
ORIGINAL ARTICLE

SIVR epidemic model with stochastic perturbation

Elisabetta Tornatore • Pasquale Vetro •

Stefania Maria Buccellato

Received: 10 January 2012 / Accepted: 6 October 2012 / Published online: 25 October 2012

� Springer-Verlag London 2012

Abstract We propose a stochastic disease model where

vaccination is included and such that the immunity is

permanent. The existence, uniqueness, and positivity of the

solution and the stability of the disease-free equilibrium are

studied.

Keywords Epidemic model � Stochastic process �
Vaccination � p-th moment

1 Introduction

The mathematical models, deterministic and stochastic, are

wide used in order to describe the spread of a disease into a

population.

Most models descend from the classical SIR model

of Kermack e Meckendrick [10]. In the SIR model, the

population is subdivided into three distinct classes: sus-

ceptible, infective, and removed denoted by S, I, and

R respectively.

The fundamental parameter that governs the spread of

the disease into a population is ‘‘the basic reproduction

number’’ denoted by R0. It is defined as ‘‘the average

number of secondary case caused by an infectious indi-

vidual in a totally susceptible population.’’ When R0� 1

the disease dies out while, when R0 [ 1 the disease is

endemic.

After the model of Kermack e Meckendrick, many its

extensions and other models have been proposed and

studied (see [3, 13]).

The introduction of a stochastic perturbation in these

models is justified by observation that the real life is full

of social and environmental random variations. The

presence of a stochastic noise in a model modifies the

behavior of solution of correspondent deterministic sys-

tem and modifies the thresholds of the system for an

epidemic to occur. In [14], the authors studied how the

noise induce effects in a populations dynamics. In [5], the

authors studied a dynamical model for epidemiological

infection with a noise source with memory. In [6], the

authors analyzed a model for epidemic dynamics by using

a pulse noise model with memory. In [16], a stochastic

SIR model has been studied and has been showed as the

thresholds vary.

There is an increasing interest in the analysis and control

of infectious disease. Attention has been give to vaccina-

tion and treatment policies. The study of vaccination

related to disease transmission has been the subject of

intense theoretical analysis (see [1, 2, 11, 15, 17]). In

modeling the disease transmission in which a vaccination

program is in effect, the main problem is that the vacci-

nation is not complectly efficient. Vaccines may have low

efficacy and be leaky (i.e., after a certain time, vaccinated

individual may have only partial protection from infec-

tion); moreover, data support the fact that a vaccine usually

wanes, thus providing only temporary protection. We

consider a SIR-type disease when a vaccination program is

in effect
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S0ðtÞ ¼ l� bSðtÞIðtÞ � ðlþ /ÞSðtÞ þ hVðtÞ
I0ðtÞ ¼ bSðtÞIðtÞ þ qbVðtÞIðtÞ � ðkþ lÞIðtÞ
V 0ðtÞ ¼ /SðtÞ � qbVðtÞIðtÞ � ðlþ hÞVðtÞ
R0ðtÞ ¼ kIðtÞ � lRðtÞ

8
>><

>>:

ð1Þ

precisely the population can be in one of four states: sus-

ceptible, infective, vaccinated, and removed denoted by

S, I, V, and R respectively. In the model, we suppose that

in the unit time, a fraction / of the susceptible class is

vaccinated. The vaccination may reduce but not completely

eliminate susceptibility to infection, so in the model is

included a factor q, 0 B q B 1, in the contact rate of

vaccinated members with q = 0 meaning that the vaccine

is perfectly effective and q = 1 meaning that the vaccine

has no effect. We suppose also that the vaccination loses

effect at a proportional rate h and that the immunity is

permanent so that a fraction k of infective goes in the

removed class. We assume that the birth occurs in the

system with the same constant rate l of death and that all

newborns enter in susceptible class. Consequently, the total

population is constant and the variables are normalized to

N = 1, that is, S(t) ? I(t) ? V(t) ? R(t) = 1 for all t C 0.

Of course l; k;/; h; b 2 Rþ.

In this paper, we examine the case when the vaccine

does not lose its effectiveness (i.e., h = 0). One can modify

the basic model, based on this assumption in order to get

the system

S0ðtÞ ¼ l� bSðtÞIðtÞ � ðlþ /ÞSðtÞ
I0ðtÞ ¼ bSðtÞIðtÞ þ qbVðtÞIðtÞ � ðkþ lÞIðtÞ
V 0ðtÞ ¼ /SðtÞ � qbVðtÞIðtÞ � lVðtÞ
R0ðtÞ ¼ kIðtÞ � lRðtÞ:

8
>><

>>:

ð2Þ

Denoted by R0 ¼ b
lþk the basic reproduction number and

by

R/ ¼ R0

lþ q/
lþ /

� �

the basic reproduction number in a population in which a

proportion / has been vaccinated. It is known that in the

absence of the disease (I = 0) there is a unique disease-free

equilibrium

E0

l
lþ /

; 0;
/

lþ /
; 0

� �

that is globally asymptotically stable if R/\1.

If R/ [ 1 for some parameters values, the model

exhibits a backward bifurcation leading to the existence of

multiple endemic equilibria and news subthreshold, which

may be important when it comes to designing vaccination

strategies (see [2, 4]).

The real world is not deterministic so it is important

to examine the inclusion of stochastic effects into

deterministic models. We introduce a stochastic perturba-

tion in the system (2) and obtain the following system

dSðtÞ ¼ ðl� bSðtÞIðtÞ � ðlþ /ÞSðtÞÞdt

� rSðtÞIðtÞdWðtÞ
dIðtÞ ¼ ðbSðtÞIðtÞ þ qbVðtÞIðtÞ � ðkþ lÞIðtÞÞdt

þ rðSðtÞ þ qVðtÞÞIðtÞdWðtÞ
dVðtÞ ¼ ð/SðtÞ � qbVðtÞIðtÞ � lVðtÞÞdt

� qrVðtÞIðtÞdWðtÞ
dRðtÞ ¼ ðkIðtÞ � lRðtÞÞdt

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð3Þ

where r is a positive constant and W is a real Wiener

process defined on a stochastic basis ðX;F ; ðF tÞt� 0;PÞ.
In this paper, we want to prove the existence of the

solution of (3) with suitable initial conditions and study the

stability of the disease-free equilibrium.

2 Nonnegative solutions

In this section, we prove the existence of the solution of

system (3).

We introduce the notation

R
4
þ ¼ fx 2 R

4 : xi [ 0 for all i ¼ 1; 2; 3; 4g:

To begin the analysis of the model, define the subset

X ¼ fðS; I;V;RÞ : S� 0; I� 0;V � 0;R� 0; Sþ I

þ V þ R ¼ 1 g

to ensure that the model is well posed and thus biologically

meaningful, we need to prove that the solution remains

in X.

We study (3) with the following initial conditions

ðSð0Þ; Ið0Þ;Vð0Þ;Rð0ÞÞ 2 R
4
þ;

Sð0Þ þ Ið0Þ þ Vð0Þ þ Rð0Þ ¼ 1:
ð4Þ

Since the coefficients of the system (3) are locally Lips-

chitz, there is the following result of local existence of

solutions.

Theorem 2.1 (Theorem 1.1, [5]) If (4) holds, then there

exists s[ 0 and a unique solution (S(t), I(t), V(t), R(t)) to

the system (3) on t 2 ½0; s½ almost surely.

There is the following remark.

Remark 2.1 Let (S(t), I(t), V(t), R(t)) be the solution of

the system (3) in [0,s[; if S(s) [ 0, I(s) [ 0, V(s) [ 0,

R(s) [ 0 for all 0 B s B s a.s., then

0\SðsÞ\1; 0\IðsÞ\1; 0\VðsÞ\1; 0\RðsÞ\1

for all 0 B s B s a.s..
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Proof It is sufficient to observe that the total population is

constant, that is, S(t) ? I(t) ? V(t) ? R(t) = 1 for all

0 \ t \ s almost surely, in fact summing the equations of

the system (3), we obtain

dðSþ I þ V þ RÞ ¼ 0:

Now, we consider a integer k0 [ 4 sufficiently large

such that ðSð0Þ; Ið0Þ;Vð0Þ;Rð0ÞÞ 2 ½ 1
k0
; k0�4. For each

integer k [ k0, we define the stopping time

sk ¼ inf t 2 ½0; s½: ðSðtÞ; IðtÞ;VðtÞ;RðtÞÞ 62 1

k
; k

� �4
( )

:

ð5Þ

We shall show that the solution of (3) with initial condition (4)

is nonnegative and global by using the idea exposed in [7].

Theorem 2.2 There exists a unique solution

(S(t), I(t), V(t), R(t)) to the system (3) with initial condition

(4) on t C 0 and the solution will remain in R
4
þ with

probability 1, namely ðSðtÞ; IðtÞ;VðtÞ;RðtÞÞ 2 R
4
þ for all

t C 0 almost surely.

For the proof of the theorem, we need the following

lemma.

Lemma 2.1 Let (S(t), I(t), V(t), R(t)) be the solution of

the system (3) with initial condition (4), then

Eðlog2 Sðsk ^ tÞ þ log2 Iðsk ^ tÞ þ log2 Vðsk ^ tÞ
þ log2 Rðsk ^ tÞÞ�CðtÞ 8t� 0

ð6Þ

where sk is the stopping time given by (5) and C(t) is the

solution of the Cauchy problem

y0ðtÞ ¼ Bþ B0yðtÞ
yð0Þ ¼ log2 Sð0Þ þ log2 Ið0Þ þ log2 Vð0Þ þ log2 Rð0Þ

�

where B and B0 are constants defined by

B ¼ ð2ð1þ qÞbþ 8lþ 2uþ 2kþ 2r2ð1þ q2Þ
þ 2r2ð1þ qÞ2Þ;

B0 ¼ 4ð2ð1þ qÞbþ 8lþ 2uþ 2kþ r2ð1þ q2Þ
þ r2ð1þ qÞ2Þ:

ð7Þ

Proof We consider a C2-function, U : R4
þ ! Rþ by

UðxÞ ¼
X4

i¼1

log2 xi; ð8Þ

In virtue of stopping time defined in (5), ðSðsk ^ tÞ; Iðsk ^ tÞ;
Vðsk ^ tÞ;Rðsk ^ tÞÞ 2 ½1

k
; k�4 and by using Ito formula, we

have

log2 Sðsk ^ tÞ þ log2 Iðsk ^ tÞ þ log2 Vðsk ^ tÞ
þ log2 Rðsk ^ tÞ� log2 Sð0Þ þ log2 Ið0Þ þ log2 Vð0Þ
þ log2 Rð0Þ þ A1 þ A2 þ A3; ð9Þ

where

A1¼2

Zsk^t

0

"
l

Sðt0Þ�bIðt0Þ�ðlþ/Þ�r2

2
I2ðt0Þ

� �

logSðt0Þþ

þðbðSðt0ÞþqVðt0ÞÞ�ðkþlÞ�r2

2
ðSðt0ÞþqVðt0ÞÞ2Þ

logIðt0Þþð/ Sðt0Þ
Vðt0Þ�bqIðt0Þ�l�r2

2
q2I2ðt0ÞÞlogVðt0Þþ

þðk Iðt0Þ
Rðt0Þ�lÞlogRðt0Þ

#

dt0;

A2¼r2

Zsk^t

0

½ð1þq2ÞI2ðt0ÞþðSðt0ÞþqVðt0ÞÞ2Þ�dt0;

A3¼2r
Zsk^t

0

½�Iðt0ÞlogSðt0ÞþðSðt0Þ

þqVðt0ÞÞlogIðt0Þ�qIðt0ÞlogVðt0Þ�dWðt0Þ:

In virtue of Remark 2.1, we can neglect the terms

Zsk^t

0

l
Sðt0Þ log Sðt0Þdt0;

Zsk^t

0

bðSðt0Þ þ qVðt0ÞÞ log Iðt0Þdt0;

Zsk^t

0

/
Sðt0Þ
Vðt0Þ log Vðt0Þdt0;

Zsk^t

0

k
Iðt0Þ
Rðt0Þ log Rðt0Þdt0

and we estimate the terms of right-hand side of (9) by the

following inequalities

jA1j � ½2ð1þ qÞbþ 8lþ 2uþ 2kþ r2ð1þ q2Þ

þ r2ð1þ qÞ2�
Zsk^t

0

½j log Sðt0Þj þ j log Iðt0Þj

þ j log Vðt0Þj þ j log Rðt0Þj�dt0;

and

jA2j � ðr2ð1þ q2Þ þ r2ð1þ qÞ2Þt

substituting these relations into (9) and taking expectation,

we obtain
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Eðlog2 Sðsk ^ tÞ þ log2 Iðsk ^ tÞ þ log2 Vðsk ^ tÞÞ
log2 Rðsk ^ tÞÞ� log2 Sð0Þ þ log2 Ið0Þ þ log2 Vð0Þ

þ log2 Rð0Þ þ Btþ B0
Z t

0

Eðlog2 Sðsk ^ t0Þ

þ log2 Iððsk ^ t0Þ þ log2 Vððsk ^ t0Þ þ log2 Rðsk ^ t0ÞÞdt0;

where B and B0 are constants given by (7).

We set

YðtÞ ¼ Eðlog2 Sðsk ^ tÞ þ log2 Iðsk ^ tÞ þ log2 Vðsk ^ tÞ
þ log2 Rðsk ^ tÞÞ;

then, we obtain

YðtÞ� Yð0Þ þ Bt þ B0
Z t

0

Yðt0Þdt0;

from which it follows that

YðtÞ�CðtÞ 8t� 0;

where C(t) is the solution of Cauchy problem

y0ðtÞ ¼ Bþ B0yðtÞ
yð0Þ ¼ log2 Sð0Þ þ log2 Ið0Þ þ log2 Vð0Þ þ log2 Rð0Þ

�

and the lemma is proved. h

Proof of the Theorem 2.2 From the Theorem 2.1, there

exists s[ 0 and the solution (S(t), I(t), V(t), R(t)) to the

system (3) on t 2 ½0; s½; to show that this solution is global,

we need to show that s ¼ 1 a.s. Consider the stopping

time defined in (5). Clearly, (sk) is an increasing sequence.

Set s1 ¼ limk!1 sk, whence s1\s; a.s. If we can show

that s1 ¼ 1 a.s. then s ¼ 1 a.s. and consequently the

solution ðSðtÞ; IðtÞ;VðtÞ;RðtÞÞ 2 R
4
þ for all t C 0 a.s. For if

this statement is false, then there are two constants T [ 0

and � 2 ð0; 1Þ such that

Pðfx 2 X : s1ðxÞ� TgÞ[ �:

Consequently, there exists an integer k1 C k0 such that

Pðfx 2 X : skðxÞ� TgÞ� � 8k� k1:

Set Xk ¼ fx 2 X : skðxÞ� Tg for each k C k1, we have

PðXkÞ� �. Note that for every x 2 Xk there is some

component of (S(sk), I(sk), V(sk), R(sk)) equals a k or 1
k

and

hence by (8)

UððSðskÞ; IðskÞ;VðskÞ;RðskÞÞ;xÞ� log2 k:

From (6), we deduce that

CðTÞ�Eð1Xk
UððSðskÞ; IðskÞ;VðskÞÞ;xÞ� � log2 k

where 1Xk
is the indicator function of Xk. Letting

k!1 leads to the contradiction, so we must have s1 ¼
1 a.s. h

We observe that Theorem 2.2 and Remark 2.1 show that

X is the invariant set of the solutions of the system (3).

It is well known that the presence of a noise source can

modify the behavior of deterministic evolution of the sys-

tem. For this reason, we use numerical simulations based

on the Euler-Maruyama scheme and Matlab software and

refer to [9] for comparing the behavior of stochastic solu-

tion of (3) with that one of deterministic solution of (2). If

we choose the parameters values such that R/\1(see

Figs. 1, 2) with different values of r, the numerical simu-

lations show that the stochastic solution (see the continuous

line) as that deterministic one (see the straight line) goes to

the disease-free equilibrium. If we choose the parameters

values such that R/ [ 1 we can observe different situa-

tions. The random fluctuations can eradicate the infectious

disease (see Fig. 3) or the stochastic solution can fluctuate

around the deterministic endemic equilibrium (see Fig. 4).

3 Stability of disease-free equilibrium

In this section, we prove the stability of the disease-free

equilibrium in order to provide the threshold condition for

disease control or eradication. Here recall the definition of

stability of equilibrium states of a stochastic differential

equation as introduced in [12]. Consider the following

n-dimensional stochastic equations system

dXðtÞ ¼ f ðt;XðtÞÞdt þ gðt;XðtÞÞdWðtÞ ð10Þ

where f(t, x) is a function in R
n defined in ½t0;þ1½�Rn;

and g(t, x) is a n 9 m matrix, f, g are locally Lipschitz

functions in x and W(t) is an m-dimensional Wiener pro-

cess. If x0 2 R
n, denote by x(t;t0,x0) the solution of (10)

with initial condition x(t0) = x0.
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Fig. 1 Number of susceptible, infective and vaccinates in a deter-

ministic and stochastic SIVR model. S(0) = 0.8, I(0) = 0.1, V(0) =

0.05, k = 0.05, l = 0.005, / = 0.2, q = 0.1, b = 0.4, r = 1.62

and R/ ¼ 0:8869\1
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Definition 3.1 The stochastic process x(t;t0,x0) = x0 is a

stationary solution of the stochastic system (10) if

f ðt; x0Þ ¼ 0; gðt; x0Þ ¼ 0:

If x0 = 0, the stationary solution is called a trivial solution.

Definition 3.2 The trivial solution of system (10) is said

to be p-th moment exponentially stable if there are two

positive constants C and ~C such that

Eðjxðt; t0; x0ÞjpÞ� ~Cjx0jpe�Ct

for all x0 2 R
n. When p = 2, it is usually said to be

exponentially stable in mean square.

Now, we want to prove our main result

Theorem 3.1 If the conditions R0 þ r2ð1þqÞ
2

\ 1
1þq holds,

then the disease-free equilibrium is exponentially stable in

mean square for system (3).

Proof Consider the second equation of (3), the Ito for-

mula gives us

dI2 ¼ 2bðSþ qVÞ � 2ðlþ kÞ þ r2ðSþ qVÞ2
� �

I2dt

þ 2rðSþ qVÞI2dW

by using Theorem 2.2, we have

dI2� 2bð1þ qÞ � 2ðlþ kÞ þ r2ð1þ qÞ2
� �

I2dt

þ 2rð1þ qÞI2dW : ð11Þ

Set

C1 ¼ � 2bð1þ qÞ � 2ðlþ kÞ þ r2ð1þ qÞ2
� �

[ 0;

then, from (11), we have

d

dt
EðI2Þ� � C1EðI2Þ;

by using the comparison theorem of stochastic equation,

we obtain

EðI2Þ� I2ð0Þe�C1t 8t� 0: ð12Þ

The Ito formula apply to the last equation of (3) gives us

dR2 ¼ ð2kIR� 2lR2Þdt; ð13Þ

by using the Holder inequalities, we can observe that

2kIR ¼ 2k

ffiffiffi
k
l

s

I �
ffiffiffi
l
k

r

R

 !

� lR2 þ k2

l
I2
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Fig. 2 Number of susceptible, infective and vaccinates in a deter-

ministic and stochastic SIVR model. S(0) = 0.8, I(0) = 0.1, V(0) =

0.05, k = 0.05, l = 0.005, / = 0.2, q = 0.1, b = 0.4, r = 1.02

and R/ ¼ 0:8869\1
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Fig. 3 Number of susceptible, infective and vaccinates in a deter-

ministic and stochastic SIVR model. S(0) = 0.8, I(0) = 0.1,

V(0) = 0.05, k = 0.1, l = 0.2, / = 0.2, q = 0.1, b = 0.8, r =

1.22 and R/ ¼ 1:4667 [ 1
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Fig. 4 Computer simulations of mathematical model where S(0) =

0.8, I(0) = 0.1, V(0) = 0.05, k = 0.1, l = 0.2, / = 0.2, q = 0.1,

b = 0.8, r = 0.2 and R/ ¼ 1:4667 [ 1
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substituting this relation into (13) and taking the

expectation, we obtain

d

dt
EðR2Þ� � lEðR2Þ þ k2

l
EðI2Þ

by using (12), we have

d

dt
EðR2Þ� � lEðR2Þ þ k2

l
I2ð0Þe�C1t 8t� 0;

then we obtain

EðR2Þ�EðR2ð0ÞÞe�lt þ e�lt

Z t

0

k2

l
I2ð0Þeðl�C1Þsds

the last integral is

k2

l I2ð0Þe�lt l ¼ C1

k2

lðl�C1Þ I
2ð0Þ e�C1t � e�ltð Þ l 6¼ C1

(

so, we have

EðR2Þ�C3e�C2t 8t� 0 ð14Þ

where

C2 ¼
l l ¼ C1

minfl;C1g l 6¼ C1

�

C3 ¼
R2ð0Þ þ k2

l2 I2ð0Þ l ¼ C1

R2ð0Þ þ k2

ljl�C1j I
2ð0Þ l 6¼ C1:

(

Consider the first equation of (3) near the disease-free

equilibrium

d S� l
lþ /

� �

¼ �bðS� l
lþ /

ÞI þ bl
lþ /

I

�

�ðlþ /ÞðS� l
lþ /

Þ
�

dt � rSIdW

the Ito formula gives us

d S� l
lþ /

� �2

¼
�

� 2bðS� l
lþ /

Þ2I þ 2bl
lþ /

S� l
lþ /

� �

I � 2ðlþ /ÞðS� l
lþ /

Þ2
�

dt

� 2rðS� l
lþ /

ÞSIdW

neglected the term �2bðS� l
lþ/Þ

2
I, we have

d

dt
E S� l

lþ /

� �2

� 2bl
lþ /

E S� l
lþ /

� �

I

� �

� 2ðlþ /ÞE S� l
lþ /

� �2

:

We can estimate the following term

2bl
lþ /

ðS� l
lþ /

ÞI
� �
















�ð2/þ lÞðS� l

lþ /
Þ2

þ b2l

ðlþ /Þ2ð2/þ lÞ
I2;

hence

d

dt
E S� l

lþ /

� �2

� � lE S� l
lþ /

� �2
 !

þ b2l

ðlþ /Þ2ð2/þ lÞ
þ r2

 !

EðI2Þ

taking into account (14), we obtain

d

dt
E S� l

lþ /

� �2

� � lE S� l
lþ /

� �2
 !

þ b2l

ðlþ /Þ2ð2/þ lÞ
þ r2

 !

I2ð0Þe�lt

hence

EðS� l
lþ /

Þ2�C4e�C2t 8t� 0 ð15Þ

where

C4 ¼
ðSð0Þ � l

lþ/Þ
2 þ ð b2

ðlþ/Þ2ð2/þlÞ þ r2ÞI2ð0Þ l ¼ C1

ðSð0Þ � l
lþ/Þ

2 þ ð b2l
ðlþ/Þ2ð2/þlÞ þ r2Þ I2ð0Þ

jl�C1j l 6¼ C1:

8
<

:

Consider the third equation of (3) near the disease-free

equilibrium

d V � /
lþ/

� �

¼
�

/ðS� l
lþ/

Þ � qbðV � /
lþ/

ÞI

� qbl
lþ/

I� lðV � /
lþ/

Þ
�

dt� rqVIdW

the Ito formula gives us

d V � /
lþ /

� �2

¼
"

2/ S� l
lþ /

� �

V � /
lþ /

� �

� 2qb V � /
lþ /

� �2

I � 2qbl
lþ /

V � /
lþ /

� �

I

� 2l V � /
lþ /

� �2

þr2q2V2I2

#

dt

� rq V � /
lþ /

� �

VIdW

neglected the term �2qbðV � /
lþ/Þ

2
I and estimated the

following terms

2/ðS� l
lþ /

ÞðV � /
lþ /

Þ
















�

2/2

l
ðS� l

lþ /
Þ2

þ l
2
ðV � /

lþ /
Þ2

and

2qbl
lþ /

ðV � /
lþ /

ÞI
� �
















�

l
2
ðV � /

lþ /
Þ2 þ 2q2b2/2

ðlþ /Þ2l
I2

we have
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d

dt
EðV � /

lþ /
Þ2� � lE ðV � /

lþ /
Þ2

� �

þ 2/2

l
EðS� l

lþ /
Þ2 þ 2q2b2/2

ðlþ /Þ2l
þ r2q2

 !

EðI2Þ

taking into account (12) and (14), we obtain

d

dt
EðV � /

lþ /
Þ2� � lE ðV � /

lþ /
Þ2

� �

þ 2/
l

C4e�C2t

þ 2q2b2/2

ðlþ /Þ2l
þ r2q2

 !

I2ð0Þe�C1t

hence

EðV � /
lþ /

Þ2�C5e�C2t 8t� 0 ð16Þ

where

C5 ¼

ðVð0Þ � /
lþ/Þ

2 þ 2/2

l C4 þ
�

2q2b2/2

ðlþ/Þ2lÞ þ r2q2
�
I2ð0Þ

l ¼ C2

ðVð0Þ � /
lþ/Þ

2 þ 2/2

l C4 þ
�

2q2b2/2

ðlþ/Þ2lÞ þ r2q2
�

1
jl�C2j

l 6¼ C2:

8
>>>>><

>>>>>:

Hence, denoting by xðtÞ ¼ ðSðtÞ � l
lþ/ ; IðtÞ;VðtÞ � /

lþ/ ;

RðtÞÞ, by using (12), (14), (15), and (16), we obtain

EðjxðtÞj2Þ� ~Ce�Ct 8t� 0

for some constants C; ~C, hence the disease-free equilibrium

is exponentially stable in mean square. h
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