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Today, in digital era, digital imaging is rapidly growing. It is going to become an 

essential medium to retrieve, display and manipulate information. Digital 

imaging include Computer Vision, Image Processing, Computer Graphics and 

Visualization.  

A picture or an image can be described from different perspectives. High-level 

description refers to "top-level" aspect, overall systemic features, it is more 

abstracted and is typically more concerned with the system as a whole, and its 

goals. High-level description of the image often corresponds with a semantic 

description of the image content. Face, object, text, are examples of high level 

features of the image. 

Low-level analysis describes individual components, detail rather than overview, 

rudimentary functions rather than complex overall ones, and it is typically more 

concerned with individual components within the system and how they operate. 

Color, texture, edge are examples of low level features of the image. 

An important approach to image region description is to quantify its texture 

content. Properties such as smoothness, regularity and coarseness are measured 

by this descriptor. Texture indicates visual pattern in real scene (woods surface, 

wall, waves, ecc.) and synthetic scene. Local Keypoints and the associated local 

features recently attracted attention for their capability of characterizing salient 

regions of the image. The neighborhood of local keypoints is rich of contents, for 

this reason these are usually detected in texture regions. 

This PhD thesis presents advanced image inspection techniques based on texture 

and local keypoint analysis. The arguments treated in this thesis are organized in 

a growing level of abstraction. 

The first two chapters give an overview of texture and local keypoints analysis 

and description. The third chapter presents the argument of texture scale 

Abstract 
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detection and it includes a new technique for texture scale detection. The fourth 

chapter shows a new technique for visual saliency based on local keypoints 

distribution. The fifth chapter deals with image forensics argument and it 

presents three techniques for a specific image forensics task. 
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1. TEXTURE ANALYSIS 

 

 

 

 

1.1. Introduction 

 

Texture is a difficult concept to represent, it gives a look measure for visual 

patterns in images. The identification of specific textures in an image is achieved 

primarily by modeling texture as a two-dimensional gray level variation. The 

relative brightness of pairs of pixels is computed such that degree of contrast, 

regularity, coarseness and directionality may be estimated [1]. However, the 

problem is in identifying patterns of co-pixel variation and associating them with 

particular classes of textures such as silky, or rough. 

In image processing and computer vision literature many methods and 

algorithms deal with image features extraction, some of these are based on 

objects boundaries, some are based on color informations, some methods are 

based on texture features analysis. The content of an image could be considered 

as a group of spatial objects spatial entities, such as surfaces, edges, lines and 

points, with spatial relationships ( adjacency, orientation, ecc.). It is very 

important to analyze the picture regions for the image content description.  

An important approach to image region description is to quantify its texture 

content. Texture analysis methods in the state of the art give no formal definition 

of texture. Properties such as smoothness, regularity and coarseness are 

measured by this descriptor (texture). Visual texture is easy to recognize but it is 

very difficult to define. In computer vision and image processing literature a lot 

of texture definitions , Coggins [2] compiled a catalogue of this definitions. Some 

examples are given from [3]: 
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 “We may regard texture as what constitutes a macroscopic region. Its 

structure is simply attributed to the ripetitive patterns in which elements 

or primitives are arranged according to a placement rule.” [4] 

 

 “A region in an image has a constant texture if a set of a local statistics or 

other local properties of the picture function are constant, slowly varying, 

or approximately periodic.” [5] 

 

 “The image texture we consider is nonfigurative and cellular… An image 

texture is descrive by the number and types of its (tonal) primitives and 

the spatial organization or layout of its (tonal) primitive. A fundamental 

characteristic of texture: it cannot be analyzed without a frame of 

reference of tonal primitive being state or implied. For any smooth gray-

tone surface, there exists a scale such that when the surface is examined, 

it has no texture. Then as resolution increases, it takes on a fine texture 

then a coarse texture.” [6] 

 

 “Texture is defined for our purposes a san attribute of a field having no 

components that appear enumerable. The phase relations between the 

components are thus not apparent. Nor should the field contain an 

obvious gradient. The intent of this definition is to direct attention of the 

observer to the global properties of the display – i.d., its overall 

“coarseness”,  “bumpiness”, or “fitness”. Phisically, nonenumerable 

(aperiodic) patterns are generated by stochastic as opposed to 

deterministic processes. Perceptually, however, the set of all patterns 

without obvious enumerabl components will include many deterministic 

(and even periodic) textures. ”[7] 
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 “Texture is an apparently paradoxical notion. On the one hand, it is 

commonly used in the early processing of visual information, especially 

for pratical classification purposes. On the other hand, no one has 

succeded in producing  a commonly accepted definition of texture. The 

resolution of this, we feel, will depend on a richer, more developed model 

for early visual information processing, a central aspect of wich will be 

representational systems at many different levels of abstraction. These 

levels will most probably include actual instensities at the bottom and will 

progress through edge and orientation descriptors to surface, and 

perhaps volumetric descriptors. Given these multi-level structures, it 

seems clear that they should be included in the definition of, and in the 

computation of, texture descriptors.” [8] 

 

 “The notion of texture appears to depend upon three ingredients: (i) some 

local ‘order’ is repeated over a region which is large in comparison to the 

order’s size, (ii) the order consists in the nonrandom arrangement of 

elementary parts, and (iii) the parts are roughly uniform entities having 

approximately the same dimensions everywhere within the textured 

region.” [9] 

 

As seen above, Scientific Literarture provides many texture definitions, it 

depends upon the particolar kind of applications and upon the motivation. 

Texture analysis is an important and useful area of study in computer vision and 

image processing, most natural surface in real scene exhibit texture. A lot of real 

images consist of many regions, each of which is made up of different texture 

tokens, the figure-ground separation, for example, is a very interesting issue for 

computer vision community. Texture can be also defined as a function of the 

spatial variation in pixel intensities (gray values). Based on textural properties, a 

variety of materials weave can be detected, a few of examples is reported in 

fig.1,2. 
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a) 

 

b) 

 

c) 

 

d) 

Fig. 1  Four examples of texture patterns on real surfaces. a) biscuit b) wood surface; c) 

bricks; d) windows 

 

a) 

 

b) 

Fig. 2  Two examples of texture patterns on real surfaces. a) prison window b) waves; 
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 Images of real objects often do not exhibit uniform intensities regions. Visual 

texture is such as the repeated pattern present in wooden surface 

(Fig.1b).Texture features are also employed for image rapresentation and widely 

used for comparing images. 

In this chapter an overview of texture analysis and description approaches is 

given. 
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1.2. Texture and Visual Perception 

 

Most natural surfaces exhibit texture and a sucessfull vision system must be able 

to deal with textured world surrounding it. The psychophysic aspect of texture 

perception is very important: the detection of a tiger among the foliage is a 

perceptual task that carries life and death consequences for someone trying to 

survive in the forest. In psychophysic studies of texture perception the 

performance of various texture algorithms is evaluated against the performance 

of the human visual system doing the same task. The image in fig  consists of two 

images, each of them is made up of different texture tokens. The immediate 

perception of the image does not result in the perception of two different 

textured regions; instead only one uniformly textured region is perceived.  

 

Fig. 3  A pair of no preattentively discriminable textures. The figure is from []. Texture 

pairs have identical second order statistics. 

 

Julesz has studied texture perception extensively in the context of texture 

discrimination [10] [11] [12]. Julesz dealt with texture discrimination problem, 

more particulary he focused his attention on the discrimination of texture pairs 

showing similar brightness, contrast, color. Julesz particularly studied first and 

second order spatial statistics. First order can be computed from the histogram 

of pixel intensities in the image. This depend only on individual pixel values and 

not on the interaction or co-occurrence of neighboring pixel values. Second order 
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statistic is defined as the likelihood of observing a pair of gray values occurring 

at the endpoints of a dipole of random length placed in the image at a random 

location and orientation.  

Julesz presupposed that two textures are not preattentively discriminable if their 

second-order statistics are identical, in Fig.3 a pair of textured regions whose 

second-order statistics are identical.  

Julesz, in "theory of textons" [13] states that that textons are ``the putative units 

of pre-attentive human texture perception'', related to texture's local features, 

such as edges, line ends, blobs, etc. Julesz observed that human texture 

discrimination could be modelled by first-order density of such textons. 

Researches show that human visual system performs local spatial frequency 

analysis on retinal images which could be simulated by a computational model 

using a filter bank [14] [15]. This theory has motivated mathematic models of 

filter-based human texture perception. Bergen [16] suggests that a texture can 

be decomposed into a series of sub-band images using a bank of linear filters at 

different scales and orientations. Each sub-band image is related to certain 

texture features. Therefore, a texture is characterised by an empirical 

distribution of the magnitude of filter responses and therefore similarity metrics, 

e.g., distance between distributions, could be derived for discriminating textures.  

As a whole, visual texture perception is an important subject area in vision 

science. A variety of theories have been developed to understand the 

mechanisms about human texture perception. Texture research in neuroscience 

and psychophysics has greatly influenced the counterpart in computer vision. 

The Julesz Theory, inspired the statistical approach to texture analysis which 

characterises a texture by image statistical features. The texton theory led to a 

structural approach that extracts texture primitives as local features for texture 

description. The filter-bank model has also been introduced into computational 

texture modelling, resulting in methods that decompose a texture using filters 

and extend texture analysis into the frequency domain.  
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1.3. Texture Classification 

 

Texture indicates visual patterns in real and synthetic scenes. In image 

processing there are different kinds of textures, from stochastic to regular 

(regular, near-regular, irregular, near stochastic, stochastic). Due to complexity 

and diversity of natural textures, textures analysis, texture description and 

texture synthesis are very challenging tasks. In image processing literature there 

are several approaches for texture inspection, including statistical approaches of 

autocorrelation function, optical transforms, digital transforms, gray tone co-

occurrence, run lengths, and autoregressive models [6]. Structural texture 

analysis focuses primarily on identifying periodicity in texture or identifying the 

placement of texels (in this paper we use the words "texel" and "texton" as 

synonyms). Texton has not a precise mathematical definition, although in 1981 

Julesz [13] defined it as the "putative unit of pre-attentive human texture 

perception" (qualitative definition). In our method we consider a texel as "basic 

repetitive element of texture pattern". In terms of periodicity and regularity of 

the structure of texture elements there are 5 kind of textures: regular, near 

regular, irregular, near stochastic and stochastic.  

• Regular textures are simply periodic patterns where the intensity ofcolor and 

the shape of all texture elements are repeated in equalintervals; 

• Near Regular textures are a statistical distortion of a regular pattern; 

• Irregular textures present deformation fields from regular patterns; 

• Near Stochastic and Stochastic textures show typically dots and shapes 

randomly scattered over all the image.  

Many scenes in real world do not have a regular structure but a near regular one 

(buildings, wallpapers, floors, tiles, windows, fabric, pottery and decorative arts, 

animal fur, gait patterns, feathers, leaves, waves of the ocean, and patterns of 

sand dunes), so for natural scenes the problem is to detect the scale, and to 

extract the texel, also in case of a near regular periodicity. Texture scale value 

can be used in many image processing applications such as image segmentation, 
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texture description, Content Based Image Retrieval and texture synthesis. 

Texture scale detection is not a young research field in image processing, but 

today it remains one of more challenging issue.  

The following properties play an important role in describing texture: 

uniformity, density, coarseness, roughness, regularity, linearity, directionality, 

direction, frequency, phase, scale. Some of these properties are not independent.  
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1.4. Texture Analysis Approaches: 

An important approach to region description is to quantify its texture content. 

Texture descriptor provides measures of properties such as smoothness, 

coarseness, regularity, linearity, directionality, direction, frequency, phase, scale. 

The principal approaches [17] used in image processing to describe texture are: 

Statistical, Structural, Spectral and Model Based  

 

1.4.1 Statistical Approaches 

The statistical approaches extract, what so called,texture feature descriptors 

based on region histograms their extensions and their moments. These 

descriptors are used to measure contrast, granularity and coarseness of the 

image. Texture feature descriptors can be classified into two categories 

according to the order of the statistical function that is utilized: first-order 

texture features and second-order texture features [18]. 

First-order texture features, also known as grey level distribution moments 

(GLDM), are extracted exclusively from the information provided by the intensity 

histograms, thus it yields no information about the locations of the pixels. The 

second-order texture features take into account the specific position of a pixel 

relative to another. The most popularly used of second-order methods is the grey 

level co-occurrence matrix (GLCM) method,which depends on constructing 

matrices by counting the number of occurrences of pixel pairs of given 

intensities at a given displacement. 

The intensity-level histogram of an image is a function showing the number of 

pixels in the whole image. It gives a measure of the statistical informations 

contained in the image. It further contains the first-order statistical information 

about the image. Most often so-called central moments are derived from it to 

characterise the texture (see section 1.6 Statistical moments of Histogram ).  

 



 

19 

 

1.4.2 Spectral Methods 

Spectral techniques are based on the autocorrelation function of a region or on 

the power distribution in the Fourier transform domain Spectral techniques 

detect  texture periodicities. The Fourier transform analyzes the global frequency 

in the signal (image), a textured  image can be decomposed into its frequency 

and orientation components. Gabor and Wavelet models are based on Fourier 

transform, in both of them multi-resolution processing is applied.  

In eq. 1 F(u,v) is 2-D Fourier Transform of a two-dimensional signal f(x,y). 

 

 

(1) 

  Fourier transform based methods have good performances on textures showing 

strong periodicity, on the other hangs their performance deteriorates on textures 

showing no periodicity  [19]. The spectral approach is not very popular among 

researchers dealing with texture analysis due to the performance problems and 

the high computational complexities of the Fourier Transform [20].  

 

1.4.3 Structural Methods 

Structural techniques describe the texture by using pattern primitives 

accompanied by certain placement rules. In structural approach,  the texture 

region is defined to have a constant texture if a set of local statistics or other local 

properties of the image are constant, slowly varying or approximately periodic.  

An image texture is described by the number and types of its (tonal) primitives 

and the spatial organization or layout of the primitives [21]..  Texture images are 

analyzed by identifying the local and global properties of the images under 

consideration. The basic idea is that a simple "texture primitive" can be used to 

form more complex texture patterns by means of some rules that limit the 

number of possible arrangements of the primitive.Extraction of texture elements 

and inference of the placement rule are two major steps for structural texture 
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analysis approaches. In structural approach Number of primitives and spatial 

relationship are not independent.  

 

Fig.4 Textures with the same number and same type of primitives does not necessarily 

give the same texture  (the first and the second pattern). The same spatial relationship 

does  not guarantee same texture (the first and the last pattern). 

Commonly used element properties are average element intensity, area, 

perimeter, eccentricity, orientation, elongation, magnitude, compactnes, euler 

number, moments, etc. [22].  Perimeter and compactness of a primitive  are used 

to characterize the texture by Goyal et al. [23]. Perimeter is in theory invariant to 

shift and rotation. But in practice, it varies due to quantization error. Histogram 

is a very useful method for texture analysis, a texture can be characterized by the 

histogram of its texture elements. Goyal et al. [24] have noted that the texel 

property may not change under translation and rotation. They use the histogram 

property to get invariant texture features and propose a method to convert the 

traditional histogram to an invariant histogram.  

Eichmann and Kasparis [25] discuss the extraction of invariant texture 

descriptors from line structures based on Hough transform (HT). Line segments 

in the image correspond to the points in the HT plane. Image rotation is 

equivalent to the translation in the HT plane along the angle axis. Scaling in the 

texture is equivalent to the translation in the HT plane along the -axis. At last, 

Lam et al. [26] use iterative morphological decomposition (IMD) method for 

scale invariant texture classification. IMD decomposes the image into scale-

dependent set of component images. For each component texture statistics 

features are extracted. 
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1.5. Traslation, rotation, scale invariance 

The majority of texture analysis methods make the explicit or implicit 

assumption that texture images are acquired from the same viewpoint, the same 

scale and orientation. It is not easy to ensure that images captured have the same 

translation, rotations or scaling. Texture analysis should be ideally invariant to 

viewpoints.  

Coordinate system play a very important role in invariant texture analysis. 

Translations, rotations, and scaling of texture image are caused by linear 

transform of the image points coordinates.  The analysis of transform properties 

is needed.  

The geometric transforms of texture images can be described as the following 

mathematical model: 

 

 

(2) 

  fa (xa,ya) = f(x,y) (3) 

The function f(x,y) is the original image, fa (xa,ya) is the transformed image. The 

matrix D is the translation factor, and the matrix C is the rotation, scaling and 

skew factor. If C is orthogonal matrix, this implies that only translation and 

rotation occur in eq. (prima equazione della tabella). One way to handle rotation 

and scaling is to adopt a suitable transform such that rotation and scaling will 

appear as a simple displacement in the new coordinates system. The polar 

coordinates system or log-polar grid is a good way to solve this problem. 

Rotation in cartesian grid (x,y) corresponds to circular translation in the polar 

grid (fig.4 ). 
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Fig.4 Rotation in cartesian grid (x,y) corresponds to circular translation in the polar grid 

 

Scaling in the (x; y) grid corresponds to a shift along the log  axis in the log–polar 

grid. The drawback of applying these methods for invariant analysis is that the 

translation invariance is sacrificed. Some shift-invariant methods must be 

applied in advance (for example the Fourier transform). In the following three 

paragraphs Statistical, Model Based, and Structural methods are listed in 

function of rotation, translation, scale invariance.  

From the existing literature on invariant texture analysis it is observed 

that: some statistics texture features such as global mean, variance and central 

moments, are invariant to translation and rotation. Fourier Specturm may be 

used to deal with translation invariance. Polar coordinates can be employed on 

the frequency domain to obtain rotation invariant features (Gabor Model, 

Harmonic Expansion). Some texel properties, such as area, perimeter and 

compactness of the texels, are invariant to translation and rotation. Histogram 

properties can be used to obtain scale invariance.  

Many authors developed statiscal methods for invariant texture analysis. Davis 

[27] describes a tool (polarogram) for image texture analysis and used it to get 

invariant texture features. A polarogram is a polar plot of a texture statistics as a 

function of orientation, the features computed from the polarogram are invariant 

to the orientation of the polarogram. Since the rotation of the original texture 

results in the rotation of the polarogram, the features are invariant to the 

rotation of the original texture.  Mayorga and Ludeman [28] used polar grid for 

rotation invariant texture analysis. The features are extracted on the texture 

edge statistics obtained through directional derivatives among circularly layered 

data. 
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 Two sets of invariant features are used for texture classification. The first set is 

obtained computing the circularly averaged differences in the gray level between 

a pixel. The second computes the correlation function along circular levels. In 

Harmonic Expansion and Mellin transform [29] [30] [31] an image is 

decomposed into a combination of harmonic components in its polar form. The 

projection of the original image to the harmonic operators gives the features of 

the pattern. The magnitudes of these coefficients are used for rotation invariant 

pattern analysis.  In [32] Duvernoy et al.  use the technique of Fourier descriptors 

to extract the invariant texture signature on the spectrum domain of the original 

texture. The image is characterized by the optical Fourier spectrum of the 

texture. A contour line is defined by selecting the points whose energy equals to 

a given percentage of the central maximum of this spectrum. The energy of the 

coefficients of the descriptors is invariant to the rotation and change of the scale 

of the curve.  

Tsatsanis and Giannakis [33] employed the high-order statistics to solve the 

invariant texture classification and modeling problems (They use cumulant and 

multiple correlation).  

Another example of invariant texture descriptor is represented by Zernike 

moments. The orthogonality of Zernike moments provides an important 

property: the magnitude of the moments are invariant to rotation [34].  

Pietikainen et al. [35] present some features based on center-symmetric auto-

correlation, local binary pattern and gray level difference to describe texture 

images. Most of these features are locally invariant to rotation including linear 

symmetric auto-correlation measures (SAC), rank order version (SRAC), related 

covariance measures (SCOV), rotation invariant local binary pattern (LBPROT) 

features and gray-level difference (DIFF4). 
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1.6. Texture Descriptors 

In this section of the chapter, most used texture descriptors are reported: 

Fractals, Edge Histogram Descriptor, Homogeneus Texture Descriptor, 

Perceptual Browsing Descriptor, Statistical Moments of Histogram, Haralick, 

Tamura,  based descriptor, Zernike Moments, Gray level co-occurrence matrix, 

ecc...  

1.6.1 Fractals 

Many natural surfaces show roughness and self-similarity at different scale. 

Fractal surfaces are produced by a number of basic physical processes, ranging 

from the aggregation of galaxies to the curdling of cheese. The defining 

characteristic of a fractal is that it has a fractional dimension, from which the 

word "fractal"is taken [36]. The fractal dimension, particularly, gives a measure 

of the roughness of a surface. More simply, larger fractal dimension corresponds 

to rougher texture. D indicates the Fractal Dimension. Given a bounded set A in 

Euclidean n-space, the set A is said to be self-similar when A is the union of N 

distinct (non-overlapping) copies of itself; each of wich has been scaled down by 

a ratio of r. 

 

 

(4) 

 

Pentland in [36 ] gave evidence that most natural surfaces can modeled by 

fractals. Other methods for fractals estimation are in [37] [38] The limit of this 

approach is that textured surfaces are not deterministic as described, they have a 

statistical variation. Statistical approach, such as gray level co-occurrence matrix, 

outperformed fractals, especially in segmentation and classification texture 

tasks. 
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1.6.2 Edge Histogram Descriptor 

The Edge Histogram Descriptor is a very simple descriptor that gives a measure 

of edge density of the image. The normative edge histogram for MPEG-7 [39] is 

designed to contain only local edge distribution with 80 bins. To localize edge 

distribution to a certain area of the image, the image space is subdivided into 4x4 

sub-images as shown in Fig. 5 for each sub-image, an edge histogram is 

generated to represent edge distribution. To define different edge types, the sub-

image is furthermore divided into small square blocks called image-blocks.  

 

Fig. 5  Subdivision of the image in sub-blocks 

 

Five edge types are defined  in the descriptor: four directional edge and a non 

directional. 

 vertical, 

 horizontal, 

 45 degree, 

 135 degree 

 non directional (the edges have not a precise direction belong to this 

category) 
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The edges are extracted from image blocks, then total number of edges are 

counted for each directional edge type. The image is subdivided in 16 sub-

images, for each of images 5 bins edge histograms are computed, total number of 

bins in edge histogram is 16*5 = 80. The order of block scanning is shown in the 

Fig.6 

 

Fig. 6 Histogram Bins and Local Edge. 

 

In edge extraction, each of subimages is furthermore subdivided in non-

overlapping blocks. Block size depends on spatial resolution of the image. The 

luminance mean values for the four sub-blocks are used for the edge detection. 

More precisely, mean values for each of sub-block are convolved with the filters 

in fig. , to obtain edge magnitude. From edge magnitude values, edge strength is 

obtained, then if this value is greater than a threshold the block is classified with 

the corresponding edge type, else the block is classified as belonging at non-

directional edge. 
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Fig. 7  Edge Filters 

Edge Histogram Descriptor is scale invariant, it has small size for an efficient 

storage of metadata. The limit of EDH for texture description is that it does not 

give informations about relative spatial positions of pixel. 

 

1.6.3 Homogeneus Texture Descriptor 

The current MPEG-7 homogeneous texture descriptor (HTD) is composed of 62 

numbers[40]. It  consists of the mean, the standard deviation value of an image, 

energy, and energy deviation values of the Gabor Filter of the image. These are 

extracted from partitioned frequency channels based on the human visual 

system (HVS). For reliable extraction of the texture descriptor, Radon 

transformation is employed.  

From psychophysic experiments, the response of the visual cortex is turned to a 

band limited portion of the frequency domain. In homogeneus texture descriptor 

the frequency layout allows extracted texture information to be matched with 

human perception system. The frequency layout consists of sub-bands. In these 

bands, the texture descriptor components such as energy and energy deviation 

are extracted.  

The subbands are designed by dividing the frequency domain, then texture 

feature values are computed. The frequency space is partitioned in equal angles 

of 30 degrees along the angular direction and in octave division along the radial 

direction. The sub-bands in the frequency domain are called feature channels 

indicated as Ci in Fig. 8. 
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Fig.8 Frequency space partition 

 

The frequency space is partitioned in 30 feature channels. The center 

frequencies of the feature channels are spaced equally in 30 degrees along the 

angular direction such as r = 30 ° x r ,  r  = {0,1,2,3,4,5}. Each partitioned region 

corresponds to a band-limited portion of the frequency domain that is the 

response of the visual cortex in the HVS. The channels located in the low 

frequency areas are of smaller sizes while those of the high frequency areas are 

of larger sizes. Human vision  is more sensitive to the change of low frequency 

area.  The center frequencies of the channels in the angular and radial directions 

are such that: 

 

The equation (5) is the Gabor Wavelet filters. 

 

 

(5) 

 

r is the standard deviation in radial direction  
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r is the standard deviation in angular direction. r 

In HTD, Radon transform is followed by 1-d Fourier transform application. Let 

F(,) be the result, the energy ei and the energy deviation di of the ith channel is  

: 

 

 

(6) 

 

 

(7) 

 

 

(8) 

 

 

(9) 

 

|| is the Jacobian between the Cartesian and the Polar.  

Homogeneus Texture Descriptor in vector form:  

 

fDC and fSD are mean and standard deviation of the image. 
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1.6.4 Perceptual Browsing Descriptor PBD 

In perceptual browsing descriptor Regularity, Direction and Coarseness are 

described. PBD has the following syntax:  PBD=[v1,v2,v3,v4,v5]. v1 represent 

regularity. v2 and v3 represent the directionality. v4 and v5 are two scales that 

best represent the coarseness. 

 

Fig.9 PBD algorithm steps 

 

The image is decomposed into a set of filtered images, Wmn(x,y).  For S x K 

images S directional histograms are used for Dominant Direction estimation.  

 

 

(10) 

 

PDB[v2] and PBD[v3] represent the directions having peaks in H(s,k), in 

neighboring scale. Furthermore, these direction have  two peaks with highest 

sharpness. 

Given a peak, the formola (11) and (12) represent sharpness:  

 

 

(11) 
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(12) 

D01 and D02 are the dominant directions. P(l) is the projection corresponding to 

D0 . 

p_posi(i), p_magn(i) and v_posi(j), v_magni(j) are the positions and 

magnitudes of the peaks and valley of NAC(k), Normalized Autocorrelation 

(see eq. 13). Given dis and std representing mean and standard deviation of 

successive peaks distances. Projections with std/dis less than a threshold are 

candidates. 

 m* (H) and m* (V) are the scale index of candidate PH(mn) and PV(mn) with 

maximum contrast. PBD[v4]=m* (H) and PBD[v5]=m*(V). 

 

 

(13) 

 

 

(14) 

 

Regularity (v1) is obtained by assigning credits to candidates, for more details 

see [41]. 
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1.7. Statistical moments of Histogram 

The Histogram is one of the most commonly used characteristic to represent the 

global feature composition of an image. It is invariant to translation and rotation 

of the images and normalizing the histogram leads to scale invariance.  

Exploiting the above properties, the histogram is considered to be very useful for 

indexing and retrieving images. 

The intensity-level histogram of an image is a function showing (for each 

intensity level) the number of pixels in the whole image. This is a concise and 

simple summary of the statistical information contained in the image. Calculation 

of the gray level histogram involves single pixels, it  further contains the first-

order statistical information about the image. Most often so-called central 

moments are derived from histogram to characterise the texture, as defined by 

the four following equations: 

 

Mean = 

 

 

(15) 

 

Variance = 

 

 

(16) 

Variance can be considered as a contrast measure, higher values indicate higher 

gray levels dispersion inside of the image. This implies that analyzed texture 

region has random distribution if variance has high value. 

 

Skewness = 

 

 

(17) 

 

Skewness coincides with third statistical order of histogram. It is zero if the 

histogram is symmetrical about the mean, it is otherwise either positive or 
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negative depending wheter it has been skewed above or below the mean. 

Skewness gives a measure of symmetry. 

 

Kurtosis = 

 

 

(18) 

Kurtosis coincides with the fourth statistical order of histogram, it gives a 

measure of the flatness of histogram curve with the respect of gaussian 

distribution. 

 

Fig.10 Example of right asymmetric ( a) and left asymmetric histogram (b) 

Statistical Moments of intensity level histogram are used for texture analysis in 

the following vector form (v): 

   v = [ mean, variance, skewness, kurtosis] 
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1.7.1 Haralick Descriptor 

Haralick Descriptor is co-occurrence matrix based. A co-occurrence matrix, F 

is used to describe the patterns of neighboring pixels in an image at a given 

distance d. In the features extraction phase 4 matrices are needed to describe 

different orientations.  More precisely,  four matrices include Vertical, horizontal 

and diagonal in both directions: P0, P90, P45 and P135.  The co-occurrence 

matrices are symmetric matrices with  M x M dimensions, M is the number of 

possible gray levels of the image. These matrices can be represented by a 

tridimensional data, third dimension varies depending on dimensions of the 

original input image. 

In fig.11 the construction of co-occurrence matrix for d=1, in fig .12 a 3-

dimensional representation of co-occurrence matrix for a given orientation. 

Four descriptors are computed after the construction of co-occurrence matrices:  

Constrast, Energy, Homogeneity, Correlation. Haralick descriptor is totally 

composed of 16 components vector as depicted in fig.13. 

 

Fig.11  Co-occurrence matrices 
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Fig.12 A tridimensional representation of co-occurrence matrix for a given orientation 

 

 

 

Fig.13 Haralick descriptor components. 

For a more detailed description see [42]. 

 

Contrast Energy Homogeneity Correlation Contrast Energy Homogeneity Correlation 

Contrast Energy Homogeneity Correlation Contrast Energy Homogeneity Correlation 

R(1,0°) R(1,45°) 

R(1,90°) R(1,135°) 
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1.7.2 Spatial filter based descriptor 

This texture descriptor analyzes the mean local distribution of the edges 

inside of an image block, it takes into account five directional components, in 

order:  

 vertical, 

 horizontal, 

 diagonal - 45°, 

 diagonal - 135°, 

 not directional.  

Last category include the edges have not a dominat direction in the image. 

Every block is filtered by the following spatial fiter mask. Every mask is 

corresponding to a specific direction as in fig.7. 

The image is then subdivided in blocks with the same size of the filter masks. 

Each of block of the image is filtered with the five spatial filter masks 

(directional). It is returned the sum of pixel (for each of directional filter) of 

filtered sub-blocks of the image. Then each of block of the image is represented 

by five component vector; each of component represents the five categories of 

directional edge. 

 

1.7.3 Tamura Descriptors 

Textural features corresponding to human visual perception are very useful for 

optimum feature selection and texture analyzer design.Tamura et al defined six 

textural features: Coarseness, Contrast, Directionality, line-likeness, regularity 

and roughness. Tamura et al [4] found the first three features to be very 

important. The three features, coarseness, contrast, and directionality, are 

defined as follows: 

 Coarseness has direct relationship to scale and repetition rates, it aims to 

identify the largest size at which a texture exists, even where a smaller 
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micro texture exist.  It takes averages at every point over neighbourhoods 

the linear size of which are powers of 2. For a neighbourhood of size 2k * 

2 k at the point (x,y) the average is: 

 

 

 

(19) 

 

At each point one takes differences between pairs of averages corresponding to 

non overlapping neighbourhood on opposite sides of the point in both horizontal 

and vertical orientations. The coarseness measure is then the average of 

Sopt(x,y) = 2k opt 

 

 Contrast feature aims to capture the dynamic range of gray levels in an 

image, together with the polarization of black and white distribution. 

Dynamic range of gray levels is measured by standard deviation of gray 

levels. The polarization of black and white distribution is measured by 

standard deviation and kurtosis of gray levels of the image (4).  Given 

kurtosis, mean and the variance, constrast measure is: 

 

 

 

(20) 

 

4 is  kurtosis,  is the mean 2 is the variance. With n=4 Tamura gives the 

closest agreement to human measurements.  

 Directionality. This is a global property, it gives a measure of the total 

degree of directionality. Two simple masks are used to detect edges in 
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the image. At each pixel the angle and magnitude are calculated. Edge 

probabilities histogram is built up by counting all points with magnitude 

greater than a threshold and quantising by the edge angle. The histogram 

will reflect the degree of directionality. To extract a measure from Hd  the 

sharpness of the peaks are computed from their second moments.  

Linelikeness, Regularity and Roughness features are not considered important 

because derived from Contrast, Coarseness and Directionality. These are not 

very distinctive features.   

 

1.7.4 Gabor Filter 

Gabor filter is one of the most popular signal processing based approaches for 

texture feature extraction. It enables filtering in the frequency and spatial 

domains. A bank of filters at differents scales and orientations allows 

multichannel filtering of an image to extract frequency and orientation 

information. The feature is computed by filtering the image with a bank of 

orientation and scale sensitive filters, the mean and standard deviation are 

computed in frequency domain.  

Given an image I(x,y), a gabor filter g designed according to [43] results in Gabor 

Wavelet transform: 

 

 

(21) 

 

The mean and standard deviation of the magnitude |Wmn|  are used to for the 

feature vector. The outputs of filters at different scales will be over differing 

ranges. For this reason each element of the feature vector is normalised using 

the standard deviation of that element across the entire database  
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1.7.4.1 Gabor Based Texture Descriptor 

Multi-Channel filtering approach [44] is inspired by a multi-channel filtering 

theory. In the early stages perception, human visual system decomposes the 

retinal image into a number of filtered images, each of which contains intensity 

variations over a narrow range of frequency (size) and orientation. This 

approach to texture analysis is intuitively appealing because the dominant 

spatial-frequency components of different textures are different. Simple 

statistics of gray values in the filtered images are used as texture features. 

A bank of Gabor filters is used to characterize the channels. More particularly, 

the filter set forms an approximate basis for a wavelet transform, with the Gabor 

function as the wavelet.  The channels are represented with a bank of two-

dimensional Gabor filters. A     two-dimensional Gabor function consists of a 

sinusoidal plane wave of some frequency and orientation, modulated by two-

dimensional Gaussian envelopes. 

In the following formola, a canonical version of Gabor filter in spatial domain: 

 

 

(22) 

 

0 and  represent the frequency phase of the sinusoidal plane wave along the x-

axis (0° orientation) and x y  are the space constants of the Gaussian envelope 

along the x and y-axis. The frequency and orientation selective properties of a 

Gabor filter are more explicit in its frequency domain representation.  The 

Fourier transform of the Gabor function is: 

 

 

 

(23) 

where: 
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(24) 

 

The Fourier domain representation in eq. 23 specifies the amount by which the 

filter modifies or modulates each frequency components of the input image. 

Each Gabor filter is a discrete realization of eq. 23. 

 Four orientation  values are used: 0°, 45° ,90°, 135°. The restriction to four 

orientations is made for computational efficency. Given an image with a width Nc 

pixels (Nc is power of 2), the following radial values are used for frequency 0: 

1√2, 2√2, 4√2, ........, (Nc/4)√2. 

The orientation and frequency bandwidths of each filter are: 45° and 1 octave 

respectively. 

If the size of Gabor filter masks is 16x16, Nc = 5 and number of orientation is 

equal to 4, feature vector will have 40 coefficients:  

 

f=(00 00, 01 01.................., 40 40)  (25) 

 

In eq. 25 00  and 00  are mean and variance values respectively of block of 

filtered image. The vector coefficients are correpsonding to fixed orientation and 

frequency values.  

 

1.7.5 Zernike Moments 

 

Moment of the image is a powerful statistic tool for pattern recognition, it is 

defined as the projection of a function f(x; y) onto a monomial xpyq: 
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(26) 

 

Zernike moments are the projection of the function f(x; y) onto Zernike 

polynomials.   

 

 

(27) 

 

Zernike polynomials V∗nm(x; y) are one of an infinite set of polynomials that are 

orthogonal over the unity circle U: x2 + y21 

 

 

(28) 

 

 

 

 

 

(29) 

 

ρ e θ represent polar coordinates inside of the unity circle, Rnm are ρ 

polinomials. 

Zernike moments are orthogonal moments. Their kernel is Zernike 

polynomials defined over the polar coordinate space inside of unit circle.  
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Wang and Healey [45] used Zernike Moments for texture analysis because these 

descriptors perform well in practice to obtain geometric invariance. In texture 

analysis, texture is characterized using Zernike moments of multispectral 

correlation functions. The correlation function is invariant to translation for its 

nature, the scale invariance is obtained by normalization of correlation functions.  

Zernike Moments are extracted from each correlation to form a set of translation 

and rotation invariants. 
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1.8. Application Domains 

 

Texture analysis methods have been utilized in a variety of applications domains. 

Image inspection, Medical Image Analysis,  Document Processing, Remote 

Sensing, Image Segmentation, Visual Saliency, Image Forensics. The role that 

texture plays in these examples varies depending upon the application.Texture 

processing for inspection problems involve, for example, defect detection in 

images of textiles, automated inspection of carpet wear and automobile paints. In 

medical image analysis, texture properties play an important role. Sutton and 

Hall [46] discuss the classification of pulmonary disease using texture features, 

Landeweerd and Gelsema [47] extracted first-and second order statistics to 

differentiate types of white cell bloods. Texture segmentation methods for 

preprocessing document images to identify region of interests [48,49] (i.e. postal 

address recognition, analysis and interpretation of maps). Similar methods are 

used for locating text blocks in newspapers (see fig.14). 

 

Fig.14 - Texture Segmentation for locating bar code in newspaper image 
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Texture analysis has been furthermore used to classify remotely sensed images. 

Haralick et al. [50] used gray level co-occurrence features to analyze remotely 

sensed images; Land use classification where homogeneous regions with 

different types of terrains need to be identified is an important application.  In 

visual saliency texture properties are used to detect the common and rare visual 

aspects that are involved in visual perception. Image Forensics deals with image 

forgeries detection, many methods used texture features to detect the tampering 

inside of the image [51] (see fig. 15 ). Some of the aspects inherent in texture 

analysis applications, will be further discussed in next chapters.  

   

a) original b) tampered c) reference area 

Fig. 15 Copy move detection by block matching with texture features. 
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2. LOCAL KEYPOINTS 

 

 

 

 

2.1. Introduction 

Many computer vision and image processing tasks rely on feature extraction. Local 

keypoint, or interest point are such features.These are widely used in Image 

retrieval, image forensics, visual saliency, image registration, camera calibration, 

object recognition. In scientific literature there is not a unique definition about local 

keypoint, in this section some definitions are reported and local keypoint properties 

are discussed. From now on, “interst point” and 'local keypoint' will indicate the 

same meaning. 

 

 "By Keypoints, we mean typically blobs, corners, and junctions. These 

features have been also referred to as interest or salient ponts in the 

literature. In human vision, these localised features, along with edges, are 

perceived as privileged cues for recognising shapes and objects and are 

widely used  in computer vision for various applications including object 

recognition, stereo matching, content based image retrieval, mosaicing, 

motion tracking." [52] 

 

 "A line segment is considered as having some thickness. That means any line 

segment in a form image consists of a group of black pixels which has a 

rectangular shape. Generally the height of a horizontal line segment or the 
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width of a vertical line segment is very small. In defining a keypoint, we 

ignore two short edges of the line segment so a line segment can be 

considered as a group of black pixels associated with two long edge lines 

beside its two sides as shown in fig 16. The end of a long edge line is referred 

to as an end keypoint.  When several horizontal and vertical line segments 

touch or overlap together the intersection points of two edges lines form 

another kind of keypoint, a corner keypoint."[53] 

 "Interest points are locations in the image where the signal changes two-

dimensionally. Example include corner, T-junctions, as well as locations 

where the texture varies significantly." [54] (T-junction can be an occlusion 

or the result of reflectance discontinuity). 

 Each keypoint is defined by its center K , its scale ς  and its orientation ω  

and is denoted by a circle on the image with radius ρ = 6ς. [55]  

The first definition is very generic, it only emphasizes the importance of local 

keypoints for computer vision and image processing tasks. The second definition is 

focused on geometric viewpoint, infact it is based on geometric elementary 

concepts. In third definition keypoint concept is based on signal intensity, some 

visual examples are reported in fig.16.  
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Fig.16- Local keypoint - Geometric viewpont 

Mathematical definition, spatial position, stability and repeatability characterize 

local keypoint as it follows: 

 Keypont position in image space is mathematically defined, 

 The neighborhood of interest point is rich of contents, (keypoints are usually 

detected in texture regions, in regions with reflectance discontinuity). 

 it is stable under local and global perturbations in the image. Perturbations 

include perspective transformations, affine transformations, scale changes, 

rotations and/or translations, illumination/brightness variations. 

 Most of interest point are detected by multiscale analysis 
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Local Keypoint detection is correlated with blob and corner detection. In early 

works about corner features, the goal was obtaining robust, stable and defined 

image features for object detection and recognition. Usually corner detectors are 

sensitive not only to corners, but to image regions which show high grade of 

variation in all directions. In [56] “A corner is defined as a location where a triangle 

with specified opening angle and size can be inscribed in the curve”. Rangarajan et 

al. [57] defined a corner as the junction point of two or more straight line edges. 

Blob features are clusters of similar pixels in the image plane and can be arise from 

similarity of color, texture, motion and other signal based metrics [58]. Blob features 

are used for region detection, in [59] Lindeberg  blob is defined by a maximum of 

the normalized Laplacian in scale-space.  

The interest points are correlated with regions of interest which have been used for 

object detection. Regions of interest are often formulated as the result of blob 

detection. 

For the most common types of blob detectors each blob descriptor has defined 

point, which may correspond to a local maximum in the operator response. 

Interest point and corner have a well-defined position and can be robustly detected. 

An interest point can be a corner but it can also be an isolated point of local intensity 

maximum or minimum, line endings, or a point on a curve where the curvature is 

locally maximal.Most corner detection methods detect interest points in general, 

rather than corners in particular. For this reason if only cornes are needed to be 

detected, corner detection results must be filtered by a local analysis to determine 

which of these are real corners.  

A criterion for local keypoint descriptor is the repeatability rate. Repeatability 

means that the points are obtained independently of changes in the imaging 

conditions. Every local keypoint is described by a feature vector that represents its 

neighboord. A good interest point descriptor should be robust against noise, 

displacements, geometric and photometric deformations. Small dimensions of 



 

 

50 

descriptor are desirable for a fast interest point extraction and description because 

the dimension of the descriptor has impact on the time it takes. On the other hand, 

higher dimensional feature vectors are, in general, more distinctive than their 

lower-dimensional counterparts. 

Another criterion for interest point descriptor evaluation is the information content, 

it gives a measure of the distinctiveness of the local graylevel pattern at an interest 

point. The most important interest point detectors have been also developed for a 

rich neighborhood description.  

This chapter is focused on scale changes, translation and rotation invariant 

detectors and descriptors. In the next paragraphs a review of works in interest point 

detection and description is given.  
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2.2. State of the art 

Many methods for image retrieval adopt global or local features, this choice has long 

been an issue of research in image and video retrieval fields. Local keypoints  and 

the associated local features recently attracted attentions for their capability of 

characterizing salient regions which are invariant to certain geometric and 

photometric transformations [60], [61]. Over the past few years, keypoint-based 

approaches have shown success in object categorization [62], duplicate copy 

detection [63], semantic concept detection [64] and video search [65]. Figure 17 

shows an example of keypoints detected inside of an image. The keypoints jointly 

describe the image content by characterizing the parts which are salient and 

informative enough to tolerate possible transformations (scaling, translation, 

rotation ). 

 

2.2.1 Local Keypoint Detection 

 

Local Keypoint Detectors can be divided into contour based methods, signal based 

methods and methods based on template fitting. A briefly presentation is done for 

each cathegory. Contour based method idea is either to search for maximal 

curvature of inflexion points along the contour chains, or to search for intersection 

points after some polygonal approximation.  

In signal based methods a measure indicates the presence of an interest point 

directly from signal. A signal based method uses the autocorrelation function of the 

signal [66], the squared first derivatives of the signal are averaged over a window. 

The eigenvalues of the resulting matrix are the principal curvatures of the auto-

correlation function.  If these curvatures are high, an interest point is detected. 

FÖrstner in his work [67] uses autocorrelation for pixel classification, the pixel is 

classified into three cathegories: region, contour, interest point. Heitger et at. [68] 
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extract 1D directional characteristics by convolving the image with orientation-

selective Gabor filters. To obtain 2D characteristics, they compute first and second 

derivatives of the 1D characteristics. In template fitting method, the image signal 

fitted to a parametric model of a specific type of interest point (a corner or a vertex). 

Another method for interest point detection is Lindeberg method [69], he 

introduced the concept of automatic scal selection. A local keypoint has its 

characteristic scale. The determinant of Hessian matrix and Laplacian to detect 

blob-like structures.  In [70] Mikolajczyk et al. refined Lindeberg method creating 

robust and scale invariant feature detectors with high repeatability. They used a 

scale adapted Harris measure or the determinatn of the Hessian Matrix to select the 

location, the Laplacian to select the scale. In [60] Lowe performed SIFT (Scale 

Invariant Feature Transform) , as it transforms image data into scale invariant 

coordinates relative to local features. SIFT (Scale Invariant Feature Transform) 

descriptors  are generated by finding interesting local keypoints, in a greyscale 

image, by locating the maxima end the minima of Difference-of-Gaussian in the 

scale-space pyramid. SIFT algorithm takes different levels (octaves) of Gaussian blur 

on the input image, and computes the difference between the neighboring octaves. 

Information about orientation vector is then computed for each keypoint, and for 

each scale. Briefly, a SIFT descriptor is a 128-dimensional vector, which is computed 

by combining the orientation histograms of locations closely surrounding the 

keypoint in scale-space. The most important advantage of SIFT descriptors is that 

they are invariant to scale and rotation, and relatively robust to perspective 

changes. Several others scale invariant interest point detectors have been proposed. 

PCA-SIFT [71] uses PCA instead of histogram to normalize gradient patch. As 

consequence of PCA utilization, the feature vector is significantly smaller than the 

standard SIFT feature vector. In [61] Bay et al. performed SURF descriptor, 

(Speeded Up Robust Features), SURF algorithm is slightly different than SIFT 

algorithm. SIFT builds an image pyramid, filtering each layer with Gaussians of 

increasing sigma values and taking the difference. SURF creates a stack without 

down sampling for higher levels in the pyramid, so the resulting images have the 



 

 

53 

same resolution. Kadir and Brady [72] perfomed a salient region detector through 

entropy maximization of the edge based region (region detector proposed by Jurie 

and Schmid [73]). From comparisons of detectors, [74] [59] Hessian based detectors 

result more stable than Harris based.  

In the next paragraphs the most used local keypoint detector and descriptors will be 

discussed. 

 

2.3. Harris Edge Corner. 

Harris revisited Moravec's corner detector [75], it considers a local window in the 

image, and determines the average changes of the image intensity that result from 

shifting the window by a small amount in various directions. 

 If the windowed patch is constant in intensity, then all shifts will result in a 

small change (E);  

 if the windowed patch covers an edge, then a shift along the edge will result 

in a small change; 

 A shift perpendicular to the edge will result in a large change.  

This detector simply looks for local maxima in min(E) above some threshold value. 

Moravec's corner detector suffers from some problems, the set of shifts is 

considered at every 45 degrees, so the response of E is anisotropic. The response is 

noisy because the window is rectangular and binary. The operator responds too 

readily to edges because only the minimum of E is taken into account. The change E 

for the small shift (x,) can be written as: 

 

 

(30) 

where  
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(31) 

Let  and  be the eigenvalues of M.  and  will be proportional to the principal 

curvatures of the local autocorrelation function, these form a rotationally invariant 

description of M.  

Harris detector is based on the second moment matrix, called auto-correlation 

matrix. This matrix must be adapted to scale changes to make it independent from 

image resolution.  

Mikolajczyk et al. [74] formulated Harris-Laplace detector in which  the scale 

adapted version of auto-correlation matrix is defined by: 

 

 

 

(32) 

where 1 is the integration scale, D is the differentiation scale and La is the 

derivative computed in a direction. In a local neighborhood of a point, the gradient 

distribution is described by the matrix. Gaussian smoothing is applied to derivatives 

in the neighborhood of the point. Two principal signals of the neighborhood of a 

point are represented by the eigenvalues of the matrix. The signal change is 

significative in the orthogonal directions, corners, junctions etc. Harris detector is 

based on this principle. It combines the trace and the determinant of the second 

moment matrix: 

 

 

(33) 

 the Locations of interest points are determined by local maxima of coarseness.  
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Mikolajczyk and Schmid performed a newer version [74] of Harris detector 

combining the reliable Harris detector [66] with automatic scale selection [69] to 

obtain a scale invariant detector. More particularly, Harris descriptors are Gaussian 

derivatives that are computed in local neighborhood of interest points. The local 

neighboring patches of interest points are normalized, then the Harris Descriptors 

are computed as Gaussian derivatives are computed on the patches.  These 

descriptors are invariant to rotation, affine transformations. Rotation invariance is 

obtained by steering derivatives in gradient direction [76], affine transformation 

invariance is obtained by dividing the first order derivatives by the higher order 

derivatives. The stability of the descriptor average gradient direction is used [77]. 

 

Fig. 17 Harris Keypoints - original version 
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Table 18 Harris-Laplace Keypoints 
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2.4. SIFT (Scale Invariant Feature Transform) 

 

The major steps of SIFT algorithm are: 

 Scale-space extrema detection; 

  Keypoint Localization; 

  Orientation Assignment 

SIFT approach transforms image data into scale invariant coordinates relative to 

local features, it generates large numbers of features that densely cover the image 

over the full range of scales and locations (the numbers of keypoints extracted it 

depends on various parameter and on image content). 

 

2.4.1 Scale-space extrema detection 

 In SIFT method keypoint detection is obtained using a cascade filtering approach 

that uses efficient algorithms to identify candidate locations that are examined in 

further detail. The method aims to find locations and scales that can be repeatably 

assigned under differing viewpoints of the same object. The scale space of an image 

[78] is defined as a function, L(x,y,), that is produced from the convolution 

Gaussian G(x,y, ) with an input image, I(x,y): 

 

 

(34) 
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(35) 

 

Stable keypoints locations in scale space are obtained in Lowe method in the 

difference-of-Gaussian function convolved with the image, D(x,y, ), which can be 

computed from the difference of the two nearby scales separated by a constant 

multiplicative factor k: 

 

 

(36) 

 

The difference-of-Gaussian function provides a close approximation to the scale 

normalized Laplacian of Gaussian 2∇2G. Lindeberg [78] showed that the 

normalization of the Laplacian with the factor 2 is required for true scale 

invariance.  

∇2G can be computed from the finite difference approximation to ∂G/∂σ, using the 

difference of nearby scales at k and : 

 

 

(37) 

 

σ∇  2G  ≈  G(x, y, kσ)-G(x, y, σ) 

 

(38) 
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When the difference-of-Gaussian function has scales differing by a constant factor it 

already incorporates the factor 2 of scale normalization (required for scale 

invariance). Adjacent image scales are subtracted to produce the difference-of-

Gaussian images. Once a complete octave has been processed, Gaussian image, that 

has twice the initial value of , is resampled by taking every second pixel in each 

row and column.  

 

2.4.2 Local Extrema Detection 

 

Local Maxima and minima of D(x,y,) are detected after that each sample point is 

compared to its eight neighbors in the current image and nine neighbors in the scale 

above and below.  Local Maxima and minima are seleceted if sample point is larger 

than all of these neighbors or smaller than all of them. The determination of 

frequency of sampling in the image and scale domains is an important issue. This is 

needed to reliably detect the extrema. The best choices can be determined 

experimetally, by studying a range of sampling frequencies. 

 The scale-space difference-of-Gaussian function has a large number of extrema and  

it would be very expensive to detect them all. The detection of the most stable and 

useful subset even with a coarse sampling. 

 

2.4.3 Keypoint Localization 

 

The Keypoints candidates have been found by comparing pixels with their 

neighbors. Subsequent step is to perform data fitting for location, scale, and ratio of 

principal curvatures. This step rejects points with low contrast or poorly localized 

along edge. The location of extremum, x̂ is determined by taking the derivative of the 
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Taylor expansion of function D(x), shifted so that the origin is at the sample point 

x=(x,y,): 

 

 

(39) 

 

 

(40) 

The Hessian and the derivative of D are approximated by using differences of 

neighbors of sample point. The value of the function D at the extremum is used for 

rejecting unstable extrema with low contrast. Generlly, all extrema with value less 

than 0.03 were discarded. 

 

Fig. 19 SIFT keypoints 
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2.4.4 Orientation Assignment 

 

A consistent orientation, based on local image features, is assigned to each keypoint. 

The scale of keypoint is used to select the Gaussian Smoothed image with the closest 

scale, so all the computations are performed in a scale-invariant manner. For each 

image sample, L(x,y), at this scale, the gradient magnitude, m(x,y), orientation (x,y), 

is precomputed using pixel differences: 

 

(41) 

 

(42) 

 

An orientation histogram is formed from the gradient orientations of sample points 

within a region around the keypoint. The orientation histogram has 36 bins 

covering the 360° range of orientations. Each sample added to the histogram is 

weighted by its gradient magnitude and by a Gaussian-weighted circular window 

with a  1.5 times that of the scale of the keypoint.  

 

2.4.5 Local Image Descriptor 

The SIFT descriptor implementation is inspired by Edelman idea [79]. Edelman 

proposed a representation based upon a model of biological vision, in particular of 

complex neurons in primary visual cortex. Complex neurons respond to a gradient 

at a particular orientation and spatial frequency.In fig.20 keypoint descriptor is 

depicted.  
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a) 

 

b) 

Fig. 20 The image gradient orientations for each subimage (a), the keypoint descriptor (b)  

 

The keypoint descriptor allows for significant shift in gradient positions by creating 

orientation histograms over 4 x 4 sample regions. Eight directions for each 

orientation histogram are obtained. The descriptor is formed from a vector 

containing the values of all orientation histogram entries. The best results are 

obtained with a 4 x 4 array of histograms with 8 orientation bins. Each keypoint is 

represented from a 128 components vector (4 x 4 x 8 =128). For more details about 

SIFT see [60]. 

 

2.5. PCA-SIFT detector 

Lowe presented SIFT for extracting distinctive invariant features from images that 

can be invariant to image scale and rotation. Ke and Sukthankar [71] used PCA to 

normalize gradient patch instead of histograms. PCA-based local descriptors are 

also distinctive and robust to image transformations. PCA is used for dimensionality 

reduction [80], this is suited to represent the keypoint patches. The feature vector is 

smaller than the standard SIFT feature vector but it can be used with the same 
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matching algorithms. The input vector is created by concatenation of the horizontal 

and vertical gradient maps for the 41 x 41 patch centered to the keypoint, so the 

vector has 2 x 39 x 39 = 3042 elements. The advantage of using PCA-SIFT is that 

fewer components requires less storage, these componenst furthermore result to a 

faster matching.  

 

2.6. SURF (Speeded Up Robust Feature) 

First of all, a briefly discussion about the concept of Integral Images is needed. 

Integral images allow for fast computation of box type convolution filters.  Integral 

image I (x)at location x=(x,y)T represents the sum of all pixels in the input image I 

within a rectangular region formed by the origin and x (fig. 21). The method for 

SURF detection is based on Hessian Matrix approximation. Integral images are used 

for a reduction of computational time.  

 

 

(43) 

 

The sum of the intensities over any upright rectangular area, it takes only three 

additions. The calculation time is independent of its size.  
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Fig. 21 Integral Image includes three additions to calculate the sum of intensities inside of a 

rectangular region of any size. 

 

After this brief introduction about Integral Image a synthetic summary of SURF is 

given. SURF detector is based on Hessian Matrix, blob-like structures are detected at 

locations where Hessian determinant is maximum.  

Given a point x = (x,y) in an image I, the Hessian matrix H(x,) in x at scale  is 

defined as follows: 

 

H(x,)= 

 

 

(44) 

 

Lxx(x,) is the convolution the Gaussian second order derivative with the image I in 

point x, similarly for Lxy(x, ) and Lyy(x,). Even if Gaussians are optimal for scale-

space analysis, in practice they have to be discretized and cropped. Gaussian 

derivatives can be evaluated at very low computational cost using integral images. 

Box filters with size are approximations of a Gaussian with  =1.2 and represent the 
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lowest scale for computing blob-like structures. Dxx, Dyy, Dxy are the 

approximations with box filters.  

 

 

 

(45) 

 

The weight w of the filter responses is used to balance the expression for Hessian's 

determinant. A constraint must be respected for the energy conservation between 

the Gaussian kernels and the approximated Gaussian kernels: 

 

 

(46) 

 

 where |x|F  is the Frobenius norm. Weighting changes depending on the scale, 

experimentally keeping costant this factor has not impact on the results. The 

approximated determinant of the Hessian represents the blob response in the image 

at location x. Local maxima are detected among Hessian determinants at different 

scales.  

 

2.6.1 Scale space representation 

 

Scale spaces are usually represented as an image pyramid. The images are smoothed 

with a Gaussian and then subsampled in order to achieve a higher level of the 

pyramid. SURF approach, differently from SIFT, applies box filters of any size 

directly on the original image and and even in parallel. The scale space is analyzed 

by up-scaling the filter sizerather than iteratively reducing the image size. The main 

motivation for this kind of sampling is computational efficency. Box filters preserve 
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high frequency components that, on the contrary, can get lost with downsampling in 

the other approaches. The scale space is divided into octaves. An octave represents a 

series of filter response maps obtained by convolving the same input image with a 

filter of increasing size. Each octave is subdivided into a constant number of scale 

levels. The minimum scale difference between two subsequent scales depends on 

the length l0 of the positive or negative lobes of the partial second derivative in the 

direction of derivation (x or y). For a 9 x 9 filter the length l0 is 3. 

 

Fig.22 On the left, pyramidal downsampling. On the right, the use of integral images for up-

scaling of the filter. 

 

The construsction of the scale space starts with the 9 x 9 filter, which calculates the 

blob response of the image for the smallest scale. Then filters with size 15 x 15, 21 x 

21, 27 x 27 are applied. A graphical representation of the filter side lengths for three 

different octaves is shown in fig.23. 
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Fig.23 The logaritmic horizontal axis represents the scales, vertical axis shows the octaves. 

Filter side lengths for three different octaves are shown. 

 

2.6.2 Interest Point Localization 

 

For interest points localization in the image, Fast Invariant method [81] is used. 

Maxima of determinant of Hessian matrix are interpolated in scale and image space. 

Scale space interpolation is important because the difference in scale between the 

first layer of every octave is relatively large. 
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Fig. 24 SURF keypoints 
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2.6.3 Interest Point Description 

 

SURF descriptors describe the distribution of intensity in interest point 

neighborhood, similar to SIFT approach [60]. More precisely, in SURF method first 

order Haar wavelet responses in x and y directions is computed (this is different 

from SIFT approach in wich gradient is used). The integral images are exploited for 

speed in calculation, the descriptor consists in a 64 features vector. In the following 

paragraphs, the steps of orientation assignmet and Haar Wavelet responses are 

approached. 

 

2.6.4 Orientation 

The orientation information is extracted from a circular region around the interest 

point. First, Haar Wavelet responses calculation in x and y directions within a 

circular neighborhood of radius 6s around the interest point (s is scale at which the 

interest point is detected). Sampling step and the size of wavelt are scale dependent: 

Sampling step is chosen to be s, wavelet size is set to a side length of 4s. 

 Wavelet responses are calculated with a Gaussian (=2s) centered at the interest 

point. The dominant orientation is estimated by calculating the sum of all responses 

within a sliding orientation window of size /3. Orientation window size is very 

important parameter wich had to be chosen with care. Small sizes fire on single 

dominating gradients, large sizes tend to yeld maxima in vector length that are not 

outspoken, these results give a misorientation of the interest point. 
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a) 

 

 

b) 

Fig.25 (a) A sliding orientation window of size π/3 detects the dominant orientation of the 

Gaussian weighted Haar wavelet responses. (b) An oriented quadratic grid 4 x 4 square sub 

regions is over the interest points, for each square, the wavelet responses 

 

2.6.5 Haar Wavelet Responses 

 

 A square region is centered around the interest point and orientation (selected in 

previous step). The size of the region is 20s and it is splitted into smaller 4 x 4 

square sub-regions. Haar wavelet responses are calculated for each sub-regions at 5 

x 5 regularly spaced sample points. dx is Haar wavelet response in horizontal 

direction, dy is Haar wavelet response in vertical direction (horizontal and vertical 

with respect to the interest point orientation). dx and dy are weighted with a 

Gaussian (=3.3) centered at the interest point, as consequence of this operation the 

robustness towards geometric deformations and localization increased.  
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Fig.26 Haar Wavelet Filters (x (left) direction and y (right) direction) 

 

The wavelet responses dx and dy are summed up over each sub-region and form a 

first set of entries in the feature vector. The sum of absolute values of the responses 

|dx| and |dy| is extracted to give information about the polarity of intensity changes. 

Each of 4 x 4 subregions has a 4D descriptor vector v for intensity structure: 

 v = ( dx, dy, |dx|, |dy|) 

This results in a descriptor vector with 64 components. Wavelet responses are 

invariant to bias in illumination. Invariance to contrast is achieved by turning the 

descriptor into a unit vector. 

 



 

 

72 

 

2.7. Local Keypoint Comparisons 

 

In this paragraph comparisons among the most used local keypoints are done. More 

particularly, SURF detector is compared to the Difference of Gaussians (DoG) 

detector by Lowe [60] called SIFT, and a version of Harris detector based on 

Hessian-Laplace detectors proposed by Mikolajczyk [74]. As criterion of evaluation 

Repeatability is chosen. The Repeatability expresses the reliability of a detector to 

find the same interest point under different viewing conditions. The number of 

interest points found is on average very similar for all detectors. The thresholds 

were adapted according to the number of interest points found with the DoG 

detector. The experimental results reported in figures 27, 28. are from [61]. 

  

Fig.27 Repetability in function of viewpoint angle 
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Fig.28 Repeatability in function of viewpoint angle 

 

SURF detector is tested with two versions: FH-9, the Fast Hessian Detector with the 

initial filter size 9 x 9 and FH-15, the 15 x 15 filter on the double input image size 

version. The FH-9  detector is more than five times faster than DoG (SIFT detector) 

and ten times faster than Hessian-Laplace (Hessian-Laplace version of Harris 

Detector). TheFH -15  detector is more than three times faster than DoG (SIFT) and 

more than four times faster than Hessian-Laplace. From the results showed in [61] 

the repeatability scores for SURF detectors (FH-15 and FH-9) are comparable or 

even better than for the competitors. The results reported in tab.1 are from [61]. 

Detector Threshold Number of points Extraction time 

FH-15 (SURF) 60000 1813 160 

FH-9 (SURF) 50000 1411 70 

Hessian-Laplace 1000 1979 700 

Harris-Laplace 2500 1664 2100 

DoG (SIFT) Default 1520 400 

Table 1 Comparisons Details: Detectors, Thresholds, Number of local keypoints and 

calculation time are reported. 
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Juan et al. [82] performed a further comparisons study of SIFT, PCA-SIFT and SURF. 

They uses KNN (K-Nearest Neighbor) and Random Sample Consensus (RANSAC) to 

the three methods in order to analyze the resultsof the methods application in 

recognition. KNN finds the matches and RANSAC [83] rejects inconsistent matches 

from which the inliers can take as correct matches. SIFT shows its stability in most 

situations although it is slow. SURF is the fastest with good performance. PCA-SIFT 

has good performance, especially in rotation and illumination changes. Juan in [82] 

focused their attention on keypoint matching for the evaluation of local keypoint 

detectors and descriptors. In eq. 47 the evaluation measurement: the ratio between 

the number of point-to-point correspondences that can be established for detected 

points and the mean number of points detected in two images. 

 

 

(47) 

C(I1,I2) is the number of corresponding pair, m1 and m2 are the numbers of the 

detector. This measure evaluates the performance of finding matches. Test are done 

to analyze the robustness against scale changes, view changes, illumination changes 

and rotation. 
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Fig.29 - A and H are the affine transformed images. B and C - scale changed images. D - rotation 

images. E and F are the blurred images. G - illumination changed images. The figure is from 

[82]. 

 

 The first experiment in [82] analyzes the processing time as measure of 

evaluation. The time counted includes feature detection and matching phase. 

SURF is the fastest one, SIFT is the slowest but it finds most matches. Graffiti 

dataset as shown in group A of fig.29  is used for processing time analysis. 

 

 Scale changes comparisons are done in second experiment (images from 

group B and C of figure 29. The evaluation is done by considering the 
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matching number of the three methods. The result is : when the scale get 

higher values, SIFT and SURF are much better than PCA-SIFT because PCA-

SIFT is not stable as SIFT and SURF. 

 

 The influence of rotation on SIFT, SURF and PCA-SIFT, is analyzed in third 

experiment. It shows that SURF doesn't work well, it finds the least matches 

and gets the least repeatability. PCA-SIFT found only one correct match of the 

first ten matches.  

 

 The fourth experiment gives a measure of robustness of the three methods 

against blur. Images from groups E and F of fig.29 are blurred with Gaussian 

blur. SURF and PCA-SIFT shows good performance. When the radius get 

larger, SURF detects few matches and PCA-SIFT finds more matches but 

smaller correct number. SITF outperforms SURF and PCA-SIFT. 

 

The illumination effect is analyzed in fifth experiment. Images from group G of fig.29 

get illumination changes. Under these conditions SURF shows the best performance 

(31% of repeatability)  

 

In last experiment the stability againts affine transformations is studied.  Images 

feom groups A and H are used, the viewpoint change is 50 degrees. The experiment 

shows that SURF and SIFT have good repeatability when the viewpoint 

transformation is small. When the viewpoint transformation get higher values SURF 

repeatability decreases up to 0 matches detected. On the other side PCA-SIFT shows 

better performance when viewpoint transformation get higher values. 
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SIFT is invariant to rotation, scale changes and affine transformations but it is slow 

and not good at illumination changes. SURF is not robust against rotation and 

illumination attacks but it has good performance as the same as the SIFT. This 

section can be concluded saying that there is not a best descriptor methods. It 

depends on the application. For more details in local descriptors comparisons see 

[82]. 

It is very important to emphasize that local keypoints are often used to finding point 

correspondences between two images of the same scene or object (matching 

points). The local keypoint descriptors are used for object matching analysis inside 

of an image, image registration, image retrieval. In the next chapters the most 

important local keypoint descriptors will be compared in texture features, visual 

saliency and image forensics applications. 
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3. TEXTURE SCALE DETECTION 

 

 

 

 

3.1. Introduction 

Images generally represent different surfaces in the scene, each surfaces are made 

of distinct parts. Texture indicates visual patterns in real and synthetic scenes. More 

precisely, surfaces with discontinuities in depth, material, illumination give rise to 

texture subimages, in contrast, the surfaces made with homogeneus material, under 

smoothly varying illumination and smooth variation of image brightness, give rise to 

non-texture subimage. As seen in paragraph 1.3, the discrimination between texture 

and non-texture subregions of the image is done also by discovering distinct texels 

(or textons), in the image. Each group of textons defines the corresponding texture. 

Due to complexity and diversity of natural images, textures analysis, description and 

synthesis are very challenging tasks. There are several approaches for texture 

inspection, including statistical approaches of autocorrelation function, optical 

transforms, digital transforms, gray tone co-occurrence, run lengths, and 

autoregressive models [6].  

Structural texture analysis focuses primarily on identifying periodicity in textures 

or identifying the position of texels (in this paper we use the words "texel" and 

"texton" as synonyms). In literature the Texton has not a precise mathematical 

definition, although in 1981 Julesz [13] defined it as the "putative unit of pre-

attentive human texture perception". In this chapter a texel is defined as "a basic 

repetitive element of a texture pattern". Texture "scale" is intended to be defined as 

the size of texture elements (texels or textons) that occur most frequently in the 
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image.  

Textures may be classified, in terms of periodicity and regularity of their 

structure, in five classes: regular, near regular, irregular, near stochastic and 

stochastic. 

 Regular textures are simply periodic patterns where the intensity of color and 

the shape of all texture elements are repeated in equal intervals; 

 Near Regular textures are a statistical distortion of a regular pattern [84]; 

 Irregular textures present deformation fields from regular patterns; 

 Near Stochastic and Stochastic textures show typically dots and shapes 

randomly scattered over all the image. 

A tile is the fundamental region that can be used to describe a regular texture, by 

modeling a 2-D plane. Near Regular Textures can be also viewed as statistical 

departures from regular textures along different dimensions. Texture can be 

arranged by regularity variations in geometric space and it can be also arranged in 

function of texture spectrum (see fig. 30 ). Many scenes in real world do not have a 

regular structure but a near regular one (buildings, wallpapers, floors, tiles, 

windows, fabric, pottery and decorative arts, animal fur, gait patterns, feathers, 

leaves, waves of the ocean, and patterns of sand dunes), so for natural scenes the 

problem is to detect the scale, and to extract texels, also in case of a near regular 

structure. To simulate the real world on computers, near-regular textures deserve 

special attention. Texture scale value can be used in many image processing 

applications such as image segmentation, texture description, Content Based Image 

Retrieval and texture synthesis. Texture image segmentation, for example, is done 

by discovering distinct cohesive groups of spatially repating texels in the image. 

Different kinds of texture patterns are defined by corresponding texel size. Texture 

scale estimation is still a challenging problem in scientific community.  In this 

chapter a novel approach to detect texture scale is presented, in case of regular and 

near regular structures, by means of a new instrument: the Keypoint Density Maps. 

Furthermore a method to extract the texel from an image is proposed, once the scale 
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has been detected.  

The chapter is organized as follows: section 3.2 discusses some state-of-the-art 

techniques; section 3.3 introduces the concept of Keypoint Density Maps; section 3.4 

presents scale detection method; in section 3.5 texel extraction technique is 

presented; in section 3.6 experimental results are discussed and compared to a state 

of the art method; a conclusive section ends the paper. 

 

 

Fig. 30 Texture spectrum - texture patterns 
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3.2. State of the art 

Texture scale detection is not a young research field in image processing, but 

today it remains one of the most challenging issue in Computer Vision. The first 

attempts to use a structural approach to extract periodicity from a texture were 

based on autocorrelation functions [85,86]. Both methods have been widely used 

but they achieved poor results in case of natural textures. In [87] Malik et al. treated 

textons as frequently co-occurring combinations of oriented linear filter outputs.  

They built a universal texton vocabulary by processing a large number of natural 

images. Each pixel of the image is mapped to its nearest texton by using a K-means 

clustering approach. A similar approach was presented by Zhu et al. [88] who 

adopted a generative image model, in which an image is a superposition of bases 

from an over-complete dictionary of "textons". The last two methods are optimized 

for texture segmentation but do not focus on texture scale detection. Hong et al [89] 

proposed a scale descriptor and an energy minimization model to find the scale of a 

given texture. 

 They look for the smallest local patch whose probability density function is 

similar to the one computed on its neighboring local patches. Grigorescu et al in [90] 

identified texels in regular textures by searching for the smallest window through 

which the minimum number of different visual patterns is observed- This 

corresponds to find the smallest window that minimizes Rényi’s generalized 

entropy (see fig.32 ). Grigorescu’s method performs fair results with periodic 

textures, but it does not work as well with near regular ones.  

In [91] image texture is represented by a segmentation tree whose structure 

captures the recursive embedding of regions obtained from a multiscale image 

analysis. This method is oriented for extracting texels and not for direct scale 

computing.  

In [92] the authors presented an approach for discovering texture regularity, by 
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formulating lattice finding as a higher-order correspondence problem, with an 

iterative approach and post-warping. 

 

 

a) 

 

b) 

Fig. 31 Two regular texture images from Brodatz Database (a) D20 and (b) D101 

 

 

a) 

 

b)  

Fig.32 Rényi’s quadratic entropies of the textures in Fig. 31. The x-axis represents the window 

size w, the y-axis represents the quadratic Rényi Entropy. The texture scale value is the 

smallest local minimum of the function. 
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3.3. Keypoint Density Map 

The method presented in this chapter of this thesis uses three different type of 

algorithms to extract the interest points of an image: SIFT, SURF and Harris corner. 

The detectors and the descriptors of these local keypoints have been also discussed 

in the second chapter of this thesis. 

In this section the new concept of Keypoint Density Map (KDM) is presented, KDM 

is the evolution of the SIFT Density Map, a model that we presented in my previous 

work [93]. A KDM is a representation of the density of a distribution of the 

keypoints in an image and can give essential information about the regularity of its 

structure. 

Suppose to have an image I, MxN, with an extremely regular distribution of 

keypoints (fig.33), the average number of pixels per keypoint NP is: 

n

NM
NP


 . (48) 

where n is the number of keypoints in the image. Considering  

PNs 1  (49) 

a squared area of size s1 x s1 will include only one keypoint, regardless of its position 

in the image (fig.33). In general, a squared area of size sk x sk where 

Pk Nks   (50) 

will include, on average, k keypoints. . Due to construction, it can asserted that the 

patch will include always exactly k keypoints only when  k2 is integer.  

A Keypoint Density Map KDMk  (fig. 34.b) is built by counting the number of 

keypoints into a sliding window of size sk. Each point in the KDMk indicates the 

number of keyponts into a squared area of size sk, centered in corresponding point 

of the image. The KDM mode vector is defined as the vector MV of the dominant 

modes mk k=1…kmax , where mk is the most frequent value in the map KDMk 

(fig.34.c). kmax is limited by the image size: 
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Due to truncation in eq.50, (k values must be integers) there is no 1-1 relationship 

between k and KDMk, because the same value of sk (and then the same KDM) could 

derive from different values of k. This reduces, in practice, the number of maps to be 

computed. This number is typically less than a half of the image size. In case of very 

regular textures the KDM mode vector is linear, or quasi linear, with k (for 

construction, linearity is assured only when  k2 is integer). The progress of the mode 

vector will be used into the next step to estimate the scale of the image texture.  

 

 

Fig.33 An image with a very regula distribution of keypoints (blue dots). 
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3.4. Texture Scale Detection 

In the previous section very regular distributions of keypoints (fig.33) have been 

taken into account. In this case the KDM mode vector is quasi linear with the 

parameter k. For real images the linear model assumption is not verified for all the 

possible values of k. To estimate the scale the method looks for the subset of values 

of k which better fit the linear model Ml of the mode vector. In particular the mode 

vector MV is subsampled in the following way: 

   

min

max

maxmax

max

...2,1

..3,2,1

p
k

k

knk

nn

knMVkM
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





. (52) 

 

where ki is the scale to be investigated, kmax is defined in eq.51 and pmin is discussed 

above. M(ki) is a vector containing a subset of the values of MV starting from ki , in 

arithmetic progression with common difference ki, until the end of the vector. To 

ensure that M(ki) will contain at least pmin points, the starting ki is limited to the 

ratio of kmax and pmin. This limits also the maximum scale observable with this 

method: 

  

min

max
max

p

Nk
s P

 . (53) 

For a more accurate analysis, terms should be taken in quadratic progression: 

max..16,9,4,1 nn   (54) 
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but this would limit the maximum observable scale, if it has been supposed to work 

with at least pmin points.  

2

min

max
max

p

Nk
s P

 . (55) 

Then, it has been decided to subsample MV with terms in arithmetic progression, at 

the expense of some inaccuracy. To estimate the scale of the input image it has been 

selected the subsampled vector M which minimize an error function with respect to 

the linear model Ml. The corresponding starting value ks indicate the estimated scale 

s for the input image: 

    ilis

Pk

kMkMek

Nks
s

,minarg


. (56) 

 

Two different error functions e have been chosen: the mean square error (MSE) 

(fig.34.d) and the maximum absolute displacement (MAD) (fig.34.e) 

    

    iin
n

i

n

iini

knkMkMAD

knkMkMSE





max

2

 (57) 

with the same constraints of eq. 51. Experimental results with the two error 

functions will be discussed in section 3.6 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

Fig. 34 An example of regular texture (a), the corresponding Keypoint Density Map (SIFT) with 

k= 39 (related to the estimated scale sk=38) (b), the Mode Vector (c), the MSE function error 

(d), the MAD function error (e) and the detected texel(f). Note that the black area on (b) 

depends on the size of the sliding window, as it cannot overstep the image borders.



 

 

88 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 

Fig. 35  Input texture (a), clustered blocks (b), and centroids (c,d,e). Extracted texel is (e) 

3.5. Texel Extraction 

Once the scale has been detected, the texture element (texel) can be extracted from 

the input image. If sk is the estimated scale, and k the related index, the 

corresponding Keypoint Density Map KDM(k) is selected, and all the values in the 

map which are equal to the most frequent value MV(k) (note that in general MV(k) 

and k may be slightly different). Each point in the map KDM(k) correspond to a 

block of size sk. Only those blocks which contains exactly MV(k) keypoints are 

selected. Block coordinates are then grouped using mean shift clustering and only 

centroids are analyzed, to reduce computational effort. In order to find the most 

representative block, keypoints of the selected blocks are matched, comparing their 

descriptor vectors (only in case of SIFT and SURF). If Bi and Bj are the two blocks to 
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be matched, for each keypoint i∈Bi its vector of descriptors di  is compared with the 

vectors dj of all the points j ∈ B . For efficiency, rather than using Euclidean distance, 

the angle between the two vectors is computed: 

 

 jiij dd  arccos  (58) 

 

 

and the two minimum angles: 

 

ij
jBj

ij
Bj

j

j





1

min

min

2

1








 (59) 

where j1 is the point in Bj which vector j d has the minimum angle with vector i d. To 

increase robustness, matches are accepted only if the ratio of the two minimum 

angles, α1 and α2, is less than a threshold (0.6, as suggested by Lowe [60]). Note that, 

for small angles, this is a close approximation to the ratio of Euclidean distances. We 

further apply RANSAC (RANdom SAmple Consensus)[83] to the matching points to 

filter outliers. The block selected is the one which maximizes the average number of 

matches with all the other blocks , after RANSAC, as representative of the texture. 

Two blocks will match also in case of rotation or scaling, as SIFT and SURF 

descriptors are invariant to geometrical transformations. Therefore texel extraction 

method works also in case of near regular textures, in which texels may have 

slightly differences in orientation and  scale (fig.35). 
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3.6. Experimental Results 

 

In this section the results of the method are compared with those of the Grigorescu 

and Petkov [90] method. Test were made onto two different datasets:  the PSU Near 

Regular Texture Dataset (PSU Dataset) which is composed of 45 images with regular 

and near regular structure, and 80 images from the 2.1D Textures Dataset (UIUC 

Dataset) which is composed of natural homogeneous textures. I created a ground-

truth by manually selecting the scale for all the images in the datasets. Tests were 

executed on an Intel Core i7 PC (4 CPU, 1.6 GHz per processor, 4 GB RAM), 

exploiting the Matlab parallel library to make 4 workers run simultaneously. Tests 

are made with the two error functions described in eq. 57, with two different values 

of the minimum number of points, and using the three types of interest points 

described in chapter 2. The PSU dataset is split into “small” (scale <=55) and “large” 

(scale >55) textures, to show the influence of the input parameters in the two cases 

(i arbitrarily selected 55 as threshold to split the dataset into two subsets with more 

or less the same number of images). To evaluate results, the average relative 

absolute error is measured: 

 

(60) 

 

Error of our method and of the reference method, with respect to the ground-truth 

sGT.  

Figures 36, 37, 38, show the results within the PSU database. In case of large 

textures, in almost all the tests the method presented performs better than 

Grigorescu’s method, but in some cases (i.e. using the SIFT keypoints, MSE error 
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function and pmin=2) the method presented outperforms it (21% vs 31%). In case of 

small textures, the SURF and the SIFT based approaches achieve more or less 

similar results (38%) than Grigorescu, but better results are observed when using 

SURF, MSE and pmin=3 (33%). Harris based has the worst results. As expected, 

results with large textures improve if we use pmin=2, because larger scales can be 

observed. Otherwise results improve for smaller textures in case of pmin =3, as the 

accuracy increases (a larger number of points to compute the error function), while 

the maximum detectable scale is reduced.  

Within the 2.1D Texture dataset i achieved very satisfactory results, similar to those 

obtained within the PSU Dataset for larger scales (fig.39), and remarkable if 

compared to those obtained with Gregorescu’s method. In this case i do not split the 

dataset, as almost all the images show regularity at large scales. Results show also 

that the method presented works as well with regular and near regular textures (fig. 

36,37,38, 39), while Grigorescu’s is optimized only for regular ones. 

In term of efficiency, execution time strongly depends on the texture scale, as in case 

of lower scales the novel method needs to build more KDMs. Nevertheless  the 

method presented is faster than the reference method. In fact while Grigorescu’s 

method investigates all the possible scales from a minimum value to the maximum 

value (a quarter of the image size), the new method analyzes only a subset of the 

possible scales, according to the rule in eq.50 (in our tests, 50% of the whole range 

of scales), therefore saving a lot of computational effort. Finally, execution time with 

this method is halved (180s vs 90s in average for medium sized images), with 

respect to the reference method. 
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Fig. 36 The relative absolute error, with respect of the ground truth, for the PSU 

database. Values are measured for reference (Grigorescu) and my method, with 

different parameters and different keypoint extraction algorithms. (SIFT) 

 

Fig. 37 The relative absolute error, SURF-keypoints - database PSU 
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Fig. 38 The relative absolute error, HARRIS-keypoints - database PSU 

 

 

Fig. 39 The relative absolute error, with respect of the ground truth, for the Vistex 

database. Values are measured for reference (Grigorescu) and my method, with different 

parameters and different keypoint extraction algorithms 
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3.7.  Conclusions 

 

Detecting scale in textured images is a very hard task, and a relatively unexplored 

problem. In the work presented in this chapter the distribution of the interest points 

in the image is analyzed, by means of the Keypoint Density Maps, a novel instrument 

for Image Analysis applications. To our knowledge, there are no other approaches in 

literature that use interest points distribution to analyze the regularity of a texture. 

The results are very encouraging: with respect to the reference method, 

experiments showed that the novel method achieves similar precision in case of 

small textures, but outperforms it in cases of large textures,  and in case of near-

regular textures (figures 40, 41). Furthermore, Keypoint Density Maps (with SIFT) 

have been yet successfully used in visual saliency detection, and may be a versatile 

instrument for several image analysis application: texture discrimination or 

description, image segmentation, etc. 
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Fig. 10 Some visual examples of texture (left) and texels extracted with my method (right). 
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Fig. 41 Some visual examples of texture (left) and texels extracted with my method (right). 
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4. VISUAL SALIENCY 

 

 

 

4.1. Introduction 

One of the most challenging issues in Computer Vision field is the detection of 

salient regions in an image. Psychovisual experiments [94] suggest that, in absence 

of any external guidance, attention is directed to visually salient locations in the 

image. Gestalt psychology refers to theories of visual perception which attempt to 

describe how people tend to organize visual elements into groups or unified entities 

when certain principles are applied [95]. Main Gestalt grouping principles include 

similarity, continuation, closure and proximity. These principles describe visual 

coherencies from different aspects. Some work developed descriptors for each 

principle [96]. Visual Saliency or Saliency mainly deal with identifying fixation 

points that a human viewer would focus on at the first glance. Visual saliency usually 

refers to a property of a "point" in an image (scene), which makes it likely to be 

fixated. Most models for visual saliency detection are inspired by human visual 

system and tend to reproduce the dynamic modifications of cortical connectivity for 

scene perception. 

 

 “Visual saliency is a property of objects or regions in which they stand out in 

a scene when viewed by the human visual system.” [97]  

 

 “The salient map of an image highlights the pertinent objects while deleting 

the insignificant ones.” [98] 
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 “Visual saliency is the perceptual quality that makes an object, person, or 

pixel stand out relative to its neighbors and thus capture our attention” [99] 

“Studies in psychology  and cognition fields have found that, when looking at 

an image, our visual system would first quickly focus on one or several 

“interesting” regions of the image before further exploring the contents.” 

[100] 

The goal of visual saliency is to match real human fixations of the scene (Fixation 

Points). A good saliency map should match, as more as possible, with human fixation 

points map of the scene. In the following paragraphs State of the art of visual 

saliency approaches is given. My method [93] for saliency maps is presented and 

compared with the best visual saliency methods of the state of the art. 

 

4.2. State of the art 

With the growing of digital multimedia data, salient maps have been increasing in 

intereset in last few years, especially for CBIR (content based image retrieval). The 

reason why is that salient maps detect predominant objects in the scene. 

In scientific literature Saliency approaches can be subdivided in three main groups: 

Bottom-up, Top-down, Hybrid. 

 

1. In Bottom-up approaches (stimulus driven) human attention is considered a 

cognitive process that selects most unusual aspects of an environment while 

ignoring more common aspects. In [101] the method is based on parallel 

extraction of various feature maps using center-surround differences. In 

[102] multiscale image features are combined into a single topographical 

saliency map. A dynamical neural network then selects attended locations in 
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order of decreasing saliency. Harel et al. in [103] proposed graph based 

activation maps.  

2. In Top-down approaches [104,105] the visual attention process is 

considered task dependent, and the observer's goal in scene analysis is the 

reason why a point is fixed rather than others. Object and face detection are 

examples of high level tasks that guide the human visual system in top-down 

view.  

3. Generally Hybrid systems for saliency use the combination of the two levels, 

bottom-up and top-down. In hybrid approaches [106,107] Top-down layer 

usually cleans the noisy map extracted from Bottom-up layer. In [106] top-

down component is face detection. Chen et al. [107] used a combination of 

face and text detection and they found the optimal solutions through branch 

and bound technique.  

A common problem for many of these models is that they often don’t match real 

fixation maps of a scene. A newer kind of approach was proposed by Judd et al. 

[108] who built a database [109] of eye tracking data from 15 viewers. Low, middle 

and high-level features of this data have been used to learn a model of saliency. In 

our work we aimed to further study this problem. We decided to investigate about 

the relationship between real fixation points and computer generated distinctive 

points. The method, presented in this section, performs a new measure of visual 

saliency based on image low level features, particularly through the distribution of 

keypoints extracted by SIFT algorithm, as descriptor of texture variations into the 

image. In this work color feature is not considered. The method is totally 

unsupervised and it belongs to bottom-up saliency methods. Method effectiveness is 

measured by comparing resulting maps with real fixation maps of the reference 

database [109] and with two of the most important bottom–up approaches 

[102][103] and a hybrid method[108].  
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4.3.  Proposed Saliency Measure 

 New measure of Visual Saliency is given in this method by focusing on low level 

image features such as texture. What’s the matter for which texture information is 

used for detecting visual saliency? The answer is that texture gives important 

informations about image “behavior”. The base for extracting salient regions, 

according to the method presented here, is to emphasize texture rare event. It is 

studied the spatial distribution of keypoints inside of an image to describe texture 

variations all over the image. The levels of roughness of both fine and coarse regions 

can be very different (in a fine region we will find a larger number of keypoints than 

in coarse regions), so keypoints density is used to find various texture events and to 

identify the most salient regions. In this work SIFT [60] algorithm is used to extract 

keypoints from an image. Then the concept of SIFT density maps (SDM) is 

presented, SDM is used to compute the final saliency map.  
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a)  

 

b) 

 

c) 

 

d) 

Fig. 42. Original Image (a), SIFT keypoints (b), SIFT Density Map (k=64) (c), final 

Saliency Map (d). 

 

4.4.    SIFT Density Maps 

A SIFT Density Map (SDM) is a representation of the density of keypoints in an 

image, and can give essential information about the regularity of its texture.  A SIFT 

Density Map SDM(k) is built by counting the number of keypoints into a sliding 

window of size k x k, which represent the scale of observation. Each point in the 

SDM(k) indicates the number of keyponts into a squared area of size k x k, centered 

in corresponding point of the image. It is evident that density values are strictly 

related to the value of k, and are limited by the window size. In fact smaller 

windows should be sensible to texture variations at a finer level, while larger 



 

 

102 

windows will emphasize coarser deviations. In section 4.5 the sensibility of the 

results with k will be discussed.  

In real scenes, the simultaneous presence of many elements (the sky, the urban 

habitations, the urban green spaces) will show many kinds of texture. From a SIFT 

distribution point of view, the homogeneous surface of the sky has almost null 

values, the urban green spaces has mean density while urban habitations have high 

concentration of keypoints. (fig. 42) 
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a) 

 

b) 

Fig. 43. Two image examples: a homogeneous subject in a textured scene (a) and the 

corresponding Saliency Map (b); 
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a) 

 

b) 

Fig. 44.; Two images example :a textured object in a homogeneous background (a) and 

the corresponding Saliency Map (b) 
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4.5.  Saliency Map 

The saliency map SM, performed in my method [93], for a given k, is built as the 

absolute difference between the SDM values and the most frequent value MV of the 

map: 

 

      kSDMMVkSDMkSM   (61) 

which is further normalized with respect to the maximum value to restrict SM 

values to [0,1]. 

The most salient areas into the image are those related to the SDM values with the 

maximum deviation from the most frequent value, typically the most rare texture 

events in the image. This measure emphasizes both the case in which a textured 

object is the salient region, as it is surrounded by homogeneous areas (the most 

frequent value near to 0), and the case in which a homogeneous area is surrounded 

by textured parts (a higher most frequent value). (figures 43, 44) 

In addition, for a smoother representation of the saliency map, we apply to the SM 

an average filter which has a window size that is a half of that used to build the map 

(k).  
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

Fig. 45 Original Image (a), SIFT Density Maps with different values of k (16,32,64,128).  
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a) b) 

  

c) d) 

  

e) f) 

Fig. 46 Fixation Map (a) of the image in fig. 45.(a), Binary maps with different thresholds 

(0.95, 0.9, 0.85, 0.8, 0.75) 
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4.6. Experimental results 

In this section results of the method I performed, are compared with those of  Itti-

Koch[102], Harel’s Graph Based Visual Saliency (GBVS) [103] and Judd [108] 

methods. Tests were made on [109] dataset which consists of 1003 images and the 

corresponding maps of fixation points, which are taken as reference groundtruth (in 

the tests all the images have been resized down by a factor of two). Tests were 

executed on an Intel Core i7 PC (4 CPU, 1.6 GHz per processor, 4 GB RAM), and the 

method has been implemented in Matlab.  Koch’s Saliency Toolbox[110] is used to 

compute saliency maps for the methods [102] and [103], and the maps given in 

[109] for the Judd’s method. Tests were repeated for different values of window size 

(16, 32, 64, 128 - fig.45), with the aim to study the sensibility of the results to this 

parameter.  To compare the results with the other methods, and to the groundtruth, 

the less N% salient pixels (with N= 95, 90, 85, 80, 75 - fig.46) are discarded from the 

saliency, to create a set of binary maps. Then performances are measured by using 

as metric (SP), a combination of precision and recall parameters: 

 

 
 

 
 
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



 ;  (62) 

where MD is the binary version of the detected saliency map (with the method 

presented, or the others), while MR is the binary version of the reference fixation 

map. 

R is the recall, i.e. the ratio between the number of pixels in the intersection 

between the detected map MD and the reference map MR, and the number of pixels 

in  MR. When it tends to 1, MD covers the whole MR, but no information is given about 

pixels outside MR (a map made of only salient pixels gives R=1 if compared with any 

other map). If it tends to 0 detected and reference map have smaller intersection. 
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P is the precision, i.e the ratio of the number of pixels in the intersection between MD 

and MR, and the number of pixels in MD. When P tends to 0, the whole MD has no 

intersection with MR. If it tends to 1, fewer pixels of MD are labeled outside MR.  

Nevertheless this parameter will not assure that the whole reference area has been 

covered. 

Fig. 47 shows average precision results versus different values of thresholds. Note 

that my method gives its best results for k=128. As noted in section 4.5, smaller 

windows can capture finer details, while larger windows emphasize coarse 

variation of texture. In terms of saliency, human attention is more attracted by areas 

in which there are large texture variations, rather than by small deviation. Then a 

larger window size is preferable. Note also that results with 64 and 128 are similar. 

In fact it is observed that while the recall value increases with the window size, 

precision, in case of very large window, does not increase as well. 

In the comparison with the other methods, first some fundamental issues must be 

underlined: 

- Judd method is supervised, and uses 9/10 of the whole dataset for training 

and 1/10 for testing. Judd results are averaged only on the 100 testing images. 

It uses both color and texture information. 
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a) 

 

b) 

Fig. 47. Average Saliency Precision (SP) vs. Threshold for my method with different 

window sizes (a), and for my method (k=128) compared to the other methods (b). 

 

- Itti-Koch and GBVS method are unsupervised method and use both color and 

texture information. 
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- My method is unsupervised and use only texture information to build the 

saliency map. 

My saliency map gives better results than Itti-Koch, for all the threshold values, even 

if we use only texture information. Results are similar to GBVS for higher threshold 

values (0.95 and 0.9), which give information about the most salient pixels, while 

my precision does not increase as well for lower values of threshold (0.85, 0.8). As 

expected Judd method achieves best results, as it is a supervised method, while all 

the other methods are unsupervised. Furthermore Judd tests refers only within a 

small selected subset of images (100 testing images), while other methods have 

been tested within the whole dataset. Judd results are reported only as asymptotic 

values to be compared with. Figures. 48, 49, 50 show some examples of saliency 

maps with all the discussed methods. Regarding temporal efficiency, my method 

takes less than 10s to build a saliency map, and it is comparable with Itti-Koch and 

GBVS method for medium images (300 x 600). Most of the time (70% ca) is spent to 

extract keypoints, but it depends on image complexity, i.e. the number of keypoints 

extracted. 

 

4.7. Conclusions 

Visual saliency has been investigated for many years but it is still an open problem, 

especially if the aim is to investigate the relationship between synthetic maps and 

points, in a real scene, that attract a viewer attention. 

The purpose of the method presented in this chapter was to study how computer 

generated keypoints are related to real fixation points. No color information has 

been used to build my saliency maps, as keypoints are typically related only to 

image texture property. 

Even if only texture information is used, experimental results show that my method 

is very competitive with respect of two of the most cited low-level approaches. 
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Judd’s method achieves better results as it is a supervised method which has been 

trained with the fixation maps within the selected dataset.   

In my future works i want to study new color based saliency techniques to be 

integrated with my proposed approach, to improve experimental results. 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

Fig. 48. Some visual results. Original images (a), fixation maps (b), Judd maps (c), Itti-Koch 

maps (d), GBVS maps (e), my method (f) window size 128. 
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g) 

 

h) 

 

i) 

 

j) 

 

k) 

 

l) 

Fig. 49. Some visual results. Original images (g), fixation maps (h), Judd maps (i), Itti-Koch 

maps (j), GBVS maps (k), my method (l) window size 128. 
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m) 

 

n) 

 

o) 

 

p) 

 

q) 

 

r) 

Fig. 50. Some visual results. Original images (m), fixation maps (n), Judd maps (o), 

Itti-Koch maps (p), GBVS maps (q), my method (r) window size 128. 
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5. IMAGE FORENSICS 

 

 

 

 

5.1. Introduction 

 

The wide availability of digital cameras and imaging tools increased digital image 

manipulation phenomenon. The manipulation of digital images is made simple by 

low-cost hardware and software tools that are easily and widely available. For this 

reason, today, it is difficult to establish if a picture is  totally real, "almost" real, or far 

away from the real description of a scene. We can find examples of tampered images 

in several fields: tabloid magazines, political campaigns, medical imaging, digital 

forensics. In the analogical era, a photo was always considered as a proof of 

occurrence of a real scene. Nowadays image manipulations mine the credibility of a 

digital document (for example, a body of evidence can be hidden in an image 

presented in a court of law). Although digital watermarking techniques have been 

proposed to provide authenticity to images, the majority of images caputerd do not 

contain a digital watermak. Digital Image Forensics[111] deals with the problem of 

certifying the authenticity of a picture, or its origin, without explicit a priori 

information, e.g. using watermarks. This research field, particularly, deals with: 

1. image source identification – it determines the source of digital image (such 

as digital-camera or scanner) through data acquisition. 

2.  discrimination of synthetic images from real images; it identifies computer 

generated images  
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3.  image forgery detection. It determines when a digital image has been 

tampered. 

This chapter is focused on third branch of image forensics: forgery detection. This is 

a primary goal for image forensics, an image can be tampered in many ways at 

different degrees. In next paragraph an overview of the most important kind of 

image forgeris. 

5.2. Image Tampering 

Many of image tampering techniques [112] generate image with no visual traces or 

artifacts. The most used techniques for image tampering are: 

 Copy-move: It is typically used to add or hide some objects in a scene. Parts 

of the image are duplicated elsewhere into the same image, often after being 

modified by geometrical transformations. 

 Image-splicing: A common form of photographic manipulation is the digital 

splicing of two or more images into a single composite. When performed 

carefully, the border between the spliced regions can be visually 

imperceptible. 

 Resampling: To create a convincing composite, it is often necessary to 

resize, rotate, or stretch portions of an image. For example, when creating a 

composite of two people, one person may have to be resized to match the 

relative heights. This process requires resampling the original image onto a 

new sampling lattice, introducing specific periodic correlations between 

neighboring pixels. 

 Re-touching: It is a kind of image manipulation for photo restoration or 

enhancement. Techniques as adjusting colors, contrast equalization, white 

balance, sharpness, removing elements or visible flaws on skin or materials. 
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An istance of re-touching is the manipulation for fashion, it is the removal of 

visible flaws on top-model skin. This is used for commercial use. 

A good overview of the most used image manipulation is given Farid Image 

forensics survey [2].   

 

 

5.3. Copy-Move forgeries 

 

One of the most studied image manipulations in literature is the copy-move process 

of  parts of an image, to hide or add details in a real scene. Parts of the image are 

duplicated elsewhere into the same image, often after being modified by geometrical 

transformations (such as translation, rotation, change in scales). In fig. 51 it is 

shown a famous example of copy-move forgery, in which a portion of an image is 

copied and pasted to hide information. In fig. 52 an object of the scene is copied and 

pasted in another part of the image. As showed, a copy move tampering done with 

an high grade of  accuracy is not often visible to a first look.  

Different approaches have been performed in state of the art of copy move forgery 

detection techniques. I focused my attention on detecting copy-move image 

tampering, to estimate the reliability of an image. In next paragraphs of this 

chapters the following sections are included: state of the art of copy-move detection 

approaches; my methods for copy-move detection; experimental results. 
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Fig.51 A famous example of a copy move tampering, George Bush was removed by simple 

copying and pasting of several soldiers 

 

  

Fig. 52 An example of copy move tampering: a new soldier is copied and pasted in the first line 

of chinese terracotta soldiers 
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5.3.1 State of the art 

 

Copy-move tampering is often retouched with geometrical and illumination 

adjustments, so the portion of pixel copied has the same, or similar, features of the 

rest of the image. For this reasons it is very difficult for a human observer to detect 

the forgery.  We can divide the most part of copy move detection methods in 

literature into two main groups:  

 block-matching based methods;  

 local features matching methods.  

In the first family of techniques an image is divided into overlapping blocks, then 

some features are extracted from each block, and compared each other to find the 

most similar ones. Results are analyzed and decision is made only if there are 

several pairs of similar image blocks within the same distance. Several authors 

proposed different features to represent image blocks: Discrete Cosine Transform 

(DCT) [113], Principal Component Analysis (PCA) [114], Discrete Wavelet 

Transform (DWT) and Singolar Value Decomposition (SVD) [115], color information 

[116] . In [113], the advantage of using DCT is that the signal energy is concentrated 

on the first few coefficients, and operations such as noise addition, compression, and 

retouching should not affect these coefficients. Nevertheless, it does not work if 

duplicated regions are processed by geometrical transformation. In [114] 

eigenvectors of the covariance matrix between blocks are used to represent them. 

This representation proved to be robust to compression and noise addition, 

however re-sampling (scaling, rotation) affects eigenvalues. The results of [115] and 

[113] are very similar because SVD is on parallel with PCA technique. Luo et al. in 

[116] used color information to represent blocks: average value of red, blue and 

green color components of the whole block and of 4 sub-blocks, divided according to 

different directions. Experimental results showed that this method was very robust 
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to JPEG compression, Gaussian blurring and additive noise. These approaches are, 

on the whole, robust to noise addiction, compression, retouching, but lack of 

robustness against geometrical attacks (rotation, scaling, distortion).  

The second family of techniques is based on local features matching: several 

methods used image interest points matching to identify duplicated regions. Huang 

et al. presented a method which uses SIFT descriptors [117] to detect copy move 

forgeries in an image, by matching keypoints. In [118] i performed a method that 

matches clusters of SIFT keypoints and that proved to be robust to scaling and 

rotation. In [119] Amerini et al. used SIFT keypoints matching to estimate the 

parameters of the affine transform and to recover matched areas. These last two 

methods are the first works in literature which tried to study the structure of the 

copies, instead of analyzing only low-level features. For a complete overview about 

region duplication detection see [120]. 

I performed three image forensics techniques for copy-move detection. In the 

following paragraphs , for each of methods a further description is given. 

5.4. Block matching approach 

In this paragraph my block matching approach for copy-move detection is 

presented. In this method texture features are exploited to be extracted form blocks 

to be matched. The goal is study if teture is suited for the specific application, and to 

compare performance of several texture descriptors. 

In fig.53  the scheme of overall method is shown. 

 

Fig. 53 scheme of overall block matching method 

Input image (size M x N) is first grayscaled, as in this method I am interested only in 

studying the influence of texture properties. Image is then decomposed into 
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overlapping square blocks (size B x B). The number of blocks to be analyzed is nB= 

(M-B+1)x (N-B+1). Texture features are exctracted from each block: 5 different 

texture descriptors are tested (see paragraph 5.4.1). Each feature is represented as a 

vector. 

Blocks are sorted according to vector’s component which has the maximum 

variance along all the blocks. The sorted list of the blocks is then scanned in order to 

find similar blocks. Features from each block are compared to those of the next 

blocks in the sorted list, according two possible approaches: 

- Fixed Window: WS=nB*P where P is a fixed parameter, that indicates the 

percentage of following blocks in the list to be considered. 

- Adaptive window: blocks are compared up to those in the list which distance 

(for the key component) is below a threshold. 

Even if the second approach is adaptive, the first one is faster, since matching time 

for matching is constant for all the blocks. Furthermore no significant differences in 

accuracy has been measured. Therefore it is preferred the fixed window 

solutionsetting the value of WS as 1/1000 of the number of blocks. 

As similarity criterion the relative error is used: 
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( 63 ) 

between the corresponding components Vi j and Vik of the feature vectors (size n) 

extracted from two blocks Bj and Bk. To make it symmetrical, instead of using (63), 

the relative error is computed as the ratio of the absolute error and the average 

value of the two components: 



 

 

123 

 
niTH

VV

VV

k

i

j

i

k

i

j

i ..1

2

1






 

( 64 ) 

If all the relative errors are below a percentage TH,  the two blocks are considered 

as candidate forgeries. The relative error of each component is choosen, rather than 

Euclidean distance of the vectors, as in some cases,componentshave different order 

of magnitudes. 

Then the distance djk between spatial coordinates of matching blocks is computed. 

Matching blocks that overlaps are considered false positives and discarded.To 

further reduce false positives, the method selected only pairs of blocks which are at 

the most frequent distance (MFD processing). In fact in a tampered image a copy is 

the translated version of a set of blocks from elsewhere into the image, and the same 

translation function is applied to all the copied blocks. Furthermore, in case of 

forgeries,duplicated areas are composed by several matching blocks. Then,among 

candidates, isolated blocks, that are not connected to any other blocks,  are deleted 

from the output mask (IB processing).This general approach has been applied 

extracting 5 different texture descriptors.  

 

5.4.1 Texture Descriptors 

 

Texture is one of the most studied image features in Computer Vision, Image 

Processing and Computer Graphics applications. For our purpose we test 5 different 

standard texture descriptors (see chapter 2): 

- Statistical: mean, standard deviation, skewness and kurtosis of the pixels grey 

values. Output is a 4-dimensional vector. 
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- Edge Histogram: in our simplified version, we filter blocks with 4 directional 

(vertical, horizontal, 45, 135)and a non-directional Roberts-likeoperators. Mean 

of the filtered blocks are considered as descriptors.Descriptors is a 5-

dimensional feature vector. 

- Tamura descriptors:Contrast, Coarseness and Directionality properties from the 

Tamura set of features. Output a 3-dimensional feature vector. 

- Gabor descriptors:a bank of Gabor filters (2 scale and 4 orientations) is applied 

to blocks. Mean and standard deviation of the coefficients from each sub-band 

arecalculated to form a 16- dimensional texture feature. 

- Haralick Descriptors: The Haralick descriptors are based onstatistical moments 

and obtained from co-occurrence matrix.We use as descriptors correlation, 

energy, contrast, homogeneity, resulting in 4-dimensional vector. 

 

5.4.2 Evaluation Metrics 

 

To evaluate the precision of the method, the source and the destination areas of 

every copy moves are saved as a binary mask: this area is called AR (reference area, 

fig. 54.c). The result of the detection method is an output mask AD (detected area, 

fig.54.d-i) 

Better results as much AD is similar to AR. In particular we measured detection 

precision (DP) as follows: 

 
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  ( 65 ) 
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
1  ( 66 ) 

PRDP   ( 67) 

where: 

-R is the recall, i.ethe ratio between the number of pixels in the intersection of the 

detected area AD and the reference area AR, and the number of pixels in AR. When 

it tends to 1, AD covers the whole AR, but nothing can be said about pixels outside 

AR; if it tends to 0 AD and AR have smaller intersection; P is the precision, i.eone 

minus the ratio between the number of pixels in AD, which are not in AR, and the 

number of pixels in AD. When Ptends to 0, the whole detected area has no 

intersection with the reference. If it tends to 1, fewer pixels of AD are labeled 

outside AR. Nevertheless this parameter will not assure that the whole reference 

area has been covered. 

DP combines these two parameters: DP is high if AD both covers AR and has few 

outliers, and it is low if AD and AR are only partially overlapped or, when AR is well 

covered, if ADencloses many pixels which are not in AR. 

Varying block sizetwo overlapping effects are observed: 

-If the block size is larger than the tampered areas, R0. In fact,  whatever block 

we consider it will contain pixels which do not belong to the tampered area. 

Therefore no matches can be found. 

-If block size is small P 0, because the probability to have natural similarities in 

an imageincreases, so that the number of false positives. 



 

 

126 

 

 

 

 

a) original 

 

b) tampered 

 

c) reference area 

 

d) BS=8;TH=0,01; 
DP=0,66 

 

e) BS=16;TH=0,01; 
DP=0,63 

 

f) BS=32;TH=0,01; 
DP=0,24 

 

g) BS=8;TH=0,01; 
DP=0,95 

 

h) BS=8;TH=0,01; 
DP=0,94 

 

i) BS=8;TH=0,01; DP=0,84 

Fig. 54 Example results: Statistical Descriptor. After matching (d-f) and after post-processing 

(MFD and IB processing)  (g-i). BS=block size, TH=threshold, DP=Detection Precision 



 

 

127 

 

 

5.4.3 Experimental Results 

 

The overall method has been implemented in Matlab and executed on an Intel Core 

i7 PC (4 CPU, 1.6 GHz per processor, 4 GB RAM). We exploit the Matlab parallel 

library to make 4 workers run simultaneously. The dataset is made of 20 400x400 

tampered uncompressed images, into which areas are copied and pasted onto other 

parts of the same image. For each test both accuracy and execution time are 

measured. Tests are also repeated for JPEG-compressed versions of the images 

(70% quality) to study how compression influences the detection ability of the 

analyzed descriptors. 

Fig.54 shows some results obtained with the Statistical descriptor, varying block 

size and with a fixed threshold value. Note that after matching (54.d-f), DP decreases 

when block size increases, since larger false positives are detected, and the method 

does not correctly detect contours of the copies, in correspondence of fine details of 

the reference area. After post-processing (54.g-i), results with block size 8 and 16 

are very similar, while 32 is a too larger value for this input image, and object 

contour is roughly detected. 

-Figure 55 shows average execution time for two of the steps of the method: 

feature extraction and matching (post-processing time is negligible with respect 

of matching). with block size.  

-Edge Histogram and Tamura descriptors are quite fast for small blocks while 

time strongly increases with block size.  

-Gabor and Haralick feature extraction time does not depend on block size. 

Regarding matching time, results (fig.55) versus block size (results averaged on 

thresholds) and versus threshold value are shown (averaged on block sizes):  
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-It loosely depends on block size (it slightly decrease as the number of blocks 

decrease) 

- Processing time increases when threshold value is higher,as the number of 

matches increases, particularly for Tamura and Gabor.  

Figures 56,57,58,59,60 report results about average detection precision results 

achieved with the 5 tested descriptors, for uncompressed (left) and JPEG-

compressed(right) images. 

Results after matching (purple, light blue lines and red in figures 56-60), before post 

processing, show that: 

- Statistical, Edge Histogram and Gabor descriptors give similar results: precision 

is very high (90%) for lower values of the threshold Th while it decreases when 

for higher values of Th, as some false positives are detected. 

- Tamura and Haralick give bad results (acceptable results only for Tamura with 

small block size) 

After post-processing (dark blue, yellow and violet): 

-For small blocks all the methods give similar results, very high precision (even 

about 95%). Only Haralick gives a lower average precision (85%). 

-Statistical, Haralick and Edge Histogram precisions are practically independent 

of threshold value, within the tested range of values. 

- Gabor and Tamura precisions decrease for higher threshold values, as some 

false positives are still detected. 

For JPEG-compressed images (quality 70%): 

- After matching, before post-processing, no good results with any of the 

descriptors, within the selected range of thresholds. 
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-After post-processing, bad results are shown with lower values of the threshold, 

and some results are achieved only with 0,1. Acceptable results with Statistical 

(80%) and Edge Histogram (70% with block size 16 and 32). 

-Higher values of the threshold do not improve precision, as the number of false 

positives strongly increases. 

-For higher compression ratio, (e.g. 50%) the method does not give acceptable 

results, not even using best descriptors. 
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Fig.55 Average Execution Time: Feature Extraction vs block size (left); Matching vs block size (center) and vs 

threshold (right).  
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Fig. 56 Average Detection Precision (DP) vs Threshold (Th). Lines represents results 

measured after matching and after post-processing with different values of block sizes 

(8,16,32). (for clarity, table callouts are shown only on theright). 
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Fig. 57 Average Detection Precision (DP) vs Threshold (Th). Lines represents results 

measured after matching and after post-processing with different values of block sizes 

(8,16,32). (for clarity, table callouts are shown only on theright). 
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Fig. 58 Average Detection Precision (DP) vs Threshold (Th). Lines represents results 

measured after matching and after post-processing with different values of block sizes 

(8,16,32). (for clarity, table callouts are shown only on theright). 
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Fig. 59 Average Detection Precision (DP) vs Threshold (Th). Lines represents results 

measured after matching and after post-processing with different values of block sizes 

(8,16,32). (for clarity, table callouts are shown only on theright). 
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Fig. 60 Average Detection Precision (DP) vs Threshold (Th). Lines represents results 

measured after matching and after post-processing with different values of block sizes 

(8,16,32). (for clarity, table callouts are shown only on theright). 
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5.4.4 Conclusions 

The goal of the method described is to study the ability of some standard texture 

descriptors to detect copies in tampered images. A common framework to test 

descriptors is used: a block matching approach and a post-processing step, to filter 

out false positives. 

Experiments showed that the simplest descriptor (the Statistical) is that giving the 

best results in terms of precision versus execution time. Edge Histogram gives good 

results too, in case of small block size.  

The system is tested also on JPEG compressed images and it is observed that  

Statistical descriptor and Edge Histogram give still the best results, but setting 

higher values for the threshold parameter in the matching process. 

In experiments color properties are intentionally ignored,  because, as said before, 

the goal was to test only texture as relevant feature for the application.Furthermore, 

block matching methods are not applicable when copies are processed by 

geometrical transformations. It could be interesting, in future works, to compare 

results achieved with texture descriptors, with those obtained using other image 

features (color, shape), and to combine them within a single framework. 
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5.5. Keypoint cluster matching approach 

The method presented in this section is one of my works on copy-move detection. 

The method aims to use local features and keypoints to find objects in a scene that 

are suspiciously similar. It can be divided into different sub-steps: feature 

extraction, keypoint clustering, cluster matching (which is supported by a 

parameter optimization step) and post-processing. In this paper two different types 

of local descriptors (SIFT and SURF) are compared.  

 

 

Fig. 61 Overall scheme of the proposed method 

 

5.5.1 Features Extraction 

Scientific literature of image processing offers many techniques to extract features 

that can be invariant to geometrical transformation. This method is focused on two 
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of the most used descriptors in literature: SIFT (Scale Invariant Feature Transform) 

[60] and SURF (Speed up robust feature) [61], which are widely used in many image 

processing applications. 

 

5.5.2 Keypoint clustering 

 

After keypoints and descriptors are computed (SURF or SIFT) for the whole image, 

points are grouped using an agglomerative hierarchical-tree cluster method. 

Starting from a matrix of Euclidean distances between each point coordinates, the 

weighted center of mass distance (WPGMC) is used as linkage method. For each  

hierarchy of the tree, if r and s are two clusters to be combined, the Euclidean 

distance between their weighted centroids is computed: 

 
2

~~, sr xxsrd   (68) 

where rx~  (and as well sx~ ) is defined recursively as: 

 
qpr xxx ~~

2

1~   (69) 

and 
px~ ,

qx~  are the  weighted centroids of the clusters p and q from the lower step. 

The “best” number of clusters is automatically and dynamically detected with a 

posteriori analysis. The cluster tree is formed, once for all, and then it is tested a set 

of candidate numbers of clusters (ni i=2,..nmax). For each candidate ni, all the possible 

pairs of clusters within the corresponding clustering are compared, then it is 

counted the number of matching points (see section 5.5.3) for each pair of clusters 

N(j,k). Only (non degenerate) matches where the number of matching points is 

higher than a threshold are considered: 
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and the score for the candidate ni  is computed as: 
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It is selected the “best” number of clusters that maximizes this score, i.e. that gives 

the highest number of significant matching points (see fig. 62.c,d). In case of 

multiple maxima, the lowest number of clusters I selected, for efficiency.  
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a) 

 

b) 

 

d) 

 

c) 

 

e) 

 

f) 

Fig. 62 In this photo a pigeon is copied, rotated and scaled(a).  In (b) the link of centroids of 

cluster that match, in (c) the cluster distribution of keypoints,  in (d) the relationship between 

the number of clusters and matching points, in (e ) and (f) registration of convex hull of two 

clusters that match each other. 
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5.5.3 Custers matching 

In this step it is described how two clusters of keypoints are matched. If Ci and Cj are 

the two clusters to be matched, for each point iCi
 its vector of descriptors id  is 

compared with the vectors jd  of all the points jCj . For efficiency, rather than using 

Euclidean distance, it is computed the angle between the two vectors:  

 jiij dd  arccos  (72) 

and           
ij

jCj
ij

Cj jj


1

minmin 21


  (73) 

where j1 is the point in Cj which vector 
jd  has the minimum angle with vector  

id . To 

increase robustness, matches are accepted only if the ratio of the two minimum 

angles, α1 and α2, is less than a threshold (0.6 as in Lowe [60]). Note that, for small 

angles, this is a close approximation to the ratio of Euclidean distances. This 

matching criterion is also that used to select best the number of clusters. To improve 

the matching process, after the number of clusters is chosen clustering, RANSAC 

[83] (RANdom SAmple Consensus) is applied to select a set of inliers that are 

compatible with a homography transform between the two clusters. After RANSAC, 

outliers are discarded and the corresponding homography is estimated.   

If less than 4 matches are found, RANSAC cannot be applied, and the match between 

the two clusters cannot be considered reliable. In case of a small number of 

matching points, which may occur comparing small clusters, estimated homography 

does not give good results. Therefore, after discarding outliers, the Moore-Penrose 

pseudoinverse of matrix is used to estimate homography by solving a system of 

linear equations: 

 

21 XHX   (74) 

  

where X1 and X2  are two sets of matching points, in homogenous coordinates, and H 

is a 3x3 transformation matrix that projects X1 and X2. Coefficients of H are 
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estimated: 

 

*

21
ˆ XXH   (75) 

  

where X2* is the pseudoinverse matrix of X2. Considering X2 as the reference set of 

points, the inverse of the estimated transformation is applied to X1 
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 (76) 

  

thus 1X̂  is an approximation of X2. Which cluster should be considered as reference 

is not important to the next steps. Then the inverse transformation is applied in 

order to register the two areas, and the two smallest convex hulls, A1 and A2 , that 

enclose matching points (see figg. 62.e,f) are extracted.  

 

5.5.4 Post Processing  

The content of the two areas is compared, with a texture inspection process, in 

order to discard matches between objects that are similar, but not copies. Prewitt 

and Laplacian masks are used to extract vertical, horizontal, diagonal (North-East 

and North West) and not-oriented edges from the two selected masks. Descriptors 

are then computed as the average value of pixels in the area after filtering. If the 

distance between the descriptor vectors of the two areas is lower than a threshold 

(set 10 by experiments), they are considered identical, and their match correct. I 

decided to use this very simple texture descriptor as it is fast and effective and does 

not need padding to be applied to not rectangular areas (e.g. Gabor filters). Texture 

analysis step is introduced to validate results coming from the previous matching 

process. Analyzing texture, rather than color, makes the method able to find 

matches even in case of color alteration of the copies (see fig. 63), if this not alter the 

edges of the object. 

The two areas to be compared can be slightly different almost for three reasons:  
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- Interpolation applied by inverse transformation; 

- JPEG compression after tampering; 

- Approximation errors (keypoint extraction, homography estimation, inverse 

transformation) 

With respect to the first problem, experimental tests showed that using bicubic 

interpolation reduces the difference between reference and approximated area. 

With regard to the second one, the selected descriptors extract information from 

image edges, which are less affected by noise introduced by JPEG compression. The 

third problem needs a specific solution: after inverse transformation, the two areas 

are not perfectly aligned (see fig. 64.b,c). For larger areas this is not a relevant 

problem, because edge information is averaged. In case of smaller ones, due to this 

misalignment, some edges in the reference area could be missing in the 

approximated one, the two areas may look consistently different, and descriptor 

values may not give correct match. Therefore a local alignment is needed. A further 

rigid translation is applied to the points of the approximated area in a neighborhood 

of 5x5 pixels centered into original coordinates. Whenever the difference between 

descriptors is lower than the above threshold, local alignment stops. This means 

that, for each match evaluation, at most 25 different translated versions of the 

approximated area are compared. Consistent improvement in the results justifies 

the increased execution time. 

 

 

a) 

 

b) 

 

c) 

 

d) 

Fig. 63 (a) Input image. Ace of Hearts is the copy of ace of Clubs. (b) matches between points. 

(c, d) the two extracted areas: reference (c) and approximation (d). Note that match is found 

nevertheless the two areas have different colors. (n°clusters=3) 
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a) 

 

 

b) 

 

c) 

 

d) 

Fig. 64 (a) matching points between two objects in the scene (particular). (b) reference area 

(part of the fish eye). Approximation without (c) and with (d) local alignment. 
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a) 

 

b) 

Fig. 65. Percentage of Correct Matches vs rotation angle (a) and vs scale factor (b) 

 

 

a) 

 

b) 

Fig. 66. (a) Percentage of detected tampered images in the not-tampered dataset, before and 

after the post processing step. (b) Percentage of False Negatives, and False Positives (before 

and after post processing) in the third dataset. 

 

5.5.5 Experimental Results 

 

The method presented in this section has been implemented in Matlab and executed 

on an Intel Core i7 PC (4 CPU, 1.6 GHz per processor, 4 GB RAM), exploiting the 
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Matlab parallel library to make 4 workers run simultaneously. It’s been exploited 

the Matlab code in [121] for SIFT extraction, in [122] for SURF extraction and that in 

[123] for RANSAC. This approach is tested on several types of dataset. 

5.5.5.1 Controlled geometrical transformations 

The first group of images (D1) has been created by copy moving objects applying 

controlled geometrical transformations, to test the robustness of this method with 

respect to some specific attacks. 10 images are selected with very simple scene 

(single object, simple background) from the Torralba [109] dataset and then three 

sets of transformations are applied. The first subset D1.1 has been created by 

rotating the copy by 12 different angles in [0,360[ with a step of 30°. The second 

subset D1.2  is obtained  by rotating the copy by 11 different angles in [-25, 25] with 

a step of 5°. The third subset D1.3 is created by scaling the copy by 6 different scale 

factors [2,1.5,1,0.75,0.5,0.33]. D1 is then formed by 270 images (removing 

repetitions). Within dataset D1.1 we observed that SIFT points are robust to any 

rotation angle. In practice no false negatives have been measured in tests. On the 

contrary SURF points (for the used implementation), as shown also in [82], are not 

robust to large rotations, then no matches are found. 

With respect to D1.2, as expected, SIFT points are completely invariant to the 

selected rotation angles. SURF points showed to be robust to small angle [-10,10] 

rotations. Results are plotted in fig. 65.a. 

For the D1.3 dataset, results are shown in fig. 65.b. Also in this case, SIFT are more 

robust than SURF to the specific transformation (scaling) within the selected range. 
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5.5.5.2 Not tampered images 

 

The second dataset (D2) is made of 100 complex scene from the Torralba [109] 

dataset without applying any alterations, to test the system about the detection of 

false positives. Each image contains an average value of 3200 SIFT points and 1700 

SURF points, and a average number of point-to-point self-matches (comparing an 

image with itself) of 100 (SIFT) and 150 (SURF). Fig.66 shows the number of images 

in the dataset into which alterations have been wrongly detected, as the dataset 

does not contain tampered images. Also in this case SIFT outperforms SURF, 

especially after the post-processing step. Furthermore, it is counted the number of 

objects detected before and after post-processing (note that more than one false 

positive can be detected in a single image), the result is that the 44% of the false 

matches is removed in the SIFT case, while 30% ca in the SURF case. These 

experiments justify the use of the post-processing step in this method, even at the 

cost of losing efficiency. 

 

5.5.5.3 Tampered images 

 

The third dataset (D3) is made of 100 images with several types of combined 

transformations (rotation, scaling, translation), used to create copies hard to be 

discovered by visual inspection. 

This dataset is used to test the detection ability of this method in possible “real 

cases” of alterations. 

Results are shown in fig. 66.b. As in the other dataset, SIFT achieves better results 

than SURF, above all in terms of False Negatives (tampered images that have not 
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been detected). In terms of False Positives (object that have been wrongly indicated 

as copies), the two methods achieve similar results. Experiments are repeated on 

the third dataset with three different values of JPEG quality compression (100, 75, 

50). Tests showed that the method is very robust to JPEG compression (results are 

quite similar to those in fig. 66.b). This can be explained as both SIFT and SURF 

extract information from image edges, which are less affected by noise introduced 

by JPEG compression, as well the texture descriptor used in the post-processing 

step. 

 

 

 

 

 

 

 

 

 

 

5.5.5.4 Temporal Efficiency 

In terms of efficiency, in theory SURF descriptors should be faster than SIFT ones. 

This is the most important advantage of the SURF on SIFT. In practice due to the two 

specific implementations we use, time spent to extract SURF is higher than that for 

SIFT (fig.67) 

 

Fig.67. Average execution time (in second) for the steps of the proposed method 
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Time for clustering is higher in the SIFT case as typically SIFT extracts more 

keypoints, then more time is needed in the parameter optimization step.  

Fig. 67 shows also the average time spent for matching, with and without the post 

processing step. The improved experimental results, in terms of reduced false 

positives (see section 5.5.5.2) justifies the increased execution time. 

 

5.5.6 Conclusions 

 

Local features proved to be extremely suited for a copy move detection method, in 

case of geometrical attacks. Test showed that SIFT outperforms SURF for this 

specific goal. In the presented approach clustering helps in reducing the number of 

false matches between keypoints, as matches are accepted only when clusters 

match. In particular, the adaptive clustering method was designed to maximize the 

number of matches between significant clusters. Therefore, it is expected the same 

to have some false matches. For this reason in the method it has been introduced a 

post-processing step, based on texture analysis, to reduce the number of false 

positives at the cost of some more computational effort. Only objects (clusters of 

keypoints) which have both similar shape and texture can be considered as real 

copies. Experimental results justify the increased execution time. The proposed 

approach achieved excellent results, but it strictly depends on keypoint extraction: 

keypoints are not extracted in homogeneous regions, so if tampering is made by 

copy-moving a homogeneous portion of the image, cannot be detected by a feature 

based approach. It would be an interesting challenge to build an image forensics 

framework that will combine a feature based approach, that is robust to geometrical 

attacks, with a block-matching technique, that typically works also in case of 

homogenous areas. 
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a) 

 

b) 

 

c) 

Fig. 68 (a) Original and (b) tampered image. (c) Result with keypoints matching and with 

cluster matching  (n° clusters = 4, matches between centroids are shown). 
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a) 

 

b) 

 

c) 

Fig.69  (a) Original and (b) tampered image. (c) Results with keypoints matching and with 

cluster matching  (n° clusters = 4, matches between centroids are shown). 
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5.6. Triangles matching approach 

 

This new approach is based on the analysis of triangles of local key points, rather 

than blocks of pixels, or single key points. The aim is to find the structure of the 

copies by analyzing the spatial distribution of the key points. Matching between 

triangles is done both extracting local features inside the triangles (color) and 

comparing their geometrical properties (angles). Before describing the method, it is 

given a brief overview on Delaunay Triangulation, that is the “core” of the proposed 

method. 

 

5.6.1 Delaunay Triangulation 

A common approach to discretize a domain  is to use a triangulation. Given a set T 

of planar points, the Delaunay triangulation D(T) of T points is made such that no 

points in T is inside any other triangle of the same of D(T). Delaunay triangulations 

maximize the minimum angle of all the angles of the triangles in the triangulation.  

Delaunay triangulation is a tool used for obtaining good quality meshes both in 

Computer Graphics for  3D object representation and when using meshes for 

equations and problem  representation [124]. A mesh can generally be described as  

a number of points connected in some way by lines. Many complex high dimensional 

problems can be expressed with graphs, and a good quality mesh lets researcher get 

closer to a numerically stable solution for these problems. The cycle circumscribed 

about a Delaunay triangle has its center at the vertex of a Voronoi polygon[125]. 

 



 

 

153 

5.6.2 Triangles Matching 

The idea behind the method is very simple. All the objects in a scene may be 

represented as a set of connected triangles. This model is the basis for the 

representation of 3D objects in Computer Graphics. In this method this 

representation is applied to 2D images. 

First, interest points from an image are extracted. Three of the most common 

algorithms for extracting keypoints (SIFT, SURF and Harris, see chapter 2) are used. 

Then a Delaunay triangulation is build onto the extracted points. Image is therefore 

subdivided into triangles, which include pixels with very similar features. In fact 

Delaunay triangulation (rather than Voronoi tessellation) is used as its atomic 

element typically does not include edges of the objects in the scene, then its content 

can be completely described by its color features. 

From each triangle the first n dominant colors are extracted: each color channel is 

quantized into b bins and a 3D histogram is build with the pixels of the triangle. The 

n most frequent values of the histogram are taken as the dominant colors of that 

triangle (n and b will be further discussed in the experimental section). Each 

triangle is represented by 3*n values (n values per channel). For this purposes 

information about color frequencies is discarded. 

Further triangle areas and inner angles are computed. Angles are taken in 

counterclockwise order starting from the maximum one. This solution helps to 

make this method robust to affine transformation, as discussed below.  Input image 

is finally segmented into triangles (see fig. 70), which are described by their 

dominant colors, their areas and their ordered sequence of angles. 

To find possible copy-moved regions, we look for similar triangles into the image. 

Triangles are matched comparing two different features: colors and angles.  

First, triangles are sorted according to the L1 norm of their color vectors. The 

sorted list of triangles is then scanned and the features of each triangle compared to 

those of the next triangles in the list, within a fixed window (a percentage of the 

number of triangles). In adaptive window approach, triangles are compared up to 
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those in the list which distance is below a threshold, but this solution proved to be 

slower than the fixed window approach, without improving results. 

 

a) 

 

b) 

 

c) 

 

d) 

Fig. 70 Original image (a), with superimposed SIFT points (b), with Delaunay triangulation (c) and the 

segmented image, where each triangle is filled with its first dominant color. 

 

If both the Sum of the Absolute Deviation (SAD) of the color vectors and of the 

angles of the two triangles are below a threshold, the two triangles are considered 

similar. If j and k (k>j) are the indexes of the two triangles to be compared: 
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( 77 ) 

where ws is the fixed window size (computed as a percentage of the number of 

triangles), C is the color vector (made of 3*n values), a is the angle vector in radians 

(in which angles are sorted as described above), THC and THa are two thresholds, 

that will be discussed in the next section. When comparing angles, sorted as 

described, two triangles may be match even in case of rotation or scaling. Thus the 

method is designed to find copied objects also in case of geometric transformation.   

To reduce false positives, two triangles j and k are compared only if the ratio 

between their areas: 
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This solution limits the maximum detectable scale of the copied objects to 4, but 

thanks to this solution the 15-20% of the wrong matches are deleted.  

After the matching process, the result is a list of pairs of triangles. To further 

delete false matches, the centroids of these triangles are computed, and RANSAC 

(RANdom SAmple Consensus[83]) is applied to the set of matching centroids, to 

select a set of inliers that are compatible with a homography transformation.  If less 

than 4 matches are found, RANSAC cannot be applied, and the match is considered 

not reliable. 
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5.6.3 Experimental Results 

 

This method has been also implemented in Matlab and executed on an Intel Core 

i7 PC (4 CPU, 1.6 GHz per processor, 4 GB RAM), exploiting the Matlab parallel 

library to make 4 workers run simultaneously. The implementation of the method 

uses the Matlab code in [121] for SIFT extraction, in [122] for SURF extraction and 

that in [123] for RANSAC. This approach is tested on several types of dataset. 

The first group of images (D1) has been created by copy-pasting objects applying 

controlled geometrical transformations, to test the robustness against some specific 

attacks. 10 not compressed images with very simple scenes (single object, simple 

background) are selected from the Torralba [109] dataset and 3 sets of 

transformations are applied. The first subset D1.1 has been created applying to the 

copies 11 different types of rotation around the angle zero in [-25°, 25°] with step 

5°. 

The second  subset D1.2 has been created by rotating the copies by 12 different 

angles in [0°, 360°[  with a  step of  30°.  The third dataset by scaling the copies by 6 

different scaling factors [2,1.5,1,0.75,0.5,0.33]. D1 is then formed by 290 images.  

The second dataset (D2) is made of 50 JPEG-compressed images (D2.1) with 

simple translated copies, and 50 JPEG-compressed images (D2.2) with combined 

transformations (rotation, scaling, translation), used to create copies hard to be 

discovered by visual inspection. This dataset is used to test the detection ability of 

the method in possible true cases of alterations, and with compression (until quality 

factor 50). 

The first dataset (D1) is used to find the optimal parameters of the method. Tests 

are repeated tuning some of the parameters, to study how results depends on them. 
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Fig. 71. Precision vs number of colors, for images in the Dataset D.1 which 

have copies with no rotation or scaling (THa=0,25) 

 

Fig. 72. Precision vs angle threshold THa, for images in the Dataset D.1 which 

have copies with no rotation or scaling (n°colors=4). 
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Fig. 73. Precision vs angle of rotation, for images in the Dataset D.1.1 which 

have “rotated” copies (THa=0,25 and n°colors=4). 

 

 

Fig. 74. Precision vs angle of rotation, for images in the Dataset D.1.2 which 

have “rotated” copies (THa=0,25 and n°colors=4). 
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Fig. 75. Precision vs scaling factor, for images in the Dataset D.1.3 which have 

“scaled” copies (THa=0,25 and n°colors=4). 

 

Fig. 76. Execution time, in seconds, of the different steps of the process. 

 

 In particular we measured results using: 

- the number of bins to quantize color channel b=8, 

- the number of dominant colors n=1..4,  

- the color threshold THC=0,  

- the angle threshold THa= {0;0.1;0.25;0.5},  

- the size of the fixed window ws=NT/50, where NT is the number of triangles 
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in an image. The number of bins is a critical parameter and should need a in-

depth analysis. In this paper we fixed it to 8. It has been decided to compare only 

triangles that have exactly the same dominant colors (THC=0), otherwise too 

much false positives would be measured. ws does not influence too much results, 

then we decided to fix it to a value that is a good trade-off between precision and 

execution time. THa and number of colors has been tuned to show  their 

influences on tests. 

To evaluate results, the precision of the method is computed as the ratio of the 

number of true output matches and the number of total matches. 

Fig. 71 shows results of the method when tuning the “number of colors” 

parameter. Precision is measured only within images in the dataset D.1 in which 

copies are not modified by geometric tampering. SIFT-based and SURF-based 

methods outperform Harris-based method within this dataset. SIFT achieves best 

results among all the methods for all the number of colors. 

Fig. 72 shows results of the method when tuning the angle threshold parameter. 

Precision is measured within the same dataset of the previous test. Also in this case, 

SIFT and SURF perform better than Harris, except in case of THa=0, where Harris 

achieves its best results. 

Using the optimal parameters evaluated from these first tests, we made other 

tests on rotated (fig. 73,74) and scaled (fig. 75) copies.  Within  the dataset  D1.1,  

SIFT achieves best results, while Harris and SURF have similar results. Within D.1.2 

Harris achieves its best results, above all whenever the rotation angle is multiple 

than 90°, while SIFT and SURF have almost similar results. Note that best results are 

achieved for angles that are multiples than 90°, as in these cases triangles are less 

distorted by rotation. In case of scaling (D.1.3) all the three methods get similar 

results. SIFT performs slightly better than the other two methods only for a scaling 

factor of 0.75. Results are encouraging, but can be improved if a deep analysis on the 

point distribution is done. 
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Within the D2 dataset, for the D2.1 images, respectively a precision of 87.3% 

(SIFT), 86.2% (SURF),  and 69% (Harris), which are similar to the results achieved 

within the D1 dataset, for images with no rotation or scaling. For the D2.2 images, 

we measured respectively a precision of 25,1% (SIFT), 24.3% (SURF), and 20,7% 

(Harris). As discussed above, the lower precision values are due to the distortion of 

the angles in case of rotation or scaling.  

 

In terms of efficiency, most of the time is spent to extract color features from the 

triangles (see fig.76), and it depends on the number of triangles, i.e. the number of 

extracted keypoints. Time spent to extract SURF points is, as expected, much lower 

than that for SIFT points, while Harris algorithm is the slowest in this step. In every 

case, time for the whole process is lower than one minute. Fig.76 shows some visual 

examples of the results of our method. 
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a) 

 

b) 

 

c) 
 

d) 

Fig. 77 Some visual results. Original image with superimposed key-points (SIFT a), Delaunay 

triangulation (b), matching triangles before (c) and after (d) RANSAC. Images are taken from 

the D2.1. 
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i) 

 

l) 

 

m) 

 

n) 

Fig. 78 Some visual results. Original image with superimposed key-points (Harris i), Delaunay 

triangulation (f), matching triangles before (m) and after (n) RANSAC. Images are taken from 

the D1.2 (scale factor 0.75). 
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e) 

 

f) 

 

g) 

 

h) 

Fig.79 Some visual results. Original image with superimposed key-points (SIFT e), Delaunay 

triangulation (b), matching triangles before (g) and after (h) RANSAC. Image  taken from the 

D1.1 (rotation =120°) 
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5.6.4 Conclusions 

 

Modeling objects with triangles is a very well known solution for Computer 

Graphics applications, but this is a totally new concept for Image Forensics 

problems. Many state-of-the-art techniques typically use block matching methods. 

Those methods that are robust to geometrical transformations extract from the 

inside of the blocks low level features that are invariant to rotation and scaling.  

The method presented above is based on the analysis of the structure of the 

objects in the scene, that is represented as a mesh of triangles. Each object is divided 

into triangles, and matches are searched between those that have both similar 

structures (angles) and content (color of the inner pixels).  

The strongest point of this approach is that comparing the structure (angles) of two 

triangles, similarities can be found also in case of rotation and scaling, without 

extracting any particular features. Therefore this method is built to be robust to 

geometrical transformations. Furthermore this method can be adapted in the future 

to find copies also in case of anisotropic transformation, as matches are searched 

between the atomic elements of the objects. 

Nevertheless results depend on the extraction of the interest points of the image. 

Triangulation is built onto these points, so if a rotation or a scaling transformation is 

applied to the pasted objects, triangles may be partially distorted, and the method 

may fail. Results are encouraging, but a further analysis is needed onto the stability 

of the extracted interest points used to build the triangle mesh.  

Another point that will need further analysis is the color quantization, which may 

strongly influence triangle color matching. I plan to study this problem in my future 

works. 
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CONCLUSIONS 

In this PhD thesis advanced image inspection techniques are presented. These 

techniques are based on texture and local keypoint analysis. These techniques deal 

with Texture scale detection, Visual Saliency (saliency map) and Image Forensics.  

 

-Texture scale detection: Detecting scale in textured images is a very hard task, 

and a relatively unexplored problem. The technique presented in this thesis 

analyzes the distribution of the interest points in the image, by means of the 

Keypoint Density Maps, a novel instrument for Image Analysis applications. The 

results, as seen in chapter 3, are very encouraging: with respect to the reference 

method, experiments showed that the novel method achieves similar precision in 

case of small textures, but outperforms it in cases of large textures,  and in case of 

near-regular textures. Furthermore, Keypoint Density Maps (with SIFT) have been 

yet successfully used in visual saliency detection, and may be a versatile instrument 

for several image analysis application: texture discrimination or description, image 

segmentation, etc. 

-Visual Saliency: Visual saliency has been investigated for many years but it is still 

an open problem, especially if the aim is to investigate the relationship between 

synthetic maps and human fixation points. The purpose of method is to study how 

computer generated keypoints are related to real fixation points. No color 

information has been used to build my saliency maps, as keypoints are typically 

related only to image texture property. 

Even if only texture information is used, experimental results show that my method 

is very competitive with respect of two of the most cited low-level approaches. 

Judd’s method achieves better results as it is a supervised method which has been 

trained with the fixation maps within the selected dataset. In my future works i 
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want to study new color based saliency techniques to be integrated with my 

proposed approach, to improve experimental results. 

 

-Image forensics(1): The goal of the first method described [51] is to study the 

ability of some standard texture descriptors to detect copies in tampered images. A 

common framework to test descriptors is used: a block matching approach and a 

post-processing step, to filter out false positives.Experiments showed that the 

simplest descriptor (the Statistical) is that giving the best results in terms of 

precision versus execution time. Edge Histogram gives good results too, in case of 

small block size.  

The system is tested also on JPEG compressed images and it is observed that  

Statistical descriptor and Edge Histogram give still the best results, but setting 

higher values for the threshold parameter in the matching process. The goal was to 

test only texture as relevant feature for the application, so color properties are 

ignored.  

Block matching methods are not applicable when copies are processed by 

geometrical transformations. It could be interesting, in future works, to compare 

results achieved with texture descriptors, with those obtained using other image 

features (color, shape), and to combine them within a single framework. 

 

-Image Forensics(2):In the second copy-move detection technique reported, local 

features proved to be extremely suited for a copy move detection, in case of 

geometrical attacks. Test showed that SIFT outperforms SURF for this specific goal. 

Clustering helps in reducing the number of false matches between keypoints, as 

matches are accepted only when clusters match. In particular, the adaptive 

clustering method was designed to maximize the number of matches between 
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significant clusters. In the method it has been introduced a post-processing step, 

based on texture analysis, to reduce the number of false positives at the cost of some 

more computational effort. Only objects (clusters of keypoints) which have both 

similar shape and texture can be considered as real copies. Experimental results 

justify the increased execution time. The proposed approach achieved excellent 

results,but, if tampering is made by copy-moving a homogeneous portion of the 

image, it cannot be detected by a feature based approach because keypoints are not 

extracted in homogeneous regions. It would be an interesting challenge to build an 

image forensics framework that will combine a feature based approach, that is 

robust to geometrical attacks, with a block-matching technique, that typically works 

also in case of homogenous areas. 

 

-Image Forensics(3): The third  copy-move detection technique is based on the 

analysis of the structure of the objects in the scene, that is represented as a mesh of 

triangles.  

The strongest point of this approach is that comparing the structure (angles) of two 

triangles, similarities can be found also in case of rotation and scaling, without 

extracting any particular features. Therefore this method is built to be robust to 

geometrical transformations. Furthermore this method can be adapted in the future 

to find copies also in case of anisotropic transformation, as matches are searched 

between the atomic elements of the objects. 

Nevertheless results depend on the extraction of the interest points of the image. 

Triangulation is built onto these points, so if a rotation or a scaling transformation is 

applied to the pasted objects, triangles may be partially distorted, and the method 

may fail. Results are encouraging, but a point that will need further analysis is the 

color quantization, which may strongly influence triangle color matching. I plan to 

study this problem in my future works 
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