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Chapter 3: Control Systems
“Magnetic suspension is unstable without force control” Earnshow 1842.
3.1 State Space
Let’s consider the figure 3.1 having 
[image: image1.wmf]m

inputs and 
[image: image2.wmf]k

outputs. 
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Fig. 3.1: Dynamic system view with m inputs and k outputs.
The relations between the input and outputs variable are characterized by differential equations in a dynamic system. The differential equations usually are a second order system reduced to the one order due to the state space form (3.1.1) and (3.1.2):
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where 
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 is the state vector and 
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 is the outputs of system. In this thesis we focused all attention on linear time invariant systems (LTI) in order to simplify all analytical discussion. In this case the relation (3.1.1) and (3.1.2) become respectively (3.1.3) and (3.1.4):
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where 
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3.2 Inputs-outputs relation
The relation between the input and output of a system is characterized by the transfer function. The common transfer function is characterized by transforming in a Laplace domain the input vector, state vector and in output vector. As shown in (3.2.5):
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where 
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 are the Laplace transformation of vector mentioned before. By solving a general algebraic equation in s-variable we obtain the relation (3.2.6) through (3.2.5):
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      (3.2.6)

The transfer function is s defined as shown in (3.2.7):
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We conclude by saying the input and output are mathematically expressed as (3.2.8):
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The general solution of (3.2.4) is carried out from (3.2.9) and (3.2.10), 
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[image: image25.wmf]()

()(0)()()

t

tt

o

teedt

t

tt

-

=++

ò

AA

yCxCBuDu






    (3.2.10)
3.2.1 Controllability and Observability
In order to implement a controller in a dynamic system the controllability and observability must be checked so it’s sure that an input signals can stabilize the system (controllability) and a certain output can be observed by the sensor (observability). The system (3.2.4) is controllable when the system can be brought from the initial state 
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. In this case we can use the relation (3.2.11) in order to relate the input to the final state:
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    (3.2.11)
In order to check the controllability of the system the matrix expression (3.2.12) is used by verifying its rank is maximum or rather equals to the order of A matrix:
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    (3.2.12)
A given system is observable when the initial condition of a system is known by knowing the input 
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 in a certain time range. When it happens the solution is carried out by (3.2.13) 
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    (3.2.13)

In the same way there is the observability matrix to carried out the observability of system by the same procedure followed for the controllability matrix 
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 as shown in (3.2.14), or rather its rank must be equal to the dimension of state vector:
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    (3.2.14)
3.3 Linear Quadratic Regulator LQR
3.3.1 State Feedback
A view of common configuration of a state feedback built for a linear quadratic regulator is shown in the figure 3.2, but it can be used also for other different controller such as PID:
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Fig. 3.2: State Feedback view with system and controller.
The LQR control is based on minimization of cost function (3.2.15):
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    (3.2.15)
where
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    (3.2.16)
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’s rule provides a first attempt to plug the element along the diagonal matrix in (3.2.16) in order to get the minimum of cost function. This rule lead to the expression (3.2.17) and (3.2.18) can be used:
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    (3.2.17)


[image: image43.wmf]2222

1111

,,,

maxmaxmaxmax

jjjj

diag

uuuu

æö

=

ç÷

ç÷

èø

R






    (3.2.18)

This rule is based on inverse of maximum powered two of admissible range of displacement and current. Once set up Q and R matrix. Automatically the control matrix is carried out by solving the algebraic Lurie-Riccati equation (3.2.19):
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where 
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 is the solution, called stabilizing, in order to solve (3.2.20) that returns the state feedback of the system as shown in (3.2.21) and (3.2.22):
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3.4 State Observer
Luenberger’s observer is an estimator of state vector component. In the case of all state vector’s components are not accessible this algorithm can be developed so that no further sensors are implied in the control of system. In the case of linear quadratic regulator it needs to capture two different parameters; displacement and velocity of shaft. Let’s consider a linear time invariant system (LTI) as (3.2.4) a linear stationary system is built up such (3.4.23):
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    (3.4.23)

In order to get the observer a certain condition must be respected or rather (3.4.24):
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    (3.4.24)

Relationship (3.4.23) sets that (3.2.4) must be controlled in order to implement the same steady state response of the observer. In this way, the observer can be attached in the dynamic model in order to build up the state feedback for the control of system. The steady state condition must be reached for different initial condition between the dynamic model and the observer in order to show the capability of this last to substitute the task of further sensors. This must be valid for each input and error defined at initial time. Let’s define the initial error shown from the equation (3.4.25):
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where
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    (3.4.26)
The expression (3.4.26) has negative real part of eigenvalues so the error converges to zero after a small range of time. The closed loop eigenvalues of (3.2.4) belong to the dynamic system (3.2.22) unified to those of (3.4.26) for “Principle of Separation Theorem”. The new dynamic model is characterized by the system of differentia equations (3.4.27):
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    (3.4.27)

3.5 Mu-Synthesis
Three different configuration of LFT can be applied to a dynamic system according with the needs and performances task. In this work it has been adopted the full configuration or rather control feedback and perturbation of uncertainties as shown in the figure 3.3:
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Fig.3.3:Linear Fractional Transformation feedback.

where d, v, w, z, u and y are respectively the perturbation input such as parametric variation, exogenous excitation, sensors measures, control input and output variable that has to be controlled. The transfer function relates input and outputs where the output are the displacement z of the shaft’s section and the input w is the input modulated in a frequency domain as disturbance mathematically shown in (3.5.28) and (3.5.29):
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    (3.5.29)
The relation (3.5.28) is a part of the entire transfer function. The transfer function considers more analytical functions according with the input injected on system as shown in (3.5.30):
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    (3.5.30)
Once the expression (3.5.30) is carried out, the control system is built up through an iteration sketched in the following passages:

1. Find the 
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 matrix by (3.5.31) where D is identity matrix in the first iteration
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    (3.5.31)

2. Solve the optimization problem of control system 
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 by (3.5.32);
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    (3.5.32)

3. Once K is known carry out the new matrix 
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    (3.5.33)

4. Once 
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 has been plotted it must be considered those with minimum phase and taken those having the value described by the relation (3.5.34);
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    (3.5.34)
Whether the inequality (3.5.34) is not respected the iteration must be repeated starting from point 2 until the condition is satisfied. 
3.6 Sub(H)∞ 
The solution to the optimization problem is (3.5.35): 
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    (3.5.35)
where P is the (3.6.36);
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    (3.6.36)
Generally speaking, there are no analytic formulas for the solutions. In practical design, it is usually sufficient to find a stabilizing controller K such that the H∞ norm of the closed-loop transfer function is less than a given positive number, i.e.,
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where 
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. This is called the H∞ suboptimal problem. When certain conditions are satisfied, there are formulae to construct a set of controllers that solve the problem (3.6.35). The solution set is characterized by a free parameter Q(s), which is stable and of ∞-norm less than γ. It is imaginable that if we successively reduce the value of 
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, starting from a high value of it, is possible to ensure the existence of a suboptimal solution. It should, however, be pointed out here that when γ is approaching its minimum value 
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 the problem would become more and more ill-conditioned numerically. Hence, the “solution” thus obtained can be very unreliable. The procedure to carry out the controller is shown in [3] due to the long discussion to obtain all necessary matrices to build the controller.
3.7 Loop Shaping Design

On the robust stabilization against perturbations on normalized coprime factorizations, a design method, known as the H∞ loop-shaping design procedure (LSDP), has been developed. The LSDP method augments the plant with appropriately chosen weights so that the frequency response of the open-loop system (the weighted plant) is reshaped in order to meet the closed-loop performance requirements. Then a robust controller is synthesized to meet the stability.
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Fig.3.4:Linear Fractional Transformation feedback.
The loop-shaping design procedure can be carried out in the following steps;

1. Using a precompensator, 
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, as depicted in Figure 3.4, the singular values of the nominal system 
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are modified to give a desired loop shape. Usually, the least singular value of the weighted system should be made large over the low-frequency range to achieve good performance such as the tracking, the largest singular value is small over the high-frequency range to deal with unmodelled dynamics, and the bandwidth affects the system response speed, while the slope of the singular values near the bandwidth frequency should 
not be too steep. The nominal system and weight functions 
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 contains no hidden unstable modes;

2. A feedback controller, 
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, is synthesized that robustly stabilizes the normalized left coprime factorization of 
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. On the other hand, if the achievable ε is too large in the (3.4.38);
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    (3.4.38)

this can probably indicate an overdesigned case in respect of the robustness, which means that the performance of the system may possibly be improved by using a larger γ in computing 
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3. The final feedback controller, 
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 For a tracking problem, the reference signal generally comes between 
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The closed-loop transfer function between the reference r and the plant output y is (3.4.39) 
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