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Introduction 
 

Chronic Myelogenous Leukemia  

 

Chronic myelogenous leukemia (CML) is a clonal myeloproliferative disorder of the 

hematopoietic stem cell (HSC). CML makes up approximately 15% to 20% of all cases 

of leukemia, with an incidence of 1 to 1.5 cases per 100,000 population per year (1). 

Similar to other myeloproliferative disorders, CML is usually triphasic, having a 

chronic, an accelerated, and a blast phase (2). In the initial chronic phase, myeloid 

progenitors and mature cells accumulate in the blood and extramedullary tissues;  in 

half of the patients the disease progresses directly from the chronic to the blastic phase 

characterized by a maturation arrest in the myeloid or lymphoid lineage (3). The main 

functional changes that occur with progression of CML are marked changes in 

proliferation, differentation, apoptosis and adhesion (4). CML is characterized by 

deregulated proliferation of cells of the myeloid lineage, in which leukemic blasts 

display a distinctive shortened chromosome, the Philadelphia (ph) chromosome 

generated from a reciprocal t(9:22) (q34:q11) translocation (5)(Fig. 1).  

 

 

 

Fig. 1: Reciprocal t(9:22) translocation in Chronic myeloid leukemia generate Philadelphia 
 chromosome 
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This translocation results in the head-to-tail fusion of the breakpoint cluster region 

(BCR) gene on chromosome 22 with the ABL proto-oncogene on chromosome 9 (6). 

The encoded chimeric bcr-abl oncoprotein exhibits constitutively active tyrosine kinase 

activity as a result of oligomerization of the coiled coil region of p210BCR/ABL (7) and 

deletion of the inhibitory SH3 domain of ABL (8). This results in the activation of a 

number of downstream signaling cascades (9). The targets for bcr–abl include members 

of the Ras, phosphotidylinositol-3 kinase (PI3K)⁄Akt, and Jak⁄Stat signaling pathways, 

which regulate cell proliferation and apoptosis. Bcr–abl abrogates cell dependence on 

external growth factors by upregulating interleukin-3 production and alters the cell 

adhesion properties by modulating expression and activation of focal adhesion kinase 

and associated proteins. (10,11).  The features of chronic phase CML, expansion and 

premature circulation of the malignant myeloid population can therefore be explained 

by activation of mutagenic pathways, antiapoptotic pathways and abnormal cytoskeletal 

function (Fig. 2). 

 

Fig. 2: Schematic representation of some signal transduction pathways activated by BCR-ABL 
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These same characteristics, increased mutagenicity and decreased susceptibility to 

apoptosis ay also be responsible for disease progression (12). Moreover, leukemic 

progenitors can acquire secondary aberrations that make them able to overcome cell 

cycle checkpoints and acquire an advantage in growth compared to normal cells and 

make them resistant to drug therapies.  

 

Therapy for Chronic Myelogenous Leukemia 

 
Since the description of BCR–ABL oncogene, a myriad of treatment options have been 

explored in CML, including arsenic trioxide, spleenic irradiation, busulphan, 

hydroxycarbamide. These compounds could only control the proliferation of white 

blood cells and enlargment of the spleen, but didn’t avoid the disease progression to 

accelerated phase and blast crisis. Most relevant results were obtained with the 

introduction of therapy with  recombinant Interferon-α (rIFN-α), which compared to 

conventional chemotherapy, is more effective, especially in patients with early chronic 

phase (13,14). The introduction of rIFN-α induced cytogenetic remission and increased 

survival (15). The exact mechanisms of action of rIFN-α have not been identified, but it 

is widely believed that they involve immune response to tumor cells, abnormal 

expression of adhesion molecules, and induction of tumor cell death (16). In spite of the 

effectiveness of rIFN-α treatment, however, there are limitations, from poor patient 

compliance to development of anti–rIFN-α antibody. The only curative approach is 

stem cell transplantation, however, as the average age of onset is >50 yrs of age, this 

factor, combined with the inability to identify suitably matched donors in all cases, 

limits this option to a minority of patients (17). The most exciting breakthrough in the 

treatment of CML has been the development of Imatinib Mesylate (IM) a selective 

kinase inhibitor, able to inhibit the activity of constitutive tyrosine kinase activity of 
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Bcr-Abl protein (18). Imatinib acts as a competitive inhibitor of ATP, it binds to the 

ATP binding site located on ABL and block the action of the tyrosine kinase in an 

irreversible way. The inhibition of kinase activity of bcr-abl inhibit neoplastic clone 

proliferation and has a significant effect on haematological and cytogenetics level. 

However, some patients with an advanced disease develop resistance to Imatinib due to 

secondary point mutations in the bcr-abl tyrosine kinase domain or due to BCR-ABL 

gene amplification (19). It has been proposed that the interaction between leukemic 

cells and the bone marrow microenvironment may play an important role in CML 

pathogenesis (20). A better understanding of the mechanisms involved in the disease 

progression may provide information to develop new treatment strategies. 

 

Chronic Myelogenous Leukemia and Angiogenesis 

 
Angiogenesis is the formation of new blood vessels from an existiting vasculature. It 

involves degradation of extracellular matrix proteins and activation, proliferation and 

migration of endothelial cells and pericytes in a multistep process (21).  Angiogenesis is 

mediated by a balance of various positive [eg vascular endothelial growth factor 

(VEGF), fibroblast growth factor-2 (FGF-2), hepatocyte growth factor (HGF), 

interleukin-8 (IL-8), transforming growth factors (TGF-α, TGF-β), matrix 

metalloproteinases (MMPs)] and negative [eg platelet factor-4 (PF-4) tissue inhibitors 

of metalloproteinases (TIMPs)] angiogenic molecules released by tumor cells (22,23). 

Tumor angiogenesis is linked to a switch in this balance, and mainly depends  on the 

release by neoplastic cells of growth factors specific for endothelial cells and able to 

stimulate the growth of the host’s blood vessels (24). This complex pathomechanism 

may comprise a direct stimulation of endothelial cells (paracrine loop) resulting in 

proliferation, sprouting and release of growth factors and on the other hand, an 
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autocrine stimulation by inhibition of apoptosis and promotion of growth (Fig. 3), 

finally leading to an expansion of the neoplastic cell clone (25,26). 

 

 

 

Recently, there are evidence that implicates angiogenesis in the growth and progression 

of CML (27). Lundberg LG et al., have found increased plasma levels of VEGF as well 

as other angiogenic factors such as FGF-2 and HGF and increased marrow vascularity 

in patients with CML (28). Bcr-Abl has also been involved in VEGF-mediated 

angiogenesis in CML and evidence indicates that the formation of new vessels plays an 

important role in the development and progression of CML. It has been proposed that 

the interaction between leukemic cells and the bone marrow microenvironment may 

play an important role in CML pathogenesis (20). An important aspect in the study of 

CML is the cross-talk between leukemic cells and bone marrow microenvironment. This 

microenvironment may facilitate tumor progression by the pertubation of CXCR4-SDF1 

Fig. 3: Dynamics of angiogenesis in hematological neoplasias: angiogenic factors secreted by 
neoplastic cells promote cell growth and inhibit apoptosis (autocrine stimulation). On the 
other side, these angiogenic mediators can also stimulate endothelial cell proliferation and 
enhance the production and release of hematopoietic growth factors (paracrine 
stimulation). 
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axis. Kalinkovich et al, have shown that microvesicles isolated from patients with 

leukaemia contain CXCR4, and these vesicles CXCR4+ are more abundant in leukemic 

patients compared to healthy individuals (29). CXCR4-SDF1 leads the increase of 

cytokines as IL8. IL8 stimulates the expression of VEGF, SDF-1 and IL6 in endothelial 

cells resulting in promoting angiogenesis. Many studies have shown over-expression of 

IL8 by tumor cells, often induced in response to chemotherapeutic interventions or 

environmental stresses such as hypoxia. The increased synthesis and secretion of IL8 

from tumor cells activate many signalling pathways through the binding of IL8 to two 

cell-surface G-protein-coupled receptors, CXCR1 and CXCR2 (30,31) in cancer cells, 

endothelial cells and neutrophils/tumor associated macrophages. Activation of IL8 

signalling pathways, through Akt, PKC and MAPK, have been detected in multiple 

forms of cancer and its role in modulating cell survival, angiogenesis and cell migration 

have estabilished this kinases as an important therapeutic target in cancer (32). As a 

consequence of the activation of these signalling pathways, IL8 may affect different cell 

types within tumor microenvironment. For example, activation of IL8 receptors on 

endothelial cells is known to promote an angiogenic response, inducing proliferation, 

survival and migration of vascular endothelial cells (33). IL8 secretion from cancer cells 

can enhance the proliferation and survival of cancer cells throug autocrine signalling 

pathway. In addition, tumor-derived IL8 will activate endothelial cells in the tumor 

vasculature to promote angiogenesis and induce a chemotactic infiltration of neutrophils 

into tumor site. It is reported also that cell adhesion molecules play an important role in 

angiogenesis. Adhesion is in part mediated by β1 integrins (VLA4 and VLA5) and 

CD44 expressed on leukemia cells, and the fibronectin and vascular cell adhesion 

molecule-1 (VCAM1), expressed on the stromal layer (34).  During new capillary 

development, coordinated signals from both integrins and growth factor receptors 
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regulate the survival, proliferation and invasion of endothelial cells.  

 

Exosomes Formation 

 

Exosomes are small, 40-100 nm, membrane vesicles of endocytic origin that are 

secreted by a variety of cell types like B-cells (35), T-cells (37), mast cells (37), DCs 

(38), platelets (39), neurons (40) and epithelial cells (41) into the extracellular space. 

They were first described as microvesicles containing 5’́-nucleotidase activity secreted 

by neoplastic cell lines (42). Few years later another group reported secretion of small 

vesicles of endocytic origin by cultured reticulocytes, and these small vesicles contained 

the transferrin receptor. Using electron microscopy (EM) they observed these vesicles in 

late endosomes, and the fusion of these late endosomes with the cell membrane resulted 

in the release of the vesicles extracellularly (43,44). In addition to cultured cells, 

exosomes have today further been isolated from a number of body fluids such as plasma 

(45), urine (46), synovial fluid (47), malignant effusions (48), epididymal fluid (49) and 

from seminal plasma, in which the vesicles are derived from prostate cells and called 

prostasomes (50). Exosomes correspond to the intraluminal vesicles (ILVs) of late 

endosomal compartments called multivesicular bodies (MVBs). These intraluminal 

vesicles are formed by inward budding of the limiting endosomal membrane and 

contain cytosol from the cell. MVBs are involved in transporting proteins for 

degradation in lysosomes. Alternatively, the MVBs can fuse with the plasma membrane 

leading to the release of the intraluminal vesicles extracellularly which are then called 

exosomes (35),(44). Proteins and lipids are sorted at the limiting membrane of 

endosomes during the formation of the intraluminal vesicles and as a consequence the 

released exosomes will contain molecules reflecting their origin from late endosomes 

(51). The mechanisms leading to exosome release are unknown. However, the 
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transmembrane protein TSAP6 has been suggested to be involved in regulating 

exosome production (52). Furthermore, Rab11, a member of the small GTPase family, 

together with calcium were shown to be important for the docking and fusion of MVBs 

with the plasma membrane (53, 54, 55) (fig. 4). 

 

 A machinery responsible for sorting proteins in intraluminal vesicles has recently been 

identified and called ESCRT (Endosomal Sorting Complex Required for Transport) 

(56). The ESCRT-0, -I and -II complexes recognize and sequester ubiquitinated proteins 

in the endosomal membrane, whereas the ESCRT-III complex seems to be responsible 

for membrane budding (57). The ESCRT proteins are required for the targeting of 

membrane for lysosomal degradation while the function of the ESCRT machinary in the 

formation of ILVs that are further secreted as exosomes is not clear.  Proteomic analysis 

of purified exosomes from different sources show an enrichment of ESCRT components 

and ubiquitinated proteins (58, 59). The expression of the Nedd4 family interacting-

protein1, that is associated with elevated levels of protein ubiquitination in exosomes 

(60), and Alix, a protein associated with ESCRT machinary, is required for the sorting 

Fig. 4: Mechanism of exosomes release 
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of the transferrin receptor into exosomes (61). This leads to the hypothesis that ESCRT 

could be required for exosomal cargo. Lipid rafts has also been suggested to be involved 

in protein sorting into intraluminal vesicles (62) and typical raft components has been 

identified on exosomes such as glycolipids, Src tyrosine kinases and cholesterol (62,63). 

How MVBs discriminate between proteins that are destined for exosomal secretion or 

lysosomal degradation remains to be determined. In APC, MHC class II are 

accumulated in MVBs which are called MIICs. These MIICs are the major site for 

peptide loading, and subsequently exosomes from APC bear peptide-loaded MHC on 

their surface. 

 

Exosome composition 

 
Physical properties and purification of exosomes 
 
The common procedure to purify exosomes from cell culture supernatants involves a 

series of centrifugations to remove cells and cell debris. Filtration of the cell-culture 

supernatant through 0.22-µm filters, followed by direct high-speed ultracentrifugation 

(64), reduces the contamination of exosome preparations with larger vesicles that are 

shed from the plasma membrane.  In addition, because exosomes are present in serum it 

is crucial to avoid contamination with bovine exosomes from the fetal calf serum (FCS) 

that is used to culture the exosome-producing cells (65). For this reason, serum for 

culture medium can be depleted from serum exosomes by overnight high speed 

ultracentrifugation (65,36). To be sure that the isolated vesicles are exosomes must be 

used other criteria to identify exosomes. Exosomes float on sucrose gradients, and their 

density ranges from 1.13 g ml-1 to 1.19 g ml-1 (66). Contaminating material, such as 

protein aggregates or nucleosomal fragments that are released by apoptotic cells, are 

separated from exosomes by flotation on sucrose gradient (64). Electron microscopy is 
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also used to recognized exosomes by revealing the characteristic “cup-shaped” 

morphology, a flattened sphere limited by a lipid by-layer (67). These characteristics are 

consistent with the observed size and morphology of internal vesicles in multivesicular 

endosomes (68). 

Molecular composition of exosomes 
 
The molecular composition of exosomes depending on the cell from which they are 

secreted and their endosomal origin. Immuno-Electron Microscopy localization studies, 

Western blot analysis and peptide mass mapping of exosomal proteins from Dendritic 

Cells (DCs) (64,65), B lymphocytes (68,69), intestinal epithelial cells (41), and other 

cell types revealed the presence of common as well as cell-type-specific proteins. For 

example, exosomes from DCs, mast cells and B cells are enriched in MHC class I and 

MHC class II and  express co-stimulatory molecules like CD54 (also called ICAM-1), 

CD80 and CD86 (66,69),  exosomes from T cells bear CD3 (36) and exosomes from 

cytotoxic T cell contain perforin and granzymes (70), exosomes from reticulocytes 

contain the transferrin receptor (71). In addition to cell-specific molecules, exosomes 

also contain common components (Fig. 5) 

 

Fig. 5: Common molecular components of exosomes. 
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They are enriched in a family of proteins called tetraspanin which are cell-surface 

proteins that span the membrane four times (69). Tetraspanin proteins are found on the 

surface of many cell types but also in endosomal compartments. Tetraspanins form 

complexes by interacting between themselves as well as with a large variety of 

transmembrane and cytosolic proteins (72). These tetraspanin complexes are located in 

microdomains, termed TEM domains (tetraspanin-enriched membrane domains) (73). 

TEM domains are different from rafts and clathrin-coated pits, but share with these 

structures a specific capacity to facilitate vesicular fusion and/or fission (74,75). 

Tetraspanins act as ‘molecular facilitators’, which modulate, stabilize or prevent 

activities of associated molecules (76). They promote spreading, migration and cable 

formation by adjusting integrin compartmentalization, internalization, recycling and 

signalling (77). By regulating protein traffic, tetraspanins become involved in cell 

adhesion (78), and by modulating biosynthesis of associated molecules, such as MMPs 

(matrixmetalloproteinases), they may influence invasiveness (79). The main functions 

are cellular motility, invasion and fusion (80). Examples of tetraspanin proteins found 

on exosomes are CD9, CD63 and CD81. Exosomes have also been demonstrated to 

contain heat shock proteins (Hsps) like Hsp70, Hsc70, Hsc73 and Hsp90 (81,65). Heat 

shock proteins are a family of proteins which act as chaperones to facilitate the folding 

of protein intracellularly. Hsps can also be secreted and have extracellular functions 

such as immuno-regulatory activities. Hsps can be both constitutively expressed and be 

induced by cellular stress. Heat stressed cells have been shown to increase the 

expression of Hsps on their released exosomes (81). These ubiquitous proteins are 

involved in antigen presentation, as they can bind antigenic peptides and participate in 

loading peptides onto MHC molecules (82). MHC class I molecules are also present in 

exosomes from most cell types. Moreover, exosomes contain cytoskeleton proteins like 
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actin, tubulin and moesin, ESCRT proteins like Tsg101 and alix and proteins involved in 

intracellular membrane fusions and transports and fusion like Rab proteins and annexins 

(64,83). They also include molecules that are involved in  signal transduction (such as 

protein kinases, 14-3-3 and heterotrimeric G proteins) and various metabolic enzymes 

(such as peroxidases, pyruvate and lipid kinases, and enolase-1). Furthermore, 

exosomes express CD55 and CD59 which have been shown to protect them from 

complement lysis (84) suggesting them to be stable in vivo. Exosomes also contain 

proteins that are involved in specific cell functions. Exosomes from antigen-presenting 

cells (APCs) have been analysed in most detail. MHC class II molecules are very 

abundant in exosomes from all cells that express MHC class II. Exosomes from DCs 

also contain CD86, which is an important co-stimulatory molecule for T cells. T-cell 

receptors are also specifically enriched on T-cell-derived exosomes. Exosomes contain a 

series of cell-specific transmembrane proteins including α- and β-chains of integrins 

(such as αM on DCs, β2 on DCs and T cells, and α4β1 on reticulocytes), 

immunoglobulin-family members (such as intercellularadhesion molecule 1 

(ICAM1)/CD54 on B cells, A33 antigen on enterocytes and P-selectin on platelets) or 

cell-surface peptidases (such as dipeptidylpeptidase IV/CD26 on enterocytes and 

aminopeptidase N/CD13on mastocytes). 

Milk-fat-globule EGF-factor VIII(MFGE8)/lactadherin (85), a milk-fat-globule protein 

that is expressed by DCs and some tumour-cell lines, was found very abundant in 

exosomes that are produced by these cells (65). These proteins probably ‘address’ 

exosomes to target cells. 

 

Exosome function 

 
Exosomes have been suggested to participate in different physiological and/or 
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pathological processes within the extracellular space and in biological fluids (e.g. urine, 

serum,) (86,87,88). Exosomes functionality seems to be determined by cell-type 

specific proteins that reflect the specialized function of their original cells. When 

exosomes were initially discovered from reticulocytes, they were shown to function as a 

way of removing unnecessary proteins such as the transferrin receptor during the 

maturation process of reticulocytes into erythrocytes (89). Another function of 

exosomes that was later described is as cell free messengers, which can be released 

from one cell and have an effect on another one. This communication with other cells 

may occur either in the microenvironment, or over a distance (90). Since exosomes have 

been found in blood plasma (45), they may be transported between organs via the 

systemic circulation. How this interaction occurs between exosomes and cells is not 

fully known. However, several mechanisms describing the interactions of exosomes and 

cells have been hypothesized. Exosomes can bind to cells through receptor-ligand 

interactions, similar to cell to cell communication, mediating for example antigen 

presentation (35,91). Clayton et al. showed that B cell exosomes express functional 

integrins, which are capable of mediating adhesion to extracellular matrix components 

and activated fibroblasts. This adhesion was strong and resulted in an increase in 

intracellular calcium concentration (92). Alternatively, exosomes can attach to or fuse 

with the target cell membrane, thus delivering exosomal surface proteins and perhaps 

cytoplasm to the recipient cell (93). MHCII positive exosomes have been shown to be 

attached to follicular DCs. These cells do not express MHCII themselves, and the 

exosomes provide them with new properties (93). Finally, exosomes may be 

internalized by the recipient cells due to mechanisms such as endocytosis. Immature 

DCs have been shown to internalize and process exosomes for antigen presentation to 

CD4+ T cells (94). Later this was also shown for the integrin α4β1 which was down 
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regulated from the red blood cell surface and instead found on the surface of released 

exosomes, and in addition this made the exosomes able to bind to fibrinonectin (95). 

Through their ability to bind target cells, they are likely to modulate selected cellular 

activities such as vascular homeostasis, and participate in the signaling events 

contributing to antigen presentation to T cells (35) and the development of tolerance 

(96). 

 

Exosomes in Cancer 

 
Cancer cells begin to mould their stromal environment starting at early phases of the 

neoplastic process mainly by pathways involving cell-to-cell contact and the release of  

soluble factors, as TNFα, TGFβ, VEGF, that are able to influence the recruitment of 

different cell types (e.g. myeloid cells, hematopoietic progenitors cells). Recently, an 

alternative novel mechanism involves the active release by tumor cells of exosomes. 

Tumor exosomes, seem to have dual functions with completely opposite effects, either 

they can activate or suppress immune response against cancer.  

 

Protumorigenic role of tumor-derived exosomes  
 
Tumor-derived exosomes have been implicated in facilitating tumor invasion and 

metastasis. By stimulating angiogenesis, modulating factors released by stromal cells, 

and remodelling extracellular matrix, tumor-derived exosomes have been found to 

contribute to the establishment of a premetastatic niche, generating a suitable 

microenvironment in distant metastatic sites (97). Exosomes can increase extracellular 

matrix degradation and augment tumor invasion into the stroma (98,99). It was 

suggested that CD44 is required for the assembly of a soluble matrix that, in 

cooperation with exosomes, promotes leukocyte, stroma, and endothelial cell activation 
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in the (pre)metastatic organ. Tumor-derived exosomes may also transport apoptosis 

inhibitory proteins, induced under stress conditions, to promote tumor survival. For 

example, survivin, a member of the inhibitor of apoptosis protein family, can be 

absorbed by cancer cells from extracellular media and inhibit their apoptosis following 

genotoxic stress as well as increase their replicative and metastatic ability (100). 

Another pronounced effect of tumor-derived exosomes is their ability to modulate the 

function of stromal cells such as fibroblasts. It was recently shown that exosomes shed 

by prostate, colorectal and breast cancer cells lines contain TGF-β on their surface in 

association with betaglycan and can trigger SMAD-dependent signaling. Exosomal 

delivery of TGF-β is capable of driving the differentiation of fibroblasts into 

myofibroblasts, whose enrichment in solid tumor represents an altered stroma that 

supports tumor growth, vascularization, and metastasis (101). These observations 

suggest a protumorigenic role of tumor-exosomal TGF-β in addition to their 

immunosuppressive functions. However, it was also noted that TGF-β is not universally 

present on exosomes derived from all cancer cells. Tumor-derived exosomes were 

shown to directly suppress the activity of effector T cells. Exosomes from melanoma 

and colorectal cancer cells express death ligand such as FasL and TRAIL, both of which 

can trigger the apoptotic death of activated T cells (102,103). Furthermore, ovarian 

tumor derived exosomes are able to down-modulate CD3-ζ chain expression and impair 

TCR signaling (103,104), suggesting that tumor-derived exosomes can also 

downregulate T cell function in addition to direct killing. In addition, NKG2D 

dependent cytotoxicity of NK cells and CD8+ T cells was inhibited by NKG2D ligand-

containing exosomes derived from human breast cancer and mesothelioma cell lines 

(105,106). Similarly, murine mammary carcinoma exosomes were shown to promote 

tumor growth in vivo by suppressing NK cell function (107). These observations 
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suggest that tumor-derived exosomes can negatively regulate immune system, in 

particular T cells and NK cells. In addition, tumor-derived exosomes can also support 

the function of regulatory T (Treg) cells. Mesothelioma and prostate-derived exosomes 

were found to selectively impair the IL-2 response to cytotoxic effector cells while 

supporting Treg cell activities through a TGF-β-dependent mechanism (108). Exosomes 

from sera of patients with head and neck cancer were also reported to induce, expand, 

and upregulate the suppressor functions of human Treg cells as well as enhance their 

resistance to apoptosis via a TGF-β- and IL-10-dependent mechanism (109) (Fig. 6)  

 

 

Fig. 6: The protumorigenic role of tumor-derived exosomes 
 

Another mechanism that have a role in cell-cell communication within the tumor 

microenvironment is the intercellular exchange of proteins and genetic materials via 

exosomes (110). In particular, transport of mRNAs and microRNAs, from tumor cells to 

neighboring cells could have significant effects on tumorigenesis. It has been suggested 
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that the ability of exosomes to deliver nucleic acids to distal cells also makes them ideal 

candidates for gene therapy (111). 

 

Antitumorigenic role of tumor-derived exosomes 
 
Immune responses can be triggered by tumor-derived exosomes that contain tumor-

specific antigens and peptide-MHC complexes. Antigens that are commonly present in 

tumour-derived exosomes include melan-A (112), carcinoembryonic antigen (CEA) 

(113), and mesothelin (108). Immunization of mice with Dendritic cells (DCs) pulsed 

with cancer cell–derived exosomes demonstrate that it is possible to induce protective 

antitumour immune responses using cancer-derived exosomes as a source of antigens 

(114). Similarly, in an ex vivo human model system, exosomes taken from malignant 

effusions proved an effective source of tumour antigens for cross-presentation to CD8+ 

cytotoxic T cells by DCs (112). Expression of heat shock proteins (such as Hsp70) at the 

exosome surface is important, not only as a cofactor for efficient receptor-mediated 

uptake, but also for “danger” signals that trigger DC maturation and that subsequently 

enhance immunologic activation. Thus, exposing cancer cells to stress may render their 

exosomes significantly more immunogenic (115). DC have an active role in processing 

and cross-presenting exosomally delivered antigens, but this immune function depends 

from cancer exosomes phenotype and the influence of the microenvironment. Exosomes 

are able to activate also monocytes to secrete pro-inflammatory cytokines (116) and 

activate B cells through CD40L, thereby bypassing the need for CD4+ T cell help (117). 

Recently, ligands for NK cell-activating receptors on exosomes derived from immature 

human DCs were shown to promote NK cell activation in vitro. This occured through 

UL16 binding protein 1, MHC class I polypeptide-related sequence A (MICA) and 

MICB (which are ligands for NKG2D) on exosomes secreted by DCs from healthy 
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volunteers or patients with melanoma (118). The ability of these exosomes to activate 

NK cells was apparently due to the simultaneous presence of the IL-15 receptor α-chain 

(Il-15Rα) on the DC-derived exosomes, which could bind to exogenous Il-15 and 

thereby promote NK cell proliferation (119). 

In addition to the potential immunostimularoty effects, a proapoptotic function of 

tumor-derived exosomes directly on tumor cells was also reported. Exosomes  from 

human pancreatic tumor cells were reported to increase Bax and decrease Bcl-2 

expression, inducing tumor cells toward apoptotic pathway (120). 

 

Exosomes and Angiogenesis 

 
It has been showed that exosomes are able to alter microenvironment through their 

protein content. Tumor derived exosomes can contribute to establish an oncogenic niche 

via delivery of protein, mRNA and miRNA that support angiogenesis, cell proliferation 

and cell survival (Fig. 7).  

 

Fig. 7: Exosomes alter microenvironment and recipient cells. Exosomes help to establish a 
metastatic niche to aid tumor growth and tumor metastatis. 

 
 
Tumor derived exosomes contain several cytokines and growth factors such as tumor 

necrosis factor TNF-α, IL-1β, and TGF-β as well as functional receptors like TNFR1 

and TfR2 and through these molecules enhance recruitment of hematopoietic and 
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endothelial precursor cells to enhance neoangiogenesis in the tumor (121). Proteomic 

analysis of mesothelioma cell-derived exosomes, detected the presence of angiogenic 

factors that can increase vascular development in tumor microenvironment (122). Hood 

et al, showed that melanoma-derived exosomes stimulated endothelial signalling 

important for tissue matrix remodelling and endothelial angiogenesis (123). Recent 

studies showed that pancreatic tumour-derived exosomes increase matrix 

metalloproteinase (MMP) secretion and VEGF expression in target cells through the 

expression of proangiogenic molecules, such as members of the Tetraspanin family, thus 

promoting neo-angiogenesis even at tumour distant sites (124).  Tetraspanins, which are 

constitutively enriched in exosomes, have been found to contribute to exosome-

mediated angiogenesis. It was reported that exosomes derived from a pancreatic tumor 

line over-expressing D6.1A,  strongly induced endothelial cell branching in vitro and 

angiogenesis in vivo in a rat model (124). Tumor derived D6.1A stimulates the secretion 

of matrix metalloproteinase and urokinase-type plasminogen activator, enhances the 

expression of vascular endothelial growth factor expression in fibroblasts, and 

upregulates the expression of endothelial growth factor receptor. Exosomal Tspan8 

(D6.1A) was found to contribute to the selective recruitment of proteins and mRNA into 

exosomes, including CD106 and CD49d, both of which were implicated in the binding 

and internalization of exosomes by endothelial cells. Induction of several angiogenesis-

related genes, including von Willebrand factor, Tspan8, chemokines CXCL5 (C-X-C 

motif chemokine 5), MIF (macrophage migration inhibitory factor), chemokine receptor 

CCR1, together with enhanced endothelial cell proliferation, migration sprouting and 

maturation of endothelial cell progenitors, were seen upon exosome internalisation 

(125). Circulating exosomes obtained from plasma of glioma patients were positive for 

the mutant/variant mRNA of epidermal growth factor receptor (EGFRvIII), which 
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defines a clinical subtype of glioma. Interestingly, these exosomes display 

proangiogenic properties, indicating that glioma derived exosomes play a role in 

initiating angiogenesis (126). Skog et al, showed that these exosomes mediate transfer 

of mRNA. Transfer of mRNA can modify the translational profile of these cells and 

promote acquisition of the angiogenic  phenotype. Nevertheless, those particles also 

contain growth factors and proteases and have been shown to stimulate tubule formation 

in endothelial cells (126). Recently, it has been shown that Delta-like ligand 4, a 

transmembrane ligand for the Notch family of receptors, is incorporated in exosomes. 

Notch signaling is a cell-cell signaling pathway that have a role in several biologic 

processes, such as cell fate determination and differentiation (127), and also it is 

implicated in vascular development and angiogenesis (128). Delta-like 4 (Dll4) 

expression is particularly critical for angiogenesis (129), and its expression is restricted 

to the endothelium of developing vessels and regulate the vessel sprouting and 

branching (128). Exosomes that have Dll4 can transfer this protein from one cell type to 

another and incorporate it into the plasma membrane in vitro and in vivo. Dll4-

containing exosomes increases capillary-like structure formation in vitro and in vivo by 

a mechanism that implicates the transfer of Delta-like-4 into the endothelium. This 

suggests that Delta like/Notch pathway does not require direct cell–cell contact to 

expand its signaling potential on angiogenesis (130). Taraboletti et al, have shown that 

matrix metalloproteinases contained in exosomes released from endothelial cells are 

functionally active and lead to endothelial cell invasion and capillary-like formation 

(131). Owing to the multifunctional protein repertoire transported by tumour exosomes, 

it could be hypothesized that they may also contribute to the process of stromal 

remodelling, thus widening the role of these microvesicles in tumour progression and 

metastasis formation. Exosomes are critical for some pathological disease processes, 
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then find a strategy of targeting the formation and/or release of exosomes in specific cell 

types, would represent a novel route of therapeutic intervention. 

 

Exosomes as biomarkers 
 
Exosomes have been shown in physiological and pathological fluids such as 

bronchoalveolar lavage (132), human plasma (45), malignant and pleural effusions 

(48,133), urine  (46), breast milk  (134), human saliva (135), synovial fluid (136) and 

malignant ovarian ascites. The presence of these bioactive vesicles in plasma and 

malignant effusions of patients with cancer (48) suggests that exosomes may lead to 

potential diagnostic biomarkers of disease conditions and play an important role in 

cancer diagnosis. Most cancers, such as ovarian cancer, are diagnosed at advanced stage 

and prospects for significant improvement in survival reside in early diagnosis then it is 

necessary to find non-invasive cancer biomarkers to detect cancer in its early stages. 

Currently, effective screening protocols are not available, because the classical 

biomarkers, for example  CA125 for ovarian cancer, is thought to be robust only in 

following the response or progression of the disease, but not as a diagnostic or 

prognostic marker (137). Thus, it is important to identify additional diagnostic and 

prognostic markers for this disease. The increased levels of plasma-exosome in patients 

with advanced disease [e.g., mean 2.85 mg/mL exosomes for lung cancer 

adenocarcinoma patients compared with 0.77 mg/mL exosomes in the blood of normal 

volunteers (138)] and the discovery of cancer miRNA profiles in circulating plasma-

derived exosome, giving exosomes an attractive biomarker candidate. Because 

exosomes transport molecules involved in cancer progression they can be used as 

markers, for example in exosomes may be present cancer-associated antigens not 

available as soluble molecules within biological fluids, such as the oncofetal 
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glycoprotein-5T4; which is over expressed by epithelial cancers but not shed from the 

cell surface (139). In a recent study, prostate cancer biomarkers, PCA-3 and TMPRSS2; 

ERG, were detected in exosomes isolated from the urine of prostate cancer patients 

(140), and they have been proposed  as a possible source of multiple biomarkers of 

renal  disease (46,141) and urological cancer. Exosomes are also an attractive biomarker 

candidate for bladder cancer. The differentially expressed proteins include psoriasin, 

kertain-14, galectin-7, epidermal fatty acid binding protein (E-FABP), migration 

inhibitor factor-related protein (MRP8) and stratifin, which may be useful markers for 

the diagnosis of bladder cancer (46). 

In the past years, the importance of  miRNA in cancer cells has been recognized. 

MicroRNAs, small (22–25 nucleotides in length) noncoding RNAs, suppress the 

translation of target mRNAs by binding to their 3′ untranslated region (142,143). Post-

transcriptional silencing of target genes by microRNA can occur either by cleavage of 

homologous mRNA or by specific inhibition of protein synthesis. A correct control of 

miRNA expression is essential for cellular processes, such as proliferation, 

differentation, development and cell death. Valadi et al. reported the presence of mRNA 

and miRNA in exosomes from mouse and human mast cell lines. Exosomes are able to 

transport biologically mRNA and miRNA to neighboring cells that confer new functions 

to the recipient cells (111). These studies highlight the potential of exosomal microRNA 

profiles for use as diagnostic biomarkers of disease through a non invasive blood test. 

The expressions of individual microRNAs and specific microRNA signatures have now 

been linked to the diagnosis and prognosis of many human cancers. A possible obstacle 

in body fluid based exosome analysis is the presence of contaminating exosomes 

secreted by normal cells (e.g., normal ovarian cells as compared to ovarian cancer 

cells). To discriminate two population of exosomes can be used specific purification 



 25

strategy, as a magnetic bead immune capture technique was employed to isolate 

circulating epithelial cell adhesion molecule-positive exosomes from the plasma of 

ovarian cancer and lung cancer (Fig. ). 

 

Fig. 8: Circulating exosomes can be a rich source for identifying potential biomarkers. Patient 
plasma contains exosomes that are released by disease cells (e.g., colorectal cancer cells), normal 
counterpart (e.g., normal colon cells) and other normal cells (e.g., liver). Exosomal tissue signatures 
can be used to isolate disease cell-derived exosomes for proteomic and transcriptomic profiling. 
 

Currently, a major goal is to identify disease biomarkers in biological fluids, in a non-

invasive manner, that can be measured relatively inexpensively for early diagnosis of 

disease and treatment success. 

Exosomes in Immunotherapy 
 
The first antitumor effects of exosomes was demonstrated by Zitvogel et al, they 

showed that exosomes from DCs pulsed  with tumor peptides could prime a specific 

cytotoxic T lymphocyte (CTLs) in vivo and suppress growth of established tumors when 

injected into mice (38,144). Particularly in combination with TLR 3 and 9 ligands, 

exosomes efficiently induced anti-tumor responses in mice (145). These promising 
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results in mice led to the development of techniques for the clinical testing of tumor 

antigen loaded DC exosomes in human advanced cancer patients (66). 

When dendritic cells are pulsed with cancer antigens or tumor peptides (38) dendritic 

cell-derived exosomes (DEX) has been shown to elicit stronger immune responses 

toward cancer cells (146) with up-regulation of specific antibody release and cytokine 

production (147). Furthermore, it has also been reported that DEX trigger NK cells in 

the immune response toward cancer cells via NKG2D-dependent NK cell activation and 

IL-15Rα-dependent cell proliferation (119). 

Some clinical trials have been performed in humans with advanced staged melanoma 

and non small cell lung cancer. Patients were treated with tumor peptide loaded DC 

exosomes and the outcome was promising. The treatment was well tolerated and some 

patients showed long term stability of the disease (148,149) (Fig. 9).  

 

Fig. 9: Clinical grade exosomes in immunotherapy. The process of how DEX can be derived, 
purified, and utilized in cancer treatment. Creative Commons. Reproduced with permission from 
Escudier B, Dorval T, Chaput N, et al. Vaccination of metastatic melanoma patients with autologous 
dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. J Transl Med. 
2005;3(1):10. 
 

Although it has been established from the results in clinical  trials that exosomes can be 

safely administered, it is necessary to increase their potency to elicit appropriate 

immune A phase II clinical trial is planned to follow-up the initial positive results (150).  
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responses to kill cancer cells. Different strategies have been applied to increase the 

immunogenicity of exosomes, for example the addition of adjuvant such as double 

stranded RNA or CpG (150). Another strategy that has been tested is the modulation of 

the exosome composition. Exosomes from mature DC have been shown to be more 

immunogenic than those from immature DC (151). Recent evidence suggests that a new 

strategy is represented by artificially coating and engineering exosomes (152) with 

tumor antigens to make it more recognizable to the immune system. It has been 

experimentally demonstrated that using nanotechnology, exosomes can be engineered to 

bear an optimal number of MHC I and ligands that would activate T cells, and their in 

vivo activity can be traced by encapsulating superparamagnetic iron oxide nanoparticles 

(153). Exosomes can also carry cytokines, DNA, RNA, adjuvants, labels, costimulatory 

signals, and gene therapy vectors, which makes it ideal to develop new immunotherapy 

strategies. 
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Immune system and tumor 
 
The immune system is essential in tumor progression modulation and elimination of 

cancer cells. Immune cells, from both the innate and adaptive immune systems, are able 

to recognize, attack, and kill tumor cells in various ways. They collaborate and stimulate 

each other (e.g. with IFN-γ) to induce a potent immune response against the tumor cells. 

However, cancer still occurs. Tumor cells are able to fight back or hide from the 

immune system. The interaction between tumor and immune system consist of three 

phases and is known as cancer immunoediting (154). During the first phase (the 

elimination or cancer immunosurveillance phase) the immune system is able to protect 

the host from a developing tumor. However, some transformed cells may escape the 

immunological pressure, thereby entering the second phase (the equilibrium phase). 

During this period of immune-mediated latency, the tumor persists and acquires new 

mutations. This may allow the tumor to enter the third phase (tumor escape) during 

which established tumors become clinically manifest (155). 

The innate immune system provides the first line of immediate defense and includes 

natural killer (NK) cells, γδ T cells, monocytes, macrophages, neutrophils and dendritic 

cells. NK cells are able to discriminate between self and non-self. The first activating 

signal for NK cells is a loss of MHC class I molecules on the surface of cancer cells 

(156). MHC class I molecules act as an inhibitory signal for NK cells, thus making 

MHC class I lacking tumor cells a target for NK cells. NK cells use their large repertoire 

of inhibitory and activating receptors to detect the transformed-self. Many tumor cells 

express activating NK ligands (like MICA and MICB) recognized by NKG2D and are 

thus efficiently eliminated by NK cells and γδ T cells (157). Tumors express antigens 

that are recognized as foreign by the immune system of the tumor-bearing host. The 

immunogenicity of tumors implies that tumor cells express antigens that are recognized 
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as foreign by the adaptive immune system. These tumor antigens, presented on the 

surface of antigen presenting cell (APCs), are recognized by T lymphocytes cells and 

leading to a tumor specific reaction. To mount an adaptive immune response, two 

signals are mandatory. The first signal is provided by the presentation of an antigen in 

the groove of an MHC molecule to the T cell receptor (TCR).The second signal is 

provided by the ligation of co-stimulatory molecules (the most important being CD28 

on T cells interacting with CD80 and CD86 on the APCs (158). These two signals 

activate the adaptive system to recognize and kill tumor cells. After successful 

recognition of the tumor cell by innate and adaptive effector cells, cytotoxic T 

lymphocytes, γδ T cells and NK cells both utilise a pore-forming protein, perforin, and a 

battery of serine proteases (granzymes) that activate caspases, leading to apoptosis. The 

apoptotic program can also be activated after binding of TRAIL or Fas-ligand, 

expressed on the cell surface of the effector cell, to one of its cognate receptors. These 

lymphocytes are able to kill tumor cells via cytokines, such as IFNγ, TNFα and TNFβ. 

Tumor cells have developed numerous strategies to change their phenotype and mislead 

the immune system. Tumor cells can change their cell surface phenotype to prevent 

recognition and binding by immune effector cells. The most wellknown example of this 

strategy is the downregulation of MHC class I molecules (or molecules involved in 

antigen processing by MHC class I molecules) resulting in defective binding to the TCR 

of cytotoxic CD8+ T cells (159,160). However, downregulation of MHC class I renders 

cells susceptible for NK cell mediated killing. Consequently, tumor cells have also 

developed mechanisms to escape from NK surveillance: for example upregulation of the 

NK inhibitory HLA-G3 (161). Other strategies are the down-modulation of co-

stimulatory molecules or upregulation of pro-apoptotic molecules like FAS-ligand on 

their cell surface to induce apoptosis of effector cells (162). Another strategy is to 



 30

prevent the pro-apoptotic signals after effective recognition and binding of immune 

cells. An example of this evasion of immune mediated killing is to downregulate 

proapoptotic death receptors or to upregulate anti-apoptotic or decoy receptors (for 

example TRAIL-R3). Over-expression of anti-apoptotic proteins, like XIAP (X-linked 

inhibitor of apoptosis) (163,164) or molecules that block the granzyme B/perforin 

pathway like (pI-9)(165) are other examples. The third way, is to produce immune 

suppressive factors that inhibit T cell function and lead to a local state of tolerance and 

anergy. Examples of this strategy are the production of transforming growth factor beta 

(TGF-β)(166), or indoleamine 2,3-dioxygenase (IDO)(167) or IL-10.  

Recently, mounting evidence is indeed pointing to exosomes as major participants in 

immune evasion with several mechanisms. Among the earliest reports there is a 

description of melanoma-derived exosomes that were lethal to T cells (102). These 

cancer cells naturally express Fas ligand, and may expel by the multivesicular 

endosomal route at least a proportion of this molecule in exosomes. FasL–bearing 

exosomes, upon encountering activated (Fas-positive) T cells, can essentially crosslink 

T cell Fas and trigger apoptotic death (102). Other influences of exosomally expressed 

members of the tumour necrosis factor superfamily may include downmodulation by 

ovarian cancer exosomes of the CD3-ζ chain. This molecule is an integral component of 

the TCR complex, which is essential for competent signalling after TCR–MHC–peptide 

interactions (168). Melanoma exosomes expressing TNF-α may also affect the CD3–

TCR complex in a reactive oxygen species–mediated manner (169). Thus, cancer 

exosomes can exert drastic effects on T-cell functions and may constitute an important 

mechanism by which tumours eliminate activated T cells that may recognize and kill 

them (102). Other death-independent effects of cancer exosomes on the immune system 

have been reported. Liu et al., for example, pretreated mice with breast cancer 
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exosomes before implanting tumours and documented accelerated tumour growth (170). 

This accelerated growth was result of the negative influence of cancer exosomes on NK 

cell functions, inhibiting NK cell proliferation and impairing cytotoxic functions. Other 

studies showed that exosomes from cervical cancer harbor NKG2D ligand such as 

MICA*008 or ULBP3 proteins, which suppress Natural Killer cell toxicity (171).  

Thus, tumor exosomes bearing NKG2D ligands can act on effector cells to down 

regulate NKG2D, impairing part of the immune response (106). In addition to NKG2D 

ligands, it was shown that tumor exosomes carry and express growth factors such as 

TGFβ1. Membrane-bound TGFβ1 on these vesicles displays the same function as 

NKG2D ligands i.e. the down regulation of surface NKG2D expression by NK cells and 

CD8+T cells following a direct interaction between exosomes and cells. Tumor-derived 

exosomes promote other immune escape mechanisms by triggering myeloid suppressive 

cells proliferation (MDSC). These cells are found in large number in lymphoid organs, 

blood and tumor tissues in cancer patients and are immature myeloid cells. These cells 

express myeloid marker stimulatory molecules (CD14 and CD11b) and are devoid of 

co-stimulatory molecules (HLA DR, CD80, CD86). They spontaneously secret TGFβ 

and have suppressive activity on activated T lymphocytes since they are able to inhibit T 

cells proliferation and cytolytic functions (172). It was shown that melanoma and 

colorectal carcinoma derived exosomes altered the monocyte differentiation into 

dendritic cells, leading to the generation of myeloid suppressive cells (172). 

Furthermore, it was demonstrated that MDSC-mediated promotion of tumor progression 

was dependent on TGF-β present on exosomes, but also depended upon the lipidic 

mediator prostaglandin E2 (PGE2) transported by tumor exosomes (173) (Fig. 10). 

These pleiotropic effects lead to hypothesize that interfering with exosome release by 

tumour cells may perhaps represent a novel strategy for simultaneously recovering 
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multiple immune functions in cancer patients, then the knowledge on the immune 

evasion mechanism exosomes-mediated could help for developing a successful, multi-

level and multi-target anti-cancer therapy. 

 

 
 
Fig. 10: Inhibitory functions of exosomes derived from tumor cells. Inhibition of T cell activation, 
inhibition of NK cell and CD8+ T cell cytotoxicity, promotion of regulatory T cell activity, inhibitio n 
of monocyte differentiation into DCs and promotion of monocyte differentiation into myeloid-
derived suppressor cells (MDSCs), T cell killing through ligation of CD95 by CD95 ligand (CD95L)  
 

    
γδγδγδγδ T cells 
 
γδ T cells are innate effector cells able to act as firs-line defense against tumors and 

infections, but also to enhance antigen-specific immune responses mediated by 

conventional T cells and antibodies. They account for 5–10% of CD3+ peripheral blood 

T cells but constitute a dominant T-cell fraction at other anatomical sites such as the 

intestinal epithelia. γδ T cells differ from conventional αβ T cells in several aspects. αβ 

T cells are “conventional” T cells with a T cell receptor (TCR) composed of the higly 

variable α and β chains. They comprise two subpopulations CD4+ and CD8+ T cells 

and their activation depends on the interaction with professional APCs, such as dendritic 
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cells. γδ T cells are “unconventional” T cells that express a TCR composed of the δ and 

γ chains. Most γδ T cells lack CD4 or CD8 antigens and hence display a "double-

negative" phenotype, although a sizeable fraction expresses CD8 (174). The absence of 

CD4 or CD8 expression on the majority of circulating γδ T cells is well in line with the 

lack of MHC restriction in antigen recognition of this T-cell subset. γδT cells often show 

tissue specific localization of oligoclonal subpopulations sharing the same TCR chains 

(175). For instance, murine skin γδ T cells, so-called dendritic epidermal T cells 

(DETCs), are largely Vγ5/Vδ1+ while in the human peripheral blood, the majority of γδ 

T cells express a TCR composed of Vγ9 and the Vδ2 chains (Vγ9/Vδ2 T cells). Similar 

to αβ T cells, Vγ9Vδ2 T lymphocytes comprise distinct populations distinguishable on 

the basis of surface markers, effector functions and trafficking properties. Naive (Tnaive, 

CD45RA+CD27+) and central memory (TCM, CD45RA–CD27+) cells home to 

secondary lymphoid organs and lack immediate effector functions, whereas the so-

called effector-memory (TEM, CD45RA–CD27–) and terminally differentiated (TEMRA, 

CD45RA+CD27–) cells home to sites of inflammation where they display immediate 

effector functions such as cytokine production and cytotoxicity (176,177). Vγ9/Vδ2 T 

cells recognize through their TCR a set of non-peptidic small molecular compounds in 

an MHC-independent manner. This interaction is sufficient for their activation and does 

not require interaction with professional APC. γδ TCR enables them to recognize 

families of unprocessed nonpeptide compounds of low molecular weight (100-600 Da) 

with conserved patterns, comprising natural phosphoesters derived from mycobacteria 

and other pathogens, referred to as phosphoantigens, and to a lesser extent several 

ubiquitous metabolites such as alkylamines from plant extracts, xylosyl-or ribosyl-1-

phosphate, 2,3-diphosphoglycerate and several synthetic aminobisphosphonates 

(NBPs)(178,179,180,181).  The most potent Vγ9/Vδ2 T cell ligand, (E)-4-hydroxy-3-
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methyl-but-2-enyl pyrophosphate (HMB-PP) is an intermediate metabolite of the 

microbial non-mevalonate pathway (MEP) of isoprenoid biosynthesis (182,183). 

Through this particular specificity for microbial molecules, Vγ9/Vδ2 T cells display an 

anti-microbial immune response (184). After their activation, Vγ9/Vδ2 T cells expand 

rapidly and secrete different proinflammatory cytokines. These cytokines mediate the 

activity of other immune cells to eliminate the microbe, such as interferon-γ (IFN-γ) 

increasing the microbial degradation in macrophages lysosomes. Activated Vγ9/Vδ2 T 

cells also recognize infected cells and induce their cell death through the secretion of 

apoptosis-inducing factors such as perforin, granzyme and tumour necrosis factor-

related apoptosis-inducing ligand (TRAIL). Fas-ligand expressed on Vγ9/Vδ2 T cell 

membrane can also directly interact with its receptor Fas on target cells and induce 

apoptosis. γδ T cells also recognize metabolites of the mevalonate pathway of the 

isoprenoid biosynthesis, present in all eukaryotic cells. Isopentenylpyrophosphate (IPP) 

is one prototype of these phosphorylated nonpeptidic ligands. Overproduction of these 

metabolites may allow γδ T cells to target cells with deranged metabolic activity of the 

mevalonate pathway (185). Notably, an increased expression of hydroxy-

methylglutaryl-CoA reductase (HMGR), the rate limiting enzyme of the mevalonate 

pathway, has been reported in hematological malignancies and mammary carcinoma 

cells (186). Accumulated IPP in tumour cells is suggested to bind the Vγ9/Vδ2 TCR, 

thus acting as an activation signal, although the mode of recognition of this ligand 

remains unclear. When activated they release pro-inflammatory chemokines  (e.g. MIP-

1, RANTES) and T-helper cell type 1 (Th1) cytokines (e.g. IFNγ and TNFα), and 

proliferate in the presence of IL-2. Some hemopoietic tumor cell lines, such as the 

Daudi Burkitt's lymphoma and the RPMI 8226 myeloma line are spontaneously 

recognized and lysed by Vγ9/Vδ2 T cells in vitro (187,188). The molecular basis of 
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such a spontaneous tumor cell recognition has not been fully elucidated yet. One 

possibility is that tumor cells express induced self ligands like stress-inducible MHC 

class I-related MICA/MICB molecules, heat shock proteins (HSP), and/or other ligands 

that are recognized through the Vγ9/Vδ2 TCR or through coreceptors like the NK 

receptor member D of the lectin-like receptor family (NKG2D)(189). Most tumour cells 

express ligands for the NKG2D receptor such as the MHC class I chain-related genes 

(MIC) A/B, and proteins of the UL16-binding protein (ULBP) family (190). These 

molecules bind to the NKG2D receptor expressed on Vγ9/Vδ2 T cells, acting also as an 

activation signal (Fig. 11).  

 
Fig. 11: Tumour cell killing capacity of activated Vγ9/Vδ2 T cells. Vγ9/Vδ2 T cells recognize via 
their TCR isoprenoid metabolites such as IPP that may accumulate in tumour cells. They also 
recognize via NKG2D stress-induced ligands that are often expressed on tumour cells. Stimulation 
of either or both receptors activates Vγ9/Vδ2 T cells and leads to tumour cell lysis. 
 

After recognition of these molecules, γδ T-cells become activated to produce cytokines 

and eliminate a target cell. Killing is performed via the perforin / granzyme pathway 

and death-receptor-dependent pathways (180). Upon activation of a cytotoxic 

lymphocyte, granules containing perforin and granzymes are released in the synaptic 

cleft between the killer and target cell. Perforin makes pores in endosomes and 

granzymes enter in the cytoplasm of the target cells and activate apoptosis-pathway 
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(180). There are different death-receptor-dependent pathways involved in the killing of 

tumor cells (181). The most important death ligands are FasL, TRAIL and TNF. These 

death domain-containing adaptor molecules start the proteolytic caspase cascade by 

activating caspase-8 and -3 in the tumor cell, leading to apoptosis. Recently, it has been 

shown that activated Vγ9/Vδ2 T cells are a novel type of professional APC (191) 

similarly to DCs, macrophages and B cells. APCs present MHC molecules linked to a 

endogenous or exogenous peptide on the cell surface and interact with the αβ TCR of 

CD8+ T cells and CD4+ T cells. Activated Vγ9/Vδ2 T cells have been shown to present 

all these functions, these cells efficiently processed and displayed antigens and provide 

costimulatory signals sufficient for strong induction of naïve αβ T cell proliferation and 

differentiation (192). Thus, Vγ9/Vδ2 T cells have the ability to bridge innate and 

adaptive immune responses. 

Vγ9/Vδ2 T cells are important contributors to innate and adaptive immune responses 

against tumor cells and pathogens, then it is possible to develop a novel strategy for 

treatment of solid and haematological cancer utilizing the mode of action of γδ T cells. 

 

Bisphosphonates and γδγδγδγδ T cells 
 
Bisphosphonates (BPs) are synthetic drugs that prevent bone resorption and are used for 

the treatment of Paget’s disease, tumour-associated bone diseases and osteoporosis. 

Based on their chemical structure, BPs are traditionally divided into two 

pharmacological classes with distinct molecular mechanisms of action: nitrogen- 

containing (N-) and non-nitrogen containing (non-N) drugs. Bisphosphonates that lack a 

nitrogen atom are metabolized into non-hydrolyzable proapoptotic ATP analogues that 

accumulate in the cytosol of osteoclasts (193). The resulting accumulation of non-

hydrolysable analogues of ATP induces osteoclast apoptosis and inhibits bone resorption 
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(194). By contrast, N-BPs interfere with a specific enzyme in the mevalonate pathway, 

farnesyl pyrophosphate synthase (FPPS), thereby depleting the osteoclasts of isoprenoid 

lipids (195,196). More specifically, FPPS inhibition by N-BPs blocks the covalent 

attachment of isoprenyl chains to small GTPases (e.g., Ras, Rac, Rho), which is crucial 

for their intracellular localization and functions in osteoclasts. In addition to the effects 

on the function of small GTPases, the disruption of the mevalonate pathway by N-BPs 

results in the accumulation of isopentenyl pyrophosphate (IPP), which is then converted  

to a cytotoxic adenosine triphosphate analogue (ApppI) that can directly induce 

osteoclast apoptosis (197,198). Thus, N-BPs may exert their pharmacological effects on 

osteoclasts through the formation of ApppI or via the inhibition of protein prenylation, 

particularly of small GTPases. Moreover, N-BPs have been tested for a wide range of 

solid and haematopoietic cancers. In vitro studies show that N-BPs have cytostatic 

activity against tumor cells, induce apoptosis and also inhibit cell adhesion. Zoledronic 

acid (ZA) is a newer N-BP with a tertiary amino group included within a ring structure. 

It can be considered the most potent and widely used intravenous BP that prevent the 

delayed onset of skeletal related event (SRE) in patients with bone metastases from any 

type of tumour and also for the treatment of hypercalcemia of malignancy (199,200). 

ZA is approved for the treatment of patients with bone metastasis from breast cancer, 

hormone refractory prostate cancer, as well as other solid tumors and multiple myeloma 

(201). A very interesting property of N-BPs in antitumor immune responses is the 

ability to activate Vγ9Vδ2 T cells. Through inhibition of FPPS of  the mevalonate 

pathway,  N-BPs trigger the intracellular accumulation of IPP and  exerting strong 

activation of Vγ9Vδ2 T cells. Furthermore, zoledronate induces functional changes in 

Vγ9Vδ2 T cell subsets (202). In vivo, it promotes the differentiation of Vγ9Vδ2 T cells 

toward CD45RA-CD27- γδ T cells, which produce interferon-γ and exert cytotoxicity, 
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while decreasing CD45RA+ CD27+ naive and CD45RA-CD27+ memory γδ T cells 

(202). This effect is specific to Vγ9Vδ2 T cells. Neither human γδ T cells expressing the 

Vγ9Vδ1 TCR, nor human αβ T cells, monocytes, NK or B cells are responsive to N-BPs 

(202,203).  

Previous studies have demonstrated that zoledronate sensitizes chemotherapy-resistant 

tumor target cells (prostate,breast and lung cancer) to Vγ9Vδ2 T cell cytotoxicity, 

rendering these cancer cell lines highly susceptible to Vγ9Vδ2 T cell-mediated killing 

(204). Recently, interest has emerged on the use of zoledronate in CML, because this 

drug synergistically augments the anti-Ph+ leukaemia activity of imatinib both in vitro 

and in vivo (205,206), and inhibits proliferation and induces apoptosis of imatinib-

resistant CML cells  (207). D’Asaro et al. showed that pre-treatment of sensitive and 

resistant CML cells with zoledronate alone or in combination with imatinib significantly 

increased killing by Vγ9Vδ2 T lymphocytes (208). They showed also that Vγ9Vδ2 T 

cells kill cells freshly isolated from patients with CML, at time of diagnosis and before 

therapy, but exclusively when cells were pretreated with zoledronate alone or in 

combination with imatinib (208). 

The unique ability of bisposphonates to render tumour cells susceptible to Vγ9Vδ2 T 

cell attack makes these drugs particularly interesting candidates for use in γδ T cell 

therapy. 
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AIMS 
 

The overall aims of this project were to assess the release of exosomes by LAMA84 

CML cell lines and to elucidate their role in angiogenesis. To evaluate this, I tested if the 

addition of those exosomes to human vascular endothelial cells (HUVEC) affects 

several step of in vitro angiogenesis including motility, cytokine production, cell 

adhesion and cell signalling, as well as stimulation of angiogenesis in a nude mouse 

assay. To confirm the data obtained with exosomes derived from LAMA84 cells, I used 

exosomes isolated from blood of CML patients to understand better how CML cells can 

induce an angiogenic phenotype. Another field of investigation was the study of the 

effects of exosomes on γδ T cells. These lymphocytes exhibit a potent MHC-

unrestricted lytic activity against several tumor cells and are able to kill CML cells 

pretreated with zoledronic acid. Zoledronic acid is a syntethic aminobiphosphonate that 

is able to activate γδ T cells, augments the anti-Ph+ leukemia activity of imatinib both in 

vitro and in vivo and inhibits proliferation and induces apoptosis of imatinib-resistant 

CML cells. I started to analyze if exosomes from CML cell lines have an activatory or 

inhibitory effects on these lymphocytes and if zoledronic acid affect the release or the 

effects of exosomes. The understanding of the mechanism of communication between 

leukemic cells and the microenvironment and the mechanism by which tumor cells can 

escape immune system could promote the development of new therapies to overcome 

drug resistance observed sometimes in the treatment of CML.  

The more specific aims were to investigate:  

• Detect and characterize microvesicles released from CML cell lines (western 

blot and enzymatic assays) 

• Evaluate the effects of  exosomes on endothelial cells  (motility, wound healing, 

adhesion assays) 
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• Evaluate the effects of exosomes on  in vivo angiogenesis assay 

• Evaluate the effects of exosomes on γδ T cells functions (cytokines release, 

NKG2D, CD69 and CD25 expression) 

• Evaluate the effect of zoledronic acid on the release and effects of exosomes  



 41

Materials and Methods 
 

Cell culture 

 
LAMA84 and K562 chronic myelogenous cells, were cultured in RPMI 1640 

(Euroclone UK) supplemented with 10% FBS (Euroclone UK), 2mM L-glutamine 

(Euroclone UK), 100 U/ml penicillin and 100 µg/ml streptomycin. Human umbilical 

vein endothelial cells (HUVEC, Lonza, Clonetics, Verviers, Belgium) were grown in 

endothelial growth medium (EGM) supplemented with Hydrocortisone, hFGF-B, 2 ml; 

VEGF, 0.5 ml; R3-IGF-1, 0.5 ml; Ascorbic Acid, 0.5 ml; Heparin, 0.5 ml; FBS, 10 ml; 

hEGF, 0.5 ml; GA-1000, 0.5 ml. LAMA84 and K562 cells were maintained at 

concentration of 0,3x106/ml to grown, and were expanded at 1x106/ml to recover 

exosomes. For treatment with Zoledronic acid (gift from Novartis Pharma, Milan Italy), 

5 µM/ml of the drug was added when K562 cells were seeded for exosomes at 

concentration of at 1x106/ml.  HUVEC cells were cultured in Petri dish, were harvested 

using trypsin-PBS 1:1 and seeded for the experiment. Cultures are placed in a 

humidified 95% air and 5% CO2 atmosphere at 37° C. 

 

PBMC isolation 

 
Human blood samples were obtained from healthy donors, after written informed 

consent was obtained, in accordance with the Declaration of Helsinki guidelines and 

University of Palermo Ethics committee. Human peripheral blood mononuclear cells 

(PBMC) were isolated using the Ficoll-Paque (GE Helthcare-Bio Science, Uppsala, 

Sweden) separation technique. Whole blood was diluted in RPMI, layered over Ficoll-

Paque and centrifuged at 1400 × g for 20 min. The mononuclear cells (interphase layer) 

were collected, washed twice in complete medium (RPMI 1640 medium, 10% FBS, 1% 
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penicillin-streptomycin) and finally resuspended in complete medium. PBMC were 

cultured at concentration of 1x106/ml to recover exosomes. 

 

γδγδγδγδ T cell isolation 

 
For γδ T cells isolation, whole blood were taken from healthy donors at Cardiff 

University, according to the local ethical guidelines on experimentation with human 

samples. Blood was layered on Lymphoprep (Axis-Shield), and centrifuged at 1700 rpm 

for 20 min. PBMC were recovered and washed twice with MACS buffer (5mM EDTA; 

2%FBS; PBS 1X) and centrifuged at 1500 rpm for 10 min and 1000 rpm for 10 min. 

Pellet was resuspended in 1ml of MACS buffer and was added a blocking IgG antibody 

(1:100) for 10 min on ice. The cells were staining with Vγ9 PE-Cy5 (1:400) for 15 min 

on ice. Cells were washed in MACS buffer at 1300 rpm for 8 min and resuspended in 

400 µl MACS buffer plus anti-PE microbeads (Milteny) for 15 min in the fridge. Cells 

were resuspended in 2 ml of MACS buffer and placed onto LS column. After 3 washes 

with MACS buffer,  γδ T cells were recovered a 15ml falcon tube. γδ T cells was 

counted and seeded for all experiment at 50000 cells/well at 37 °C in 5% CO2. Cultures 

were incubated in 96 well plate overnight in the presence of 10 nM HMB-PP to activate 

Vγ9/Vδ2 T cells, and 20 U/mL interleukin-2 (IL-2) (Proleukin, Chiron).  

 

Exosome isolation 

 
Exosomes produced by LAMA84, K562 treated with ZA and K562 cells during a 24 hr 

culture period, were isolated from conditioned culture medium supplemented with 10% 

FBS (previously ultracentrifuged) by differential centrifugation. Conditioned medium 

(CM) was recovered after 24h. CM were centrifuged at 300 g x 5’, 3000 g x 10’, 10000 

g x 20’. CM was filtered (0,22µm filter) and was ultracentrifuged in “Ultra Clear-Queck 
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Seal” tubes at 100000 g x1h30’. Pellet was washed and then resuspended in PBS.  

 

30%sucrose/D2O cushion 

 
To further verify the identity of vesicles as exosomes, vesicles were isolated on a 30% 

sucrose/D2O cushion (density of 1.13–1.19 g/mL), as described by Lamparski et al (66) 

Exosomes from differential centrifugation method were resuspended in 25 ml of PBS. 

4ml of 30%sucrose/D2O was loaded on the bottom of the ultracentrifuge tube and 

diluited exosomes were layered above the sucrose cushion, gently without disturbing 

the interface. Samples were ultracentrifuged at 100000xg, 4°C for 75 min in SW 28 

rotor. The cushion, which now contains exosomes,  was recovered with a 5ml syringe 

from the side of the tube. The cushion was transferred to a fresh ultracentrifuge tube and 

were added 40 ml of PBS. Samples were ultracentrifuge at 100000xg 70 min in 70 Ti 

rotor. Pellet was resuspended in PBS. Exosome protein content was determined by the 

Bradford method. On average,  the amount of exosomes obtained  was 100 µg/40 ml 

from LAMA84 and K562 conditioned medium and 50 µg/40 ml from K562 treated with 

ZA. 

 

Scanning Electron Microscopy 

 
Exosomes were next examined by scanning electron microscopy analysis. They were 

fixed with 2% glutaraldehyde in PBS for 10 min, attached onto stubs, coated with gold 

in a sputterer (Sputter Coater 150A, Edwards, UK) and observed using a field emission 

scanning electron microscope (FEGESEM QUANTA 200 FEI) at working voltage 30 

kV. 
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Patients 

 

Blood samples were obtained from two newly diagnosed CML patients. Informed 

consent was obtained from patients, according to the Declaration of Helsinki and with 

hospital Ethics Committee approval. Whole blood samples were treated with red blood 

cell lysing buffer (Sigma, St. Louis, MO) for 2 min at room temperature, then 

centrifuged at 350g for 7 min to recover and discard lysed red cells. The interphase 

layer containing CML cells was collected, resuspended in PBS and lysated for controls. 

Exosomes released in fresh patient’s plasma were prepared with the same protocol of 

CML cell lines. 

 

Western blot and immunoprecipitation assay 

 
CML cells and exosomes were lysed in lysis buffer (300 mM NaCl, 50 mM Tris HCl pH 

7.6, 0.1% Triton, 1 mM PMSF, 10 mg/ml leupeptin, 10 mg/ml aprotinin, 4 mM EDTA, 

2 mM sodium orthovanadate, 10mMNaPPI, 100mMNaF) on ice for 1h. The cell lysates 

were clarified at high speed centrifugation for 15 min and an aliquot of the supernatant 

was assayed to determine protein concentration by the Bradford method.  

Total cell or exosome lysates were subjected to SDS-PAGE electrophoresis and 

immunoblot. Antibodies used in the experiments were: HSC70, CD63 and VCAM-1 

(Santa Cruz Biotechnology, Santa Cruz, CA), actin, MAPK and phosphoMAPK (Cell 

Signaling Technology, Beverly, MA). Five million HUVEC were incubated with 50 

µg/ml of LAMA 84 exosomes for 6 hr or with 10 ng/ml TNF a for 2 hr (positive 

control) or with low serum medium for 6 hr (negative control) and processed for 

immunoprecipitation experiments using precleared lysates. Samples were resolved in 

8% SDSPAGE followed by immunoblotting with anti-VCAM1. Aliquots of the 
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precleared cell lysates were resolved independently by 8% SDS-PAGE and examined 

for actin quantity as a surrogate of IP input (named as starting material or St) . 

 

Acetylcholinesterase assay 

 
A total of 10 µg of exosomes in 100 µl of PBS and 10 µg of total cell lysate  were 

resuspended in a solution of 1.25 mM acetylthiocoline and 0.1 mM 5,5’-dithiobis (2-

nitrobenzoic acid) in a final volume of 1 ml. The incubation was carried out in cuvettes 

at 37 °C, and the change in absorbance at 412 nm was followed  at different time points 

(from 0 to 180 min). 

 

Flow cytometry for VCAM1 

 
Expression of HUVEC cell surface VCAM-1 was determined by flow cytometry 

analysis. HUVEC were treated with or without 50 µg/ml of LAMA 84-exosomes in low 

serum medium (EGM:RPMI, 1:9). 500,000 cells were washed in PBS and incubated 

with 0.5 lg VCAM-1-FITC (Santa Cruz Biotechnology, Santa Cruz, CA) for 15 min at 

4°C. Viable cells were gated by forward and side scatter and the analysis was performed 

on 100,000 acquired events for each sample. Samples were analyzed on a FACS Calibur 

with the use of the CellQuest software (BD Biosciences). 

 

Flow cytometry of VCAM-1 expression on the surface of latex bead-coupled 

exosomes 

 

Exosomes are too small for FACScan analysis, and therefore were bound  to surfactant-

free white aldehyde/sulfate latex beads, 4 µm diameter (Interfacial; Dynamics, Portland, 

OR). Beads were incubated with 30 µg of exosomes for 15 min and then for 2h at room 

temperature in a final volume of 1 ml PBS. Glycine (100 mM) in PBS was added to the 
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beads at room temperature to saturate the remaining binding sites. Beads were then 

washed in PBS/0,5% BSA and resuspended in 0,5 ml of  PBS/0,5% BSA . 10 µl of 

coated beads were incubated with 50 µl VCAM-1 antibody diluted in PBS/0,5% BSA 

for 30 min, washed twice with PBS/0,5% BSA and analyzed with a FACScan and 

CellQuest software (241).  

 

Flow cytometry for NKG2D, CD69, CD25, IFNγγγγ and TNFαααα    

 

γδ T cells after overnight incubation with 1,5,10 µg/ml of exosomes from K562 and 

K562 zol were stimulated with 10 µg/ml Brefeldin A (Sigma)  for 4 hours. The plate 

was centrifuged at 1300 rpm for 2 min and washed with PBS. Cell pellet was stained 

with Live/Dead aqua (1:10) (Invitrogen) at room temperature for 15 min. Cells were 

washed with PBS, spinned down at 1300 rpm for 2 min and resuspend with IgG 

blocking antibody (1:100) in 50 µl of  FACS buffer (PBS containing 2% bovine serum 

albumin and 0.02% sodium azide). Cells were incubated for 15 min in dark on ice and 

washed on FACS. Cells were staining with surface antigens: CD69 FITC (Pharmigen); 

CD25 PE-Cy7(BD biosciences); CD3 APCH7 (BD biosciences); Vγ9 PE-Cy5 (Coulter); 

NKG2D PE (Pharmigen). At the same time was prepared also a control Isotype for 

surface antigens with: IgG1 FITC; Vγ9 PE-Cy5; CD3 APCH7; IgG1 PE-Cy7; IgG1 PE. 

Cells were staining for 20 min on ice and washed twice in PBS. Were added 50 µl of 

Fixation buffer to fix surface staining, for 15 min room temperature in dark. To 

eliminate all fixation buffer, cells were washed twice in PBS and washed with 50 µl of  

Permeabilization buffer. At this point cells were stained for intracellular cytokines with 

IFNγ Pacific Blue (eBiosciences) and TNFα APC (BD Biosciences), and were stained 

also with control Isotype: IgG1 Pacific blue and IgG1 APC. Cells were incubated 15 
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min room temperature in dark and washed with FACS buffer. Stained cells were 

analysed by eight-colour flow cytometry on a FACS CANTO II  (Becton Dickinson) 

using FlowJo software (Tree Star). 

 

Immunofluorescence and cell cytoskeleton analysis 

 

HUVEC monolayers were grown to confluence on coverslips coated with type I 

collagen (Calbiochem, Darmstadt, Germany) and were treated with increasing doses of 

CML exosomes or low serum medium for 6 hr to study VE cadherin, β-catenin protein 

distribution and expression level. After incubation with exosomes or BSA control, cells 

were fixed in 3.7% paraformaldehyde for 10 min followed by permeabilization with 

0.1% Triton X-100 for 3 min. Antibodies used in the experiments were: VE cadherin 

and b-catenin (1:100; Santa Cruz Biotechnology, Santa Cruz CA). Incubation with 

antibodies was performed in PBS with 1% BSA overnight at 4° C. Cells were stained 

with Texas Red-conjugated secondary antimouse antibodies (1:100; Molecular Probe, 

Eugene, OR) and analyzed by confocal microscopy (Olympus 1x70 with Melles Griot 

laser system). Analyses of the actin cytoskeleton were performed as described (ref20) 

The semi-quantitative analysis of fluorescence intensity was performed using IMAGE-J 

software (http://rsbweb.nih.gov/ij/).(242) 

 

RNA extraction and Real-Time PCR 

 
HUVEC cells were grown to confluence in 6-well plates and incubated for different 

times with the indicated stimuli. IL-8, VCAM-1, ICAM-1 transcript levels were 

measured by reverse transcription (RT) and TaqMan real-time quantitative polymerase 

chain reaction (RT-PCR) and analyzed as described (243) The following primers were 
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used: IL-8, HS00174103_m1; VCAM-1, HS 00174239 m1; ICAM-1, HS 00277001_m1 

and, GAPDH, Hs99999905 m1 (Applied Biosystems, Foster City, CA). GAPDH was 

used as the internal control. 

 

Motility assays 

 

Migration assays were performed following two standard protocols, Transwell 

chemotaxis chambers (NeuroProbe, Cabin John, MD) and wound repair assay. 

LAMA84 cells (2 x 106/ml) were suspended in serum-free RPMI 1640 medium 

supplemented with 0.1% BSA in transwell chemotaxis above 8 µm pore filters and 

exposed to chemoattractants with increased amount of exosomes (10-20-50 µg/ml), 10 

ng/ml of recombinant IL8 (Sigma, St. Louis, MO), or neutralizing antibodies anti IL8 (5 

µg/ml) (R&D system, Minneapolis, MN) as indicated. Filters were removed after 6 hr, 

fixed in ethanol and stained with Diff-Quick (Medion Diagnostics GmbH, Du¨dingen, 

Switzerland). Each test group was tested in three independent experiments; the number 

of migrating cells in five high-power fields per well were counted at 400x 

magnification. For the wound healing assay, a wound was created by manually scraping 

the confluent endothelial cell monolayer with a p1000 pipette tip. After washing with 

PBS, cells were incubated for 3 hr with medium containing exosomes or control 

medium without exosomes. Images of cell-free spaces were taken with a digital camera 

at the indicated times and measured manually with the IMAGE-J software 

(http://rsbweb.nih.gov/ij/) (242). The data are reported as the percentage of the distance 

migrated relative to the control cultures for each experiment. 
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Adhesion assay 

 
For Adhesion assays HUVEC monolayer was incubated for 6 hr with 10, 20, 50 µg/ml 

of LAMA84 exosomes, 50 µg/ml of LAMA84 exosomes plus anti-actin antibody (5 

µg/ml), 10 ng/ml of recombinant IL8, 50 µg/ml of CML patients exosomes, EGM as 

positive control, 50 µg/ml of exosomes plus neutralizing antibody anti-IL8 (5 µg/ml), 

50 µg/ml of PBMC exosomes and low serum medium as negative control. After 

treatment, cells were washed with PBS and 0.5x106 CML cells were added for 1 hr at 

37°C. Adherent cells were stained with hematoxylin/eosin, each test group was assayed 

in triplicate; five high power (400X) fields were counted for each condition. 

 

ELISA 

 
HUVEC conditioned medium (CM) was collected from cells stimulated for 6 hr with 20 

and 50 µg/ml of PBMC exosomes, 10,20,50 µg/ml of LAMA84 exosomes. CM aliquots 

were centrifuged to remove cellular debris and IL-8 protein concentrations were 

quantified using an ELISA kit (R&D Systems, Minneapolis), according to the 

manufacturer’s protocol. IL8 was also measured directly in LAMA84 exosomes 

(10,20,50 µg/ml) 

 

HUVEC tube formation on Matrigel 

 

Matrigel was used to test the effects of exosomes on in vitro vascular tube formation as 

described (ref22). HUVEC were plated on Matrigel at concentration of 70000 cells/well 

in endothelial basal medium containing 0.2% of  FBS, and 50 µg/ml of LAMA84 

exosomes, 50 µg/ml of LAMA84 exosomes plus anti-actin antibody (5 µg/ml), 10 ng/ml 
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of recombinant IL8, 50 µg/ml of CML patients exosomes, EGM as positive control, 50 

µg/ml of exosomes plus neutralizing antibody anti-IL8 (5 µg/ml), 50 µg/ml of PBMC 

exosomes and low serum medium as negative control were added to wells.  Cells were 

incubated for 6 hr and then evaluated by phase-contrast microscopy and photographed.  

 

Matrigel plug assay 

 

All animal experiments were conducted in full compliance with University of Palermo 

and Italian Legislation for Animal Care. Four week old BALB/c nude mice (Charles 

River Laboratorie International, Wilmington, MA) were injected subcutaneously with 

400 µl Matrigel (BD Biosciences Pharmingen, San Diego, CA) containing 100 µg 

LAMA84-derived exosomes with or without 10 lg/ml non specific anti-actin antibody 

or anti-IL-8 neutralizing antibody or PBS (negative control). The degree of 

vascularization was evaluated by determination of hemoglobin content using the 

Drabkin method (Drabkin’s reagent kit, Sigma Saint Louis, Missouri) (244) 

 

Statistics 

 
Data were expressed as means ± SEMs of the indicated number of experiments. 

Statistical analysis was performed by using a unpaired Student’s t test. Differences were 

considered to be significant when p values were <0.05. 
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Results and Discussion 
 
Characterization of the vesicles released from  LAMA84, K562 and K562 treated 

with zoledronic acid CML cell lines 

 

I examined the ability of LAMA84, K562 and K562 treated with 5 µM zoledronic acid 

(ZA) cells to release exosomes into the culture medium during a 24 hr period. Before 

the recover of the medium I performed an acridina-orange/BrEt to check the vitality of 

the cells. The percentage of apoptotic cells were less than 3% (Fig. 12), this result allow 

to exclude the presence of apoptotic bodies in the pellet after the ultra centrifugation. 

 

Fig. 12:  Cultured LAMA84 (a) and K562 (b) CML cells (106/ml) for 24h revealed a small 
percentage of apoptotic cells (<3%) 
 

Vesicles secreted by LAMA84 CML cells were also purified on a sucrose gradient and 

analysed by scanning electron microscope (Fig. 13a) and Western blotting using 

antibodies specific for HSC 70 and CD63. These proteins were detected in cell lysates 

and found more expressed in exosome fractions (Fig. 13b). Acetylcholinesterase 

activity, a characteristic enzyme localized in exosomes, was found associated with the 

exosome fraction while negligible amounts were found in conditioned medium deprived 

of exosomes (Fig. 13c). 
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Fig. 13: (a) Exosomes released by LAMA84 cells observed by scanning electron microscopy. (b) 
Detection of Hsc 70 and CD63 in 30 µµµµg of exosomes purified after ultracentrifugation on 30% 
sucrose/D2O gradient (lane 1) and 30 µµµµg of cell lysate (lane 2). (c) Acetylcholinesterase assay. The 
activity of acetylcholinesterase, an exosome-specific protein marker, was determined in exosomes 
(10 µµµµg) (▪), total cell lysates (10 µµµµg) (♦), exosome-deprived Fbs (▲) and exosome-deprived 
conditioned medium (CM) (■) as negative control 

 
 

Exosomes purified from whole blood of 2 patients with chronic myelogenous leukemia 

displayed same properties of vesicles isolated from LAMA84 cells (fig.14). 

 
Fig. 14: Characterization of exosomes from CML patients. Exosomes are enriched in HSC70 and 
CD63 
 

 

I also characterized exosomes from K562 and K562 treated with zoledronic acid for 

HSC70, CD63 and Acetylcholinesterase enzyme (fig.15). 

b 
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Fig. 15: (a)  Detection of Hsc 70 and CD63 in 30 ug of exosomes from K562 and K562zol purified 
after ultracentrifugation on 30% sucrose/D2O gradient (lane 2 and lane 4) and 30 µµµµg of cell lysate 
(lane 1 and lane 3). (b,c) Acetylcholinesterase assay. The activity of acetylcholinesterase, an 
exosome-specific protein marker, was determined in exosomes (10 µµµµg) (pink lane), total cell lysates 
(10 µµµµg) (green lane), exosome-deprived Fbs (blue lane)  as negative control. 
 

 

It is important to underline that the treatment with 5 µM of ZA affect the release of 

exosomes from K562 cells. On average, I obtained 100 µg of exosomes/40 ml of K562 

conditioned medium, while after the treatment with ZA the amount recovered is 50 µg 

of exosomes/40 ml.  

Scanning electron microscope, Hsc70, CD63 and acetylcholinesterase confirmed that 

the vesicles released from LAMA 84, K562, K562 treated with zoledronic acid CML 

cell lines were exosomes. 
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Exosomes treatment of HUVECs induces cell-cell adhesion molecules 

 
To evaluate if exosomes shed by LAMA84 are able to affect cell-cell adhesion 

molecules mRNA expression, I treated HUVECs with different amount of exosomes for 

different times (6h, 12h, 24h).  

 

 
Fig. 16:  ICAM1 (a) and VCAM1 (b) mRNA expression increased in a time- and dose-dependent 
(10, 20, 50 lg/ml) manner after addition of exosomes to endothelial cell monolayer. Exosome-
deprived conditioned medium (CM-Ex) and low-serum medium were used as negative controls.  

 
 
As shown in figure 16 a and b, addition of increasing doses of exosomes to endothelial 

monolayer caused a dose- and time-dependent increase in  VCAM-1 (13 fold increase) 

and ICAM-1 (6 fold increase) mRNA expression (p≤ 0.01). 

Figure 17a shows that incubation of HUVEC with LAMA84 exosomes or TNFα, used 

as positive control, induced an increase of VCAM1 protein levels. FACS analysis 

confirmed that incubation of HUVEC with LAMA84 exosomes resulted in the detection 

of VCAM-1 on the surface of HUVEC (Fig. 17b). 
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Fig. 17: a) Immunoprecipitation assay with anti-VCAM1 antibody. HUVEC were incubated for 6 
hr with low-serum medium (lane 1); 50 lg/ml LAMA84 exosomes (lane 2) or 10 ng/ml TNFαααα (lane 
3); results indicate an increased amount of VCAM-1 in exosome-treated cells. b) Representative  
overlay histogram showing an increase of surface expression of VCAM 1 on HUVEC treated with 
50 lg/ml of LAMA84 exosomes (solid line) compared untreated HUVEC, as control (dot line) 
 
 

Immunoprecipitation and western blotting assays showed that VCAM-1 was 

undetectable in LAMA84 exosomes  and flow cytometry analysis of latex bead-coupled 

exosomes confirmed the absence of VCAM-1 on membrane particles (fig 18). 

 

 

Fig. 18: Representative overlay histogram showing 10 µl of latex beads coupled with 30 µµµµg of 
LAMA84 exosomes (black line) or BSA (grey line) tested for surface expression of VCAM-1. No 
shift in fluorescence was observed when exosomes were stained with VCAM-1 antibody. 
 
 

Cell–cell interaction mediated through cell-adhesion molecules occurs after endothelial 

activation in angiogenesis. In leukaemia, the adhesion molecules have been thought to 

play an important role in various processes, including release of blast cells from bone 

marrow to the circulation, homing of blast cells to various organs and interaction of 
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blast cells with each other (209). These data showed that the amount of ICAM1 and 

VCAM1 was significantly higher in cells treated with increasing doses of LAMA84 

exosomes. To support this statement VCAM1 was detected in exosomes-treated and 

untreated HUVEC cells. FACS analysis shows an increase in surface expression of 

VCAM1 in HUVEC cells after treatment with exosomes compared to untreated 

HUVEC cells.  VCAM1 was tested also on exosomes directly, and the absence of 

surface expression confirm that this protein was produced by HUVEC and not 

transferred by adding LAMA84 exosomes. Then exosomes can be have a role on the 

interaction between CML cells and endothelium. Infact, it is described that leukemic 

cells interact with endothelium through adhesion molecules and cell adhesion is 

necessary to trigger the survival signals on leukemic cells. The increased expression of 

cell-cell adhesion molecules on endothelial cells may be associated with an augmented 

dissemination of  leukemia blast cells to extramedullary sites (210), because ICAM1 

and VCAM1 mediated the adhesion of myeloblasts to activated endothelium (211).  

I also tested also the expression of IL8, IL6, VEGF and TGFβ genes that are involved in 

tumor growth and angiogenesis. HUVECs treated with exosomes from LAMA84 

induced a dose dependent increase in IL8 mRNA (fig.19).  

 

 

Fig. 19: IL8 mRNA expression increased in a dose-dependent (10, 20, 50 lg/ml) manner after 
addition of exosomes to endothelial cell monolayer. Exosome-deprived conditioned medium (CM-
Ex) and low-serum medium were used as negative controls. 
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Increased IL8 mRNA production was statistically significant and reached approximately 

a 20-fold induction after 6 hr of stimulation of the endothelial monolayer with 50 µg/ml 

of vesicles. No effect was observed on IL-6, VEGF or TGF-β (data not shown). The use 

of IL-8 neutralizing antibody  inhibited exosome-stimulated increase of ICAM-1, 

VCAM-1 adhesion molecules and IL8 as shown in figure 20.  

 

 

Fig. 20: VCAM1, ICAM1 and IL8 mRNA expression in HUVEC treated for 12 h with low 
serummedium (Ctrl), Ctrl plus 10 lg/ml of a neutralizing anti-IL8 antibody, 50 lg/ml exosomes or 50 
lg/ml exosomes plus 10 lg/ml of a neutralizing anti-IL8 antibody. 
 

I evaluated also the release of IL8 into HUVEC conditioned medium and the data 

confirmed that there is an increase in the synthesis of IL8 in endothelial cells after 

treatment with exosomes. A small amount of IL8 was found in LAMA84 exosomes. No 

significant induction of IL-8 release was observed when HUVEC were stimulated with 

exosomes purified from PBMC (fig. 21). 

 

Fig. 31: Elisa Assay. Treatment with exosomes induce an increase in the release of IL8 by HUVEC. 
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I demonstrated increased mRNA and protein expression of interleukin-8 in exosomes-

stimulated HUVEC cells. IL-8, a member of the CXC family of chemokines, is best 

known for its leukocyte chemotactic properties and associated role in inflammatory and 

infectious diseases (212). IL8 has other biological functions in addition to its well-

recognized role in regulating inflammatory responses (213), it has been shown that IL8 

is a potent proangiogenic factor (214). It was demonstrated that IL8 has the ability to 

exert a strong effect on tumor microenvironment. For example, secretion of IL-8 from 

cancer cells can enhance the proliferation and survival of cancer cells through autocrine 

signaling pathways. In addition, tumor-derived IL-8 will activate endothelial cells in the 

tumor vasculature to promote angiogenesis and induce a chemotactic infiltration of 

neutrophils into the tumor site (215). It was demonstrated that IL8 plasma protein levels 

and IL8 mRNA expression by leukemic blasts were associated with a worse outcome in 

ALL (216) and CLL (217) patients,  and it was described that IL8 plasma concentration 

are significantly increased in patients with CML (218). These data shows that IL8 were 

able to enhance the ability of endothelial cell to support adhesion of CML cells, and 

exert its pro-adhesion effect by stimulating VCAM-1 and ICAM-1 expression on 

HUVEC. Involvement of IL8 in exosome-mediated increase of ICAM1 and VCAM1 

was also demonstrated by using recombinant IL8 and IL-8 neutralizing antibodies.  

 
Exosomes stimulate binding of CML cells to HUVEC monolayer 

 
A hallmark feature of leukemia progression is the adhesion of cancer cells to endothelial 

cells for extramedullary infiltration. Then, I tested the ability of leukemia cells to adhere 

to an endothelial monolayer to investigate functional effects of the observed increase of 

ICAM-1 and VCAM-1 expression in exosome-treated HUVECs. Figure 22a shows a 

dose-dependent increase in leukemia cell adhesion to HUVEC after 6 h treatments. 

Figure 22b shows the increase in adhesion of LAMA84 cells (arrows) to HUVEC 



 59

monolayer after a 6 hr treatment with 50 µg/ml of exosomes. Figure 22c shows that 

addition of recombinant IL-8 to endothelial cells causes an increase of CML cells 

adhesion to HUVEC monolayer similar to that produced by LAMA84 or CML patient 

exosomes. The addition of exosomes from CML patients to endothelial monolayer is 

similar to that produced by LAMA84 exosomes, while the treatment with exosomes 

from PBMC or with exosomes plus IL8 neutralizing antibody didn’t increase the 

adhesion of leukemic cells to endothelial cells. 

 

 
Fig. 22: a) Adhesion of LAMA84 cells to endothelial cell monolayer treated for 6 hr with different 
amount of LAMA84 exosomes or with EGM, used as positive control; b) Adhesion of LAMA84 cells 
to endothelial cell monolayer treated for 6 hr with LAMA84 exosomes observed at contrast phase 
microscopy; c) Adhesion of LAMA84 cells to HUVEC treated with 50 µg/ml of LAMA84 exosomes, 
50 µg/ml of exosomes plus antibodies anti actin (5 µg/ml), 10 ng/ml of recombinant IL8, 50 µµµµg/ml of 
CML patients exosomes, EGM (as positive control), 50 µµµµg/ml of exosomes plus neutralizing 
antibodies anti IL8 (5 µµµµg/ml), 50 µµµµg/ml of PBMCexosomes in low serum medium and low serum 
medium (as negative control). Values are the mean 6 SD of 5 fields in three independent 
experiments CTRL: control. *p≤ 0.05; **p≤0.01. 
 
 



 60

These data confirmed that CML cells exhibited increased adhesion to HUVEC 

monolayer when LAMA84 exosomes were added. Interestingly, the same effects was 

observed with exosomes from CML patients. The effect of IL8 neutralizing antibody, 

that didn’t increase the adhesion of leukemia cells to HUVEC monolayer, suggest that 

this chemokine may provide a supportive effects for CML cells in this angiogenic step.  

 

CML exosomes promote migration of endothelial cells 

 
In the angiogenic process one important step is the increase of the motility of the 

endothelial cells. Confluent, scrape-wounded endothelial cell monolayers were 

incubated with various concentrations of CML vesicles, and the percentage of closure 

was observed after 3 hr. Figure 23a shows that endothelial cell migration was 

significantly increased in exosome-treated cultures but not in the control medium.  

 

 
Fig. 23: (a) Confluent, scrape-wounded endothelial cell monolayer incubated with low 
serummedium (negative control), 50 µg/ml of LAMA84 exosomes, and EGM medium (positive 
control), for 3 hr. b) Percentage of closure of the wounded area measured after addition of different 
amount of exosomes; c)Effects of exosomes on endothelial cell migration as measured by Boyden 
chamber assay. Addition of exosomes (10, 20, 50 µg/ml) for 6 hr to the bottom wells of the chamber 
induced a dose-dependent increase of HUVEC migration. Values are the mean 6 SD of 3 fields in 
three independent experiments *p ≤ 0.05; **p≤ 0.01. 
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As positive control, EGM-treated cells migrated into the denuded area, almost 

completely covering the exposed surface after 3 hr. Measurement of wounded area 

evidenced, compared to control, a 55% percentage of closure when endothelial cells 

were treated with the dose of 50 µg/ml of exosomes (Fig.23b). I further analyzed the 

effects of exosomes on cell migration by Boyden chamber assay. Figure 15c shows that 

addition of a range of concentrations of vesicles (10–50 µg) to the bottom wells of the 

chamber caused, after 6 hr, a dose-dependent increase of CML cell migration. A similar, 

statistically significant, effect in the stimulation of endothelial cell migration was 

obtained when recombinant IL-8 or CML patients exosomes were added as 

chemoattractant in the Boyden assay (Fig.23c); on the contrary the presence of anti IL-8 

neutralizing antibodies or PBMC exosomes in the bottom wells of boyden chamber 

didn’t increase the motility of leukemia cells (Fig.24).  

 

 

 

Fig. 24: 50 µg/ml of LAMA84 exosomes, 50 µg/ml of LAMA84 exosomes plus antibodies anti actin 
(5 µg/ml), 10 ng/ml of recombinant IL8, 50 µg/ml of CML patients exosomes, EGM (as positive 
control), 50 µg/ml of LAMA84 exosomes plus neutralizing antibodies anti IL8 (5µg/ml), 50 µg/ml of 
PBMC-exosomes in low serum medium and low serum medium (as negative control) were added as 
chemoattractants to the bottom wells. 
 
 

Exosomes released from leukemia cells in close proximity of endothelial cells may also 

contribute in the exacerbation of endothelium activation and increase migration of 

endothelial cells during angiogenesis. 
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This data demonstrate that the chemotactic effects on endothelial cells were potentiated 

by LAMA84 and CML patients exosomes in a dose-dependent manner both in Boyden 

chamber and in a wound healing assay.  It was described that chemokines have been 

implicated in the migration and tissue infiltration of leukaemic cells (219), and here it 

has been demonstrated that the addition of IL-8 neutralizing antibodies to CML 

exosomes in both assays inhibited the process of cells motility thus reinforcing the role 

of  IL-8 in exosomes-induced cells migration. 

 

Exosome treatment alters VE-cadherin and ββββ-catenin localization 

 
To investigate if alteration of cell junctional components could be responsible for the 

increase in cell motility, I evaluated the effects of exosomes on expression of VE-

cadherin and β-catenin. VE-cadherin is an endothelial-specific adhesion molecules 

which under normal condition, is located at adherens junctions and is essential for the 

mainteinance and control of endothelial cell contacts (220,221), and the association with 

β-catenin is required for junction stabilization. The extracellular domain of VE-cadherin 

mediates initial cell adhesion,whereas the cytosolic tail is required for interaction with 

the cytoskeleton and junctional strength, mediated through β-catenin (222). The 

functional role of VE-cadherin changes during early phases of angiogenesis. Endothelial 

cells treated with exosomes from LAMA84 cell lines show a delocalization of this 

molecule. VE-cadherin staining decreased in intensity and became patchy at the 

membrane concomitant with the appearance of a granular cytoplasmic staining in 

HUVEC treated with 50 µg/ml of exosomes, compared to control cells that had 

continuous peripheral VE-cadherin staining (Fig. 25b). I evaluated also the effect of 

exosomes on β-catenin, a protein that interact with VE-cadherin and is involved in 

signal transduction. HUVEC treated with exosomes show a reduction of membrane 
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immunostaining compared to control cells after 6h. The treatment with exosomes 

caused a translocation from the plasma membrane to the cytoplasm and nucleus (fig.25 

c and d). Furthermore, staining of actin filaments with rhodamine-conjugated phalloidin 

confirmed the alteration of endothelial integrity when exosomes are added to HUVEC 

monolayer (fig.25a).  

 

 
Fig. 25: (a) modification of cytoskeletal structures as observed with actin localization in HUVEC 
monolayer treated with 50 µg/ml of exosomes compared to control cells b) Analysis at confocal 
microscopy of VE Cadherin localization in HUVEC cells treated with LAMA84 exosomes revealed 
a decrease of immunostaining compared to untreated cells (control). (c) Decrease of 
immunostaining for β catenin in cell membranes was revealed after 6 hr incubation of HUVEC 
with 50 µg/ml of LAMA84 exosomes compared to control cells  (d) figure shows the translocation of 
b catenin in the cytoplasm and nucleus compared to control   
 

 

Treatment of HUVECs with LAMA84 exosomes induced a cytoskeletal reorganization 

with a concomitant translocation of VE-cadherin and β-catenin from cell surface to 

cytoplasm and nuclei. Overall, these results indicate that addition of exosomes to 

endothelial cells reduced intercellular adhesion, as a biological consequence of loss of 

zonulae adherens components, VE-cadherin and β-catenin. These loosen endothelial 

cell-to-cell contacts, is indicative of weakened cell-cell adhesion mechanism and may 

be responsible for increased motility (223).  
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In vitro Angiogenesis Assay 

 

To evaluate the effects of exosomes on in vitro models of angiogenesis, I performed an 

angiogenesis assay on Matrigel; as shown in figure 26, a treatment for 6h with 

exosomes from LAMA84 induce in HUVECs an endothelial network formation in a  

 

 
Fig. 26: Phase contrast micrographs showing that exosomes induce an endothelial network 
formation on matrigel. No tube formation is observed when HUVEC are plated in low-serum 
medium or in the presence of 50 µg/ml of exosomes plus neutralizing antibody against IL8 or with 
exosomes from PBMC; the addition to HUVEC cells of 50µg/ml of LAMA84 exosomes or 50 µg/ml 
of exosomes plus a nonspecific antibody against actin or exosomes from CML patients  caused the 
formation of capillary-like structures 

 
 
dose-dependent manner. I obtained the same results with the addition of recombinant 

IL8 or with exosomes from CML patients, while the treatment with exosomes from 

PBMC had no effect. The anti-IL8 neutralizing antibody inhibited exosome-induced 

tube formation while treatment of cells with an anti-actin antibody had no effect. 
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In vivo Angiogenesis Assay 

 
The angiogenic potential of LAMA84 exosomes was then assayed in vivo by examining 

the recruitment of vasculature into subcutaneously implanted Matrigel plugs containing 

exosomes. Figure 27 shows that the plugs containing LAMA84 exosomes and 

LAMA84 exosomes plus a non specific antibody (anti-actin antibody), became more 

vascularized than implants with PBS control or with exosomes plus an anti-IL8 

neutralizing antibody. This suggests that IL-8 is critical for vascular recruitment and 

organization in this model. This is supported by the increased haemoglobin 

concentration in the exosomes-containing Matrigel (Table 1). 

 

Fig. 27:  Matrigel plug containing LAMA84 exosomes stimulate angiogenesis in nude mice. Ctrl: 
Negative control (Matrigel plus PBS), Ex + Ab nIL8: LAMA84 exosomes (100 µg) plus 10 µg/ml of 
an antibody neutralizing anti-IL8, Ex + Ab Actin: L AMA84 exosomes (100 µg) plus 10 µg/ml of a 
non specific antibody against actin, Ex LAMA84: LAMA84 exosomes (100 µg). 
 

 

 

 

An important aspect of tumor progression is tumor vascularization, and tube formation 

of endothelial cells is one of the key steps of angiogenesis. Increased vascularization is 

seen in AML (224), ALL (225) and also CML (226) patients show an increase in the 
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number of blood vessels but little is know about angiogenesis and angiogenesis-related 

molecules in leukemia, while there are many data about the effect of exosomes on solid 

tumor angiogenesis. Skog et al. have showed that glioblastoma tumor cells release 

different types of microvesicles including exosomes that contain mRNA, miRNA and 

proteins that may stimulate endothelial cells to acquire an angiogenic phenotype (126). 

It has been demonstrated that exosomes of human SW480 colon carcinoma cells are 

enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells, 

suggesting that microvesicles from cancer cells can be involved in tumor growth and 

metastasis by facilitating angiogenesis-related processes (227). The role of exosomes in 

metastasis has been also demonstrated in melanoma cells in a study by Hood and 

collaborators. They found that exosomes modulated both angiogenic and immunological 

cytokine signalling, thus serving as paracrine nanocarriers that might prepare distal sites 

for the arrest of metastatic cells (123). 

Here, both in vitro and in vivo assays demonstrated that LAMA84 and CML patients 

exosomes stimulates endothelial cell proliferation and capillary-tube organization, 

which can be blocked by neutralizing anti-IL-8 Abs, reinforcing the role of IL-8 in 

exosomes-induced vascularization and angiogenesis. These data support the role of 

exosomes in leukemic microenvironment as important mediators of tumor growth, 

progression and angiogenesis. 

 

Exosomes trigger phosphorylation of MAPK p42/44 

 
I analyzed MAPK signalling after interaction between endothelial cells and purified  

exosomes to begin to understand the molecular pathways through which exosomes 

affect angiogenesis. MAPK is a key signalling pathway activated in endothelial cells 

after binding of angiogenic factors (228). Crosstalk between MAPK and other 
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signalling pathways can further stimulate angiogenesis (229). As shown in figure 28 

stimulation of HUVEC with 50 µg/ml exosomes caused a time-dependent 

phosporylation of MAPK p42/44. The role of ERK activation in angiogenic growth 

factor signaling has been well established (230). ERK activation is probably required 

for the growth factor-induced secretion of angiogenic factors from tumor cells (231). 

The strong activation of ERK1/2 in endothelial cells early, after the exosomes addition 

suggest that these exosomes exert a specific stimulus for endothelial cell function. 

 

 

Fig. 28: : Western blot analysis of pMAPK and MAPK in HUVEC treated with 50 µg of LAMA84 
exosomes. HUVEC were starved for 3 hr with serum free medium and then treated with 50 µg of 
LAMA 84 exosomes for 15 min (lane 3) and 30 min (lane 4), or with low serum medium alone for 15 
min (lane 1) and 30 min (lane 2) as control. 
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Effects of exosomes on γδγδγδγδ T cell function 
 
The ability of tumor cells to evade or suppress an active immune response is considered 

to be a significant factor in the development and progression of tumors. It has been 

shown that  cancer patients, in particular those with malignant effusions such as ascites, 

produce enormous amounts of exosomes in vivo and, instead of boosted anti-cancer 

immunity, they succumb to the cancer with a deranged immune system (48). Increasing 

clinical and experimental evidence shows that cancer cells produce exosomes which 

affect cytotoxic ability of NK- and T cells and thus assist cancers in their immune 

evasion. Consequently, tumor-derived exosomes might be vehicles for 

immunosuppression with negative impact on the immune system of cancer patients and 

their effects should be taken in consideration when designing treatment for cancer 

patients (232). It has been described that the immune escape of leukemia may be related 

to inadequate NK cell function such as low NK cell numbers and impaired cytotoxicity. 

In AML,  microvesicles from patient’s sera suppress NK cell activity (233) and 

represent a mechanism by which leukaemia escape form immune system. Most of the 

papers in literature investigated the effects of exosomes on NK cells, while to our 

knowledge no data exist on the possible role of exosomes on γδ T cells function. As NK 

cells, γδ T cells have been know to mediated killing of a broad range of tumor targets, 

including leukaemia blasts. As mentionated before, γδ T cells are able to kill CML cells 

when those cells are pretreated with ZA.  Then the aim of this second part of my thesis 

is to study the effects of exosomes released from K562 CML cell line on γδ T cells to 

better understand the interaction between cancer-exosomes and the immune system. 

Before each experiment I checked the purity of γδ T cells after immunomagnetic 

separation of T cells. The purity of γδ T cells was assessed by flow cytometry. The 

percentage of purified γδ  T cells was 96,7% (Figure 29) 
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Fig. 29: Analysis of  γγγγδδδδT cells isolated by magnetic-activated cell sorting (MACS) using CANTO II. 
a) gate of lymphocytes population based on FSC and SSC parameters; b) CD3+ live subset; c) 
subset of Vγγγγ9+ cells 
 
 
I tested the effect of  exosomes shed by K562 and K562 after treatment with 5 µM of 

zoledronate on cytokines production, NKG2D, CD69 and CD25 expression by γδ T 

cells. Exosomes don’t exert any effects on γδ alone (data not shown), but they are able 

to induce a down-regulation of activation marker, CD69 and CD25, and NKG2D 

expression when γδ T cells are activated with 10 nM of HMBPP and 20 U/ml of IL2. 

Exosomes affect also the IFNγ and TNFα  release, suggesting that exosomes from CML 

have an inhibitory effect on γδ T lymphocytes.  

 

Tumor exosomes inhibit IFNγγγγ and TNFαααα release 

 
γδ T cells is a subset of lymphocytes able to provide an early source of IFNγ and 

TNFα that are important to kill transformed cells and contribute to the prompt 

generation of adaptive immune responses with αβ T lymphocytes. I investigated the 

effect of exosomes on cytokine release. γδ T cells from healthy donors were treated with 

different doses of  K562 and K562zol exosomes (1,5,10 µg/ml) in presence of 10 nM of 

HMBPP and 20 U/ml of IL2. After overnight incubation, lymphocytes were treated with 
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brefeldin for 4 hr and analyzed for IFNγ and TNFα expression (gating scheme is shown 

Fig. 30). 

 

 

Fig. 40: Schematic representation of the multicolor flow cytometry gating scheme used to analyze 
lymphocyte IFNγγγγ and TNFα expression. a) Vγγγγ9+ CD3+ cells gated; b) γγγγδ+HMBPP+IL2 used as 
control shows 70% IFNγγγγ double positive cells and 53,28% TNFα positive cells; 
c)γγγγδ+HMBPP+IL2+10 µg/ml of K562 exosomes shows a decrease in both cytokines expression 
(48,4% for IFNγγγγ and 17,9% for TNFα); d) γγγγδ+HMBPP+IL2+10 µg/ml of K562zol exosomes shows a 
decrease as K562 exosomes without treatment (56,4% for IFN γγγγ and 16,43% for TNFα); 
 

 

Treatment with K562 and K562zol exosomes induces an impairment in both IFNγ and 

TNFα secreting cells. In figure 31, the graph shows a dose-dependent decrease in 

IFNγ release compared to control.  

Also for TNFα the treatment with exosomes induces a dose-dependent decrease 

(fig.32). 
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Fig. 31: Treatment of γγγγδ+HMBPP+IL2 with 1,5,10 µg/ml of exosomes from K562 and K562 treated 
with 5 µM zoledronic acid induce a dose-dependent decrease in IFNγγγγ release, compared to control 
(γγγγδ+HMBPP+IL2). Data represent mean ± SD of three independent experiments. 
 
 
Interestingly, the treatment with K562zol exosomes seems have a less effect on the 

decrease of TNFα  production compared to treatment with K562 exosomes, especially 

with the dose of 1 µg/ml (23,8% of TNFα after treatment with 1 µg/ml of K562 

exosomes and 29,6% of TNFα after treatment with 1 µg/ml of K562zol). 

 

 

Fig. 32: Treatment of γγγγδ+HMBPP+IL2 with 1,5,10 µg/ml of exosomes from K562 and K562 treated 
with 5 µM zoledronic acid induce a dose-dependent decrease in TNFα release, compared to control 
(γγγγδ+HMBPP+IL2). Data represent mean ± SD of three independent experiments. 
 
 

IFNγ and TNFα produced by γδ T cells are critical cytokines for protective immune 

responses against tumors. The treatment with exosomes induces an inhibition on 

cytokines production in γδ T cells, then impair the ability of these cells to provide an 
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early source of IFNγ in tumor immunosurveillance, and probably on cytotoxicity 

activity of γδ T cells. These data suggest that tumor exosomes express specific 

molecules that mediate the inhibition of  γδ T cell activation. The identification of these 

molecules will be of importance in the future design of successful cancer immune 

therapy. 

 

Exosomes downregulate NKG2D receptor 

 
NKG2D receptor is an activatory receptor of NK, CD8+ and γδ T cells. Elevated levels 

of NKG2D ligands have been documented in a range of epithelial and other 

malignancies (234), and are important in tumor immune surveillance (235). These 

ligands  include members of the MICA and UL16-binding protein (ULBP) families, 

molecules that have highly restricted expression patterns in health, but are readily up-

regulated following viral infection or genotoxic stress (236). The presence of these 

ligands essentially making cancer cells as attractive targets for NK cells (237), γδ T cells 

(238) and CD8+ lymphocytes (239),  through NKG2D-mediated lymphocyte activation 

via PI3K and IFNγ release. Clayton et al, described that exosomes from prostate cancer 

and mesothelioma express NKG2D ligands and are able to downregulate NKG2D 

receptor on NK cells (106). I investigated the effects of exosomes from K562 leukaemia 

cell line on NKG2D receptor on γδ T cells, in order to explain the decrease on cytokine 

production. γδ T cells plus 10 nM of HMBPP and 20 U/ml of IL2 were treated with 

1,5,10 µg/ml of K562 exosomes and K562 zol exosomes. After overnight incubation, 

expression of NKG2D was analyzed by multicolour flow cytometry. Tumor-exosome 

treatment resulted in a significant reduction in cell surface NKG2D expression as shown 

in figure 33. Exosomes treatment don’t change the percentage of NKG2D positive cells. 
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Fig. 33: Treatment of γγγγδ+HMBPP+IL2 with 1,5,10 µg/ml of exosomes from K562 and K562 treated 
with 5 µM zoledronic acid induce a dose-dependent downregulation of NKG2D receptor, compared 
to control (γγγγδ+HMBPP+IL2). Data represent mean ± SD of three independent experiments. 
 
 

This data show that exosomes drive a down-modulation of NKG2D expression,  and 

this can be an important mechanism by which tumor exosomes may suppress this key 

tumor cell recognition and lymphocyte activation pathway. It was described that K562 

CML cell line express MICA,  MICB, ULBP-1, and ULBP-2 ligands at the cell surface  

and in CML patient’s sera was found a soluble form of MICA at high levels (240), while 

such molecules are not detectable in healthy donors sera. The production of NKG2D-

ligand-bearing exosomes, therefore, may be a novel mechanism for tumor cell immune 

evasion, and further demonstrates the complexity of interactions possible between 

exosomes and the immune system. 

 

 CML exosomes downregulate CD69/CD25 expression 

 

Purified γδ T cells rapidly express activation antigens CD25 (high-affinity IL2Rα chain) 

and CD69 following stimulation with HMBPP or IPP. CD69 and CD25 are  involved in 

lymphocytes proliferation and activation. CD69 has a functional role in redirected lysis 

mediated by activated NK and γδ T cells. In figure 34, the graph show that the treatment 



 74

with exosomes induce a dose-dependent decrease in γδ T cells expressing both 

activation marker. 

 

 

 
Fig. 34: Treatment of γγγγδ+HMBPP+IL2 with 1,5,10 µg/ml of exosomes from K562 and K562 treated 
with 5 µM zoledronic acid induce a dose-dependent downregulation of CD69/CD25 positive cells, 
compared to control (γγγγδ+HMBPP+IL2). Data represent mean ± SD of three independent 
experiments. 

 
 

It was described that downregulation of NKG2D don’t affect the expression of CD69, 

responsible also for NK cells activation, infact in NK cells, treatment with 

mesothelioma exosomes induces upregulation of CD69 (106). Here, treatment with 

K562 exosomes induces a downregulation of this marker and maybe responsible of  the 

lack of  γδ T cells activation. Normally, IL2 induces the expression of CD25, that is 

important for lymphocytes proliferation, and in the presence of tumor exosomes, this 

CD25 induction is inhibited, suggesting that exosomes are able to impair activation of 

γδ T cells. 
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Conclusion 
 

The data obtained in this thesis have touched upon some issues in exosomes biology, 

particularly on the role of exosomes released from CML cell lines on angiogenesis and  

γδ T cell function. Angiogenesis plays an important role in the development and 

progression of CML. The bone marrow of patients with CML exhibit marked 

neovascularization and increased number of endothelial cells; but little is known about 

how CML cells induce the angiogenic phenotype. Recently, exosomes are described as 

new components that modulate the tumor microenvironment, promoting angiogenesis 

and tumor progression. This thesis provides insights into the role of exosomes in 

angiogenesis process. The data obtained indicate that chronic myeloid leukemia cells 

lines, release exosomes characterized by the presence of HSC70, CD63 and 

acetylcholinesterase. LAMA84 exosomes affect several steps of angiogenesis, 

expression of angiogenic factors, chemoinvasion and adhesion. The data showed that 

treatment of HUVEC cells with increasing doses of LAMA84 exosomes and CML 

patients exosomes induce an increase in cell-adhesion molecules ICAM1 and VCAM1, 

increase in production of IL8, a cytoskeletal reorganization with a concomitant 

translocation of VE-cadherin and β-catenin from cell surface to cytoplasm and nuclei,  

that can contribute to angiogenic process. Interestingly, here was found that IL8 play an 

important role in CML exosomes-mediated angiogenesis. It was demonstrated an 

increased mRNA and protein expression of interleukin-8, in exosomes-stimulated 

HUVEC cells. An ELISA assay evaluated the release of IL8 into HUVEC conditioned 

medium and the data confirmed that there is an increase in the release of IL8 from 

endothelial cells after treatment with exosomes. IL8 was found also in LAMA84 

exosomes. To evaluate the angiogenic potential of LAMA84 exosomes it has been 
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performed an in vitro and in vivo angiogenesis assays. LAMA84, CML patients and 

rIL8 exosomes, induced tubular differentiation of HUVECs and stimulated 

vascularization of Matrigel plugs implanted into nude mice. The addition of IL-8 

neutralizing antibodies to CML exosomes in both assays inhibited the process of 

angiogenesis thus reinforcing the role of IL-8 in exosomes-induced vascularization. The 

results here described contribute to understand tumor-host interaction in CML, with a 

prominent role of IL8 in angiogenic phenotype. For the first time, exosomes released 

from CML cells have been involved as important components leading to endothelium 

activation and angiogenesis.  

On the other hand, the initial study on the effects of γδ T cell shows that exosomes from 

K562, and exosomes from K562 after treatment with zoledronate, are able to inhibit 

some γδ T cells function. For the first time it was demonstrated that exosomes from 

CML cell lines are able to downregulate NKG2D receptor, CD69/CD25 activation 

marker and the production of IFNγ and TNFα, suggesting a role of these exosomes in 

immunosuppression. These data provide few but interesting informations about the 

potential role of exosomes on leukemia immune escape mechanism. To better 

understand how exosomes are able to perform this inhibition will be useful assess the 

presence of FASL, MICA and MICB  or other ligands on exosomes surface and 

evaluate the effects of exosomes on γδ T cells proliferation. In order to confirm that 

exosomes impair activaction marker and cytokine release, will be very interesting to 

evaluate the cytotoxic activity of γδ lymphocytes against CML cells targets following 

exosomes treatment. Another important observation is the effects of zoledronic acid on 

the release of exosomes from K562 cell line. After treatment with 5µM of this drug, the 

amount of exosomes is reduced about 50% compared to exosomes from cells untreated, 
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but the effects on γδ T cells function is the same.  

These initial findings on the role of CML exosomes on γδ T cell shed new light on the 

immune-escape mechanism exosomes-mediated. Focus on the mechanism of action of 

zoledronate in the release of exosomes and if after treatment there are change in the 

quality of exosomes could be important to find some new approaches for CML therapy. 
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