
Ph.D. Thesis

Arianna Pipitone

February, 15 2012

Abstract

Ontologies have been designed to capture the semantic knowledge of a domain in
a machine understandable form. Current standards for managing ontologies like
OWL are lacking in linguistic grounding, and are not able to achieve a clear link
with natural language. Bridging this gap, unskilled users could be able to infer the
information described in the ontology and it would be possible either producing or
parsing utterances about the represented domain automatically. Moreover, as in
the case of enterprises, it could be very useful to extract information from external
documental corpora that are related to the same domain. Many attempts have
been made with the aim to create a natural language interface to ontology but very
few of them use grammars during interaction; such interfaces are focused only on
verbalizing information contained in the ontology, while it is often necessary to
give exhaustive answers to the users’s queries by retrieving data outside of the
knowledge base. The work presented in this thesis has been inspired by theories in
the field of Cognitive Linguistics, and in particular by the Construction Grammar,
to create a grammar-based tool for ontology verbalization that combines OWL
ontologies with Fluid Construction Grammar (FCG). Currently, FCG is the only
computational implementation of Construction Grammar that performs both pro-
duction, and parsing using the same set of constructions. The main idea is to
compute both lexical and grammatical constructions (the meaning-form couples)
in the FCG from the ontology. To achieve this goal, a suitable set of rules based on
linguistic typology have been defined to infer semantics and syntax from the RDF
triples inside the OWL structure, while combining them as the poles of construc-
tions in the FCG. To allow verbalization from external documents related to the
ontology, synonymous constructions have been defined, which are matched to free

Abstract iii

text. Computing all possible syntactic forms for the same meaning was achieved
using linguistic rules. The information retrieval procedure outlined above allows
semantic annotation of the text as a side effect. A system for automatic generation
of contents for Semantic MediaWiki from standard Wikipedia pages has been im-
plemented in this respect. The combination of OWL with FCG and the integration
of external documents in the ontology are the core of the system whose theoretical
background, modeling, design, and evaluation with respect to other contributes in
this research field form the main subjects of this thesis.

Acknowledgements

Simply I am grateful to my supervisor, Roberto; he has made my doctoral expe-
rience a life experience, supporting me during my hard moments and bearing me.
Discussions with him made me more aware and his comments are always improved
my work.

Thanks to Giuseppe Russo, which was my first referent and whose kindness
and gentlness are unforgettable for me.

Thanks Vincenzo, Alessandra, Valeria and Agnese, you have made my experi-
ence more agreeable and I think I found something that is similar to friendship!

And thanks to my family without which I would not be who I am today, a
happy doctorated wife and mother.

Contents

Abstract ii

Acknowledgements v

1 Introduction 1

1.1 Motivations . 3

1.2 Challenges and Solutions . 5

1.3 Logbook of Contributes . 10

1.4 Summary . 14

2 State of the Art 15

2.1 Introduction . 15

2.2 The Ontology Verbalization Languages 15

2.2.1 Controlled Natural Languages 17

2.2.2 CPL . 18

2.2.3 CLP for Semantic Web . 20

2.3 Flexible Grammars vs Controlled ones 25

2.3.1 Flexible Grammar Settings 27

CONTENTS viii

2.4 Other Ways for Interfacing to Ontology 28

2.4.1 Visual Ontology Browser . 29

2.4.2 Natural Language Interfaces 33

3 Construction Grammar and Fluidity 37

3.1 Introduction . 37

3.2 Construction Grammar . 38

3.2.1 Linguistic Requirements . 38

3.2.2 Generative Grammar vs Construction Grammar 40

3.3 Fluid Construction Grammar . 42

3.3.1 FCG Linguistic Feautures 43

3.3.2 Feauture Structures . 44

3.3.3 FCG Template . 46

3.3.4 Unification and Merging . 47

3.3.5 The J-operator and others 48

4 Model Description 51

4.1 Introduction . 51

4.2 The Ontology Model . 52

4.3 Statements, Topics and Scenes . 54

4.3.1 Building Topics from OWL 57

4.4 Defining Semantic Categories . 59

4.5 Defining Syntactic Categories . 61

4.6 Constructions . 62

4.6.1 Lexical Constructions . 62

CONTENTS ix

4.6.2 Grammatical Constructions 65

4.7 Modeling the Process . 67

4.8 From triples to constructions, an example 71

5 Some Instruments and Architecture 76

5.1 Introduction . 76

5.2 FrameNet . 77

5.2.1 FrameNet Structure . 77

5.3 WordNet . 79

5.3.1 WordNet Types . 79

5.3.2 WordNet Relationships . 80

5.3.3 Noun, Hypernyms and Hyponyms 81

5.3.4 Noun, Holonyms and Meronyms 81

5.4 System Architecture . 82

6 Main Experiments 85

6.1 Introduction . 85

6.2 Baseline Experiment 1 . 86

6.3 Baseline Experiment 2 . 92

7 Conclusions 102

A From Wikipedia to Semantic MediaWiki 107

A.1 Introduction . 107

A.2 The Role of Wikis in the Semantic Web 108

A.3 Wikipedia in Action . 109

CONTENTS x

A.4 Semantic Wikipedia . 111

A.4.1 Semantic MediaWiki Annotation Rules 112

A.5 Semantic Annotation Strategy . 114

A.5.1 Inferring the Semantic Meaning of the Wikipedia Sections . 115

A.5.2 Inferring the Semantic Meaning of the Text in a single Wikipedia
Section . 117

A.5.3 Automatic Annotation of Wikipedia Page 118

A.6 Application Scenario . 118

Bibliography 123

List of Figures

1.1 How our model is collocated into the Semantic Web scenario. 3

1.2 An ontology fragment that models books. 8

2.1 OWL Verbalization in ACE. 22

2.2 Query panel where user can enter SPARQL query; pressing the
Execute Query button the query results will be shown on the right-
hand side. 30

2.3 Example data based on the Noble prize winners dataset used in the
Flamenco facet browser. 32

2.4 ORAKEL system architecture. 34

2.5 PANTO overview. 36

3.1 Semplified CxG andGenerative Grammar representations of the sen-
tence Heater sings . 42

4.1 A small ontology subgraph. 58

4.2 From ontology model to constructions: step by step. 68

4.3 Gazetteer for Work-Organization relation that is a NP. 71

4.4 Gazetteer for University concept. 72

LIST OF FIGURES xiii

4.5 FCG interface that shows the parsing of "Mary works for University
of Sheeld". 74

4.6 FCG interface that shows the parsing of "Mary works University of
Sheeld". 75

5.1 System’s overview. 82

5.2 If the category outputted by Ner is in the gazetteers of the entity
itself, system is able to infer new instance if it does not exist. 84

6.1 A fragment of the Art domain ontology. 87

6.2 Zpfian distribution on 20 Wikipedia pages of words or sentences in
the gazetteers of 6 triples. 88

6.3 Precision measure on 100 Wikipedia pages. 91

6.4 Recall measure on 100 Wikipedia pages. 92

6.5 A fragment of Groups of Connected Clients ontology provided by
Operative Consortium of Monte Paschi of Siena. 93

6.6 An example of a semiotic graph. Nodes marked as mi represent a
meaning (a conjunction of predicates), while the ones marked as wi

represent utterances. Weights on the edges refer to probabilities to
obtain a certain production or parsing. 94

6.7 The semiotic graph for the concept Banca in production. 96

6.8 Synonymy as represented in a semiotic graph: both the words “cherry”
and “fruit” are shown to map to the same concept meaning. 97

6.9 Homonymy as represented in the semiotic landscape. 97

6.10 Precision of production in our relevations. 101

A.1 Source of page about London city in Wikipedia using MediaWiki
engine. 113

LIST OF FIGURES xiv

A.2 Source of page about London city in Wikipedia using Semantic Me-
diaWiki engine. 113

A.3 Semantic MediaWiki page about London city. 114

A.4 Architectural design of the framework implementation. 119

Chapter 1

Introduction

Natural language production and understanding about a domain are the main
subjects of this thesis. The research fields involved in achieving these tasks are
Natural Language Processing (NLP) and Knowledge-Based Systems (KBS) that
are two subfields of Artificial Intelligence, and complement each other. Machines
become intelligent when they achieve the precise semantics necessary for compu-
tational purposes. If a system understands a domain then it can produce natural
language utterances about this domain: it becomes able to automatically answer
domain natural language queries.

A number of developmental stages have been reached in NLP research regarding
the evolution of language in artificial agents. Most of the results obtained so far in
this field are related mainly to the emergence of lexicons (Batali (2002), Cangelosi
and Parisi (2002), Minett and Wang (2005), Steels (2005)). It is obvious that a
non-trivial grammar background produces better results. Grammar in the context
of knowledge verbalization depends on the domain representation that is the focus
for the Knowledge Representation (KR) field, a sub-field of KBS.

Generally a domain is represented by conceptual models into machines (internal
domain KR) but a set of documents that could not have a structure (as plain texts)
and without direct links to this internal representation (external domain KR) can
describe the domain too. Systems employ their internal knowledge to become more

1. Introduction 2

self-aware and to infer new knowledge from external sources; this is a Knowledge
Acquisition (KA) process that is perceived as the most difficult bottleneck in the
design of KBS.

Internal knowledge represents what the agent knows about the domain; logic is
necessary to formalize KR and it is relevant for reasoning in KA processes. Recent
advances in the formalization of KR have been influenced by the principles of the
Semantic Web. Making interoperable all the heterogeneous information sources
in the Web allows applications to understand, use, reason, and share informa-
tion about them. To this aim, a standard specification of semantics, syntax, and
structure for representing web contents is necessary.

The Resource Description Framework (RDF) (Manola and Miller (2004)] starts
from the general perspective that the knowledge about a domain is modeled as a
set of entities that own properties, and are related to each other. RDF encapsulates
this representation through a set of triples with the form

RESOURCE <property> VALUE

To model the triple, RDF defines three properties: subject to identify the re-
source, predicate to identify the property, and object to identify the value. A re-
source with these properties models an RDF statement; statements together form
particular representation that is called ontology.

This thesis has been motivated by the aim to enrich the KR of a system with
both external contents and rules for defining an usable grammar to verbalize the
domain. The work presents a formalization of the RDF statements describing en-
tities, and their properties in the ontology through a model inspired to Cognitive
Linguistics. The Construction Grammar (CxG) theory is proposed in this thesis.
CxG considers together both semantics, and syntax of a grammatical structure.
In this perspective, a RDF triple becomes a grammatical unit (i.e. a construction)
while the triple’s semantics and its structure become the “poles” of this unit. The
set of constructions (that is the set of RDF triples in the ontology representa-
tion) is the knowledge of the system about the domain. Luc Steels triggered the
development of the Fluid Construction Grammar (FCG)(Steels (2011)) (FCG) an
operationalization of CxG that produces and parses text using the same set of con-

1. Introduction 3

structions. FCG has been used in the proposed software architecture to verbalize
the domain. A natural language query is translated in the selection of a subset of
constructions (the RDF subgraph), and the answer is produced from them.

Briefly, this thesis aims to use the models previously outlined to model an
agent’s internal KR using external KR and to make a system able to verbalize the
domain under investigation using its global knowledge (both internal, and exter-
nal information sources). The system will be able to produce Natural Language
sentences that can be answers to Natural Language queries. So, the proposed
approach implements an intelligent Natural Language Interface. Figure 1.1 shows
the discussed scenario.

Figure 1.1: How our model is collocated into the Semantic Web scenario.

1.1 Motivations

Although several experiments have been made on the role of syntax and gram-
mar (Hashimoto and Ikegami (1996), Steels (1998), Batali (1999), Smith (2003))
in agents’ production and understanding, non trivial grammars that are well
grounded in the agent’s task arose only in few cases. Grammar emergence is a
much more encompassing problem than simply devising a suitable lexicon for on-
tology statements. In grammar emergence experiments, the agent’s knowledge
model needs to be much more complex, and it is influenced by problems related

1. Introduction 4

to domain representation conventions. Integrating the model representation with
rules for defining a grammar can be very useful for bridging this gap.

Knowledge representation languages built on RDF (as OWL, which is the W3C
standard representation language for ontology) are becoming increasingly popu-
lar. Often, RDF/OWL formalisms are used to model an agent’s internal KR for
production and/or understanding purposes. In this respect, some problems arise
when the agent has to deal with plain web contents. Raw data are shared by users
with neither structure nor semantic annotations. Unskilled users don’t mind to
structure their contents. As a consequence an incremental on-the-fly strategy is
required to enable reuse of existing data, while avoiding their loss, and to struc-
ture new contents. When retrieving plain Web contents, the agent must infer
automatically standard structures from them without involving the user, then it
shares this new form (on-the-fly mode) on the Web replacing the old one. Docu-
ments retrieved by users at least once, become structured (incremental solution),
and massive standardization interventions are not necessary. Another problem is
related to querying structured data by unskilled users. Formal query languages
like SPARQL (Simple Protocol And RDF Query Language) (Prud’hommeaux and
Seaborne (2008)) are required when accessing OWL information to map natural
language queries onto the data structure. This poses significant difficulties for non-
expert users, while experts need to be familiar with the existing ontology structure
that is often hidden. Also these query languages do not explore contents that are
external to the ontology even if they’re interesting for the users, and are related
to the domain. Finally, accessing external contents allows structuring them to
standardize them according to an incremental on-the-fly approach. In (Hurtado
et al. (2009)) it is demonstrated that casual users need to be able to access the
data despite their queries do not match exactly the queried data structures.

According to the study on interfaces evaluation conducted in (Kaufmann and
Bernstein (2007)), systems developed to support Natural Language Interfaces are
perceived as the most acceptable by end-users. If a system understands (i.e.
achieves semantic parsing of) free textual documents about a domain, it enriches
its KB with new knowledge that in turn can be used to produce more exhaustive
answers. This is particularly interesting for enterprises that use corporate ontology

1. Introduction 5

for their knowledge management. Corporate ontology is usually a logical schema
of enterprise roles and concepts and relationship between them (TBox) 8Antoniou
and Harmelen (2008)), while data and documents related to it are located into
an external database. In this way, enterprises should be able to communicate be-
tween them sharing the knowledge representation but preserving documents and
data through proper security strategies.

Our model allows linking the ontology and the documents related to the rep-
resented domain. Semantic annotation of text through the ontology itself allows
unskilled users to query the system about the domain, and external corpora: the
system will answer producing natural language sentences.

In Buitelaar et al. (2009) the main motivations in support of this position are
reported. According to the authors, a natural language background for ontologies
helps for:

• creating sound ontologies by human developers, which are so able to better
understand the concepts represented in the KB and the relations between
them;

• extracting information from plain text about topics related to the domain in
order to develop ontology-based semantic parsers;

• generating utterances in natural language from ontology structures to make
them understandable by human users.

1.2 Challenges and Solutions

According to Martin et al. (1986), a major challenge when building an intelligent
system to understand free textual documents is the existent gap between the way
the user thinks about the domain and how she describes it, and the way the
domain knowledge is structured for computer processing. This implies that it is
very important to consider the ontology structure and content.

1. Introduction 6

Two ontologies describing identical domains can use different modeling conven-
tions. As an example, Two different OWL structures represent a postal addresses
either through a datatype property address in the class Person or using instances
of a suited Address class. A NLP system aimed to verbalize the domain would have
to support both types of conventions: portable or transportable NLP systems can
be adapted easily to new domains (i.e. new ontologies covering the same domains).
Some authors (Martin et al. (1986)) consider that building transportable systems
poses a number of technical and theoretical problems because many of the tech-
niques developed for specialized systems preclude automatic adaptation to new
domains. (Kaufmann and Bernstein (2007) p.281) noted that portability affects
retrieval performance: “the more a system is tailored to a domain, the better its
retrieval performance is”.

In general, talking about a “tailored domain” is more related to applications’
requirements for a particular data representation than the domain itself. In this
perspective, the designers cover applications’ requirements and do not think about
a general view of the domain. They work without following standard guidelines
but according to application profiles or users needs. An effect of customization is
that it does not guarantee a standardization of knowledge representations, which
is a main objective for the Web 3.0.

In general, existing knowledge management systems tend to be either domain
independent (i.e., portable) but with lower performance, or more domain-specific
(i.e., portable only with prior customization) but with a much better performance.
The caveat in the latter case is that customization tends to be very expensive as
it is performed by experts (e.g., domain experts, language engineers); moreover
in this case the ontology could be representative only of a part of the domain.
It could be considered as a view of the world that depends by both the designer
experiences, and the modeling activity performed by domain experts.

Systems using ontologies should be able to capture the semantics of the repre-
sentation independently from syntax and modeling conventions in order to solve
the portability problem. As a consequence they should be domain-independent.
The basic approach proposed in this thesis is extracting semantics by means of
the semantic seed of the ontology representation. Each fact in the ontology is

1. Introduction 7

represented using a triple, independently from modeling conventions. A semantic
seed is the semantics of the subject-verb-object triple (SVO), and each triple in the
ontology can be mapped onto a SVO triple. In the above example using either a
datatype property or an instance of a particular class corresponds to some RDF
triples in the OWL file. If the address of a person is modeled as either a class
or a datatype property, the SVO form is always inferable: <Person has_address
Address> is the SVO triple in the first case, while <Person has_address String>
is the SVO triple for the datatype property modeling case.

The main challenge of the present work is to make a system independent from
modeling conventions by using semantic seeds (or a taxonomy of them) to infer
the SVO triples in the ontology, and to compute a suitable syntax to express
them. In turn, such a syntax can be used for parsing and understanding textual
contents: this position is supported by linguistic typology, a subfield of Linguistics
that studies and classifies languages according to their structural features. Its
aim is to describe and explain the common properties and the structural diversity
of the world’s languages. In linguistic typology, the subject-verb-object sentence
structure is one of the most common structures in the world: it’s the second after
the subject-object-verb one, and they account for more than 75% of the world’s
languages (Crystal (1998)). The system proposed in this work searches free text
documents, and tries to find all possible statements expressing a particular triple
in the ontology that is different syntactic forms for the same semantics.

Another challenge for the presented work was the ambiguity problem: differ-
ent meanings can exist for the same syntactic form. The impact of ambiguity
problem is reduced considering that the semantic seed can disambiguate context.
For example, an utterance containing the structure born in in relation to a person
can bring two meanings: the place of birth or the year of birth. This ambiguity
is resolved considering the components of the seed. As an example, if born in is
modeled in the ontology as an object property connecting the class Person and
another class (i.e. the object in the SVO structure) then the object component of
this property has to be analyzed: if the object is a class like Place, the property
means a place of birth, while if it is a class like Date or Year the property means
a year of birth. If the property is modeled through a datatype property, the value

1. Introduction 8

of its range is useful to disambiguate this case. In fact, considering the Named
Entity (Finkel et al. (2005), Finkel and Manning (2009)) categories of the property
range, is possible to infer if it is a place or a year and hence to disambiguate the
sense. In summary, disambiguation is intrinsic for each triple, and it is sufficient
to apply the right inference according the form of the seed.

Expanding the ontology by creating either new triples or triple instances is an
interesting topic. Full incremental ontologies are useful when it is necessary to
retrieve new information from sources containing unstructured data and changing
over time. In general, ontologies tailored for specific applications (as in the case
of corporate ontologies) do not require to add new concepts and relations because
their knowledge model is defined ad-hoc for some purposes. On the contrary they
require adding new class and/or property instances. The approach proposed in
this thesis addresses this challenge. An example is reported in Figure 1.2

Figure 1.2: An ontology fragment that models books.

In this subgraph the b1 instance of the Historical Novel class has two datatype
properties and one object property linking it to the p1 instance that is a Person
according to the model in FOAF (Brickley and Miller (2010)). Properties for b1

1. Introduction 9

are described by the following set of SVO triples (without namespaces):
<b1 is-a Historical Novel>
<b1 title The First Man in Rome>
<b1 year 1990>
<b1 author p1>

The string “1990” is a year because it has been declared explicitly by the
designer as a Year Literal value. The same holds for “The First Man in Rome”
that is the title of b1 , and has been declared as String Literal.

Assuming a scenario where information is missing about the author of the The
First Man in Rome, and the year when it was written, the correspondent nodes
in the figure would be empty. The system implemented in this work devises the
subsentence was written as a possible syntax both for both the <year> and the
<author> relations. These relations are the semantic seeds to start computation.

When retrieving something like:

The First Man in Rome was written in 1990.

or

The First Man in Rome was written by Colleen McCullogh.

the was written subsentence alone does not help to infer if the text refers to
either the year or the author. Disambiguation is achieved considering that a year
can be modeled as a Date because it is a Year Literal, and that an author is a
Person. Even if the year would have been modeled just as a String Literal, the
system could be able to disambiguate the two sentences in the example using the
name “year” of the datatype property belonging to b1. Such information is then
added to the ontology.

Briefly, the ontology provides the semantic seeds that are enriched by means of
a grammar analysis with a set of plausible syntactic forms. Then, such forms are
searched for in the plain text: complete meaning is devised against the ontology
structure using entities’ and properties’ types and names. Semantic annotation of
the text is achieved as a side effect, where the tag set is built using such terms.

1. Introduction 10

1.3 Logbook of Contributes

This section illustrates the working steps done to obtain understanding and ver-
balization of natural language sentences related to a domain that is modeled using
ontology.

The first attempt to extract meaning from plain text using ontologies, has been
made on Wikipedia pages to obtain automatically annotated Semantic MediaWiki
(Krötzsch et al. (2006)) pages. Annotated Wikipedia documents were used to ex-
pand the knowledge representation of an Intelligent Tutoring System (ITS) focused
on the Art domain, as it is shown in (Russo et al. (2009)). An ITS is an artificial
agent aimed to interact with students to assess their skills, and to improve their
knowledge in a particular domain. The course knowledge is modeled using the
ontology which has the purpose to define and to connect the main concepts of
the domain in order to build learning paths tailored to the user’s learning needs.
A knowledge not evolving over time is a severe limitation for ITSs: the agent is
unable to reply to questions that are outside the ontology boundaries and is not
capable to increase its own knowledge with respect to the interaction with users
or to add new external information sources.

Retrieval of new contents is obtained through a mapping between the internal
ontology of the agent and the ontology fragment extracted from the annotations
in the Semantic MediaWiki page by an ad-hoc service function provided by this
site. A big limitation of this approach was the small number of semantic wiki
pages available, so the activity focused on their automatic creation developing a
specific tool. Defining the basic idea of the thesis was the main contribute of that
work: computing the set of (synonymous) syntaxes for a semantic seed into the
ontology (that is the semantics of a SVO triple). The approach devised in that
work was therefore to use explicitly the names of the ontology entities, along with
the structural relationships between concepts and their properties. Two strategies
have been followed that are discussed in the appendix.

• Using an annotated ontology: the rdfs:comment property for each component
of a SVO triple is filled with the syntactic roles they take for a specific

1. Introduction 11

semantics. As an example, in the triple <Person-has_address-Address>,
the classes Person and Address are both annotated with NN tags and the
property has_address is annotated with V tag, that are respectively the
Proper Name and Verb POS tags of PennTreeBank set(Marcus et al. (1993)).
This means that a person and an address are syntactically expressed through
a Proper Name or a chain of proper names, and the relation between them
is a verb. In this way, the syntactic tree of a natural language sentence
is extracted by a POS syntactic parser [Spitkovsky et al. (2011)], and it is
mapped onto the syntactic annotation of the SVO triple to infer instances for
the Address and Person classes. This approach isn’t portable, and it requires
the ontology to be annotated suitably.

• Defining a set of typological and way-of-saying linguistic rules to compute
the syntactic expressions for each component of a SVO triple. Typological
rules disambiguate the meaning of the SVO triple from the semantic seed
structure. Way-of-saying rules compute a possible set of syntactic structures
that are useful to express such meaning. This strategy allows obtaining
portable systems with respect to both the domain and the actual ontology
representation, and it is the approach mainly discussed in this thesis.

While remaining in the framework of building artificial agents for Intelligent
Tutoring, the next step of the research described in this thesis was the attempt
to produce natural language answers for the user automatically. The theoretical
basis for this research was Cognitive Linguistics(Smith (1999)). The main goal
in this activity was to find a suitable model to describe the semantic seed also
from a grammatical perspective to embed understanding and production in the
same model. The result of this study was modeling the semantic seed using the
Construction Grammar (CxG) theory. The basic concept in CxG is construction
that is a couple made by a syntactic structure, and the corresponding meaning.
Constructions have been used in this approach to represent both the semantic and
syntactic components of each entity in the ontology, and to relate them according to
the SVO structure. On the implementation side, the Fluid Construction Grammar
(FCG) framework by Luc Steels (Steels (2011)) has been used that is the only
computational model for CxG. The system makes use of both constructions defined

1. Introduction 12

for the English language, and suitably defined rules to perform semantic parsing
of plain text, and producing utterances. In this way the ontology is the only guide
to produce a useful grammar for both understanding, and verbalization tasks.
This result is supported by the SVO linguistic typology that establishes the strong
possibility to find a grammatical structure corresponding to a certain semantics,
and its linearization expressions into plain natural language sentences.

The proposed approach addressed the following issues:

• Ambiguity: ambiguities are resolved automatically, based on a ranking de-
rived from the ontology structure. Such a ranking is based on linguistic
typological rules that resolve the meaning of SVO triples according to the
form of a semantic seed.

• Portability: the base lexicon for the domain under investigation is extracted
automatically from the ontology, and it’s integrated using way-of-saying
rules based on Wordnet (Fellbaum (1998)) and Framenet (Ruppenhofer et al.
(2005)). Way-of-saying rules specify both the structure, and the relevance
of the information taken these sources. Some examples are: take the Verb
Phrase corresponding to a Verb definition or consider synonyms and hyper-
nyms for a Name. Way-of saying rules are used to generate a gazetteer
to be processed by the Glen Gazetteer based on GATE (Cunningham et al.
(2011)). Its main application is semantic annotation of free text based on the
provided ontology. Annotated text is used to enrich the base lexicon. This
approach is domain-independent. Changing the ontology means changing
the lexicon, and this ensures portability.

• Language independence: it is a direct consequence of portability. The lan-
guage depends on the ontology design that is on the language used to name
entities in the ontology structure. typological and way-of-saying rules can
be stated in languages that are different from English. Several thesauri have
been implemented in different languages. Finally, the FCG framework can
be used to state grammatical rules for production other than in English.

The proposed approach has been evaluated in two domains:

1. Introduction 13

• Art domain, which contains facts about artists, artworks, artists’ life and so
on. The result of this work is WikiArt (Pirrone et al. (2009)), a wiki for Art,
and the automatic creation of artists’ wiki pages annotated semantically.

• Corporate ontologies that is ontologies to be used by enterprises. Experi-
ments have been made using the ontology made available by the “Consorzio
Operativo Monte die Paschi di Siena”, which models financial products and
the Connected Customers Groups management.

The results achieved so fare are positive. The system performance has been
good for language independence and portability. Moreover, the system is not lim-
ited to the ontology representation but it retrieves external data, improving the
quality of the answers with respect to other systems like AquaLog (Lopez et al.
(2011)) and Freya (Damljanovic et al. (2011)). On the other hand, the system
doesn’t support direct interpretation of natural language queries. Moreover, the
problem of grammatically incomplete statements (an article not included, gen-
der is not well defined and so on) has to be taken into account. The present
implementation uses PANTO (Wang et al. (2007)) to manage relaxed queries (ill-
formed or incomplete) as well as the full-blown grammatically correct questions.
User queries are converted in SPARQL to allow the system to identify the ontol-
ogy fragments corresponding to the requests. Starting from the selected fragment,
the system produces an enriched natural language answer composed by ontology
concepts, verbalization, and external data. So PANTO is used only for analyz-
ing the query, and not for production. In this respect, the research work will be
focused towards understanding of dialogue utterances. The present approach an-
alyzes full documents, performs semantic annotations, and uses these resources to
enable production. Full understanding of single utterances containing anaphors
and/or co-references requires an effort in managing the dialogue context, and the
presented system will be adapted to address this issue.

1. Introduction 14

1.4 Summary

Considering lexical background into semantic resources can support a domain-
independent natural language understanding and production engine. The research
presented in this thesis focused on the portability of NLP systems to obtain a
model that contributes to standardize shared and unstructured contents, as in the
case of web materials. The work proposes a domain-independent and ontology-
independent model; it can be applied with whatever ontology representation, and
in whatever domain. Ontology is considered as the starting knowledge of the
system about the domain (that is its initial state) and it uses this view to capture
semantics about the domain and to understand free text related to it. The adopted
strategy is mainly based on matching linguistic patterns. The system searches for
common ways of expressing a meaning represented by a triple in the ontology
(i.e. the semantic seed). The main challenges of the work were extraction of such
linguistic expressions, and the way to match them to free text taking into account
the ambiguity problem. Finally, the presented approach is language-independent
because it does not depend on the language used to fill the names of the ontology
classes and properties, which is different from standard languages used for modeling
knowledge through ontologies.

Chapter 2

State of the Art

2.1 Introduction

In this chapter we present the state of the art of the existent interfaces to ontolog-
ical models. There are two different rasearch trends in this field; former has the
aim to make ontology more understandable to unskilled users and proposes rules
to translate the syntax of the representation language of the ontology to natural
language syntax. Latter considers interfaces to ontology without a language that
intermediates with user, but he must have some skills to use these interfaces that
are simply and allow to browse the ontology regarless its syntax.
We describe the two strends in the next sections. At the end of this chapter we
discuss about the limits of these approaches and we introduce our view to model
a natural language interface to ontology.

2.2 The Ontology Verbalization Languages

Formal languages (Monin, 2003) have well-defined syntax, unambiguous semantics,
and they can also support formal methods for writing software specifications, for
supporting the knowledge acquisition process, and for reasoning [Fuchs et al.,
2008]. Due to such properties they have been also mainly suggested as knowledge

2. State of the Art 16

representation languages.

OWL (Web Ontology Language) is the formal ontology language recommended
by W3C(Bechhofer et al. (2004)) for the Semantic Web, and it is useful to represent
knowledge provided by domain experts in ontological format. OWL ontologies are
build on RDF Schema (Manola and Miller (2004)) and define a specific XML rep-
resentation (Boley (2001)) of a domain interns of classes, hierarchies, and relations
between classes. The main advantage of using OWL to formalize ontologies is that
they can be automatically machine-understandable; in turn, this makes further
knowledge processing easier. On the other hand, OWL ontologies have become
heterogeneous because there is not a standard specifying conceptual principles for
modeling a domain, and how to fill their elements (classes and properties). Only
the OWL syntax has been standardized. While many OWL ontologies are available
for free, their concepts representation have labels that lack a systematic structure.
For these reasons it is very difficult to merge them. OWL ontologies are criticized
as regards their reuse, transformations to other domains and/or languages, and
integration with other ontologies. So, natural language descriptions associated
with ontologies have proven to be of major importance not only to support on-
tology developers and users, but also to assist in tasks such as ontology mapping,
information extraction, and natural language generation.

The effort carried out by the scientific community in the development of prin-
cipled models to associate more complex linguistic descriptions with arbitrary on-
tologies increased in recent years, and it is due to the problem of defining an on-
tology verbalization language. There are many languages (such as Hewlett et al.
and Jarrar et al. (2006)) that have been suggested in order to represent OWL in
a more natural way; however the major shortcoming of these approaches is that
they lack any formal check that the resulting expressions are unambiguous. In this
sense, better results are obtained from the approaches based on controlled natural
languages that typically have a formal language semantics and come with a parser
that can convert the statements of the OWL representation so that the natural
language version becomes the primary representation interpretable by humans.
On the other hand, these languages suffer of excessive constrains in semantics and
syntax, and are strictly linked to English language.

2. State of the Art 17

2.2.1 Controlled Natural Languages

An important aspect of formal languages is their cognitive distance to the appli-
cation domain that is not inherent in natural language. One way to bridge the
gap between a natural language and a formal language is the usage of Controlled
Natural Languages (CNLs) that can mediate between them; CNLs are languages
governed by specific grammars and lexicons and they create correspondences be-
tween the language understandable by computers and language understandable
by humans. A CNL is more readable than typical computer languages, it requires
less training for people who write using them, and no training for people who read
them.

Controlled Natural Languages are subsets of natural languages which are en-
gineered in the sense that their grammar and vocabulary have been systematic
restricted in order to reduce both ambiguity and complexity of full natural lan-
guages. These constraints usually have the form of writing rules (Kittredge). CNLs
support precise communication:

• for stating requirements and specifications by humans to humans;

• for commands and assertions by humans to computers;

• for answers, explanations, and help from computers to humans.

There are two ways of enforcing control:

• Syntactic control: strict constraints on the permissible grammar.

• Semantic control: strict constraints on the semantics, but an allowance for
any grammatical pattern that has a unique semantic interpretation.

Traditionally, CNLs have been grouped into two broad categories: human-
oriented CNLs and machine-oriented CNLs (Huijsen).
The main objective of human-oriented CNLs is to improve the readability and com-
prehensibility of technical documents as in the case of maintenance documentation

2. State of the Art 18

(ASD Simplified Technical English) and to simplify and standardize human-human
interaction in specific context like trade or air traffic control (Pool, 2006).
Machine-oriented CNLs are aimed to the improvement of the translatability of
technical documents (Nyberg and Mitamura (2000)) and the acquisition, repre-
sentation, and processing of knowledge (Fuchs et al. (2008)) in particular for the
Semantic Web (Schwitter and Tilbrook (2008)).
Human- and machine-oriented CNLs have been designed for different targets, and
their field of application are quite different.

There is a number of machine-oriented CNLs that have been designed for using
as knowledge representation languages: they are general-purpose languages in the
sense that they have not been developed for a specific domain. These languages
can be used where traditional formal languages are used otherwise. The aim of
these languages is to make domain specialists able to use an expressive knowledge
representation language that is easy to learn, use and understand, while being fully
processable by a computer at the same time. A number of CNLs are used as a
front-end to formal languages used in Semantic Web.

Using CNLs has both advantages and disadvantages.

• Syntax: a CNL is more predictable, but it is harder for people to write.

• Semantics: a CNL is more natural and easier to write, but requires an “echo”
to show exactly how each sentence is interpreted.

2.2.2 CPL

Computer Processable Language (CPL) (Clark et al. (2005)) is a language devel-
oped at Boeing Research and Technology that is capable of translating English
sentences to a formal knowledge representation language.
The target language is the Knowledge Machine language (KM). KM is a frame-
based language with first-order logic semantics. The KM interpreter employs a
sophisticated engine for reasoning, including planning about actions, and using a
situation calculus mechanism. The CPL interpreter directly resolves various types

2. State of the Art 19

of ambiguities using heuristic rules for prepositional phrase attachment, semantic
role labeling, word sense disambiguation, metonymy resolution, compound noun
interpretation and other language processing phases.

CPL accepts three kinds of sentences:

• questions;

• ground facts;

• rules.

Defining that NP means Noun Phrase sand PP means Prepositional Phrases,
the CLP definitions for the questions sentences have five forms for which the mainly
are the two followed:

• What is NP?

• Is it true tha Sentence?

In the case of ground facts, a basic CPL sentence takes one of the following
three forms:

• There is-are NP

• NP verb [NP] [PP]

• NP is-are passive-verb [by NP] [PP]

Verbs for these phrases can be auxiliaries or particles, while nouns in a NP can be
replaced by other nouns, prepositional phrases, or adjectives.

In the case of rules, CPL accepts sentence patterns of the form:

• IF Sentence [AND Sentence]* THEN Sentence [AND Sentence]*

2. State of the Art 20

During CPL parsing, rules that run in parallel to the grammar rules generate
implified logical form for basic sentences. A ground KM assertions are created
by the logical form too. Rules are entered by the user who writes CPL sentences
through a set of seven rule templates. Three of these templates create standard
logical implications and the rest describe preconditions and effects of actions. Each
CPL sentence is interpreted interactively with user; system paraphrases its inter-
pretation calling back to the user, allowing he to find and resolve misinterpreta-
tions. Sentences that express states add facts to a situation, and sentences that
express actions trigger rules that update the situation, reflecting the effects of the
action into the situation. The user can ask questions about an emerging situation
directly in CPL.There is no explicit quantifier for these basic sentences and the
disambiguation of word sense and semantic relationships is made by the inference
engine that uses WordNet to make a "best guess" of word sense assignments.

There is a slimmed version of CPL named CPL-lite. Each CPL-Lite sentence
corresponds to a single binary relation between two entities. There are three kinds
of relations: nounlike relations (e.g. the age of <a> is), verblike relations
(e.g. <a> causes), and preposition-like relations (e.g. <a> is during).
CPL and CPL-Lite have been mainly used to encode general and domain specific
commonsense knowledge and to allow knowledge engineers to pose queries in a
comprehensible way; CPL-Lite is more verbose and grammatically more restricted.

2.2.3 CLP for Semantic Web

Controlled Language for Semantic Web convert the OWL representation state-
ments in human interpretable representation. ACE, Rabbit, and SOS are three
controlled natural languages that have been designed to be used as interface lan-
guages to OWL ontologies. Apart from these languages there exist other CNL-
based approaches to authoring OWL ontologies but we will not further discuss
these languages.

2. State of the Art 21

ACE

Attempto Controlled English (ACE) (Fuchs et al. (2008)) is one of the oldest natu-
ral language interfaces which have been developed to serve as a formal language for
knowledge representation. Unlike NL which is ambiguous, vague and potentially
inconsistent, ACE is a controlled English, precisely defined, tractable subset of full
English that can automatically and unambiguously be translated into first-order
logic.

ACE is defined by a small set of construction rules that describe its syntax and a
small set of interpretation rules that disambiguate constructs that are ambiguous in
full English. The vocabulary of ACE consists of a set of predefined function words
(e.g. determiners, conjunctions, and pronouns), some predefined fixed phrases (e.g.
there is, it is false that), and content words (nouns, proper names, verbs, adjectives,
and adverbs). The language processor of ACE is based on grammars that are
written in a definite clause grammar (DCG) notation. These DCGs are enhanced
with feature structures to translate declarative and interrogative sentences into a
first-order logic sentences using a set of discourse representation structures. In
particular, ACE uses the DCG directly and anaphoric references are resolved only
after construction of a discourse representation structure.

ACE is supported by many tools (AceRules translates ACE into rules and ACE
View is a plugin for the ontology editor Protege) and a reasoner (RACE) has been
developed and used for reasoning with it. It is important to note that the meaning
of words in ACE is not predefined; the user is expected to define their meaning by
the ACE sentences or import these definitions from an existing formal ontology.
ACE is applied in domains such as software and hardware specifications, database
integrity constraints, agent control, legal and medical regulations and ontology
construction.

Every animal is something that is a cat or that is a goat.

Everything that is eaten by a goat is a leaf.

Everything that eats nothing but leaves is a goat.

Every human is a person that own an automobile.

2. State of the Art 22

Figure 2.1: OWL Verbalization in ACE.

Every human is something that is John or that is Mary.

Every man is a person.

Everything eats at most 1 thing.

Everything is eaten by at most 1 thing.

If X eats something that eats Y then X eats Y.

Everything that eats something is an animal.

Everything that is eaten by something is a food that is not an
automobile.

If X hate Y then Y eats X.

If X eats Y then Y hate X.

John is a man.

Everything that is an apple or that is a leaf is a food.

Also, there is Wiki for ACE through which is possible generating ACE text
and obtaining its translation into OWL or SWRL, as shown in Figure 2.1. In
the wiki, a predictive editor supports a user while generating sentences among a

2. State of the Art 23

subset of ACE. In the ACE wiki authors describe how an ontology that is written
in OWL RDF/XML is verbalized in ACE and only the logical content of the OWL
file is verbalized, excluded the information about annotations, versioning, import-
structure; this tool generates many intelligible sentences. However, there were also
phrases like "Everything that is hasTopping by a Mushroom is something that is a
MozzarellaTopping", and the sentence "Every American is a NamedPizza" linked
to the generic names used for classes and instances.
In general the ACE rule makes sense, but it can be thwarted by the names used
in the ontology. In Fliedl et al. (2010) authors are trying to resolve just such
issues. They propose a rigid naming convention to make it easier to verbalize the
ontology. We think it is a good proposal, because it is ’blaming’ the ontologists
for failing natural language generation (NLG) systems, and syntactic verbalization
should not be the guiding principle when adding knowledge to the ontology.

Unlike majority of similar systems, ACE supports both knowledge represen-
tation and querying. However, the querying is feasible only if the knowledge is
generated using ACE sentences. That is, the questions supported work well only
if the knowledge has been generated by ACE. ACE supports yes/no and WH-
queries. For example, if the ACE sentence which was translated to the knowledge
representation was

A customer inserts a card.

we can ask a question such as:

Does a customer insert a card?

This feature is unique to ACE and a few other similar systems like CPL.

PENG

PENG (White and Schwitter (2009)) is a CNL that has been designed for an
incremental parsing approach and was the first CNL that was supported by a

2. State of the Art 24

dynamic predictive editor. PENG is similar to ACE but differently from it PENG
covers a smaller but fully tractable subset of English, becoming a more light-weight
language. The predictive editor provided by PENG is a text- and menu-based
writing support enforcing the grammatical constraints of the CNL via lookahead
information while a text is written and generating a paraphrase that clarifies the
interpretation for each sentence that the user enters. For each word form that the
user digits using editor, the chart parser prompts to the user a list of options to
inform he about how the sentence structure can be continued ensuring that the
text follows the CNLs rules so that it can be translated unambiguously into the
formal target language (first-order logic) and be processed by a theorem prover. we
use an example from the TPTP problem library. PENG has recently been used for
the construction of an interface to a situation awareness system but the language
can be used for similar applications to ACE. As well ACE PENG processor uses
DCG but in a different manner. DCG sentences are transformed it into a notation
processable by a top-down chart parser. The anaphoric references are resolved
during the parsing process and a discourse representation structure is built up.

Sydney OWL Syntax

Sydney OWL Syntax (SOS) (Cregan et al. (2007)) is a controlled natural language
that has been designed to satisfy the requirements of a modern high-level interface
language to OWL. The key properties of SOS are:

• writing OWL ontologies in a well-defined subset of English through a non-
logicians support;

• expressing existing ontologies in the same subset of English.

SOS uses the terms of the application domain plus some other terms to convey
the meaning of the information. SOS does not allow to say the same thing in
different way, enforcing a one-to-one mapping between controlled natural language
and OWL Functional-Style Syntax (FSS). Furthermore, the language uses only
limited references to OWL constructs like classes and properties. SOS uses only
very little linguistic knowledge in order to deal with plural forms and compound

2. State of the Art 25

constructions (e.g. ’has ... as a part’). A particularly interesting feature of SOS
is variables usage - as known from high school math textbooks - which allows to
express certain axioms in a very compact and natural way. The language provides
specific constructs (’fully defined as’ and ’partly defined as’) that indicate the
logical status of a definition.

In principle, SOS supports nesting of expressions to any level but deep nesting
results in structures which are difficult to understand by people. Therefore, it is
recommended that authors limit the depth of nesting up to three levels using an
authoring tool.

2.3 Flexible Grammars vs Controlled ones

The linguistic approaches presented so far, consider grammars with strict con-
straints. Even if they are valid solutions to bring human language and formal
ones, they exhibit many restrictions in syntax and semantics. Few approaches
are able to parse unstructured contents external from ontology. In fact, ontology
verbalization languages mentioned above use of a fixed connection between the
syntax of the ontology statements and the syntax of their possible verbalizations.
The range of lexicons is limited to predefined phrase structures corresponding to
the specific meaning of the statement. Often, in these systems the user is guided
in topic editing in order to obey such constrains (as in the case of PENG), and
to ensure the selection of customized sentences. For these reasons, CNLs are not
suitable for understanding, and semantic annotation of free text.

To illustrate a limitation of CNLs, the reader can refer to Kaljurand (2007)
where a bidirectional mapping of a ACE fragment to OWL 1.1 (without data
properties) is described. This mapping captures all semantically different OWL
constructs as different ACE sentences; often there are many possibilities for ex-
pressing the same OWL axiom. For example, all the following sentences

John likes no man that owns a car.
No man that owns a car is liked by John.

2. State of the Art 26

Every man that owns a car is not liked by John.
If a man owns a car then it is false that John likes the man.

map to the same OWL SubClassOf -axiom. On the other hand, the mapping
does not differentiate between all syntactic forms offered by OWL i.e. syntacti-
cally different OWL constructs can end up in the same ACE structure, given that
they are semantically equivalent. Moreover, all Controlled Languages are strictly
linked to English so it’s hard to extend them for covering other spoken languages.

This thesis claims that achieving effective ontology verbalization implies tak-
ing into account not only ontology contents but also external information sources.
Moreover, it’s better to define rules for automatic on-the-fly production and un-
derstanding of sentences about the ontology using the language employed to fill its
elements. In this way the ontology structure is used twice: as a knowledge base
to provide semantics, and as a term repository to provide the lexicon and the
base grammar. Rules are purposed to enrich both the lexicon, and the syntactic
structure used to produce and/or understand phrases. This approach faces effi-
ciently ambiguity problems, anaphors, and co-references via explicit disambigua-
tion against the names and roles of the ontology components. Trivially, a NLI
architecture deigned according to the previous principles is independent from a
particular spoken language.

The grammatical setup described above will be denoted as flexible grammar
throughout the rest of this thesis.

A flexible grammar is not based on static mapping of ontology statements to
language fragment. Rather, it devises semantics locating the ontology statements
involved in the input request (a user query or a document). Next the necessary
syntax and lexicons to express such statements are computed. A verbalization
language relying on a flexible grammar is more expressive and closed to natural
language than controlled ones.

The flexible grammar proposed in this work computes the semantic seed (that is
the SVO triple) for an ontology statement, and creates all possible ways to express
its components. The syntactic forms for subject, verb, and object are searched for

2. State of the Art 27

separately. The statement is verbalized combining the partial structures obtained
for the triple components.

2.3.1 Flexible Grammar Settings

In a grammar context conceptual categories specify the meaning of the words. In
the case of controlled languages conceptual categories are fixed for each statement
of the ontology, and require hard manual annotation work. Indeed most concep-
tual categories are multi-referential like in the approach proposed in this thesis.
Multi-referential categories may apply to several entities in a non-static form that
depends on various conditions like the user’s spoken language or the contents to
be parsed.

Multi-referential categories can be formally made explicit as predicates that
take some arguments. Hence, the meaning of a word wi becomes ci(?x); here, a
symbol starting with a question mark represents a variable. When the variable is
replaced by a constant value referring to an actual entity as in ci(e1), the result is
the predicate that states that category ci is true for the entity e1. Crucially, the
introduction of variables allows to represent meanings involving several entities.
For example, the following expression can be used to describe scene where there
are both an apple, and a table:

apple(?x) ∩ table(?y)

Predicates using the same variable are applied to the same entity that owns
multiple properties simultaneously. The phrase ‘the apple is yellow and the table
is round’ (at the same time) can be expressed as:

yellow(?x) ∩ apple(?x) ∩ round(?y) ∩ table(?y)

One of the main functions of a grammar is precisely to express these kind of
linking dependencies between different components of the meaning of a sentence.
For example, English language expresses such dependencies using mainly the word
order. As a consequence, meaning-form mapping is not as simple as one might
argue. Dependencies force a verbalization system to use complex mapping rules.

2. State of the Art 28

Maybe, a rule could connect multiple predicates on the meaning side to a particular
words order on the form side.

Moreover, a way for referring to the different parts of meaning and form without
having to specify in detail what they should be, is necessary. It doesn’t make
sense to have a specific construction for a ‘yellow apple’, and another one for
‘red apples’. Form-meaning mappings are needed between dependencies structure,
and semantic/syntactic categories. As an example, objects and features should be
connected to adjectives and nouns. In short, mappings should enable representing
phrases, sub-phrases, syntactic features like numbers, and so on.

Many contemporary linguistic formalisms use feature structures or attribute-
value matrices for this scope. Next, the unit structures will be also introduced
that are a variant of feature ones. Every part of an utterance will be represented
by a unit. Every unit holds information about a word or a sentence.

A unit structure holds several units together, and allows cross-referencing be-
tween them. Entries in a not controlled ontology verbalization language will be
represented as mappings between abstract unit structures. Typically, a structure
will specify a set of semantic features (the meaning pole), and the other one will
specify a set of syntactic features (the form pole). Devising if a mapping between a
meaning pole and a form one applies to a particular unit structure will require the
unification between one of these poles and the actual structure representing the
utterance being processed. The application of the mapping will require a merge
operation between the opposite poles of the mapping with the structure. This
issue will be deepened in the chapters devoted to Construction Grammar.

2.4 Other Ways for Interfacing to Ontology

In addition to languages for ontology verbalization evaluated in the previous sec-
tion, there are many other methods for interfacing to the information from the
knowledge representation of a system, that we studied for our experiments when
we wanted to evaluate our model as an Intelligent Natural Language Interface. We
needed a hearer component that accepts in input the natural language requests

2. State of the Art 29

of the users and maps them to OWL/RDF ontology of the system; starting from
the subgraph that matches the user’s query and from its triple components, our
system was able to produce correct and expanded answers, retrieving contents not
only from the ontology but from external information sources too.

In the first part of this section we illustrate those approaches that aim is to
create visual ontology browsing tool for users, and that not have any grammatical
background for production or understanding. These tools require basilar training
for who wants to use them. In a second section, we illustrate the tools that interpret
user’s queries and interface them to the OWL ontology, converting the requests
in SPARQL queries or directly outputting the correspondents OWL statements.
These approaches have a basilar grammatical background and they do not require
any training for users which can interface with them in natural language.

2.4.1 Visual Ontology Browser

One of the most popular tools which, among other features, allows browsing on-
tologies and knowledge bases is Protégé[Knublauch et al. (2004)]. For querying,
users can use a template-based form where they insert parts of a triple they are
interested in, and the missing parts are searched in the semantic repository. If
they are found they will be given as a result. Another way to browse an ontol-
ogy with Protégé is by writing SPARQL queries [Prud’hommeaux and Seaborne
(2008)] by special panel (see figure 2.2): results are given in the form of triples.
This framework is very useful for experts who are familiar with query languages
although they also have to be experienced Protégé users.

At same time TAP system was developed by [Guha and McCool (2011)]. The
TAP core has two graphical interfaces for querying ontologies that accept as input
the node which is described by an URI, and then return a graph describing the
given URI. Search ia a third TAP interface that receives an input string and returns
all resources whose title properties contain the string. Title property is specific
to the TAP knowledge base. For the same purpose the property rdfs:label can be
used granting a more widespread approach.

2. State of the Art 30

Figure 2.2: Query panel where user can enter SPARQL query; pressing the Exe-
cute Query button the query results will be shown on the right-hand
side.

TAP interfaces were tested with RDF files maintained by W3C. In addition, for
larger applications dealing with musicians, athletes, places, and so forth, HTML
scrapers are built to get the data from the popular sites such as Amazon or All-
Music; their Web crawler is dynamically locating and converts relevant pages into
machine readable data so that they become available for searching by the TAP
interfaces. The knowledge base is dinamically built and contains many millions of
triples. While trying to improve traditional search by using an annotations of the
search terms,Guha and McCool (2011) describe the following problems:

• Denotation: The biggest problem in the denotation of the concept relevant
in the search query is the ambiguity, which is solved by using heuristic rules
that prefers some denotations of concept respect others, for example the
popularity of a term (Paris as the capital of France preferred to Paris Hilton),
the user profile (if she is a ditzy girl, Paris Hilton is preferred to Paris as the
Capital of France), and the search context.

• What data to show: that means which data to pull from the semantic web.
The node that is the selected denotation of the search term provides a starting
point. The next problem is which subgraph around this node to show. A

2. State of the Art 31

more balanced subgraph is produced by using heuristic rules based on the
average branching factor (i.e. bushiness) of the graph around the anchor
node.

• How to show selected data: the main problem is the presentation of the
resulting data/triples.

Probably due to its visual similarities to common search engines, TAP Search
interface has received a lot of attention. The main goal with this interface was
to make search engines capable of interpreting the different occurrences of the
same input string to different semantic concepts. In Search interface, this problem
is solved by asking the user to choose between available options. Four types of
question are supported by the TAP for which are handled by 37 patterns that
contain the rules of how to handle and answer them. If the input query/question is
not recognised as belonging to one of these 37 patterns, the answer is not returned.
The question’s types are:

1. Searching of entities e.g. Paris Hilton

2. Properties of entities e.g. deducted days in jail for Paris Hilton

3. Comparison of entities e.g. girls flightyer than Paris Hilton

4. Composite queries e.g. countries with almost an Hilton Palace Hotel

In comparison to TAP and Protégé users, KIM [Popov et al. (2004)] users
are restricted in what they can search for, or they need to be familiar with the
underlying ontology structure because this tool simpifies the browsing process
providing predefined query templates, where users can construct SeRQL queries
using a form-based interface. These kind of interfaces are exhaustive for repetitive
searches but not for ad hoc queries [Tran et al. (2010)].

Faceted search interfaces are different from these approaches because facets are
generated dynamically starting from the user’s query, and are not predefined such
as in the case of form-based. It has been argued that faceted search browsers
are extremely helpful in cases when the user’s information need is vague Hyvönen

2. State of the Art 32

Figure 2.3: Example data based on the Noble prize winners dataset used in the
Flamenco facet browser.

2. State of the Art 33

et al. (2005). The example of faceted search is displayed in Figure 2.3, that is a
demonstration of theelastic list principle for browsing multi-facetted data struc-
tures. Clicking any number of list entries a query to the database is generated for
a combination of the selected attributes. If we create an "impossible" configura-
tion, our selection will be reduced until a match is possible. Elastic lists enhance
traditional facet browsing approaches by

• visualizing relative proportions (weights) of metadata values by size;

• visualizing unusualness of a metadata weight by brightness;

• animated filtering transitions.

Even without any intention to search, the user can browse the available categories
and explore the knowledge step-by-step. Different approaches can also be combined
to introduce a hybrid query which combines a keyword query with the precise
structured query.

2.4.2 Natural Language Interfaces

In this section are illustrate those approaches based on linguistics grammars that
try natural language queries to an ontology; they are based on manually annota-
tions of syntax and are for some aspects similar to Controlled interfaces as ACE,
discussed in the previous chapter. Differently from them but they not fixed syntax
for the queries, but they try to understand them interacting with users.

ORAKLE

ORAKEL is an NLI to knowledge bases (Cimiano et al. (2007)) which supports
factual questions; these kinds of questions start with WH-pronouns such as who,
what, where, etc. Factual here means that answers are ground facts as found in
the knowledge base, and not complex answers to why or how questions that require
explanation.

2. State of the Art 34

Respect to other similar systems ORAKEL supports for compositional semantic
building, that makes it able to handle questions involving quantification, conjunc-
tion and negation; it is the most important advantage of this tool. The answers
are generated by a specific ORAKEL component (the Answer Generator) that
evaluates the query with respect to the knowledge base and presents the answer
to the user.

Figure 2.4: ORAKEL system architecture.

ORAKEL’s lexicon is composed of two parts:

• General Lexicon which is shared among different domains, where are stored
words such as what, which, etc...

• Domain-specific lexicon composed by two parts: the ontological lexicon gen-
erated automatically from the domain ontology (it contains lexical entries
and the semantics of instances and concepts which are typically represented
by proper nouns and nouns respectively) and the mapping lexicon to match
ontology relations with words: this part is created manually and contains
mappings of subcategorisation frames to ontology relations.

2. State of the Art 35

Subcategorisation frames are essentially linguistic structures with arguments, e.g.
verbs with their arguments, nouns with their arguments, etc.
Subcategorisation frames are built by the domain designer who are not expert
in computational linguistics, although they are expected to have some very basic
knowledge of subcategorisation frames. The coverage of the lexicon for frames is
being created during user interaction sessions byQuery Interpreter andQuery Con-
verter module, illustrated in figure 2.4; in several iterative cycles, the adaptation
is performed increasly, so lexicon is customized to user. The customisation system
of ORAKEL is designed so that in each iteration, the created lexicon is extended
and therefore the system is expected to give better performance. Consequently,
the more time users spend customising the system, the better the performance of
the system is expected to be.

One weak point of the approach implemented in ORAKEL is that it maps
ontology relations to words. This approach assumes that all classes and instances
have understandable and useful lexicalisations from users, which is not always true.
Moreover, while the user interaction is used for customisation, with regard to the
end users, the system either interprets the question and returns the answer, or it
fails. Hence, the end-user has no control over the overall process of interpreting
the NL into the formal language.

PANTO

PANTO [Wang et al. (2007)] is a portable NLI to ontologies. It accepts generic nat-
ural language queries and outputs SPARQL queries (Prud’hommeaux and Seaborne
(2008)). Based on a special consideration on nominal phrases, it adopts the triple-
based data model to interpret the parse trees output. This triple model is com-
posed only by relations between classes or instances in the ontology, and does not
consider other OWL statements that specific the type of relations as Simmetric
Property and so on. Using PANTO it is possible to express queries in natural
language even without considering the syntax of RDF or OWL, the formal query
language, or the schema and vocabulary of ontologies. To help make sense of the
words in the NL queries and map them to the entities (concepts, instances or rela-

2. State of the Art 36

tions) in the ontology, existing tools such as WordNet (Fellbaum (1998)) are used
to extract synonymous. PANTO extracts nominal phrases in the parse trees of
the query (which is obtained applying Stanford Parser (Spitkovsky et al. (2011))
to the query), and couples them to form the QueryTriples intermediate represen-
tation. Then, by utilizing knowledge in the ontology, PANTO maps QueryTriples
to OntoTriples which are represented with entities in the ontology. Finally, to-
gether with targets and modifiers extracted from the parse trees, OntoTriples are
traduced as SPARQL.

Figure 2.5: PANTO overview.

According to Wang et al. (2007), there is no specification for what types of
questions are supported. WordNet is used for the vocabulary extension, and the
user lexicon is configurable - there is no need to manually customise the system
unless the user is interested in adding associations to the ontology resources in
order to improve the system’s performance.

Chapter 3

Construction Grammar and
Fluidity

3.1 Introduction

Human languages are inferential communication systems gives them a number of
special properties. Between them, main property is that languages can be ope-
nended: at any moment the set of available conceptualizations and linguistic con-
ventions can be expanded by speakers if they need to express something that was
not yet conventionally expressible in the language, because hearers are assumed
to be intelligent enough to figure out what was meant and possibly adopt any
innovations introduced by speakers.

This fluid character of human language helps to make them adaptive to the
needs of language users that keep changing as human societies evolve and become
more complex. One of the explicit goals of Fluid Construction Grammar is to
try and deal with fluidity of the languages, confering Construction Grammar this
property.
This topic is discussed more extensively in Steels and van Trijp (2011).

3. Construction Grammar and Fluidity 38

3.2 Construction Grammar

Construction Grammar (CxG) is an approach for studying linguistic structure first
proposed in [Fillmore (1985), Fillmore et al. (1988), Lakoff (1990)] that shares
certain assumptions both with formal liguistic theories (as Jackendoff (1990)) and
with cognitive one, that is the study of the language in its cognitive function, where
cognitive refers to the crucial role of intermediate informational structures in our
encounters with the world.

Construction grammar theories consider constructions as the basic units of lan-
guage. While what makes up a construction has been different for the different
theories of construction grammar, it is generally approved that a construction is
a "syntactic pattern which is assigned one or more conventional functions in a
language, together with whatever is linguistically conventionalized about its contri-
bution to the meaning or use of the structures containing it" (Fillmore et al. (1988)
pag. 36). Adapting to changing language patterns easily, constructions consider
both semantics and syntactics of lexicon and are easier to manage than words as
the atomic unit. For this reason, costructions can be semantically computed and
it allowes to integration of constructions into bigger collections.

Different construction definitions can only be posited if there is something
about the form or meaning of the construction itself that is not given from or-
dinary compositional processes, from the literal meaning, from the processes of
conversational reasoning, or from other constructions that exist in the language
(Kay and Fillmore (1999)).
What makes a construction a construction is that it possesses "properties of form
(syntactic and phonological) and meaning (semantic and pragmatic)" (Croft and
Cruse (2004) pag. 256).

3.2.1 Linguistic Requirements

The linguistic perspective of CxG is in the general line of cognitive grammar
(Langacker (1999)) and more specifically construction grammar (Goldberg (1995)).
This means the following (Steels and Beule (2006)):

3. Construction Grammar and Fluidity 39

• CxG is usage-based. It means that words available to speakers and hearers
consist of patterns which can be highly specialized, perhaps pertaining to a
single case, or much more abstract, covering a wide range of events. New
sentences are constructed or parsed by assembling this patterns using the
unify and merge operators (defined later in this chapter.)

• The grammar and lexicon are modeled by symbolic units. A symbolic unit
associates aspects of semantics with aspects of syntax. They feature a se-
mantic pole and a syntactic pole. This is are the specified patterns in the
previous step; they may be bi-directional, and so are usable both for produc-
tion and for parsing (as in the case of Fluid Construction Grammar) or be
uni-directional (such as Embodied Construction Grammar).

• There is a continuum between grammar and the lexicon. Not only can tem-
plates be at different levels of abstraction, but there is also no formal dif-
ferences between the structures of lexical and grammatical entries. In the
case of lexical entries, the syntactic pole tends to be a lexical stem and the
semantic pole covers some concrete predicate-argument structure.
In the case of grammatical constructions, the syntactic pole contains vari-
ous syntactic categories that constrain the sentence, and the semantic pole
is based on semantic categories, but otherwise there is no formal difference
between the two types of templates.

• Syntagmatic and Paradigmatic Compositionality. To produce or parse a
phrase, templates can be combined (several templates all matching with
different parts of the meaning in production or with parts of the sentence in
parsing are simply applied together) or integrated (using hierarchical tem-
plates that combine partial structures into larger ones).
A part from this syntagmatic composition, there is also a paradigmatic com-
positionality, that means the possibility that several templates are covered
and each contribute additional constraints to the final sentence. Both forms
of compositionality are completely supported with the unify and merge op-
erators defined later.

3. Construction Grammar and Fluidity 40

• Schematization occurs through variables and categorization. A template has
the same form as an association between a semantic structure and a syntactic
structure, in other words both poles of a template are feature structures.
However, templates are more abstract (or schematic) in because variables
are used instead of units and values, and syntactic or semantic categories are
introduced to restrict the possible values of the semantic and syntactic pole.
These categories are often established by syntactic or semantic categorization
rules.

3.2.2 Generative Grammar vs Construction Grammar

Traditional generative grammarians have dealt primarily with ideas which they
consider to be "core" and have virtually ignored what they considered "peripheral".
The periphery holds idiosyncratic phenomena such as idioms that are stored in the
lexicon and which cannot undergo the rules or transformations of generative. Also,
this idiom cannot undergo the passive transformation. Since this structure cannot
be understood on the basis of its parts nor can it undergo most transformations,
it must be stored in the lexicon as a whole idiom.

Construction grammarians, however, are interested in peripheral phenomena
because they believe that "fundamental insights can be gained from considering
such non-core cases, in that the theoretical machinery that accounts for non-core
cases can be used to account for core cases" (Goldberg (1995)). What is in the core
is more regular, occurs with more frequency and thus, should be easier to learn.
Since what is in the periphery is more difficult and must be "learned inductively
on the basis of the input, constructionists point out that there is no reason to
assume that the more general, regular, frequent cases cannot possibly be" (Goldberg
(2006): 14). Furthermore, regular patterns historically evolve from less regular
ones. Consequently, the theoretical machinery required to handle the sources of
the irregular patterns could be used to account for the regular patterns as well.

Construction grammar is generative in the sense that it attempts to account
for the infinite number of possible grammatical expressions of a language while
also attempting to account for the infinite number of disallowed expressions of

3. Construction Grammar and Fluidity 41

said language (Goldberg 1995). But, unlike generative grammar, construction
grammar is monostratal; it is not transformational, meaning that one sentence is
not derived from the deep structure of another. There are "no underlying levels
of syntax, nor any phonologically empty elements" (Goldberg (2006):10). Rather
than deriving one sentence from another, the two sentences may simply represent
different construals of the same situation (Langacker (2002)).

Construction grammar theories also differ from generative theories in that con-
struction grammar "emphasize[s] that languages are learned - that they are con-
structed on the basis of the input together with general cognitive, pragmatic, and
processing constraints" (Goldberg (2006): 3) while most generative theories believe
that humans have an innate sense of language. Constructionist theories claim that,
"language learners bring to the task a host of pragmatic and cognitive abilities which
they employ to great effect in the task of language learning" (Goldberg and Casen-
hiser (2006):5).
When learning a language, human must learn more than just what grammatical
class a word belongs to. One must also notice the subtleties in meaning that make
some sentences grammatical and others ungrammatical when using words of the
same grammatical class. To do so, the learner must combine his knowledge of
syntax with his knowledge of semantics and pragmatics.

Constructionists are also interested in "accounting for the conditions under
which a given construction can be used felicitously, since this is taken to be part
of speakers’ competence or knowledge of language" (Goldberg (1995):6) while gen-
erativists "held that the nature of language can best be revealed by studying for-
mal structures independently of their semantic or discourse functions" (Goldberg
(2006):4). Understanding when a construction can be used felicitously involves
both pragmatic and semantic factors which generativists have compartmentalized
as completely separate from the syntax of a sentence. Thus, constructionists are
interested in how the different aspects of linguistics work together to form gram-
matical and discourse appropriate sentences while generativists study each aspect
independent of all the others.

In figure 3.1 are shown the different representations of the two grammatical the-
ories discussed in this section, that have in common the distinction in the sentence

3. Construction Grammar and Fluidity 42

(a) Construction Grammar (b) Generative Grammar

Figure 3.1: Semplified CxG andGenerative Grammar representations of the sen-
tence Heater sings

structure of Subject and Predicate components. In the Construction Grammar
theory however links between semantics and syntactic structure are represented.

3.3 Fluid Construction Grammar

In recent year only very few demonstrations on non-trivial grammars are consid-
ered in grounded artificial production and understanding. Part of the problem
of grammar emergence for artificial verbalization is that a grammar is more en-
compassed of lexicon. Studies and experiments on grammars require powerful
techniques from symbolic processing; existent formalisms are not rather strongly
linked to one or the other linguistic theory, as happened for example for the Head
Driven Phrase Structure Grammar (Hpsg [Pollard and Sag (1994)).

Hpsg is a kind of dependency grammar and it is centered around the head
of a phrase that is linked through the head-dependent relations to other roles
of the words in the same phrase. Roles can be among modifiers, specifiers and
complements. Althought this theory is very useful and the roles computing is
simply, not every linguistic phenomenons can be defined in terms of them and
there is not general consensus for these settings. The primary goal of Hpsg is to
build a theory of the knowledge embodied in the human brain, and not to build
agents that use this knowledge (Pollard (1997)).

3. Construction Grammar and Fluidity 43

Most other formalisms basically find a minimal but necessary set of grammat-
ical rules and principles such that empirical linguistic data satisfy the grammar:
questions of how and why such linguistic data could be produced, learned and
evolve are not considered. These formalisms control semantics and synactic cate-
gories for their purposes, closing them.

In order to overcome these limitations, the Artificial Intelligence Lab of the
University of Brussels in the person of Luc Steels together with people at Sony
CSL in Paris have for many years developed a formalism that can handle both
production and parsing and that would be adequate to study natural language
grammars: the result of these efforts was the designe of a framework named Fluid
Construction Grammar (FCG).
It is the first available operationalization of Construction Grammar that uses many
existing and widely accepted notions in theoretical and computational linguistics,
as the feature structures that represents syntactic and semantic information during
parsing and production, and abstract templates for the representation of lexical and
grammatical usage patterns, as in Ivan A. Sag and Bender (2003) or Bergen and
Chang (2003).

These properties make the framework appropriate for our experiments, because
we build constructions from semantics deduced from an ontology coupled with
computable syntax by our specific rules. Also, allowing production and parsing
throught the same constructions, we can verbalize about the ontology and under-
stand related free text by them. FCG is based on general operations of unification
and merging. Differently from other formalisms, FCG attempts the investigation
of the origins and evolution of semantics and syntactic categories considering them
free and it is more concerned with things like flexibility, learning, invention, usage
and other creative aspects of language. Freely categories is the strength feature of
the framework.

3.3.1 FCG Linguistic Feautures

Basing on Construction Grammar, the FCG mantains the general features of the
cognitive grammars in general, that we have shown in the previuos chapter. FCG

3. Construction Grammar and Fluidity 44

is usage-based, and it is based on syntagmatic and paradigmatic compositionality.
Also it uses symbolic units to model grammar and lexicon and there is not differ-
ences between template for grammatical constructions and lexical ones; it grants
a continuum between constructions themselves. Finally it is characterized by
schematization.

However, being a formalism to model emergent natural language-like grammar,
FCG has a specifics characteristic, that is the freely definable semantics and syn-
tactic categories for constructions; often linguistic formalisms set these categories
and it can be a limitation when the modeling of grammars may be depend to
knowledge representations, that is our case.

This openness of categories is in line with the Radical Construction Grammar
approach which argues that linguistic categories are not universal and subject to
evolution (Croft (1991)).
Next we show the basic concepts of FCG.

3.3.2 Feauture Structures

As mentioned at the end of the previous chapter, unit structures hold the informa-
tion about the utterance to process. They are represented as a list of units. For
instance, let consider the sentence "Paul hates Janet".
As a first step it is necessary to build a unit for each word in the sentence, and one
additional super-unit called Top-unit to keep the other three units together. Units
are represented as lisp like lists (see e.g. Steele (1990)).) for which the entire list
is delineated by plain brackets as:

(Janet-unit (form ((String "Janet")))).

The above expression is a unit. It is a list where first element is the unit’s
name, in the example the symbol Janet-unit, and second element is a list of type
(form ((String "Janet"))), which is the only feature of this unit. The fea-
ture’s name again is the symbol form and its value is the list ((String "Janet"))
and so on.

3. Construction Grammar and Fluidity 45

Generally, units will be represented as lists, with the first element that repre-
sents the unit’s name and all remaining elements its features. Features will also be
represented as lists, again with thefirst element as its name and a value as second
element. The name must always remain the first element in the list; unit struc-
tures will be lists of units. Hence, in the example, there is a unit structure that
contains a unit for each word in the phrase "Paul heats Janet" and one additional
super-unit (called Top-unit) to keep together the other three units. They look like:

((Top-unit (syn-subunits (Paul-unit Janet-unit Heat-unit))
(form ((meets Paul-unit Heat-unit)
(meets Heat-unit Janet-unit))))
(Paul-unit (form ((string "Paul"))))
(Janet-unit (form ((string "Janet"))))
(Heat-unit (form ((string "heats")
(stem "heat")))
(syn-cat ((lex-cat verb)
(number sing)
(person 3rd)))))

Many other linguistic formalisms (e.g. hpsg and ecg) represent feature struc-
tures with a boxed notation or as attribute value matrices instead of with the
bracketed lisp-like notation shown here. In such a notation the above unit struc-
ture for the sentence "Paul heats Janet" could be represented as:

3. Construction Grammar and Fluidity 46



Top-unit

FORM
〈
meets(1 , 2), meets(2 , 3)

〉

SYN-SUBUNITS
〈

1
Paul-unit

FORM 〈STRING "Paul"〉



2
Heat-unit

FORM 〈STRING "heats"〉



3
Janet-unit

FORM 〈STRING "Janet"〉



〉


In this notation lists are typically delineated with hooked brackets (like <this>.)
Both representations are more or less similar. Whatever the notation used, a unit
structure can easily be extended.
In FCG, semantic and syntactic information are kept in different unit structures.
Syntactic units normally contain the features syn-subunits, form and syn-cat. Se-
mantic units typically have the features sem-subunits, meaning and sem-cat. The
sem-cat feature describes information about the semantic category of the unit, as
for example if it is an object or a person. The fact that semantic and syntactic
information is kept in different structures reflects that constructions in language
are meaning-form mappings.

So a lexical construction for "Paul" is a mapping between a syntactic pattern
selecting for the string "Paul" in the form feature of a syntactic unit, and a se-
mantic pattern introducing the predicate ’Paul (?x)’ in the meaning feature of the
correspondent semantic unit.

3.3.3 FCG Template

FCG templates arises how the constructional ’pattern’ should be modeled. Gen-
erally they are formulated as partially specified unit-structures as:

3. Construction Grammar and Fluidity 47

((?unit (form ((string "Paul")))))
for the syntactic pole of "Paul" construction and:
((?unit (meaning (((Paul ?x))))))
for the semantic pole. These again look like unit structures containing only one
unit but with a variable name (as we shown in chapter 2 any symbol starting with
a question mark is a variable), reflecting the fact that the construction shouldn’t
care about the name of the unit it selects for. Unit structures that contain vari-
ables like this are called unit structure templates or short templates. They actually
specify a set of unit structures.

3.3.4 Unification and Merging

The operation that decides whether a template matches a specific unit structure
is called unification between the template and the unit structure. This operation
allows that the unit structure contains more units than specified by the template.
The result of unifying a template with a particular unit structure is a set of sets
of bindings of variables to actual values.
For example, the unification of the template:

((?unit (form ((string "Paul")))))

with the unit structure

((Mary-unit (form ((string "Paul"))))

is a set containing one set of bindings:

[?unit/Paul-unit].
This can also be represented as:
(((?unit . Paul-unit))).

A set of bindings specifies how to make a structure from a template: by sub-
stituting the variables in the template by the values they are bound too. It also
allows a particular unit in the template to contain more features than specified.
The operation is also insensitive to the order of the units in the structure or of the
features in a unit. Considering structure templates, we can proceed with specifying

3. Construction Grammar and Fluidity 48

constructions as mappings between a semantic and a syntactic template as in:

((?unit (meaning ((Paul ?x)))))
<-->
((?unit (form ((string "Paul")))))

Generally, the semantic pole is written above the double arrow and the syntactic
pole below it. The unification of the syntactic pole with a unit structure results
in the set of bindings and of substitution of these bindings in the semantic pole.
The operation that takes a unit structure and forms a new extended structure as
specified by a template is called merging.

While parsing an utterance, the right (syntactic) pole of a construction is uni-
fied with the syntactic structure to see whether it applies. If it does, the left
(semantic pole) is merged with the initially empty semantic structure to yield a
new semantic structure. While producing a sentence the semantic pole is unified
with the semantic structure and, if successful, the syntactic pole is then merged
with the initially empty syntactic structure to yield a new syntactic structure.

Summarily, with FCG the information about an utterance are represented with
unit structures. Because it is always possible to add units to a structure, or features
to a unit or values to a feature, this representation is powerful. We have also
set first steps towards representing rules of language as bi-directional mappings
between structure templates. These mappings can be used both for parsing forms
and for producing them.

3.3.5 The J-operator and others

Many other aspects, in particular those that require manipulation of the hierarchi-
cal structure of unit structures, require more powerful operations than the basic
unification and merging of unit structures. To that end, the author extended FCG
with the so called J-operator.

Both the left-pole and the right-pole can be marked with the J-operator (Beule
and Steels (2005)). In this way, the semantic pole of constructions (lexical or

3. Construction Grammar and Fluidity 49

grammatical) can decompose the meaning to be expressed (which originally resides
in the top node of the semantic structure) and the syntactic pole can group units
together into a larger pole.

Summarily J-operator has three arguments: a daughter-unit, a parent-unit and
a set of pending-subunits. Units marked with the J-operator are ignored during
unification. When the construction applies, a new unit is introduced and mapped
to the first argument of the J-operator. The second argument should already
have been bound by the unification process to the parent unit from which the
new unit should depend. The third argument specifies the set of units that will
be pulled into the newly created unit. The new unit can contain additional slot
specifications, specified in the normal way, and all variable bindings resulting from
the unification are still valid.

Briefly when producing, the conditional units of the semantic pole of a con-
struction are matched against their correspondents in the transient structure, but
the J-units are ignored. If a match succeeds, the J-units of the semantic pole are
merged with the semantic pole of the transient structure, followed by the syntactic
pole of the construction merging with the syntactic pole of the transient structure
(both the J-units and the conditional units). In parsing, the conditional units of
the syntactic pole of a construction are matched against their correspondents in
the syntactic pole of the transient structure, but the Junits are ignored. If a match
succeeds, the J-units of the syntactic pole are merged with the syntactic pole of
the transient structure, and all units of the semantic pole of the construction are
merged with the semantic pole of the transient structure.

FCG uses other special operators. These can be regarded as special directives
informing the unification and merging engine that something special needs to be
performed. An example operator that is used frequently is the includes operator
"==": a list of which the first element is this operator unifies with all lists that at
least contain the other elements in the includes list. For example, the includes list
(== a c b)
unifies with all of the lists below:
(a c b),
(a b c),

3. Construction Grammar and Fluidity 50

(a c b d e),
(e c d c b a)
and so on. As can be seen, the order in which the elements appear is of no
importance, only the fact that they are.

The use of operators like the includes operator is the reason why FCG unifica-
tion may return multiple results. For example, unifying the list
(== ?x)
with the list
(== a b c)
results in the following set of three solutions:
[?x/a],
[?x/b],
[?x/c]

The uniquely-includes operator "=1" specifies that each of the elements should
occur in the target, which may still include more elements, but that there should
only be one value for the same feature. Again the ordering of the elements no longer
matters. This information not only helps the matcher by avoiding consideration of
unnecessary additional hypotheses, it also impacts merging, because without this
operator the additional category-value pair would simply be added even if another
value already is present.

Chapter 4

Model Description

4.1 Introduction

This chapter details the proposed formalization aimed to incorporate RDFs/OWL
standard ontology into FCG for obtaining an expanded natural language interface.
The NLI devised in this work is expanded because it produces answers by retrieving
data not only inside the ontology but also from external unstructured information
sources that are related to the topic dealt with. The main external information
source used in the implementation is the Web.

The main idea is to build lexical and grammatical constructions starting from
the ontology statements, and to use them in the FCG framework for both pro-
ducing and parsing utterances related to represented domain. Such constructions
are integrated with those describing the grammar of the spoken language under
investigation to increase the production understandability.

A set of rules inferring syntactic patterns for single words or sentences using
WordNet and FrameNet is used to overcome the limited expressivity of the syn-
tactic poles in the ontology constructions. In turn, new patterns can be matched
with the semantic pole of a construction. In this way, synonyms are defined for
a concept that are represented as a set of constructions with the same semantic
pole.

4. Model Description 52

4.2 The Ontology Model

This section presents the model used for defining ontologies, and resources. Rules
for computing constructions will be defined using this model. For the purposes of
this work, the ontology O is a tuple:

O :< CS, IS, PDS, POS, TS, LS, SP D, SP O >

Where:

- CS is the set of classes;

- IS is the set of individuals;

- PDS is the set of datatype properties that enables the following mappings:

Ci → Ti

Ii → Ti

where Ci ⊂ CS, Ti ⊂ TS and Ii ⊂ IS;

- POS is the set of object properties that enables the following mappings:

Ci → Cj

Ci → Ii

Ii → Ij

where Ci, Cj ⊂ CS and Ii, Ij ⊂ IS;

- TS is the set of literal datatypes;

- LS is the set of literal strings used in the ontology as values for Ti, where
Ti ⊂ TS;

- SP D is the set of datatype statements, where each datatype statement is a
triple from the set:

4. Model Description 53

< CS, IS > ×PDS× < LS >

- SP O is the set of object statements, where each object statement is a triple
from the set:

< CS, IS > ×POS× < CS, IS >

Triples can be represented in the form T (s, p, o) for both object and datatype
statements. In a triple T (s, p, o), s is the subject, p is the property, and o is the
object.

An ontological resource OR contains the elements that can be selected using
URIs, hence:

OR :< CS, IS, PDS, POS >

The elements in OR define the formal vocabulary of the ontology.

We assume that:

• Each elements in OR corresponds to an atomic lexical construction;

• Each element in SP O ∪ SP D corresponds to a grammatical construction;

• An OWL sub-graph is a taxonomy of elements of SP O∪SP D, so it is a taxon-
omy of constructions, and it can be regarded as a (non atomic) construction;

• An OWL ontology conveys also semantic information, and it can be used to
express a (partial) construction grammar related to the domain.

The problem of building a NLI for the domain at hand can be regarded as gener-
ating all possible lexical and grammatical constructions for each element ei ∈ OR.
Let LC be the set of lexical constructions computed from the ontology, while GC

is the set of grammatical ones. Generating a grammar to verbalize the ontology
statements can be modeled through three mapping functions:

l : OR→ LC

4. Model Description 54

~g : (SP O ∪ SP D) ∩OR→ GC

~v : GC ∩ LC ∩G→ V

Here, l applies rules that compute the set LCei
⊂ LC of all the lexical constructions

(including synonyms) for each term ei ⊂ OR.
gi ∈ ~g computes the set GCei

⊂ GC of all the grammatical constructions for the
statements containing ei.
vi ∈ ~v creates the proper combination of lexical construction and grammatical ones
(including constructions for the language grammar G) to obtain a verbalization
representative of ei and of its relations in the model.

The following sections deal with computing constructions from OWL ontologies
along with their use by an automatic system able to both speak and answer queries
about the represented domain.

4.3 Statements, Topics and Scenes

The majority of the approaches based on construction grammar look for the skeletal
meaning of an utterance. Skeletal meaning is a representation of the meaning as a
“skeleton” where each component is connected with the other ones. For example,
a skeletal meaning structure related to the statement the dog eats the cat, and
expressed using first-order logics (FOL) predicates looks as:

(eating-event ?eat)
(eater ?eat ?dog)
(eated ?eat ?cat)

Grammatical constructions related to an utterance depend on its skeletal mean-
ing because it states which components are required by the constructions them-
selves; since RDF statements in the OWL graph are arranged in the form of skele-
tal meanings, one can argue that they can be simply translated in a grammatical
construction.

4. Model Description 55

As already stated, this work is focused mainly on the extraction of the semantic
seed from ontology statements in terms of a SVO triple that is a transitive sentence.
Transitive sentences can be described by the following Backus-Naur Form (BNF)
using a simplified Penn Treebank II notation:

S → NP V NP

NP → JJ N

Here, S is the whole sentence, while NP is a Noun Phrase. The V and N

tags indicate verbs and nouns respectively, regardless of their morphology, and
incorporate both prepositions (P) and articles (DT). Similarly, JJ are adjectives
regardless of their gradability.

The structure described above represents the target skeletal meaning of the
present work. In what follows, the steps for building constructions aimed to per-
form understanding and verbalization in terms of such a skeletal meaning are
reported.

The first step is a suitable axiomatization of the RDF language to describe the
meaning of the ontology elements. The basic predicate used in the axiomatization
will be a unary predicate in the form(X ?x). In the following, the description of
ontology components is reported. In particular:

- classes are described by predicates (Ci ?c) ∀Ci ∈ CS, i = 1...nc;

- instances are described by predicates (Ii ?i) ∀Ii ∈ IS, i = 1...ni;

- both object and datatype properties are described by predicates (Pi ?s ?p ?o)
∀Pi ∈ POS ∪PDS, i = 1...np where ?p identifies the property itself, while ?s

and ?o identify respectively the subject and the object of the property that
is its domain and range.

A particular family of predicates is used to model the datatype values belong-
ing to TS. These values are the XSD datatypes [w3C]. The corresponding FOL

4. Model Description 56

predicates have the form (Ei ?e), i = 1, . . . , D where D is the size of the XSD
datatypes list.

Given the form of each possible predicate, a topic is the meaning of whatever
ontology statement where the term “meaning” refers to the interpretation of the
structure of the statement. As an example, the predicate (C1 ?c) means “the
variable ?c is the class C1 in the ontology”. In this way different classes, properties,
instances, and values are described along with their interconnections.

Topics enable the creation of abstract templates in the FCG framework that are
not related to a particular domain. Such templates can be extracted automatically
from the analysis of the ontology structure, and will form the meaning units in
the semantic poles of the constructions describing the domain. Actual names of
the ontology elements will form the form counterparts to be embedded in the
corresponding syntactic poles. As already stated, names of the ontology elements
are the components of the base lexicon used in understanding and/or production
tasks so they cannot express semantics directly. Rather, semantic roles are coded
by the ontology structure.

A topic described by the triple T (s, p, o) consists of an event relation p con-
necting the subject s to the object o. Such description is generated according to
the following rules:

T (s, p, o)→ P (s, p, o)R(s)O(o)

P (s, p, o)→ (Pi ?s ?p ?o), i ∈ {1, . . . , np}

R(x)→ C(x)|I(x)

O(x)→ R(x)|E(x)

C(x)→ (Ci ?x), i ∈ {1, . . . , nc}

I(x)→ (Ii ?x), i ∈ {1, . . . , ni}

E(x)→ (Ei ?x), i ∈ {1, . . . , D}

4. Model Description 57

A topic description is always connected: all predicates are linked through their
arguments. As an example, the expression (C1 a)(C3 b) can never describe a topic
because the two predicates are not linked that is they cannot express a structure
inside the ontology. Such an expression states only that the ontology contains
the classes C1 and C3 separately. There is no information about the role they
play in the ontology. A correct topic is obtained by adding a property predicate:
(P2 a p b)(C1 a)(C3 b). As a consequence, a topic description with k predicates
has exactly k − 1 variable equalities as part of its interpretation.

4.3.1 Building Topics from OWL

According to the axiomatization reported before, the topics in a given OWL sub-
graph are:

• each class in the subgraph;

• each individual in the subgraph;

• each object relation between classes;

• each object relation between instances;

• each is-a relation between individuals and classes;

• each datatype relation between a class and a datatype value;

• each datatype relation between an individual and a datatype value.

Given the subgraph in figure 4.1, the following topics can be extracted:

4. Model Description 58

Figure 4.1: A small ontology subgraph.

(C1 A),
(C2 B),
(I1 a),
(I2 b),
(E1 e),
(P1 A p1 B)(C1 A)(C2 B),
(P2 b is-a B)(I2 b)(C2 B),
(P3 a is-a A)(I1 a)(C1 A),
(P4 b p2 e)(I1 b)(E1 e),
(P5 B p5 e)(C2 B)(E1 e).

Again, the reader should note that there is no description containing just two
predicates: topics are described by either facts or triples.

The following rules for mapping OWL structures onto predicates hold.

1. Class definitions map onto (Ci ?x) predicates for lexical constructions.

2. Individual definitions map onto either (Ii ?s) predicates for lexical construc-
tions or (Pi ?s ?p ?o)(Ij ?s)(Ck ?o) predicates for grammatical ones.

3. Subclass definitions map onto (Pi ?s ?p ?o)(Cj ?s)(Ck ?o) predicates for
grammatical constructions.

4. Given an object property definition, if both the property range and the do-

4. Model Description 59

main are classes then it maps onto a (Pi ?s ?p ?o)(Cj ?s)(Ck ?o) predi-
cate for grammatical constructions, otherwise (individuals) it maps onto a
(Pi ?s ?p ?o)(Ij ?s)(Ik ?o) predicate.

5. Given a datatype property definition, if the property domain is a class then
it maps onto a (Pi ?s ?p ?o)(Cj ?s)(Ek ?o) predicate for grammatical con-
structions, otherwise (individual) it maps onto a (Pi ?s ?p ?o)(Ij ?s)(Ek ?o)
predicate.

4.4 Defining Semantic Categories

Both semantic and syntactic categories are needed to allow the definition of ab-
stract constructions. This section will focus on semantic categories, while syntactic
ones will be covered in the next section. As reported in previous sections, seman-
tics is coded by the roles of the various ontology elements. As an example, the
semantic pole identifying a datatype property looks as follows:

((?Top (sem-subunit
(== (?property-unit ?concept-unit ?datatype-unit))))
(property-unit

(sem-cat (== (property ?s ?p ?o)))
(concept-unit

(sem-cat (== (concept ?s))))
(datatype-unit

(sem-cat (== (feature ?o))))))

This template does not select a particular triple made exactly by the Pi, Cj and
Ek elements. The property, concept and feauture semantic categories are used
instead to make the pole more general and applicable to all possible property-
concept-feature combinations. A complete set of semantic categories have been
devised for each possible topic.

The semantic category of a single predicate is simply its type:

4. Model Description 60

• (concept x) for any of the (Ci x) predicates,

• (individual x) for any of the (Ii x) predicates,

• (feature x) for any of the (Ei x) predicates and

• (property s p o) for any of the (Pi s p o) predicates.

Furthermore, the semantic category of a conjunction of predicates is determined
according to the following rules:

• The conjunction (concept s)(concept o)(property s p o) is defined as
(object-statement) ,

• The conjunction (individual s)(concept o)(property s p o) is defined
as (is-a-statement) ,

• The conjunction (concept s)(feature o)(property s p o) is defined as
(datatype-statement) ,

• The conjunction (individual s)(individual o)(property s p o) is de-
fined as (object-statement),

• The conjunction (individual s)(feature o)(property s p o) is defined
as (datatype-statement).

A summary table of the correspondences outlined above is reported.

Topic Semantic Category
(Ci ?x) (concept ?x)
(Ii ?x) (individual ?x)
(Ei ?x) (feature ?x)

(Pi ?s ?p ?o) (property ?s ?p ?o)
(Pi ?s ?p ?o)(Ci ?s)(Cj ?o) (object-statement ?s ?p ?o)
(Pi ?s ?p ?o)(Ii ?s)(Cj ?o) (is-a-statement ?s ?p ?o)
(Pi ?s ?p ?o)(Ci ?s)(Ej ?o) (datatype-statement ?s ?p ?o)
(Pi ?s ?p ?o)(Ii ?s)(Ij ?o) (object-statement ?s ?p ?o)
(Pi ?s ?p ?o)(Ii ?s)(Ej ?o) (datatype-statement ?s ?p ?o)

4. Model Description 61

4.5 Defining Syntactic Categories

Syntactic categories have been defined as the counterparts of the semantic ones
in order to produce and/or parse statements according to the SVO structure.
Syntactic categories obey to the set of production rules stated in the following.

(T ?e ?a ?p)→ (NP ?a)(V erb ?e ?a ?p)(NP ?p)

(NP ?a)→ (Adjective ?a)(NP ?a)

(NP ?a)→ (Noun ?a)

Moreover, the (Datatype ?s ?p ?o) syntactic category has been defined pur-
posely to model datatype values.

Syntactic categories map onto semantic ones according to the following corre-
spondences:

1. The (concept ?x) and (individual ?x) semantic categories map onto the
(NP ?x) syntactic one.

2. The (feature ?x) semantic category maps onto the (NP ?x) syntactic one.

3. The (is-a-statement ?s ?p ?o) semantic category maps onto the
(V erb ?s ?p ?o) syntactic one.

4. The (property ?s ?p ?o) semantic category maps onto the (V erb ?s ?p ?o)
syntactic one if the rdf:ID="PropertyName" field in the OWL property
definition is a Verb, else it maps onto the (Datatype ?s ?p ?o) syntac-
tic category if the rdf:ID = "PropertyName" field in the property defini-
tion is a NP. The ontology is preprocessed by a POS tagger to label the
rdf:ID="PropertyName" field accordingly.

5. The (object-statement ?s ?p ?o) and (datatype-statement ?s ?p ?o)
semantic categories map onto the (V erb ?s ?p ?o) syntactic category if the
predicate (P ?s ?p ?o) in the statement is a Verb, else they map onto the
(Datatype ?s ?p ?o) syntactic category if the predicate (P ?s ?p ?o) in the
statement is a NP, according to the previous correspondence.

4. Model Description 62

4.6 Constructions

4.6.1 Lexical Constructions

A valid lexical construction in FCG notation for the system proposed in this work
is reported below:

((?Top (meaning (== (C4 ?x))))
((J ?new ?top

(sem-cat ((concept ?x)))))
<-->
((?Top (form (== (string ?new ‘‘Artist’’))))

((J ?new ?top
(syn-cat (NP ?x)))))

This rule includes both semantic and syntactic category information; it maps
the string “Artist” to the meaning (C4 ?x), specifies that ?x pertains to the se-
mantic category concept, and that the syntactic category of “Artist” is (NP ?x).

Lexical constructions are form-meaning mappings for particular words; they
represent the concepts, the individuals, and the properties in the ontology. These
words are inferred by typological rules. Given an ontology statement, such rules
compute first a syntax for its entities based on their declaration in the statement
itself, then associate them to the proper role in the SVO structure.

Processing lexical constructions continues by applying the way-of-saying rules.
Such rules infer new linguistic patterns of for the same semantic description on
the basis of its the role in the triple. They build suitable gazetteers for each term
outputted from the typological rules. A gazetteer contains the syntax for a term
depending on its SVO role. Gazetteers building process makes use of WordNet
and FrameNet as data sources.

In the production task, a lexical construction is triggered by a meaning. For
example, the lexical construction for the Artist concept looks for a meaning (Ci?x)
where the logic variable ?x can be bound to either a particular artist the system

4. Model Description 63

wants to talk about or to the artist concept. The unification process involves only
the semantic poles of constructions and if it is successful, the syntactic poles are
merged with the linguistic structure that is being built.

When parsing a sentence, lexical constructions are used in the opposite way.
Syntactic poles are unified first, and then the information of semantic poles is
merged with the linguistic structure to infer the meaning. Concretely, the result
of applying a set of lexical constructions to a topic description is a unit structure
containing one top-unit and a number of subunits, just as it was explained in the
previous chapter.

In the proposed application, the top unit will contain a number of covered
meaning predicates, because all subunits are the result of applying lexical construc-
tions, and do not contain any subunits themselves. They do contain a meaning
and sem-cat feature on the semantic side, as well as form and syn-cat features
on the syntactic side. Hence, after application of a set of lexical constructions, the
semantic and syntactic structures will look like:

((Top (sem-subunits (S1 ... Sn))
(S1 (meaning M1)
(sem-cat SemCat1))
...
(Sn (meaning Mn)
(sem-cat SemCatn)))

and

((Top (syn-subunits (S1 ... Sn)))
(S1 (form (string S1 F1))
(syn-cat SynCat1))
...
(Sn (form (string Sn Fn))
(syn-cat SynCatn)))

4. Model Description 64

where M1 ... Mn are lists of predicates with arguments that are also present
in the associated semantic and syntactic category lists SemCat1 ... SemCatn
and SynCat1 ... SynCatn respectively.

In the production phase, the system selects a set of lexical constructions ac-
cording to the structure of the ontology subgraph that matches the user’s query.
When parsing, the system can use all the lexical constructions or it can select a
subset using suitable strategies. As an example, a document TOC can provide
information about the constructions to be used. The TOC structure can be con-
verted onto an OWL graph that is mapped onto the domain ontology to select the
statements of interest. This strategy has been implemented in the system detailed
in Appendix A, where the semantic annotation of Wikipedia articles is discussed.
Wikipedia pages are always structured through a TOC that can be used to se-
lect the proper lexical constructions. Given the OWL subgraph of interest, the
difference between production and parsing using lexical constructions is only the
unification process.

However, the verbalization of the ontology is complete when the linguistic
structure does not still contain equalities between variables in different units. In
fact, it is easy to see that whenever there is more than one unit (apart from the
top unit) there will be equalities. This is because the topic description is always
completely connected.

We assume that all equalities present in the topic description (i.e. all linking
relations contained in it) need to be resolved (expressed) before the syntactic
structure is rendered into an utterance. An equality can be resolved either because
it is part of the meaning of one lexical construction or else because it is covered
by a grammatical construction.
Grammatical construction is required to resolve the equality between both units
by imposing an order on them.

4. Model Description 65

4.6.2 Grammatical Constructions

The grammatical constructions are more complex than lexical ones, because they
not only have to unify with the top-unit of the linguistic structure, but also with
some of the units that were created before by lexical or other grammatical con-
structions. Moreover they resolve the equality.

A construction that covers the variable equality left uncovered at the end of
the previous section looks as follows:

((?Top (sem-subunits (== ?unit1 ?unit2)))
(?unit1 (sem-cat (== (SemCat1 ?x))))
(?unit2 (sem-cat (== (SemCat2 ?x))))
((J ?new ?Top)
(sem-cat ((SemCat1 ?x)))))
<–>
((?Top (syn-subunits (== ?unit1 ?unit2))
(form (== (meets ?unit1 ?unit2))))
(?unit1 (syn-cat (== (Adjective ?x))))
(?unit2 (syn-cat (== (NP ?x))))
((J ?new ?Top)
(syn-cat ((NP ?x))))).

The fact that the new unit is of semantic category SemCat1 and of syntactic
category NP can be deduced in the unification phase. On the syntactic side, this
construction imposes an order on its subunits.

Given the subgraph in figure 1, the lexical entries for the class definitions of A,
B and object property definition p1 look as:

((?Top (meaning (== (C1 ?x))))
((J ?new ?top
(sem-cat ((concept ?x)))))
<–>

4. Model Description 66

((?Top (form (== (string ?new "A"))))
((J ?new ?top
(syn-cat ((NP ?x)))))))

((?Top (meaning (== (C2 ?x))))
((J ?new ?top
(sem-cat ((concept ?x)))))
<–>
((?Top (form (== (string ?new "B"))))
((J ?new ?top
(syn-cat ((NP ?x)))))))

((?Top (meaning (== (p1 ?s ?p ?o))))
((J ?new ?top
(sem-cat ((property ?s ?p ?o)))))
<–>
((?Top (form (== (string ?new "p1"))))
((J ?new ?top
(syn-cat ((NP ?x)))))))
and the grammatical construction looks as:
((?Top (sem-subunits (== ?subject ?property ?object)))
(?subject (sem-cat (== (concept ?x))))
(?property (sem-cat (== (property ?x ?y ?z))))
(?object (sem-cat (== (concept ?z))))
((J ?new ?top)
(sem-cat (object-statement ?x ?y ?z)))
<–>
((?Top (syn-subunits (== ?subject ?predicate ?object)))
(syn-cat (==1 (pos (Verb))))
(TAG ?form (form (== (meets ?subject ?predicate)
(meets ?predicate ?object)))))
(?subject
(form (string ?news (stem "A")))

4. Model Description 67

(syn-cat NP))
(?predicate
(form (string ?newp (stem "p1")))
(syn-cat Verb))
(?subject
(form (string ?newo (stem "B")))
(syn-cat NP))
((J ?new ?top (?subject ?predicate ?object))
?form (syn-cat Verb))))

4.7 Modeling the Process

We define four main steps for the implementation of our strategy, shown in figure
4.2. Input of the process is the ontology subgraph, that can be computed as we
illustrated in the previous section: in production it corresponds to user’s requests
and in parsing it can be the full ontology or the subgraph related to the document
structure, if it exists. How these functions are really implemented and what tools
help us to obtain the results are described in the next chapter.
At this time we only model the process abstracting from its implementation that
is obviously influenced from used instruments.

Typological Linguistic Rules Application The ontology subgraph is converted
in the FOL predicates according to prescriptions described in the section 4.3.
Output of this phases is a list (that we call FOL list) of predicates or con-
junctions of them, that are used in the next step to compute syntax to use
in the constructions. In this list there are facts with one predicate (the sin-
gle fact) and facts that are conjunction of three predicate that model SVO
structure. Future extensions, as including other OWL constructs and state-
ments, will be related to expand these rules; considering the syntax of the
statement they will define the correspondent FOL facts to represent them
through SVO triple.

4. Model Description 68

Figure 4.2: From ontology model to constructions: step by step.

Way-of-saying Rules Application The second step of process creates the gazetteers
for each fact in the FOL that is a single fact. Facts that are conjunctions of
predicates are referred when computing the right syntaxs of the components.
For the fact f, that can be both (X ?x) or (P ?s ?x ?o) predicate, the cor-
respondent gazetteer is Gaz(f). The creation of gazetteers is based on rules
that appy some functions in different order according few conditions. These
functions are modeled as follow:

STEMLEMM(x) that executes both stemming and lemmatization of the
word x to reduce inflectional forms and sometimes derivationally related
forms of it to a common base form. For instance words as "fishing",
"fished", "fish" and "fisher" correspond to the root word "fish". The
result of this mapping of text will be something like:
the boy’s cars are different colors
the boy car be differ color.
We have integrated this function with other features: if the word is a
compound word (for example composed by more words without blank
spaces between them or other separation symbols) the function deter-
mines the components words and stem them too.

4. Model Description 69

For instance, the entity PizzaMargherita or the property has-children
became Pizza Margherita and have children using this function.

POS(x) that returns the part-of-speech tag of the word (or words chain) x
computed using Tree Bank Pos Tagger;

SYN(x) that returns synonyms of x;

HYPO(x) that returns hyponyms of x;

HYPER(x) that returns hyperonyms of x;

LEXUN(x) that returns lexical units related to the word x. Lexical units
are concepts that describe a frame (event) related to the word.

VERBDEF(x) that returns the Verb Phrase of the dictionary definition
of word x.

For each single fact f of type (X ?x) and (P ?s ?x ?o) in the FOL list, first
syntax is computed by STEMLEMM(?x) function that can returns more
values. STEMLEMM(?x) output is added to Gaz(f).
For each (Pi ?s ?p ?o) fact template in the FOL list the following rules are
applied:

Rule 1 If POS(?p) is a VP then add SYN(?p), HYPO(?p), HYPER(?p),
LEXUN(?p) to Gaz[(Pi ?s ?p ?o)] ;

Rule 2 If POS(?p) is a NP and FOL list contains (Pi ?s ?p ?o)(Cj?s)(Ik?o)‖
‖(Pi ?s ?p ?o)(Cj?s)(Ck?o)‖(Pi ?s ?p ?o)(Cj?s)(Ek?o) then add VERB-
DEF(?s), VERBDEF(?p), SYN(VERBDEF(?s)), HYPO(VERBDEF(?s)),
HYPER(VERBDEF(?s)), LEXUN(VERBDEF(?s)) to Gaz[(Pi ?s ?p ?o)];

Rule 3 If POS(?p) is a NP and FOL list contains (Pi ?s ?p ?o)(Ij?s)(Ik?o)‖
‖(Pi ?s ?p ?o)(Ij?s)(Ek?o) then find (Pl ?x is-a ?s)(Ci?x)(Ij?s) and add
VERBDEF(?x), SYN(VERBDEF(?x)), HYPO(VERBDEF(?x)), HY-
PER(VERBDEF(?x)), LEXUN(VERBDEF(?x)) to Gaz[(Pi ?s ?p ?o)];

Some examples will clarify the rules. Considering the triples < Book year
Date > the typological linguistic rules produce the FOL list that looks as:
(C1 book),

4. Model Description 70

(C2 date),
(P1 book year date),
(P1 book year date)(C1 book)(C2 date)

Then, the way-of-saying module considers the (P1 book year date) predicate.
For this triple the rule 1 does not fire because POS(year) is not a verb phrase.
Rule 2 instead fires because the POS(year) is a noun phrase (NP) and more-
over the (P1 book year date)(C1 book)(C2 date) predicate exists in the FOL
list. This rule is important when the relation is expressed by a noun phrase
because generally to express a relation it is necessary a verb phrase. In our
example, to say when a book was written generally is not used the noun year
but a verb as write or was published and so on.
For this reason, it is possible to refer to the vocabulary definitions of both
the subject and the property of the triple to try to compute a verb to ex-
press the relation. The function VERBDEF(book) extracts the verb phrase
contained in the vocabulary definition of book term, that is "a written work
or composition that has been published".
Inserting the verb phrase has been published and its synonyms, hyponyms and
for each of them their conjugations to the Gazeetter of the year term, we have
addressed the expressiveness of the relation according to its semantics.

Rule 3 is useful when the relation is a noun phrase but it is expressed between
an instance that can be a proper noun and not a generic concept and it is
impossible to find a definition in the dictionary for each proper name (as
Pizza Margherita or Pablo Picasso). For these cases, first the class of the
instance is computed (find (Pl ?x is-a ?s)(Ci?x)(Ij?s)), and then the rule
continues as the previous one.

For all other single facts in the FOL list the gazetteers are computed following
the order SYN(?x), HYPO(?x), HYPER(?x), LEXUN(?x), eccept for the
(Ii?x) single facts that are proper name (as Atlanta city). For these kind
of single facts the gazetteers contain only the STEMLEMM of the proper
name.

Lexical Constructions Generation Lexical constructions are built using the
set of single facts gazetteers computed in the previous step. From a gazetteer

4. Model Description 71

synonyms lexical constructions are generated; they have the same semantics
category (defined as we shown and dependent from the fact) but different
syntactic poles, that are the elements of the gazetteer itself.

Grammatical Constructions Generation Conjunctions of predicates in the
FOL list are used in this phase, because they specify the structure of the
lexical constructions in a sentences.

Constructions are then integrated with grammatical constructions of the used
language. In this way other components and information of the unit structures
are fitted in the constructions themself and they help to produce and parse text
in a verbose manner. Some of these information, for example, regard the gendre
of the concept (if it masculine or feminine), or the singolarity and so one, and are
actually manually annotated.
The integration rules to obtain automatically more completed grammatical con-
structions must be improved and it is included in the future works.

4.8 From triples to constructions, an example

Let consider the triple <Mary work-organization University>.
Gazetteers for work-organization and University are shown in figure 4.3 and 4.4.

Figure 4.3: Gazetteer for Work-Organization relation that is a NP.

There is only a lexical construction for the proper name Mary because it cannot
have synonyms.

4. Model Description 72

Figure 4.4: Gazetteer for University concept.

(def-lex-stem-rule Mary
((?Top (meaning (== (I1 ?m))))
((J ?new ?Top) (sem-cat ((individual ?m)))
<–>
((?Top (form (== (string ?new "Mary"))))
((J ?new ?Top)
(form (== (stem "Mary")))
(syn-cat ((NP ?m)
(lex-cat Proper-Noun)
(number sing))))))

For the class Univeristy instead the gazetteer is computed following our rules
and some synonyms lexical constructions are:
def-lex-stem-rule University
((?Top (meaning (== (C1 ?u))))
((J ?new ?Top) (sem-cat ((concept ?u)))
<–>
((?Top (form (== (string ?new "university"))))
((J ?new ?Top)
(form (== (stem "university")))
(syn-cat ((NP ?u)
(lex-cat Common-Noun)
(number sing))))))

(def-lex-stem-rule University-3

4. Model Description 73

((?Top (meaning (== (C1 ?u))))
((J ?new ?Top) (sem-cat ((concept ?u)))
<–>
((?Top (form (== (string ?new "college"))))
((J ?new ?Top)
(form (== (stem "college")))
(syn-cat ((NP ?u)
(lex-cat Common-Noun)
(number sing))))))

(def-lex-stem-rule University-5
((?Top (meaning (== (C1 ?u))))
((J ?new ?Top) (sem-cat ((concept ?u)))
<–>
((?Top (form (== (string ?new "faculty"))))
((J ?new ?Top)
(form (== (stem "faculty")))
(syn-cat ((NP ?u)
(lex-cat Common-Noun)
(number sing))))))

Similary, for the relation work-organization some synonyms lexical construc-
tions are:
(def-lex-stem-rule-temp workOrganization-1
((?Top (meaning (== (P1 ?p ?s ?o)
((J ?new ?Top)
(sem-cat ((property ?p ?s ?o)))))
<–>
((?Top (form (== (string ?new "works"))))
((J ?new ?Top)
(form (== (stem "works")))
(syn-cat ((constituent V))))))

4. Model Description 74

(def-lex-stem-rule-temp workOrganization-2
((?Top (meaning (== (P1 ?p ?s ?o)
((J ?new ?Top)
(sem-cat ((property ?p ?s ?o)))))
<–>
((?Top (form (== (string ?new "employer"))))
((J ?new ?Top)
(form (== (stem "employer")))
(syn-cat ((constituent NP))))))

Next figures show the FCG interface during parsing and production of sentence
Mary works for University of Sheeld.

Figure 4.5: FCG interface that shows the parsing of "Mary works for University
of Sheeld".

4. Model Description 75

Figure 4.6: FCG interface that shows the parsing of "Mary works University of
Sheeld".

Chapter 5

Some Instruments and
Architecture

5.1 Introduction

The implementation of the model described in the previous chapter is based on
the usage of a set of tools that help us to realize the steps we have defined. These
tools are generally useful in Natural Language Processing research fields and have
an undisputed role in the community of semantics approaches.

Among all FrameNet and WordNet sources are worthies of attention because
they return values that conditioning results of our approach.They are used to the
aim to obtain from them the different syntaxs that are related to a word or a set
of them; they implement the functions that are used by our way-of-saying module.
How these information are returned and what they mean are discussed in the next
two sections.

After a briefly illustration of them we ’ll describe how they interact with the
components of our system and the other natural language processing tools. All
together they constitute our framework architecture.

5. Some Instruments and Architecture 77

5.2 FrameNet

Frame semantics is a subfiled of semantics that studies the combined meaning of
a structure of related concepts.
Differently from other semantic approaches, frame semantics provides no meaning
representation for single words, but for the so-called frames: a frame typically
represents an event, a situation and describes the meaning of the objects in the
event, including its participants, properties and other related conceptual roles,
that are defined frame elements.

For example, the COMMERCIAL_TRANSACTION frame represents a sit-
uation where a buyer, a seller, money and goods are always presents. Roles of
these entities are defined as core roles, because they are always in this situation.
A frame can also have optional non-core role, that can not be characteristics for
the situation. In the example, concepts as the medium of exchange, the currency
of the money and the payment rate per unit are non-core role for the commercial
transaction frame. What non-core roles exist is shown next.

A single words can evoke a frame or be a property of the same. In general,
frames can be evoked by a number of words which have a semantically related
meaning. Examples for the previously mentioned COMMERCIAL_TRANSAC-
TION frame include the words "buy" and "sell". Most of these so-called lexical
units (LU) are verbs and nouns but other grammatical categories (e.g. adjectives
and adverbs) are possible.

The Berkeley FrameNet project is the project that currently builds a frame
semantic lexicon for English that includes over 10,000 LUs (Ruppenhofer et al.,
2006). Annotations are done manually and include tagging of lexical units and
frame element fillers (FEF).

5.2.1 FrameNet Structure

The FrameNet database is organized around three main elements, which have been
developed following Fillmore’s theory about frame semantics:

5. Some Instruments and Architecture 78

Semantic frame: a semantic frame is the conceptual structure that describes a
particular type of situation, object or event and the participants involved in
it, for example Apply heat, Color, Judgment.
In the FrameNet database, frames has a definition, for example Achieving
first is described as "A Cognizer introduces a New idea into society", where
Cognizer and New idea are the main participants defined in the situation.
The frame definitions can have different information and do bit follow strict
format constraints. In some cases, they include information about the syn-
tactic behavior of lexical units or also add information about the realization
of frame elements. We report an example from the Appearance frame: "In
this class of perception words, a Phenomenon, typically expressed as Exter-
nal Argument, and its perceptual characteristics are given some description".

Lexical unit (LU) or target: a LU is a word, a multiword or an idiomatic ex-
pression that evokes a specific frame. Differently from WordNet synsets
(Fellbaum, 1998) that are next discussed, lexical units in the same frame can
belong to different grammatical categories. For instance, in the Achieving
frame (that is the first frame) the LUs include verbs, nouns and adjectives:
coin.v, coinage.n, discover.v, discovery.n, invent.v, invention.n, inventor.n,
originate.v, originator.n, pioneer.n, pioneer.v and pioneering.a. Summarily,
all such LUs would evoke the same event, described in the Achieving first
definition.

Frame elements (FEs): a FE is a frame that specifies semantic roles. With
verbal LUs, they are usually realized by the syntactic dependents of the
verb. FEs are classified into core, peripheral and extra-tematic, basing on
how central they are to a frame. A core FE is conceptually necessary to
the situation described in a frame because it contributes to characterize it
uniquely. For example, in Achieving first, Cognizer and New idea are core
frame elements because

Aperipheral FE does not characterize uniquely a frame. Indeed, it is usually
recurring in different frames and marks such notions as Time, Place, Means,
etc. The extra-thematic FE differently from the peripheral type, introduces
an additional state or event. For this reason, these FEs do not conceptually

5. Some Instruments and Architecture 79

belong to the frame they appear in and have a somewhat independent status.
They can even evoke a larger frame embedding the reported situation.

5.3 WordNet

WordNet is a freely lexical database for the English language, and it combines a
dictionary and thesaurus toghether, that may be browsed online and downloaded
for local usage at its official web site. The aim of WordNet is the mapping of the
relationships between words similar to the way the humans keep in mind and uses
language.

Project development started in 1985, when a group of psychologists and lin-
guists directed by George A. Miller at Princeton University’s Cognitive Science
Library develops their own lexical database for their research goals into the fields
of psycholinguistics and psycholexicology. The objective of the project was to
create a resource which would keep into account the humans processing languages.

In 1993 first results of the group’s effort were published, and the main was a
structured lexicon which provided a valid alternative to traditional alphabetical
dictionaries and thesauri. Since WordNet is distributed under a BSD style license,
it may be used free of charge. Development on WordNet has continued since
its inception and remains ongoing at Princeton University. WordNet has grown
considerably since is development began. The database is currently at version 3.0
and contains over 155,000 words which are grouped into roughly 117,000 synsets
totaling approximately 207,000 word-sense pairs.

5.3.1 WordNet Types

Since different words follow different grammatical rules, WordNet makes the dis-
tinction between four of the primary word types in the English language. Nouns,
verbs, adjectives, and adverbs are the defined WordNet Types.

The nouns category contains words which refer to concepts, qualities, entities,

5. Some Instruments and Architecture 80

actions, or state and are used as the subject of a verb. Words classified as verbs
may serve as the predicate of a sentence and describe an action, occurrence, or state
of existence. Adjectives are words that modify nouns. The final word classification
stored in WordNet, the adverb, is similar to the adjective and contains words which
modify word types other than nouns.

Each group has its unique set of semantic and lexical connections which link
that group’s members. Thus, the possible relationships shared between WordNet
synsets vary depending on the type of word. Noun synsets may be connected as
hypernyms, hyponyms, coordinate terms, holonyms, and meronyms. Verb synset
relationships include hypernyms, troponyms, entailments, and coordinate terms.
Possible adjective relationships are related nouns, similar to, and participle of verb.
Adjective synsets may be related as root adjectives. Words may also be connected
through lexical relations such as antonyms.

5.3.2 WordNet Relationships

In WordNet, words and the relationships between them are hierarchical organized
in taxonomies which may be found in the natural sciences. Words which are closely
related to each other may be found in the same branch of the hierarchy’s tree. Each
word has a set of synonyms, called synset. Formally, a synset is a set synonymous
words that have the same meaning and that can be substituted for each other;
substitution in context does not change the overall meaning of the utterance in
which they are contained. Synsets are the foundation upon which the WordNet
database is built.

Words which have multiple meanings or "word senses" are added in more than
one synset. WordNet provides a polysemy counter for each word that tracks the
number of synsets in which the word is contained. Also WordNet provides a
frequency score which computes how often a word will appear in a specific sense.

As shown, WordNet separates its words into one of four basic word types
including nouns, verbs, adjectives, and adverbs. The database is able to track
semantic relationships connecting synsets that are specific to each word type, as

5. Some Instruments and Architecture 81

well as lexical relationships between individual words. By searching for a word in
WordNet, not only are synsets which contain the word in various senses returned,
but the semantic and lexical relationships which are applicable for each synset may
be displayed as well. This allows the user to quickly find words related to their
original query. The following subsection shows further details on these possible
word relationships.

5.3.3 Noun, Hypernyms and Hyponyms

The first noun relationships stored in the WordNet database is hypernymy. A word
X is a hypernym of word Y when the semantic range of word Y lies within that of
word X. An example of this relationship can be shown by the synsets containing
the words "ananas" and "edible fruit". "Edible fruit" is a hypernym of "ananas"
because all ananas are edible fruits. As such, "edible fruit" would be a hypernym
of "cherry" and "apple" as well.

Hyponyms are words whose semantic range lie within that of a hypernym.
Going back to the previous example, the words "ananas", "cherry", and "apple"
would all be related to the word "fruit" by hyponymic relationships, which is to
say that they are all hyponyms of "fruit". If multiple words share a hypernym, as
"ananas", "cherry", and "apple" do, then they are said to be coordinate or sister
terms, the third type of noun relationship tracked by WordNet.

5.3.4 Noun, Holonyms and Meronyms

Another noun relation which WordNet defines for synsets is holonymy. A word X
is a holonym of word Y if word Y represents a part or member of word X.
To provide an example of this relationship, in a car there are a handbrake and a
wheel. so the word "car" is a valid holonym of the words "handbrake" and "wheel".

Other semantic relationship for the noun type is the direct opposite of the
holonymic relationship, the meronymy. This relationship refers to two words X
and Y where word Y is a part of word X. In this case, word Y is a meronym of

5. Some Instruments and Architecture 82

word X. To use the same example, the words "handbrake" and "wheel" share a
meronymic relationship with the word "car", as a car is made up of handbrake and
wheel.

Closely to the holonymic and meronymic semantic relationships there is the
the domain category concept. These categories refer to groups of synsets whose
members represent the domain to which another synset belongs.
The synsets containing "animal" and "human" are domain categories of the synset
containing "body" when referring to the entire structure of an organism.

5.4 System Architecture

In this section we describe the components that implement our model. Each com-
ponent provides a specific function that realizes the steps of our model previously
discussed.

Figure 5.1: System’s overview.

5. Some Instruments and Architecture 83

First component is the Semantic Analyzer, that extracts the information con-
tained in the ontology and represents them through SVO triples using the FOL
predicates that we have defined in our axiomatization (facts with form (X ?x) or
(P ?s ?p ?o) and conjunctions of them) that is formalized by our typological rules.
Moreover the Semantic Analyzer disposes the information it extracts for building
the syntactic poles of the lexical constructions and to that end it retrieves and
stores the labels from the ontology (value of rdf:ID or rdfs:label) correspondents
to the SVO components. The labels are a first syntaxs to express ontology enti-
ties. The Semantic Analyzer is entirely realized in Java language and it browses
ontology by Jena (McBride (2002)).

The well structured information from the Semantic Analyzer are then inputted
to the Gazetteer Builder component that uses WordNet (Fellbaum (1998)) and
FrameNet (Ruppenhofer et al. (2005)) sources for creating the gazetteers; these
gazetteers are filled applying our way-of-saying rules. At this point the bricks to
build the constructions are available.
These bricks are then processed by the FCG Gateway that writes both lexical and
grammatical constructions in the FCG syntax that is the Lisp list notation, (for
each gazetteer it creates synonyms lexical constructions) and puts them into FCG
framework. Summarily, this component realizes a bridge between our framework
and the FCG one, because our framework is coded in Java language while the FCG
framework is based on Common Lisp. To that end the FCG Gateway uses the Cl
+ J interface that allow to write Lisp construction through Java language. These
interface was developed by Jean-Claude Beaudoin, a freelancer of Common Lisp
tools, that has made available its work for our objectives.

Also, these gazetteers are used from GATE (Cunningham et al. (2011)) for
annotating plain documents through the domain ontology. In these branch of
framework, we have developed another component, the Information Extraction
Module that is able to extract new instances from free text that may be put into
the ontology (if they do not already exist). Summarily, the Information Extrac-
tion Module uses a Named Entities Recognizer (Finkel and Manning (2009)) to
compute the categories of some entities in the text and if these entities are linked
through relations that are represented in the ontology for which subject and ob-

5. Some Instruments and Architecture 84

ject represents the same category recognized for the entity, then the entity can be
istantiate for the object or subject of the ontology relations. Figure 5.2 shows an
example of this instantiation.

Figure 5.2: If the category outputted by Ner is in the gazetteers of the entity
itself, system is able to infer new instance if it does not exist.

Chapter 6

Main Experiments

6.1 Introduction

The main claim of this thesis was the model definiton for integrating ontology into
Fluid Construction Grammar framework; to that aim we defined a set of rules that
allows system to create a lexicon for syntactically structuring the meaning of an
ontology subgraph. This lexicon depends from the semantic roles covered by the
entities themself in the specific graph context.
The result of our rules defined in a previous chapter is a set of units structures
for semantically parsing external documents related to domain under investigation
and for producing about each available contents (external and internal from the
ontology).

With our experiments we demonstrate that these rules lead to good results
because they define the really way-of-saying to express the event modeled in the
ontology and useful by humans. This result has effects in both natural language
processes, the production and the parsing. In this chapter we present these main
experiments and for clarity we describe them through two baselines: former is
related to the parsing and latter is related to the production.

To diversify the results, we present the two baselines in two different applica-
tion domains. The parser is applyed to documents from the Art domain and the

6. Main Experiments 86

production is realized about topics of the enteprice domain, in particular the do-
main related to the managing of a set of connected clients of a bank; for both cases
we use a specific ontology, OntoArt ontology for the first case, that was modeled
by us, and a corporate ontology provided by Consorzio Monte Paschi di Siena for
the latter case.
The chooise is not casual, but it depends by the availability of documental corpora:
for the art domain we may refer to a large amount of documents that are shared
on the Web, the Wikipedia articles related to artists biography. For the corporate
ontology we cannot show the documents related to it because they are reserved by
rights, so here we present a small fragment of the ontology that we use to produce
sentences about it.

Moreover, for each baseline we define specific evaluation parameters, because
the experiments are radically differents; infact, if to evaluate the goodness of the
parser we have to adopt a statistical approach that keeps in account the number of
annotated words in a large set of documents, to evaluate the production we have
to refer to the parameter that represents the ability to compose sentences from
meaning, that is the compositionalilty degree. This is more clear next.

6.2 Baseline Experiment 1

In this section we illustate the results wa have reached parsing a set of documental
corpora shared on the Web, the Wikipedia articles about artist biography. Figure
6.1 represents a fragment of ontology we use for doing that, the OntoArt ontology.
Accurate process description through which we elaborate each page to obtained a
semantically annotated Wiki pages (that are then shared by Semantic MediaWiki
(Krötzsch et al. (2006)) web site) is illustrated in the Appendix A; in this appendix
section we also illustrate how we select the concepts from the ontology. The
strategy is made possible because each Wikipedia pages has a Table of Contents
(TOC) that give to the page a first structure, and we use it to extract pertinent
and relevant concepts from the ontology.

As explained, in order to illustrate these kind of experiments we have to adopt

6. Main Experiments 87

Figure 6.1: A fragment of the Art domain ontology.

a statistical approach. In particular we refer to Zipf’s law.
Zipf’s Law, named after the Harvard linguistic professor George Kingsley Zipf
(1902-1950), is a an empirical law formulated using mathematical statistics and
based on observation rather than theory. It is often true of a collection of instances
of classes, e.g., occurrences of words in a document and for this reason we believe
it adapts to our evaluations.

The law refers to the fact that many types of data in the physical and social
sciences can be approximated with a Zipfian distribution (one of a family of related
discrete power law probability distributions); formally it says that the frequency
of occurrence of an instance of a class is roughly inversely proportional to the rank
of that class in the frequency list.
More exactly, suppose a word occurs f times and that in the list of word frequencies
it has a certain rank (a position), r. Then if Zipf’s Law holds we have (for all words)

f = a
rb

where a and b are constants and b is close to 1. Taking the logarithm of each
side of the equation we obtain

log(f) = log(a)− b ∗ log(r),

where the log function can be to any base, such as e or 10. Thus if Zipf’s law

6. Main Experiments 88

(a) art_works relation between Artist and
Art_Work concepts.

(b) apprentice relation between Artist and
Person concepts.

(c) birth_place relation between Artist and
Place concepts.

(d) nationality relation between Artist and
Nationality concepts.

(e) has_paint_technique relation between
ArtWork and PaintTechnique concepts.

(f) field relation between ArtWork and
Field concepts.

Figure 6.2: Zpfian distribution on 20 Wikipedia pages of words or sentences in
the gazetteers of 6 triples.

6. Main Experiments 89

holds of a particular collection then if we graph log(f) against log(r) the resulting
graph will be a straight line with slope close to -1.

A consequence is that (if b = 1) a word of rank k occurs 1/k times as often as
the most-frequently-occurring word. We see this from: f(k)/f(1) = (a/k)/(a/1) =
1/k. And for every k occurrences of a word of rank j there are approximately j
occurrences of a word of rank k.

We assume that: when a word or a sentence with a meaning has a hight fre-
quence in a set of documents related to the argument for which the meaning is
pertinent, it means that this word or this sentence is a useful human way of saying
this meaning.
When we say that the meaning is pertinent for the argument we mean that the
meaning has sense for it; for example, if the argument is the life of a musician,
we can speack about what sings he has composed, so the fact that represents the
sings for a musician is a pertinent meaning for the musician life argument.
Considering that Wikipedia articles are written by human editors without con-
straints, these pages are well suited for our observations, that is to verify if the
way-of-saying rules compute right words to express something.

In figure 6.2 are shown some graphs that represent the Zipfian distributions on
20 Wikipedia pages related to artists’s biography of words from gazetteers filled
following our rules that are applyed on triples from OntoArt ontology. Really
experiments were executed on a larger set of pages, about 100, but for ensuring
clarity for these kinds of figures here we present the results only on a smaller subset
(it is not a limit for our observations). Observing the figures we note that the order
followed to fill the gazetteers respect the really frequence distributions of the word
or the sentence, that means the first words or sentences that the way-of-saying
rules put in the list follows the effective degree of usage of them.
For example, the subgraph 6.2(c) that represents the distribution for the concept
birth_place shows that to express where someone was born is widely used the word
born and not the NP birth_place, that is what our rules compute. Similary for
others subgraphs, for which specifications are represented in the same figure.

It is a confirmation that our incremental approach is a good way to compute

6. Main Experiments 90

adeguate syntax considering a semantics, that is intrinsic in an ontology model.
Perhaps this is the main interesting results of our model.

Another observation is related to the correctness of the semantic annotations,
for which we have to evaluate if the meaning we attribute to words in the text is
right. It means, considering the same example, that we have to evaluate if the year
of born of the an artist is correctly annotated with the birth_date property and
not with others properties or not totally annotated. For this kind of relevations
we can not regardless from a manual evaluations of the results, because nothing
can tell us if they are corrects if he is not a human. This is often true for many
processing resources such as tokeniser, POS taggers and so on.
To evaluate the goodness of semantics annotations we refer to four statistical
parameters: precision, error rate, recall and the F-measure. Precision, error rate,
recall and F-measure are also appropriate choices when assessing performance of
an automated application against a trusted gold standard.

Precision measures the number of correctly annotations as a percentage of the
number of annotations identified. In other words, it measures how many of
the annotations that the system identified were actually correct, regardless
of whether it also failed to annotate correct items. The higher the precision,
the better the system is at ensuring that what is identified is correct.

Error rate is the inverse of precision, and measures the number of incorrectly
identified annotations as a percentage of the annotations identified. It is
sometimes used as an alternative to precision.

Recall measures the number of correctly identified annotations as a percentage
of the total number of correct annotations. In other words, it measures
how many of the annotations that should have been identified actually were
identified, regardless of how many spurious identifications were made. The
higher the recall rate, the better the system is at not missing correct items.

Clearly, there must be a tradeoff between precision and recall, for a system can
easily be made to achieve 100% precision by identifying nothing (and so making
no mistakes in what it identifies), or 100% recall by identifying everything (and so

6. Main Experiments 91

not missing anything). The F-measure is often used in conjunction with Precision
and Recall, as a weighted average of the two. False positives are a useful metric
when dealing with a wide variety of text types, because it is not dependent on
relative document richness in the same way that precision is. By this we mean
the relative number of entities of each type to be found in a set of documents.
Formally, defining the variables P and R respectively the precision and the recall:

P = CorrectAnnotations
CorrectAnnotations + SpuriosAnnotations

R = CorrectAnnotations
CorrectAnnotations + MissingAnnotations

F −measure = 2∗(P X R)
R + P

(a) Evaluation of incremental approach. (b) Evaluation without incremental ap-
proach.

Figure 6.3: Precision measure on 100 Wikipedia pages.

During parsing we have observed two things:

• if we apply an incremental approach that searches terms ona at a time in
the text from the gazetteers following their order and stops when a term is
found, we obtain better results; the motivation is that in a free text there is
generally only a sentence where the specific meaning is expressed, and when
we find it to search more is idle. Moreover, our strategy first searches the
useful words or sentences to express something and the results are obviously
further improved respect the case in which they are not so ordered;

6. Main Experiments 92

• if we search the full gazetteers in the text, without an incremental approach,
and so we do not stop when one term is found, the semantic annotations have
a smaller rate of correctness because words that not have a specific meaning
are however annotated through it.

Figure 6.4: Recall measure on 100 Wikipedia pages.

Figure 6.3 shows the percentage of correctness of results in the semantic an-
notations of no-incremental approach versus incremental one. We reiterate that
an annotation is considered correct when it is present and it specifies right mean-
ing. Recall measure is shown in figure 6.4; mesurament in this case is however
influenced by ontology, because the missing results are computed not considering
what entities are modeled into the ontology but only the meaning that could be
understood by humans.

6.3 Baseline Experiment 2

In this set of experiments we evaluate the production of the system considering
the corporate ontology provided us by Operative Consortium of Monte Paschi
of Siena. Because it is an italian bank, the ontology is filled using italian lan-
guage and we have changed the versions of instruments to apply our framework;
in particular, we have to use Italian Wordnet (Pianta et al. (2002)), available at
http://multiwordnet.fbk.eu/english/home.php. This ontology models the Groups

6. Main Experiments 93

of Connected Clients of the bank, that are the sets of clients with specifics char-
acteristics for which is possible to get them specific financial service. In figure 6.5
is shown a fragment of this ontology that models the concept Bank and others
concepts related to it. Next to refer this ontology we call it MontePaschi ontology.
The evaluation of the ability of an automated system to natural language produce

Figure 6.5: A fragment of Groups of Connected Clients ontology provided by
Operative Consortium of Monte Paschi of Siena.

an utterance is often bound to the evaluation of the goodness of the lexicon that
system can use to speack considering problems as synonyms and homonyms. More-
over, system should have a background of grammatical structures of the language
to more understandable produce for humans.

Fou our aim the completness of a sentence is not a foundamental problem;
that means, when we want to evaluate if the system is able to speack about the
ontology, we consider if it produces something that is understandable and above all
true, that is we evaluate if the domain is correctly described and comprehensible
without worry if the sentences are grammatically severely rights. It agrees to the
fluidity principle formuled by Steel [Steels and van Trijp (2011)] that we have
already shown in the chapther "Construction Grammar and Fluidity" but that we
recall here for clarity: "when speakers need to express something that was not yet
conventionally expressible in the language, hearers are assumed to be intelligent

6. Main Experiments 94

enough to figure out what was meant".

Instead, we had to keep in account problems related to the lexicon that is built
automatically by system. The notion of semiotic graph allow us to define measures
that can be used to evaluate some of these problems that are shown next.
To introduce the semiotic graph notion we have to model the "spaces" involved in
the ontology verbalization scenario, that concern with the real world and how it
is described respectively. During production, a speaker performs a mapping from
her concepts space to utterance space. In turn, parsing performs a mapping from
utterance space to concepts space.

Hence, a semiotic graph can be defined that consists of a set of nodes from the
concepts space (the meaning nodes), a set of nodes from the utterance space (the
form nodes), and a set of weighted directed links between them. Every meaning
node represents a different semantic description, while every form node represents
an utterance. An arrow going from a meaning node to an form one represents a
production (i.e. verbalization); an arrow going in the opposite direction represents
a parsing action (i.e. understanding).

Figure 6.6: An example of a semiotic graph. Nodes marked as mi represent a
meaning (a conjunction of predicates), while the ones marked as wi

represent utterances. Weights on the edges refer to probabilities to
obtain a certain production or parsing.

6. Main Experiments 95

We can build the semiotic graph for the ontology subgraph of which we verbal-
ize; in particular, the construction of the semiotic graph for an ontology subgraph
follows the rules for semantics and syntactic categories definition in our model, so
building a semiotic graph is equal to define the poles of constructions that must
be to incorpote in the FCG; in particular, each meanings we extract from the
ontology (represented as the FOL predicates obtained after our axiomatization)
is represented through meaning nodes (such as mi in the figure) and the words
or sentences we associate to them computing by way-of-say rules are represented
through form node.
Edges in the semiotic graphs have weights whose meaning depends on how the
graph itself was built.
In this baseline experiments weights represent two things:

• the probabilities of a certain meaning being verbalized using a certain utter-
ance;

• the information related to the number of synonyms the system knows for a
specific meaning.

In the first assumption the weight in a link from meaning node to form one is
the probability that the form is used to express the meaning so it depends by
the frequency of usage of the form to express the meaning itself: in the previous
section we have demonstrated, using the Zpfian distributon of words or sentences
from gazetteers in a large amount of free documents, that our rules compute the
correct order in the usage of the terms or the sentences to express something so
they give us the useful information to compute this probability. Because here we
evaluate the production, we formalize only the computation of the weights of the
links from a meaning node to more form ones and we consider the ranks in the
gazetteers of each words or sentences correspondents to form nodes.
Because the gazetteers have always less than 100 elements, we scale the Gauss’s
formula with the ranks of the elements to compute these weights; formally, the
weight wi of a link i from meaning node m to form one f that represents the word
or sentence with rank i in the gazetteer of m is computed as:

6. Main Experiments 96

wi = 2 ∗ (n + i− 1)
n ∗ (n + 1)

where n is the number of elements in the gazetteer.
Applying this formula, the links with lower ranks have the higher weights; it means
that former words or sentences in the gazetteer are the most useful to express the
meaning. For example, in figure 6.7 a semiotic graph correspondent to concept
Banca from the MontePaschi ontology is shown. There is one meaning node, that
is the meaning of the Banca concept modeled by our FOL predicates, and more
form nodes, that represent the different syntaxs to express this concept. Weights
are computed applying our formula and considering the order of the elements in
the gazetteer computed for Banca concept.

Figure 6.7: The semiotic graph for the concept Banca in production.

Considering latter point in the weights interpretation, weights can be used to
keep information about synonymy and homonyms.
Synonyms exists when a meaning node is associated with many form nodes. Strictly
speaking this is called synonymy only when the involved points in utterance space
represent single words. Figure 6.8 illustrates this case. Possible sources of syn-
onymy include:

• wrong guess by the hearer of the meaning of a word, resulting in the adoption
of an additional word for a concept which was already associated with another
word;

• different words proposed by the system for the same concept.

Regarding homonyms there are at least two mechanisms that introduce them:

6. Main Experiments 97

Figure 6.8: Synonymy as represented in a semiotic graph: both the words
“cherry” and “fruit” are shown to map to the same concept meaning.

• system could independently propose the same word for a different concept
or, equivalently, it could propose the same word for two different concepts;

• the meaning of an unknown word could be uncertain and hence system would
be used in a way that is different from its original meaning.

Figure 6.9 illustrates homonymy. Obviously, one speaks of homonyms only when
the points in utterance space represent single words.

Figure 6.9: Homonymy as represented in the semiotic landscape.

To give a measure to these aspects of production the notion of a node’s out-
degree is crucial. The effective out-degree of a node is related to the number of its
outgoing edges but takes into account the weights of the edges.
Generally it is assumed that the weights of the outgoing edges are normalized

6. Main Experiments 98

such that their sum equals 1, that is true for our case. It means that if there
are k edges each with an equal probability 1

k
, then the effective out-degree equals

k. If however the k edges have differing probabilities (weights), then the effective
out-degree should be smaller. The effective out-degree k

′ is not generally integer.
Therefore the effective out-degree of a node is the number of edges with equal
probability needed for a hypothetical node to have the same associated Shannon
information as the original node (Beule et al.). More precisely, if a node has k

outgoing edges with weights xi, 1 <= i <= k, its Shannon information is given by

∑k
i=1−xi log xi

A node with k
′ outgoing edges with equal probability 1

k′ thus has a Shan-
non information of log(k′). By definition this information should be equal to the
information associated with the original node, from which it follows that

k
′ = exp (∑k

i=1−xi log xi)

As an example, the effective out-degree of m1 in figure 6.6 is 2.97 and of w3 it
is 1.38.

In Beule et al. autors compute the out-degree respect synonyms and homonymys
as follow:

• The synonymy of a semiotic graph is defined as the average of the effective
out-degree of its meaning nodes minus 1. The synonymy of the graph in
figure 6.6 is thus 0.87.

• The homonymy of a semiotic graph is defined as the average of the effective
out-degrees of the word nodes minus 1. The homonymy of the graph in figure
6.6 is thus 0.27.

We can assert that a gazetteer correspondent to an ontology entity is the list of
synonyms to express the entity itself and the set of gazetteers that corresponds to
a same entity contains homonyms to express this entity. The first assumption is

6. Main Experiments 99

almost obvious, infact when we create the list of the way-of-say for the entity, we
compute terms to express the meaning of the entity in different manner and hence
we consider these terms to be synonyms. For the second assumption we note that,
for example, a class in the ontology can have more relations or properties, and
for each of them the class may play different semantic roles and so have different
gazetteers. The words or the sentences from these different gazetteers that are
syntactically equals between them are homonyms because they represent with the
same form different meaning.

We have automatized the procedure for computing the degree of synonyms
and homonyms and obvioulsy we have observed that they depend from how the
domain is modeled. These measures tell us something about the compositionality
of the lexicon. When there are high synonyms and homonyms out-degrees there
is high probability that system can produce more utterances for a same ontology
event and so system could become ambiguous. So, evaluating these measure we
can expect more or less unambiguous utterances.
In particular, for the MontePaschi ontology we have observed that there are not
many problems related to the synonyms and homonyms management, because
the terms contained in the ontology are more technical and the list of synonyms
and homonyms is ristrictly. Moreover we do not include external documents in
the production. How to implement strategies that basing on these measures take
actions to improve the quality of the production are future works.

The representation through the semiotic graph can also help us to evaluate the
compositionality of the lexicon by system during production, that is the way on
which system combines lexical constructions using grammatical ones to produce
something. To that end we have to consider the problem of the correlations between
the predicates as they occur in a description to verbalize.
We define the compositionality of a language as the average number of predicates
covered per word. We know that every lexical entry associates a word with a
number of predicates in its meaning according to a certain probability.
For atomic entries, the meaning pole contains only a single predicate. The meaning
poles of not-atomic entries contain three predicates. If we define holistic entries as
the conjunction of more topics that are the combination of atomic and not-atomic

6. Main Experiments 100

entries, the meaning poles of these entries contain several predicates. Hence, we
would like to define the degree of compositionality of a lexical entry as the reciprocal
of the number of predicates in its meaning.

Words are only associated with a meaning according to the probability we have
computed. Therefore, the compositionality of a word is defined as the reciprocal
of the weighted sum of the number of predicates in all it’s associated meanings,
with weights the probability of the word having the particular meaning.
For example, if the word w* is associated with the meanings m1, m2 and m3 ac-
cording to the probabilities p1, p2 and p3 respectively (with p1 + p2 + p3 = 1),
and if the number of predicates in meaning mi is given by |mi| (i ∈ {1, 2, 3}), then
the compositionality comp(w*) is given by:

comp(w∗) = 1
p1∗|m1| + p2∗|m2| + p3∗|m3|

Next, we define the compositionality of system’s lexicon as the average compo-
sitionality of all the words it contains. Summarily we can tell that the production
by the system is more verbose and correct if the size of the graph and the number
of lexicon are high.

In figure 6.10 is represented the precision of the production, defined in this case
as follow:

P = CorrectP roduction
CorrectP roduction + SpuriosP roduction

where Correct Production are the number of sentences produced by system
that are true, that is they are sentences that express real factsl in the domain (as
for example that a specific Bank has its ABI Code, that is a fact modeled in the
ontology). Spurios Production are the number of sentences that are not real. How
these relevations depend from previous observations are future works too.

6. Main Experiments 101

Figure 6.10: Precision of production in our relevations.

Chapter 7

Conclusions

In this thesis an innovative model for Natural Language Interfaces is proposed
along with its implementation. The main idea behind the work is achieving the
integration between a formal knowledge representation like OWL and a grammat-
ical formalism to enable both understanding and production of natural language
sentences. Ontology statements can be regarded as a set of Subject-Verb-Object
(SVO) triples. This inherent semantics has been defined as the semantic seed of a
statement. Semantic seeds can be put into correspondence with the emerging syn-
tactic structures defined by the ontology elements. Construction Grammar (CxG)
has proved to be a suitable theory for the purposes of the presented work because
it allows modeling such a correspondence via a proper axiomatization of the RDF
language. The Fluid Construction Grammar (FCG) has been used in this work
due to its implementation flexibility.

The main motivations of this work fall in the scenario of Semantic Web. Many
textual unstructured contents are shared between users on the Web and often these
documents are not understandable for machines. Using ontologies to model the
topics dealt with in document corpora enables structuring, and improves their re-
trieval by automated systems. Moreover, one of the main goals of Semantic Web is
the ontological representation as a way to contents standardization. Nevertheless,
ontologies are written using formal languages that are impervious for unskilled
users, which need to interact with such a representation for many purposes.

7. Conclusions 103

Integrating ontology with FCG allows to define a natural language interface to
formal knowledge for external users, which can understand the domain regardless
of the formal languages used to model it. On the other hand, systems are able
to verbalize about the represented domain. Verbalization capability, and retrieval
of external data enable the definition of an expanded natural language interface,
because systems are able to produce utterances not only about the events coded
into the knowledge base but also about external related contents.

The development of the presented system experienced different phases. The
very first component of the whole system was extraction of the semantic events
represented in the ontology. Semantic events are descriptions of some situations
in the domain under investigation. Suitable rules for computing different ways of
saying to express the same semantic situation have been developed. Many concepts
are syntactically expressed in different ways depending on the context they appear,
and the identification the semantic seed helps to disambiguate the context and to
select the right syntax.

Next, understanding and production functions were developed to make system
able to interface with users. Here the use of the FCG was crucial. FCG per-
forms both these tasks using the same set of constructions. This characteristic
fits well the purposes of this research. As a consequence, the axiomatization of
RDF statements that models the semantic seed of a statement in the ontology
has been embedded in the FCG framework to enable the composition of lexical
and grammatical constructions describing the domain under investigation. The
implemented system is able to produce and to parse using such constructions.

The experiments reported in this thesis demonstrate that the system performs
good. It is able to understand information from free textual documents and more-
over it is able to produce correct sentences about the contents. Here the term
“correct” is to be intended as “reporting actually events described in the ontol-
ogy”. Even if sentences can be not grammatically complete, they are perfectly
understandable by humans.

Parsing is precise, in the sense that it creates right correspondences between
semantic events represented into the ontology and the meaning of the textual input.

7. Conclusions 104

This has many side effects: the system can perform semantic annotation of the
text, and it can retrieve new instances to put in the ontology. It is obvious that the
quality of parsing depends on the ontology model: the more ontology is complete
(i.e. it models each aspect of the domain) the more parsing achieves good results
(i.e. it annotates and/or retrieves more contents).

An important aspect of the proposed methodology is that it is both ontology
and language independent. Axiomatization rules depend merely on the formalism
used to model the domain. The spoken language used to name the ontology ele-
ment is a-priori fixed, and it forms the base lexicon used in syntactic constructions
for production and parsing. In this sense the system is portable.

Summarily, a system designed according to the proposed methodology:

• is able to extract the semantic events modeled into an ontology representation
actually expressed in OWL/RDF syntax. It means that the system can infer
from the syntax of the representation the semantic aspects of the modeled
domain;

• is able to compute the most used ways of saying to express such semantic
aspects;

• is able to annotate plain text related to the domain under investigation using
the rules computed in the previous item;

• is able to infer new instances from the text to enrich the ontology;

• is able to produce correct statements (in the sense outlined above) about all
the events it knows.

The system is far from being complete, and many theoretical and implemen-
tation issues have to be faced to reach this goal. There is no direct interaction
with users apart from answering to SPARQL queries that map onto the domain
ontology. The first activity will be enabling direct parsing of the users’ sentences
to produce appropriate answers. This is the core aspect in a NLI. There are some
issues in this respect. Direct interaction with humans implies understanding of

7. Conclusions 105

incomplete grammatical structures that include co-references and anaphors. Such
a statement cannot be mapped directly onto the knowledge representation formal-
ism.

To this purpose, the main idea is to investigate a way of modeling anaphors
in the FCG through proper grammatical constructions. Such constructions have
to depend tightly on the lexical ones that are in charge of describing the concepts
referred to in anaphors.

Finally, other structured knowledge sources are under investigation. The main
interest is on rules for converting an entity-relation diagram (ERD) in OWL on-
tology to allow the system to verbalize about database contents in response to
conventional SQL queries.

Appendix A

From Wikipedia to Semantic
MediaWiki

A.1 Introduction

In this appendix we illustrate the scenario in which we moved first steps. Initially
we aimed only to solve the problem of information retrieval from unstructured
sources shared on the Web to expand the knowledge base of a system modeled
through an ontology. Important resources for these purposes were represented by
wikis, on which anyone shares his knowledge editing plain text, without constraints
to follow. The first wiki in the world is Wikipedia, that is known as the biggest
free Web encyclopedia.

Result of this phase of work was a semantic annotator, that using the ontology
of the system, keep as input a free text related to the represented domain and
outputted the same text enriched by tags that express the meaning of understood
words.
Annotations are usefull to structure the contents and to include them in the knowl-
edge of the system. System not only enriched its base, but showdown it was able
to understand the text through the semantics of the ontology. In this chapter we
describe our approach to annotate semantically Wikipedia.

A. From Wikipedia to Semantic MediaWiki 108

Our technique can be regarded as an instance of a general framework aimed
to the extraction of semantic information from a document corpus provided that
a structured machine-readable description of the domain dealt with is at disposal,
that is presented in the next paragraph.

A.2 The Role of Wikis in the Semantic Web

Sharing information and exchanging knowledge are the primary goals for popular
wikis. Communities of editors use wikis for their purposes of collaborative data
creation and retrieval on the Web. The success of wikis is mainly due to the wiki-
way and user-friendliness principles. According to the first principle, an editor is
not necessarily an expert, but he can write freely his contents using plain text and
few markup elements (wiki-text); so a wiki system is simple to use and approachable
to all. Moreover, user-friendliness point out the collaborative aspect of the system;
editors cooperate between them to modify, update and lace existed information.

Although these aspects are been widely accepted by the web community, they
lead to a big limitation to external tools aimed to use the wiki information. Data
are not structured and not machine-readable; a computer does not understand
the meaning of the information from a wiki that is useless. A way to obtain
formalized and structured data can be semantic annotation of documents. Such
technique adds textual information to the document via a tagging system. A set of
tags associated to a word is used to specify its semantic meaning. Many attempts
have been made in the semantic community to extract meaning from existing wiki
systems: they are mainly based on documents organization in the wiki, as we’ll
discuss next.

We use the arrangement of a Wikipedia page to set up a hierarchical strategy
aimed to save computational effort. At first, we analyze the TOC of the page
turning it in an OWL fragment to be aligned with the domain ontology. The
alignment enables our approach to devise only a small region in the ontology to
be used to analyze the full text of each section. This phase is the core of our
approach. For each ontology entity involved in a section, a set of rules describes

A. From Wikipedia to Semantic MediaWiki 109

all possible roles of its name if we use it as a word in a sentence dealing with that
class/property. Rules are coded in OWL as suitable properties whose values are
the description of an entity name as a part of speech in Penn Treebank notation.

They represent patterns to be searched for after POS tagging the section’s
text. The final step is the automatic generation of the semantic wiki code to
be published on line. The particular syntax used to write both plain wiki pages
and semantic wiki ones allows also replacing the original Wikipedia page with the
new one where new hyperlinks have been added automatically. This hierarchical
approach is merely applicable to whatever document corpus with a rigid structural
layout. This is not a strong limitation because we use the structure only to reduce
the number of rules to be tested in text processing.

A.3 Wikipedia in Action

In 2001 Jimbo Wales and Larry Sanger created a wiki that would have become
in a few years the most popular on line encyclopedia in the world: Wikipedia.
Wikipedia is an authoring and content management system, which contains thou-
sands of hyperlinked documents written by editors from different countries in more
than two hundred languages as English, German, French and Japanese. Since 2005,
documents in Wikipedia have grown exponentially (Wales (2005)), pointing out the
great participation of authors with different cultures, experiences, and interests.
Nowadays, the encyclopedia contains more than 10 million articles, as reported in
(Giles (2005)).

Wikipedia is based on MediaWiki, available at http://www.mediawiki.org, a free
software which was developed initially by the Wikipedia community for exclusive
use. MediaWiki is now a generalpurpose platform, which is used in several wiki
sites as well. MediaWiki defines an environment where authenticated users can
write contents either creating new pages or updating existing ones, while external
users can search for information and read articles without limitations. The primary
method for entering information into a wiki based on MediaWiki is a wiki-window.
Here, editors write their articles using a simple markup language that in turn is

A. From Wikipedia to Semantic MediaWiki 110

transformed into XHTML pages. Accordingly, the window already provides many
facilities to format pages and to structure documents as the definition of hyperlinks
between two pages. Hyperlinks are fundamental for navigating a wiki: they define
a generic relation between pages but do not specify the kind of such relation. A
hyperlink can be regarded as a some relation in this respect.

MediaWiki uses a rigid internal structure to organize the documents using a
system of namespaces: a namespace is a prefix in the name of the page. In the
case of Wikipedia, articles are categorized through namespaces that distinguish
different kinds of pages according to their aim. Examples of namespace are "User:"
followed by a page name for user homepages, "Help:" for documentation pages, ".
. . talk:" for various kinds of discussion pages, and so on. Editors cannot define
namespaces freely. Indeed, they depend on the configuration settings of Wikipedia.

The idea of Wikipedia is to allow everyone to edit and extend the encyclopedic
content, according to the wiki-way principle. Problems of this principle are syn-
onymy and homonymy in the titles: several different pages for the same subject
may emerge in a decentralized editing process. MediaWiki has a redirect mech-
anism by which a page can be caused to forward all requests directly to another
page. Although the wiki’s language is very simple, and editors are encouraged by
its ease of use to insert novel contents, the wiki-way mode does not directly enforce
any restrictions and there are many ambiguities in the interpretation of informa-
tion by automatic applications. Searching knowledge in Wikipedia means reading
the pages and choosing the documents that satisfy the need of the researcher. An
external automatic tool has not the ability to interpret data correctly as humans
have.

Information in Wikipedia is not processable by a machine and it must be for-
malized suitably to this aim. In recent years semantic technologies community has
been interested to this problem and many attempts have been made to extract se-
mantics from existing wiki sources of unstructured information. A straightforward
approach should be rewriting manually contents following the conventions about
semantic annotation imposed from the Wikipedia Community. Such a technique
requires a very huge effort and has been never considered.

A. From Wikipedia to Semantic MediaWiki 111

A.4 Semantic Wikipedia

The first attempt to give semantics to Wikipedia contents was made by its founders,
which imposed editors to classify their documents using categories. Unlike Medi-
aWiki namespace organization, an editor can create new categories. A Wikipedia
category contains articles about a specific topic: the "Movies Category" includes all
articles about films or movies. Each category may have one or more subcategories
that specialize articles classification. "1960 Movies Category" includes all films in
1960 and "Italian Movies Category" is the set of articles about Italian films; both
are subcategories of "Movies Category". Authors must classify their pages inserting
them in a specific category or subcategory, and each category is associated with
a page by the "Category:" namespace. Category classification is a taxonomical
one, because each subcategory is an element of its super-category. Also articles in
the categories are linked between them, according to the MediaWiki facilities for
structuring pages: two articles are linked if the former refers to the other in its
plain text.

Hyperlinks in the documents weave a net of relations between articles on the
taxonomical category classification, and attempts were made in many works to
extract a semantic structure from such a network, as in Kozlova (2005) or Nastase
and Strube (2008).
The first approach fills an ontology creating classes, instances and relations be-
tween them. Classes are the categories, instances are the articles (an instance for
each article) for the corresponding class/category and relations are the hyperlinks
between articles and categories.
In the second paper, four types of categories are defined: explicit relation cate-
gories, partly explicit relation categories, implicit relation category and class at-
tribute categories. Authors use these category types to identify the dominant
constituent, and to extract relations and classes with their attributes.

All these approaches assume that the semantic meaning of wiki documents
depends only on the category classification and hyperlinks structure, so data are
organized in ontology to be used by external automatic tools. Such approaches
suffer from the inherent non-static nature of wiki articles: the ontology has to be

A. From Wikipedia to Semantic MediaWiki 112

updated repeatedly. Moreover, many information items are not inserted in the
ontology because they are not hyperlinked leading to loss of data.
Other important approaches add further structure to MediaWiki by means of
textual annotation of the wiki’s content. These approaches define a new research
field in the semantic technology leading to Semantic MediaWiki (SMW). SMW
extends the popular MediaWiki engine to build semantic wikis.

A.4.1 Semantic MediaWiki Annotation Rules

SMW is free software acting as an extension of the MediaWiki engine: SMW
registers for specific events or requests, and MediaWiki calls SMW procedures
when needed.
SMW does not overwrite any content created using MediaWiki, so it can be added
to existing wikis without computational load for data relocation. The goal of SMW
is to enrich data with semantics during the insertion of text in the wiki-window
via special tags annotations; it is a novel type of wiki known as semantic wiki. If
Sematic MediaWiki is integrated in an existing wiki, semantics is associated only
to novel contents, and it does not structure existing data. An interesting problem
is to add semantics to existing information.

SMW’s annotation mechanism is based on standard Semantic Web formalisms.
As a consequence, binary properties are the central expressive mechanism. A bi-
nary property links an entity with other one or with a data value. Binary proper-
ties in SMW are implemented adopting a page-centric perspective where properties
augment the page’s contents in a structured way by adding proper tags to repre-
sent them. Semantic MediaWiki has not a standard set of annotation rules. In
our work we used the most widely accepted set of rules that are reported in Völkel
et al. (2006). In the cited work, authors propose integration in Wikipedia to allow
specifying types for relations between articles and for data inside each article in
an easy-to-use manner, using the Semantic MediaWiki engine. In the article an
example shows a semantic interpretation of the Wikipedia page about London city.
We import the same example and the related figures.

Figure A.1 (the figure 3 in that paper) presents a fragment of the source text

A. From Wikipedia to Semantic MediaWiki 113

Figure A.1: Source of page about London city in Wikipedia using MediaWiki
engine.

Figure A.2: Source of page about London city in Wikipedia using Semantic Me-
diaWiki engine.

that describes London city using MediaWiki (traditional Wikipedia). In Medi-
aWiki quotes are used to bold the text between it; double square brackets define
a hyperlink between the page and the other wiki page whose name is inside them,
without specification of the semantic meaning for the link. At the end of the page,
the [[Category:City]] square brackets link the page with the City Category, accord-
ing to namespaces mechanism described above. Semantics is associated to such a
text via the annotation rules that are shown in the example of Figure A.2 (figure
4 in Völkel et al. (2006)).

Markup elements have been extended. In the example the link [[England]] be-
comes [[capital of::England]] to assert that "London" concept has a binary property
called "capital of" with the "England" concept. Also there is an interesting annota-
tion that involves data values that are not hyperlinks, as the population number.
Annotation rules impose using the same markup elements in both cases. To avoid
that a data value is formatted as hyperlink, authors decide that users must first
declare the property and specify its type. In the case of property "population" user
must declare that it has a numerical type. If a property is not declared yet, then

A. From Wikipedia to Semantic MediaWiki 114

SMW assumes to default that its value denotes wiki pages, so that annotations
will become hyperlinks. The resulting page is displayed in Figure A.3 (figure 2 in
Völkel et al. (2006)).

Figure A.3: Semantic MediaWiki page about London city.

A.5 Semantic Annotation Strategy

Our framework for semantic annotation of plain text is a three step hierarchical
approach:

• Document structure analysis to devise structure;

• Paragraph Text analysis through linguistic rules;

• Generation of semantic annotation.

This hierarchical approach is used to have a reduced set of rules to be applied
in full text analysis and to reduce the computational effort. The first step looks
at the document layout and tries to devise a rough list of the main concepts the
document deals with. In this way, we select a limited portion of the OWL domain
ontology to be used in the next step.

A. From Wikipedia to Semantic MediaWiki 115

The second step is the core of the whole framework and it represents the true
semantic information extraction phase. Here, complete binary properties are ex-
tracted from plain text (relation name and property data values). In this approach,
the name of the class and of the relations of the domain ontology is used as a ref-
erence for a suitable set of rules for text analysis that are plugged directly into
the ontology. Rules use the Penn Treebank notation to describe the possible roles
played by the name of the class/relation in a statement dealing with it. Knowledge
about the structure of such sentences is not needed. Such rules are simply patterns
to be searched for when the text has been processed with a POS tagger.
The third step is a mere generation of the annotated text according to a suitable
tagging system. We finalized the general framework to semantic annotation of
Wikipedia pages with the following three-step procedure:

• inferring the semantic meaning of the Wikipedia sections using all the domain
ontology;

• inferring the semantic meaning of the text in a single Wikipedia section using
only the concepts and relations obtained in the first step;

• annotation of contents and rewriting in the online semantic wiki.

A.5.1 Inferring the Semantic Meaning of the Wikipedia
Sections

MediaWiki engine allows organizing the contents of a page in sections and subsec-
tions that could be defined as the traditional paragraphs of a chapter in a book.
The focus of a section is a particular argument that is part of the page’s topic as
the Biography Section in a Person page. Sections are be indexed in a table, that
is a template for the page: the Table of Content (TOC).

Each Wikipedia page has a TOC, which is not imposed from MediaWiki. Most
editors use it to organize their content pages. TOC is a tree structure where the
root is the category of the page and each node is a section. Nodes are organized
as taxonomy according to the section structure. We use the TOC to partition

A. From Wikipedia to Semantic MediaWiki 116

the text to be searched for commonly used sentence patterns. Each section is
processed using only the most appropriate patterns with respect to its title, which
is assumed to be the topic dealt with in the section itself. The TOC provides us
also with information about the way concepts in the domain ontology are treated
in the page.

A suitable crawler extracts the TOC from Wikipedia page and then it’s trans-
formed in OWL fragment (TOC ontology). TOC ontology is then mapped to the
domain ontology to extract relevant concepts that correspond to the page’s sec-
tions. Mapping can be achieved by applying alignment methods like QOM Ehrig
and Staab (2004) or PROMPT Noy and Musen (2003). The base idea of these
methods is the definition of similarity measures, which express how two entities
from different ontology structures are similar. Similarity can be expressed both
in terms of the meaning of the two entities and comparing the tree topology sur-
rounding them.
More formally, an alignment between ontology O and O’ is the quadruple <e, e’,
s, n> where e is an element in O, e’ is an element in O’, s is the relation between
elements that defines the similarity, and n∈[0..1] is the level of confidence of such
relation.

The framework we use to map ontology is FOAM (Framework for Ontology
Alignment and Mapping) Ehrig (2005). FOAM takes two ontology structures as
its inputs and returns a list of concept couples with the corresponding n value.
This number is obtained by iterating a process that computes and aggregates
many similarity measures. The output list by FOAM is filtered according to a
suitable threshold defining the minimum acceptable similarity. At the end of the
alignment process, the system knows which concepts of the domain ontology are
dealt in the page and the semantic sense of each section has been inferred.

A. From Wikipedia to Semantic MediaWiki 117

A.5.2 Inferring the Semantic Meaning of the Text in a sin-
gle Wikipedia Section

For each section, the system can infer semantic information from the text in each
section using the name of the relations in the ontology directly. For each concept
extracted at the end of the first step, it takes the name of object properties (prop-
erties between classes) and data-type properties (relations between classes and
data values). Then the system searches for all these properties in the text directly;
the instances of the relations are inferred through their role in the sentences. As
a consequence, the system must know which part of speech is used to describe
entities of each relation, regardless they are either classes or a data values.

As we will show in the next paragraph, we designed an application that imple-
ments the framework in the Arts domain that is described using OWL. If we want
to know who is the mother of an artist, in the appropriate section we can find
the word mother (which is the name of the relation between Artist and Mother
concepts in the domain ontology) and we can obtain the actual name searching
for a proper name in the same sentences. If we want to know a birth date, we
can search the word birth in the appropriate section and we can infer the date by
searching for a set of possible patterns regarding dates in the rest of the sentence.
This strategy requires the use of a POS tagger to enrich the ontology with all the
roles of an entity name used as a word in the sentence patterns. In our framework
we have used the Stanford NLP POS tagger that returns the phrase structure as
a tree. In turn, the tree can be used to classify the main components according to
the Penn Treebank English POS tag set (Marcus et al. (1993)).

Object and data-type properties of the domain ontology are both annotated
with tag patterns that specify the role of the relation’s entities in the text. In
our framework, the process is iterated to validate the results. In some cases the
system uses the Text Runner Search Engine Banko and Etzioni (2008) to verify
that the triple (entity, relation, entity) is true. Text Runner Search Engine is an
online service that extracts an entity in a relation from open information sources,
given the relation itself and the second entity. It uses a methodology based on the
analysis of the structure of English sentences. We use it only to disambiguate the

A. From Wikipedia to Semantic MediaWiki 118

output of the system and to verify its correctness. However, our system is able to
return more relations than the ones returned by this service.

A.5.3 Automatic Annotation of Wikipedia Page

The last stage is the production of the semantic annotated Wikipedia page to be
published on a semantic wiki. At the end of the two previous phases the system
has discovered in the text a list of instances of the OWL properties that are used
to describe the domain ontology. Moreover, the ontology connects such entities
through properly named relations that can be coded in the resulting semantic
wiki page. The innovation in this work is that such relations are derived indepen-
dently from the original hyperlink structure. In fact, the system extracts semantic
information also from non-hyperlinked text.

Provided that properties that have not been suitably declared in a semantic
wiki default to hyperlinks, the same output code can be reused to replace the
original Wikipedia page adding all the annotations as hyperlinks. In this scenario,
if an editor does not create a connection between two Wikipedia pages that are
related in a conceptual way, our framework allows to create it automatically. In our
framework implementation, a suitable web application interfaces with the online
semantic wiki http://semanticweb.org/ and writes in it the same text of the original
Wikipedia page enriched with the annotations. Detailed architectural design of the
implementation is reported in the description of the application scenario.

A.6 Application Scenario

Figure A.4 shows the architectural view of the proposed framework finalized to
semantic sense extraction from Wikipedia pages. The three stages of our approach
are implemented as follows.

Step one is accomplished by the Crawler component plus the FOAM engine,
the Text Analyzer coupled with a POS tagger are in charge of step two, and the
Semantic Annotator carries out the third step. We implemented the Crawler, the

A. From Wikipedia to Semantic MediaWiki 119

Figure A.4: Architectural design of the framework implementation.

Text Analyzer, and the Semantic Annotator as original components. The Crawler
extracts the contents in a Wikipedia page and it is used to device the TOC.
Relevant concepts to be used as a reference in the second step are obtained by the
FOAM tool via alignment of the TOC ontology and the domain one.

The Text Analyzer searches in the appropriate sections of the Wikipedia page
the names of all the relations that in the domain ontology are linked to concepts
obtained in step one. Also the Text Analyzer matches the Penn Treebank patterns
used to specify the part-of-speech roles played by the entities of the relations. This
component outputs a list of couples formed by the name of the relation and the
name of the inferred entity, as it will be clear later.

Finally, the Semantic Annotator writes the same Wikipedia page enriched with
semantic annotations using the output of the Text Analyzer. In the figure, dot-
ted arrows are data paths, while plain arrows define the use of an internal re-
source/module. We will describe in detail the use of the components mentioned
above by means of a specific application scenario. To test and demonstrate our
methodology we used the Art domain. All concepts in the ontology, their proper-
ties and the relations between them are formalized in an OWL structure.

A. From Wikipedia to Semantic MediaWiki 120

Let’s suppose that we want to semantically annotate the Wikipedia page about
Gustav Klimt, the Austrian symbolist painter. Wikipedia page of the artist is
at http://en.wikipedia.org/wiki/Klimt, that is the input of the framework. The
Crawler component extracts from the page the TOC and formalizes it in the TOC
ontology. TOC ontology contains only classes and subclasses, without object or
data-type properties for them; there is only the is-a property to define the subsec-
tion relation. Next, system invokes FOAM to map the TOC ontology in the art
domain ontology extracting the concepts of the art domain that correspond to the
sections in the table.

As an example, the system infers that concept Life of the ontology corresponds
to the sections "Early life and education" and "Later life and posthumous success"
in the Wikipedia page. In the mapping phase, the system prioritizes the subsec-
tions rather than sections because the TOC is a taxonomical classification, so a
subsection is the super-section too. Now system knows what arguments could be
dealt in the sections of the page, that are the relations linked to the mapped con-
cepts of the domain. For the concept Life an interesting OWL object property is
the following:

<owl:ObjectProperty rdf:ID="father">
<rdfs:range rdf:resource="#Father"/>
<rdfs:domain rdf:resource="#Life"/>
<rdfs:comment="NNP"/>
</owl:ObjectProperty>

Such property will enable us to know who was Klimt’s father. In the fourth
line of the previous OWL source code, a RDF Schema comment specifics the part-
of-speech role played by the co-domain entities of the relation: a singular proper
noun. We plug the role of each entity in the ontology directly, to have the POS
tags at disposal when an object property is selected to be searched in the text.
The use of comments has the advantage to maintain the OWL-DL profile of the
ontology.

Just let’s suppose that in our database we do not have any information about

A. From Wikipedia to Semantic MediaWiki 121

the name of Klimt’s father. The system uses fragments of OWL source code to
infer this information. It searches for the relation name (father) only in the sections
devised in the preceding phase. This technique avoids analyzing the full text of
the page.

In the sub-section "Early life and education" the Text Analyzer searches for all
the possible relations related to concept Life. As regards the Klimt’s father the
following statement is retrieved:

Gustav Klimt was born in Baumgarten, near Vienna, the second of seven chil-
dren, three boys and four girls. All three sons displayed artistic talent early on.
His father, Ernst Klimt, formerly from Bohemia, was a gold engraver.

The Text Analyzer finds father in the text, discards all other sentences and
maintains only the phrase:

His father, Ernst Klimt, formerly from Bohemia, was a gold engraver.

To infer the correct co-domain entity of the relation, the Text Analyzer compo-
nent invokes the POS tagger with the sentence above. The output of the process
is:

His_PRP$ father_NN ,_, Ernst_NNP Klimt_NNP ,_, formerly_RB from_IN
Bohemia_NNP ,_, was_VBD a_DT gold_NN engraver_NN ._.

By using the RDF Schema comment in the OWL father relation, the Text
Analyzer knows that co-domain entity of the father relation must be a proper
noun (a single NNP tag or a sequence of NNP tags) so Ernst Klimt is the name we
were searching for. Text Analyzer outputs a list of couples each of them formed by
the name of a relation and the name of the corresponding inferred instance (father,
Ernst Klimt couple in this case). This list is next used by the Semantic Annotator
to rewrite the same Wikipedia page enriched with semantic annotations according
to semantic annotation rules presented in Völkel et al. (2006). Semantic annotator
uses the name of the relation to add semantics to the correspondent instance’s
name. In the proposed example, it rewrites the sentence as:

His father, [[father::Ernst Klimt]], formerly from Bohemia, was a gold engrave.

Bibliography

Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer, 2nd Edition
(Cooperative Information Systems). The MIT Press, 2 edition, 2008. ISBN
0262012421, 9780262012423.

Michele Banko and Oren Etzioni. The tradeoffs between open and traditional
relation extraction. In Proceedings of ACL-08: HLT, pages 28–36, Columbus,
Ohio, June 2008. Association for Computational Linguistics. URL http://www.
aclweb.org/anthology/P/P08/P08-1004.

J. Batali. The negotiation and acquisition of recursive grammars as a result of
competition among exemplars. In Ted Briscoe, editor, Linguistic Evolution
through Language Acquisition: Formal and Computational Models, chapter 5.
Cambridge University Press, 2002. URL http://www.isrl.uiuc.edu/~amag/
langev/paper/batali02theNegotiation.html.

John Batali. The negotiation and acquisition of recursive grammars as a result of
competition among exemplars. In Linguistic Evolution through Language Acqui-
sition: Formal and Computational Models, pages 111–172. Cambridge University
Press, 1999.

Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Debo-
rah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein.
OWL Web Ontology Language Reference. Technical report, W3C,
http://www.w3.org/TR/owl-ref/, February 2004.

Benjamin K. Bergen and Nancy Chang. Embodied construction grammar in
simulation-based language understanding. Technical report, EDS): CON-

http://www.aclweb.org/anthology/P/P08/P08-1004
http://www.aclweb.org/anthology/P/P08/P08-1004
http://www.isrl.uiuc.edu/~amag/langev/paper/batali02theNegotiation.html
http://www.isrl.uiuc.edu/~amag/langev/paper/batali02theNegotiation.html

BIBLIOGRAPHY 124

STRUCTION GRAMMAR(S): COGNITIVE AND CROSS-LANGUAGE DI-
MENSIONS. JOHN BENJAMIN PUBL CY, 2003.

Joachim De Beule and Luc Steels. Hierarchy in fluid construction gram-
mar. In Furbach U., editor, Proceedings of KI-2005, number 3698 in Lec-
ture Notes in AI, pages 1–15, Berlin, 2005. Springer-Verlag. doi: 10.
1007/11551263_1. URL http://www.isrl.uiuc.edu/~amag/langev/paper/
joachim05hierar_fluid_construc_gramm.html.

Joachim De Beule, Bart De Vylder, and Tony Belpaeme. A cross-situational learn-
ing algorithm for damping homonymy in the guessing game. In Logic and Ma-
chines.

Harold Boley. The rule markup language: Rdf-xml data model, xml schema hi-
erarchy, and xsl transformations. In Oskar Bartenstein, Ulrich Geske, Markus
Hannebauer, and Osama Yoshie, editors, INAP (LNCS Volume), volume 2543
of Lecture Notes in Computer Science, pages 5–22. Springer, 2001. ISBN 3-540-
00680-X.

Dan Brickley and Libby Miller. FOAF Vocabulary Specification 0.97. Names-
pace document, January 2010. URL http://xmlns.com/foaf/spec/20100101.
html.

P. Buitelaar, P. Cimiano, P. Haase, and M. Sintek. Towards Linguistically
Grounded Ontologies. In Lora Aroyo, Paolo Traverso, Fabio Ciravegna, Philipp
Cimiano, Tom Heath, Eero Hyv’onen, Riichiro Mizoguchi, and Eyal Oren and,
editors, Proceedings of the 6th European Semantic Web Conference (ESWC),
pages 111–125. Springer, Berlin, 2009. ISBN 978-3-642-02120-6.

Angelo Cangelosi and Domenico Parisi. Computer simulation: A new scien-
tific approach to the study of language evolution. In Angelo Cangelosi and
Domenico Parisi, editors, Simulating the Evolution of Language, chapter 1,
pages 3–28. Springer Verlag, London, 2002. URL http://www.isrl.uiuc.edu/
~amag/langev/paper/cangelosi01computerSimulation.html.

Philipp Cimiano, Peter Haase, and Jörg Heizmann. ORAKEL: a portable natu-
ral language interface to knowledge bases. Technical report, Institute AIFB,

http://www.isrl.uiuc.edu/~amag/langev/paper/joachim05hierar_fluid_construc_gramm.html
http://www.isrl.uiuc.edu/~amag/langev/paper/joachim05hierar_fluid_construc_gramm.html
http://xmlns.com/foaf/spec/20100101.html
http://xmlns.com/foaf/spec/20100101.html
http://www.isrl.uiuc.edu/~amag/langev/paper/cangelosi01computerSimulation.html
http://www.isrl.uiuc.edu/~amag/langev/paper/cangelosi01computerSimulation.html

BIBLIOGRAPHY 125

University of Karlsruhe, 2007. URL http://www.aifb.uni-karlsruhe.de/
Publikationen/showPublikation?publ_id=1439.

Peter Clark, Phil Harrison, Tom Jenkins, John Thompson, and Rick Wojcik. Ac-
quiring and using world knowledge using a restricted subset of english. In In
FLAIRS 2005, pages 506–511, 2005.

Anne Cregan, Rolf Schwitter, and Thomas Meyer. Sydney owl syntax - towards a
controlled natural language syntax for owl 1.1. In Christine Golbreich, Aditya
Kalyanpur, and Bijan Parsia, editors, OWLED, volume 258 of CEUR Workshop
Proceedings. CEUR-WS.org, 2007.

W. Croft. Syntactic categories and grammatical relations: the cognitive organiza-
tion of information. University of Chicago Press, 1991. ISBN 9780226120904.
URL http://books.google.it/books?id=h1gLdOkH1GgC.

William Croft and Alan D. Cruse. Polysemy: the construal of sense boundaries.
In Cognitive Linguistics, chapter 5, pages 109–140. Cambridge University Press,
2004.

David Crystal. The Cambridge Encyclopedia of Language. Cambridge University
Press, Cambridge, 2. edition, 1998.

Hamish Cunningham, Diana Maynard, Kalina Bontcheva, Valentin Tablan, Niraj
Aswani, Ian Roberts, Genevieve Gorrell, Adam Funk, Angus Roberts, Danica
Damljanovic, Thomas Heitz, Mark A. Greenwood, Horacio Saggion, Johann
Petrak, Yaoyong Li, and Wim Peters. Text Processing with GATE (Version 6).
2011. ISBN 978-0956599315. URL http://tinyurl.com/gatebook.

Danica Damljanovic, Milan Agatonovic, and Hamish Cunningham. FREyA: an
Interactive Way of Querying Linked Data using Natural Language. In Pro-
ceedings of 1st Workshop on Question Answering over Linked Data (QALD-1),
Collocated with the 8th Extended Semantic Web Conference (ESWC 2011), Her-
aklion, Greece, June 2011. URL http://www.sc.cit-ec.uni-bielefeld.de/
sites/www.sc.cit-ec.uni-bielefeld.de/files/proceedings.pdf.

http://www.aifb.uni-karlsruhe.de/Publikationen/showPublikation?publ_id=1439
http://www.aifb.uni-karlsruhe.de/Publikationen/showPublikation?publ_id=1439
http://books.google.it/books?id=h1gLdOkH1GgC
http://tinyurl.com/gatebook
http://www.sc.cit-ec.uni-bielefeld.de/sites/www.sc.cit-ec.uni-bielefeld.de/files/proceedings.pdf
http://www.sc.cit-ec.uni-bielefeld.de/sites/www.sc.cit-ec.uni-bielefeld.de/files/proceedings.pdf

BIBLIOGRAPHY 126

Marc Ehrig. Y.: Foam - framework for ontology alignment and mapping; results of
the ontology alignment initiative. In Proceedings of the Workshop on Integrating
Ontologies. Volume 156., CEUR-WS.org (2005) 72-76, pages 72–76, 2005.

Marc Ehrig and Steffen Staab. Qom - quick ontology mapping. In Sheila A.
McIlraith, Dimitris Plexousakis, and Frank van Harmelen, editors, Interna-
tional Semantic Web Conference, volume 3298 of Lecture Notes in Computer
Science, pages 683–697. Springer, 2004. ISBN 3-540-23798-4. URL http:
//dblp.uni-trier.de/db/conf/semweb/iswc2004.html#EhrigS04.

Christiane Fellbaum, editor. WordNet An Electronic Lexical Database. The MIT
Press, Cambridge, MA ; London, May 1998. ISBN 978-0-262-06197-1. URL
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=8106.

Charles Fillmore, Paul Kay, and Catherine O’Connor. Regularity and idiomaticity
in grammatical constructions: The case of let alone. Language, 64:501–538, 1988.

Charles J. Fillmore. Syntactic intrusions and the notion of grammatical construc-
tion. In Mary Niepokuj, Mary VanClay, Vassiliki Nikiforidou, and Deborah
Feder, editors, Proceedings of the Eleventh Annual Meeting of the Berkeley Lin-
guistics Society, University of California, Berkeley, 1985. Berkeley Linguistics
Society.

Jenny Rose Finkel and Christopher D. Manning. Joint parsing and named entity
recognition. In Proceedings of the North American Association of Computational
Linguistics (NAACL 2009), 2009. URL pubs/joint-parse-ner.pdf.

Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating
non-local information into information extraction systems by gibbs sampling. In
Proceedings of the 43rd Annual Meeting on Association for Computational Lin-
guistics, ACL ’05, pages 363–370, Stroudsburg, PA, USA, 2005. Association for
Computational Linguistics. doi: http://dx.doi.org/10.3115/1219840.1219885.
URL http://dx.doi.org/10.3115/1219840.1219885.

Günther Fliedl, Christian Kop, and Jürgen Vöhringer. Guideline based evaluation
and verbalization of owl class and property labels. Data Knowl. Eng., 69:331–

http://dblp.uni-trier.de/db/conf/semweb/iswc2004.html#EhrigS04
http://dblp.uni-trier.de/db/conf/semweb/iswc2004.html#EhrigS04
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=8106
pubs/joint-parse-ner.pdf
http://dx.doi.org/10.3115/1219840.1219885

BIBLIOGRAPHY 127

342, April 2010. ISSN 0169-023X. doi: http://dx.doi.org/10.1016/j.datak.2009.
08.004. URL http://dx.doi.org/10.1016/j.datak.2009.08.004.

Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Attempto Controlled En-
glish for Knowledge Representation. In Cristina Baroglio, Piero A. Bonatti, Jan
Małuszyński, Massimo Marchiori, Axel Polleres, and Sebastian Schaffert, edi-
tors, Reasoning Web, Fourth International Summer School 2008, number 5224
in Lecture Notes in Computer Science, pages 104–124. Springer, 2008.

Jim Giles. Internet encyclopaedias go head to head. Nature, 438(7070):900–901,
2005. ISSN 0028-0836. URL http://dx.doi.org/10.1038/438900a.

A. E. Goldberg. Constructions: A construction grammar approach to argument
structure. University of Chicago Press, Chicago, 1995. URL http://www.isrl.
uiuc.edu/~amag/langev/paper/goldberg95constructionsA.html.

Adele E Goldberg. The nature of generalization in language adele e. goldberg.
The nature of generalization in language, (Goldberg):1–30, 2006. URL http:
//lingo.stanford.edu/sag/papers/ag09.pdf.

Adele E Goldberg and Devin Casenhiser. Learning Argument Structure Construc-
tions, pages 185–204 ST – Learning Argument Structure Construc. Center for
the study of Language and Information, 2006.

R. Guha and R. McCool. Tap: An semantic web test-bed. Web Semantics: Science,
Services and Agents on the World Wide Web, 1(1), 2011. ISSN 1570-8268. URL
http://www.websemanticsjournal.org/index.php/ps/article/view/28.

T. Hashimoto and T. Ikegami. Emergence of net-grammar in com-
municating agents. Biosystems, 38(1):1–14, 1996. doi: 10.1016/
0303-2647(95)01563-9. URL http://www.isrl.uiuc.edu/~amag/langev/
paper/hashimoto96emergenceOf.html.

Daniel Hewlett, Aditya Kalyanpur, Vladimir Kolovski, and Christian Halaschek-
wiener. Effective nl paraphrasing of ontologies on the semantic web (technical
report. Technical report.

http://dx.doi.org/10.1016/j.datak.2009.08.004
http://dx.doi.org/10.1038/438900a
http://www.isrl.uiuc.edu/~amag/langev/paper/goldberg95constructionsA.html
http://www.isrl.uiuc.edu/~amag/langev/paper/goldberg95constructionsA.html
http://lingo.stanford.edu/sag/papers/ag09.pdf
http://lingo.stanford.edu/sag/papers/ag09.pdf
http://www.websemanticsjournal.org/index.php/ps/article/view/28
http://www.isrl.uiuc.edu/~amag/langev/paper/hashimoto96emergenceOf.html
http://www.isrl.uiuc.edu/~amag/langev/paper/hashimoto96emergenceOf.html

BIBLIOGRAPHY 128

Willem-Olaf Huijsen. Controlled language - an introduction.

Carlos A. Hurtado, Alexandra Poulovassilis, and Peter T. Wood. Rank-
ing approximate answers to semantic web queries. In Proceedings of the
6th European Semantic Web Conference on The Semantic Web: Research
and Applications, ESWC 2009 Heraklion, pages 263–277, Berlin, Heidel-
berg, 2009. Springer-Verlag. ISBN 978-3-642-02120-6. doi: http://dx.
doi.org/10.1007/978-3-642-02121-3_22. URL http://dx.doi.org/10.1007/
978-3-642-02121-3_22.

Eero Hyvönen, Eetu Mäkelä, Mirva Salminen, Arttu Valo, Kim Viljanen, Samppa
Saarela, Miikka Junnila, and Suvi Kettula. Museumfinland – finnish museums
on the semantic web. Journal of Web Semantics, 3(2):25, 2005.

Thomas Wasow Ivan A. Sag and Emily M. Bender. Syntactic Theory: A Formal
Introduction, 2nd edition. CSLI, 2003.

Ray S. Jackendoff. Semantic Structures. Cambridge: MIT Press, 1990.

Mustafa Jarrar, C. Maria, and Keet Paolo Dongilli. Multilingual verbalization of
orm conceptual models and axiomatized ontologies. Technical report, 2006.

Kaarel Kaljurand. Attempto Controlled English as a Semantic Web Language. PhD
thesis, Faculty of Mathematics and Computer Science, University of Tartu, 2007.

Esther Kaufmann and Abraham Bernstein. How useful are natural language in-
terfaces to the semantic web for casual end-users? In ISWC/ASWC, pages
281–294, 2007.

Paul Kay and Charles J. Fillmore. Grammatical constructions and linguistic gen-
eralizations: The What’s X Doing Y? construction. Language, 75(1):1–33, 1999.

R. I. Kittredge. Sublanguages and controlled languages.

Holger Knublauch, Ray W. Fergerson, Natalya F. Noy, and Mark A. Musen. The
protégé owl plugin: An open development environment for semantic web appli-
cations. pages 229–243. Springer, 2004.

http://dx.doi.org/10.1007/978-3-642-02121-3_22
http://dx.doi.org/10.1007/978-3-642-02121-3_22

BIBLIOGRAPHY 129

Natalia Kozlova. Automatic Ontology Extraction for Document Classification. PhD
thesis, Saarland University, 2005.

Markus Krötzsch, Denny Vrandečić, and Max Völkel. Semantic MediaWiki. In
Isabel Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel Schwabe, Peter
Mika, Mike Uschold, and Lora Aroyo, editors, The Semantic Web - ISWC 2006,
volume 4273 of Lecture Notes in Computer Science, chapter 68, pages 935–942.
Springer Berlin / Heidelberg, Berlin, Heidelberg, 2006. ISBN 978-3-540-49029-
6. doi: 10.1007/11926078_68. URL http://dx.doi.org/10.1007/11926078_
68.

G Lakoff. The invariance hypothesis: is abstract reason based on image-schemas?
Cognitive Linguistics, 1(1):39–74, 1990.

Ronald W. Langacker. Grammar and Conceptualization. Walter De
Gruyter, 1999. URL http://www.isrl.uiuc.edu/~amag/langev/paper/
langacker99grammarAnd.html. Cognitive Linguistics Research, 14.

Ronald W. Langacker. Concept, Image, and Symbol: the Cognitive Basis of Gram-
mar, volume 1 of Cognitive Linguistic Research. Walter de Gruyter, second
edition, December 2002. ISBN 3110172801. URL http://www.amazon.co.uk/
exec/obidos/ASIN/3110172801/citeulike00-21.

Vanessa Lopez, Victoria Uren, Enrico Motta, and Michele Pasin. Aqualog: An
ontology-driven question answering system for organizational semantic intranets.
Web Semantics: Science, Services and Agents on the World Wide Web, 5(2),
2011. ISSN 1570-8268. URL http://www.websemanticsjournal.org/index.
php/ps/article/view/113.

Frank Manola and Eric Miller. RDF primer. W3C recommendation,
W3C, February 2004. URL http://www.w3.org/TR/rdf-primer. Pub-
lished online on February 10th, 2004 at http://www.w3.org/TR/2004/
REC-rdf-primer-20040210/.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Build-
ing a large annotated corpus of english: the penn treebank. Comput. Lin-

http://dx.doi.org/10.1007/11926078_68
http://dx.doi.org/10.1007/11926078_68
http://www.isrl.uiuc.edu/~amag/langev/paper/langacker99grammarAnd.html
http://www.isrl.uiuc.edu/~amag/langev/paper/langacker99grammarAnd.html
http://www.amazon.co.uk/exec/obidos/ASIN/3110172801/citeulike00-21
http://www.amazon.co.uk/exec/obidos/ASIN/3110172801/citeulike00-21
http://www.websemanticsjournal.org/index.php/ps/article/view/113
http://www.websemanticsjournal.org/index.php/ps/article/view/113
http://www.w3.org/TR/rdf-primer
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

BIBLIOGRAPHY 130

guist., 19:313–330, June 1993. ISSN 0891-2017. URL http://portal.acm.
org/citation.cfm?id=972470.972475.

Paul Martin, Douglas E. Appelt, Barbara J. Grosz, and Fernando Pereira. Team:
an experimental transportable natural-language interface. In Proceedings of 1986
ACM Fall joint computer conference, ACM ’86, pages 260–267, Los Alamitos,
CA, USA, 1986. IEEE Computer Society Press. ISBN 0-8186-4743-4. URL
http://dl.acm.org/citation.cfm?id=324493.324576.

B McBride. Jena: a semantic web toolkit, 2002. URL http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=1067737.

James W. Minett and William S.-Y. Wang, editors. Language Acquisition, Change
and Emergence: Essays in Evolutionary Linguistics. City University of Hong
Kong Press, July 2005. URL http://www.isrl.uiuc.edu/~amag/langev/
paper/minett_wang2004editedBook.html.

V. Nastase and M. Strube. Decoding wikipedia categories for knowledge acqui-
sition. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence,
Chicago, 2008.

Natalya F. Noy and Mark A. Musen. The prompt suite: Interactive tools for ontol-
ogy merging and mapping. International Journal of Human-Computer Studies,
59(6)(6):983–1024, 2003.

Eric Nyberg and Teruko Mitamura. The kantoo machine translation environment.
In AMTA, pages 192–195, 2000.

Emanuele Pianta, Luisa Bentivogli, and Christian Girardi. Multiwordnet: develop-
ing an aligned multilingual database. In Proceedings of the First International
Conference on Global WordNet, January 2002. URL http://multiwordnet.
fbk.eu/paper/MWN-India-published.pdf.

Roberto Pirrone, Vincenzo Cannella, Orazio Gambino, Arianna Pipitone, and
Giuseppe Russo. Wikiart: An ontology-based information retrieval system for
arts. In ISDA’09, pages 913–918, 2009.

http://portal.acm.org/citation.cfm?id=972470.972475
http://portal.acm.org/citation.cfm?id=972470.972475
http://dl.acm.org/citation.cfm?id=324493.324576
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1067737
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1067737
http://www.isrl.uiuc.edu/~amag/langev/paper/minett_wang2004editedBook.html
http://www.isrl.uiuc.edu/~amag/langev/paper/minett_wang2004editedBook.html
http://multiwordnet.fbk.eu/paper/MWN-India-published.pdf
http://multiwordnet.fbk.eu/paper/MWN-India-published.pdf

BIBLIOGRAPHY 131

Carl Pollard. Lectures on the foundations of Hpsg. Ohio State University, 1997.

Carl Pollard and Ivan Sag. Head-Driven Phrase Structure Grammar. Chicago
University Press, Chicago, Illinois, 1994.

Borislav Popov, Atanas Kiryakov, Angel Kirilov, Dimitar Manov, Damyan
Ognyanoff, and Miroslav Goranov. Kim semantic annotation platform. Jour-
nal of Natural Language Engineering, 10(3-4):375–392, September 2004. URL
http://www.ontotext.com/publications/KIM_SAP_ISWC168.pdf.

Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for
RDF. Technical report, 1 2008. URL http://www.w3.org/TR/2008/
REC-rdf-sparql-query-20080115/.

Josef Ruppenhofer, Michael Ellsworth, Miriam R. L. Petruck, Christopher R. John-
son, and Jan Scheffczyk. FrameNet II: Extended theory and practice. Technical
report, ICSI, 2005. URL http://framenet.icsi.berkeley.edu/book/book.
pdf.

Giuseppe Russo, Roberto Pirrone, and Arianna Pipitone. Acquisition of new
knowledge in tutorj, 2009. URL http://aaai.org/ocs/index.php/FSS/
FSS09/paper/view/939.

Rolf Schwitter and Marc Tilbrook. Meaningful web annotations for humans and
machines using controlled natural language. Expert Systems, 25(3):253–267,
2008.

Andrew D. M. Smith. Evolving Communication through the Inference of Meaning.
PhD thesis, Theoretical and Applied Linguistics, School of Philosophy, Psychol-
ogy and Language Sciences, The University of Edinburgh, 2003. URL http:
//www.isrl.uiuc.edu/~amag/langev/paper/admsmith03phdthesis.html.

Kenny Smith. Cognitive linguistics and connectionist models of language ac-
quisition. Master’s thesis, Department of Linguistics, University of Ed-
inburgh, 1999. URL http://www.isrl.uiuc.edu/~amag/langev/paper/
smith99cognitiveLinguistics.html.

http://www.ontotext.com/publications/KIM_SAP_ISWC168.pdf
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://framenet.icsi.berkeley.edu/book/book.pdf
http://framenet.icsi.berkeley.edu/book/book.pdf
http://aaai.org/ocs/index.php/FSS/FSS09/paper/view/939
http://aaai.org/ocs/index.php/FSS/FSS09/paper/view/939
http://www.isrl.uiuc.edu/~amag/langev/paper/admsmith03phdthesis.html
http://www.isrl.uiuc.edu/~amag/langev/paper/admsmith03phdthesis.html
http://www.isrl.uiuc.edu/~amag/langev/paper/smith99cognitiveLinguistics.html
http://www.isrl.uiuc.edu/~amag/langev/paper/smith99cognitiveLinguistics.html

BIBLIOGRAPHY 132

Valentin I. Spitkovsky, Hiyan Alshawi, Angel X. Chang, and Daniel Jurafsky. Un-
supervised dependency parsing without gold part-of-speech tags. In Proceedings
of the 2011 Conference on Empirical Methods in Natural Language Processing
(EMNLP 2011), 2011. URL pubs/goldtags.pdf.

Guy L. Steele, Jr. Common LISP: the language (2nd ed.). Digital Press, Newton,
MA, USA, 1990. ISBN 1-55558-041-6.

L. Steels. The origins of syntax in visually grounded robotic agents. Artificial In-
telligence, 103(1-2):133–156, 1998. doi: 10.1016/S0004-3702(98)00066-6. URL
http://www.isrl.uiuc.edu/~amag/langev/paper/steels98theOrigins2.
html.

L. Steels. The emergence and evolution of linguistic structure: From lexical
to grammatical communication systems. Connection Science, 17(3-4):213–230,
Sep-Dec 2005.

Luc Steels, editor. Design Patterns in Fluid Construction Grammar. John Ben-
jamins, Amsterdam, 2011.

Luc Steels and Joachim De Beule. Unify and merge in fluid construction grammar.
In P. Vogt and et al., editors, Symbol Grounding and Beyond: Proceedings of
the Third International Workshop on the Emergence and Evolution of Linguistic
Communication, Lecture Notes in Computer Science, pages 197–223. Springer,
2006. doi: 10.1007/11880172_16. URL http://www.isrl.uiuc.edu/~amag/
langev/paper/Steels06Unify_merge_FCG.html.

Luc Steels and Remi van Trijp. How to make construction grammars fluid and
robust. In Luc Steels, editor, Design Patterns in Fluid Construction Grammar,
pages 301–330. John Benjamins, Amsterdam, 2011.

Thanh Tran, Tobias Mathäß, and Peter Haase. Usability of keyword-driven
schema-agnostic search. In Lora Aroyo, Grigoris Antoniou, Eero Hyvönen,
Annette ten Teije, Heiner Stuckenschmidt, Liliana Cabral, and Tania Tudo-
rache, editors, ESWC (2), volume 6089 of Lecture Notes in Computer Sci-
ence, pages 349–364. Springer, 2010. ISBN 978-3-642-13488-3. URL http:
//dblp.uni-trier.de/db/conf/esws/eswc2010-2.html#TranMH10.

pubs/goldtags.pdf
http://www.isrl.uiuc.edu/~amag/langev/paper/steels98theOrigins2.html
http://www.isrl.uiuc.edu/~amag/langev/paper/steels98theOrigins2.html
http://www.isrl.uiuc.edu/~amag/langev/paper/Steels06Unify_merge_FCG.html
http://www.isrl.uiuc.edu/~amag/langev/paper/Steels06Unify_merge_FCG.html
http://dblp.uni-trier.de/db/conf/esws/eswc2010-2.html#TranMH10
http://dblp.uni-trier.de/db/conf/esws/eswc2010-2.html#TranMH10

BIBLIOGRAPHY 133

Max Völkel, Markus Krötzsch, Denny Vrandecic, Heiko Haller, and Rudi Studer.
Semantic wikipedia. In WWW ’06: Proceedings of the 15th international
conference on World Wide Web, pages 585–594, New York, NY, USA, 2006.
ACM. ISBN 1-59593-323-9. doi: 10.1145/1135777.1135863. URL http:
//portal.acm.org/citation.cfm?id=1135863.

Jimmy Wales. Wikipedia in the free culture revolution. In Companion to the 20th
annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, OOPSLA ’05, pages 5–5, New York, NY, USA,
2005. ACM. ISBN 1-59593-193-7. doi: http://doi.acm.org/10.1145/1094855.
1094859. URL http://doi.acm.org/10.1145/1094855.1094859.

Chong Wang, Miao Xiong, Qi Zhou, and Yong Yu. PANTO: a portable natural
language interface to ontologies. In The Semantic Web: Research and Applica-
tions, 4th European Semantic Web Conference, ESWC 2007, Innsbruck, Austria,
pages 473–487. 2007. doi: 10.1007/978-3-540-72667-8_34.

Colin White and Rolf Schwitter. An update on peng light. In Proceedings of
the Australasian Language Technology Association Workshop 2009, pages 80–88,
Sydney, Australia, December 2009. URL http://www.aclweb.org/anthology/
U09-1011.

http://portal.acm.org/citation.cfm?id=1135863
http://portal.acm.org/citation.cfm?id=1135863
http://doi.acm.org/10.1145/1094855.1094859
http://www.aclweb.org/anthology/U09-1011
http://www.aclweb.org/anthology/U09-1011

	Abstract
	Acknowledgements
	Introduction
	Motivations
	Challenges and Solutions
	Logbook of Contributes
	Summary

	State of the Art
	Introduction
	The Ontology Verbalization Languages
	Controlled Natural Languages
	CPL
	CLP for Semantic Web

	Flexible Grammars vs Controlled ones
	Flexible Grammar Settings

	Other Ways for Interfacing to Ontology
	Visual Ontology Browser
	Natural Language Interfaces

	Construction Grammar and Fluidity
	Introduction
	Construction Grammar
	Linguistic Requirements
	Generative Grammar vs Construction Grammar

	Fluid Construction Grammar
	FCG Linguistic Feautures
	Feauture Structures
	FCG Template
	Unification and Merging
	The J-operator and others

	Model Description
	Introduction
	The Ontology Model
	Statements, Topics and Scenes
	Building Topics from OWL

	Defining Semantic Categories
	Defining Syntactic Categories
	Constructions
	Lexical Constructions
	Grammatical Constructions

	Modeling the Process
	From triples to constructions, an example

	Some Instruments and Architecture
	Introduction
	FrameNet
	FrameNet Structure

	WordNet
	WordNet Types
	WordNet Relationships
	Noun, Hypernyms and Hyponyms
	Noun, Holonyms and Meronyms

	System Architecture

	Main Experiments
	Introduction
	Baseline Experiment 1
	Baseline Experiment 2

	Conclusions
	From Wikipedia to Semantic MediaWiki
	Introduction
	The Role of Wikis in the Semantic Web
	Wikipedia in Action
	Semantic Wikipedia
	Semantic MediaWiki Annotation Rules

	Semantic Annotation Strategy
	Inferring the Semantic Meaning of the Wikipedia Sections
	Inferring the Semantic Meaning of the Text in a single Wikipedia Section
	Automatic Annotation of Wikipedia Page

	Application Scenario

	Bibliography

