phase transition. The sizes and numbers of
connected components are also indicative of phase transitions. One would expect
the last item to follow power laws with the same slope in each time step.

5.2 Sparse Gaussian graphical models for scale-free net-
works

Scale-free networks are quite common structure in networks biology. These net-
works are assumed to own prior internal structures of connectivity which drive the
inference method. Ambroise et al. (2009) provided a method that looks for sparse
solutions, but also for an internal structure of the network that drives the inference.
Indeed, biological networks and particularly gene regulation networks are known
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Figure 5.1. Graph, intersection and difference between time 1 and time 2

not only to be sparse, but also organized, so as nodes belong to different classes
of connectivity. Thus, they suggested a criterion that takes this into account. The
internal structure considered relies on affiliation networks. That is, genes are clus-
tered into groups that share the same connectivity patterns. This can be seen as
the analogous to the group-LASSO (Yuan and Lin, 2007)) applied to a graphical
context.

Opgen-Rhein and Strimmer (2007), L’ebre (2009), Shimamura et al. (2009) as-
sumed a first-order vector auto-regressive (VAR1) model for the time course data
generation, they provided inference methods handling high-dimensional settings.
In particular, Opgen-Rhein and Strimmer suggested a shrinkage estimate while
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Figure 5.2. Graph, intersection and difference between time 2 and time 3

L’ebre performed statistical tests on limited-order partial correlations to select sig-
nificant edges. In a recent work, Shimamura et al. (2009) proposed to deal with
this VARI setup by combining ideas from two major developments of the LASSO
to define the Recursive elastic-net. As an elastic-net (Zou and T. 2005), this method
adds an ¢, penalty to the original ¢; regularization, thus encouraging the simulta-
neous selection of highly correlated covariates on top of the automatic selection
process due to the ¢ norm. As in the adaptive-LASSO (Zou 2006), weights are
corrected on the basis of a former estimate so as to adapt the regularization param-
eter to the relative importance of coefficients. Note that, in this context, we are no
longer looking for an estimate of the inverse of the covariance matrix but of the
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Figure 5.3. Graph, intersection and difference between time 3 and time 4

parameters of the VAR1 model, which leads to a directed graph. In this section, we
consider scale-free networks which we have discussed in Subsection Here
we want to recall that the degree of a scale free networks for each node should
follow a power law distribution. We want to build constraints such that the number
of connections among a node and the rest are as few as possible, i.e.

G
Y #O,;#0]|jeG 2 <p. (5.5)
g=1
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5.3 Partially unobserved networks

Suppose we have a sample of a subset of a collection of random variables. No
additional information is provided about the number of latent variables, nor of the
relationship between the latent and the observed variables. Is it possible to dis-
cover the number of hidden components, and estimate a graphical model over the
entire collection of variables? In this section, we address this question to different
prospectives which brings two classes of graphical models: state space models, and
Gaussian graphical models with latent variables.

First of all we consider linear-Gaussian state space models (SSMs) to estimate
model interaction parameters. Expectation maximization algorithm (EM) proposed
by Dempster et al. (1977) combined with the Kalman smoothing algorithm (Beal
et al., 2005} |Ghahramani and Hinton, 1996) are necessary to have maximum like-
lihood estimates. SSMs and Kalman filtering have been widely used in modelling
dynamic Bayesian networks. Model selection, which involves determining a suit-
able dimension of the hidden states, is an additional challenge when hidden vari-
ables are present into the system. Beal et al. (2005) approached the problem of
deciding on a suitable dimension of the hidden states through cross validation.
They let continuously increase the dimension of the hidden states and monitor the
predictive likelihood using the test data. One major drawback of this approach is
that it is very slow and not suitable for high-dimensional frameworks.

Alternatively, we propose dynamic Gaussian graphical models to estimate ge-
netic networks with latent variables. Our aim is to estimate the set of conditional
independence parameters for a Gaussian graphical model while we are taking into
account for effects of hidden components. We take advantage of the model pro-
posed by (Chandrasekaran ef al. (2010) and extend this model for dynamic net-
works.

5.3.1 State space models for latent variables

Linear Gaussian state space models also known are a class of dynamic Bayesian
networks that relate observations measurements to hidden variables. Let M =
(G,P) be a dynamic Bayesian network, where G is a directed acyclic graph and P is
a multivariate probability distribution. Consider a vector y = (yj,...,yr) of obser-
vations, where y; is a p-dimensional vector, and let X = (X, ...,Xr) be a vector of
hidden variables. Assume that the evolution of the hidden variables x, t = 1,...,T
follows a first-order Markov process plus a Gaussian noise w;, then|Holmes (2010)
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Figure 5.4. Graphical representetion for a state space model

consider the following multivariate autoregressive state space model (MARSS),

x; =Bx,_;+u+w;, where w; ~N(0,Q),
y: =Zx;,+a+v,, where v, ~(0,R), (5.6)
x9 ~ N(0,Vy),

where Z is a (p X k) transition matrix from state ¢ to state r + 1 and models the
influence of the gene expression values from previous time steps on the hidden
states, and B describes the temporal development of the regulators or the evolution
of the transcription factors from previous time step ¢ — 1 to the current time step
t and is of dimension (k x k). It provides key information on the influences of
the hidden regulators on each other. The state dynamics in the model equation
assumes that hidden states x; € R* follow a genetic expression with some
stochastic aspects and external inputs u with i.i.d. process noise w;, ~ N(0,Q).
The dynamic observations y; € R” also defined via the model equation (5.6) are
linear combination of the hidden state and the external inputs a with i.i.d. Gaussian
measurement noise v, ~ N(0,R). Note that hidden variables x, are not directly
accessible but they rather are related to the observed data vector y;. For time-
course genetic data y;; could represent expression level of gene i at time j and x;
the quantities of RNA produced by genes at time ¢.

Figure [5.4] shows a graphical representation for a state space model. In gene
regulation, equation (5.6) implies that the observed gene expression equation y; is
a linear function of the protein transcription factor x, which itself describe a lin-
ear function of the previous ones. The model describes two fundamental stages in
gene regulation which is in conformity with the central dogma, i.e. DNA does not
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code for protein directly but rather acts through two stages, namely transcription
and translation. The model acts as a feed-back loop in the following way. DNA
is the molecular storehouse of genetic information, and mRINA is transcribed from
DNA by enzymes called RNA polymerases and it is generally further processed by
other enzymes. RNA having moved outside the nucleus, attaches to ribosome and
is translated to proteins.

Ghahramani and Hinton (1996) derive EM algorithm for unconstrained MARSS
model. This EM algorithm was originally derived by [Shumway and Stoffer (1982).
They extend the derivation to the case of a constrained MARSS model where one
may fix to be equal shared elements in the parameter matrices. The algorithm
consists of an expectation step (E-step), which computes the expected values of
the hidden states using the Kalman filter/smoother, combined with a maximization
step (M-step), which computes the maximum-likelihood estimates of the parame-
ters given the data and the expected values of the hidden states.

Likelihood for SSM for latent variables

Let’s consider model (5.6)), the joint log-likelihood of the data and hidden states is

L1 _ T
(wylxi) = =) 50 —Zx—a)R \(y —Zx —a) - Jlog|R|
=1
T
1 _ T-1
- ZE(X[—BX,_l—u)/Q '(x, = Bx,_; —u) — 7 log|Q|
=2
1,4 1 n
EXOVO X0—§10g|Vo|—§log27r, 5.7

where y! is shorthand for all the data from time t = 1 to = T, and n is the number
of data points. The likelihood function comes from the likelihood function for a
multivariate normal distribution since X;|x,—; has a multivariate normal distribu-
tion and Y,|x, has a multivariate normal distribution. Here X, denotes the random
variable hidden states at time ¢ and X; is a realization from that random variable.
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We expand out the terms in the joint log-likelihood
H(y:y]x]) =
1 T
) Z[Y;R71Yt - Y;Rilzxz - (ZX;)/Rflyt — a/Rfly,
=1
— y/R'a+ (Zx)R 'Zx, +a'R'Zx, + (Zx,)R 'a
T
+ dR7'a)— Elog\R] (5.8)
1 T
Y Z[X;Qilxt - X;QilBthl - (Bthl),Qilxt _u/Qilxt
=2
— xXQ lu+Bx,_)Q 'Bx,_ +uQ 'Bx,_; + (Bx_1)Q 'u

T-1
1
5 og|Q|

+ duQ 'u—

1 1 1 n
— §(X6V0 X0) — Elog\Vo\ — ElogZTc

Joint parameter estimation via EM algorithm. Given the joint log-likelihood
[5.8] one wants to maximize it with respect to y, i.e.

(W) == argmax,, [ (:¥] ,X]),

where ¥ = [Z,B,u,a,Q,R, V.

Several approaches have been proposed to estimate the vector parameter Y that
maximize (5.8). We take advantage of EM algorithm. Note that, if we had had the
complete data {y?",xT}, MLEs would have been calculated by using multivariate
normal theory. However, we do not have the complete data so we need to use an
iterative method for finding MLE of y. Observed data y, are used by successively
maximizing the conditional expectation of the complete data likelihood given the
observed values.

Given the estimated parameter vector Y, we obtain some useful interpretation
of biological system networks. For example the magnitude of the effect of proteins
on RNA (part of transcription process), and also estimate networks between the
proteins (transcription factors).

The E-step. The EM-algorithm for SSMs was formulated by Dempster et al.
(1977). The algorithm requires the computation of the conditional expectation of
the log-likelihood given the complete data. The likelihood function that is maxi-
mized in the M-step is the expected log-likelihood function where the expectation
is taken over (XT|y”), meaning the set of all possible hidden states (Xj,...,Xr)
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conditioned to all the data (y;,...,yr). We denote the expected log-likelihood
by H(y; XlT,le). Using the log-likelihood equation , the algorithm cycles
iteratively between an expectation step followed by a maximization step. In the ex-
pectation step, the expected values of the hidden states conditioned all the data and
to a set of parameters at iteration i, Y, are computed using the Kalman smoother.
The output from the Kalman smoother provides

% = Ex, (Xe|y], W) (5.9)
Vi = Var(X|y], ¥,). (5.10)
Vi1 = Cov(X:, X, 1ly!, W) (5.11)

From X;, V;, and V;,_1, we can compute

P =Ex, (X X[|y],¥,) =V, + %%/ (5.12)
P =By, (XXt 31, 90) = Vi1 + %%,y (5.13)

The subscript on the expectation, [E, denotes that the expectation is taken over the
hidden states, X, conditioned to the observed data, y. The right sides of equations
(5.10) and (5.T1) arise from the computational formula for variance and covariance:

Var(X) = E(XX') —E(X)E(X)'. (5.14)
Cov(X,Y) =E(XY') —E(X)E(Y)". (5.15)

The M-Step. In the maximization step, a new parameter set ¥, | is computed by
finding the parameters that maximize the expected log-likelihood function (5.16))
using %;, P and P, ,— from iteration i. The equations that give the parameters for
the next iteration (i + 1) are called the update equations. After one iteration of the
expectation and maximization steps, the cycle is then repeated. New %,, P, and
P, ,—1 are computed using yw*! and then a new set of parameters Y’ is gener-
ated. This cycle is continued until the likelihood no more increases than a specified
tolerance level. This algorithm is guaranteed to increase likelihood at each iteration
(if it does not, it means there is an error in update equation). The algorithm must be
started from an initial set of parameter values y'. The algorithm is not particularly
sensitive to the initial conditions but the surface could definitely be multi-modal
and have local maxima. The likelihood function that is maximized in the M-step is
the expected log-likelihood function where the expectation is taken over (X |yT),
meaning the set of all possible hidden states conditioned on all the data. We denote
the expected log-likelihood by H(y;x],yT). Using the log-likelihood equation
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(.8). H(y:xT,y]) is

EX\yl(w;y{vx{) =

| _ _ _
— 5 LIVRy —Ex[yR™'Zx] — Ex[(Zx,)R ™'y —a'R ™y,
t=1

— yR'a+Ey[(Zx)R'Zx] +Ex), [aR™'Zx,] + Ex,[(Zx,)'R'a]

T

+ a’R’la]——log\R] (5.16)
T

- ZEXW x'Q 'x/] EX‘y[X;Q_lBX,,l]—IEXW[BX,,I)’Q_lx,]—Ex‘y[u’Q_lxt]
2=

— Ex‘y[xt lu] +IEX|y[Bx;_1Q_1Bx,,1] +IEX‘y[u’Q_1BX,,1] +IEX‘),[BX;_1Q_1u]

—1
+ 0'Q '] - ——log|Q|

— %(X6V61X0) — %log]V0| — glog27r.
We will reference the expected log-likelihood throughout our derivation of the up-
date equations; it could be written more concisely, but for deriving the update
equations, we will keep this long form. The new parameters for the maximization
step are those parameters that maximize the expected log likelihood H (y; XlT,le).
The equations for these new parameters are termed the update equations.

The unconstrained update equations In this paragraph, we show the deriva-
tion of the update equations when all elements of a parameter matrix are estimated
and are all allowed to be different; these are the update equations one can see in
Shumway and Stoffer (1982)). If some of the values are fixed or are shared, the
derivations are similar but they get more cluttered. [Holmes (2010) shows the gen-
eral update equations when there are fixed or shared values in the parameter matri-
ces. The general update equations are used in the MARSS R package. To derive the
update equations, we will find the parameters values that maximize H(y;x!,yT)
by partial differentiation of H(y;x],y?) with respect to the parameters of inter-
est, and then solve for the parameters value that sets the partial derivatives to zero.
The partial differentiation is with respect to each individual parameter element, for
example each u; in the vector u. The idea is to single out those terms in equation
that involve u; (say), differentiate by u;, set this to zero and solve for u;.
This gives the new u; that maximizes the partial derivative with respect to u; of
the expected log-likelihood. Matrix calculus gives us a way to jointly maximize
H(y;x],yT) with respect to all elements in a parameter vector or matrix. Deriving
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the update equations is tedious. We show the update equation for u while the rest
can be found in|Holmes (2010).

The partial derivative of a scalar with respect to some column vector b (which
has elements by, b,,...) s

JH <8H JH 8H> 5.17)

b ob, db, " db,

Note that the derivative of a column vector b is a row vector. The partial derivatives
of a scalar with respect to some n X n matrix B is

OH 9H OH

81)1_1 8b2,1 an‘,l

JH JH JH

IH | 9b; Jby 7 Fbaa
db P

OH oH _ oH

‘9bl.n abZ,n abmn

Note that Q and R are symmetric matrix while B and Z may not be symmetric.

The update equation for u. Take the partial derivative of H(y;x!,y!) with re-
spect to u, which is a m x 1 column vector. All parameters other than u are fixed to
constant values (because we are doing partial derivation). Since the derivative of a
constant is 0, terms not involving u will equal 0 and drop out. The subscript, X |y,
on the expectation, [E, has been dropped to remove clutter. Taking the derivative of
equation (5.16) with respect to u:

JH f e

S = Z d(x}Q 'u/du)] —E[d(w'Q 'x,)/du] (5.18)

+ E[&((th,l)Q 'u/0u]+E[Q(W'Q 'Bx,_{)/du]  (5.19)

+ Jd(u'Q 'u)/du (5.20)

Using relations (1) and (2) in Appendix A and using Q! = (Q~!)’, we have

T

OH/du = Z E[(Q 'x,)']) (5.21)
25

E[(Bx; Q)] +E[(Q 'Bx1)]+2'Q""  (5.22)

Set the left side to zero (a 1 x m matrix of zeros) and transpose the whole equation.
Q! cancels out by multiplying on the left by Q (left since we just transposed the
whole equation), giving

T

0= Z —BE[x,_1]—u) = Y (E[x—1] -BE[x,_i]— (T —1)u)  (5.23)
t=2
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Solving for u and replacing the expectations with the Kalman smoother output,
gives us the new u that maximizes H,

1 &
Wpew = Z(xt - th—l) (524)
T-15

Choice of hidden state dimension: AIC Model selection or the determination
of the optimum dimension of the hidden state is a complex but important in the
application of SSMs to networks re-construction. Most popular criterion for model
selection include AIC and the BIC. We apply AIC method for our model selection.
Given the log-likelihood function (5.16)), AIC for a model with k-dimensional state
vector is given by:

AIC(k) == 2[(lilk,yt,X,|) —1—26,

with e is the number of estimated parameters, and /(¥ y;,X;) the log-likelihood of
the observed data. We settle on the hidden state dimension that has the minimum
AIC, i.e we find k such that

(k) := argmin, {AIC(k)}.

In this case, we continuously increase the number of hidden states and monitor the
AlC.

5.3.2 Gaussian graphical models for latent variables

We have considered fixed structure and fixed number of hidden states so far. In this
section we are going to address the following question: is it possible to discover
the number of hidden components and learn a statistical model over the entire
collection of variables?

Note that we want to recover the networks of the observed variables but still
we want to take into account the uncertainty about the hidden components.

Our contribution is to extent the model proposed by |Chandrasekaran er al.
(2010) for dynamic networks by considering different structures of the precision
matrix.

Let Z = (Y, X) be the vector of observed Y and unobserved X random vari-
ables. We assume that Z ~ N(0,0 "), where £ = ® !, and partition these two
matrices as follows:

— 2)’)’ E)W — ®yy ®yx
z_< ny Zxx >’®_< ®xy ®xx '
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The marginal concentration matrix @y, corresponding to the observed variables Y
is given by the Schur complement with respect to the block X,,, i.e.:

0,=x,-Z T2} (5.25)

Xy ?

In what follows we indicate with S = E;yl and with L = Z;xl ):xxz;yl the matrices
that compose @,,. It turns out that when we observe only Y we can find only X,,
as shown in Chapter 3] However, we have given some biological motivation to
consider unobserved random variables when we are estimating the structure of the
network. If we analyse more closely the two terms involved in equation (5.25)),
we can give a precise meaning at these two components. In fact, the first term
S represents the concentration matrix of the conditional statistics of the observed
variables given the latent variables. A necessary assumption is that S is a sparse
matrix. On the other end, the second term L represents a summary of the effect
of marginalization over the hidden variables X. It is necessary to assume that
this matrix has low rank which means that the information of the hidden state is
spread out over Y. One can think at this solution as a connection between principal
component analysis and sparse graphical models. In standard graphical models
one would approximate a concentration matrix by a sparse matrix in order to lean a
sparse graphical model, while in principal component analysis the goal is to explain
the statistical structure underlying a set of observations using a small number of
latent variables. However, in this framework the latent variables are not principle
components and are called hidden components.

The fundamental issue of identifiability is now ready to be discussed. We have
just seen that we can interpret the terms in the right hand of equation [5.25] but the
question is whether or not we are able to separate these two effects once that we
have observed Y and assumed that the complete vector Z is normally distributed. It
turns out that if we consider the tangent space which is we consider a transforma-
tion of Z;},l from a manifold is a tangent space and a transformation of Zy}l zxxz;yl
from the manifold in a second tangent space, we can show that the conditions for
identifiability are satisfied. See Chandrasekaran et al. (2010) for a more detailed
discussion.

Likelihood for Gaussian graphical models with latent variables

We consider the following minimization problem:

(S,L) := argmingy {—I(S—L:®)+A|[S||i + Aatr(L)}  (5.26)

st. S—L>0
L>0,
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where /(S —L;0) = log|®| —tr(WO), W =YY" ,(y;, — ¥)(y; — §)' is the sum of
square of the observed variables, S provides an estimate of @,, while the estimator
for Z;CIZXXZ;; is given by L.. A smoothing parameter A = (4;,1,) need to be
estimated. Here A; regulates the sparsity and A, regulates the low rank matrix.
The model is more flexible and there is no need to use neither EM-algorithm nor

Kalman-Filter which suffer some problems in real applications.

Example. Consider 5 observed variables and 1 hidden state per 2 time points,
then: Figure @] shows the true networks, the estimated one, and the estimated net-
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Figure 5.5. True network (left), estimated network (centre), and estimated network
with latent structure (right)
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work with latent variable or recovered network. If we apply a Gaussian graphical
model with latent variables than we get a recover networks that is closer to the true
one than the one estimated with graphical lasso. The rank is rank(L) = 2 which
corresponds to the number of hidden states.

5.4 Application

5.4.1 Real data application

In Chapter [3] and 4} we applied a structured Gaussian graphical models for the
data set T-cell which is a time-course dataset where expression levels of 58 genes
were collected across 10 time points. Here we apply Graphical graphical model
for latent variable described in Section [5.3.21 We consider the same model as in
Section [3.5|but in this case we take into account for latent structure. The model is

[So ~ 1,Ny ~ Fr,S1 ~ Fr,Ni ~ Fr, S, ~ Fr],

that implies that the networks at temporal lag 0 are constrained to be equal across
the five observed time points, Moreover, the networks at temporal lag 1 are con-
strained to be equal across time, no links are presents between time ¢ and time
t + 2 except for the self-self interactions, i.e. interactions between the same cou-
ple of genes. The recovered network structures is completely different from the
recovered network structures from copula and structured Gaussian graphical mod-
els. This suggest that some latent structure is present and it should be taken under
consideration

5.5 Summary

In this chapter we have proposed methods to deal with different structured graphs
in particular we have considered dynamic graphs with small temporal changes and
scale-free networks in the first part. In the second part we proposed methods to deal
with partially unobserved graphs. i.e. methods to deal with latent variables. Finally
we have applied copula Gaussian graphical models with non canonical Gaussian
density to estimating the structure of the real data set T-cell.
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Figure 5.6. Recovered network structures for latent variables. Representation of
interactions between genes at temporal lag 0. Note that networks at lag O at time
1,2,3,...,5 are equal since we impose Ny ~ Fr(left). Representation of interac-
tion between genes at temporal lag 1. Note that networks at lag 1 between time
(1,2),(2,3),(3,4),(4,5) are equal since we impose N; ~ Fr(right).
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