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Abstract 

 

The present thesis aimed to explore the methodological advantages as well as limitations 

in applying different modelling approaches to predict water soil erosion in Mediterranean 

environments. The research was accomplished in the central northern part of Sicily (Italy), 

considering this region to be representative of Mediterranean environmental conditions. In 

this region soil degradation problems, due to water erosion are becoming more and more 

serious. Consequently, defining models being able to predict erosion susceptibility and to 

discriminate environmental factors causing erosion is important to protect soil resources.  

 

The prediction of the spatial distribution of soil erosion processes was carried out by 

means of GIS tools and multivariate statistical analysis. 

A stochastic gradient boosting model (TreeNet) was proposed to classify erosion and 

mass wasting processes and to define the functional relationship between spatial data 

sets of driving factors and response variables. The TreeNet method allowed identifying a 

susceptibility model that accurately fits the relationship between a set of several attributes 

and the activity of different erosion processes with a high resistance to over-training. 

Moreover, a better understanding of the prediction model was provided by the evaluation 

of the relative overall importance of the predictive variables in the tree construction. In 

order to estimate the overall prediction skill of the model, the ROC (Receiver Operating 

Characteristic) curves for each of the predicted process were constructed. Results 

illustrated an outstanding and excellent performance of the TreeNet method to predict 

bank and gully erosion, respectively. Sheet and rill erosion and mass wasting phenomena 

prediction attested to acceptable and poor performance of the model. The erosion 

susceptibility model was exploited to regionalize the information in areas characterized by 

the same geo-environmental conditions. 

 

Among erosion processes, gully susceptibility was most intensely investigated due to their 

high contribution to soil loss in the Mediterranean. A GIS layer containing 260 ephemeral 

and permanent gullies was constructed by field surveys and interpretation of high detailed 

aerial images and a set of 27 environmental attributes was selected as explanatory 

variables. The statistical analysis was defined on the scale of grid cells and slope units. 

The functional relationships between gully occurrence and spatial variability of the 

controlling factors was explored by carrying out forward stepwise logistic regression 
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analysis that allowed to calculate the probability of mapping units hosting gullies. Results 

of validation showed acceptable to excellent accuracy of the predictive models, illustrating 

a more stable performance of susceptibility models defined on cell scale. Finally, further 

logistic regression analysis was carried out to generate a cell- and a slope-unit based 

gully erosion susceptibility map, both demonstrating an excellent fitting precision.  

 

Furthermore, a procedure to evaluate the impact of anthropogenic activity on soil erosion 

dynamics by means of empirical methods was proposed. In cultivated catchments, man-

induced elements influencing runoff processes are mainly linked to alteration of original 

terrain morphology and to the consequently spatial soil redistribution pattern.  

In order to simulate the impact of anthropogenic elements on soil loss, data related to the 

characteristics of these rural elements and to their spatial distribution in the basin were 

collected and included in soil erosion modelling procedures. The interplay between the 

RUSLE (Revised Universal Soil Loss Equation) and the USPED (Unit Stream Power 

Erosion Deposition) models allowed to define the spatial distribution of man-induced 

impacts on soil erosion processes. In the study area farmer activities play an important 

role in modifying the natural flow-path, on both field and basin scale. Unpaved roads 

resulted the main cause of important transformation mechanisms in the agricultural 

landscape. These linear features influence the drainage patterns and consequently soil 

erosion dynamics. 

 

The results of this study confirmed the reliability of the adopted methods that are 

objective, reproducible and able to be exploited to produce accurate erosion susceptibility 

maps: A useful instrument for land management and planning. In addition, the research 

demonstrated that spatial occurrence of erosion processes is strongly influenced by 

human pressure modifying the natural flow path of water, underlining the necessity to 

more specifically include this factor in erosion prediction modelling. 



 IV 

Zusammenfassung 

 

Die vorliegende Dissertation zeigt sowohl die methodologischen Vorteile, als auch die 

Grenzen der Anwendung unterschiedlicher stochastischer und quantitativer Modelle zur 

Vorhersage von Bodenerosion im Mittelmeerraumauf. Mit der Wahl des 

Forschungsgebietes im nördlichen Teil von Sizilien (Italien), stellvertretend für die 

allgemeinen mediterranen Umweltbedingungen, wurde ein Raum bestimmt, der 

zunehmend von Degradations- und Desertifikationsprozessen betroffen ist. Diese sind 

zumeist auf extreme Bodenabspülungs- und Abtragungsvorgänge zurückzuführen. 

Folglich ist es unerlässlich, Vorhersagemodelle zur Bodenerosionsanfälligkeit zu erstellen, 

um die natürlichen Bodenressourcen zu schützen.  

 

Unter Einbeziehung von GIS Methoden und multivariater Statistik konnte eine Voraussage 

der räumlichen Verteilung von Bodenabtragungsprozessen im Untersuchungsraum erstellt 

werden. Ein stochastischer Verlauf (TreeNet) beschreibt und klassifiziert Erosions- und 

Massenverluste und definiert gleichzeitig die Beziehungen zwischen den räumlichen 

Umweltfaktoren und den Erosionsformen als abhängiger Variable. Die Methode des 

stochastischen Entscheidungsbaumes erlaubt es, ein Vulnerabilitätsmodell zu erstellen, 

das die Beziehungen zwischen den Attributen und den Bodenabtragungsprozessen 

eindeutig charakterisiert. Um die Vorhersagegenauigkeit des Modells zu prüfen, wurden 

“ROC (Receiver Operating Characteristic) curves“ für jeden einzelnen Vorhersagefall 

erstellt. Die Modellergebnisse zeigen hervorragende Leistungseigenschaften für die 

Vorhersage von Seiten-/Ufererosion und ausgezeichnete Passgenauigkeit für 

Erosionsrinnen (Gullies). Die Vorhersage von flächenhaften Erosionsprozessen (Rillen-

Interrillenerosion) hingegen erreichte bei der Modellierung nur ausreichende bzw. keine 

zufriedenstellenden Ergebnisse. Im Folgenden sind die Resultate der TreeNet 

Modellierung ausgewertet und auf Gebiete übertragen worden, die die gleichen 

physiogeographischen Bedingungen aufweisen (Regionalisierung).  

 

Besonderes Augenmerk wurde auf den Bodenabtrag durch Gullies gelegt, die vor allem 

im Mittelmeerraum für den zunehmenden Grad an Degradation verantwortlich sind. 

Hierfür wurde ein GIS-Layer mit ca. 260 ephemeren und permanenten Erosionsrinnen 

erstellt, der aus hochauflösenden Luftbildern abgeleitet und im Gelände validiert wurde. 

Drüber hinaus wurde aus einem digitalen Höhenmodell ein Set von 27 Umweltattributen 
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gewonnen. Die statistische Auswertung wurde im Maßstab der Rasterzellengröße und 

spezifischen topographischen Hangeinheiten durchgeführt. Ein räumlicher 

Zusammenhang zwischen Gully-Auftreten und den vorherrschenden Umweltfaktoren 

wurde anhand von logistischer Regressionsanalyse erstellt. Zusätzlich wurden die 

Analysen in Hinblick auf spezifische topographische Hangbereiche ausgewertet. (terrain-

units). Die Ergebnisse zeigten eine befriedigende bis ausgezeichnete Genauigkeit der 

Vorhersagemodelle, wobei die Vulnerabilitätsmodellierungen im Rasterzellenformat die 

beständigsten Ergebnisse zeigten. Um letztendlich eine Risiko- und Vorhersagekarte von 

Erosionsprozessen auf Basis von Raster- und Hangeinheiten zu erstellen, sind weitere 

logistische Regressionsanalysen durchgeführt worden, die allesamt eine herausragende 

Qualität aufweisen.  

 

Um die Auswirkungen der anthropogenen Einflussfaktoren auf Bodenerosionsvorgänge 

abzuschätzen, sind Feldstudien in landwirtschaftlich genutzten Gebieten durchgeführt 

worden. Diese zeigen zumeist ein stark verändertes oberflächliches Abflussverhalten und 

unterliegen folglich einem neugeordneten Sedimentations- und Depositionsregime. 

Anhand der Erosionsmodelle RUSLE (Revised Universal Soil Loss Equation) und USPED 

(Unit Stream Power Erosion Deposition) wurde die räumliche Verteilung der 

anthropogenen Einflussfaktoren bestimmt und in die Bodenerosionsmodellierung mit 

einbezogen. 

Landwirtschaftlich überprägte Flächen und unbefestigte Wege sind Kennzeichen des 

anthropogenen Landoberflächenwandels und beeinflussen das natürliche 

Abflussverhalten und somit auch die Bodenerosionsdynamik.  

 

Die Forschungsergebnisse veranschaulichen nicht nur die Zuverlässigkeit der 

angewandten Methoden sondern vor allem die Möglichkeit der Regionalisierung und 

Ausweitung der statistischen Analyse auf geomorphologisch identische Flächen und somit 

das Erstellen von geeigneten Risiko- und Gefahrenkarten hinsichtlich 

Bodenerosionsvorgängen. Diese liefern heutzutage in der Planung und im 

Oberflächenmanagement einen wichtigen Beitrag zur Vorhersage von Auswirkungen des 

Landnutzungswandels. Die zunehmende räumliche Ausdehnung von Degradations- und 

Desertifikationvorgängen ist nicht zuletzt anthropogenen Ursprungs und unterstreicht die 

Notwendigkeit, Bodenerosionsprozesse in zukünftige Vorhersagemodellierungen mit 

einzubeziehen. 
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1.1 Significance of soil erosion in the Mediterranean  

Erosion by water is a natural geologic process that has created vast zones of fertile soils 

on alluvial flood plains around the world. However, the accelerated soil loss by 

anthropogenic impact is considered a destructive process that also prevents the 

reformation of fertile soils. On a global scale, soil erosion triggered by water contributes 

severely to land degradation and desertification processes (Eswaran et al., 2001). Authors 

tried to define a numerical relation between morphogenetical and pedogenetical 

processes. Pimentel et al. (1976) consider an upper limit of acceptable soil loss of about 

11-12 ton/ha/year, corresponding to a formation rate of 25 mm of soil in 30 years. Barrow 

(1994) estimated that the soil loss is currently 16–300 times faster than its development 

and consequently soil is essentially a non-renewable resource.  

 

On continental scale, countries are differently affected in severity, depending on their 

spatial, economic, environmental and cultural context. UNEP1 (1986) estimated that 2 

billion hectares of land, that was once biologically productive, has been irreversibly 

degraded since 1000 AD. Brown (1984) evaluated a global erosion soil loss of 26 billion 

Mg/ha/yr, while Oldeman (1994) affirmed the area affected by severe water erosion is 

1094 Mha, of which 751 Mha are severely affected. In Europe 11% of the used land is 

considered to be affected by severe water erosion problems (Oldeman, 1994). Among 

that, the Mediterranean countries are considered the most vulnerable ecosystem (Kosmas 

et al., 2000). Moreover the Mediterranean region is characterized by a history of 

agricultural activity of more than eight thousand years (Butzer, 2005). That, together with 

a significant increase in runoff and erosion caused by extreme precipitation events 

(Nearing, 2001), modified the geomorphological and hydrological dynamics on the 

hillslope-drainage network, leading to further mass movements and finally soil loss. 

 

Direct consequences of soil erosion create strong environmental impacts and high 

economic costs by its effects both on local and regional scale. It can affect agricultural 

production and contribute to the contamination and quality of water resources (Pimentel et 

al., 1995). Moreover, soil erosion decreases the organic matter content, the fine grained 

soil particles content, the water holding capacity and the depth of the top soils (Ritchie, 

2000). Indirectly, erosion can lead to or reactive superficial landslides (Conoscenti et al., 

                                                      
1 United Nation Environmental Program 
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2008b), by locally increasing the steepness of the slopes, damaging infrastructure and 

constituting a risk for population security. 

 

In the last 40 years the scientific world community recognized the importance of protecting 

and restoring the soil resources on international scale. The Rio summit (UNCED, 1992), 

UN Framework Convention on Climate Change (UNFCCC, 1992), the Kyoto Protocol 

(UNFCC, 1997) and the UN Framework Convention to Combat Desertification (UNFCD, 

1996) are some of the international conferences where soil erosion problems were taken 

into account. They have been considered one of the main causes of soil degradation, 

desertification process and consequently loss of biodiversity, threat to food security and 

increase in world poverty. On a global point of view soil erosion phenomenon is a 

considerable source of soil organic carbon emission to the atmosphere in form of CO2 and 

CH4, causing impact on global warming (Lal, 2004).  

 

The present thesis research investigates the significance of erosion and sedimentation 

processes in the Mediterranean region2. Countries of the Mediterranean basin are 

characterized by a history of agricultural activity of more than eight millennia (Butzer, 

2005) and a similar socio-cultural heritage.  

During the last decades, the meteorological conditions showed a significant increase of 

erosive power of rainfall (Nearing, 2001). Consequently geomorphological and 

hydrological dynamics on the hillslope-drainage network system changed as well. In this 

context, analyzing and modeling the processes that contribute to an increase of soil 

degradation is important in order to reduce additional socio-economic and environmental 

effects.  

 

Previous studies showed that rapid and uncontrolled land use changes (e.g. land 

abandoning, tillage mechanization, deforestation, soil sealing, etc.) are one of the main 

causes of soil loss increase in Mediterranean basins (e.g. Martìnez-Casasnovas and 

Sànchez-Bosch, 2002, Van Rompaeya et al., 2007, Märker et al., 2008 ).  

                                                      
2 The term “Mediterranean region” in the present thesis regards to as the catchment limits of the area contributing to the 

Mediterranean Sea, excluding the other Mediterranean bioclimatic zones of the world (central coastal California, central 
coastal Chile, the southern tip of Cape Province, South Africa and the southern extremities of Western and South 
Australia).  
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Human activity influences soil erodibility and rain erosivity, contributing to destroy natural 

vegetation and modify the morphological setting by covering with artificial elements 

(roads, bridges, caves, etc). Moreover the human pressure contributes indirectly to global 

climatic change. The potential impact of climate change on erosion processes can be 

associated by shifts in mean annual rainfall amount, rainfall intensity and temporal 

distribution.  

 

 

1.2 Erosion processes 

Water, wind and gravity are the principal factors of erosion processes. Energy supply by 

these physical agents determines the detachment and transport of soil particles. 

Deposition is the third and last phase of erosion phenomenon, and occurs when energy 

apply by the erosive agents is not sufficient to transport soil particles. The distance of 

physical displacement may range from a few millimetres to thousands of kilometres, and 

the time lap from detachment to eventual deposition may range from some seconds to 

thousands of years (Lal, 2001).  

 

The erosion process starts when raindrops strike the surface of the soil and break down 

clods and aggregates (Ellison, 1947). This is commonly referred to as rainsplash or 

raindrop splash erosion (Thorne, 1990). Raindrops cause disaggregation and splashing of 

soil particles and at the same time surface compaction, reducing the soil infiltration 

capacity (Pagliai, 1988). In addition, raindrops falling on wet soil form a crater; that is 

accompanied by a blast which bounces water and soil back into the air forming a circle 

around the crater. The impact of rain is linked to the kinetic energy of precipitation and its 

spatial and temporal distribution during a storm event.  

 

Runoff processes occur when water produces a shear stress on the soil surface that can 

detach and transport the sediment rate. Runoff generates a thin sheet across the soil 

surface called sheet flow. Two basic processes are involved in sheet flow genesis: first, 

soil particles are detached from the body of the soil, and second the particles are 

transported away from their original location. At the beginning of a rain storm event falling 

raindrops are able to detach much larger amounts of soil particles than runoff processes. 

If the rainfall continues, the flowing water entrains and transports detached particles along 

the slope (Hudson, 1995).  
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Several factors control overlandflow phenomenon, including: Morphological conditions, 

soil texture and structure, initial moisture content, flow depth and rate, presence of 

cracking and swelling on soils, vegetation density and organic matter content. Former 

researches demonstrated the existing of three different mechanisms by which storm 

overlandflow may be generated: Horton overland flow, Subsurface flow and Saturation 

overland flow (Dunne, 1983). The latter is developed during a rain event when the soil 

becomes saturated by the perennial groundwater table, rising to the surface, or by lateral 

or vertical percolation above an impeding horizon (Dunne and Black, 1970). The soil 

saturation transports groundwater slowly through the topsoil emerging and flowing over 

the ground surface (Dunne, 1983). Subsurface flow occurs when part of the infiltrated 

effective rainfall circulates more or less horizontally in the superior soil layer and appears 

at the surface through drain channels. The presence of a relatively impermeable shallow 

layer favours this flow. The subsurface flow in unsaturated regimes can be the base flow 

in the area with large slopes and dominant in humid regions with vegetal covering and 

well-drained soils (Dunne, 1983). 

 

In arid and semiarid landscapes, where vegetation density and therefore infiltration rates 

are low, and in disturbed area of humid landscapes (e.g. cultivated fields, paved areas, 

rural roads) storm runoff is principally generated for Hortonian overland flow (Dunne, 

1983). This term was introduced by Robert E. Horton (1933), who first developed a theory 

of the relationship between infiltration and runoff and their consequences for land and 

water management. The Hortonian overland flow occurs when rainfall rate exceeds the 

infiltration capacity of soil and water starts to flow in the direction of the steepest 

unimpeded slope. The occurrence of this kind of overlandflow depends mainly on the 

surface characteristics that control infiltration, morphology, vegetation and soil type 

(Dunne, 1983).  

 

When overland flow converges from various regions of the upland area, it becomes more 

concentrated. Depth and velocity of sheet flows reach critical values that do not allow the 

laminar flow to be maintained; consequently turbulent water flow is generated. 

Overlandflow becomes sufficiently erosive forming shallow channels, referred to as “rills”; 

small drains on the slope surface that are sediment source area and sediment 

transportation route (Lei et al., 1998). In the area between two rills runoff occurs, and is 
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also referred to as ‘inter-rill erosion’. In the inter-rill area erosion processes are dominated 

by precipitation, whereas in rill channels erosion is mostly defined by runoff.  

Runoff water accumulation and flowing in narrow channels can, over short a period, 

remove soils from narrow areas at considerable depth. In this particular situation gully 

erosion occurs (Morgan and Nearing, 2011). Gullies represent an important source in dry 

land environments, contributing on average 50-80% on sediment production (Bull and 

Kirkby, 2002). In gully erosion, the action of raindrop impact is not considered an 

important process in terms of sediment particle detachment (Poesen et al., 2003). Runoff 

process is not the only geomorphological process affecting gully genesis and 

development (Fig. 1.1).  

 

 

 
Figure 1.1. Erosion and transport processes at the gully 
headwall. Source: Lamb (2008). 

 

 

 

Often, it is possible to recognize mass wasting processes on the gully-head area and gully 

walls (principally slumping and block failure), when slope stability is reduced by 

undercutting or loss of soil cohesion. Cracks in gully walls are also cause of side-wall 

instability. The macro-porosity that characterizes the cracked soils maintains the preferred 

path of overlandflow-waters expanding fissures, isolating cracks and triggering the 

sidewall falls. In general the collapsed material tends to modify the cross section of the 
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gully, transforming a rectangular gully cross-section shape into trapezoidal form 

(Sidorchuk, 1999), and contributing to the retreat of the gully head position.  

 

Moreover, two subsurface process, seepage and piping, can be involved in gullies 

development. The origin and progression of gullies has often been related to piping or 

tunnel erosion where high hydraulic gradients occur in dispersive materials. Piping may 

have an important role in the beginning and development of bank gullies and gullies 

forming on badlands areas in the Mediterranean area (Poesen et al., 2003, Buccolini et 

al., 2010). Seepage is groundwater that emerges from rocks or sediments. It determines 

instability of gully head walls, leading to mechanical and chemical erosion and 

consequently to wall collapse (Lamb, 2008).  

 

 

1.3 Factors controlling soil erosion  

The interplay of climate, lithology, vegetation, morphological conditions and human 

pressure defines the location and extent of the different types of erosion processes. These 

factors can influence two important environmental properties: Erosivity and erodibility. 

Their balance characterizes erosion process entity. Erosivity is referred to the capacity of 

rain and runoff to provoke erosion (rain erosivity), while erodibility is defined as the 

inherent resistance of soil to erosion processes (soil erodibility). Both proprieties are 

influenced by the presence of vegetation. The canopy and the litter intercept raindrops 

reducing the raindrop impact and overlandflow, influencing physical properties, such as 

water storage capacity, bulk density, porosity and roughness. Moreover, the organic 

carbon increases the formation of soil aggregates and so decreases soil erodibility.  

 

In Mediterranean landscapes, different studies tried to qualify and quantify the role of 

vegetation cover in runoff processes. Lopez-Bermudez et al. (1998) demonstrated in 

experimental plots, how runoff and sediment loss rates depend on the efficient control of 

vegetation cover, even in abandoned fields where a good capacity to recover its 

pedological and vegetation characteristics after disturbances was recognized (Fig. 1.2). 
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Figure 1.2. Relationship between runoff–vegetation cover and soil loss–vegetation cover. 
Source: Modified from Lopez-Bermudez et al. (1998). 
 

 

 

Recent investigations (e.g. Martìnez-Casasnovas and Sànchez-Bosch, 2002, Van 

Rompaeya et al., 2007, Märker et al., 2008) showed that rapid and uncontrolled land use 

changes (e.g. land abandoning, tillage mechanization, deforestation, soil sealing, etc.) are 

one of the main causes of soil loss increase in Mediterranean basins. Human activity 

influences soil erodibility and rain erosivity, contributing to destroy natural vegetation and 

modify the morphological setting by covering with artificial elements (roads, bridges, 

caves, etc.).  

Furthermore, the human pressure contributes indirectly to global climatic change. The 

potential impact of climate change on erosion processes can be associated by shifts in 

mean annual rainfall amount, rainfall intensity and temporal distribution. Different 

scenarios have been worked out for the Mediterranean environment; the most accepted 

assumes that temperature and precipitation trends will lead to conditions similar to those 

dominating arid and semiarid landscapes (Lavee, 1998). Figure 1.3 shows the water 

redistribution processes and spatial patterns under different climatic conditions from arid 

to semiarid and humid zones.  

 

Principal factors influencing the rain erosivity are intensity and precipitation amount. In the 

Mediterranean, the frequent occurrence of convective events and the presence of long dry 

periods followed by heavy bursts of erosive rainfall are causes of high soil vulnerability 
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potential (Wainwright and Thornes John, 2003). The erosivity of superficial runoff is a 

function of rain intensity, water flow velocity, vegetation cover and morphological 

characteristics of the surface. Roughness, slope and depth of the flow are some of the 

features that can be considered to analyze the extent of runoff processes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 1.3. Rainfall redistribution under different climatic 
conditions (A: Water accepting area; C: Overland flow 
contributing area). Source: Lavee et al. (1998). 

 
 

 

Erodibility is principally related to soil moisture and structure, texture, mineralogical and 

chemical composition of substrates. These characteristics influence temporal and spatial 

variability as well as shape and type of the runoff process (Hochschild, 1999). Soil with 

medium to fine texture, low organic matter content and weak structure is characterized by 

a high erosivity (Bajracharya and Lan, 1998). In semiarid and arid environments of the 

Mediterranean region, soils are characterized by low organic content and significant 
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amount of rock fragments, parameters considered decreasing erodibility (Poesen 1992, 

Valentin, 1994). 

 

 

1.4 Morphology and classification of erosion landforms  

A landform is defined as a physical feature of the earth's surface having a characteristic 

recognizable shape produced by natural causes (Bates and Jackson, 1995). Erosion 

landforms can be described by analyzing their general structure and shape and defining 

its dimensions (morphometry); these parameters are some of the possible keys to deduce 

the dominant geomorphic process responsible for the nature, origin and development of 

the landforms. Mediterranean landscape is characterized by features that are related to 

erosion in its various forms. In the majority of regions, water erosion and mass 

movements are the dominant processes because of the high relief energy that dominates 

wide parts of the region. 

 

Regarding to water erosion landforms classification, a first big distinction can be done in 

relation to the spatial distribution and shape of the erosion features along the slope, 

consequently leading to two kinds of erosion processes: Diffuse and linear.  

Rainsplash and sheet flow are disturbance-driven processes that have been termed 

diffusive because of the resulting sediment flux is thought to be primarily slope-dependent 

(Roering et al., 1999). Sheet erosion removes a thin layer of fertile soil, easily recognized 

in landscape by its typical light-coloured soil patches on hillsides. Often, when sheet flow 

is the dominant erosion process in the slope, the soil organic matter is loose and soil 

aggregates are destroyed, resulting in reduction of vegetation and soil cover on the 

surface. Sheet erosion in Mediterranean areas is often associated with pasture activities; 

Animals crossing and standing cause soil compaction and grass vegetation cover 

destruction.  

 

Runoff remains diffuse until it is able to transport the detached particles, but unable to 

initiate incision. Rills and gullies (Fig. 1.4) are runoff products, that develop in 

concentrated flow zones, located not only in natural drainage lines, but also along (or in) 

linear landscape elements, such as drill lines, dead furrows, parcel borders and access 

roads (Poesen, 1993). 
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Both rills and gullies are characterized by linear shape (rills often parallel at the top of the 

hill and convergent at the bottom) and a clear distinction between these two landforms is 

not yet provided. Different Authors tried to develop an objective criterion to distinguish 

these two landforms. Hauge (1977) proposed to use a critical cross-sectional area of 929 

cm2. Other criteria include a minimum width of 0.3 m and a minimum depth of about 0.6 m 

(Brice, 1966), or a minimum depth of 0.5 m (Imeson and Kwaad, 1980). Nevertheless, it 

must be acknowledged that the transition from rill to ephemeral gully represents a 

continuum and any classification of this hydraulic erosion form into separated classes can 

be objective (Morgan and Nearing, 2010). 

 

 

 

 
Figure 1.4. Rill (left) and gully (right) erosion processes in crop fields (Sicily, Madonie 
Mountains, 15.04.2010). 

 

 

 

When rills and gullies are able to transport a great amount of sediment it’s possible to 

recognize a depositional area, occurring when the overland flow meets a lower slope. The 

deposited sediment is often characterized by the presence of fine material that may cause 

surface sealing and consequently reduces water infiltration and ventilation. As 

consequences anaerobic conditions underneath the sealed surface and the oxygen 

content decreases, reducing roots development. Sodium or sodic clays may also be 

deposited by the floods. The sodium interferes with most crop plant growth and can cause 

soil dispersion.  
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Regarding gullies, different criteria can be adopted to classify and describe them. 

Observing their morphological characteristics, gullies can be described by:  

 

� plan form (linear, bulbous, dendritic, trellis, parallel and compound gullies, axial 

gullies with a single headcut, digitate and frontal gullies); 

� position in the landscape (valley-floor, valley-side, valley-head gullies, or bank 

and hillslope gullies, continuous and discontinuous gullies); 

� shape of gully cross-section (V and U-shaped gullies). 

 

Foster (1986) introduced the term ephemeral gully erosion to include concentrated flow 

erosion, larger than rill erosion but less than classical gully erosion. They are considered 

small channels that can be easily filled by normal tillage, even if they tend to reform again 

in the same location (Soil Science Society of America, 2001). Poesen (1993) suggested 

classifying ephemeral gullies using the width/depth ratio. Deep, narrow and wide gullies 

are respectively characterized by with/depth ratio minor, equal and bigger than 1, 

corresponding to an increase of potential total soil loss and crop damage.  

Moreover, a common distinction, based on temporal variability and/or consequences with 

field tillage operations, can be operated between permanent and ephemeral gullies. The 

Soil Science Society of America defined as permanent gullies channels too deep to be 

easily ameliorated with ordinary farm tillage equipment. Their cross section typically 

ranges from 0.5 to as much as 25–30 m depth (Poesen et al., 2003).  

 

In gullies, longitudinal and transversal profile shapes (gully length, depth and width of the 

cross section) are important parameters that have been the object of several monitoring 

activities and measurements of soil loss rate. Moreover the headcut position of a gully, 

characterized by an abrupt change in elevation, can be considered the principal source of 

sediments and its slope migration is one of the main parameters investigated in soil 

erosion processes.  

 

In clay substrates it is often possible to observe the presence of typical plunge pools (Fig. 

1.1). This morphological element can contribute to the headwall instability and gradual 

retreat. Plunge pool development is essentially controlled by water flow erosivity (water 

fall height and unit flow discharge) and soil erodibility characteristics (Louise et al., 2002). 

Study results established different quantitative equations, based on topographic and 
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environmental factors (e.g. slope, drainage basin area, land use), to predict gully starting 

position in the slope and gully retreat rate during the time (Poesen et al., 1993).  

Before being deposited eroded soil is transported over a certain distance depending on 

landform characteristics, roughness and magnitude of runoff events. Not all of the 

detached and transported soil enters the river network. Continuous gullies form parts of 

the river network (zero-order river or bank gully). Unlike discontinuous they are connected 

with the rest of the drainage system and considered an important source of sediments. 

Eroded and evacuated sediments from continuous gullies rapidly take part of the stream 

sediment yield.  

 

Recent studies suggest that most of the sediment transported by streams is deposited in 

sinks during and after rainstorms. The mass flow originated from landslides and landslide–

gully complexes located in headwater catchment, directly connected with the river network 

(Hicks et al., 2000). Regarding continuous gullies, literature offers limited criteria to 

distinguish between gullies and 1st order river channels. Montgomery and Foufoula-

Georgiou (1993) established an interval of upslope contributing area, from 104 m2 to 

106m2, as transitional area for hydrological hillslope and channel processes beginning  

 

Concerning environmental conditions, if intense sheet and gully erosion occurs 

accompanied by several mass wasting and piping processes, typical badlands landscape 

can be generated. Badlands (or Calanchi) indicate an extremely dissected landscape, 

characterized by steep and barren slopes (Phillips, 1998; Moretti and Rodolfi, 2000). 

Those landforms preferentially develop in regions, as the Mediterranean, characterized by 

both strong climatic oscillations, with changes in humid and arid conditions, and 

considerable anthropogenic pressure (pastures, periodic fires, etc.,) (Fairbridge, 1968).  

 

 

1.5 The Sicilian Inland as experimental area   

Sicily is one the largest islands in the Mediterranean (25,707 km2), situated between 36° 

and 38° N and between 12° and 15° E. Due to its bar ycentre position in the middle of the 

Mediterranean Sea, Sicily can be considered an ideal laboratory to analyze the 

relationship between driving factors and erosion processes.  

This statement is due to three main environmental characteristics: 
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� the high variability of climatic condition;  

� the rapid land use change; 

� highly erodible soils. 

 

Rainfall data of Sicily shows a growing complexity from annual to monthly scale up to 

single extreme events. Meteorological data analysis (period 1954-2005) marked a 

significant spatial and temporally (within decades) variability in the pluviometric regime 

(Drago et al., 2000). D’Asaro et al., (2007), by analysing rainfall intensity trends in Sicily 

(datasets from 1916 to 1999), concluded that no significant drift can be recognised on 

regional scale, while both, negative and positive trends have been noticed locally. 

However, observing anomalies on daily precipitation rate, during the period 1952–2008, 

Sicily registers the highest positive rate anomaly (0.4 mm/day) respect to the entire 

Mediterranean area (Grauso et al., 2011). 

 

The actual land use in Sicily is predominantly typified by agricultural surface (about 63% 

of the whole area); main crops are grain, vine, olive, citrus, pure and mixed fruit trees and 

various traditional agro-forestry systems of cultivation. A study, conducted by Falcucci et 

al. (2007), about the changing land-use/land-cover pattern in Italy over the last 40 years, 

pointed out the general and intense changes that occurred from 1960 to 1990 in the 

Sicilian Region (Fig.1.5).  

 

 

 
Figure 1.5. Land cover changes in Sicily for the period 1960–2000. 
AGRICULTURE indicates ‘‘Agricultural areas’’, WOOD ‘‘Wood cultivations’’; 
FOREST ‘‘Forests’’; PASTURE ‘‘Pastures and grasslands’’; BARREN ‘‘Barren 
areas’’; ARTIFICIAL ‘‘Artificial areas’’, HETEROGENEOUS ‘‘Heterogeneous 
agricultural areas’’, WATER “Water bodies”. Source: Modified from Falcucci et 
al. (2007). 
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The outcropping lithologies are mainly built by clayey and marly-clayey substrates, 

limestone and clastic materials. About 62% of the Sicilian surface is characterized by hills, 

while 24% can be ascribed to mountains and only 14% to plains. Substrates are mainly 

represented by less-developed soils, Regosols and Lithosols, characterized by high 

erodibility, subjected to a continuous organic matter deployment and to a destruction of 

soil aggregates (Fierotti,1988).  

 

As a consequence of described natural and anthropogenic factors influencing soil erosion 

processes the fertile top-soil is deteriorating, causing the impoverishment and land 

abandoning of the region, whose socio-economic conditions are critically based on 

agricultural activities.  
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2.1 Main goals 

The aim of the research described in this thesis is to explore the possibility to predict soil 

erosion by applying statistical and empirical methods, and to develop a simple procedure 

to evaluate the impacts of anthropogenic factors on soil loss.  

The specific objectives of this study are: 
 

I. to analyze the functional relationship between dependent and independent 

variables for accurate qualitative erosion and mass wasting susceptibility 

mapping; 

II. to achieve the spatial variability of gully erosion susceptibility by using two 

different types of mapping units: grid cells and slope units; 

III. to define a methodology to evaluate the impact of man-induced elements on soil 

erosion processes in agricultural catchments. 

 

 

2.2 Research framework 

The central aspect of the present research is to explore the methodological advantages as 

well as limitations in applying different modelling approaches to predict soil erosion by 

water in the Mediterranean, using the Sicilian region as experimental area. 

 

In Sicily the increase of soil erosion and degradation problems during the last decades, as 

testified by the soil resource impoverishment and by the high frequency of superficial 

landslide occurrence, led to the investigations of erosion triggers and the possible 

feedback prediction. Several works related to soil erosion and mass wasting problems 

were developed in this region; they are mainly focused on the solution of empirically and 

physically based models (De Jong et al., 1999, Amore et al., 2004, Conoscenti, 2006, 

Bagarello et al., 2011, Di Stefano and Ferro, 2011) and probabilistic-phenomenological 

methods (Capra and Scicolone, 2002, Conoscenti et al., 2008a, Conoscenti et al., 2008b, 

Rotigliano et al., 2011, Conoscenti et al., 2011, Agnesi et al., 2011).  

By considering the scarcity of experimental data and the limited works conduced in the 

Sicilian region, the present thesis aims to contribute to add a gusset to the state of the art 

of knowledge. 
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At watershed or regional scale empirically and physically based models are hardly 

applicable, because of the high resolution required for the input data and of the high cost 

and time consuming procedures used for morphometric measures; as a consequence, a 

statistical approach is usually preferred when susceptibility for large areas is investigated. 

 

A common measure of the probability of occurrence of soil erosion processes in a specific 

area can be evaluated using the susceptibility concept; the measure of this propriety 

consist on the ordinal categories of probabilities for relative frequency or density of 

specific erosion processes in homogeneous terrain entities. Methods exploited to define 

susceptibility conditions to hydrogeological hazards are based on the principle that new 

landforms are more likely to occur under the same environmental conditions that, in the 

past, led to their formation (Guzzetti et al., 1999). These conditions can be identified on 

the basis of statistical relationships between the spatial occurrence of landforms and the 

variability of a set of physical attributes; the environmental parameters, which are 

supposed to express the controlling factors of the erosion process, are taken as 

explanatory variables to predict the behavior of the dependent variable. 

 

Several statistical modeling techniques have been applied to represent the propensity of 

an area to soil erosion processes and to investigate the relative importance of specific 

environmental variables: Multivariate analysis (e.g. Conoscenti et al., 2008a); Logistic 

regression (Meyer and Martinez-Casasnovas, 1999, Ohlmacher and Davis, 2003, Ayalew 

and Yamagishi, 2005; Mueller et al., 200, Nefeslioglu et al., 2008, Nandi and Shakoor, 

2009, Akgün and Türk, 2010, Bai et al., 2010, Yalcin et al., 2011, Lucà et al., 2011), 

Decision Tree models (e.g. Kuhnert et al., 2007, Märker et al., 2011); Multivariate 

Adaptive Regression Splines (Gutiérrez et al., 2009a); Bayesian models (e.g. Neuhäuser 

and Terhorst, 2007, Rouet et al., 2009); Artificial intelligence tools (Artificial Neural 

Network and Fuzzy Logic, e.g. Mitra et al., 1998, Tayfur et al., 2003) and CART analysis 

(Geissen et al., 2007, Bou Kheir et al., 2007, Gutiérrez et al., 2009b). Many of the 

mentioned statistical approaches focused on evaluating landslide or erosion susceptibility 

and only few analyzed different geomorphological processes in the same breath.  

 

Moreover, between erosion processes gullies, that in the Mediterranean significantly 

contribute in soil loss problems (10% up to 94% of the total erosion, Poesen et al., 2003), 

received not enough interest from scientists. Gully erosion studies have been principally 
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focusing on topographic threshold values for initiation, distribution and location of gullies 

by adopting physical (Montgomery and Dietrich, 1992, Desmet et al., 1999; Samani et al., 

2009) or statistical approaches (Kakembo et al., 2009). Alternatively, estimation of soil 

loss produced by gully erosion is achieved by means of experimental approaches based 

on morphometric analysis of gullies derived by field and remote data (Vandaele and 

Poesen, 1995; Martinez-Casanovas, 2003; Casali et al., 2006; Della Seta et al., 2007; 

Della Seta et al., 2009; Buccolini and Coco, 2010; Cappadonia et al., 2011). A 

probabilistic function, defined on a multivariate basis, by computing the density of erosion 

landforms in homogeneous spatial domains, was used by Conoscenti et al. (2008a) to 

generate susceptibility maps for areal and linear water erosion processes. Similar 

techniques, but implemented by means of bivariate analysis were exploited for gully 

erosion susceptibility zonation on watershed scale by Conoscenti et al. (2011), Conforti et 

al. (2011) and Lucà et al. (2011).  

 

Considering empirical and physical-based deterministic approach several models have 

been explored under different environmental and socio-economic conditions: The USLE 

(Universal Soil Loss Equation, Wischmeier and Smith, 1959), the CREAMS (Chemicals, 

Runoff and Erosion from Agricultural Management Systems; Knisel 1980), the EGEM 

(Ephemeral Gully Erosion Model; Capra et al. 2005; Merkel et al. 1988; Woodward 1999), 

the WEPP (Water Erosion Prediction Project, Flanagan and Nearing, 1995), etc. These 

models are founded on the solution of fundamental physical or empirical equations 

describing stream flow and sediment transport. The main problem in applying physical 

methods is that the solution of them involves a large and complex amount of input 

parameters, often requiring a previous calibration being many of existing empirical models 

be developed in different environmental conditions (Beck et al., 1995). 

 

Moreover, despite the increase of models able to simulate hydrological components 

influencing water erosion on catchment scale, few attentions has been shown regarding to 

the anthropogenic impacts on soil erosion processes. Studies generally investigated the 

land management factor focusing on generating alternative scenarios to predict land use 

change impacts and soil loss and design correct policies of land-planning (e.g. Märker et. 

al. 2008 a, Robichaud et al., 2007, Pacini at al., 2003).  
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In particular, rural infrastructure such as roads, tillage furrows, field boundaries, ditches 

and irrigation channels are often linear features part of the permanent drainage network. 

These elements are known to modify the natural overland flow path and influence runoff 

process dynamic. Rural infrastructures can contribute to the basin runoff and sediment 

yield by several mechanisms: (1) Modification of surface roughness and infiltration 

characteristics due to compaction mechanism (Dijck, 2000); (2) Cut-bank intercepting the 

subsurface flow by rerouting via the faster overland flow towards a more rapid run off 

(Costa and Bacellar, 2007); (3) Ditches and culverts capture both, surface runoff and 

subsurface flow runoff channelling more directly to stream networks (Ludwig et al., 1996; 

Souchere et al., 1996, Cerdan et al., 2001;); (4) Roads construction can also increase 

landslide events on road cut-slopes and hillslopes by altering the flow-paths as well as the 

shear stress and pore water pressures (Costa et al., 2007). 

The prediction of man-induced change effects in erosion/deposition dynamics in rural 

systems was scarcely investigated (Ziegler and Giambelluca, 1997, Jones et al., 2000, 

Wemple et al., 2001, Motha et al., 2004, Borselli at al., 2008, Märker at al., 2008 b), 

consequently the relationship between the spatial distribution of linear landscape 

elements and surface runoff in cultivated catchments is not sufficiently understood. 
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3.1 Applied methods 

To achieve the aims of the present thesis different methodological approaches were 

employed. The first two goals were reached by using two statistical models as investigator 

to generate erosion susceptibility maps: the TreeNet and the Logistic regression analysis. 

Both methods define quantitative relationships between a set of environmental 

parameters and the occurrence of erosion landforms. Finally the USPED and the RUSLE 

models were chosen between empirical methods to predict the impact of man-induced 

elements on soil loss phenomenon. 

 

 

3.1.1 The TreeNet model 

Among existing methods the TreeNet (Salford Systems implementation, cf. Friedman, 

1999) was selected to classify different typologies of erosion and mass wasting features in 

terrain units characterized by homogeneous erosion dynamics (ERUs, Märker et al., 

1999). The TreeNet model employs a learning algorithm to identify a model that best fits 

the relationship between an attribute set (named predictor or independent variables) and a 

class label of input data (named response or dependent variables). The employed method 

is a stochastic gradient boosting model (Elith et al., 2008).  

The trees construction process splits the observations into subsets, according to whether 

or not they are less than a particular value of one of the predictor variables: Subsets 

characterized by similar values for the response variable are formed. The predicted value 

of the response variable for each node of the tree is the mean of its value for the subset of 

observations at that node. A variety of impurity or diversity measures exist to chose the 

best predictor. Particularly, the TreeNet model computes several hundred to thousands of 

small classification trees, each one contributing to construct a portion of the model. During 

this training process, each tree improves on its predecessors through boosting. Gradient 

boosting constructs additive regression models by sequentially fitting a simple 

parameterized function to current residuals by least squares at each interaction 

(Friedman, 1999). The model build up procedure incorporates randomness to improve the 

execution speed and model robustness. 

 

The advantages of using the TreeNet model are related to different strengths: Being not 

sensitive to data errors in the input variables; automatic variable subset selection; 

handling data without pre-processing; resistance to outliers; automatic handling of missing 
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values; robustness to fragmentary, partially inaccurate data; high speed and resistance to 

over-training (Friedman, 2002).  

 

 

3.1.2 The logistic regression analysis 

The evaluation of gully erosion susceptibility by adopting two different types of mapping 

units was achieved by the application of a multivariate approach, based on the logistic 

regression analysis (cf. Hosmer and Lemeshow, 2000). This statistical technique can work 

with a variety of types of independent variables, such as categorical, binary, ordinal or 

continuous; moreover, it is free of data distribution constraints (Nandi and Shakoor, 2009; 

Bai et al., 2010; Yalcin et al., 2011) and robust also when input data is auto-correlated 

(Davis and Ohlmacher, 2002; Mathew et al., 2009), as often happens when dealing with 

environmental attributes. 

Logistic regression evaluates the probability (P) of an event occurring, by estimating the 

probability that a case will be classified into one of two mutually exclusive categories as 

opposed to the other category of the dependent dichotomous variable (Menard, 1995; 

Ohlmacher and Davis, 2003).  

 

In this study the event occurring is represented by the presence of gully erosion landforms 

within a mapping unit and the logistic regression is exploited to predict a binary variable 

that could be equal to 1 (presence of gully) or 0 (absence of gullies). Since 0 and 1 are 

only arbitrary codes and have not intrinsic meaning, the response variable Y is 

transformed into a logit function of Y, that is expressed as the natural log of the odds of 

the event occurrence or not: 

 

logit(Y) = ln{P(Y=1)/[1- P(Y=1)]}        (1) 

 

where P(Y=1) is the probability that the statement in parentheses is true. 

 

Logistic regression analysis allows for identifying the relationships between the dependent 

variable (Y) and the independent variables (X), by means of the equation: 

 

logit(Y) = α + β1X1 + β2X2 + …. + βnXn       (2) 
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where α is in intercept of the model, n is the number of independent variables, βi (i = 1, 2, 

3, …., n) is the slope coefficient of the model and Xi (i = 1, 2, 3, …., n) is the independent 

variable. 

By converting the logit(Y) back to the probability P that (Y=1), the logistic model can be 

expressed as: 

 

P(Y=1) = elogit(Y) / [1 + elogit(Y)]        (3) 

 

The equation (3) ensures that, for any given case, the probability P(Y=1) will not be less 

than 0 or greater than 1, with logit(Y) = ± ∞.  

 

The algorithm of logistic regression applies the maximum likelihood technique to maximize 

the value of the log-likelihood (LL) function, the latter indicating how likely it is to obtain the 

observed values of Y, given the values of the independent variables and coefficients 

(Menard, 1995). The function LL, multiplied by -2, allows for calculating a statistic, called 

negative log-likelihood (-2LL), which has approximately a χ2 distribution. The negative log-

likelihood of a regression model could be used to evaluate its fitting with the observed 

data: smaller -2LL values indicate a better fitting of the model to the data (Hosmer and 

Lemeshow, 2000).  The difference between the values of -2LL computed for the logistic 

regression model with only the intercept (D0) and for the full model (DM) is usually 

indicated as model chi-square and can be used in χ2 test of significance of the regression 

coefficients (Ohlmacher and Davis, 2003; Akgün and Türk, 2010); if the difference (D0-DM) 

is statistically significant (p ≤ 0.05), the null hypothesis can be rejected, indicating that a 

better prediction of P(Y=1) is obtained with the contribution of the independent variables 

(Menard, 1995). 

 

In this study, logistic regression analyses were performed by means of the open source 

software TANAGRA (Rakotomalala, 2005), adopting a forward stepwise strategy to select 

the explanatory variables. 

 

 

3.1.3 RUSLE and USPED models 

A new procedure to evaluate the impact of man-induced element in erosion processes is 

proposed as third objective of the present investigation. The Revised Universal Soil Loss 
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Equation (RUSLE, Renard et al., 1997) and the Unit Stream Power Erosion/Deposition 

(USPED, Mitasova et al., 1996) were employed to reach this goal.  

They are based on established mathematical equations representing erosion parameters, 

and were chosen to simulate soil erosion process by the scenario analysis. Both models 

are empirical methods, based on a different assumption. The RUSLE model estimates soil 

loss caused by raindrop impact and overland flow (interrill erosion), plus rill erosion. It 

does not estimate gully or stream-channel erosion; the assumption is that particles 

detachment is controlled by the sediment content of the flow, when the sediment load 

reaches the carrying capacity of the flow, detachment can no longer occur (Wischmeier 

and Smith, 1978). On the contrary the USPED is a model which predicts that spatial 

distribution of erosion and deposition rated for transport limited case of erosion process 

(Mitasova et al., 1996). In the RUSLE approach, erosion is calculated only along straight 

flow lines, without full consideration of the influence of flow convergence and divergence 

(Warren, 2005). Moreover while the RUSLE only predict erosion, the USPED model can 

assess both erosion and deposition patterns. A limit of the USPED model, respect to the 

RUSLE, is that it does not allow to evaluate actual sediment dynamics and time variations 

of pattern, just the relative strength or intensity of the phenomena. 

 

The RUSLE model is based on five components: R (Rainfall erosivity factor), K (Soil 

erodibility factor), LS (Topographic factor), C (Cover management factor), and P (Support 

practice factor). Multiplying these predictor factors the average annual soil loss per unit 

area (A, t/ha year) is calculate as described in the following: 

 

PCLSKRA ××××=          (4) 

 

Soil erosion processes are strictly related to the erosive power of precipitation, expressed 

by the concept of rainfall erosivity factor (R factor), one of the environmental components 

of the Universal Soil Loss Equation (USLE, Wischmeier and Smith, 1965), and its revised 

form (RUSLE, Renard et al., 1997). The R factor is the sum of the individual storm 

intensity (EI-value) within a year, averaged over a long time scale, to accommodate 

apparent cyclic rainfall patterns (Renard and Freimund, 1994). 

Soil erodibility expresses inherent soil resistance to erosional processes (Bryan, 2000). It 

can be modelled using the Erodibility index (K factor), inferred from soil loss measured at 
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standard erosion plots, characterized by a length of 22 m and 9 % slope (Wischmeier and 

Smith, 1978). K values can be expressed by an empirical equation containing data related 

to organic matter (OM), soil texture (M), classes of aggregate structure (s) and soil 

permeability (p). 

The LS factor describes the combined effect of slope, length and steepness and can be 

considered as a measurement of the sediment transport capacity by runoff. Slope length 

is defined as the horizontal distance from the origin of the overland flow to the point where 

either the slope gradient decreases enough that deposition begins or runoff becomes 

concentrated in a defined channel (Wischmeier and Smith 1978).  

Regarding C factor, Wischmeier and Smith (1978) proposed a calculation method on the 

base of crop development stage, soil biomass content, residual effects of previous tillage 

operations and on climate; these characteristics of vegetation and agriculture practices 

were transformed into continuous numerical variables and related to soil loss volumes by 

developing quantitative relationships from a large amount of data acquired on a number of 

experimental plots. C values range from 0 to 1 (no-dimensional), reflecting the potential of 

vegetation cover to protect soil from rainfall and runoff erosion. Values tending to 0 reduce 

soil loss amount, offering a good protection to soil, in contrast high values reflect the 

protecting power of vegetation. 

The P factor represents the ratio between soil loss with a specific support practice and the 

corresponding loss with upslope and downslope tillage (Guobin et al., 2006). These 

practices take the role to contrast erosion by modifying the flow pattern, grade, or direction 

of surface runoff and by reducing the amount and rate of runoff (e.g. terracing).  

 

The USPED is a model that predicts the spatial distribution of erosion and deposition in 

the case of stationary flow, with rainfall uniformly distributed. The assumption of the model 

is that the detachment and deposition soil rates (Dr) are proportional to the difference 

between the sediment transport capacity (T) and the sediment flow rate per unit width (qs) 

(Foster and Meyer, 1972), as described: 

 

( ) ( ) ( )[ ]rqrTrD sr −= σ          (5) 

 

where ( )rσ  is the first order reaction term dependent on soil and cover proprieties.  
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For the transport capacity limited case, we assume that the sediment flow rate, qs(r), is 

approximated to the sediment transport capacity T(r) (Moore and Burch, 1986).  

 

( ) ( ) ( ) ( ) ( )nm

ts rbrqrKrTrq sin==        (6) 

 

where q(r) is the water flow rate (m3 m-1 s-1), b(r) is the slope (express in degree), Kt is 

transportability coefficient dependent on soil and cover; m and n are constant coefficients, 

which value is related to the predominant erosion process occurring in the study area that 

depend on the type of flow and soil properties. For situations where rill erosion dominates, 

these parameters are usually set to m = 1.6 and n = 1.3; where sheet erosion prevails, 

they are set to m = n = 1.0 (Moore and Wilson, 1992; Foster, 1994). 

 

In condition of steady state (rain intensity uniformly distributed), water flow q(r) can be 

expressed as a function of upslope contributing area A(r) as following: 

 

( ) irArq ⋅= )(           (7) 

 

where i is the rain intensity. 

Consequently the relation (6) is reduced to: 

 

( ) ( ) ( ) ( ) ( )nm
ts rbirArKrTrq sin)( ⋅⋅⋅==       (8) 

 

Different variants of the USPED model exist (Moore & Burch, 1986; Mitasova et al., 1996) 

and in the present thesis the version proposed by Mitasova (1996) was used.  

 

Net erosion or deposition within a grid cell, ED(r), is calculated as the divergence of 

sediment flow (change in sediment transport capacity) in the direction of flow (Warren, 

2005). The equation that describes net erosion/deposition in each grid cell (r) is:  

 

( )[ ] ( )[ ] ( ) [ ]tpts kkhbshgradKrqdivrED +−⋅⋅== sin{)(     (9) 
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where s is an unit vector on the steepest slope direction, h is the overlandflow water 

depth, kp and kt are the profile and the transversal terrain curvature. 

 

Due to the gap of experimental data, the USPED model combines the USLE/RUSLE 

parameters to estimate the transportability coefficient K t as described: 

 

PCKRKt ×××=                  (10) 

 

The solution of equation 9 will predict erosion in areas experiencing an increase in 

sediment transport capacity and consequently deposition in areas showing a decrease.  

 

 

3.2 Models performance evaluation 

A quantitative evaluation of the model performance was done to determine the suitability 

of the model for geomorphological applications and to identify those aspects of the 

methodology that need improvements.  

The ability of the applied models to correctly predict erosion processes was evaluated by 

constructing confusion matrix obtained by crossing the number of true positive (TP), false 

positive (FP), false negative (FN) and true negative (TN) cases predicted by the model 

(Table 3.1). TP is the number of units for which the class assigned was correctly 

predicted; FP is the number of cells for which the right classification was not found but the 

model assigned presence; FN is the number of units for which the class was observed but 

the model predicted absence; finally, TN represents the number of counts for which 

absence was correctly classified by the model.  

 

The confusion matrix allowed assessing different statistical indices that quantitatively 

describe the accuracy of the model (Table 3.1). The combination of different indices can 

help the user to understand not only how good the performance of the model is, but also 

to discriminate the possible origin of misclassification.  
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 Observed 

Predicted 
Presence 
class X 

Absence 
class X 

Presence 
class X TP FP 

Absence 
class X FN TN 

 

 

Measure  Formula 

Overall Accuracy (Ac) (TP + TN) / N 

Sensitivity (Sn)  TP / (TP + FN) 

Specificity (Sp) TN / (FP + TN) 

False Positive Rate (FPR) FP / (FP + TN) 

False Negative Rate (FNR) FN / (TP + FN) 

 

Table 3.1 Scheme of the confusion matrix used to evaluate the predictive accuracy of the 
model (left). TP = true positive cases; FP = false positive cases; TN = true negative cases; FN 
= false negative cases (left). Statistical indices measure the model accuracy (right). 
 

 

 

The models’ predictive performance was also assessed by constructing the Receiver 

Operating Characteristic (ROC) curves (Goodenough et al., 1974; Lasko et al., 2005) and 

by computing the values of the Area Under the ROC Curve (AUC; Hanley and McNeil, 

1982). A ROC curve plots true positive rate TP (sensitivity) against false positive rate FP 

(1-specificity), for all possible cut-off values; sensitivity is computed as the fraction of cells 

hosting erosion process that were correctly classified as susceptible, while specificity is 

derived from the fraction of cells free of analyzed process that were correctly classified as 

not-susceptible. 

 

The closer the ROC curve to the upper left corner (AUC = 1), the higher the predictive 

performance of the model; a perfect discrimination between positive and negative cases 

produces an AUC value equal to 1, while a value close to 0.5 indicates inaccuracy in the 

model (Fawcett, 2006, Reineking and Schröder, 2006, Nandi and Shakoor, 2009, Akgün 

and Türk, 2011). In relation to the computed AUC value, Hosmer and Lemeshow (2000) 

classified a predictive performance as acceptable (AUC > 0.7), excellent (AUC > 0.8) or 

outstanding (AUC > 0.9). 
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4.1 Introduction 

To achieve the objectives of the thesis the San Giorgio river basin, a small catchment (9.5 

km2 surface) situated in the Madonie Mountains (Sicily, Italy) was chosen as training and 

test area for model building. The obtained results were exported in a larger sector 

surrounding the experimental area (67 km2 surface). In this section, a brief description of 

the Madonie Mountain group is given and the general setting of the research area is 

presented. 

 

 

4.2 The Madonie Mountains       

The complex mountain system of Madonie is one of the main massifs in Sicily, covering a 

large territory (around 40.000 km2) in the Central-Northern part of the inland (Fig. 4.1). 

These mountains, localized in the administrative province of Palermo, stretch a 48 km 

wide area of the Sicilian interior sector.   

 

 

Figure 4.1. Madonie Mountains localization in the 
Mediterranean (a) and in Sicily (b). The natural park 
delimitation zones (d), A, B, C and D reflect the 
level of restriction and protection of the area.  
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The Madonie Mountains cover a territory that contains fundamental sources for the 

reconstruction of the natural history of the central Mediterranean (Catalano et al., 1996). 

Its geographical position, geological and structural arrangement and ongoing 

morphodynamic processes store quite a few natural archives and proxies to be conducted 

in paleoclimate and morphologic research (Agnesi, 2004). Furthermore, the variety of 

geomorphological and climatic features leads to the identification of different ecosystems 

that allow gaining and preserving a high biodiversity level (Raimondo et al., 2004).  

 

In order to protect and preserve the natural and cultural heritage of the Madonie 

Mountains, the Sicilian Region conferred them the status of a ‘Natural Park’ in 1989. 

Subsequently, the region joined the European Geopark Network in 2001. The 

administrative boundaries of the Madonie Park define a certain part of the Madonie chain, 

bordered by small farming towns and villages. Since the establishment of the Natural Park 

and an increase in eco-sustainable tourism allowed the conservation and the valorisation 

of the traditional farming activities, soil quality and productivity has risen consequently. In 

contrast, close-by regions surrounding the Madonie Park have experienced vast land use 

and degradation trends due to the expansion and intensification of cultivated acreages 

and the lack of restrictions and regulations. Furthermore, massive use of destructive 

tillage techniques and the consequent decrease of natural vegetation cover have led to a 

rise in diffusive wildfire. These factors enhance the erosion processes and consequently 

the soil degradation of the entire territory. Understanding, predicting, and developing 

methods to control erosion processes are the first steps to contribute to soil protection 

improvement.  

 

The geomorphological setting of the Madonie territory is extremely diversified and 

includes many of the morphological features that typically characterize the Sicilian 

landscape (Agnesi et al., 2000). The massif is built by carbonatic and arenaceous-clayey 

rocks, reaching up to 1979 m a.s.l. (Pizzo Carbonara) in the central interior, marking the 

second highest peak in entire Sicily. The great diffusion of calcareous rocks shows 

characteristic aspects of Karst formation, that has widely shaped the high Madonie 

landscape (Agnesi, 2006). Several dolines, dry valleys, poljes and caves indicate the 

presence of karst processes all over the region. The hilly areas surrounding the high 

relieves of the Madonie is mainly covered by siliciclastic and marly-substrates, where the 
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main features are deep and superficial landslides movements, mostly active, and linear 

erosion gullies involving and mobilizing great volume of soil.  

 

 

4.3 Study area location and description   

The study area is located in the western part of the Madonie Mountains and encloses the 

headwaters of the Fiume Imera Settentrionale and the Fiume Imera Meridionale, two of 

the main important fluvial systems of Sicily (Fig. 4.2a).  

 

 

 
Figure 4.2. Study area: location (a), topography and hydrography (b). 

 

 

The waterway of the Imera Settentrionale and the Imera Meridionale rivers constitutes a 

clear line of historical and cultural demarcation in the Sicilian landscape. The Fiume Imera 

Meridionale is the longest Sicilian River (144 km) that flows into the Straight of Sicily 

situated along the southern coast. The Imera Settentrionale river basin covers a surface of 

around 342 km2, with a flow path length of 35 km and a discharge into the Tyrrhenian Sea.  
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The climate of this part of Sicily represents an example of the Mediterranean climate type, 

being characterized by wet and mild winter and hot and dry summer stages. Precipitation 

is mainly concentrated in a few rainy days over the winter stage, while summer period is 

characterized by dry to arid conditions and periods of drought. Mean monthly precipitation 

shows minimum values in August (10 mm) and maximum values in December (130 mm), 

with a mean annual average precipitation of 660 mm (values based on the period 1956-

2000). Long-term mean annual temperature is 15.7°C,  ranging from a maximum of 21°C 

to a minimum of 10°C.  

 

By means of aerial photographs (02.09.2007, resolution 0.25 m) land use of the study 

area was mapped. Remote sensing mapping operation was backed by means of field 

checks; the latter allowed testing the reliability of the images interpretation and enhancing 

the detail of the results. A number of 12 land use typologies were recognized and a map 

showing the spatial distribution of the different categories was constructed (Fig. 4.3).  

 

 

 
 

Figure 4.3. Land use map of the study area. The percentage of surface for each 
land use category is indicated. 
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The landscape is mainly characterized by agriculture surface, including seminatives 

(67.4% surface) and pastures (15.9% surface). The presence of sclerophyllous vegetation 

(6.5%) is normally linked to land abandoning and the following reconversion of these 

limited portions of landscape into natural vegetation cover. Sparsely vegetated area and 

bare rocks occupy areas where the runoff process has removed the top soil layer or 

where the bedrock crops out. Permanent crops category is represented by olive groves, 

vineyard and fruit trees plantations (3.6% surface).  

 

Soils principally are Typic and Lythic Xerorthenses, part of the Xerartens group. They are 

generally poorly developed with a thin depth and are characterized by fine-medium 

texture. In the eastern part of the study area, soils are described as Lithic Xerorthents, 

referred to as poor developed soils, containing rocks fragments of considerable size. 

Following the International Soil Classification System, soils are denominated Eutric 

(CMeu), Vertic (CMvr) and Chromic Cambisols (CMcr) (ISSS Working Group RB, 1998).  

 

Geological data and maps of the study area (Catalano et al., 1978, Abate et al., 1982, 

Abate et al., 1988, Abate et al., 1992) point out that, soils developed in substrates mainly 

characterized by clayey sediment outcrops, ranging from Upper Cretaceous to Lower 

Messinian. In particular, three principal sedimentary terrains are distinguishable. They are 

referred to as: Argille Varicolori sequences (also named Argille Variegate and Argille 

Scagliose, Upper Cretaceous–Oligocene), Numidian Flysch Formation (Late Oligocene–

Early Miocene) and late-orogenic units Terravecchia Formation (Upper Tortonian–Lower 

Messinian), built by fluvial-delta deposits (clays, sandstones and conglomerates). 

 

From a geomorphological point of view the area is shaped by an accelerating erosion 

process, consequences of an interaction between climatic conditions and litho-structural 

characteristics of outcropping terrains (Agnesi et al., 2007). Altitude values range from 

370 m to 1150 m a.s.l. The landscape is characterized by moderate slope gradients, with 

a mean steepness of 10°, ranging from 0° to 51°, in terrupted by few steep convex slopes 

and narrow ridges.  

 

During the early winter period in the study area tillage operations expose the bare soil to 

the impact of rainsplash and runoff processes, exacerbating rainfall erosivity. As 

consequences in this period, erosion by water starts detaching and transporting the fertile 
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top-soil, generating gullies and rills when the overlandflow is channelized. Shallow 

rotational slides, mud flows and complex landslides also occur, characterized by different 

intensity and frequency but in general causing permanent damage to farming production 

and representing a risk for the population. In addition, a certain part of the study area 

shows the presence of typical “Calanchi” (Moretti and Rodolfi, 2000) landforms, as result 

of the interplay between highly erodible clay soils and local geo-structural conditions 

(Agnesi et al., 2007). 
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5.1 Rainfall erosivity  

The climatic conditions influencing water erosion phenomenon were widely investigated 

over a 30 year-research. Obtained records allowed constructing and calibrating different 

rainfall erosivity equations, employed for hydrological simulation processes both at single 

rainfall events and long time scale.  

The first authors, who provided an equation quantifying the rainfall erosivity factor (R 

factor), were Wischmeier and Smith (1959). They defined the R factor as a function of the 

Erosivity Index (EI30), or index of aggressiveness of the rain, as following: 

 

∑=
N

EI
N

R
1

30

1
          (11) 

            

where E is the total storm kinetic energy (MJ ha-1), I30 indicates the intensity of the 

maximum 30 minutes rainfall intensity (mm h-1) and N the number of observed years. The 

single storm Erosivity Index, EI30, has to be calculated by using storm rainfall amount and 

intensity for all erosive events occurring in a year. At least 20–22 years of rainfall data are 

needed to deduce the mean rainfall factor (Wischmeier and Smith, 1978). 

 

Several alternative erosivity indexes were pointed out to be more highly correlated to soil 

loss for particular scale or locations (Fournier, 1960, Hudson, 1971, Grimm et al., 2003, 

etc.). Moreover, frequent unavailability of detailed rain data in the Mediterranean and 

Sicilian region, led to develop simplified methods for the estimation of the R factor (Table 

5.1). In 1983, D'Asaro and Santoro, based on the data recorded by 42 Sicilian rainguage 

stations, defined a relation (Table 5.1, Eq. 12) between the R factor and the rainfall 

intensity of 1 and 24 hours duration in a 2 year-return time. The lack of required data for 

the entire Region, led to a second simplified equation (Table 5.1, Eq. 13) to model rainfall 

erosivity in Sicily. Later, in agreement with the hypothesis of Fournier (1960) and 

Arnoldous (1980), who affirmed that rain erosivity does not only depend on the absolute 

amount of rainfall, but on its frequency and intensity, Ferro et al. (1991) developed a new 

relationship (Table 5.1, Eq. 4) for the Sicilian territory. In order to estimate the impact of a 

single storm event, Bagarello and D’Asaro (1994) derive a relationship (Table 5.1, Eq. 15), 

where the Erosivity Index is linked to the daily precipitation amount and the maximum 60 

minutes rain intensity.  
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Model Parameters Authors  

2,242,1 93.3091.2102 IIR ⋅+⋅+−=
 

I1,2 and I24,2  is rainfall intensity of 
1 and 24 hours duration and a 
return period of 2 years 

D'Asaro and 
Santoro, 
1983 

(12) 
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1.021.0
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z elevation (m); 
Rdays the mean annual number of 
rainy days  

D'Asaro and 
Santoro, 
1983 

(13) 
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pi,j is the total precipitation (mm) 
of the generic month i of the year 
j; 
Pj, is the total precipitation (mm) 
of the year j  

Ferro et al., 
1991 
 
 

(14) 

 

( ) 95.1
max30 hdkEI ⋅⋅=  

d is the daily rain depth (mm); 
hmax is the maximum 60 minutes 
rain intensity (mm h-1); 
k is a coefficient set to 0.15 

Bagarello 
and D’Asaro, 
1994 

(15) 

 

( )[ ] 294.185.09.0
30 124.0 hdPEI annual ⋅+⋅=−

 

d is the annual maximum daily 
rainfall (mm);  
h is the annual maximum hourly 
rainfall (mm) 

Grauso et al., 
2010 

 

(16) 

 

 
Table 5.1 Simplified erosivity models applied in the Sicilian territory. R is the average annual rainfall 
erosivity (MJ mm ha-1 h-1 year-1), EI30 indicated the single storm Erosivity Index, EI30-annual , is the 
annual erosion index (MJ mm ha-1 h-1) and P is the mean annual precipitation value (mm). 

 

 

 

Recently Grauso et al. (2010) developed a model (Table 5.1, Eq. 16) to assess the annual 

Erosivity Index (EI30-annual) in the Sicilian region. Authors rearranged and calibrated the 

model developed by Diodato (2004) for the entire Mediterranean area. The variables 

contained in the model are related to annual precipitation data and to the maximum 

annual daily and hourly rainfall values. 

 

In this thesis the EI30-annual values were computed by using the Grauso et al. (2010) model 

(Table 5.1, Eq. 16), containing rainfall data sets on different timescales. The advantage 

given by applying this model is that the variables involved are easily variable whereas the 

computation of the EI30 is time consuming and requires a continuous long record of rainfall 

intensities that is not available for the study area.  
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5.1.1 Data collection and models estimation 

In this thesis, the model developed by Grauso et al. (2010) (Table 5.1, Eq. 16) was used 

to asses the annual Erosivity Index (EI30-annual) and the R-factor by averaging the annual 

values for the number of observed years (Eq. 1). Equations (6) and (1) were applied to 

rainfall data sets from 11 rainguage stations, located next to the study area (maximum 

distance 20 km) (Fig. 5.1).  

 

 

 
 

Figure 5.1. Rainguage stations location and elevation data. 

 

 

In Table 5.2 the precipitation characteristics and the R values, computed for each 

rainguage stations over the observation period (1980-2006), are reported. Highest R-
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values (over 1300 MJ mm/ha h year) were estimated in Petralia, S. Caterina V. and 

Castelbuono rainguage stations, while the lowest value is situated in the Marianopoli one.  

Figure 5.2 shows the relation between precipitation and erosivity values. These two 

parameters maintain a certain correspondence in the main locations. S. Caterina V. 

station diverges from this trend, showing low value of precipitation but high erosivity, 

reflecting the presence of heavy storm rainfall events.  

 

 

Raingauge 
station 

Elevation 
(m a.s.l.) 

Observation 
period (years) 

Mean annual 
rainfall (mm) 

Rain 
days 

R factor 
(MJ mm/ha h year) 

Alimena 775 26 551 66 1200 
Caltavuturo 635 24 599 67 851 
Castelbuono 380 27 807 76 1336 
Castellana Sicula 481 10 665 79 1222 
Marianopoli 720 27 370 49 690 
Petralia Sottana 935 27 789 85 1410 
Resuttano 642 24 539 65 970 
S. Caterina V. 606 26 508 62 1390 
Scillato 376 27 678 75 1200 
Valledolmo 750 23 611 79 886 
Xireni 779 18 668 75 1176 

 
Table 5.2 Rainguage stations elevation, period of observation and mean annual precipitation data. 
R factor evaluated during the period 1980-2006. 
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Figure 5.2. Erosivity factor (R factor) and annual 
precipitation (P) values evaluated during the period 1980-
2006. 
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To represent the temporal distribution of the Erosivity Index during the 25 years 

considered, a graph was constructed describing the plotted average value of the 

estimated EI30-annual for the entire area (Fig. 5.3).  

 

 

 
 

Figure 5.3. Annual Erosivity Index (EI30-annual, MJ mm/ha h) 
temporal distribution in the Sicilian Region (a) (Grauso et al., 
2010) and in the study area (b). At regional scale (a) the annual 
time evolution of the rainfall erosivity (dots), during the period 
1950-2008, is averaged upon 104 stations of the Sicily region; 
the long-term erosivity mean value (horizontal line) and 3-year 
average moving window (bold curve) are drawn. In the study 
area (b) the Erosivity Index values, averaged upon the 11 
stations, are described (curve line) during the period 1980–
2006. The EI30-annual interval range (maximum and minimum) 
and the mean values (dashed line) are described. 

 
 

 

As it can be seen in Figure 5.3 (b), in the study area the mean annual Erosivity Index 

shows a large variability throughout the years (with a gap in 2002 and 2003, where no 

sufficient data is available) and an increasing change ramping from 1990 to 2005. The 

figure also points out the variation range between the maximum and minimum values. 
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During the last 25 years, this gap increases resulting in a larger variability of erosivity 

within the analyzed rainguage stations. This trend is similar to that obtained by Grauso et 

al., (2010) for the Sicilian region (Fig. 5.3 a); Both, on regional scale (Fig. 5.3 a) and local 

scale (Fig. 5.3 b) the erosivity annual values increase during the period 2000-2005, with a 

peak in 2005 when the Erosivity Index reaches a value of 2315 MJ mm/ha h in the study 

area. 

 

 

5.1.2 Rainfall erosivity map  

In climatology a common practice is to interpolate data using both stochastic and 

deterministic methods. To express the spatial variability of the erosivity factor in the study 

area the Spline method was selected. Figure 5.4 shows the spatial distribution of mean R-

values, computed for the period 1980-2006. In the study area R-values range from 915 to 

1300 MJ mm/ha h year, resulting in more aggressive rainfall erosivity in the north east 

sector of the study area. 

 

 
 

Figure 5.4. Study area Erosivity factor (R factor, MJ 
mm/ha h year).  
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5.2 Soil erodibility  

The erodibility factor (K factor, t m2 h ha-1 hJ-1 cm-1) was developed to quantify soil 

erodibility conditions. The first mathematical relationship to evaluate K-values was 

introduced by Wischmeier and Smith (1978).  

They described the K factor as following: 

 

( ) ( ) ( )[ ]
1317.0

100

35.2225.312101.2 14.14

×−+−+−×= psMOM
K     (17) 

 

where organic matter (OM), soil texture (M), classes of aggregate structure (s) and soil 

permeability (p) are the required data. 

 

Studies demonstrated that the calculation of the K factor using the described equation 

(Eq. 17) is reliable only for low aggregate and medium texture soils. Consequently, in 

order to overcome this drawback, Renard et al., (1997) developed a new relationship, that 

indicates grain size distribution in soil as the only parameter required to estimate soil 

erodibility. Following this hypothesis the K-value (t ha h/ha MJ mm) can be computed as:  
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where Dg is the mean geometric of diameters in soil particles size (mm), expressed by: 
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                (19) 

 

where n is the number of size classes in which the distribution curve has been divided, fi is 

the weight percentage of particles falling in the i-size class and mi, the arithmetic mean of 

the diameters corresponding to the limits of i-class. 

 

The simplification imported by Renard et al. (1997) (Eq. 18) is justified by considering the 

fact that the grain-size distribution influences the porosity, the aggregate formation, the 

organic matter content and permeability of the soil; Parameters included in the 
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Wischmeier and Smith equation (Eq. 17). Moreover, the use of the Renard equation 

(Eq.18) is recommended on small river basin scales, where the dynamics of erosion 

and/or deposition processes are strongly affected by soil texture and where detailed data 

sets are available (Bryan, 2000). 

 

Soil erodibility conditions in the San Giorgio river basin were investigated in order to 

describe the intrinsic characteristic of topsoil to contrast the rainfall and runoff erosive 

action. The necessity to explore erodibility characteristics comes from the lack of 

previously related works in the study area. By analysing several soil samples and applying 

the Renard et al. (1997) relation (Eq. 18), a map showing the spatial distribution of 

erodibility was constructed. 

 

 

5.2.1 Data collection  

Data related to texture characteristics of soils in the study area are necessary to assess 

the K factor. Consequently, the first step was to explore previous works conduced 

grouping the same Sicilian sector, where grains size distribution in soil is investigated.  

 

Montana et al. (2011), in a work related to the textural and mineralogical composition of 

clay substrates in the western part of Sicily, pointed out the strong relation between grain 

size of soil particles and outcropping lithology where soil development takes place. 

Results show how the Argille Varicolori samples, collected in Castellana Sicula (eastern 

sector of the study area), belong to silty-clay and silt-clay-loam textural classes. The 

Numidian Flysch Formation shows a silty-clay texture.The Terravecchia Formation, falling 

in silty-clay-loam, silty-clay and clay-loam textural classes.  

Cappadonia et al. (2011) sampled and analysed soils in the upper Imera Settentrionale 

river basin, relating the mineralogical and textural composition of topsoil to erosion 

process activities. Results show how on hillslope and on catchment scale, grain size 

distribution is mainly related to litology outcropping, topographic conditions, land use and 

intensity of runoff processes.  

 

The second step was to obtain texture information about soils in the San Giorgio river 

basin. A sampling design strategy was elaborated and a number of 72 soil samples were 

taken and analysed. 
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5.2.2 Soil sampling methodology      

The aim of developing a sampling strategy is to maximise the efficiency of the sampling 

scheme while ensuring that the variability within the sampling area is adequately 

characterised. To obtain that, the San Giorgio river basin was segmented into discrete 

entities (soil units), combining land use, lithology and landform layers (Fig. 5.5a).  

 
 

Figure 5.5. Soil sampling strategy. Four steps are described: Overlay of landforms, lithology and 
land use layers (a); segmentation in discrete soil units (b); quantification of the number of 
samples per soil unit (c), random selection of sampling points (d). 
 
 
 

The three selected layers were considered to be influencing the soil grain size distribution 

on catchment scale. The landform map expresses the influence of runoff, eroding and 

transporting sediments along the slopes and the possible translocation and redistribution 

of soil particles. Land use affects soil texture principally depending on vegetation type and 

tillage operations. Lithology outcropping influence on texture characteristics was 

described in the previous section. While for outcropping lithologies (Table 5.3) and land 

 

a b 

c d 
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use (Table 5.4), information was simply extracted from previous data, to obtain a map 

showing landforms, a tested methodology, described by Jenness (2006), was followed. 

Landform layer was created combining the grids of Topographic Position Index (TPI) and 

Slope.  

 

 

Outcropping lithology surface (m2) 

Clays and marls (Argille Varicolori) 7179996 

Clays and silts (Terravecchia Fm.) 1245690 

Coralline Biolitites 483903 

Sandstone (Terravecchia Fm.) 403974 
Conglomerates (Terravecchia Fm.) 132532 

 
Table 5.3 Outcropping lithologies in the San Giorgio River 
basin.  

 

 

Land cover surface (m2) 

Seminatives 7952097 

Permanent crops 864019 

Pastures 656074 

 
Table 5.4 Land cover categories in the San Giorgio River 
basin (simplified version of the land use map). 

 

 

The intersection generates a Slope-Position grid, classified into different landform 

categories. To create the TPI grid for each cell of the digital elevation model (resampled to 

cell size 5x5m), the difference between the elevation of a cell and the mean elevation of 

all the grid cells included in a moving circular window was estimated. Two different TPIs 

were constructed, setting a searching radius at 200 m and 500 m. After that, combining 

these two TPI grids (TPI200 and TPI500) with the Slope grid, a 10 class-landform 

classification regime was derived and a map constructed. The landscape of the San 

Giorgio river basin is represented by 8 landform categories (Table 5.5). 

The overlay of the three described layers, land use, outcropping lithology and landforms, 

subdivided the San Giorgio river basin into 59 units (named soil units, Fig. 5.5b). The units 

that cover a surface smaller than one hectare were not considered representative of 
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significant soil texture diversity and so their border dissolved to the closest patch. The final 

map contains 25 different soil units. 

 

 

Landform  Surface (m2) 

Open slopes 5774400 

Upper slopes, mesas 957200 

U-shaped valleys 727200 

Canyons, deeply incised streams 667600 

Mountain tops, high ridges 611200 

Midslope ridges, small hills in plains 363200 

Plains 238800 

Midslope drainages, shallow valleys 139200 

 
Table 5.5 Landform categories in the San Giorgio river basin. 

 

 

The next step was to set a total number of 72 samples, whose spatial location was 

identified by randomly selecting a defined number of points for each unit (Fig. 5.5d). The 

number of samples per soil unit, taken randomly, is proportional to the total surface 

described by each defined unit (Fig. 5.5c). Soil samples were collected exporting the 

20cm topsoil.  

  

 

5.2.3 Soil analysis and texture data     

The relative proportion of different grain sizes of mineral particles defines the texture in 

soils. The particle-size distribution was evaluated by separating the relative proportion of 

sand, silt and clay, in each of the 72 collected soil samples, using the USDA1 particle 

sizes classification. Samples were pre-treated in laboratory; they were dispersed in 

aqueous solution and soil aggregates were degraded by chemical (hydrogen peroxide) 

and mechanical (shearing action) instruments. The use of a chemical reagent was 

necessary being sampled soils characterized by high level of organic matter. 

Subsequently grains fraction bigger than 2 mm was separated using pore-size filters. 

Remaining sediment was analysed by the use of Laser Particle Size Analyzer (Fritsch 

                                                      
1 United States Department of Agriculture 



 
 

DATA COLLECTION 
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 
 

CHAPTER V 
 
 
 
 
 

 
 

49 

0

10

20

30

40

50

60

70

80

CLAY SILT SAND

%

Min

Max

Mean

Particle Sizer AUTOSIEB/A20). Soil particle-size analysis allowed evaluating the texture 

of sampled soils and the USDA-texture triangle was used to define the soil textural 

classes (Fig. 5.6).  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.6. Proportions of sand, silt and clay, in each of 72 collected soil samples (left) and USDA 
textural triangle used to represent the grain size distribution of the 72 soil samples (red points) 
(right). 

 

 

 

Results (Fig. 5.6) showed how soils in the study area mainly belong in silty-clay-loam, silt-

loam and silty-clay textural classes, according to previously works (Montana et al., 2011, 

Cappadonia et al., 2011). Only few samples deviate from the described textural classes 

distribution; they show highest content of sand (30%). By checking the location of this 

outliner samples, they belong to the sandstone level of the Terravecchia Formation, which 

obviously influences the sand content. 
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5.2.4 Soil erodibility map       

Soil texture results were utilized to compute the erodibility values (K-values) for each by 

the use of the Renald et al. (1997) relation (Eq. 11). K-values range from 0.032 to 0.062 t 

ha h/ha MJ mm (SI units) (Std. Deviation and mean value of 0.0036 and 0.048, 

respectively). Analysed soils can be considered high erodible on the basis that K-values 

normally range from 0.013 to 0.059 SI units (Renarld et al., 1997). Results are justified by 

the high silt and clay content in the study area soils.  

 

In the San Giorgio river basin a map of the Erodibility factor was generated (Fig. 5.7), by 

interpolating the punctual information using the Spline method. A spatial gradient 

associated with the topography and the outcropping lithology can be observed in Figure 

5.7; highest K-values are located in the upper slopes of the catchment while lower values 

resulted in the river outlet and in plain zones. 

 

 

 

 

 

Figure 5.7. Erodibility factor (K factor, t ha h/ha MJ mm) in the San Giorgio 
River basin.  
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5.3 Terrain attributes  

A digital elevation model (DEM) consists of a spatially registered set of elevation points 

that collectively describe a topographic surface. Studies demonstrated the direct 

dependence of topographic and hydrologic attributes on resolution and accuracy of the 

applied DEM (Jenson and Domingue, 1988; Claessens et al., 2005) and hence soil 

erosion models application results are indirectly linked to terrain model characteristics 

(Zhang and Montgomery, 1994, Zhang et al., 2009). Both, the grid scale and the original 

density of independent elevation points influence DEM resolution and the nature of 

artefacts incorporated in a DEM (Montgomery, 2003). Using a large scale DEM imposes 

basic limitations for simulating erosion processes; a fine-scale grid may include elements 

like roads, culverts and field boundaries that can modify the local topography and are 

useful for hydrological simulation and erosion processes modelling (Zevenbergen, 1987).  

 

In the present thesis a high resolution DEM was employed: A LiDAR DEM (2m grid size), 

produced for the entire Sicilian Region. The DEM was resampled to 5m grid size to 

reduce the number of analyzed cells and simplify the data processing. The elevation 

datasets were pre-processed with the Planchon and Darbox fill algorithm (Planchon and 

Darbox, 2001). This operation corrects and partially eliminates construction errors (Olaya 

and Conrad, 2008). Several topographic indices and two kinds of mapping units were 

selected to build up the erosion susceptibility models. 

 

5.3.1 Topographic indices 

To model the erosive power of runoff, in terms of potential discharge volume, flow velocity 

and transport capacity, different topographic indices were employed. The SAGA GIS 

(System for Automated Geoscientific Analyses) (Conrad, 2007) and the ArcView 2.3 

(ESRI) software were used to derive primary and secondary attributes from the DEM.  

A number of 14 topographic indices were used to predict soil erosion and mass wasting 

processes by means of the TreeNet method (Table 5.6 A). Primary attributes included: 

Elevation, Slope, Aspect, Analytical hillshading, Plan and Profile curvature, Curvature 

classification, Convergence index, Altitude above channel network, Catchment area. All 

these parameters describe hillslope morphometry and stream channel. Secondary 

attributes were also computed: Stream Power Index, Lenght-Slope factor (LS-factor), 

Topographic Wetness Index. 
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Topographic indices Method A B C 

Altitude above channel network Olaya & Conrad, 2008 x   

Analytical hillshading Olaya & Conrad, 2008 x   

Aspect Zevenberg & Thorn, 1987 x  x 

Catchment area Olaya & Conrad, 2008 x  x 

Convergence Index Köthe & Lehmeier, 1993 x   

Curvature Zevenberg & Thorn, 1987 x   

Curvature classification Dikau, 1989 x   

Elevation - x x  

LS factor  Moore and Wilson (1992) x x x 
Overland flow distances to channel 
network 

Olaya and Conrad, 2008  x  

Plan curvature Zevenberg and Thorn, 1987 x x x 

Profile curvature Zevenberg and Thorn, 1987 x x x 

Slope Zevenberg and Thorn, 1987 x x x 

Stream Power Index Beven and Kirby, 1993 x x  

Topographic Position Index Jenness, 2006  x  

Wetness index Beven and Kirby, 1993 x x  

 
Table 5.6 Topographic indices utilized for the three applied methodologies: the mass wasting 
and erosion prediction by means of the TreeNet method (A); the gully susceptibilities model 
construction using the logistic regression analysis (B); and the RUSLE/USPED models used to 
predict the impact of anthropogenic changes in erosion processes (C). 

 

 

In the gully erosion susceptibility model construction 9 topographic attributes were used 

(Table 5.6 B). Between these variables the topographic position index (TPI) was 

considered, representing the erosion/accumulation capacity of the terrain. It is expressed 

by the quantitative relation between the elevation of a cell and its surrounding cells; the 

topographic position index was computed for each cell by using the algorithm of Jenness 

(2006) and selecting a buffer of 100 m to identify the neighbouring cells.  

The potential effects of the river network system on gully erosion was investigated for grid 

cell units by calculating the flow distance to the river network; the latter attribute was 

computed by using the module of SAGA GIS (Olaya, 2004) “Overland flow distances to 

channel network” and selecting the algorithm “multiple flow direction”. 

Finally the topographic factor used for the prediction of soil loss changes due to man-

induced elements was expressed by the LS- factor (RUSLE topographic factor) and by 

combining the profile and the tangential curvature, upslope contributing area, slope and 

aspect grids (USPED topographic components) (Table 5.6 C). These topographic factors 

were derived from the 2 m grid size DEM, to underlie the impact of micro-morphological 

components on erosion/deposition processes. In this thesis, the LS factor has been 
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calculated using the approach of Moore and Wilson (1992) and Desmet and Govers 

(1996), as described in the following relation: 
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where Ar is the upslope contributing area (m) and b0 is the steepest slope angle (radians), 

a0 and b0 are constant equal respectively to 21.1 and 0.09. Coefficients m and n are 

constant, with values related to the predominant erosion process occurring in the study 

area. These parameters are set to m = 1.6 and n = 1.3 (Moore and Wilson, 1992; Foster, 

1994).  

 

 

5.3.2 Mapping units 

The selection of suitable mapping units is a necessary step in modeling the spatial 

occurrence of geomorphological processes and related landforms. Regular square cells 

represent the most popular method for partitioning the territory in modeling susceptibility 

to landslide and water erosion phenomena. According to CLUs partitioning criteria, the 

San Giorgio River basin was subdivided in 376,099 grid cells characterized by 5m side 

size, simply identified by rasterizing the basin (Fig. 5.8). 

 

 

 
 

Figure 5.8. Detail of the San Giorgio 
River basin subdivision in grid cell units 
(CLUs) 5m grid size. 
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Susceptibility analysis is also performed by adopting hydro-morphometric terrain units. In 

the present thesis, in addition to grid cell units (CLUs), a spatial partitioning of the study 

area by identifying terrain units of various size and shape, was performed.  

The basin was subdivided in spatial domains which boundaries coincide with fluvial 

streams and water divides (Fig. 5.9 a); these terrain units, known as slope units (SLUs; 

e.g. Van Den Eeckhaut et al., 2009, Rotigliano et al., 2011), are defined on the basis of 

morphodynamic and hydrological criteria. 353 SLUs, having an average extension of 

3.66ha, were semi-automatically derived by processing a Digital Elevation Model (DEM), 

with a ground resolution of 5 m (Fig. 5.9 b). Spatial analysis tools of ArcView GIS 3.2 

(ESRI, 1999) and ArcGIS 8.1 (ESRI, 2001) and other scripts freely available on the web 

(Basin, Amber, Point and Polyline Tools) were exploited to achieve this goal. 

 

 

 

 
Figure 5.9. San Giorgio River basin slope units (SLUs) (red boundaries).The surface 
extension is represented by a grey-color scale. A detail of the SLUs is shown (b). 
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5.4 Erosion landforms inventory  

The preparation of the inventory of the past landforms is a key step of all those 

susceptibility mapping techniques based on stochastic modeling and in this thesis was 

used to build up the prediction models and to validate their accuracy. 

 

In the San Giorgio river basin, used as training and test area, four classes, containing 

specific triggering and controlling factors, are represented: mass wasting (shallow 

landsliding), bank erosion, gully erosion and sheet-interrill erosion.  

The presence of these types of erosion processes was identified by means of: i) aerial 

photographs interpretation (two time-series data: 02.09.2007 and 10.03.2000) and 

landforms classification (Hochschild, 2003); ii) detailed field-work to check the mapped 

landforms and to characterize their morphometry by using a Global Positioning System 

(GPS) (Casali et al., 2006); iii) remote sensing and Geographic Information Systems (GIS) 

data integration (Campbell, 2002). 

 

Evidences of sheet and rill erosion were difficult to identify from aerial photographs and 

their ephemeral nature does not always allow their field verification. Rill and sheet erosion 

were grouped as spatial, superficial erosion landforms and mapped as polygons. They 

produce a diffuse top soil loss and can be recognised by the presence of sparsely 

vegetated area and changes in soil colour (Fig. 5.10).  

 

 
Figure 5.10. Sheet and rill erosion features detecting in aerial photos (10. 03.2000) (a) and 
checked in situ (14.05.2010) (b).  
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In the study area, a problem in collecting rill erosion features was the presence of cattle 

paths in disarrangement with rill landforms. Actually, the presence of cattle paths can 

trigger rills formation, but the relation is not absolute and in many cases does not 

represent a preferential water flow path. To correctly map sheet and rill erosion it is strictly 

necessary to combine remote sensing mapping with field checks. 

 

260 linear erosion landforms classifiable as ephemeral and permanent gullies were 

mapped. To better recognise gullies, contour lines were derived from the DEM and 

overlaid on the aerial photographs (Fig. 5.11). In the San Giorgio river basin gullies can be 

classified as bank and hillslope gullies, characterised by V-shaped cross-sections.  

 

 

 
Figure 5.11. Gullies detection by aerial images interpretation (10.03.2000) supported by the 
visualization of contour lines (2 m distance). 

 

 

Morphometric measurements of gullies allowed better definition of processes generating 

these features. The maximum measured gully cross section depth data was about 2.5 m, 

while the gullies-length ranges from a few to 550 meters. Larger gullies signify 

depositional areas and are mostly characterized by medium-fine material (Fig. 5.12). 

Plunge-pools characterize the longitudinal morphology of permanent gullies while the gully 

head-cut retreat is often accompanied by lateral wall collapse.  
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Figure 5.12. Accumulation area for sediments eroded and 
transported by gully erosion in the San Giorgio basin 
(12.05.2011).  

 

 

The mapped mass wasting processes are mainly represented by debris flow and earth 

slides. These shallow landslides types involve the upper part of the soil or substrate and 

deliver a high amount of sediments into the river network (Fig. 5.13 and Fig. 5.14). It was 

possible to identify 446 landslides, by means of aerial and satellite images. 

 

 
Figure 5.13. Debris flow process, acting in the western sector of the San Giorgio river 
basin, mapped from aerial photographs (02.09.2007) (a) and checked in field 
(10.04.2011) (b). 

a b 
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Figure 5.14. Landslides located in the upper part of the San 
Giorgio River basin (10.04.2011). 

 

River bank erosion is the direct removal of banks and beds by flowing water. Typically, it 

occurs during periods of high stream flow action. Field work was carried out in July 2010 

to map the thalweg by the use of a DGPS (Differential GPS, 2 cm resolution). Field data 

(Fig. 5.15 a) were integrated to the river network datasets, automatically extracted by the 

DEM (Fig. 5.15 b).  

 

 

Figure 5.15. The GPS points, collected in July 2010, used to map the thalweg of the river San 
Giorgio (a). Collected points overlapped to the river network, extracted by the DEM (b). 

 

 

The fluvial system was used as a base instrument to map and recognize bank-erosion in 

situ. Moreover, in order to allow a better characterization of bank-erosion processes 

(principally verified by wall collapse and breakdown), the mapping operation was carried 

out by comparing the two time-series data of aerial photographs (2000 and 2007) (Fig. 

b a 
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5.16). Results allowed the accurate mapping of stream-bank erosion process taking place 

in the San Giorgio catchment. Bank erosion process is diffuse in the widespread area of 

the San Giorgio river network, as a consequence of the high erodibility of the clayey soils 

(Fig. 5.17). 

 

  
Figure 5.16. Bank erosion feature detection in two time-series data of aerial photographs: 
2007 (02.09.2007) (a) and 2000 (10.03.2000) (b). 

 
 

 

Figure 5.17. Bank erosion causing river walls collapse 
(12.05.2011). 

 

The collected data (Table 5.7) is shown in a map illustrating the spatial distribution of 

mass wasting and erosion processes in the San Giorgio river basin (Fig. 5.18). 
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Figure 5.18. Erosion and mass wasting landforms in the San Giorgio River basin. 

 

Landform   

Rill-interrill erosion  0.63 km2  

Gullies 260  

Landslides 446  

Bank erosion 0.3 km2  

 
Table 5.7 Number of erosion and mass wasting 
detected features (gullies and landslides) or 
affected surface (sheet, rill and bank erosion).  
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6.1 Modeling approach 

In this application, among existing methods, the one proposed by Märker et al. (1999) was 

chosen to model erosion and mass wasting processes, and to reach the first objective of 

the thesis. The applied approach subdivided the studied area in Erosion Response Units 

(ERU; Märker et al., 2011). ERUs are distributed three-dimensional terrain units, which 

have homogeneous erosion process dynamics controlled by their physiographic 

properties and the management of their natural and human environment (Märker et al., 

1999).  

The TreeNet method (Salford Systems implementation, cf. Friedman, 1999) was proposed 

to classify ERUs and to analyze the functional relationship between the spatial distribution 

of erosion landforms and driving/predictor factors.  

 

The San Giorgio River basin was selected to implement the erosion and mass wasting 

susceptibility model and to export results in the entire study area. 

Layers (raster and vector) representing the spatial distribution of several predictor 

variables and describing different erosion and mass wasting processes were combined to 

delineate spatially homogeneous erosion process entities, ERUs (Märker, 2002; Flügel et 

al., 2003; Sidorchuk et al., 2003) (Fig. 6.1). An aggregated data matrix, where each row 

corresponds to an individual case while columnar data shows the dependent and 

independent variables, was constructed and used as input for the TreeNet model. 

 

The San Giorgio River basin was selected to implement the erosion and mass wasting 

susceptibility model and to export results in the entire study area. 

The procedure consists of the following steps: i) random selection of 50% of San Giorgio 

basin dataset (N= 191761); ii) random partition of the selected subset into a train (60% of 

N; Ntrain = 116508) and a test fraction (40% of N; Ntest = 75253); iii) running and validating 

the TreeNet model for the Ntrain sets; iv) application of the model to the entire study area, 

in order to get information of the spatial distribution of the ERUs. 
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Figure 6.1. Flow-chart illustrating the procedure used to construct the erosion susceptibility map. 
 

 

 

6.2 Model components  

To analyze the functional relationship between spatial data sets of driving factors and 

response variables, data related to the model components needed to be collected. In 

particular, data regards dependent and independent variables. The water erosion driven 

features were assumed as the dependent response variables in the model application, 

since erosion landforms are the evidence of the action of soil erosion processes.  

Different topographic and environmental raster layers were prepared to represent the 

spatial distribution of those factors which were supposed to control soil erosion and mass 

wasting processes. To model the spatial occurrence of geomorphological processes and 

related landforms the grid cell units (CLUs, 5m side size) partition criteria was used.  
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6.2.1 Response variable 

Four geomorphologic conditions were defined to group the mapped units into five different 

classes, expressing the type of erosion process. Each one having specific triggering and 

controlling factors: i) mass wasting (shallow landsliding); ii) bank erosion; iii) gully erosion; 

iv) sheet and rill erosion. “No-erosion” class was attributed to those areas not hosting any 

evidence of active or inactive erosion processes. Table 6.1 shows the number of cases 

and relative frequency of each soil erosion class. 

 

 

Response variable  N % 

gully erosion 10830 2.9 
bank erosion 15676 4.1 
sheet-rill erosion 25572 6.7 
mass wasting 26905 7.1 
no erosion 300789 79.2 

 
Table 6.1 Response variables. N represents 
the number of cases for each type of 
response. 
 

 

 

6.2.2 Predictors parameters 

To model and predict the soil erosion process 17 independent parameters, reflecting 

topographic and environmental driving factors, were used.  

Outcropping lithology (Table 6.2) and land use (Table 6.3) data were used as predictor 

variable expressing soil erodibility and cover management role in soil erosion and mass 

wasting processes development.  

14 are the terrain attributes chosen to quantify the role played by topography in 

redistributing water in the land surface and in modifying the amount of annual solar 

radiation received by soils (Table 6.4).  
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Outcropping lithology  

Clay substrates (Terravecchia; Argille Varicolori) 

Coralline biolitites; Conglomerates; Marly limestones; Biocalcarenites 

Evaporitic deposits; Trubi chalks 

 
Table 6.2 Predictor variables: Outcropping lithologies (grouped).  

 
 
 

Land use  

Seminatives  

Fruit trees  

Pastures 

Olive groves 

Stream courses 

Artificial areas 

Sclerophyllous vegetation 

Vineyards 

Agro-forestry areas 

Artificial lakes 

 
Table 6.3 Predictor variables: 
Land use categories. 

 

 

Topographic indices Interval Std. dev. 

Altitude above channel network 0 / 43 m 14 

Analytical hillshading 5.7 / 103 22.9 

Aspect 0 / 360° 103 

Catchment area 25 / 1196320 m2 584 

Convergence Index -23.4 / 23.5 11.7 

Curvature -0.079 / 0.079 0.040 

Curvature classification 0 / 8 - 

Elevation 482 / 961 m 120 

LS factor  0 / 73.21 26.74 

Plan curvature -0.040 / 0.040 0.02 

Profile curvature -0.053 / 0.053 0.027 

Slope 0° / 51.2° 5.37 

Stream Power Index 0.025 / 10489223 49913 

Wetness index 4.3 / 11.5 1.8 

 
Table 6.4 Predictor variables: Topographic indices, interval value and 
standard deviation. 



 
 

PREDICTION OF MASS WASTING AND EROSION PROCESSES 
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 
 

CHAPTER VI 
 
 
 
 
 

 
 

66 

6.3 Results 

       

6.3.1 Model performance evaluation 

The evaluation of the classification performance was based on the count of the numbers 

of ERUs correctly and incorrectly predicted by the TreeNet model, both in test and training 

datasets. These counts were tabulated in a confusion matrix (Table 6.5), to represent the 

distribution of predicted and observed ERUs within each class. 

 

 
Observed class (%) 

 

 

 gully erosion 
mass 

wasting 
sheet rill 
erosion 

river  
erosion 

no 
erosion FP cases 

gully 
erosion 

59.6 (61.3) 17.7 (16.9) 7 (4) 26 (19.3) 10.5 (9.6) 8301 
(11849) 

mass 
wasting 

17.1 (19.7) 53.5 (60.5) 23.8 (24.5) 7.7 (10.3) 34.8 (43.1) 22737 
(41478) 

sheet-rill 
erosion 

3.1 (2.5) 12.9 (10.4) 42.2 (64.5) 0.5 (1.3) 16 (18.3) 10319 
(17879) 

bank 
erosion 

13.7 (13) 5 (4.9) 1.7 (2.3) 64.5 (67.8) 3.5 (4.2) 2700 
(5038) 

no  
erosion 

6.5 (3.4) 10.9 (7.3) 25.2 (4.6) 1.3 (1.4) 35.2 (24.8) 2006 
(1355) 

 
observed 

cases 

 
2153  

(3787) 

 
4812 

(12113) 

 
5160 

(5918) 

 
3128 

(4579) 

 
60000 

(90111) 

    
   

   
   

   
P

re
di

ct
ed

 c
la

ss
 (

%
) 

FN 
cases 

870  
(1460) 

2237 (4790) 2980 
(2099) 

1111 
(1475) 

38865 
(67768) 

 

 
Table 6.5 Confusion matrix for test and training (in brackets) data sets. Bold fonts 
represent the accuracy value (%) for each erosion class. 

 

 

 

In the confusion matrix (Table 6.5) the diagonal elements represent the proportion of 

positive cases correctly predicted for each class (corresponding to the sensitivity of the 

model). The no-erosion class reaches a low efficiency, with value of 35.2% and 24.8% for 

test and training data, respectively. The results are in accordance to a previous work 

conducted in the Chianti area (Italy), using the TreeNet and RandomForest models 

(Märker et al., 2011). The no-erosion cases in fact, are the one showing the poorest 

results in the model performance evaluation. The highest percentages of true positive 
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cases, both for training and test data, correspond to gully (61.3% and 59.6%, respectively) 

and bank erosion (67.8% and 64.5%, respectively) response classes. Mass wasting and 

sheet-rill erosion classes have low sensitivity for the test data, corresponding to 53.5% 

and 42.2% respectively, while more accurate performances were obtained for the training 

set (60.5% and 64.5%).  

Off-diagonal elements represent the percentage of ERUs that have been misclassified: 

Moving along a row or a column false negative (FN) and false positive (FP) cases can be 

observed. Table 6.5 shows that within the test dataset 34.8% (43.1% for the training data) 

of the ERUs predicted as mass wasting belongs to the no-erosion class. This 

misclassification can be justified considering that false negative counts also represent 

areas that have not yet developed the predicted phenomenon but prone to experiencing it 

in the future (Begueria, 2006). On the other hand 25.2% of the test ERUs classified as no-

erosion belongs to sheet-rill erosion class (FN); this may be due to the ephemeral nature 

of this type of erosion, which can cause ambiguity in the detection and mapping phases 

(particularly considering the seasonal variability of its nature). 

 

Furthermore, to measure the performance of the model, six statistical indices were 

derived (Table 6.6).  

 

 

  
gully erosion mass 

wasting 
sheet-rill 
erosion 

bank  
erosion 

no  
erosion average value 

Ac (0.89) 0.88 (0.60) 0.67 (0.83) 0.82 (0.94) 0.95 (0.41) 0.46 (0.73) 0.76 

Sn (0.61) 0.60 (0.60) 0.54 (0.65) 0.42 (0.68) 0.64 (0.25) 0.35 (0.56) 0.51 

Sp (0.89) 0.89 (0.60) 0.68 (0.84) 0.85 (0.95) 0.96 (0.95) 0.87 (0.85) 0.85 

FPR (0.11) 0.11 (0.40) 0.32 (0.16) 0.15 (0.05) 0.04 (0.05) 0.13 (0.15) 0.15 

FNR (0.98) 0.98 (0.90) 0.95 (0.96) 0.96 (0.97) 0.97 (0.53) 0.39 (0.87) 0.85 

AUC (0.86) 0.84 (0.66) 0.66 (0.85) 0.69 (0.92) 0.92 (0.55) 0.50 (0.77) 0.72 

 

Table 6.6 Overall Accuracy (Ac), Sensitivity (Sn), Specificity (Sp), False Positive Rate (FPR), 
False Negative Rate (FNR) and Area Under the ROC Curve (AUC), for training (in bracket) and 
test data. 

 

 

All the statistical indices reflect a high performance of the model for gully erosion, mass 

wasting, sheet-rill erosion and bank erosion classes. For these erosion classes in fact, 
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overall accuracy, sensitivity and specificity values show that the model is able to 

discriminate between different erosion processes and to correctly detect negative cases. 

A different trend is clearly observed for the no-erosion category. For this class the model 

outcome for test data shows accuracy, sensitivity and specificity equal to 0.46, 0.35 and 

0.87 respectively. This conflicting results highlight that the model is able to discriminate 

the ERUs for the four analyzed erosion classes, but has not the same ability to recognize 

environmental and topographic of conditions that characterize the not eroded ERUs.  

In general, the TreeNet model underestimates the ERU counts belonging to no-erosion 

class and overestimate the others classes. These observations are confirmed by high 

false negative ratio (FNR) and low false positive ratio (FPR) values.  

 

In order to estimate the overall prediction skill of the model the Receiver Operating 

Characteristics (ROC) curves (Fig. 6.2) were used. The AUC for test data set (blue) 

illustrates an outstanding performance of the TreeNet model for bank erosion prediction 

(0.92) and an excellent one for gully erosion (0.84). Sheet-rill erosion AUC values attest 

for acceptable performance of the model for test data set (0.7) while for training (pink) the 

result is excellent (0.85).  

As expected, the lowest prediction is associated to the no-erosion class (AUC of 0.55 for 

training and 0.5 for test) and to mass wasting (AUC of 0.66 for training and test), with AUC 

values reflecting a poor performance of the model (Hosmer and Lemeshow, 2000). The 

average value of the AUC for all the erosion process (Fig. 8.2) indicates an acceptable 

performance of the model both for training and test data (0.77 and 0.72 respectively). 
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Figure 6.2. ROC curves for each erosion class for learning (blue) and test (pink) data set. 
 

 

 

 

6.3.2 Influence of independent parameters on soil erosion and mass wasting 

processes 

The purpose of using the decision tree is both to achieve a concise and perspicuous 

representation of the relationship between dependent and independent variables, and to 

exploit the importance (influence) of the predictor variables considered in the model.  

For a single parameter a measure of its influence can be obtained by counting the number 

of times the it is selected for splitting, weighted by the squared improvement of the model 

as a result of each split and averaged over all trees (Friedman et al., 2002). 
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Figure 6.3 shows the overall variable importance of single predictors, where the relative 

influence of each variable is scaled so that the sum adds to 100, with higher numbers 

indicating stronger influence on the response. It is clearly highlighted that different process 

are governed by different combinations of variables. This fact helps to discriminate the 

membership of each ERUs to a determinate erosion class. 

 

 

0

20

40

60

80

100

Altit
ud

e 
ab

ov
e 

ch
an

ne
l

Ana
lyt

ica
l H

ills
ha

din
g

Asp
ec

t

Catc
hm

en
t a

re
a

Con
ve

rg
en

ce
 In

de
x

Elev
ati

on

Gre
y v

alu
e

La
nd

 us
e

LS
 fa

cto
r

Plan
 C

ur
va

tur
e

Slop
e

Stre
am

 P
ow

er
 In

de
x

W
etn

es
s I

nd
ex

va
ri

ab
le

 im
p

o
rt

an
ce

 %

Gully erosion

Mass wasting

Sheet erosion

River erosion

No erosion

average

 
 

Figure 6.3. Variable importance (%) for predictive variables. 
 

 

 

According to a work conducted in the Chianti area (Märker et at., 2011) and using the 

TreeNet model to predict erosion processes, erosion susceptibility is mainly linked to 

topographic factors. Stream power index, catchment area, elevation, altitude above the 

channel network and convergence index have an important role in the model prediction. 

These variables indicate a strong influence of surface runoff characteristics, triggered by 

the sub-basin dimension and channel network morphology.  

Curvature, profile curvature and curvature classification have any influence in the ERUs 

classification. The low topographic control of the these predictor variables in the erosion 

prediction could be explained by the fact that these factors are directly associated with 

convergence index and plan curvature, which are already part of the model and are 
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sufficient to explain the spatial distribution of the target variables. Lithology´s influence in 

the ERUs classification can be neglected, since 94.4% of the study area is characterized 

by clay substrates (Argille Varicolori and Formazione Terravecchia). Thus, the variable 

can be considered as homogeneous for large parts of the study area.  

 

Moreover having information about the variable importance, a better understanding of the 

environmental conditions responsible for a specific process can be made. Bank erosion is 

mainly influenced by the catchment area, since it is one of the parameters describing the 

amount of water available for a certain area and thus, triggering directly channel runoff 

that may erode the river banks.  

 

The results obtained for gully erosion driving factors are of interest too. Convergence 

index, stream power index and catchment area are the most important parameters; these 

results are fully in accordance with previously studies regarding erosion prediction in 

Sicily. Capra and Scicolone (2002) demonstrate the strong influence of convergence 

index, stream power index and catchment area in gullies developing. A geostatistical 

approach applied in northern Sicily yield similar results, showing that linear erosion 

process susceptibility is mainly controlled by LS-factor, stream power index and 

topographic transverse profile (Conoscenti et al., 2008a). 

Grey-value as predictor showed a very high importance (70.7%) for sheet-rill erosion 

susceptibility mapping. This process causes loss of minerals and organic matter in the 

topsoil, resulting in a different coloration in respect the no eroded one. 

 

 

6.3.3 Soil erosion susceptibility map  

The results, obtain by the TreeNet model, were exploited to regionalize the information in 

areas characterized by similar geo-environmental conditions. Consequently, all the driving 

factors considered in the ERUs classification were collected for the entire area. The 

dominant parameter combinations, represented by the tree structure, are now used to 

attribute specific erosion processes to areas characterized by a certain parameter 

combinations.  
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The scoring process of the entire data set of the entire study area allowed producing a 

map illustrating the spatially distributed erosion potential for each process (Fig. 6.4).  

 

 

 
 

 
Figure 6.4. Soil erosion susceptibility map of the entire study area (a); detail view in the model build 
up area, the San Giorgio River basin (b). 
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GULLY EROSION SUSCEPTIBILITY ASSESSMENT 
BY MEANS OF GIS-BASED LOGISTIC 
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7.1 Modeling approach 

In order to achieve the spatial variability of gully erosion susceptibility the logistic 

regression analysis was carried out to obtain probability values of gully occurrence on two 

different types of mapping units: grid cells (CLUs) and slope units (SLUs). The San 

Giorgio River basin was used to train and test the susceptibility models. The logistic 

regression analysis was performed by means of the open source software TANAGRA 

(Rakotomalala, 2005), adopting a forward stepwise strategy to select the explanatory 

variables.  

 

The first stage was the production in ArcGIS of a data matrix, where each row 

corresponds to an individual case (i.e. a single grid cell or slope unit), while columnar data 

show the values of the explanatory and response variables. Since in multivariate statistical 

analysis it is desired that predictor variables share the same scale (Nefeslioglu et al., 

2008) and have the same range as the dependent variable (Ripley, 1996), the selected 

environmental parameters were scaled between 0 and 1. 

Despite the relatively large number (260) of ephemeral and permanent gullies that were 

recognized in the studied area, only 2.38% of the cell units hosts a gully; as a 

consequence, the 8,949 grid cells mapped as “positive” provide a quite low ratio of gully 

presence (1) / gully absence (0), when compared to the total number (376,099) of cells 

covering the area. Since a balanced subdivision of positive and negative cases (i.e. ratio 

equal to 1) in the training dataset used to prepare a multivariate statistical model is 

generally recommended (Süzen and Doyuran, 2004; Nefeslioglu et al., 2008; Van Den 

Eeckhaut et al., 2009; Bai et al., 2010; Frattini et al., 2010), logistic regression analyses 

were performed by selecting groups of training cells, balanced in terms of positive and 

negative cases. An equal distribution of presence and absence of gullies was also used 

as criterion for picking up training subsets of slope units, even if, in this case, the 

presence/absence ratio from the entire basin is not so far from 1 (158/195).  

 

Since the acceptance of a predictive model requires the evaluation of its robustness to 

small changes of the input data (i.e. data sensitivity), gully erosion susceptibility models 

were prepared on 3 different samples of terrain units for both the types of spatial domains 

considered (cell and slope units). 

The learning subsets of cell units were collected according to the following two steps: i) 

selection of three first samples ([A], [B], [C]) of 17,898 cells, each given by all the positive 
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cases in addition to the same number of negative cases (8,949 cells). The latter was 

randomly collected, maintaining a minimum distance of 25 m between each other and 

from positive pixels, in order to reduce the effects of spatial auto-correlation; ii) random 

selection of 14,318 cells (80% of the first sample), equally distributed between positive 

and negative cases. The cells not selected in the second step (3,580 for each of the first 

samples) were used to test the accuracy of the models.  

 

The adopted strategy provided three training samples ([Acal], [Bcal], [Ccal]) and three test 

samples ([Aval], [Bval], [Cval]). By applying a stratified random selection strategy, imposing 

50% of positive cases within the subset, the 353 slope units were split into three 

calibration ([Dcal], [Ecal], [Fcal]) and three validation datasets ([Dval], [Eval], [Fval]), made up of 

176 and 177 SLUs, respectively; since slope units can be considered as individual cases, 

morphodinamically independent (Rotigliano et al., 2011), the three training samples were 

collected without any spatial constraint. Finally, further logistic regression analysis were 

carried out to generate, for the entire study area, two gully erosion susceptibility maps, 

defined a grid cell and slope unit scale. 

 

Validation procedures were finally adopted to evaluate the quality (i.e. reliability, 

robustness, degree of fitting and prediction skill) of susceptibility models. The accuracy of 

logistic regression in modeling susceptibility of the study area to gully erosion phenomena 

was evaluated by drawing, for each model, the Receiver Operating Characteristic (ROC) 

curves and by computing the values of the Area Under the ROC Curve. ROC curves were 

drawn both for the validation (test) and calibration (training) datasets, in order to evaluate 

predictive performances of the models and to further investigate their fit to the training 

observations; moreover, the difference between apparent accuracy (on training data) and 

validated accuracy (on test data) indicates the amount of overfitting (Märker et al., 2011). 

 

 

7.2 Dependent and independent variables 

 

7.2.1 Gully landforms 

The gully landforms inventory, containing 260 linear erosion landforms classifiable as 

ephemeral or permanent gullies, was used to build up the model. The spatial distribution 

of gullies was coded as presence or absence of landforms in a mapping unit, and this 
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binary information was picked up as the dependent response variable for the statistical 

analysis.  

 

 

7.2.2 Controlling factors 

The grid cells and the slope units covering the study area were assigned with the values 

of a set of environmental parameters, in addition to the binary response (i.e. presence or 

absence of a gully) of the dependent variable. The explanatory variables were selected in 

order to reproduce the erodibility of outcropping materials, the erosivity of overland flow, 

the influence on erosion processes of topographic position and the effects of the river and 

road networks.  

 

The dataset of the predictor variables consists of 24 attributes defined both for cell and 

slope units, 1 computed only for grid cells and other 2 calculated only for slope units 

(Table 7.1). For the cell units, the values of the attributes were derived directly from the 

raster layers that were generated for each of the factors; for the slope units, the 

environmental parameters were calculated by applying zonal statistics to the cells falling 

inside each terrain domain (Fig. 7.1). 

 

 
Figure 7.1. GIS layer of Flow Distance to River network (FDR), defined 
on the scale of cell units (left) and slope units (right). 
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Indipendent variables Cell Units (CLU) Slope Units (SLU) 

Categorical variables   Attribute values Attribute values 

clay LTL_clay binary response [0,1] class relative frequency 

conglomerate LTL_cong binary response [0,1] class relative frequency 

gypsum LTL_gyps binary response [0,1] class relative frequency 
Bedrock lithology 

sandstone LTL_sand binary response [0,1] class relative frequency 

arable lands USE_arab binary response [0,1] class relative frequency 
permanent 
crops USE_crop binary response [0,1] class relative frequency Land use  

pastures USE_past binary response [0,1] class relative frequency 

North ASP_N binary response [0,1] class relative frequency 

North-East ASP_NE binary response [0,1] class relative frequency 

East ASP_E binary response [0,1] class relative frequency 

South-East ASP_SE binary response [0,1] class relative frequency 

South ASP_S binary response [0,1] class relative frequency 

South-West ASP_SW binary response [0,1] class relative frequency 

West ASP_W binary response [0,1] class relative frequency 

Slope aspect 

North-West ASP_NW binary response [0,1] class relative frequency 

Continuos variables   Attribute values Attribute values 

Elevation  ELE  cell value SLU mean value 

Elevation range ELR / range within the SLU 

Slope angle  STP  cell value SLU mean value 

Plan curvature PLC  cell value SLU mean value 

Profile curvature PRC  cell value SLU mean value 

Stream Power Index SPI  cell value SLU mean value 

Topographic Wetness Index TWI  cell value SLU mean value 

Length-Slope Factor LSF  cell value SLU mean value 

Topographic Position Index TPI  cell value SLU mean value 

Distance From Roads DFR cell value / 

Road Network Length RNL / total road lengths in the SLU 

Flow Distance to River network FDR cell value SLU maximum value 

 
Table 7.1 Independent explanatory variables and method adopted for their calculation. 
 
 

The effects of terrain erodibility conditions on distribution of erosion phenomena were 

explored by analyzing the spatial pattern of bedrock lithology, land use and slope aspect; 

while the first two attributes are widely recognized as having a direct control on water 

erosion, slope aspect could have a potential indirect effect, given its relation with 
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vegetation distribution and geo-structural conditions. The compass direction of slope 

values was reclassified in 8 categorical intervals. 

For the statistical analysis, an explanatory variable was derived from each of the classes 

of lithology, land use and aspect; for cell units, these variables were defined by binary 

values (i.e. 1 for cells where the class occurs, 0 for cells where it doesn’t), while the 

relative frequency of each class computed within the SLU was assigned to the slope units. 

 
The erosive power of runoff, in terms of potential discharge volume, flow velocity and 

transport capacity, was modeled by means of 8 topographic attributes (see chapter 5). 

The potential effects on gully erosion distribution of road were investigated for grid cell 

units, by calculating the distance from the closest road segment. The total length of roads, 

calculated within each slope unit, was also considered as explanatory variables for 

presence or absence of gullies.  

 
 

 

7.3 Results 

By performing logistic regression analysis on the learning datasets, three gully erosion 

susceptibility models were obtained for each of the mapping unit types. The models fitting 

to the observed data was evaluated by computing, in addition to the statistic -2LL, the 

values of Cox and Snell and Nagelkerke R2; the smaller the negative log-likelihood the 

better the fit of the model, while the pseudo-R2 statistics grow with the “goodness of fit”. 

The logistic regression component of the software TANAGRA provides also the results of 

the model chi-square test, which allows for assessing the global significance of the 

regression coefficients; the significance was evaluated also individually for each 

independent variable incorporated in the model by means of the Wald test.  

 

 

7.3.1 Cell units models 

The fit of the regression models with data observed from the training subsets of cells 

([Acal], [Bcal], [Ccal]) is quantitatively evaluated by the -2LL and pseudo-R2 statistics, while 

model chi-square test shows the global significance of the regression coefficients.  

The values of these parameters indicate a statistical significant fit of all the CLUs models 

with their training area (Table 7.2); moreover, since results are quite similar for the three 



          
 

GULLY EOSION SUSCEPTIBILITY 
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 
 

CHAPTER VII 
 
 
 
 
 

 
 

79 

subsets of grid cells, the modeling approach demonstrated to be quite robust when 

changes of the learning dataset occur. 

 

 

-2LL Model Chi² test (LR) R²-like 
Samples 

Intercept Model Chi-2 d.f. P(>Chi-2) 
Cox and 
Snell's R² 

Nagelkerke's 
R² 

[Acal] 19849.0 14657.0 5192.0 15 0.0000 0.3041 0.4055 

[Bcal] 19849.0 14683.3 5165.7 15 0.0000 0.3029 0.4038 

[Ccal] 19849.0 14842.8 5006.1 15 0.0000 0.2951 0.3934 

 
Table 7.2 Results of -2LL, Model Chi2 test and R2-like statistics computed for the regression 
models calibrated on the learning samples of grid cells. 

 

 

 

Data reported in Table 7.3 show the statistical significance of the individual predictors that 

entered the three regression models. The forward stepwise process, which was applied by 

setting a minimum probability of 0.01 for variable selection at each step, picked 15 

attributes in all the three learning environments.  

 

Among the 25 analyzed physical attributes, 18 entered at least one of the regression 

models, 3 were incorporated in two models and 12 were selected for the three models; the 

latter 12 consist of all the continuous topographic attributes, with the exception of 

elevation, in addition to clay, south and north-east slope aspect. The Wald test addresses 

plan curvature and stream power index as the most significant independent variables for 

the three samples, followed by clay and profile curvature that are always above 100; sign 

and magnitude of β coefficients indicate concave (negative curvature) portions of slopes, 

characterized by high erosive power of runoff (high SPI values) and by the outcropping of 

clays, as the sectors more frequently affected by gully erosion processes. 

The discrimination ability of the logistic regression models is resumed by the 

classification matrix of Table 7.4 where, both for training and test areas, observed positive 

and negative cells, predicted true/false positive and negative cases are reported together 

with the results of percent correct (Frattini et al., 2010; Märker et al., 2011). 
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Sample [A] Sample [B] Sample [C] 
Indipendent variables β 

coeff. 
Wald 
test  

Signif. 
β 
coeff. 

Wald 
test  

Signif. β coeff. 
Wald 
test  

Signif. 

clay LTL_clay 1.3141 147.70 0.0000 1.2897 145.42 0.0000 1.1846 129.37 0.0000 

conglomerate LTL_cong / / / / / / / / / 

gypsum LTL_gyps / / / / / / / / / 

sandstone LTL_sand / / / / / / / / / 

arable lands USE_arab / / / 0.2368 15.70 0.0001 / / / 

permanent 
crops 

USE_crop -0.3084 16.99 0.0000 / / / -0.4213 31.26 0.0000 

pastures USE_past / / / / / / / / / 

aspect N ASP_N / / / 0.3186 18.80 0.0000 0.2897 15.46 0.0001 

aspect NE ASP_NE 0.4938 77.64 0.0000 0.7038 149.10 0.0000 0.6866 141.93 0.0000 

aspect E ASP_E / / / 0.3317 25.24 0.0000 0.2071 10.04 0.0015 

aspect SE ASP_SE -0.2513 14.42 0.0001 / / / / / / 

aspect S ASP_S -0.5180 83.19 0.0000 -0.2911 25.28 0.0000 -0.4054 49.64 0.0000 

aspect SW ASP_SW / / / / / / / / / 

aspect W ASP_W -0.2997 10.59 0.0011 / / / / / / 

aspect NW ASP_NW / / / / / / / / / 

elevation ELE / / / / / / / / / 

slope angle STP -5.9556 94.51 0.0000 -5.4354 78.49 0.0000 -5.8642 94.17 0.0000 

plan 
curvature 

PLC -10.6405 864.07 0.0000 -10.6499 846.98 0.0000 -10.3383 824.29 0.0000 

profile 
curvature 

PRC -8.0140 130.57 0.0000 -8.4493 141.04 0.0000 -8.0181 129.76 0.0000 

stream power 
index 

SPI 10.8110 792.11 0.0000 10.2455 652.13 0.0000 10.7386 698.14 0.0000 

top. wetness 
Index 

TWI -9.6810 111.05 0.0000 -8.8070 91.87 0.0000 -10.1823 126.99 0.0000 

LS Factor LSF -33.4370 110.47 0.0000 -28.6700 65.92 0.0000 -31.5047 76.75 0.0000 

top. position 
index 

TPI -1.8449 97.32 0.0000 -1.7730 89.61 0.0000 -1.8125 94.04 0.0000 

dist. from 
roads 

DFR 0.6482 34.11 0.0000 0.5599 26.06 0.0000 0.7023 41.24 0.0000 

flow dist. to 
river 

FDR -0.5737 14.64 0.0001 -0.6769 20.27 0.0000 -0.5181 11.99 0.0005 

 
Table 7.3 β coefficients, Walt test values and their significance computed for the individual 
predictors that entered the three regression models trained on grid cells. 
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    Observed cases     Predicted cases 

   Percent correct Positive Negative 
Sample 

         

Positive (7159) 1790 (73.4) 72.4 (5254) 1296 (1905) 494 

Negative (7159) 1790 (77.7) 78.2 (1596) 391 (5563) 1399 [A] 

Sum (14318) 3580 (75.5) 75.3 (6850) 1687 (7468) 1893 

Positive (7159) 1790 (73.2) 72.5 (5240) 1297 (1919) 493 

Negative (7159) 1790 (77.8) 76.6 (1590) 418 (5569) 1372 [B] 

Sum (14318) 3580 (75.5) 74.6 (6830) 1715 (7488) 1865 

Positive (7159) 1790 (72.6) 74.7 (5201) 1338 (1958) 452 

Negative (7159) 1790 (77.9) 76.6 (1585) 419 (5574) 1371 [C] 

Sum (14318) 3580 (75.3) 75.7 (6786) 1757 (7532) 1823 

 
Table 7.4 Observed positive and negative grid cells, predicted true/false positive and 
negative cases and percent correct for both calibration (in brackets) and validation datasets. 

 

 

 

For the three samples quite similar accuracy arise, for both calibration and validation 

subsets of cells. Models show a slightly higher predictive ability for cells not affected by 

gullies, compared to cells where gullies occur. Predictive performance of the models was 

assessed also by means of a cut-off independent technique, based on drawing ROC 

curves and computing AUC values (Fig. 7.2).  

 

 

 
Figure 7.2. ROC curves and AUC values of the CLU-based regression models. 
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The latter indicate excellent (cf. Hosmer and Lemeshow; 2000) results for all the models 

both in the training and test subsets of cells; ROC curves are quite similar and, 

consequently, very small differences of AUC-values are observed.  

Since both the classification matrix and AUC values indicate minor alterations of models 

predictive power between training and test areas, it can be concluded that the modeling 

procedure carried out at grid cell scale has not suffered from overfitting; moreover, models 

demonstrated robustness to changes of the learning samples. 

 

 

7.3.2 Slope units models 

Regression analysis carried out on the learning samples of the slope units ([Dcal], [Ecal], 

[Fcal]) provided three different susceptibility models. The computed values of the 

parameters -2LL, pseudo-R2 and chi-square (Table 7.5) indicate that the models fit with 

the spatial occurrence of gullies in the training subsets with a statistical significance higher 

than 99%.  

 

Nevertheless, in contrast with what observed for cell units, the goodness of fit of the 

susceptibility models seems less stable when changes of the SLUs learning samples are 

adopted. This is also confirmed looking at the individual predictors that entered the three 

regression models (Table 7.6): the forward stepwise strategy, which was applied setting a 

minimum probability of 0.05 for the selection of the variables, picked up 2, 5 and 4 

predictors, of which only two (FDR and ELE) entered at least two models. The maximum 

flow distance to river, computed within the SLUs, demonstrated to be the best and most 

significant predictor of the gullies occurrence in the training areas, as it is the only attribute 

included in all the models, in addition to reaching the highest value of the Wald test in the 

learning samples [D] and [F]. The classification matrix computed for the SLU regression 

models (Table 7.7) indicates more enhanced differences of discrimination ability respect 

to what seen for CLU models. Values of percent correct are quite diverse for the three 

units samples and between learning and validation subsets of SLUs; moreover, in contrast 

with the regression models trained on cells, SLU models demonstrate better accuracy in 

predicting positive cases. 
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-2LL Model Chi² test (LR) R²-like 
Samples 

Intercept Model Chi-2 d.f. P(>Chi-2) Cox and Snell's R² Nagelkerke's R² 

[Dcal] 244.0 199.7 44.3 2 0.0000 0.2224 0.2965 

[Ecal] 244.0 177.5 66.5 5 0.0000 0.3145 0.4193 

[Fcal] 244.0 190.6 53.4 4 0.0000 0.2617 0.3490 

 
Table 7.5 Results of -2LL, Model Chi2 test and R2-like statistics computed for the regression 
models calibrated on the learning samples of slope units.  
 

 

Sample [D] Sample [E] Sample [F] 
Indipendent 
variables β coeff. Wald 

test  Signif. β coeff. Wald 
test  Signif. β coeff. Wald 

test  Signif. 

 LTL_clay / / / / / / 6.3129 15.45 0.0001 

 LTL_cong / / / / / / / / / 

 LTL_gyps / / / / / / / / / 

 LTL_sand / / / / / / 5.3579 6.23 0.0126 

 USE_arab / / / / / / / / / 

 USE_crop / / / / / / / / / 

 USE_past / / / / / / / / / 

 ASP_N / / / -1.6774 3.77 0.0523 / / / 

 ASP_NE / / / / / / / / / 

 ASP_E / / / / / / / / / 

 ASP_SE / / / / / / / / / 

 ASP_S / / / / / / / / / 

 ASP_SW / / / / / / / / / 

 ASP_W / / / / / / / / / 

 ASP_NW / / / / / / / / / 

 ELE -2.5051 7.06 0.0079 -2.6645 7.50 0.0062 / / / 

 ELR / / / / / / / / / 

 STP / / / -14.6399 15.73 0.0001 / / / 

 PLC / / / / / / / / / 

 PRC / / / / / / -4.2397 6.59 0.0103 

 SPI / / / / / / / / / 

 TWI / / / -15.8756 18.59 0.0000 / / / 

 LSF / / / / / / / / / 

 TPI / / / / / / / / / 

 RNL / / / / / / / / / 

 FDR 5.8784 32.18 0.0000 5.0714 18.22 0.0000 4.8043 19.41 0.0000 

 

Table 7.6 β coefficients, Walt test values and their significance computed for the individual 
predictors that entered the three regression models trained on slope units. 
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    Observed cases     Predicted cases 

   Percent correct Positive Negative 
Sample 

         

Positive (88) 70 (73.9) 71.4 (65) 50 (23) 20 

Negative (88) 107 (71.6) 70.1 (25) 32 (63) 75 [D] 

Sum (176) 177 (72.7) 70.6 (90) 82 (86) 95 

Positive (88) 70 (76.1) 71.4 (67) 50 (21) 20 

Negative (88) 107 (72.7) 60.7 (24) 42 (64) 65 [E] 

Sum (176) 177 (74.4) 65.0 (91) 92 (85) 85 

Positive (88) 70 (75.0) 77.1 (66) 54 (22) 16 

Negative (88) 107 (72.7) 64.5 (24) 38 (64) 69 [F] 

Sum (176) 177 (73.9) 69.5 (90) 92 (86) 85 

 
Table 7.7 Observed positive and negative slope units, predicted true/false 
positive and negative cases and percent correct for both calibration and 
validation datasets. 
 

 

Predictive performances of the regression models trained on SLUs are evaluated from 

acceptable to excellent (cf. Hosmer and Lemeshow; 2000), by drawing ROC curves and 

computing relative AUC values (Fig. 7.3). Small differences of predictive skill are observed 

between training and test slope units for the samples [D] and [F], while quite diverse AUC 

values are calculated for the [E] subsets of SLUs; these results, together with the 

classification matrix of Table 7.7, seem to indicate a problem of overfitting only for the 

sample [E].  

 

 
 

Figure 7.3. ROC curves and AUC values of the SLU-based regression models. 
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7.3.3 Susceptibility maps 

The probability of gully occurrence for all the grid cells and slope units of the study area 

was computed by performing further logistic regression analyses.  

The [A] sample of cells, which was the one providing the highest apparent and validated 

accuracy, was entirely used as learning dataset to calculate new regression coefficients; 

these were transferred to ArcGIS for computing the probability (P) of gully occurrence for 

all the cells falling within the study area. By using the whole basin as training area, P was 

calculated also for all the slope units. Hence, the probability values of gully occurrence, 

assessed for each cell and slope unit, were used to generate two gully erosion 

susceptibility maps (Fig. 7.4), where probabilities are classified into four susceptibility 

levels.  

 

 

 
 
 

Figure 7.4. CLU-based (a) and SLU-based (b) gully erosion susceptibility maps. 
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The fit of the susceptibility maps with the gullies spatial distribution was evaluated by 

calculating ROC curves and AUC values (Fig. 7.5); both the CLU- and SLU-based gully 

erosion susceptibility maps show an excellent ability (AUC > 0.8) of discriminating 

between positive and negative grid cells and slope units, respectively.  

 

 

 
 
Figure 7.5. ROC curves and AUC values of the CLU-based (a) and 
SLU-based (b) gully erosion susceptibility maps. 
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8.1 Modelling approach 

To a better understanding of the role of anthropogenic factors in soil erosion 

phenomenon, a land use scenario analysis is proposed. 

The San Giorgio catchment was used to achieve the described goal. In the basin man-

induced elements influencing runoff processes are mainly linked to the alteration of 

original terrain morphology and consequently on the spatial soil redistribution pattern. 

Farmers play an important role in modifying the natural flow-path both at field and basin 

scale. Artificial channels, filed boundaries and an intense network of unpaved roads 

segments are the recognized main cause of important transformation mechanism of the 

studied agricultural landscape.  

 

In order to simulate the impact of anthropogenic elements on soil loss rate data related to 

their characteristics and spatial distribution in the basin were collected. These element 

were included in the RUSLE (Revised Universal Soil Loss Equation) (Renard et al., 1997) 

model. Annual soil loss rates were predicted under two different environmental situations: 

The first includes the collected anthropogenic elements (named current scenario), the 

second environmental condition was constructed by simulating a scenario, where any 

man-induced landscape modification exists (named hypothetical scenario). Results are 

described by two maps showing the spatial distribution of annual soil loss rate, due to rill-

interrill erosion.  

Once constructed the two erosion scenarios, the corresponding maps were compared and 

differences analyzed. This operation underlined the influence of linear man-induced 

elements on erosion processes.  

 

Finally the spatial domains hosting any man-induced elements were overlapping to the 

erosion/deposition map, constructed by the USPED (Unit Stream Prediction Erosion 

Deposition Process, Mitasova et al., 1996) model application, to better define the 

distribution of off-site impacts caused by human activities in the basin.  
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8.2 Models components 

 

8.2.1 Man-induced elements in agriculture catchment 

In the San Giorgio River basin the presence of man-induced elements is principally linked 

to agriculture activities. On field scale, tillage furrows and irrigation channels, as small as 

20 cm in depth, were considered to modify the overland flow directions in parcels 

characterized by a low-moderate slope. Landscape fragmentation in small agricultural 

parcels characterize the entire study area: The presence of ditches at field boundaries 

may constitute a preferential flow path for water and consequently be source of 

sediments. The continuity and the total length of the rural element influences runoff and 

consequently erosion and deposition processes. The influence of roads regards a larger 

scale respect to the field parcels. Roads concentrate and change surface runoff, changing 

the patterns of soil erosion. In the present study the influence of paved roads on soil 

erosion processes was not considered, being their surface affected by water runoff.  

 

By aerial photographs interpretation (pixel size 0.25 m, 02.09.2007), integrated by filed 

surveys (during the year 2010) and GIS, 225 linear rural elements (among them artificial 

channels and field boundaries) were recognized, giving a total length of 45.9 km. Unpaved 

roads segments are also diffuse in the entire basin; 50 roads elements on a total 

approximate length of 33.3 km (Fig. 8.1).  

 

The potential topographic surface influencing runoff was defined by assigning a specific 

buffer to collected man-induced elements. In the study area field boundaries and artificial 

channels represent depressions in the ground characterized by a cross section width 

lower than 30 cm. Consequently along these rural elements an equal 30 cm buffer was 

constructed. To each road segment a specific buffer, ranging from 5 to 10 m, was 

constructed being runoff direction and intensity influenced both of the upslope and 

downslope side shapes of a road segment. 12.3% of the San Giorgio catchment is 

interested by man-induced elements. 
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Figure 8.1. Map showing the man-induced elements in the San Giorgio River 
basin. The recognized categories, mapped from aerial photographs (2007), are 
paved roads, unpaved roads and rural elements.  
 

 

 

8.2.2 Soil erosion scenario construction 

The presence of rural elements and roads influences two RUSLE model components: The 

Topographic factor (LS factor) and the Land cover management factor (C factor).  

The rainfall erosivity (R factor) and the soil erodibility (K factor) indices were considered 

not changing their values in the two simulated situations. The methodologies used to 

assess these factors and the resulting maps were widely described in Chapter 5.  

No erosion control practices (P factor) are used in the watershed. To the P factor, was 

assigned a value of 1.0 (dimensionless); it has no effect on the erosion calculations in 

both erosion simulations. 

 

The combined effect of slope, length and steepness on soil loss phenomenon was derived 

by the 2m-DEM, by calculating the LS factor; it can be considered as a measure of the 

sediment transport capacity by runoff. Moreover the use of a high defined resolution DEM 

allowed including the topographic attribute of rural elements in the erosion modelling.  
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To model erosion using the described hypothetical situation the DEM was modified. The 

surface containing the man-induced elements was employed as mask to drill the DEM and 

generate a new elevation model by re-interpolation (TOPOGRID command within 

ArcInfo). The resulting DEM is not containing preferential artificial paths for the water 

overland flow due to man-induced topographic modifications (Fig. 8.2). 

 

 

 
Figure 8.2. Comparing flow accumulation grids in modified (blue lines) 
and original (pink lines) DEM. Linear features like roads and field 
boundaries become part of the permanent drainage network. 

 

 

 

The erosion scenario simulation also involves changes on the land use factor. Previous 

works led to use necessary information to assign a value to the C factor for each land use 

category recognized in the San Giorgio river basin (Table 8.1). Numerical attributes that 

represent the protective contribute of vegetation cover on soil particles detachment and 

transport. 

In particular, to model erosion in the current environmental situation, a specific land use 

map, taking anthropogenic landscape features into account, was used (Fig. 8.3a). While in 

the hypothetical scenario, the land cover associated to roads and rural elements was 

dissolved to the closest land use category (Fig. 8.3b).  
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Figure 8.3. San Giorgio River basin current land use (a) and hypothetical land use 
maps (b). 

 

 

 

Land use  C-value 

Seminatives 0.12 

Pastures 0.15 

Sclerophyllous vegetation 0.038 

Fruit trees 0.3 

Olive groves 0.1 

Agro-forestry areas 0.002 

Vineyards 0.451 

Rural elements; Unpaved road 1 

Artificial areas (paved road and urban fabric) 0 

 
Table 8.1 C-values assigned to each land cover category 
on the basis on previous studies. 
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8.2.3 Erosion/deposition map  

The solution of the USPED model allowed to predict erosion, in areas experiencing an 

increase in sediment transport capacity, and deposition where a decrease in sediment 

transport capacity occurs.  

Grids containing information related to the transportability coefficient (Kt), were created for 

each of the factors considered in the USPED model (see Chapter 5): R, K and C factors 

are the same used in the RUSLE, while the topographic component was calculated by 

combining the profile and the tangential curvature, upslope contributing area, slope and 

aspect grid layers.  

The erosion/deposition map is shown in Figure 8.4. In the San Giorgio river basin severe 

soil loss occurs predominantly on convex upper slope landscape positions and soil 

accumulation occurs on concave lower slope positions.  

 

 
Figure 8.4. Erosion/deposition map for the San Giorgio 
River basin.  
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8.3 Results 

 

8.3.1 Soil loss prediction 

By applying the RUSLE model, the current and hypothetical soil loss scenarios were 

constructed (Fig. 8.5). The corresponding maps show the pattern distribution and intensity 

of rill-interrill erosion. In the San Giorgio river basin the average annual soil loss rate in the 

current and in the hypothetical scenario was estimated to be 27.7 t/ha year and 22.8 t/ha 

year respectively. On basin scale, the presence of man-induced elements on erosion 

processes was measured to increase the soil loss of about 17.4%. 

 

 

 
 

Figure 8.5. Predicted soil loss for current (a) and hypothetical (b) simulated 
scenarios. 

 
 
 
 
Predicted soil loss rate within the current erosion scenario was compared with the 

evidence of sheet and rill erosion landforms detected in situ. 70% of erosion landforms 

falls in soil loss rate ranging from 20 up to 40 t/ha year.  
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In the present thesis the RUSLE model’s ability to predict soil erosion potential within the 

San Giorgio River basin is viewed as sufficient when considering the qualitative and not 

quantitative purpose of the proposed method. 

 

 

8.3.2 Man-induced impacts  

The simulated erosion scenarios (Fig. 8.5) led to construct a map showing the differences 

in soil loss amount (Fig. 8.6a). By subtracting to the current erosion scenarios the 

hypothetical one 6 levels of potential changes were identified (Fig. 8.5b). They describe a 

potential increase (classes 1, 2, 3) or decrease (classes 5, 6, 7) in the predicted soil loss 

rate. The surface interested by any changes (class 4) is the most diffuse and covers a 

surface of 44.7% (Fig. 8.5c).  

 

  
 

 
Figure 8.6. Map of predicted changes in soil loss modelling, constructed 
subtracting the current and hypothetical erosion scenarios (a). 7 classes, indicating 
the levels of change, were created (b). The percentage of surface interested by 
different degree of soil loss changes is indicated (c). 
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Moreover, in order to identify which man-induced elements causing high changes in soil 

loss rates, the changed erosion scenario was investigated along the area occupied by: 

artificial channels, field boundaries and unpaved road segments (Fig. 8.7). 

As expected, along unpaved roads the major changes in the amount of eroded soil 

resulted; the topographic and land use management factors have undergone substantial 

changes along these surfaces. Unpaved roads impact showed the important role played 

by this artificial structure. Their surface is interested by weak (22.5%), moderate (41.3%) 

and extreme (60.2%) soil loss rate increase. Generally in the study area, unpaved roads 

run across topographic gradients, inducing runoff concentration and accelerating soil 

erosion. 
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Figure 8.7. Levels of difference occurring along artificial channels, field 
boundaries and unpaved roads segments. 

 

 

 

74.4% of the surface occupied by artificial channels falls in class 5 and only 22 % in class 

6, indicating that along their surface soil loss generally weakly increases in a moving 

window between the current and the hypothetical erosion scenario. These results are 

justified by the consideration that sediments translocated by artificial channels and field 

boundaries, are deposited not so far from the source area. Consequently soil loss 

predicted by the two scenarios is not changing so far. 
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The simulation results showed that field boundaries do not play a relevant role in 

determining the spatial patterns of soil redistribution at border zones. 81% of the surface 

occupied by this element fall along the no-change class, and 8% contribute to decrease 

soil loss rate on the basin. Since field boundaries represent real physical barriers, which 

interrupt tillage and consequently soil transport flux, sources of uncertainty arise when 

modelling tillage translocation near the field boundary.  

Artificial channels are constructed along two preferential topographic constrains: along the 

line of steepest slope, alternating flow path directions, and perpendicular to these line, 

constituting an obstacle for water flow. In the first case by masking the presence of these 

rural elements soil loss is reduced, in the second one rural element contribute to 

impending the water flow and so their obliteration is a potential cause of soil loss increase. 

In both cases superficial overland flow is only locally modified.  

 

Moreover to better understand the occurrence of off-site impacts, defined as the effects of 

man-induced elements in cells not hosting any man-induced elements in the study area, 

the erosion/deposition map was used (Fig. 8.8a).  

 

 

 
 

Figure 8.8. Detail of the of man-induced elements off-site impacts spatial distribution (blue 
lines) in the erosion/deposition map (a). The percentage of surface predicted to change and 
their predisposition to erosion or deposition processes is shown (b). 
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The RUSLE and the USPED modelling results were combined and off-site impacts 

defined depending on the topographic conditions. 

Results showed how 70% of the surface interested by off-site impacts mainly fall in areas 

experiencing an increase in sediment transport capacity (net erosion) (Fig. 8.8 b), and 

only the 8% is located in depositional zones. The predicted locations of major hillslope 

erosion-prone areas in terms of sediment production correspond to surface characterized 

by high topographic connectivity.  
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9.1 Discussion and conclusions 

The present thesis is the results of three years of investigation carried out to develop 

erosion susceptibility models in the Mediterranean and contribute significantly to a better 

understanding of the factors affecting runoff and soil erosion.  

 

The research contributed to explore the methodological advantages as well as limitations 

in applying different modelling approaches, both statistical and empirical, to predict soil 

erosion in Sicily (south of Italy), considering this region as representative of the main 

Mediterranean environmental conditions. In this region soil degradation problems, due to 

water erosion, become always more serious; consequently, the definition of models able 

to predict erosion susceptibility and discriminate the environmental factors mainly 

controlling erosion is an important step to preserve soil resource.  

 

In natural hazard studies, the application of statistic techniques enables the screening of 

large data and the generation of erosion susceptibility maps that well reflect the spatial 

distribution of the processes. Results showed that the use of a boosting regression trees 

method, allows an investigator to define functional relationships between a set of several 

environmental attributes and different erosion and mass wasting processes.  

The TreeNet can be considered able to decipher the importance of certain variables for 

specific erosion and mass wasting processes. Stream power index, catchment area, 

elevation, altitude above the channel network and convergence index resulted to be the 

environmental attributes that play a predominant role in soil erosion and mass wasting 

susceptibility assessment; the ranking of variables importance contributed to better 

understand which are the factors mainly governing erosion process in a typical 

Mediterranean watershed.  

 

Among the analyzed processes, bank and gully erosion were the more accurately 

predicted, with an outstanding and an excellent overall performance, while mass wasting 

and sheet-rill erosion showed an acceptable performance. The no-erosion class was the 

only one predicted with low accuracy. This misclassification attests for the difficulty in 

natural hazard phenomenon prediction to model areas saved from erosion processes, 

because of their present environmental conditions might bear the potential for a specific 

erosion process in future, e.g. when land use will change or rain erosivity will increase.  
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Moreover, being gully erosion the most representative process affecting soil loss in the 

Mediterranean, environmental aspects related to their prediction were most accurately 

investigated by means of logistic regression analysis. The functional relationships 

between erosion processes and a set of environmental attributes have been assessed, on 

grid cell (CLU) and slope unit scale (SLU). The adopted method generated gully erosion 

susceptibility maps that well reflect the spatial distribution of gullies within the study area. 

Both CLU- and SLU-based maps provide excellent predictive performances, confirming 

that logistic regression analysis constitute an effective tool also for erosion susceptibility 

analysis. Moreover, the results of the accuracy tests attest for the goodness of 

susceptibility maps that were generated by following objective and reproducible 

procedures, based on input data available or easily acquirable at regional and watershed 

scale.  

 

Comparing the results obtained by applying the two statistical approaches, the TreeNet 

and the logistic regression analysis, the significance of the independent variables clearly 

indicate that continuous topographic attributes are the variables more frequently 

contributing to the accuracy of the predictive models. This is true particularly for models 

based on grid cells where all continuous topographic variables are always characterized 

by high significance values.  

 

This research underlines also that gully erosion susceptibility analysis can be carried out 

at the scale of slope units; the adoption of this type of mapping units allows for avoiding 

the intrinsic limits of the application of a pure statistical approach to a geomorphological 

issue. A cell unit approach, which is the most adopted for susceptibility analysis, does not 

take into account the influence of each cell to the surroundings one; in this approach, grid 

cells are considered as individual case not related to the others, while geomorphological 

processes do not recognize the limits of a square cell. Hence, a slope unit approach could 

be better, even if some problems arise when variables defined at cell scale (e.g. 

topographic attributes) have to be associated to slope units; moreover, in order to produce 

more stable models and a finer resolution of the susceptibility maps, the number of SLUs 

has to be large enough. In this research, this could have been obtained only by reducing 

the size of slope units, but this operation would have produced landforms crossing the 

boundaries of the SLUs and depriving them of their significance of hydrological barriers.  



 
 

CONCLUDING RERAMRKS 
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 
 

CHAPTER IX 
 
 
 
 
 

 
 

102

The experiments carried out in the basin of San Giorgio River and the results obtained 

encourage further application of logistic regression analysis to gully erosion susceptibility 

analysis; the adopted method, in fact, demonstrated to be suitable for the preparation of 

reliable gully erosion susceptibility maps that could constitute a useful instrument for 

planning erosion control practices and reducing socio-economic impact of soil loss 

produced by gullies. 

 

Moreover in the gully erosion susceptibility model the potential effect of roads was 

investigated by calculating the distance from the closest road segment and the total length 

of roads. Results showed that both parameters do not influence significantly the model 

prediction. Consequently to better characterize the impact of these linear features on the 

drainage patterns and consequently soil erosion dynamics, a new procedure to investigate 

the impact of anthropogenic elements in cultivated Mediterranean landscape was 

proposed.  

 

By applying the RUSLE and USPED models the impact of man-induced elements on 

erosion processes was evaluated. The scenario analysis results underlined the 

predominant influence of unpaved roads compared to artificial channels and field 

boundaries to cause changes in soil erosion dynamics. The erosion scenario simulation 

demonstrated how the hydrological connectivity is strongly affected by the changing in 

land use patterns and in topographic surface. 

The proposed method uses simple empirical models for predicting the impact of 

anthropogenic elements on soil erosion processes and has the advantage of being easy 

to understand and data are readily available. The applied procedure may find practical 

use in land management and planning, where it can supplement to small-scale field 

experiments. 

 

 

9.2 Final remarks 

The experimental applications carried out in the Sicilian Region and the obtained results 

encourage further applications to continue investigating soil erosion by using statistical 

and empirical models.  

Results clearly indicate that the statistical analysis is a good instrument to predict erosion 

susceptibility in Mediterranean. The adopted methods demonstrated to be suitable for the 
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preparation of reliable susceptibility maps, which constitute a useful instrument for 

planning erosion control practices and reducing socio-economic impact of soil loss 

produced by erosion. At the same time the results also highlighted some new questions: 

 

� When the areas modeled as no susceptible to erosion and mass wasting 

processes can be considered “saved areas”?  

� How stochastic analysis can be used to better classify surfaces no-prone to 

erosion and mass wasting processes?  

� How to measure the intrinsic predisposition to develop erosion processes in future 

of those mapping units classified as “no-erosion” cases?  

 

The use of empirical method to predict soil erosion stressed the necessity to the need for 

detailed field data over large areas, in order to test the proposed approach and to export it 

in similar environmental conditions. Anyway, considering different scenarios of land use in 

erosion modeling assisted in interpreting the enormous complexity of catchment 

responses to man-induced impacts and can be very valuable for the development of 

sustainable land management systems. 

 

Concluding, future researches and experimental applications are desirable, to better 

understanding the involved mechanisms and the interaction of environmental factors 

controlling the development of erosion response. 
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