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1. INTRODUCTION 

1.1 The Human Respiratory System 

 The Human respiratory system includes the lungs, several structures in the chest involved 

with moving air in and out of the lungs and pathways connecting them to the outside 

environment.                 

 

                                   Figure 1.1. The human respiratory system 

During the breathing process, air enters the body through the nose, is warmed, filtered, and 

passed through the nasal cavity. Air then passes the pharynx which has the epiglottis that 

prevents food from entering the trachea. The upper part of the trachea contains the larynx. 

The vocal cords are two bands of tissue that extend across the opening of the larynx. After 

passing the larynx, the air moves into the bronchi that carry air in and out of the lungs.  
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      a 

 

     b 

Figure 1.2.  Lungs (a) and alveoli (b), and their relationship with the diaphragm muscle and 

capillaries. 
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Bronchi are reinforced to prevent their collapse, and lined with ciliated epithelium and 

mucus-producing cells. Bronchi branch into smaller and smaller tubes known as 

bronchioles. Bronchioles terminate in grape-like sac clusters known as alveoli. These are 

surrounded by a network of thin-walled capillaries. Only about 0.2 µm separate the alveoli 

from the capillaries due to the extremely thin walls of both structures.  

 

 

Figure 1.3.  Gas exchange across capillary and alveolus walls. 

 

The lungs are large, lobed, paired organs in the chest, essential for the respiration. Their 

main function is to carry atmospheric oxygen to the blood, and to expel carbon dioxide to 

the atmosphere. Thin sheets of epithelial pleura separate the inside of the chest cavity from 

the outer surface of the lungs. The lower part of the thoracic cavity is formed by the 

diaphragm. The term ventilation is used to describe the mechanics of breathing in and out. 

When you inhale, muscles in the chest wall contract, lifting the ribs and pulling them 
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outward, while the diaphragm moves downward, enlarging the chest cavity. Reduced air 

pressure in the lungs causes air to enter the lungs. Exhaling reverses these steps. 

                       

                 Figure 1.4. Inhalation and exhalation mechanics. 

           

 

1.2. Microscopic anatomy of the lungs 

1.2.1. Airways 

The trachea bifurcates at the level of the carina giving rise to two branches; these are the 

main bronchi, one for the right and one for the left lung, that, in turn, are divided into two 

secondary or lobar bronchi in the left lung and three secondary bronchi in the right lung. 

Lobar bronchi divide into several tertiary or segmental bronchi, and bronchioles are further 

divided into primary and then in the terminal bronchioles, and, finally, into respiratory 

bronchioles. The primary structure of the bronchi is similar to that of the trachea: their 

walls are formed by the superposition, proceeding from the inside towards the outside, of a 
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thin tunica submucosa, a muscular coat and a fibrous tunic. The epithelium of the bronchus 

is pseudostratified; this type of epithelium linens most of the respiratory tract. It is 

supported by a basement membrane with different types of cells, including ciliated 

columnar cells, muciparous goblet cells, serous cells, basal cells that are part of the diffuse 

neuroendocrine system, and stem cells that are able to divide asymmetrically to give rise to 

cells capable of differentiating into other cell types of the epithelial lining. While the 

bronchial diameter decreases, the structure of the respiratory tree changes: the epithelium 

becomes more and more cubic, with loss of cilia and scarce goblet cells, and then the 

alveoli become flattened.  

 

 

Figure 1.5 Illustration of normal human bronchial epithelium 

  



pag. 13 

 1.2.2. Parenchyma 

The human lung is a parenchymal organ that derives from the branching of a hollow 

structure, the main bronchus. The morphofunctional units of the lung from an anatomical 

point of view are the pulmonary lobules. These lobules are bound by septa of connective 

tissue (interlobular septa) which are in continuity with the sub-mesothelial connective layer 

of the visceral pleura, and are macroscopically visible on the external surface of the organ, 

as well as on the inner surface of the parenchyma (1). Pulmonary lobules derive from the 

smallest parts of conducting airways, called bronchioles, characterised by the absence of 

cartilage in their walls and a diameter smaller than 1 mm. Pulmonary lobules are 

constituted by: (a) one terminal bronchiole, from which derive (b) 3-6 respiratory 

bronchioles, each one supplying (c)have a diameter of 2 cm and 3-5 alveolar sacs (2) Each 

respiratory bronchiole with its alveolar sacs is described as an acinus, the functional 

subunit of the pulmonary lobules. Indeed, the terminal bronchioles are not involved in 

hematosis, because of their lack of alveoli that, vice versa, delimit the respiratory 

bronchioles, alveolar ducts and alveolar sacs. Terminal bronchioles, respiratory 

bronchioles, alveolar ducts and alveolar sacs develop around the 16th to 28th week of 

gestation from the expansion and branching of major airways (3). As a consequence, their 

structure resembles that of the other parts of the lower airways: they have a wall comprised 

of three layers: (a) an internal mucosa; (b) an intermediate submucosa; and (c) an external 

adventitia (4). The epithelium is composed of several different cytotypes, whose structural 

and functional features are described in Table 1. Between the epithelium and the lamina 

propria there is a thin basal membrane, formed by a lamina basalis and a lamina 

reticularis; these two laminae have a different proteins composition, the basalis being 

synthesised from epithelial elements and the reticularis from the connective ones (1). The 

lamina propria is composed of loose connective tissue, and it contains smooth muscle 
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cells, myofibroblasts, fibrocytes, macrophages, lymphoid cells, mast cells, endothelial cells 

of hematic and lymphatic capillaries and nerve fibres; a pool of spindle cells are indicated 

as fibroblasts, but a part of them are probably a heterogeneous population of otherwise 

non-specifiable cells (4) Smooth muscle cells are intimately associated with numerous 

elastic fibers that, together with a small amount of reticular and collagenous fibres, form 

the feltwork of lamina propria. The structure of the alveoli greatly differs from that of the 

bronchioles. They are delimited by fibroelastic septa (interalveolar septa), that derive from 

the interlobular septa; nevertheless, they communicate among themselves via pores of 

Kohn (Fig. 1.5). The alveoli are bordered by both squamous (Type I pneumocytes, TIPs) 

and cuboidal (Type II pneumocytes, TIIPs) epithelial cells (5) The former are large and flat 

cells, functionally involved in gas exchange, that cover more than 90% of the alveolar 

surface; they contribute to form the so-called “air/blood barrier” together with capillary 

endothelial cells and each own LB (6).  



pag. 15 

Cytotype Ultrastructural 
Features 

Functions Other Putative 
Roles 

Comments 

 

Ciliated cells 

Cuboidal, each cell 
has approximately 
250 cilia; each 
cilium is 
approximately 6 um 
long 

Transport of 
mucus stream 

 

Unknown 

The most prevalent 
cytotype; 
they decrease 
during chronic 
inflammation 

 

Clara’ cells 

Cuboidal/columnar 
non ciliated, 
non-mucus secreting 
cells. Granules are 
present in apical 
cytoplasm 

Secretory function 
contributing to the 
cleaning of 
smallest airways 

 
Progenitors of 

other cells (Type II 
Pneumocytes ?); 
role in surfactant 

production 

The second most 
prevalent 
cytotype; they 
augment during 
chronic 
inflammation 

 

Basal cells 

Small round cells 
with scarce 
cytoplasm, close to 
the basal membrane 

Precursors of other 
cytotypes 

 

Stem cells 

They are rare in 
bronchioles; 
we do not know 
yet which 
cytotypes they 
originate; they are 
also involved in 
carcinogenesis 

Neuroendocrine 
(Kulchitsky) cells 

Small round cells 
with numerous 
secretory granules 

Part of diffuse 
neuroendocrine 
system 

 

Unknown 

They are rare in 
bronchioles; 
they may be 
present single 
or in small groups; 
they may originate 
microcytoma 

Goblet cells Cuboidal/columnar 
mucus secreting 
cells 

Secretory function 
contributing to the 
cleaningof smallest 
airways 

 

Unknown 

They are rare in 
bronchioles; 
they augment 
during chronic 
inflammation 

Lymphocytes Small round cells 
with scarce 
cytoplasm, scattered 
among the 
other cytotypes or 
adjacent to the 
luminal surface of 
epithelium 

Immune 
surveillance 

 

 

Unknown 

They are rare in 
bronchioles; 
they augment 
during chronic 
inflammation 

 

 

 

  

Table 1. Main morphofunctional features of the bronchiolar epithelial cell types and their 
pathophysiologic roles (Bucchieri et al., 2009) 
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1.3. Embryogenesis of the lung 

The development of the lungs, in comparison with the development of other organs during 

the prenatal period, occupies a special position. The reason for this is because breathing 

organs are unnecessary for intrauterine existence. Nevertheless they must develop and be 

ready to function immediately following birth. This explains why the entire development 

of this organ extends from the embryonic period through the fetal period up to birth. 

However, during the intrauterine life, the lungs are an important source of amniotic fluid, 

which is “inhaled” and “exhaled” by the fetus. It is essential for this fluid to be breathed 

into the lungs in order for them to develop normally. This fluid is also very important for 

several other reasons such as mechanic protection of  the fetus and as a source of proteins, 

carbohydrates, lipid and phospholipids, urea and electrolytes which all contribute to the 

growth of fetus. The lung development is divided in five phases: the embryonic phase (3rd 

week-8th week), the pseudoglandular phase (8th week-16th week), the canalicular phase( 

16th week-24th week), the saccular phase (24thweek-36th week) and the alveolar phase (36th 

week- 1,5 years after birth). The embryonic phase starts with the formation of a groove in 

the ventral lower pharynx, the sulcus laryngotrachealis. From the lower part of this sulcus, 

the true lung primordium will form, and its further division will form the main bronchi 

with the asymmetry they present in adults. This will start the subdivision of lobes and it 

will also form the pulmonary vessels. During the pseudoglandular phase, the development 

of the entire bronchial tree up to the terminal bronchiole occurs, which means that at this 

point the respiratory ducts will have already been formed. The ducts are coated by cuboidal 

epithelial cells which are the precursors cell of ciliated epithelium and secretory cells. 

After the 10 week, cartilage and smooth muscle cells as well as bronchial glands can be 

found in the wall of bronchi. Also during this phase, the lung begins cyclical contraction at 

a rate of approximately 1 contraction for second. The canalicular phase is characterized by 
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the formation of the lung acinus, the invasion of capillaries into the mesenchyme, the 

differentiation of the epithelial cells that start the production of the amniotic fluid and 

surfactant. Between the 20th week and 22nd week the epithelial cells start the differentiation 

into type I and type II pneumocytes. The saccular and alveolar phases are characterized by 

the final development of the alveolus, which is now able to perform the gas exchange, and 

by the specialization of the II type of pneumocytes which are able to produce the mature 

surfactant. The surfactant consist of glycerophospholipids, specific proteins, neutral fats 

and cholesterol. It covers the alveolar surface and reduces the surface tension, meaning that 

it prevents collapse of the alveoli during the expiration 

 

     

 

Figure 1.6: Human lungs development. 
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1.4. Epithelial-Mesenchymal Trophic Unit 

The anatomic and functional relationship between the attenuated fibroblast sheath and 

epithelial tissue is called Epithelial-Mesenchymal Tropic Unit (EMTU). The area between 

these two cell layers, the basement membrane zone, contains extracellular matrix and a 

network of nerve fibres. The concept of EMTU describes the signalling between epithelial 

cells and the underlying fibroblasts which are in close physical contact with the epithelial 

layer. This interaction is necessary to initiate numerous cellular functions of the lung, such 

as differentiation during lung growth, repair of damaged tissue and regulation of the 

inflammatory response (7). These changes alter the function of the epithelium and its 

ability to communicate with the underlying mesenchymal cells to provide an 

appropriate microenvironment for promoting tissue remodeling and for sustaining the 

persistent inflammatory responses characteristic of chronic COPD. Cytokines and 

chemokines are produced by Fibroblasts in response to various stimuli and their fixed 

position in the tissue suggests that they can respond in a local manner to bacterial products, 

tissue injury, or other environmental factors. Under normal conditions, the epithelium of 

the airway that has lost cuboidal/columnar cells may repair itself with remarkable speed. 

Indeed, the basal cells, which are more firmly attached to the underlying basal membrane, 

via hemidesmosomes, progressively restore the normal epithelium by a process of cell 

proliferation and differentiation (8). Although it is commonly believed that frequent 

episodes of disepithelisation and re-epithelisation, i.e. following chronic 

infective/inflammatory diseases, are the basis of carcinogenesis in some anatomical 

regions (like uterine exocervix, stomach, liver, etc), since they increase the possibility of 

DNA mutations, we want to state that bronchial carcinogenesis is an extremely rare 

complication of COPD. This fact may indicate that 1) other events besides basal cell 

mutation are necessary for cancer development in airway epithelium and/or that 2) the 

DNA repair mechanisms are more efficient in airway epithelium. In addition, we do not 
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have sufficient knowledge on EMTU biology, specifically regarding stem cell (SC) niches. 

For example, basal cells of the epithelium are commonly considered as a population of 

SCs, but the underlying connective tissue lacks the well-recognized stem phenotype. It is 

widely recognised that the epithelium and the mesenchyme cooperate in foetal lung 

development through exchange of soluble mediators; this cooperation plays a pivotal role 

in airway growth and branching. (9). Furthermore, it is well known that epithelial elements 

and subepithelial mesenchymal cells also interact in adult tissue via autacoid mediators, 

cytokines and growth factors (9). The epithelial-mesenchymal tropic unit functions during 

development and is crucial to the process of branching morphogenesis. It is suggested that 

similar processes are involved in the structural alterations of airways in asthma(10) . 

1.5 Chronic Ostructive Pulmonary Disease 

Chronic obstructive pulmonary disease (COPD) is a heterogeneous group of slowly 

progressive diseases characterized by airflow limitation and gradual loss of lung function 

that is   not fully reversible.(11). Also known as chronic obstructive lung disease (COLD), 

chronic obstructive airway disease (COAD), chronic airflow limitation (CAL) and chronic 

obstructive respiratory disease (CORD), is the co-occurrence of chronic bronchitis and 

emphysema, a pair of commonly co-existing diseases of the lungs in which the airways 

become narrowed.(12) This leads to a limitation of the flow of air to and from the lungs, 

causing shortness of breath. In clinical practice, COPD is defined by its characteristically 

low airflow on lung function tests.(13) In contrast to asthma, this limitation is poorly 

reversible and usually gets progressively worse over time. In England, an estimated 

842,100 out of 50 million people have a diagnosis of COPD; thus, approximately 1 person 

in 59 is diagnosed with COPD at some point in their lives.(14) The COPD average 

attributable excess health care expenditures are nearly US$6,300 per Medicare patient.(15-

17) A broader view of the causes of population health disparities including race, ethnicity, 
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socioeconomic status, and geography is necessary for better solutions to complex 

population health problems. The main cause for development of COPD is noxious particles 

or gas, most commonly from tobacco smoking, which triggers an abnormal inflammatory 

response in the lung.(4-5) The inflammatory response in the larger airways is known as 

chronic bronchitis, which is diagnosed clinically when people regularly cough up sputum. 

In the alveoli, the inflammatory response causes destruction of the tissues of the lung, a 

process known as emphysema. The natural course of COPD is characterized by occasional 

sudden worsenings of symptoms called acute exacerbations, most of which are caused by 

infections or air pollution. 

1.5.1 Chronic bronchitis 

Lung damage and inflammation in the large airways results in chronic bronchitis. Chronic 

bronchitis is defined in clinical terms as a cough with sputum production on most days for 

3 months of a year, for 2 consecutive years.(18) In the airways of the lung, the hallmark of 

chronic bronchitis is an increased number (hyperplasia) and increased size (hypertrophy) 

of the goblet cells and mucous glands of the airway. As a result, there is more mucus than 

usual in the airways, contributing to narrowing of the airways and causing a cough with 

sputum. Microscopically there is infiltration of the airway walls with inflammatory cells. 

Inflammation is followed by scarring and remodeling that thickens the walls and also 

results in narrowing of the airways. As chronic bronchitis progresses, there is squamous 

metaplasia (an abnormal change in the tissue lining the inside of the airway) and fibrosis 

(further thickening and scarring of the airway wall). The consequence of these changes is a 

limitation of airflow.(19) Patients with advanced COPD that have primarily chronic 

bronchitis rather than emphysema were commonly referred to as "Blue Bloaters" because 

of the bluish color of the skin and lips (cyanosis) seen in them(20).  The hypoxia and fluid 

retention leads to them being called "Blue Bloaters". 
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1.5.2 Emphysema 

Lung damage and inflammation of the air sacs (alveoli) results in emphysema. Emphysema 

is defined as enlargement of the air spaces distal to the terminal bronchioles, with 

destruction of their walls(18). The destruction of air space walls reduces the surface area 

available for the exchange of oxygen and carbon dioxide during breathing. It also reduces 

the elasticity of the lung itself, which results in a loss of support for the airways that are 

embedded in the lung. These airways are more likely to collapse causing further limitation 

to airflow. The effort made by patients suffering from emphysema during exhalation, 

causes a pink color in their faces, hence the term commonly used to refer to them, "Pink 

Puffers". There are two types of emphysema: centrilobular (characterized by focal 

enlargement of air spaces around the bronchioles); panlobular (enlargement of all air 

spaces, around bronchioles and in the periphery) 

1.1.1 Signs and symptoms 

Essentials signs for diagnosis include: history of cigarette smoking; chronic cough and 

sputum production (in chronic bronchitis); dyspnea; rhonchi, decreased intensity of breath 

sounds, and prolonged expiration on physical examination; airflow limitation on 

pulmonary function testing that is not fully reversible and most often progressive. 

One of the most common symptoms of COPD is shortness of breath (dyspnea). People 

with COPD commonly describe this as: "My breathing requires effort," "I feel out of 

breath," or "I can't get enough air in".(21) .People with COPD typically first notice 

dyspnea during vigorous exercise when the demands on the lungs are greatest. Over the 

years, dyspnea tends to get gradually worse so that it can occur during milder, everyday 

activities such as housework. In the advanced stages of COPD, dyspnea can become so bad 

that it occurs during rest and is constantly present. 

http://en.wikipedia.org/wiki/Dyspnea�


pag. 22 

Other symptoms of COPD are a persistent cough, sputum or mucus production, wheezing, 

chest tightness, and tiredness.(22-23) People with advanced (very severe) COPD 

sometimes develop respiratory failure. When this happens, cyanosis, a bluish discoloration 

of the lips caused by a lack of oxygen in the blood, can occur. An excess of carbon dioxide 

in the blood can cause headaches, drowsiness or twitching (asterixis). A complication of 

advanced COPD is cor pulmonale, a strain on the heart due to the extra work required by 

the heart to pump blood through the affected lungs.(24) Symptoms of cor pulmonale are 

peripheral edema, seen as swelling of the ankles, and dyspnea. 

There are a few signs of COPD that a healthcare worker may detect although they can be 

seen in other diseases. Some people have COPD and have none of these signs. Common 

signs are: tachypnea, a rapid breathing rate; wheezing sounds or crackles in the lungs heard 

through a stethoscope; breathing out taking a longer time than breathing in; enlargement of 

the chest, particularly the front-to-back distance (hyperaeration); active use of muscles in 

the neck to help with breathing; breathing through pursed lips; and increased 

anteroposterior to lateral ratio of the chest (i.e. barrel chest). 

1.5.4 Ethiopathogenesis 

Most cases of COPD occur as a result of long-term exposure to lung irritants that damage 

the lungs and the airways. The most common irritant that causes COPD is cigarette smoke. 

Pipe, cigar, and other types of tobacco smoke also can cause COPD, especially if the 

smoke is inhaled. Breathing in secondhand smoke, air pollution, and chemical fumes or 

dust from the environment or workplace also can contribute to COPD. In rare cases, a 

genetic condition called alpha-1 antitrypsin deficiency may play a role in causing COPD. 

People who have this condition have low levels of alpha-1 antitrypsin (AAT)—a protein 

made in the liver. Having a low level of the AAT protein can lead to lung damage and 



pag. 23 

COPD if you're exposed to smoke or other lung irritants. If you have this condition and 

smoke, COPD can worsen very quickly. 

1.5.4.1 Cigarette smoke 

Cigarette smoking is considered to cause serious damage to health and a factor favoring the 

occurrence of pathologies of the respiratory system, the cardio-vascular and tumor 

development. 

Cigarette smoke is the major risk factor associated with the development of chronic 

obstructive pulmonary disease (COPD). Recent studies propose a link between 

endoplasmic reticulum (ER) stress and emphysema, demonstrated by increased ER stress 

markers under smoking conditions. COPD is the third largest cause of death in the USA2 

and fourth worldwide,(25). Smoking is responsible for 90% of COPD in the United States. 

Although not all cigarette smokers will develop COPD, it is estimated that 15% will. 

Smokers with COPD have higher death rates than nonsmokers with COPD. They also have 

more frequent respiratory symptoms (coughing, shortness of breath, etc.) and a more rapid 

deterioration in lung function than non-smokers. It is important to note that when a COPD 

patient stops smoking, their decline in lung function slows to the same rate as a 

nonsmoker. Effects of passive smoking or "second-hand smoke" on the lungs are not well-

known; however, evidence suggests that respiratory infections, asthma, and symptoms are 

more common in children who live in households where adults smoke. Cigarette smoking 

damages the lungs in many ways. For example, the irritating effect of cigarette smoke 

attracts cells to the lungs that promote inflammation. Cigarette smoke also stimulates these 

inflammatory cells to release elastase, an enzyme that breaks down the elastic fibers in 

lung tissue.  
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1.5.4.2 Air pollution 

Air pollution can cause problems for persons with lung disease, but it is unclear whether 

outdoor air pollution contributes to the development of COPD. However, in the non-

industrialized world, the most common cause of COPD is indoor air pollution. This is 

usually due to indoor stoves used for cooking. 

1.5.4.3 Occupational pollutants 

Some occupational pollutants such as cadmium and silica do increase the risk of COPD. 

Persons at risk for this type of occupational pollution include coal miners, construction 

workers, metal workers, cotton workers, etc. (Most of this risk is associated with cigarette 

smoking and these occupations, an issue not well controlled for. These occupations are 

more often associated with interstitial lung diseases, especially the pneumoconioses) 

Nevertheless, the adverse effects of smoking cigarettes on lung function are far greater 

than occupational exposure. 

1.5.4.4 Alpha-1 antitrypsin deficiency 

Another well-established cause of COPD is a deficiency of alpha-1 antitrypsin (AAT). 

AAT deficiency is a rare genetic (inherited) disorder that accounts for less than 1% of the 

COPD in the United States. As discussed previously, normal function of the lung is 

dependent on elastic fibers surrounding the airways and in the alveolar walls. Elastic fibers 

are composed of a protein called elastin. An enzyme called elastase that is found even in 

normal lungs (and is increased in cigarette smokers) can break down the elastin and 

damage the airways and alveoli. Another protein called alpha-1 antitrypsin (AAT) 

(produced by the liver and released into the blood) is present in normal lungs and can block 

the damaging effects of elastase on elastin. The manufacture of AAT by the liver is 
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controlled by genes which are contained in DNA-containing chromosomes that are 

inherited. Each person has two AAT genes, one inherited from each parent. Individuals 

who inherit two defective AAT genes (one from each parent) have either low amounts of 

AAT in the blood or AAT that does not function properly. The reduced action of AAT in 

these individuals allows the destruction of tissue in the lungs by elastase to continue 

unopposed. This causes emphysema by age 30 or 40. Cigarette smoking accelerates the 

destruction and results in an even earlier onset of COPD. Individuals with one normal and 

one defective AAT gene have AAT levels that are lower than normal but higher than 

individuals with two defective genes. These individuals MAY have an increased risk of 

developing COPD if they do not smoke cigarettes; however, their risk of COPD probably 

is higher than normal if they smoke. Though their Alpha-1 antitrypsin blood levels may be 

in the normal range, the function of this enzyme is impaired relative to normal patient. 

Some may even develop bronchiectasis instead of emphysema.  

1.5.5 COPD treatment 

While many medications are available to treat COPD, no drug has demonstrated 

effectiveness in halting the progression of the disease. Rather, the goal of drug therapy at 

this time is to maintain control of symptoms and prevent COPD exacerbation. The current 

treatment strategies include: quitting cigarette smoking; taking medications to dilate 

airways (bronchodilators) and decrease airway inflammation; vaccination against flu 

influenza and pneumonia; regular oxygen supplementation; and pulmonary rehabilitation. 
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1.6. Cigarette smoke and airways inflammation. 

The principal sources of oxidants in the bronchial airways are represented by cigarette 

smoke, environmental pollution and local inflammation; exposure to cigarette smoke (CS) 

is certainly one of the primary stimuli of airway inflammation (26). 

Exposure to cigarette smoke (CS) represents a considerable oxidant burden on the 

respiratory epithelium, which is the first line of defense to inhaled substances. CS, which is 

one of the most important indoor air pollutants, is a complex mixture of over 4,000 

different compounds, and high levels of oxidants and ROS have been detected in both 

mainstream and sidestream smoke (27) It has been estimated that there are 1014 free 

radicals in each puff of cigarette smoke (28). 

A high toxicity has been observed for at least 52 components of CS: 18 phenols, 14 

aldehydes, eight N-heterocyclics, seven alcohols, and five hydrocarbons (29). Most of 

these compounds are capable of generating ROS during their metabolism. Thus, the 

mechanism of cigarette smoke toxicity is thought to incorporate oxidative stress, which 

mediates cell death via necrosis and apoptosis, due to the fact that cigarette smoke has been 

shown to cause oxidative DNA damage and cell death (30).  

Some lipophilic components of CS can enter airway epithelial cells increasing intracellular 

ROS production by disturbing mitochondrial activity (30) The oxidative damage to cellular 

components occurs when the increase in ROS production causes oxidative damage in 

cellular components by overwhelming their antioxidant defense mechanisms; the presence 

of apoptosis confirms that this causes damage to DNA, nuclear DNA being one of the 

targets of ROS (31) However, CS-mediated DNA damage can result in uncontrolled cell 

proliferation and transformation (27) if the cells fail to undergo apoptosis. CS also 

facilitates allergen penetration across respiratory epithelium (32) and is a potent source of 
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oxidative stress, DNA damage and apoptosis in alveolar epithelial cells by the upregulation 

of Fas/APO-1 receptor and activation of caspase-3 (33). Moreover, CS is considered a 

major risk factor for chronic obstructive pulmonary disease (COPD) development as 

demonstrated in animal models (33)  

The link between CS and lung inflammation is therefore quite strong; however, relatively 

little is still known on the effects of CS on human bronchial mucosa cell differentiation and 

survival. 

1.7. Inflammation and oxidative stress in COPD 

Increased inflammation, oxidative stress, cell death, impaired cell repair, 

protease/antiprotease imbalance, and destruction of the extracellular matrix are all believed 

to contribute to disease progression in COPD.  Several inflammatory cells and their 

mediators, both of the innate and adaptive immune system, participate in the inflammatory 

response., Macrophages, neutrophils and CD8+ T cells are the cells usually considered the 

prime effector cells in pathogenesis of COPD (17), but recently DCs have been suggested 

to be a potentially important new player/orchestrator of the pattern of inflammation that 

characterizes this disease (18). 

cDCs might play a central role in bridging innate and adaptive immunity via direct cell-cell 

interactions and/or cytokine production (19-20). These interactions may influence the 

activation status of cells from the adaptive immune system such as CD4+T cells and 

CD8+T cells (18,20,24,34) CD8+T cells could be essential for the development of cigarette 

smoke-induced COPD (35). 

COPD, like asthma, is a complex inflammatory disease that involves several types of 

inflammatory cells and multiple inflammatory mediators. However, the pattern of 

inflammation and the spectrum of mediators differ between these two airway diseases, at 

least in the stable state of the disease. Although abnormal numbers of inflammatory cells 
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have been documented in COPD, the relationship between these cell types and the 

sequence of their appearance and their persistence are largely unknown. Most studies have 

been cross-sectional based on selection of patients with different stages of the disease and 

comparisons have been made between smokers without airflow limitation (normal 

smokers) and those with COPD who have smoked a similar amount. There are no serial 

studies and selection biases (such as selecting tissue from patients suitable for lung volume 

reduction surgery) may give misleading results. Analysis of the cell profile in alveoli and 

small airways shows an increase in all ofthe cell types implicated in COPD, including 

macrophages, T‐lymphocytes, B‐lymphocytes and neutrophils (36) 

1.8. The epithelial mesenchymal trophic unit and airway remodeling. 

Under normal conditions, the epithelium releases primarily factors that suppress 

mesenchymal cells, such as prostaglandin (PG) E2 and 15-HETE. The production of PGE2 

and 15-HETE is diminished after the epithelium sustains injury or damage, and the ensuing 

repair responses could promote airway remodeling by activating the 

fibroblasts/myofibroblasts that lie directly under the epithelial layer in the lamina 

reticularis (37). The inflamed airways of COPD patients contain several inflammatory 

cells including neutrophils, macrophages, T lymphocytes, and dendritic cells (DCs). The 

relative contributions of these various inflammatory cells to airway injury and remodeling 

are not well documented. In particular, the potential role of DCs as mediators of 

inflammation in the smoker's airways and COPD patients is poorly understood. This 

signaling between the epithelium and fibroblasts involves the provision of growth factors 

and survival of mesenchymal cells likely to contribute to the component of COPD that is 

unresponsive to corticosteroids. In vitro studies have shown that injury to epithelial 

monolayers results in increased release of fibroproliferative and profibrogenic growth 

factors including fibroblast growth factor (FGF-2), insulin growth factor (IGF-1), platelet-
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derived growth factor (PDGF), endothelin (ET-1), and transforming growth factor (TGF)-

β2. In chronic lung inflammatory diseases, the epithelium has increased susceptibility to 

oxidant injury through the activation of the caspase-3/apoptosis pathway. This feature also 

carries over into cultured epithelial cells in vitro (38). Impaired epithelial repair is another 

feature of chronic lung inflammatory diseases, and it is linked to the increased production 

of profibrotic growth factors such as TGF-β/or FGF-2, as evidenced by low expression of 

cell markers of proliferation (e.g., proliferating cell nuclear antigen [PCNA]). This reaction 

can be reproduced in vitro by slowing epithelial repair in the presence of a selective 

tyrphostin inhibitor of the EGFR tyrosine kinase. The downstream consequences of EMTU 

activation affect the remodelling events of altered airway structure and function more 

directly.  

1.9. Lungs and tissue engineering 

Tissue engineering has greatly progressed in the last twenty years or so, especially with 

regard to replacing function in specific tissues such as exocrine pancreas, cartilage and 

bone, skin and blood vessels. However, it is still lacking, proper design models for 

engineering complex 3D ECM microenvironments to  understand disease progression. 

In fact, the main objectives of modern tissue engineering comprise repeating specific tissue 

functions for regenerative medicine and developing  in vitro models of human tissues to 

investigate disease pathogenesis and for testing and screening new medications before 

expensive clinical trials. For these objectives to be successfully achieved, it is fundamental 

that the engineered models must repeat in vitro the complex interactions existing in vivo 

between cells and their microenvironments.  

The lungs are extraordinarily complex organs that evolved for the adaptation of vertebrates 

to terrestrial life. While intrauterine development can proceed usually in the absence of 

lung tissue, life after birth depends completely upon respiration, which it is in turn 
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dependent upon the normal architecture of the lung. The respiratory system consists of 

separate anatomic regions originating in the external nose and continuing into the nasal 

passages, pharynx, larynx, trachea, bronchi, lobar bronchi, bronchioles and peripheral 

airways that conduct respiratory gases to the alveoli. Gas exchanges occur across alveolar 

epithelial and capillary endothelial cells. Ventilation is driven by mechanical forces 

dependent upon neuromuscular activity that is precisely controlled by neurosensory inputs 

to maintain normal pCO2, pO2, and pH. Lung function is completely reliant on its 

extraordinary structure that exchanges millions of litres of environmental gases throughout 

our lifetime.  

Chronic inflammatory diseases of the lungs, such as COPD, involve complex interactions 

between different cell types as well as extracellular matrix remodelling, which, together 

with the mechanical environment that affects cell-cell and cell-matrix interactions cause 

the pathology.  

Diseases such as asthma and COPD are difficult to study in vivo using animal models 

because there are too many important differences at various levels between animal and 

human cells and also it is virtually impossible to draw out mechanisms or have a great deal 

of control over these complex interactions. 
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2. AIMS 

Our understanding of the importance of the extracellular microenvironments in regulating 

cell behaviour is critical to try and comprehend the role of the EMTU in the pathogenesis 

of COPD.  Thus, the availability of a good model of human bronchial mucosa becomes 

paramount.    

One of the main limitations of traditional cell culture models is not being able to follow 

cell treatments for long exposures due to the fact that after a few days at most any cell 

culture would have reached confluency and therefore the effects of whatever we want to 

test will be marred/biased by physiologically occurring cell growth inhibition phenomena. 

The bronchial 3D outgrowth that was developed by my Tutor, Prof. Fabio Bucchieri, 

instead is apparently free from this limitation given its ability to grow almost indefinitely. 

Moreover, the contemporary presence of bronchial epithelial and fibroblast cells in their 

natural microenvironment puts us in the position of being able to study the effects of 

medium/long term exposures on a model that closely mimic the human bronchial mucosa 

and where it is actually fairly easy to highlight eventual alteration of the EMTU. 

Although we now know that the link between cigarette smoke (CS) and lung inflammation 

is quite strong, relatively little is still known on the effects of long-term CS exposure on 

human bronchial mucosa cell survival and differentiation. 

For these reasons our aims were to: characterise, structurally and ultra-structurally, the 

morphological features of the 3D outgrowths, by means of transmission electron 

microscopy analysis, to verify the degree of similarity of the 3D bronchial outgrowths with 

the normal human bronchial mucosa; to immunologically characterise these outgrowths by 

using immunofluorescence and immunogold techniques and a panel of antibodies directed 

towards the antigens usually expressed by the adult differentiated human bronchial 

mucosa; and finally, in view of the scarcity of studies examining the effects of CS 

exposure on human bronchial mucosa cell survival and differentiation, the current study 

was designed to address this particular issue,  evaluating the responses of the 3D 

outgrowths to a long-term exposure with cigarette smoke extracts (CSE). 
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3. Materials and Methods 

3.1 Cell cultures 

All media and supplements were from Invitrogen unless otherwise specified. Cells, 

explants and outgrowths were grown in a humidified Heraeus incubator at 37°C, 5% CO2. 

 

3.1.1 Three-dimensional Outgrowth Model. 

Bronchial biopsies, were obtained from patients referred to the Unit of Thoracic Medicine 

of the University of Palermo. The following adopted procedures, conforming to the 

relevant ethical guidelines for human research, were in agreement with the Helsinki 

Declaration of 1975 as revised in 1983 and were approved by the Ethic Council of the 

Policlinico-Hospital of the University of Palermo, Italy, were cut into 0.5mm3 fragments 

and placed onto 6.5mm Transwells, embedded in 60 μl of MatrigelTM . Matrigel is a 

gelatinous protein mixture secreted by Engelbreth-Holm-Swarm (EHS) mouse sarcoma 

cells and marketed by BD Biosciences and by Trevigen Inc This mixture resembles the 

complex extracellular environment found in many tissues and is considered as a good 

substrate for cell culture for its heterogeneous composition. The major components of 

Matrigel are basement membrane proteins such as laminin, entactin, and collagen IV which 

present cultured cells with the adhesive peptide sequences that they would encounter in 

their natural environment (51). Matrigel  constitutes a uniform and controllable structure 

very important for accuracy and reproducibility of an in vitro model usable for to test 

compounds (52). The biopsies were washed several times in sterile phosphate-buffered 

saline (PBS), subsequently they were cut using a sterile scalpel in 0,5 mm3 pieces and 

placed onto 6.5 mm Transwells in middle position upon the nylon membrane (Becton 

Dickinson, Franklin Lakes, NJ, USA) embedded in 60 µl of Matrigel (Becton Dickinson). 

The Transwells were put on 24 wells culture plates (Corning Life Sciences) Then plates 

were put at 37°C for 5 minutes to facilitate the matrigel jellification and 330 µl of growth 

medium mix was added to each well after these 5 minutes This mix was constituted of 

(Bronchial Epithelium Growth Medium/ Dulbecco’s modified Minimum Essential 

Medium) BEGM/DMEM 10% foetal bovine serum FBS (1:1) The growth medium was 

replaced every 48hours. The outgrowths were cultured at 37°C in a 5% CO2 atmosphere 

An inverted light microscope equipped with phase contrast rings (LEICA DM-IRB, Leica 

Microsystems Srl, Milan, Italy) was used to monitor the outgrowths. The expansion of the 

outgrowths was monitored with a contrast phase microscope. At specific time points, the 

http://en.wikipedia.org/wiki/Heterogeneous�
http://en.wikipedia.org/wiki/Laminin�
http://en.wikipedia.org/wiki/Entactin�
http://en.wikipedia.org/wiki/Collagen�
http://en.wikipedia.org/wiki/Peptide�
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membranes with the outgrowths were prepared for Transmission Electron Microscopy 

(TEM) and Immunofluorescence. 

 

Figure 3.1 
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3.2 TREATMENTS 

 

3.2.1. Cigarette smoke extracts 

 

Cigarette Smoke Extracts (CSE) were prepared by a modification of the method of Carp 

and Janoff. (39). Briefly, smoke from two Kentucky 1R4F research cigarettes (University 

of Kentucky, Lexington, KY) whose filters were removed was bubbled through 50 mL of 

BEBM for 60-70s. The resulting suspension was adjusted to pH 7.4 with concentrated 

NaOH, filtered through a 0.22-μM Millex-GS (Millipore, Watford, UK) filter and used 

immediately on 3D outgrowths at a concentration range of 10, 15 and 20%.  

 

3.3 Transmission electron microscopy. 

 

TEM analysis enabled us to have a better understanding of the structural characteristics of 

the 3D bronchial outgrowth. 

All reagents were ordered from Electron Microscopy Sciences (EMS, PA) unless otherwise 

specified. 

3.3.1 Epon 812 

Immediately after excision of the nylon membrane from the Transwells using a scalpel, the 

outgrowth were cut in pieces and fixed in a solution of  2,5% glutaraldehyde in 0.2 

phosphate buffer, pH 7.4, for 20 minute at room temperature. After the outgrowths were 

fixed the glutaraldehyde was removed and they were stored in Milloing Buffer. After 3 

consequently washing in Milloing Buffer the pieces were post-fixed in 1% OsO4 for 2 h, 

dehydrated in an ascending graded series of ethanol, treated for 30’ in propylene oxide, 

infiltrated with epoxy resin (Epon812, Electron Microscopy Science, Hatfield, PA, USA) 

in propylene oxide (1:3, 1:2, 1:1 for 30 minute at room temperature respectively) and 

finally embedded in Epon812 with DMP30. The resin was then polymerized at 60°C for 

48h. Ultrathin and semithin sections were cut with an ultramicrotome (Ultracut E, 

Reichert-Jung, Depew, NY, USA) at different thickness and mounted on copper and 

golden grids and on glass slides for further use.  
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3.3.2 LR-White 

After excision of the nylon membrane from the Transwells using a scalpel, the outgrowth 

were fixed for 1 hour in paraformaldehyde 4%, after 1 hour the samples were washed in 

Milloning buffer and they were stored in buffer until they were processed. The samples 

were dehydrated with ascending methanol series (30, 50, 70, and 100%): each step 

repeated two times for 20 minutes, and then they were  treated with a solution of LR-white 

methanol one time for 30 minutes, after this step 24 hours in pure resin, next day add the 

accelerator in the LR-WHITE resin and the specimens were then put in embedding 

containers in LR- WHITE  resin for 24 hours at 60°C. The nylon membranes of the 

Transwells were excised using a sterile scalpel and the outgrowths were prepared to be 

embedded in LR-White resin The outgrowths were fixed in paraformaldehyde 4%, for 1 

hour, washed in Milloning's phosphate buffer, pH 7.4, and dehydrated with ascending 

methanol series (30, 50, 70, and 100%) repeating each dehydrating step two times for 20 

minutes. Then, the specimens were  treated with a solution of Lr-white/methanol for 30 

minutes and in pure resin over night at room temperature. The day after, the outgrowths 

were embedded in LR-white resin in which accelerator was added and were left to 

polymerize in embedding containers for 24 hours at 60°C. 

3.4 IMMUNOSTAINING. 

          

3.4.1 Immunofluorescence. 

3D outgrowths were stained in situ after the appropriate treatments and time points. At the 

end of the treatment outgrowths were washed once with 1ml/well of HBSS and fixed in 

situ in 500l/well of ice-cold absolute methanol for 20 minutes at –20°C.  Outgrowths, 

inside their plastic supports, were then left to dry in a laminar flow cabinet for 30 minutes 

and stored at –20°C.  Trays were defrosted at room temperature, and washed twice with 

1ml/well of phosphate buffered saline (PBS), permeabilised with 500µl/well of Triton X-

100 (Sigma, UK) 0.1% in PBS for 3 minutes on ice and washed once with 1ml/well of 

PBS. Unspecific binding sites were blocked with 250µl/well of DMEM 10% FBS for 15 

minutes. During this period the primary Abs were diluted in incubation buffer (DMEM 

10%, Tween-20 0.1% and Sodium Azide 0.1% in PBS). The blocking buffer was then 

removed and without washing the diluted Abs were added to the wells for 45 minutes. 

Wells were then washed twice with 1ml/well of incubation buffer and when needed 
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secondary Abs were diluted in incubation buffer and applied to the wells for 45 minutes. 

Secondary Abs were conjugated with different fluorochromes.  

The following primary Abs were used:  

- anti-cytokeratin13 (CK13) monoclonal IgG1 Ab (clone 1C7, working dilution 

1:100) purchased from Abnova, USA. 

- anti-cytokeratin18 (CK18) monoclonal IgG Ab (clone KRT18, working dilution 

1:200) purchased from Abnova, USA. 

- Anti-Collagen I monoclonal IgG1 Ab (clone 5D8-G9, working dilution 1:50) 

purchased from Millipore, UK. 

- Anti-Laminin  monoclonal IgG1 Ab (clone 2G6/A2, working dilution 1:200) 

purchased from Millipore, UK. 

 The secondary Abs were: 

A secondary FITC-conjugated goat anti-mouse IgG Ab (working dilution 1:400, purchased 

from Sigma, UK) was used to reveal CK13 and Collagen I positivity. 

A secondary TRITC-conjugated goat anti-mouse IgG Ab (working dilution 1:500, 

purchased from Sigma, UK) was used to reveal CK18 and Laminin positivity. 

At the end of the 45 minutes incubation step with the secondary Abs, wells were washed 

twice with 1 ml of PBS and coverslips mounted with MOVIOL (DABCO) mounting 

medium. The trays were then ready to be observed under the fluorescent light of a LEICA 

inverted fluorescent microscope. 

 

3.4.2  Immunogold 

 

Ultrathin sections were mounted on gold grids to prepare them for the immunogold assay. 

The outgrowths were included in epoxy resin that notoriously covers antigenic sites, 

making the execution of immunological investigation techniques considerably more 

difficult. A pre-treatment to unmask the sites with sodium citrate was performed to ensure 

better results. Gold grids were placed in a baker filled with a sodium citrate solution and 

subsequently microwaved for 4 minutes at 850W. 
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The grids were then washed twice in PBS, and subsequently incubated in a serum blocking 

solution for 30 minutes and, without washing, the incubation proceeded with primary 

antibodies diluted in dilution buffer for 1 hour and half at room temperature. Primary 

antibodies used were against cytokeratin 18, MUC 5AC, Collagen type I and alpha-SMA 

and they were all diluted 1:15. Grids were rinsed five times with PBS for 3 min and 

incubated with a secondary antibody conjugated with 10nm colloidal gold particles for 30 

minutes at room temperature, and washed again for five times with PBS for 3 min. The 

grids were then fixed in a 2.5% glutaraldehyde solution in PBS for 15 minutes and finally 

washed five times in distilled water for 3 minutes. The grids were then prepared for 

contrast staining by treating them with uranyl acetate for 5 minutes, followed by eight 

washes with methanol for 2 minutes, treated with Reynolds’ solution for 5 minutes and 

finally rinsed eight times in distilled water for 2 minutes. After this procedure, the grids 

were ready for electron microscopy. 
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4. Results 

4.1 Morphological characterization of the human bronchial outgrowths. 

4.1.1 Phase Contrast Microscopy 

3d outgrowths were routinely photographed before and after treatment to record any 

morphological changes occurring in the cells. An inverted light microscope equipped with 

phase contrast rings (LEICA DM-IRB) was used to visualize changes in cell size, shape 

and orientations and this was recorded by digital photography. 

Phase contrast microscopy (PhaCo) revealed that the 3D outgrowths were initially formed 

as a network of spindly cells (likely fibroblasts) and rounder cells (possibly epithelial cells) 

that were growing out into the Matrigel from the biopsy which was  initially placed in the 

middle of the transwell system (Figure 4.1). After 10-12 days, the nylon membrane 

covering the bottom of the insert was completely covered with the newly grown tissue and 

from that time the culture had a three-dimensional structure. After 30 days of culture the 

morphological features of the outgrowths (as observed with the PhaCo) did not change 

significantly. In our experience, unless specific damaging events (eg. contamination with 

infectious organisms), occurred during the culture period, and providing proper culture 

conditions were maintained, we were able to grow these 3D outgrowths consistently for 

more than a year. 
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Figure 4.1 Phase-contrast observation of outgrowths in culture for 3, 7, 10 and 28 

days. 

  

Day 7 Day 3 

day 10 Day 28 
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4.1.2 TEM analysis 

Figure 4.2 shows a panoramic view of a 30 days old outgrowth: it is possible to clearly 

identify two distinct strata, the top one formed of two layers of epithelial-like cells, a basal 

and an apical one, and the bottom one where fibroblast-like cells are dispersed in a highly 

organized ECM. The two layers are separated by a well-developed basement  membrane.  

Figure 4.2 

 

In Figure 4.3 it is possible to analyze the epithelial component more in details. In 

particular, the apical epithelial elements present microvilli and cilia that are structurally 

well formed. The basal epithelial cells are separated from the mesenchymal layer by a 

well-developed basement membrane to which basal epithelial cells are attached via 

hemidesmosomes (Fig.4.3 C). The latero-lateral surfaces present adhesive junctions 

(desmosomes, clearly visible in fig.4.3 E) that keep the surfaces of adjacent cells well 



pag. 41 

attached, and enlargements where desmosomes are missing and where it is possible to 

discern exo- and endocytosis ccurrences (Fig.4.3 D). 
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The lower layer (mesenchymal layer) has a completely different structure with fibroblasts 

dispersed in a well-defined ECM (Figure 4.4 A).  In fig.4.4 B, it is possible to observe high 

magnification details of a fibroblastic cytoplasmic process: it is quite clear that the proteic 

material that will eventually form the ECM is extruded into the extracellular space from 

caveolae-like structures present on the cytoplasmic membrane of the fibroblasts.  

It was not possible to identify any other cytotypes (such as immune or inflammatory cells) 

apart from the ones already described. As better detailed in the Discussion session of this 

chapter, this is another strong point of this model because it enables study of cellular 

processes devoid of the presence of inflammatory cells. 

Figure 4.4 
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4.2 Immunocharacterisation 

In order to properly characterize our 3D outgrowths, these were stained with a panel of 

antibodies directed towards some of the most common markers of the human bronchial 

mucosa, and visualized by immunofluorescence and immunogold  in order to achieve 

precise localization at the different cell structures. 

4.2.1 Immunofluorescence 

Figure 4.5 shows that the epithelial layers were positive for CK13 (A) and CK18 (B), 

whereas the underlying fibroblast layer was positive for Collagen I (C) and Laminin (D). 

The outgrowths did not express CD3, CD4, CD8, CD18, CD28, CD 45, CD64, CD68 and 

MPO (markers of different kind of leukocytes, lymphocytes, macrophages and neutrophils; 

data not shown) and this was in accordance with the morphological observations. 

Figure 4.5 
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4.2.2 Immunogold 

Immunological characterization of the bronchial outgrowths was also carried out by 

immunogold in order to obtain a better ultrastructural localization of certain markers. 

Figure 4.6 shows that  the ciliated elements of the epithelial layer immunostained 

positively for cytokeratin 18 (a typical marker of columnar ciliated cells in the normal 

human bronchial mucosa, fig 4.6 A) whereas the goblet cells characteristically expressed 

MUC 5AC (fig. 4.6 B). The collagenous fibers released by the fibroblast in the 

extracellular space stained positively for collagen type I (the main collagen produced by 

fibroblasts in the lamina propria of the human bronchial mucosa, Fig. 4.6 C) while some of 

the fibroblasts (only 10%) expressed in their cytoplasm alpha-SMA (Fig. 4.6 D) suggesting 

a possible myo-fibroblastic differentiation of some of these cells. 

Figure 4.6 

 

 

 

           

         

 

 

 

 

 

 

Immunogold staining of human bronchial mucosa markers. A 30 days old bronchial 

outgrowth was immunostained for cytokeratin 18 (A), MUC 5AC (B), collagen type I (C) 

and alpha-SMA (D) using secondary antibodies labelled with colloidal gold particles 10nm 

in diameter and then analysed by TEM. Bars = 500nm in A and B, 200nm in B and C. 

  

A 
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4.3 Effects of long term CSE exposure on 3D outgrowths survival and differentiation. 

Having further confirmed that the bronchial outgrowths used in this study were effectively 

a good replica of the normal human bronchial mucosa in both its epithelial and fibroblastic 

components, we proceeded with a functional study aimed at the identification of the effects 

that long-term exposure to cigarette smoke could induce to these outgrowths. 

4.3.1 Phase-Contrast analysis 

In order to find the correct doses and time points for the long-term exposure to CSE, 3D 

outgrowths were grown until complete differentiation (28 days) and then treated with or 

without (untreated control) different doses of CSE (10, 15 and 20%) for 1, 2 and 3 weeks. 

These doses were chosen because they represent a good approximation of the amount of 

CSE present in the bronchial mucosa of an average smoker (subject that smokes 15-20 

cigarettes per day).  

Figures 4.7, 4.8 and 4.9 show the morphological features of the 3D outgrowths with the 

three doses analyzed after 1, 2 and 3 weeks of exposure, respectively. 

It is possible to observe that at all time points and doses studied CSE failed to induce 

significant amounts of cell death (whether necrotic or apoptotic) with only the highest 

dose, 20%, at the furthest time point, 3 weeks, presenting a few necrotic cells on the upper 

surface of the 3d outgrowth. For these reasons, the 15% dose of CSE and a three weeks 

exposure time were chosen for the following experiments. 
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FIGURE 4.7 

 

     

  
 

Phase-contrast observations of a representative 28 days old bronchial outgrowth exposed 
for 1 week to 10% (A), 15% (B) or 20%(C) CSE. D represents the untreated control. 
Bar=50µm  

A B

  
 

C D 
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FIGURE 4.8 

 

  

  

Phase-contrast observations of a representative 28 days old bronchial outgrowth exposed 

for 2 weeks to 10% (A), 15% (B) or 20%(C) CSE. D represents the untreated control. 

Bar=25µm.   

A B 

C D 
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Figure 4.9 

 

  

   

Phase-contrast observations of a representative 28 days old bronchial outgrowth exposed 

for 2 weeks to 10% (A), 15% (B) or 20%(C) CSE. D represents the untreated control. 

Bar=25µm. 
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4.3.2 TEM analysis 

3D outgrowths were cultured for 28 days, in order to let them properly differentiate, before 

exposing them to CSE 15% for 21 days. During the exposure time, fresh medium 

containing CSE 15% or not (untreated control) was added to the outgrowths every 48 

hours.  

Long term exposure with CSE did indeed not cause any cell death amongst the two cell 

populations. However, the long term treatment caused a partial remodeling of the 

architecture of the 3D outgrowths. In particular, the apical epithelial cells completely lost 

their ciliated structures that were replaced by thick microvilli entirely covered by mucus 

(Fig.4.10 A).  

Figure 4.10 

 

Effects of CSE treatment on bronchial outgrowths’ ultrastructure. Outgrowths were 
cultured for one month before being treated for 3 weeks with CSE 15%. It is possible to 
see modifications to the normal structures described earlier. In particular, the apical 
epithelial cells completely lose their ciliated structures, subsequently replaced by thick 
microvilli entirely covered by mucus. Bar=200nm. 
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Moreover, the fibroblast increased their production of collagens and this resulted in a clear 

thickening of the basement membrane and in a complete disarray of the fibroblast layer 

(Fig.4.10 B and inset). These structural modifications are compatible with those occurring 

after a chronic inflammatory insult. Interestingly though, our 3D outgrowth models are 

void of any immune or inflammatory cell components, as shown earlier.  

 

 

Effects of CSE treatment on bronchial outgrowths’ ultrastructure. Outgrowths were 
cultured for one month before being treated for 3 weeks with CSE 15%. It is possible to 
see modifications to the normal structures described earlier. There is a clear increase in the 
production of collagens by the firoblasts that results in the thickening of the basement 
membrane and a disarray of the fibroblast layer. Bar=1µm. 
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5. Discussion 

Primary cultures or cell lines still represent the most commonly used in vitro human 

models to study responses of cell systems to specific stimuli. However, the main 

limitations of these models are the absence of the extracellular components and the loss of 

proper cell-cell communication that arises from the former. For this reason, our laboratory 

has been constantly driven by the need to develop better and more complex in vitro models 

of the human bronchial mucosa. In the last few years this necessity has been motivating 

other groups, as evidenced by the progressively increasing number of publications on this 

regard. Of particular interest, in the field of tissue engineering of the lung, is the research 

work by Huh and colleagues on the alveolar-endothelial membrane, or more anatomically 

relevant to the objective of this thesis, the research by Choe and colleagues on human 

bronchial airways. In the latter paper, the Authors developed a tissue-engineered human 

airway wall model, where differentiated bronchial epithelial cells were sitting on top of a 

collagen gel containing lung fibroblasts. Lateral compressive strain was then applied using 

a novel straining device and responses studied in terms of ECM remodelling. Their 

interesting results showed that dynamic strain induced increased deposition of collagen 

type III and IV as well as secretion of matrix metalloproteinase-2 and -9. Their conclusion 

was that  “in a physiologically relevant three-dimensional model of the bronchial wall, 

dynamic compressive strain induced tissue remodeling that mimics many features of 

remodeling seen in asthma, in the absence of inflammation and dependent on epithelial–

fibroblast signalling” (40). 

In this experimental model however, bronchial epithelial cells and fibroblasts were first 

cultured separately and then co-cultured in an artificial collagen gel. This model, along 

with recently employed similar ones, is limited by the fact that the ECM is artificially laid 

out, the cells are already phenotypically modified before to even enter the three-

dimensional system, and their life is quite short and therefore is not possible to undertake 

long-term experiments. In our model instead, both PBEC and fibroblasts outgrow 

autonomously from a bronchial biopsy into a 3D gel (Matrigel), whose composition is very 

similar to that of the normal ECM of the bronchial airways. Moreover, after the initial 

expansion phase, fibroblasts start to lay out a newly formed ECM that is architecturally 

and structurally compatible with that of the human bronchial airways. In the meantime, the 

PBEC start differentiating because of the air-liquid interface, and after around 30 days of 

culture the outgrowths present a properly differentiated bronchial epithelium, separated, by 

a functional basement membrane, from a newly constituted lamina propria where 
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fibroblasts lay the ECM.  However, in our model there are two limitations. First of them is 

the complete absence of the immune cells, and the second being the lack of circulation. 

The latter could be easily overcome by the employment of microfluidics (41) while the 

former is may be considered an advantage, giving us the opportunity to selectively add, 

whether in the epithelial or in the mesenchymal layer, cytokines, chemokines or any other 

factor whose effects one might want to research. In our case, this lack of any immune or 

inflammatory elements has permitted us to verify that after a long-term exposure to CS, the 

newly formed bronchial mucosa undergoes a series of morphological changes (such as 

thickening of the basement membrane, loss of ciliated cells, increase of mucus production, 

disarray of the lamina propria) typical of the inflamed and remodelled mucosa seen in 

chronic inflammatory lung diseases, but without immune cell intervention. 

Diseases such as asthma and COPD are difficult to be studied using animal models in vivo 

since there are too many important differences between animal and human cells at various 

levels. The epithelial response to cigarette smoke may represent an attempt by the airway 

epithelium to protect itself and repair the smoke-induced injury (42). These damages may 

lead to the development of squamous metaplasia, which is the reversible replacement of 

the columnar epithelium by squamous epithelium, an effect that has been correlated with 

airflow obstruction (43). Squamous cell metaplasia impairs mucociliary clearance and 

contributes to the increased risk of squamous cell carcinoma in COPD. A significant 

increase in airway smooth muscle in small airways of patients with COPD has been 

reported in several studies (44-46) The airway smooth muscle mass in the small airways 

seems to be the only differentiating feature when comparing nonobstructed patients with 

COPD with patients with asthma (47). Moreover, it has been shown that cytokines and 

chemokines are involved in many aspects of disease processes in COPD, including 

recruitment of neutrophils, macrophages, T-cells and B-cells, airway wall remodelling, 

goblet cell metaplasia, epithelial cell hyperplasia and the induction of emphysema. Other 

studies also showed an increase in alveolar epithelial and endothelial cellapoptosis in 

emphysematous lung tissue (48–50), associated with an increase in activated subunits of 

caspase-3 and loss of the anti-apoptotic protein Bcl-2 (48) reported that expression of 

vascular endothelial growth factor (VEGF) and VEGF receptor 2 protein and mRNA was 

significantly reduced in emphysema and, since these are maintenance factors for 

endothelial cells, this reduction may lead to endothelial alveolar septal death.  

Unfortunately, due to the long time necessary to characterise the 3D outgrowth model, 

little time was left during the course of this PhD study for functional studies using this 
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model. Future work will therefore be focused on other typical bronchial mucosa stressors  

of interest in the COPD (RV infection, oxidative stress and eventual protective effect of 

antioxidants). The outgrowth model could also be applied to other tissues in order to study 

other diseases, where, similarly to COPD, little is known about the true interactions 

between resident and immune cells. The model would for example be of great interest for 

studies of cystic fibrosis.  Furthermore, it would be of interest to test whether similar 

models of the enteric mucosa can be developed and used for the study of the pathogenesis 

of the celiac disease or other chronic inflammatory diseases of the bowel.  
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