
1 
 

 

 

Università degli Studi di Palermo 
 

Dottorato di Ricerca in 
Medicina Sperimentale e Molecolare 

 
Coordinatore: Prof. Giovanni Zummo 

 
Sede Amministrativa: Dipartimento di Biomedicina Sperimentale e Neuroscienze 

Cliniche 
 

 
Characterization and evaluation of hepatic 

differentiation potential of human umbilical cord 
mesenchymal stem cells 

 
 
 
 
 

Relatore: Chiar.ma Prof.ssa  F. Farina 
 

Co-relatore: Chiar.ma Dott.ssa R. Anzalone  
 

 
 
 

 
Dott.ssa Melania Lo Iacono  S.S.D.= BIO/16 
                                                                  Anatomia Umana 

 
 
 
 

XXIII CICLO    



2 
 

 
INDEX 

1. INTRODUCTION 

1.1 Anatomical features of human liver     p. 5 

1.2 Overview of development of the liver and involved factors  p. 8 

1.3 Liver regeneration and therapeutic applications for liver diseases p. 9 

2. Main features of stem cells      p. 13 

2.1 Embryonic stem cells       p. 14 

2.2 Adult stem cells        p. 15 

2.3 Bone marrow mesenchymal stem cells (BM-MSC)   p. 15 

2.3.1. Differentiation potential of BM-MSC     p. 16 

3. Immunological property: interactions between MSC   p. 17 

    and immune system 

3.1 MSC and Tolerance induction      p. 19 

3.2 Contrasting evidence in vivo for use MSC    p. 20 

3.3 Allograft Rejection: MSC and Immunosuppressants   p. 24 

3.4 MSC-Derived Differentiated Cells: immune properties   p. 26 

      In Vitro and In Vivo 

3.5 MSC and inflammation targeting      p. 26 

4. Features of Human umbilical cord      p. 28  

4.1 Wharton’s Jelly : structure and function     p. 29 

4.2 Phenotypical characterization of Wharton’ s    p. 31 

     Jelly mesenchymal stem cells (WJ-MSC) 

4.3 Differentiation capacity of WJ-MSC     p. 33  

4.4 Hepatogenic differentiation potential of WJ-MSC   p. 36 

4.5 Hepatogenic differentiation ability of WJ-MSC    p. 39 

      respect to other MSC populations 

4.6 Formation of hepatocyte-like cells in vivo by    p. 46 

      extrahepatic stem cells 

5. OBJECTIVES        p. 53 

 



3 
 

6. MATHERIAL AND METHODS     

6.1 Cellular isolation protocol of Wharton’s Jelly    p. 55 

      Mesenchymal Stem Cells 

6.2 Cell culturing and passaging      p. 55 

6.3 Immunocytochemical analysis    p. 56 

6.4 Total RNA extraction       p. 57 

6.5 RT-PCR ( Reverse Transcription Polymerase Chain Reaction)  p. 58 

6.6 Agarose gel electrophoresis      p. 61 

6.7 Induction of hepatogenic differentiation     p. 61 

6.8 Periodic Acid Schiff  staining      p. 62 

6.9 Flow cytometry        p. 62 

6.10 Cardiogreen staining     p. 64 

6.11 Glucose 6-Pase assay       p. 64 

6.12 CYP450 3A4 metabolic activity assay     p. 65 

6.13 Statistical analyses       p. 66 

7. RESULTS 

7.1 Morphological features of Wharton’s Jelly    p. 67 

      Mesenchymal Stem cells WJ-MSC 

7.2 Phenotypical characterization of undifferentiated WJ-MSC  p. 69 

      by RT-PCR and ICC 

7.3 Expression of immunomodulatory molecules by WJ-MSC  p. 77 

7.4 Hepatogenic differentiation by WJ-MSC    p. 79 

7.5 Periodic Schiff Acid staining      p. 82 

7.6 Early and late hepatic expression      p. 82 

      by RT-PCR in differentiated  WJ-MSC 

7.7 Characterization of differentiated WJ-MSC    p. 86 

      by flow cytometry analysis 

7.8 Expression of hepatic molecules in differentiated WJ-MSC  p.  92 

     by ICC 

7.9 ICG staining        p. 96 

7.10 Glucose-6-Pase assay       p. 96 

7.11 CYP 450 3A4 activity metabolic assay     p. 99 



4 
 

7.12 Expression of immuno-modulatory molecules by    p. 104 

        undifferentiated and differentiated WJ-MSC through  

        flow cytometry analysis 

   

8. DISCUSSION        p. 109 

9. BIBLIOGRAPHY       p. 114 

 

  



5 
 

1. INTRODUCTION 
 
1.1 Anatomical features of human liver 

The liver, the largest gland in the body,  is situated in the upper and right parts of 

the abdominal cavity, occupying almost the whole of the right hypochondrium, 

the greater part of the epigastrium, and not uncommonly extending into the left 

hypochondrium. In the male it weighs from 1.4 to 1.6 kg, in the female from 1.2 

to 1.4 kg. Its shape must be compared to a wedge, the base of which is directed to 

the right and the thin edge toward the left. The liver possesses three surfaces: 

superior, inferior and posterior. The superior surface is attached to the diaphragm 

and anterior abdominal wall by a triangular or falciform fold of peritoneum, the 

falciform ligament; the line of attachment of this ligament divides the liver into 

two parts, termed the right and left lobes, of different size. The inferior and 

posterior surfaces are divided into four lobes (quadrate, caudate, right and left 

lobe) by five fossae, which are arranged in the form of the letter H.  

Each lobe is subdivide into lobules, liver morphofunctional units.  The lobules 

(lobuli hepatis) form the chief mass of the hepatic substance; they are tiny 

hexagonal or pentagonal cylinders, measuring from 1 to 2.5 mm in diameter. The 

bases of the lobules are clustered around the smallest radicles (sublobular) of the 

hepatic veins, to which each is connected by means of a small branch which 

issues from the center of the lobule (intralobular). The remaining part of the 

surface of each lobule is imperfectly isolated from the surrounding lobules by a 

thin stratum of areolar tissue, in which is contained a plexus of vessels, the 

interlobular plexus, and ducts.  

Each lobule consists of  hepatic cells arranged in irregular radiating columns 

between which are the blood channels (sinusoids). These convey the blood from 

the circumference to the center of the lobule, and end in the intralobular vein, 

which runs through its center, to open at its base into one of the sublobular veins. 

Between the cells are also the minute bile capillaries. The hepatic cells are 

polyhedral in form and they contain one or sometimes two distinct nuclei. The 

cells usually contain granules; some of which are protoplasmic, while others 

consist of glycogen, fat, or an iron compound [1]. 
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Approximately 80% of the total liver mass, consists of hepatocytes, the rest is 

composed by endothelial cells, Kupffer cells, stellate cells, liver natural killer cells 

and cholangiocytes. 

Hepatocytes placed at the periphery are named as periportal cells while those 

located centrally are named as pericentral, perivenular or centrolobular ones. On 

the basis of spatial distribution of these cells there is also functional 

compartimentalization. In fact, periportal hepatocytes are specialized in 

glycogenolysis and gluconeogenesis and removal of ammonia by urea, while 

centrolobular hepatocytes are active in glycolysis and glycogen synthesis and 

metabolize ammonia by glutamine synthetase [2].  

In conclusion,  the liver induces conversion of the extra glucose in the body into 

stored glycogen in liver cells, and  then converting it back into glucose when the 

need arises; liver produces bile (a substance necessary in the of fats) and blood 

clotting factors and amino acids. Moreover, the liver performs processing and 

storage of iron necessary for red blood cell production; synthesis of cholesterol 

and other chemicals required for fat transport; it converts ammonia in urea which 

is then excreted in the urine; and it executes xenobiotic detoxification. 
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Figure 1: superior surface of liver (Grey’s Anatomy, 1918) 

 

 

 

 

Figure 2: posterior and inferior surfaces of the liver (Grey’s Anatomy 1918) 
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1.2 Overview of development of the liver and involv ed factors 

The liver arises as a diverticulum from the ventral surface of the gut. This 

diverticulum is lined by entoderm, and grows upward and forward into the septum 

transversum, a mass of mesoderm between the vitelline duct and the pericardial 

cavity, and there gives off two solid buds of cells which represent the right and the 

left lobes of the liver. The solid buds of cells grow into columns or cylinders, 

termed the hepatic cylinders, which branch and anastomose to form a close 

meshwork. This network invades the vitelline and umbilical veins, and breaks up 

these vessels into a series of capillary-like vessels termed sinusoids, which ramify 

in the meshes of the cellular network and ultimately form the venous capillaries of 

the liver. By the continued growth and ramification of the hepatic cylinders the 

mass of the liver is gradually formed [1]. 

Many investigations were carried out on different animal species to understand 

which mechanisms act in early development of the liver. Advanced evidence 

reported that development requires a series of inductive signals from three  

cellular types: mesodermal cardiogenic cells, cells of the septum trasversum and 

endothelial cells. 

In embryo mouse, around stage of 7-8 somites, the ventral wall is adjacent to 

cardiac mesoderm that  releases fibroblast growth factors (FGFs) required to 

initiate  differentiation toward hepatic fate [3]. 

Serl et al demonstrated that ventral endoderm explants in absence of FGF express 

pancreatic mRNA: when FGF was added at different concentrations, ventral 

endoderm expressed hepatic mRNA. Therefore, these data highlighted importance 

of FGF during early hepatic development [4]. The ventral endoderm responds to 

this induction phase, generating the primary liver bud. Outgrowth of this structure 

is induced by  bone morphogenetic protein-4 (BMP-4) released from septum 

trasversum cells. The septum transversum mesenchyme cells are tightly associated 

with the cardiac mesoderm and, therefore, could contribute to the initial stage of 

hepatic induction as well [5].  

The liver bud, after the induction mediated by FGF and BMP, expresses several 

liver mRNAs, including Albumin. By E9.5, the basement membrane surrounding 

the liver bud is broken, and cells delaminate from the bud and invade the 
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surrounding septum transversum mesenchyme, which is the source of stellate cells 

as well as sinusoidal endothelial cells that begin to form vessels.  

Around hepatoblast stage, the cells have bipotential capacity since can 

differentiate to both cholangiocytes and hepatocytes [6]. 

Liver development is peculiar since between 11.5 and 16.5 embryonic days, the 

liver is also a hematopietic site. Studies demonstrated that oncostatin M, secreted 

by hematopoietic stem cells, controls late hepatic differentiation probably by  

increasing  HNF 4α expression [7]. 

HNF 4α is involved in transforming the fetal liver into epithelial parenchima 

regulates hepatocyte differentiation, and is essential for maintaining sinusoidal 

architecture. During  mouse embryonic development, aroud 14.5 embryonic day, 

HNF- 4α is necessary for expression of junction proteins and adhesion molecules 

which, within the developing hepatoblasts, facilitate the formation of bile 

canaliculi and convert the immature cells into a polarized hepatocyte [8]. 

 

1.3 Liver regeneration and therapeutic applications  for liver diseases 

When liver is subjected to the partial hepatectomy (HP) , the hepatocytes undergo 

one or two replicative cycles to restore loss hepatic mass, but if HP is higher than 

70%, hepatocytes do not proliferate more and reach a state known as “quiescent 

senescence”. 

The term “regeneration” imply re-growth of excised structure.Actually, in the 

liver, damaged cellular mass doesn’t reconstitute, rather unharmed cells  expands 

to compensate the lost tissue. Therefore, it is more corrected to speaks about 

compensatory process.  

Several studies tried to explain what mechanisms underlie  this compensatory 

process. It is clear that cytokines, growth factors and metabolic networks interact 

together to support liver regeneration [9]. 

When replicative ability of hepatocytes is blocked or delayed, some cells known 

as oval cells, replicate and differentiate in hepatocytes. 

Many studies were carried out to understand origin, characteristics and 

differentiative potential of these cells. 
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The oval cells originate together with intrahepatic biliary cells from hepatoblasts 

located near portal spaces. Analysis of maker expression suggested that these cells 

have a bipotential capacity because express hepatic and biliary markers. In 

addition, studies demonstrated that oval cells express typical markers of 

hematopietic stem cell such as Cd34, CD45, Sca-1 [10].  

Unfortunately, in case of liver disease, where there is loss of liver function, the  

regeneration mediated by proliferative capacity of mature hepatocytes or in some 

cases of oval cells is no more sufficient. 

In the world exists hundreds of millions of people affected by liver pathologies. 

The most common causes of hepatopathy are chronic hepatitis C and B, 

alcoholism, nonalcoholic fatty liver disease, autoimmune, and drug-induced 

hepatic disorders. Many of these conditions,  if not prevented and  treated , can 

lead to progressive liver injury, liver fibrosis and ultimately cirrhosis, portal 

hypertension, liver failure and sometimes cancer [11]. 

Acute liver failure consists in a rapid decrease in liver function. Commons causes 

are viral hepatitis, acetaminophen and mushroom ingestion, idiosyncratic drug 

reactions. 

In case of autoimmune-associated disease the body produces an inappropriate 

immune response against itself; and sometimes against liver tissue. PBC (Primary 

biliary cirrhosis), PSC (Primary sclerosing cholangitis) and autoimmune hepatitis 

are some possible causes. 

Budd-Chiari syndrome is characterized by presence of blood clots that impede 

correct blood flow. The major causes are hypercoagulable disorders, liver injury, 

cancer and  parasitic infection  

Hemochromatosis, Alpha-1 antitrypsin deficiency, Wilson's disease are some 

genetic diseases which result in alterations of some liver functions. 

Cirrhosis,  consists in the loss hepatic function because liver architecture is 

compromised. Possible causes are chronic hepatitis, alcoholism, or chronic bile 

duct obstruction.  

To date, organ transplantation remains an excellent therapeutic treatment  for liver 

pathologies. More than 5000 liver transplants, each year, are performed in USA. 

About 20,000 people wait for liver transplantation, but only 7,000 transplants are 
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performed annually, therefore 1,500 patients die yearly while on the waiting list. 

Adverse factors such as donor scarcity, high costs and consequences from long-

term immunosuppressant therapies limit the potential of organ transplantation. An 

alternative treatment could be hepatocytes transplant: it is defined such as “the use 

of living cells to restore, maintain, or enhance tissue and organ function”  [12].  

Cell transplantation is a less invasive and easier procedure, hepatocytes may be 

cryopreserved for future applications,  risks associated with transplant rejection 

are be limited and subsequent orthotopic liver transplantation or liver directed 

gene therapy would remain feasible [13].  

If liver architecture is not damaged, infusion of hepatocytes  may be performed 

into the portal vein or into the splenic pulp, from where the cells migrate to the 

liver [14]. Certainly, the presence of physiological matrix helps engrafted 

hepatocytes to replicate. When, instead the liver architecture is damaged it is 

preferable to infuse the hepatocytes into ectopic sites such as the spleen offering 

so a site for long term survival [15]. 

To date hepatocytes therapy was performed only on three categories of liver 

diseases such as acute liver failure , inherited metabolic diseases and cirrhosis. 

Acute liver failure causes rapid deterioration of liver functions, for these reasons 

cell therapy could provide to restore the main functions such as metabolism of 

toxins, secretion of proteins and stabilisation of haemodynamic parameters. 

According to first studies hepatocytes transplantation in patients with acute liver 

failure were performed into splenic artery  or the portal vein [16-17-18]. 

Successively, accessibility of the peritoneal cavity and intraperitoneal 

transplantation of hepatocytes was considered a promising strategy to create a 

bridge to spontaneous regeneration of the liver. Indeed,  infused hepatocytes in 

peritoneal zone had a short life therefore cell transplantation with alginate 

embeding or microcarriers may offer a reasonable alternative. A report, in fact, 

demonstrated that use of microcarrier-attached hepatocytes into rats with total 

hepatectomy improved long-term survival rates [19]. Inherited metabolic liver 

diseases are other diseases where hepatocytes transplantation had encouraging 

results. In a girl with Crigler-Najjar syndromeType I with hyperbilirubinaemia, 

infusion of hepatocytes into portal vein, resulted in partial correction plasma 
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bilirubin levels for more than 11 months [20]. Another success was obtained in a 

woman with glycogen storage disease [21] and in a 4-year-old girl with infantile 

Refsum disease [22]. 

Cell therapy in end stage liver diseases such as cirhhosis, is certainly more 

problematic, because the loss of functional hepatocytes contribute to the decrease 

of liver function. Above all considering that liver architecture is damaged, cell 

transplantation into hepatic sites may be questionable. Therefore infusion of 

hepatocytes in the spleen is considered a valid alternative. Studies on animals with 

stable liver cirrhosis induced after 4 weeks of administration of carbon 

tetrachloride, demonstrated that rat or porcine hepatocytes [23] or syngeneic rat 

hepatocytes [15] or  immortalized rat hepatocytes [24] infused into splenic sites 

improved liver function and increased survival rate. A few clinical applications 

were performed in cases of  decompensated chronic liver disease. Certainly, use 

of microcarrier or supports for hepatocytes transplantation in advanced cirrhosis 

could prolong survival of engrafted hepatocytes [25]. 

Despite hepatocyte transplantation has given encouraging results, cadaveric livers 

scarcity, limited replicative potential of these cells, damages induced from 

cryopreservation and elevated number of cells necessary for transplantation, limit 

its potential. Therefore several groups investigated on therapeutic potential of 

hepatocyte-like cells derived from precursor cells or stem cells. 
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2. Main features of stem cells 

According to general consensus pluripotent cells are capable of  long-term self-

renewal, have an undifferentiated state, can generate various cellular types derived 

from all three germ layers. Another main characteristic of stem cells is 

asymmetric division: one daughter cell possesses typical features of a stem cell, 

the other daughter cell can differentiate into well defined cellular type thanks to 

signals derived from the surrounding microenvironment known as its “niche”. 

In living organism exist two different types of stem cells: “active stem cells” 

generate cells in case of regeneration such as hematopoietic, epidermis and the 

intestine stem cells, and “passive stem cells” give rise cells only when the adult 

organs have been damaged, such as stem cells of the nervous system, liver, eye. 

Schofield, in 1978, was the first to enunciate the existence of niches, 

environments composed of cells that help stem cells to maintain homeostasis of 

the tissues and isolate some stem cells from proliferative or apoptotic stimuli [26]. 

Excessive production of stem cells, could induce the onset of cancer [27].  

According to differentiative capability, stem cells can be classified in:  

totipotent stem cells give rise to all cells included extra-embryonic tissues such 

as zygote and cells of the first divisions of the embryo; 

pluripotent stem cells generate all types of cells derived from three germ layers, 

but not extra-embryonic tissues, such as cells of the inner mass of the blastocyst 

or umbilical cord stem cells;  

multipotent stem cells: give rise only some cellular types, for example the 

elements of the blood platelets red and white cells and adult nervous system stem 

cells;  

unipotent stem cells generate only one type of specialized cell. 

According to the tissue of origin, the stem cells are classified in embryonic and 

somatic or adult stem cells. 



14 
 

 

 

Figure. 3: Schematic rapresentation of  the differentiative potential of stem cells 

isolated from tissues at different development phases. 

 

 

2.1 Embryonic stem cells   

Embryonic stem cells derive from a limited cellular population of the embryo at 

the stage of blastula or blastocyst. The blastocyst consists of 50-150 cells and 

three structures: the trophoblast, a layer of cells surrounding the blastocyst; the 

blastocoel, a cavity inside the blastocyst, and the inner cell mass (ICM) formed by 

a group of about 30 cells, defined as embryonic stem cells, located at one end of 

the blastocoel. According to general consensus, embryonic stem cells maintain 

indefinitely an undifferentiated state, are permanently diploid, maintain normal 

karyotype, are immortal, can propagate indefinitely and differentiate into cellular 

types derived from three embryonic germ layers [28]. 

For these reasons, embryonic stem cells  are considered a potential source for the 

treatment of several diseases [11]. 

However research on embryonic stem cells had some limitations: their use in fact 

requires the removal of the embryo within 14 days from fertilization and in some 

cases the graft of these cells can induce teratoma formation and immune reaction 

into recipient host. For these ethical and practical issues the researchers carried 

out studies on adult stem cells [29]. 
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2.2 Adult stem cells   

Somatic or adult stem cells are responsible of the maintenance of structural and 

functional tissue integrity,  supporting the replacement of damaged or destroyed 

cells following to diseases of different origin and nature. Adult stem cells can be 

isolated from tissue samples obtained either by children or adults, can self-

renewal, proliferate for elevated number of passages,do not induce teratoma 

formation. Until a few years ago, it was commonly believed that stem cells found 

in adult tissues had a limited ability to transform into other cellular types present 

in organs to which they belong. Only recently it was shown that some adult stem 

cells can also generate cells pertinent to other organs, different by the one from 

which they derive.  As an example, hematopoietic stem cells of bone marrow, 

after transplant can differentiate into muscle [30]; stem cells derived from nervous 

tissue and muscle can reconstitute the hematopoietic system in a mouse model 

[31] [32]; bone marrow cells can repopulate the liver after transplantation or can 

be differentiated  into cells that express neuronal markers [33-34]. According to 

some authors this capacity, known with term 'plasticity' may be attributed in 

whole or in part to the phenomena of cell fusion [35]. Classifically, the main 

source of adult stem cells is bone marrow.  

 

2.3 Bone marrow mesenchymal stem cells (BM-MSC) 

The stromal fraction of bone marrow is essentially composed by adult 

mesenchymal stromal cells, which are further capable of self-renewal and able to 

differentiate into several cell types of the connective tissue (chondrocytes, 

adipocytes, and osteoblasts) as well as other cell types of ectodermal and 

endodermal origin. Friedenstein et al. were the first to demonstrate that bone 

marrow stromal cells, were able to generate clonal colonies of fibroblasts, 

therefore named colony forming units fibroblasts (CFU-F) [36]. 

Bone Marrow derived Mesenchymal Stem Cells (BM-MSC) are able to undergo 

ex vivo expansion, grow on plastic surfaces, and express a number of markers that 

are also shared by several differentiated phenotypes. In fact, it was demonstrated 

that BM-MSC express transcripts typical of osteoblasts, chondrocytes, endothelial 

cells (EC), epithelial cells, and neurons [37] . 
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BM-MSC reproducibly express CD44, CD73, CD90, CD105, CD166, other 

markers are: CD49e, CD51, CD54, CD59, CD71. According to general consensus 

is widely accepted that CD117 is not expressed in human BM-MSC, albeit being 

reported in other MSC populations [38]. Indeed, BM-MSC do not express 

markers typical of endothelial/hematopoietic cells such as CD31,CD14, CD34, 

CD45, CD79, CD86, and glycophorin A (CD235a) [39-40]. Several studies 

support the idea that  use of MSC in vivo should be safer than that of embryonic 

stem cells (ESC), because they have higher chromosomal stability and do not 

induce neoplasms formation in the recipient host  [41-42]. 

 

2.3.1 Differentiation potential of BM-MSC  

The bone marrow derived MSCs were defined pluripotent cells since capable to 

differentiate into various connective cellular types especially osteoblasts, 

chondrocytes, adipocytes.More recently some researchers have demonstrated that 

these cell can also differentiate  into nervous cells. 

First works on the osteogenic differentiation by BM-MSC demonstrated that BM-

MSC can grow in standard media and a colonial fraction of these cells express 

alkaline phosphatase [43]. Osteogenic differentiation by stem cells is 

accomplished in presence of factors that induce formation of mineralized bone 

such as dexamethasone, ascorbic acid and β-glycerophosphate [44]. In particular, 

dexamethasone induces the early stages of osteogenesis and the differentiation of 

MSCs into osteoblasts, associated to the increase in expression of alkaline 

phosphatase [45-46]. 

Ascorbic acid and β-glycerophosphate, are then essential for late stages of 

osteogenesis: formation and mineralization of the extracellular matrix [47]. 

BM-MSC differentiated into osteoblasts-like cells express markers such as 

osteocalcin [48] osteopontin and osteonectin.  

Similarly to osteogenic differentiation, adipogenic differentiation  requires the 

presence of specific inducers in the medium. Dexamethasone is one of the main 

inducers, its addition alone to the culture medium is sufficient to induce 

adipogenic differentiation in stromal mesenchymal cells [49]. Janderova and 

collaborators demonstrated that the simultaneous presence of dexamethasone, 
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insulin, indomethacin and isobutylmethylxanthine in the medium, is certainly a 

necessary condition to occur adipogenic differentiation [50]. 

Friedenstein et al. were the first to demonstrate the formation of cartilage tissue 

from bone marrow stromal cells. Several studies showed that BM-MSC 

differentiate into chondrocytes in presence of some members of the family of 

transforming growth factors such as β-IGF but also TGF-β1 and TGF-β3 [51-52]. 

Other inducers of chondrogenic differentiation are: BMP-2 [53], BMP-6 [51], 

IGF-1 [Insulin Growth Factor] [52], bFGF [54] and dexamethasone, although the 

latter is less efficient than TGF-β [55]. 

The MSCs can also differentiate to cardiomyocytes [56], and recently some 

studies  demonstrated their capacity to generate hepatocyte-like cells [57-58]. 

Despite adult human bone marrow is the most common MSC source, the number 

of cells useful for regenerative medicine applications is extremely low (0.001% 

to0.01%) [59]. Moreover, number of MSC from bone marrow significantly 

decreases with donor age [60]. Many researchers have therefore searched 

alternative sources of MSC in another tissue, with easier accessibility, such as 

extraembryonic tissues: placenta, amniotic membrane, and umbilical cord. 

 

 

3. Immunological properties: interactions between M SC and immune 

system  

In the last years, the interest for MSC in regenerative medicine is increased, due 

also to their immunomodulatory and hypo- immunogenicity properties. 

Many reports evidenced the capacity of MSC to interact with adaptive and innate 

immune system in a cell-contact mediated fashion but also by secretion of soluble  

factors [61]. Main immunological features of MSC consist in the inhibition of T-

cell proliferation and dendritic cell (DC) differentiation [62]. Some studies 

suggest that  MSC can modulate T-cell proliferation by their low expression of 

costimulatory molecules and the absence of class II HLA [61-63]. In addition, the 

immunosuppressive capacity of MSC may also be mediated by the secretion of 

soluble factors, and by the induction of T-cell anergy and regulatory T-cells 

(Tregs), with important consequences for post-infusion therapies. [64-65]. 
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Recent studies demonstrated that the secretion of key soluble factors is often a 

consequence of cross-talk between MSC and T-lymphocytes, therefore it cannot 

be considered a constitutive process [66].  

Several reports indicate that MSC express non classical type I HLAs such as 

HLA-G and its soluble form HLA-G5 [63-67-68], HLA-F and HLA-E. To date,  

HLA-E expression has been observed only in BM-MSC. These HLA molecules 

have been implicated in the induction of tolerance of NK cells toward self-cells, 

as well as in the process of tolerance of the mother’s immune system toward the 

semi-allogeneic embryo, which is a key feature of the embryo implantation 

process [69-70]. 

Di Nicola and colleagues suggested that transforming growth factor-β (TGF-β) 

and hepatocyte growth factor (HGF) are two possible mediators for suppression of 

T-cell proliferation in mixed lymphocyte reaction. The same researchers showed 

that T-lymphocytes inhibited by BM-MSC, are not in apoptotic, in fact they can 

be re-stimulated with cellular and humoral activators and therefore actively 

proliferate [61]. 

Recently, Ren and colleagues observed that the adhesion molecules ICAM-1 

(inflammatory cytokine-induced intercellular adhesion molecule-1) and VCAM-1 

(vascular cell adhesion molecule-1) are critical for the MSC immunosuppression 

on T cells, and are inducible by the parallel presence of IFN-γ and inflammatory 

cytokines (as IL-1 and TNF-α) [71].  

Anergy is another mechanism underlying BM-MSC mediated T-cell suppression. 

It was supposed that BM-MSC determine T-cell arrest in G0-G1 phase by 

inhibition of cyclin D2 expression [72].  MSC can induce immune suppression, 

stimulating the production of CD8+ regulatory T-cells that inhibit allogeneic 

lymphocyte proliferation [73] and interfering with dendritic cell (DC) 

differentiation maturation and activation [74].  

In addition, MSC inhibit B-cell proliferation and activation in a dose-dependent 

manner and modulate their differentiation, chemotactic abilities and antibody 

production [75]. 

 Recently, Németh and co-workers demonstrated that BM-MSC, in a murine 

sepsis model, actively reprogram macrophages through prostaglandin E2 (PGE2) 
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stimulation of the EP2 and EP4 receptors, Consequently,  reprogrammed 

macrophages produced more IL-10, reducing neutrophil infiltration in tissues 

(which is a component of multi-organ dysfunction) and increasing neutrophil 

numbers in the circulation leading to bacterial clearance [76].  

These data were confirmed from recent work of  Mei and collaborators. These 

researchers  demonstrated that MSC improve survival in sepsis by reducing 

inflammation, while enhancing bacterial clearance [77]. MSC express also IDO 

(indoleamine deoxygenase) and NO (nitric oxide), molecules involved into 

regulation of immune responses by MSC [78-79]. 

 

3.1 MSC and Tolerance induction  

Tolerance to self antigens is a very important  process for the correct development 

of the human immune system. A novel class of lymphocytes known as Treg 

(regulatory T) cells, takes  part in the peripheral and central tolerance 

mechanisms. These lymphocytes exert active suppression by cytokine expression 

or by promoting the so-called infectious tolerance [80]. 

HLA-G is a non-classical type Ib HLA molecule, characterized in trophoblast 

cells. It mediates tolerance towards the semi-allogeneic embryo together with 

other factors such as EPF (early pregnancy factor), HLA-E, etc [81-82]. 

HLA-G  is expressed in different MSC populations, such as BM-MSC [83] and 

WJ-MSC [63]. 

This molecule induces  the expansion of CD4+CD25+FoxP3+ Tregs which would 

contribute to the suppression of effector responses to alloantigens [80-83]. 

 HLA-G has two isoforms, the first one is a  membrane-bound isoform, implicated 

in direct cell-cell contact and the second one is shed from the cellular surface 

(HLA-G5). Furthermore recent reports suggested a possible cooperative interplay 

between different immunomodulatory molecules co-expressed by MSC.  

Recently, Diaz-Lagares and co-workers demonstrated the existence of a functional 

interplay between NO and HLA-G establishing an immune tolerance. HLA-G is a 

target of protein nitration, a reaction which is favored by increased NO in the 

extracellular space. Nitration of HLA-G renders it sensitive to metalloprotease-
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dependent shedding. Therefore, HLA-G should exert a tolerogenic action in a 

paracrine fashion [84]. 

Gonzalez et al demonstrated on experimental rheumatoid arthritis that adipose 

tissue (AT)-derived MSC were involved to the generation and activation of Treg 

cells [85]. Moreover, Madec and co-workers showed in an experimental model of 

diabetes, that MSC exerted a protective function on NOD mice by inducing 

regulatory T cells. 

In fact, MSC reduced the ability of diabetogenic T cells to infiltrate islets. 

Moreover, MSC suppressed both allogeneic and insulin-specific proliferative 

responses in vitro, an effect linked to IL-10 production by Treg cells [86]. 

In a report, Zhao and co-workers highlighted as in NOD mice autologous Tregs 

(which are functionally impaired by the underlying disease) can be modulated by 

co-culture with cord blood stem cells, reverting the autoimmunity via systemic 

and local immune modulation and promoting beta cells regeneration [87]. In 

conclusion all these data supported idea that MSC, could be a good candidates for 

engraft, because they could be evade an immune response and induce peripheral 

host tolerance. 

 

3.2 Contrasting evidence in vivo for use MSC 

Several data in the literature highlighted the ability of MSC to modulate immune 

cells proliferation and activation in vitro settings, instead few reports showed the 

potential generation of immune and memory responses by MSC when 

administered in vivo. This constitutes a serious issue in cellular therapy, since 

xenogenic and allogeneic MSC should be eliminated by the host immune system 

previous to exert any beneficial action.  

Data in the literature showed that they are being used in almost every disease 

setting where autoimmunity or tissue regeneration have to be targeted. Therefore, 

in reality one should not be surprised that in some model organisms (above all for 

xenogenic approaches) MSC fail to deliver the expected outcome when applied in 

vivo. According to the general opinion, negative results in MSC administration in 

vivo ought to provide instead key information on the molecular mechanisms of 

MSC-mediated immune modulation, above all in allogeneic settings, for which 
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most hopes are placed on MSC as a possible “off the shelf” therapy for a number 

of diseases. 

One key question which remains still to be solved is to define actual levels of 

immune privileges of MSC when transplanted in vivo. WJ-MSC should be 

recovered in high numbers and should auspicably be banked in parallel to cord 

blood units. This should lead to the increase of cell numbers available for both 

autologous and HLA-matched heterologous administration. On the other hand, 

once the immune mechanisms of the different MSC populations are fully 

characterized and validated in most in vivo settings, then the path to use of HLA-

mismatched heterologous cells will be opened. Griffin and co-workers reviewed 

the multiple aspects of allogeneic mesenchymal stem cell therapy. While 

examining the evidence for and against the use of MSC as immunoprivileged cells 

in vivo, the authors stressed the concept that a better understanding of the 

mechanisms of MSC-immune cell interactions in vivo is tantamount for the 

success of allogeneic therapy [80].  

In the literature contrasting reports exist on the maintenance of the immune 

privileges of MSC in vivo settings. Sundin and co-workers demonstrated that 

allogeneic MSC, transplanted in human patients undergoing HSCT 

(hematopoietic stem cells transplantation), didn’t induce production of 

alloantibodies in the host, while anti FCS (fetal calf serum)antibodies were 

detectable. These antibodies seemed however clinically insignificant, while  the 

important datum is that in vivo, in human subjects, no humoral response was 

detected against MSC [88]. 

In a parallel report, Rasmusson and colleagues showed that human BM-MSC 

were resistant to CTL (cytotoxic T lymphocytes), failing to induce IFN-γ or TNF-

α. Therefore the authors stated that only an “abortive” activation program should 

be induced in fully differentiated CTL [89]. Subsequently Morandi and co-

workers highlighted that human MSC can process and present viral or tumor 

antigens to specific CTL with only limited efficiency. This is due to defects in the 

antigenprocessing machinery, some of whose components are not expressed in 

MSC [90]. 
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In the literature exist a study that speaks about on the use of allogeneic and 

xenogenic MSC as effective in muscular regeneration. In particular the researcher 

Shabbir and his collaborators demonstrated that dystrophic hamsters treated with 

porcine or human MSC exhibited 1 month after infusion both muscle regeneration 

and attenuated oxidative stress [91]. 

Moreover, in a recent report, Quevedo and co-workers highlighted the restoration 

of cardiac function in chronic ischemic cardiomiopathy by long-term engraftment 

and the differentiative ability of allogeneic porcine MSC [92].  

Recently, Chen and co-workers demonstrated by  in  vivo experiments of 

excisional wound healing, that allogeneic and syngeneic BM-MSC had similar 

engraftment ability and resulted in enhanced wound healing, without effects on 

the numbers of CD45+ leukocytes and lymphocytes [93]. In contrast to these 

other reports have raised doubts about the general validity of this theory. 

Eliopoulos and co-workers claimed that allogeneic BM stromal cells were rejected 

by MHC class I and class II mismatched recipient mice [94].  

In another work, Nauta and co-workers further extended this concept suggesting 

that allogeneic MSC are immunogenic and stimulate donor graft rejection [95].  

For both papers, MSC characterization was not optimal, the cells used by 

Eliopoulos and colleagues were negative for CD90 expression and positive for 

both CD80 and class II MHC [94] therefore bearing key differences to standard 

bone marrow stromal cells immunophenotype. In experiments carried out from 

Nauta and co-workers, MSC can differentiate in three cellular lineage (although 

proved exclusively by histochemical methods), but their characterization was 

limited to CD106, CD45, CD14 and CD31 [95].  

In a more recent report, Prigozhina and colleagues further suggested that allo-

transplantation of MSC (again from mice) leads to loss of their in vitro 

immunosuppressive potential, failing to reduce GVHD (graft versus host disease) 

[96]. However, again some remarks should be made on the characterization 

process (based on positivity to four MSC markers alone) and on the isolation 

protocol from BM, placenta and WJ. In fact, initial passages in culture showed 

massive contamination with CD45+ cells (up to 93% in BM preparations, and 

64% in placenta preparations. Data in the literature speak about on the possible 
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application of human MSC in an animal model of disease. Chiavegato and co-

workers recently showed that human amniotic fluid-derived stem cells were 

rejected after transplantation in the myocardium of normal, ischemic, immuno-

suppressed or immuno-deficient rat. A more accurate analysis of the results 

reported allowed to establish that AF-derived cells were positive for both CD80 

and CD86 B7 co-stimulators, leading the authors to suppose that these cells 

should act as donor APC (antigen presenting cells) [97]. Again, the lack of an 

extended characterization in vitro of cells prior to their use in vivo led to 

disappointing in vivo results. The data obtained so far claim the need for caution 

in the administration of MSC for pre-clinical or clinical trials. The 

characterization of cells before implantation is a sine qua non which must be 

observed in all cases, since otherwise it would lead to contrasting data on the 

therapeutic efficacy of these cells. Moreover, we must consider that animal 

models (and in particular mouse) are not perfectly equal to the human counterpart. 

As we stated previously, there are differences between the immunomodulatory 

molecules expressed in vitro by human and mouse MSC. Indeed, Ren and co-

workers have recently highlighted that while immunosuppression in murine MSC 

is driven by iNOS-derived NO secretion, human and primate MSC use IDO as an 

immunosuppressant molecule [98]. 

This is a first proof that animal models do not always mirror exactly the 

conditions of the human disease or the behaviour of human cells. When 

examining the contrasting reports on the beneficial effects of MSC in GVHD, 

some reports clearly evidenced that in BM-transplant receiving mice, allogeneic 

BM-MSC failed to prevent GVHD in mice [99-100]. On the contrary, Ringden 

and colleagues demonstrated that allogeneic human BM-MSC contributed to 

alleviate GVHD in BM-transplant recipient patients [101]. Again the species-

specific differences between intrinsic immunomodulatory potency of MSC may 

explain the striking differences between  animal models and actual clinical effects 

in patients [100]. Moreover, it is expected that when human cells are being used, 

the extended characterization of markers expressed should be viewed as an 

additional “safety” feature to prevent immune reactions in the recipient host. 
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3.3 Allograft Rejection: MSC and Immunosuppressants  

Immunosuppressive therapy associated with organ or islet transplant is 

accompained and limited by a number of heavy side effects. Therefore MSC are 

ideally viewed as cellular therapy devices which should completely abrogate the 

need for immunosuppressants [102]. 

 Recently some  reports evidenced that MSC immune modulation should exert a 

beneficial effect on allogeneic islets transplanted in diabetic subjects. In fact, Ito 

and co-workers demonstrated that co-transplantation of islets and BM-MSC 

improved islets graft morphology and function. The authors hypothesized that this 

improvement was due to the promotion of graft revascularization by MSC [103]. 

In a parallel report, Li and co-workers co-transplanted allogeneic BM-MSC and 

allogeneic islets under the kidney capsule of diabetic mice. They found a 

reduction of rejection by MSC, which exerted suppressive effects acting on T 

lymphocyte subsets (both naïve and memory cells) and dendritic cells [104]. 

 In addition, Longoni and colleagues employed allogeneic and syngeneic rat MSC 

to determine the effects on rejection of islets administered through the portal vein. 

The authors showed normalization of glucose levels and low-grade rejections for 

up to 15 days, together with reduction of proinflammatory cytokines. Moreover, 

the authors demonstrated that the same effect was obtained with both syngeneic 

and allogeneic MSC, and at levels comparable to those achieved with standard 

immunosuppressive therapy [105]. Indeed, as MSC properties are being 

determined by researchers, it is clear that in some cases MSC and 

immunosuppressant drugs may have the same target (i.e. lymphocyte 

proliferation) [106]. Recently, Popp and co-workers reported that MSC should act 

synergistically with mycophenolate mofetil (MMF) to induce long term 

acceptance of solid organ allograft in a rat heart transplantation model [107]. In 

another report, Ge and colleagues demonstrated that MSC also synergize with 

rapamycin to attenuate autoimmune responses and promote cardiac allograft 

tolerance [108].  
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3.4 MSC-Derived Differentiated Cells: immune proper ties In Vitro and 

In Vivo  

The main feature of undifferentiated MSC consists in the hypoimmunogenicity, 

this could be  a key factor in the application of these cells as cellular therapy 

vectors. When the host reparative processes are limited, it provide to the use of 

cells capable to differentiate to mature cytotypes and replacing existing 

malfunctioned cells. Therefore the question whether differentiated MSC should 

lose their immunomodulatory features is of striking importance to decide whether 

to infuse differentiated cells alone or mixed with undifferentiated cells (which 

should protect them from immune system attacks). Le Blanc and colleagues, were 

first to define the HLA expression and the immunological properties of 

differentiated MSC compared to their undifferentiated counterpart. The 

researchers performed differentiation of MSC towards bone, cartilage or adipose, 

and the differentiated cells upregulated expression of HLA class I, but not class II. 

Moreover, with respect to control cells, IFN-γ-driven expression of HLA class II 

at the surface of cells was clearly diminished. In vitro alloreactivity was not seen 

for all of the differentiated cells, even after IFN-γ pre-treatment (besides, IFN-γ 

increased MSC suppression of mixed lymphocyte cultures) [109]. 

Recently, Liu and co-workers, using a novel in vivo model of osteogenesis, 

demonstrated that differentiated allogeneic MSC maintained their 

immunomodulatory potential and were detectable 4 weeks post-implant in the 

regenerated tissue, where they secreted bone matrix proteins, without evidence of 

cell clearance. No evidence of the induction of a frank memory response was 

obtained by the authors. Indeed, after in vivo implantation, MHC II expression 

was detectable even if IFN-γ was not the critical factor for this expression [110]. 

In a recent report, Zheng and coworkers highlighted, in rheumatoid arthritis (RA), 

the capacity  both allogeneic MSC and MSC-derived chondrocytes to blocked the 

response of type II collagen-reactive T cells isolated from RA patients, and the 

suppressive effects mediated by TGFβ1 [111]. Another in vitro set of experiments 

published by Chen and co-workers, examined the xenogenic immunogenicity of 

rat MSC, differentiated into bone, adipose and cartilage. In particular these 

researchers demonstrated that xenogenic MSC-derived chondrocytes were 
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chemotactic to human dendritic cells (DC), and upon differentiation upregulated 

the two costimulatory B7 molecules (CD80 and CD86, which were absent in 

untreated cells), leading to DC maturation [112].  

 Therefore, rat MSC differentiated towards a chondrogenic fate didn’t show the 

same immunomodulatory features as their human counterpart, while osteogenic 

and adipogenic cells maintained their immune privilege. A higher number of 

studies, which still lack for the most complex differentiation protocols (e.g. 

hepatocytes or beta cells), are required to definitively shed light on the immune 

properties of differentiated MSC. This valuable  fruitfully used to design better 

transplantation strategies which should take into account the expected reactions 

that the recipient could manifest against donor cells.  

 

3.5 MSC and inflammation targeting 

Several reports showed that MSC after systemic infusion have the tendency to 

migrate to sites of tissue injury and inflammation, and initially accumulate there 

[113]. 

Therefore it was supposed that inflammatory sites should also be the sites where 

MSC are scavenged more easily by resident and migrating phagocytes. There is 

growing evidence that MSC plays a role in reducing inflammation in vitro and in 

vivo. Neurological disorders seem to benefit from MSC treatments based on the 

anti-inflammatory and oxidative stress-dampening properties of MSC. In 

particular, Kemp and co-workers recently described the secretion of SOD3 

(superoxide dismutase 3) by MSC. SOD3 exerts a direct antioxidant activity, 

attenuating tissue damage and reducing inflammation, and thus could have a 

neuroprotective role [114]. 

Interestingly, the authors showed that SOD3 secretion by BM-MSC was 

upregulated synergistically by inflammatory stimuli (e.g. TNFα and IFNγ), rather 

than by the exposure of cells to elevated ROS (reactive oxygen species) 

concentrations. Moreover, Liao and colleagues demonstrated that human 

umbilical cord-derived MSC exerted anti-inflammatory and pro-angiogenic 

effects in a rat model of intracerebral haemorrhage [115]. 



27 
 

 Further reports of MSC action in inflammatory in vivo settings indicated that 

MSC may reduce inflammation in obstructive sleep apnea [116], 

ischemia/reperfusion induced acute renal failure [117], liver fibrosis [118], 

experimental colitis [119], asthma [120], acute myocarditis [121], and myocardial 

infarction [122]. In addition, one of the first reports of use of umbilical cord 

blood-derived mononuclear cells in diabetes pointed out that NOD mice treated 

with UCB mononuclear cells normalized blood glucose levels and increased their 

lifespan. In treated mice a reduction of insulitis was also detected [123]. Another 

key question is the role of inflammatory cytokines in the regulation of the 

differentiation potential of MSC, and the in vivo effects of such interactions. 

Wehling and colleagues, recently, demonstrated that chondrogenesis in human 

MSC was inhibited by both IL-1β and TNF-α [124]. This study pointed out that in 

inflamed joints the cellular reparative mechanisms may fail if not supported by the 

contemporary administration of specific antagonists of these inflammatory 

cytokines. These issues arose from immature cells implantation in inflamed 

cartilage, and would be avoided if the differentiation process was carried out pre-

implantation. The accumulated evidence strongly suggests not only that MSC 

preferentially home in inflamed tissues, but that they also can attenuate 

inflammation by the secretion of a number of mediators. Their usefulness has 

been demonstrated in several in vivo models of acute and chronic inflammatory 

diseases. 
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4. Features of Human umbilical cord  

The umbilical cord is the only organ that dies when life begins. It is an 

extraembryonic formation that form by fifth week of development and its function 

consists to protect the vessels that transport oxygen and nutrients between mother 

and fetus. By the end of the third week of development the embryo is attached to 

placenta via a connecting stalk (fig.3). At approximately 25 days the yolk sac 

forms and by 28 days at the level of the anterior wall of the embryo, the yolk sac 

is pinched down to a vitelline duct, which is surrounded by a primitive umbilical 

ring. By the end of the 5th week the primitive umbilical ring contains 1) a 

connecting stalk within which passes the allantois (primitive excretory duct), two 

umbilical arteries and one vein; 2) the vitelline duct (yolk sac stalk); and 3) a 

canal which connects the intra- and extraembryonic coelomic cavities. By the 10th 

week the gastrointestinal tract has developed and protrudes through the umbilical 

ring to form a physiologically normal herniation into the umbilical cord . 

Normally these loops of bowel retract by the end of the third month. [from 

encyclopedia reproduction Harvey J. Kliman, M.D., Ph.D.Yale University School 

of Medicin].  

At term gestation, the umbilical cord weighs around 40g and its length is 

approximately 60-65cm. It is covered by layers of squamous-cubic epithelial cells 

that constitute the umbilical cord epithelium (UCE). It is supposed that UCE 

derives from amniotic epithelium. Mizoguchi et al. demonstrated that the cells of 

epithelium express not only mucous epithelial keratins , as found in the amniotic 

epithelium, but also stratified epithelial keratins and cornified cell envelope 

(CCE) associated proteins [125]. The inner tissue architecture of the umbilical 

cord normally consists two arteries and one vein embedded within a matrix of 

mucous connective tissue composed by fibroblastic-like cells, miofibroblasts and 

occasional mast cells and by loose substance rich in proteoglycans. In the 

umbilical cord there are neither capillaries nor lymphatics.  
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4.1 Wharton’s Jelly : structure and function 

The most abundant component of extracellular matrix of the umbilical cord is 

Wharton's Jelly, a connective mucous tissue composed mainly by the amorphous 

component rich in glicosaminoglycans (GAGs) and mainly in hyaluronic acid 

(HA) and proteoglycans, with a few collagen fibres. The main role of Wharton's 

jelly is to prevent compression, torsion and bending of the vessels, which provide 

two-way flow of blood between the maternal and fetal circulation. [126]. 

In the Wharton’s Jelly exist two cellular types: myofibroblasts and fibroblast-like 

cells. The first ones are not defined as either as fibroblasts or smooth muscle cells 

despite have muscle-specific cytoskeletal filaments. The term of “myofibroblast” 

was assigned because these stromal cells are positive for vimentin [127], a marker 

typical of fibroblasts, and desmin [126], a marker of muscle cells. The fibroblast-

like cells instead have similar features to the fibroblasts, they produce collagen 

and other extracellular matrix components.  

Several studies demonstrated that Wharton jelly cells (WJC) support ex vivo 

hematopoietic expansion [128] and in vivo engraftment of hematopoietic stem 

cells [129].  

Weiss and collaborators showed that WJC express osteopontin protein [130],  a 

major component of the hematopoietic stem cell niche and a regulator of 

hematopoietic progenitor cells [131]. 

Raio  et al. highlighted that WJC are source of hyaluronic acid  (HA), another 

main element of the hematopoietic stem cell niche [132]. 

Therefore, both the expression of the osteopontin gene and the presence of HA 

confirm that WJC are facilitators of hematopoietic expansion. 

WJC secrete cytokines similar to those produced by BM-MSC, moreover 

synthesize granulocyte-macrophage colony stimulating factor (GM-CSF) and 

granulocyte colony stimulating factor (G-CSF).  

WJC, conversely to BM-MSC, are slower in the differentiation towards 

adipocytes, have a higher frequency of CFU-F, feature a shorter doubling time 

[133], and can be isolated with 100% success. 
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4.2 Phenotypical characterization of Wharton’s Jell y mesenchymal 

stem cells 

WJ-derived mesenchymal stem cells (WJ-MSC) are multipotent stem cells, they 

are plastic adherent, grow robustly, can be deep-frozen for long-term storage, and 

can be engineered to express exogenous proteins. Studies have demonstrated that 

WJC have faster and greater ex vivo expansion capabilities than BM-MSC. This 

may in part be due to the expression of telomerase by WJC [36],  paralleled by the 

maintenance of long telomeres by cultured cells at high passages [63- 134]. 

WJ-MSC usually show a phenotype which resembles that of BM-MSC. 

Immunocytochemistry experiments highlighted that WJ-MSC lack expression of 

CD14, CD31, CD33, CD34, CD45, but not CD56 conversely to BM-MSC [135]. 

Moreover, both BM-derived and WJ-derived MSC do not express HLA-DR [40-

130-136-137]. On the other hand, WJ-MSC express at protein level: CD73, CD90, 

CD105, HLA class I [138], as well as CD10, CD13, CD29, CD44, CD49e, and 

CD166 [38-63-130-139-140]; all of them were also characterized as BM-MSC 

markers [130-141-142]. WJ-MSC express mesodermal markers such as vimentin 

and α-smooth muscle actin. Also CD117, the receptor for the stem cell factor 

(SCF), a typical marker of the hematopoietic stem cell lineage, has been 

demonstrated in WJ-MSC. In addition , a subset of WJ-MSC expresses nestin 

[63], an intermediate filament of the neuroectodermal cellular lineage expressed 

as a precursor of neurofilaments, also observed in pancreatic progenitors capable 

of differentiating toward β cells, as well as in human and rat BM-MSC 

populations [143-144]. 

Several recent reports were carried out to value the similarities (and differences) 

of WJ-MSC with respect to other MSC populations. Recently it was showed that 

WJ-MSC express, at mRNA and protein levels, GATA-4, GATA-5, GATA-6 

[63], transcription factors involved in different developmental pathways of 

mesoderm- and endoderm-derived organs. Previously, only GATA-4 expression 

had been reported in BM-MSC [145]. La Rocca et al demonstrated that WJ-MSC 

express connexin-43 [63], a molecule expressed typically in embryonic and 

myocardial cells and responsible for the formation of intercellular gap junctions. 

Recent reports indicate that Cx-43 expression along the myocardial differentiation 
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pathway increases in a stage-related manner, and is correlated to proliferation 

arrest and acquisition of a mature phenotype [146]. Moreover, WJ-MSC are 

capable to undergo self-renewal, a key feature of all MSC, maintaining their 

replicative potential together with their undifferentiated state. In this respect, it 

was reported the expression of Nanog and Oct3/4A, factors responsible for 

maintaining long-term self-renewal and the undifferentiated state also in ESC. 

WJ-MSC isolated by nonenzymatic methods express a subset of epithelial 

cytokeratins (CK) [147] such as  CK-8, CK-18, CK-19, while CK-7 was not 

detected [63]. On the other hand, only CK-18 and CK-19 expression have been 

demonstrated in BM-MSC [148].  

In addition, the expression of neuroectodermal markers such as glial fibrillar 

acidic protein (GFAP) and neuron-specific enolase (NSE) was described in earlier 

reports for both WJ-MSC and BM-MSC [144-149-150-151]. 

Umbilical cord derived cells can differentiate toward endoderm-derived organs, 

hepatocyte nuclear factor 4α (HNF-4α) expression by WJ-MSC, in fact might 

suggest a possible role in regeneration of key cell types such as hepatocytes and 

pancreatic endocrine cells [63]. In particular, some studies demonstrated that 

HNF-4α is dispensable for early endodermal specification, but essential for 

maintaining the differentiated hepatocyte expression pattern [152]. 
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4.3 Differentiation capacity of WJ-MSC 

WJ-MSC are multipotent cells, capable of giving rise to different mature 

cytotypes . Most studies agree in  that WJ-MSC can be successfully induced 

toward connective tissue phenotypes (osteoblasts, adipocytes, and chondrocytes), 

thus opening new paths in regenerative medicine applications to the 

musculoskeletal system. This trilineage differentiation potential of WJ-MSC was 

considered part of the minimal criteria stated in 2006 to uniformly define MSC 

properties [153]. The effectiveness of the differentiation of MSC toward the 

mature connective cytotypes is defined by phenotypical and morphological 

criteria.  

The standardized  protocols to obtain osteogenic differentiation of MSC  [47-154] 

resulted in the acquisition of a differentiated phenotype that may be confirmed by 

specific histological stains for extracellular calcium, such as Alizarin Red S and 

Von Kossa [63-155]. Moreover, differentiated MSC should express specific 

proteins, such as osteonectin, osteocalcin, periostin, runx2 [156.]. After 

adipogenic differentiation protocols [49-50], differentiated adipocytes should be 

demonstrated by lipid-specific histological stains such as Oil Red O [50-63]. In 

addition, newly differentiated adipocytes should express specific proteins such as 

adiponectin, leptin, and PPAR-γ. When chondrogenic differentiation of MSC is 

performed by standardized methods [52-157], the differentiated cells can be 

specifically stained by Alcian blue or Safranin O-Fast Green [158]. In addition, 

the acquisition of the chondrocyte phenotype can be demonstrated by the 

expression of specific proteins such as collagen type II, cartilage oligomeric 

matrix protein (COMP), and aggrecan [159]. 

 Neurogenic differentiation. WJC cultured in medium supplemented with basic 

fibroblast growth factor (bFGF), butylated hydroxyanisole, and dimethyl 

sulfoxide (DMSO), with low serum percentages, have been successfully induced 

to differentiate into glial cells and neurons [150]. The authors described the 

expression of neural markers (as NSE and GFAP) also by undifferentiated cells, 

while differentiated neurons and glial cells overexpressed these molecules and 

began expressing more specifi c markers for catecholaminergic neurons. More 

recently, Weiss and colleagues confirmed these data on human umbilical cord 
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matrix stem cells, extending their relevance by transplantation of cells in vivo in a 

hemiparkinsonian rat model [130]. 

Myocardiocyte differentiation. Myocardial repair via heterologous stem cells is a 

fascinating area of stem cells research. Besides other MSC populations, recent 

experiments suggest that also WJ-derived cells can play a role in myocardial 

regeneration. The first report on the possibility that WJC can differentiate into 

myocardiocytes came from Wang et al. After being treated with 5-azacytidine for 

3 weeks, WJC expressed typical myocardial markers such as cardiac troponin I, 

connexin-43, and desmin, and exhibited myocardial morphology [136]. While 5-

azacytidine treatment is based on demethylation of DNA, being therefore an 

unspecific differentiation signal to cells, these experiments suggested that WJC 

should also be of prospective utility for regenerative medicine applications in 

heart diseases. More recently, Wu et al. reported a differentiation protocol of WJ-

derived stem cells in which an induction phase with 5-azacytidine treatment (24 h) 

was followed by 4 weeks culture in medium supplemented with bFGF and 

platelet-derived growth factor (PDGF). The authors showed that differentiated 

cells expressed in vitro cardiac myosin  injected into the viable myocardium 

bordering an experimental infarcted area, were incorporated in the vasculature and 

occasionally were positive for cTnT [160]. Other reports claimed a supportive role 

for several MSC populations in terms of suppression of infl ammation in acute 

myocardial infarction models, microenvironment-driven direct differentiation, as 

well as paracrine effects on the repairing myocardium [161-162]. 

Skeletal muscle differentiation. Conconi and colleagues demonstrated that WJC 

are able to give rise to skeletal muscle cells. When cultured in myogenic medium, 

WJC expressed myogenic factor-5 (Myf-5) [163]. 

Endothelial differentiation. As demonstrated previously for human ESC [164], 

human WJC can be differentiated into EC after culturing in low serum medium 

supplemented with vascular endothelial growth factor (VEGF) and bFGF [50]. 

In the evaluation of successful differentiation toward EC, phenotypical and 

morphological characterization criteria should include typical markers of 

endothelial phenotype such as CD31, vWF, eNOS [164-165]. Indeed, the success 

of differentiation was confirmed by the expression of CD34 and CD31, as well as 
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by demonstrating acetylated low-density lipoprotein (Ac-LDL) uptake. Moreover, 

in vivo experiments confirmed that UC-derived cells differentiated toward EC in 

an ischemia/reperfusion model [50]. More recently, Chen and colleagues [166] 

comparatively analyzed the differentiation potential of MSC isolated from 

umbilical cord matrix and bone marrow. These experiments provided evidence 

that UC-MSC responded to the inductive stimuli expressing vascular-specific 

molecules at higher levels compared to BM-MSC. Moreover, in vitro 

angiogenesis assays demonstrated that mean tubule length, area, and diameter 

were higher in UC-MSC than BM-MSC, leading the authors to hypothesize that 

WJ-derived cells are more effective in endothelial differentiation than bone 

marrow derived cells. 
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4.4 Hepatogenic differentiation potential of WJ-MSC  

Several acute and chronic liver pathologies should benefit from cell-mediated 

liver repopulation strategies, which can restore liver functions when self-

repopulation is compromised, and prospectively avoid whole organ 

transplantation. Hepatocytes and liver progenitor cells normally respond to 

variations in the microenvironment by changing the gene expression and re-

entering the cell cycle, thus providing reserve cells to replace damaged ones 

[167]. 

Independently from the starting stem cells population used, some minimal criteria 

must be fulfilled to ensure therapeutic success: in vitro expandability, extensive 

expression of hepatocyte functions, and minimal or absent immunogenicity and 

tumorigenicity in the recipient host [168-169-170]. A number of recent studies 

show that extrahepatic mesenchymal stem cells can differentiate into endoderm-

derived cellular lineages such as hepatocytes. Several hepatic differentiation 

protocols of MSC have been published in recent years, based on cellular 

stimulation with exogenous cytokines/growth factors, co-culture with fetal or 

adult hepatocytes, challenging with conditioned media from cultured hepatocytes, 

2- or 3-dimensional matrices to favor differentiation. The hepatocyte 

differentiation protocols reported in the literature are based on the administration, 

to cultured cells, of a mixture of inducer agents, in order to recapitulate the 

developmental sequence of processes involved in the specification and 

differentiation of mature hepatocytes. Most used factors are hepatocyte growth 

factor (HGF), fibroblast growth factor (FGFs; eg, FGF-2 and FGF-4), usually 

needed for the fi rst inductive phase, and oncostatin M (OSM), involved in the 

final differentiation phase [171]. Differentiation protocols should be based on the 

parallel administration of these factors [172], or follow a stepwise process [173]. 

Further supplements used in the differentiation protocols are insulin–transferrin–

sodium selenite (ITS), dexamethasone at submicromolar concentrations, and 

epidermal growth factor (EGF). These factors should be applied to cells growing 

in a monolayer culture [172], in 3D scaffolds [174], or in co-culture systems with 

fetal or adult hepatocytes [175]. Most differentiation experiments have been 

performed using low (1%) serum culture media. The panel of markers used to 
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characterize the extent of differentiation of MSC to hepatocyte-like cells is 

extremely wide. While some studies refer to one marker alone, or a small number 

of them [172], most published data refer to multiple markers, whose expression is 

assessed at both the protein and mRNA levels [176]. One of the most widely used 

markers is albumin secretion, together with the evaluation of α-fetoprotein (AFP), 

metabolic enzymes, and cytoskeletal proteins. In particular, regarding the latter 

group, a “cytokeratin switch” can be observed as a later process in the maturation 

of hepatocytes from bipotential progenitors. In fact, the bipotential hepatoblasts 

express both CK-18 and CK-19, while mature hepatocytes feature CK-18 alone, 

and CK-19 specifically identifies colangiocytes populations [147-168-177-178]. 

It is important to note that most of these “in vitro” markers are useful for 

characterizing differentiated cells, but cannot constitute reliable evidence on their 

own. In fact, AFP and transthyretin (TTR) are expressed not only in liver, but also 

by extraembryonic cells in the yolk sac [168]. In addition, in a very recent study, 

Zemel and collaborators [179] evidenced that naïve MSC from adipose tissue 

expressed some of the “hepato-specific” markers, for example AFP, CK-18, CK-

19, and HNF-4α, all known as early-expressed genes in the liver. This confirms 

earlier observations by our group on WJC-derived MSC [63]. In fact, we 

demonstrated that WJ-MSC express, when kept undifferentiated, CK-18, CK-19, 

and HNF-4α. Taken together, these recent data support the notion that, while the 

markers used are actually expressed in the mature liver or during development, 

their expressional pattern is far from stringent, and cannot be used as the sole 

proof of a successful differentiation. Nevertheless, the presence and activity of 

key liver-specific transcription factors (eg, HNF-4α, HNF-3γ, HNF-6, GATA-6) 

needs to be consistently checked in differentiation protocols, to prove that a 

genetic reprogramming of cells is actually occurring, rather than simply cellular 

mimicry [152-180-181]. There is growing evidence that, apart from expressing 

specific markers, differentiated cells should carry out the functional activities of 

mature hepatocytes, which will be determinant in the supportive functions needed 

for regenerative medicine applications. These enzymatic functions should also be 

considered as more reliable “markers” of the successful differentiation of MSC. 

Basic metabolic activities of hepatocytes, investigated in different works, include: 
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glycogen storage (eg, visualized by PAS staining procedure) [172-182]; ammonia 

metabolization and urea production (determined by colorimetric or fluorometric 

assays) [176-183-184]; selective uptake of vital stains (eg, indocyanine green, 

which is uptaken exclusively by hepatocytes) [185]; secretion of plasma proteins 

(eg, albumin, determined by ELISA) [186-187]. 

Several works have shown the use of one or more of these assays as the formal 

proof of differentiation. Indeed, further metabolic functions can be evaluated, as 

shown for different cytochrome 450 (CYP450)-dependent activities in response to 

chemical inducers. Recent data from Campard and colleagues [176] showed that 

WJ-derived MSC, differentiated with a multistep protocol, express functional 

inducible CYP3A4.  
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4.5 Hepatogenic differentiation ability of WJ-MSC w ith respect to 

other MSC populations 

Among the different extrahepatic sources of differentiated cells to be used for 

regenerative medicine applications (reviewed in ref. [168], MSC are emerging as 

a useful cytotype, as different reports published in the last few years have 

indicated.. 

Bone marrow mesenchymal stem cells. Lee and colleagues, for the fi rst time, 

comparatively showed that MSC derived from different sources such as bone 

marrow and umbilical cord blood (UCB) can differentiate into hepatocyte-like 

cells, when cultured with appropriate inductive factors. The differentiated cells 

showed functional characteristics of liver cells including albumin production, 

glycogen storage, urea secretion, LDL uptake, and phenobarbital-inducible 

cytochrome P450 activity [57] (see table 1). 

 More recently, Lange et al. demonstrated that rat BM-MSC, co-cultured with 

fetal liver cells, differentiated toward hepatocyte- like cells. This study suggested 

also that the presence of MSC in co-culture generated an optimal 

microenvironment for the expansion and differentiation of fetal liver cells. 

Interestingly, differentiated rat BM-MSC expressed liver-specific genes like 

albumin, AFP, and CK-18 only over the first 2 weeks of co-culture, while in the 

subsequent culture period these cells lost hepatocyte-specific gene expression 

[58]. 

Deng and coworkers suggested a possible role of liver stellate cells (LSC) in the 

differentiation of BM-MSC toward hepatocyte-like cells. This study showed that 

Kupffer cell activated LSC could induce the differentiation of BM-MSC in 

hepatocyte-like cells. The authors demonstrated that differentiation of BM-MSC 

was triggered by HGF secretion by activated LSC, rather than by direct cell–cell 

contact [188]. Lysy and colleagues further investigated, with in vitro and in vivo 

experiments, the hepatocyte differentiation ability of BM-MSC, evaluating the 

expression of hepatospecific markers and mature hepatic functions. The authors 

observed that in vitro the cells presented a chimerical phenotype after hepatocyte 

differentiation of BM-MSC, bearing both mesenchymal and hepatic markers. 

Interestingly, in vivo MSC-derived hepatocyte-like cells lost the chimerical 
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phenotype, maintaining the expression of hepatic markers [189]. These data 

reinforced the concept that the liver microenvironment triggers a definite 

differentiation pathway toward hepatocytes. More recently, Kazemnejad and 

colleagues reported the use of a 3-dimensional biocompatible nanofi brous 

scaffold to enhance hepatocyte differentiation of BM-MSC. The cells, grown in 

2D and 3D conditions, were stimulated to differentiate by HGF, dexamethasone, 

and OSM for 3 weeks. The differentiated cells grown on 3D matrix showed 

increased expression of albumin, as well as transferrin, urea, glutamic oxaloacetic 

transaminase (GOT), and glutamic pyruvate transaminase (GPT) with respect to 

cells differentiated on a 2D culture system, therefore evidencing the influence of a 

biomimetic microenvironment in the differentiation process of MSC toward 

hepatocyte-like cells [187]. 

Bone marrow hematopoietic stem cells. Interestingly, contrasting reports indicate 

that bone marrow-derived adult hematopoietic stem cells (BM-HSC) can also 

undergo differentiation toward hepatocytes in rodents. In particular, Khurana and 

Mukhopadhyay demonstrated that HSCderived from bone marrow differentiated 

into hepatocytes when cultured in the presence of sera from mice with damaged 

liver [190]. In a contrasting report, Cho and colleagues recently compared the 

potential for regeneration of injured liver of both BM-MSC and BM-HSC. The 

authors demonstrated that only BM-MSC expressed AFP and CK-19, and showed 

migratory specificity toward CCl4-injured livers [191]. The shortness of 

differentiation protocol applied and the evaluation of few markers of hepatic 

differentiation suggest caution in interpreting the results and call attention to the 

need for further experiments to evaluate the ability of BM-HSC to exert liver-

regenerating effects. 

Adipose tissue-derived MSC. Several factors, such as ease of sourcing, the 

possibility to grow autologous cells fortransplant, and the differentiative abilities 

in vitro, favor the development of research on adipose tissue-derived MSC. Apart 

from the classical mesoderm-derived tissues (bone, cartilage, fat), adipose tissue-

derived MSC have been shown to be able to differentiate toward both ectoderm-

derived and endoderm-derived tissues [178-192] . 
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Interestingly, many articles pointed out that MSC from adipose tissue present a 

differentiation potential similar to what is observed for BM-MSC. In particular, 

Seo and coworkers demonstrated that human adipose tissue-derived stem cells 

(hADSC) could differentiate into hepatocyte-like cells by exposing cells to 

various cytokines. In vitro, differentiated cells become able to uptake LDL and 

produce urea, functions typical of hepatocytes. In vivo experiments further 

demonstrated that after transplantation of differentiated hADSC in SCID mice, the 

number of albumin-expressing cells was higher than that achieved with 

undifferentiated cells [184]. More recently, Taléns-Visconti and collaborators 

carried out a study comparing BM-MSC and hADSC [173]. They highlighted that 

BM-MSC and ADSC showed a similar expression pattern of surface protein 

marker, as well as comparable hepatic differentiation potential. They also 

demonstrated for the first time that differentiated ADSC expressed drug-

metabolizing enzymes such as CYP2E1 and CYP3A4. In a recent report, Banas 

and colleagues showed that ADSC can be differentiated in vitro toward 

hepatocyte-like cells by a very short induction protocol, ameliorating liver 

functions when transplanted in vivo [178]. In a more recent work, Aurich and 

coworkers performed experiments in which adipose tissue-derived MSC (AT-

MSC) were transplanted into liver of immunodefi cient Pfp/Rag2 −/− mice with 

versus without prior in vitro hepatocyte differentiation. The results demonstrated 

that human cells expressed albumin and HepPar1. Moreover, the authors showed 

that pre-differentiated AT-MSC underwent a more efficient engraftment of cells 

with respect to undifferentiated cells [193]. 

Umbilical cord blood-derived MSC. Kakinuma and coworkers demonstrated that 

UCB cells can be a source of transplantable hepatocyte-like cells. When 

investigating the phenotypical changes occurring in differentiated cells in vivo, 

the authors demonstrated the presence of human albumin in the sera of recipient 

mice [194]. 

More recently, Hong and colleagues showed further supportive in vitro 

experimental data of the hepatic differentiation potential of human UCB-derived 

mesenchymal stem cells (UCB-MSC). The functional properties of differentiated 

UCB-MSC were evaluated in terms of their ability to uptake low-density 
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lipoprotein (LDL), while the expression of some hepatocyte-specific markers was 

assessed by RT-PCR and, at the protein level, by western blotting and 

immunofluorescence [195]. In addition, Kang and coworkers demonstrated that 

UCB-MSC should be differentiated toward urea-producing hepatocyte-like cells 

that were morphologically similar to the differentiated cells and were also able to 

store glycogen [172]. 

In a recent report, Jung and colleagues provided in vivo data on the effects of 

UCB-MSC transplantation in a cirrhotic rat model. The authors demonstrated that 

undifferentiated UCB-MSC, infused into CCl4-injured rats, homed to injured 

livers, expressed human albumin and AFP within 4 weeks after transplantation, 

and favored the recovery of liver function as demonstrated by the decrease of 

serum cirrhosis markers alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST), as well as by the increase in serum total proteins and 

albumin. Moreover, both markers (α-smooth muscle actin and transforming 

growth factor β1) and extent of fibrosis were reduced in animals that received the 

MSC infusion [196]. Taken collectively, these data suggest that UCB-MSC could 

be a source of cells to be used in regenerative medicine applications for liver 

diseases, though more in vivo studies are required confirming the integration of 

differentiated cells in recipient organs, as well as the maintenance of hepatocyte-

specific gene expression in vivo. 

Extraembryonic tissue-derived MSC: Wharton’s jelly. As stated earlier, bone 

marrow is the most acknowledged source of MSC, but it has been demonstrated 

that the number of MSC decrease depending on several donor-related parameters. 

Therefore, researchers have sought alternative sources such as extraembryonic 

tissues (amniotic membrane, umbilical cord, placenta). These constitute a 

practically unlimited source of rapidly dividing and easily expandable cells, 

without ethical issues, and with the possibility to reach a higher rate of 

compatibility between donor and recipient. Also in the field of hepatic 

regeneration, enormous progress has been made, rendering these cellular 

populations a promising candidate for liver-targeted regenerative medicine. 

Very recent data showed that other source of MSC that can undergo hepatocyte 

differentiation is umbilical cord matrix. Campard and coworkers showed that 
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umbilical cord matrix stem cell (UC-MSC) can differentiate toward endodermal 

cellular lineages. UC-MSC were cultured in a medium supplemented with factors 

promoting hepatic differentiation [176]. The initial population of UC-MSC 

expressed CK-8, CK-18, CK-19, was negative for CK-7, expressed G6Pase, 

PEPCK, α-1-antitrypsin (α-1AT), tryptophan 2,3-dioxygenase (TDO), and lacked 

HepPar1 positivity and HNF-4α or CYP3A4 expression. The UC-MSC-derived 

hepatocyte-like cells increasingly expressed markers such as tyrosine 

aminotransferase (TAT) and TDO, but remained negative for HNF-4 and HepPar1 

antibody, therefore questioning the attainment of a mature hepatocyte phenotype, 

and leaving room for further functional improvements of the protocol [197]. 

Nevertheless, functional assays showed that differentiated cells responded well to 

the differentiative stimulus, being able to store glycogen, producing urea and 

possessing active hepato-specific enzymes (CYP3A4, G6Pase). Moreover, in vivo 

experiments showed that after transplantation of undifferentiated UC-MSC in 

liver of SCID mice with partial hepatectomy, the engrafted cells expressed human 

hepatic markers such as albumin and AFP, after 2, 4, and 6 weeks following 

transplantation. These data strongly suggest that also umbilical cord matrix-

derived cells could be of great interest for the regenerative medicine approaches in 

liver diseases [176]. Interestingly, more recent data suggest a supportive role of 

undifferentiated human umbilical mesenchymal stem cells (WJ-MSC) in rescuing 

injured liver functions and reducing fibrosis in vivo. Tsai and coworkers infused 

undifferentiated WJ-MSC to rats which underwent CCl4 liver injury for 4 weeks. 

Then the rats were administrated with CCl4 for 2 more weeks. Compared with 

control group, WJ-MSC infused rats showed lower levels of serum GOT and 

GPT, as well as a reduction of α-SMA and TGFβ1 in the injured livers, which 

correlated with an overall reduction of liver fibrosis [118]. These data support the 

hypothesis that, even in the absence of an actual transdifferentiation process, MSC 

from umbilical cord could exert a supportive action in increasing the functional 

recovery of recipient livers, perhaps stimulating the differentiation of endogenous 

parenchymal cells and promoting degradation of fibrous matrix [198]. In addition, 

recent data from another work by Yan and collaborators demonstrated in vivo 

engraftment of UC-derived MSC in livers of CCl4-injured mice by the expression 
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of human AFP, TDO, and CK-18 14 and 21 days after cellular administration. 

Moreover, the authors demonstrated that engraftment of undifferentiated UC-

MSC was followed by a decrease of hepatocytes apoptosis and an  increase of 

hepatocytes proliferation, with respect to the control group [199]. More recently, 

Zhang and coworkers [200] reported the results of an in vitro study on UC-MSC 

differentiation by a one-step protocol using HGF and FGF-4. The differentiated 

cells expressed liver-specific markers (albumin and AFP), stored glycogen, and 

showed uptake of LDL, thus reinforcing the concept of their usefulness as cellular 

therapy tools for liver diseases. In a very recent report, Zhao and collaborators 

[201] demonstrated that WJ-MSC maintain in vitro hypoimmunogenicity even 

after a hepatic differentiation protocol has been performed. In fact, differentiated 

hepatocyte-like cells, apart from expressing hepatocyte markers like G6P and TO 

in vitro, and albumin in vivo, did not express HLA-DR following 2 or 4 weeks 

differentiation in vitro, therefore demonstrating that the differentiative process did 

not exert any change on the immunological features of these cells. This datum is 

of key importance since it provides a molecular confirmation of the low-

immunogenic phenotype of WJ-MSC in vivo. 

Extraembryonic tissue-derived MSC: placenta. Chien et al. attempted to 

demonstrate that human placenta-derived multipotent cells (PDMC) can 

differentiate into endodermal hepatic lineage cells. After culture in medium 

supplemented with hepatic differentiation factors, PDMC switched their 

morphology from fi broblastoid to epitheliod, expressed albumin, CK-18, AFP, 

TAT, and acquired liver-specific bioactivities, including LDL uptake, glycogen 

storage, and rifampicin metabolization by CYP3A4. These interesting in vitro 

observations need to be followed by confirmative in vivo studies to characterize 

the engraftment ability as well as the maintenance of  the differentiated phenotype 

in the diseased organ of animal model systems [202]. 

Extraembryonic tissue-derived MSC: amniotic membrane. Tamagawa et al. 

investigated by in vitro experiments the hepatic differentiation potential of 

mesenchymal cells derived from human amniotic membranes (MC-HAM). This 

study demonstrated that differentiated MC-HAM expressed albumin, AFP, CK-

18, HNF-4α, and stored glycogen, but did not express G6Pase or ornithine 
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transcarbamylase (OTC), markers of mature hepatocytes. Therefore, these data 

show that MC-HAM could differentiate into hepatocyte-like cells, but further 

studies should be carried out to analyze their hepatic function in vivo [203]. A 

recent comparative in vitro study between BM-MSC and human amniotic fluid-

derived MSC (hAF-MSC) showed that the latter had higher proliferation capacity, 

greater hepatic differentiation potential, and were more genetically stable 

compared to the first ones. Functional assays showed that hAF-MSC-derived 

hepatocyte-like cells expressed liver specific markers, produced urea and stored 

glycogen, all typical functions of mature hepatocytes [182]. 

Fetal tissue-derived MSC. In the last few years, greater attention has been focused 

on MSC derived from fetal lung. These cells were characterized as multipotent 

cells having even lower immunogenicity than adult MSC. Ling and coworkers 

demonstrated that fetal MSC derived from lung could differentiate into 

hepatocyte-like cells. In this study, fetal lung-derived MSC, in a specific 

differentiation medium, showed morphological features of mature hepatocytes 

and expressed markers as AFP and albumin [204]. Further studies should be 

carried out to better evaluate the functional features of differentiated cells as well 

as their engraftment success rate. 
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4.6 Formation of hepatocyte-like cells in vivo by e xtrahepatic stem 

cells 

To date, several reports demonstrated that extrahepatic stem cells, after 

transplantation in  animal models, express hepatic markers, but this does not 

imply that these cells show transdifferentiation into true hepatocytes. Certainly, 

these studies are an important basis for future clinical applications. 

Beeheirde and collaborators, infused human umbilical cord blood non-

hematopoietic somatic stem cells into severe combined immunodeficiency mouse 

(SCID mouse). After 7 days they found that these cells did not alter the 

architecture of liver, in fact they integrated very well in the tissue, expressed 

human albumin only after transplantation, while continuing to expresse human α-

1 antitripsin gene also after transplantation. Another very important aspect of this 

work consisted in the downregulation of human β-2 microglobulin gene by 

infused stem cells. β-2 microglobulin is an integral part of the major 

histocompatibility complex and his absence renders the residual heavy chain 

inactive as an antigen. Therefore it should be assumed that these transplanted stem 

cells should by-pass killer-T-cells through absence of this molecule [205]. 

In addition another study carried out by Ishikawa et al., highlighted that two 

cellular types, CD34+ and CD45+ populations isolated from human umbilical 

cord blood, after transplantation in newborn NOD/SCID  (non-obese/ severe 

combined immunodeficiency) β-2 microglobulin null mice, after 4-5 months, can 

express human albumin. Moreover, this study demonstrated that generation of 

hepatocytes from engrafted stem cells is not the result of cell fusion between 

mouse and human cells, because it was demonstrated by FISH that generated 

hepatocytes had a human centromeric DNA [206]. 

Kakinuma et al. carried out studies that demonstrated that human umbilical cord 

blood cells(hUBC), both in vitro and in vivo can differentiate in hepatic 

progenitor cells. After 21 days h-UBC, cultured in a medium supplemented by 

factors promoting hepatic differentiation, expressed some hepatic molecules such 

as cytokeratin-18 (CK18), alpha-fetoprotein (AFP), glutamine synthetase (GS) 

and albumin. After transplantation in liver-injured SCID mice, transplanted cells 

released albumin into the sera of recipient host, suggesting that these cells develop 
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into functional hepatocytes even if they appear at frequencies of 0.1%-1.0% in 

recipient livers. Probably this low frequency is due to the xenogenic nature of 

transplantation, therefore other studies could been necessary to evaluate the 

behaviour, after transplantation, of syngeneic cells [194]. 

Newsome and collaborators confirmed observation of other groups described 

previously. These researchers highlighted that umbilical cord blood cells, 

transplanted into irradiated NOD/SCID mice generated hepatocytes. After 

characterization by immunocytochemistry, immunofluorescence and 

immunohistochemistry, the cells were engrafted into recipient mice.  The presence 

of HepPar1, antigen specific for human hepatocytes, and the presence of human 

DNA in hepatocytes derived from transplanted stem cells, allowed demonstrating 

that these cells were not generated by fusion of human and mouse cells [207]. In 

addition, Nonome and colleagues studied the behaviour of umbilical cord blood 

cells (CD34+ and CD34- cells) after induction of hepatogenic differentiation in 

vitro and after transplantation in irradiated mice and in mice with injury liver. In 

vitro experiments highlighted that already by 7 days the HUBC changed their 

shape and expressed hepatic molecules such as albumin, AFP, CK-19, GS and 

transferrin. 

In vivo, the HUBC, CD34+ and CD34- cells were infused into two groups of 

NOD/SCID mice with Fas-mediated liver injury or simply irradiated. After 4 

weeks, immunohistochemical analyses and RT-PCR demonstrated the expression 

of albumin and Hep-Par 1, while fluorescent in situ hybridization analysis showed 

the presence of Y chromosome in mouse of the Fas ligand/transplantation group 

but not in irradiated mice group [208]. 
Another category of adult stem cells that can generate hepatocytes are 

mesenchymal stem cells. In the last years the interest for these cell is increased, 

below in table are reported all reports carried out both in vitro and vivo on 

mesesenchymal stem cells differentiate into hepatocyte-like cells  (see table n.1). 
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Table N°1: list of in vitro and vivo experiments on hepatogenic differentiation 

capacity by MSC derived from several sources [209] 

 

MSC 
population 

Hepatic 
Differentiation 
Protocol 

Analysis of markers 
expression  

Functional assays REF. 

 
Human bone 
marrow 
mesenchymal 
stem cell 
 
 
 
 
 
 
Umbilical 
cord blood-
mesenchymal 
stem cell 

 
 
Two steps – seven 
weeks protocol:  
Pre-conditioning: 
DMEM plus EGF 
and bFGF for 2 
days. 
Serum-free 
IMDM, 
supplemented with 
HGF, bFGF, 
nicotinamide for 7 
days. 
Serum-free IMDM 
plus OSM, 
dexamethasone, 
ITS, thereafter. 
 

I. AFP, albumin, G6Pase, TO, 
CK18, TAT,CYP 2B6, HNF-
4α by RT-PCR  
II. Positivity to monoclonal 
antibody 9B2 by FC and IF. 
III. albumin expression by IF. 
 
 

In vitro: 
LDL uptake 
analysis; 
PROD Assay;  
PAS stain for 
storage glycogen; 
urea production 
assay 
 

 
 
 
 
 
 
[57] 
 

I. CYP2B6, HNF-4α by RT-
PCR. 
 
II. Albumin by IF. 

In vitro:  
LDL uptake 
analysis; 
PROD Assay;  
PAS stain for 
storage glycogen; 
urea production 
assay 

 
 
Adult BM-
derived rat 
mesenchymal 
stem cell 
(BM-MSC) 

Co-colture of rat 
BM-MSC with 
fetal rat liver cells. 
Fibronectin matrix 
coated plates. 
One step – three 
weeks protocol 
Stem Span SFEM 
medium, plus 
DMX, SCF, HGF, 
EGF, FGF-4. 

Albumin, AFP and CK18. by 
RT-PCR 

None.  
 
 
[58]  

 
Rat Bone 
marrow-
derived 
mesenchymal 
stem cells 

Co-colture of 
MSC with liver 
stellate cell (LSC).  
One step – three 
weeks protocol 
DMEM-LG, 10% 
FBS. 
 

I. Albumin, AFP, CK-18, GS, 
TAT, PEPCK, G6PD, by  RT-
PCR 
II. Albumin, AFP, CK-18, 
PEPCK, by Real-Time PCR. 
III. Albumin, AFP, CK-18, 
CK-19, α- SMA by IF. 
IV. Expression of HGF in 
LSC by RT and Real-Time 
PCR 

In vitro: 
PAS stain for 
glycogen 

 
 
[188] 
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Human bone 
marrow–
derived 
mesenchymal 
stem cell 
 
 

 
 
 
Collagen type I-
coated dishes. 
Two steps - four 
weeks protocol:  
 
IMDM plus HGF, 
FGF-4, ITS, 
nicotinamide for 
10 days 
IMDM plus OSM, 
DMX, ITS for 20 
days.- 

 
 
I. Albumin, AFP, DPPIV, E-
cadherin, connexin 32 by ICC 
II. Albumin by FC and 
ELISA 
III: Albumin, CK-8 G6Pase, 
AFP, α1-AT, PEPCK, TAT, 
TDO, c-met, vimentin, α-
SMA, fibronectin, by RT-
PCR. 

 
 
In vitro:  
PAS stain for 
glycogen; 
 G6Pase activity 
assay;  
urea assay; 
 gluconeogenesis 
assay 
In vivo: 
MSC transplanted 
in SCID mice 
Expression of 
albumin, AFP, 
vimentin, 
fibronectin, CK-
18. 

 
 
 
 
 
 
 
 
 
[189]  

 
 
 
Human BM-
MSC 

2D or 3D culture 
conditions 
(biomimetic 
scaffold) 
Two-steps - three 
weeks protocol: 
One week plus 
DMEM-LG, 15% 
FBS, HGF, DEX. 
Two weeks with 
addition of OSM 
to differentiation 
medium. 

I. Albumin, AFP, CK-19, CK-
18, CYP3A4 after both by 
RT-PCR. 
II. Albumin and transferrin by 
ELISA; AFP by IF. 

In vitro:  
evaluation of 
GOT, GPT and 
urea synthesis 

 
 
 
[187] 

 
 
 
Adult 
hematopoietic 
stem cell 
(HSC) 

Laminin, gelatin, 
and hyaluronic 
acid coated plates 
One step – one 
week protocol 
IMDM plus10% 
serum of liver 
damaged mice. 

I. albumin, CK-18 by ICC 
II. albumin, HNF-3β, HNF-1α 
, HNF-4α , TDO, TAT, c-met, 
SCF, IL-6, Flt-3, OSM, HGF, 
EGF, FGF, TGF-α VEGF-α 
by RT-PCR. 
III: IL-6, HGF, OSM, by 
ELISA  

In vitro: 
PROD assay 
 
In vivo: 
Lin-OSMRβ+ cells 
or differentiated 
hepatic cells 
transplanted in 
FVB/J mouse. 
Expression of 
albumin and CK-
18. 

 
 
 
[190] 

 
 
Human 
adipose tissue 
stem cell 
(hADSC) 
 

 
Fibronectin-coated 
dishes  
One step – four 
weeks protocol 
DMEM-LG plus 
HGF, OSM, 
DMSO  

 
 
I. Albumin, AFP by RT-PCR. 
II. Albumin by ICC and IHC. 
 

In vitro: 
LDL uptake; 
Urea assay 
In vivo:  
Transplantation of 
hADSC into 
NOD/SCID mice 
after CCl4 
treatment. 
Albumin 
expression.  

 
 
 
[184]  
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Adipose 
tissue derived 
stem cell 
(ADSC) 
 
 
 
Bone-
marrow-
derived 
mesenchymal 
stem cells 

 
 
Two steps – Three 
weeks protocol 
Pre-conditioning: 
DMEM plus EGF 
and bFGF for 2 
days. 
DMEM plus HGF, 
bFGF, 
nicotinamide for 7 
days. 
DMEM plus 
OSM, DMX, ITS 
up to 21 days. 

 
 
I. Albumin, Thy-1, AFP, CYP 
3A4, CYP2E1, CK-18, CK-
19, HNF- 4α, C /EBPβ by 
Real Time-PCR. 
II. Albumin and AFP by IHC. 

 
 
None 

 
 
 
 
 
 
 
[173]  

 
 
 
Adipose–
derived stem 
cell (ADSC) 

Collagen type I-
coated dishes. 
Three steps – three 
weeks protocol 
DMEM plus 
Activin A and 
FGF-4 for 3 days. 
HCM plus HGF, 
FGF-1, FGF-4, 
OSM, ITS, DMX, 
DMSO and 
nicotinamide for 
10 days.  
HCM plus 
nicotinamide and 
DMX for few 
days. 

I Albumin, TDO, GAPDH, 
FOXA2 by real-time PCR. 
II. Albumin by IF and ELISA 
 

In vivo:  
ADSC-derived 
hepatocytes 
transplantation 
into mice with 
CCl4-induced 
injury. 
Evaluation of 
ALT, AST, UA 
and ammonia. 

 
 
 
[178]  

 
Human 
umbilical 
cord blood 
cells (UCB-
cells) 

One step - three 
weeks protocol 
Gelatin-coated 
tissue culture 
dishes. 
DMEM plus 15% 
FBS, HEPES, 
monothioglycerol, 
FGF-1, FGF-2, 
LIF, SCF, HGF, 
OSM. 

I. Albumin , AFP, GS, CK-
18, GAPDH by RT-PCR 
analysis 
II. Albumin, CK-18, CK-19, 
PCNA by immunoflorescent 
staining analysis 
III. Expression of albumin by 
immunohistological analysis 

In vivo:  
UCB cells 
transplanted in 
liver-injured SCID 
mice. Albumin 
expression. 

 
 
[194] 

Human 
umbilical 
cord blood-
derived 
mesenchymal 
stem cells 

Two steps – four 
weeks protocol 
IMDM plus 10% 
FBS, DMX, ITS, 
HGF for 2 weeks.  
IMDM plus 10% 
FBS, DMX, ITS, 
OSM for 
subsequent 2 
weeks. 

I. Albumin. AFP, CK-18, GS, 
TAT, HGF, c-met, PEPCK by 
RT-PCR. 
II. Albumin, AFP, CK-18 and 
CK-19 by WB and IF. 
III.Albumin by FISH and IHC 

 
In vitro: 
LDL uptake 
analysis 
 

 
 
[195] 

Human 
umbilical 
cord blood- 
derived 
mesenchymal 

One step – four 
weeks protocol 
IMDM 
supplemented with 
10% FBS, HGF, 

I. AFP and albumin 
expression by 
radioimmunoassay. 
II. CK-18 by 
immunocytochemistry 

In vitro: 
urea production 
assay; 
PAS staining for 
glycogen 

 
 
[172]  
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stem cell FGF-4,. III. AFP, albumin, CK-18 
expression by RT-PCR. 

 

 
 
 
 
Umbilical 
cord matrix 
stem cell 
(UCMSC) 

Rat tail collagen 
type I coated 
plates. 
Three steps – three 
weeks protocol 
IMDM plus bFGF, 
EGF. for 2 days; 
IMDM plus HGF, 
bFGF 
nicotinamide, ITS 
for 10 days. 
IMDM plus OSM, 
DMX, ITS for 10 
days. 

I. Albumin, AFP, connexin 
32, CK-8, CK-18, CK-19, 
DPPIV by FC. 
II. Albumin by ELISA 
III. Albumin, α1-AT, AFP, 
Connexin 32, CK-8, CK-18, 
CK-19, G6Pase, c-met, 
PEPCK, TDO by RT-PCR. 

In vitro:  
PAS stain for 
glycogen;  
glucose -6 
phosphatase 
assay;  
Urea assay; 
Cytocrome P450 
3A4 assay; 
In vivo:  
UCMSC 
transplantated in 
SCID mice after 
partial 
hepatectomy. 
Expression of 
albumin, AFP, 
fibronectin. 
 

 
 
 
 
 
[176]  

 
 
Umbilical 
cord 
mesenchymal 
stromal cells 
(UC MSC) 
 

One step - three 
weeks protocol 
IMDM 
supplemented with 
1% FBS, 40 
ng/mL HGF and 
10 ng/mL FGF-4 
 

I. Albumin, AFP,  CK-18 by 
IF. 
II. Albumin, AFP, CK-18 by 
Real-time RT-PCR. 
III. Albumin, AFP, CK-18 by 
WB. 
 
 

In vitro: 
PAS stain for 
glycogen; 
LDL uptake 
analysis 
 
 

 
 
 
 
[201] 

 
 
 
Umbilical 
cord 
mesenchymal 
stromal cells 
(UC-MSC) 
 

Two steps – four 
weeks protocol 
DMEM/F-12 
supplemented with 
50ng/ml HGF, 
10ng/ml bFGF, 
50mg/ml ITS+ 
premix for 16 
days; 
DMEM/F-12 
supplemented with 
20ng/ml OSM, 10-
6 M DMX, 
50mg/ml ITS+ 
premix for two 
weeks 

I. Albumin, AFP,  CK-19 by 
IF. 
II. Albumin, AFP, CK-19, G-
6P, TO by RT-PCR. 
III. Albumin, by ELISA. 
 

In vitro: 
LDL uptake 
analysis 
 
In vivo: 
UC-MSC 
transplanted in 
CCl4-injured 
NOD/SCID mice. 
Expression of 
human albumin by 
IHC. 
 

 
 
 
 
 
[202] 
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Human 
placenta-
derived 
multipotent 
cells 

 
 
 
Culture dishes 
untreated or 
coated with 
fibronectin or 
poly-L-lysine. 
Two step – three 
week protocol 
I step: 60% 
DMEM-LG, 40% 
MCDB201 plus 
ITS, linoleic acid, 
BSA, DMX, 
ascorbic acid, 
EGF, PDGF-BB 
for 16 hours.  
II step: Same 
medium  plus 
HGF, FGF-4. 

 
 
I. Albumin, AFP, TAT, 
CYP3A4, GAPDH, by RT-
PCR  
II. Albumin, CK-18 by ICC. 
III. AFP, positivity to anti-
human hepatocyte by IHC 
IV. c-met, albumin, CK-18 by 
IF 
V. AFP by WB. 
VI: CYP3A4 induction (RT-
PCR) after rifampicin 
treatment. 
 

 
 
 
 
 
In vitro.  
LDL uptake;  
PAS stain for 
glycogen; 
 

 
 
 
 
 
 
 
 
[203] 

Human 
amniotic 
membrane-
derived 
mesenchymal 
stem cell 

Collagen type I-
coated dishes.  
One step – three 
weeks protocol 
α-MEM plus 10% 
FBS, hHGF, 
hFGF-2, OSM, 
DMX 

I. Albumin, AFP, CK18, α1-
AT, HNF-4α.by RT-PCR. 
II. Albumin, CK18, AFP by 
ICC. 
III. Albumin, AFP by IF. 

In vitro.  
PAS stain for 
glycogen 

 
[204]  

Human 
amniotic fluid 
derived 
mesenchymal 
stem cell 
 
 
 
Human bone 
marrow- 
derived 
mesenchymal 
stem cell 

Collagen gel type 
I coated plates. 
Three steps – three 
weeks protocol 
Days 0-2: basal 
medium plus FGF-
4; Days 3-5: basal 
medium plus 
HGF; Days 6-18: 
basal medium plus 
HGF, ITS, DMX, 
trichostatin A.  
 
Phenobarbital was 
added 18 days 
after 
differentiation  

I. albumin, AFP, CK-18, 
HNF1 α, C/EBP, CYP 1A1 by 
real-time PCR. 
II. AFP, albumin, CK-18, 
HNF1 α, C/EBP, CYP1A1 by 
IF 

In vitro:  
PAS stain for 
glycogen; 
urea assay 

 
 
 
 
[182]  

Mesenchymal 
stem cells 
derived from 
human fetal 
lung  

One step – three 
weeks protocol 
DMEM-F12 plus 
HGF, bFGF. EGF 

I. AFP, albumin, CK-19, IL-6, 
M-SCF, by RT-PCR. 
II. Albumin, AFP, CK-19 by 
FC. 

None  
[205]  
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5. OBJECTIVES 

  
The liver is a parenchymatous organ assigned to a variety of important functions : 

metabolizing dietary molecules, xenobiotic detoxifying, storing glycogen and urea 

production. 

Hepatocytes represent 80% of total liver mass, instead the remaining part 

constituted by cholangiocytes, kupffer cells, stellate cells, hepatic specific natural 

killer and endothelial cell. The hepatocytes are polarized epithelial cells, and they 

serve endocrine and exocrine functions. Through basal surface, they secrete of 

serum factors into venous blood flow, and through apical surface, the hepatocytes 

secrete bile into canaliculi that join the bile ducts [210]. 

Today, a wide variety of liver diseases lead to the impairment of liver functions 

such as acute and chronic liver failure, cirrhosis, metabolic liver disease. The liver 

has an elevated replicative potential, even if 70% of hepatectomy, replicative 

activity of hepatocytes decreases, therefore requiring medical interventions.  

Liver transplantation is the main treatment for some end-stage hepatic diseases, 

but adverse factors such as rejection, complications associated to long term 

immunosuppressants administration, and scarcity of donors limit its therapeutic 

potential. 

Alternative medical interventions could be provided by hepatocytes 

transplantation, a simpler and less invasive procedure. However, this therapeutic 

approach is limited by several factors: only 20-30% of transplanted hepatocytes 

survive upon transplantation, multiple transplantation attempts are required to 

achieve significant liver repopulation, and finally paucity of cadaveric livers and 

limited replicative potential of the hepatocytes. [211]. 

For this reason many researchers searched alternative sources of cells for 

transplant such as adult stem cells. Two different stem cells types are capable to 

differentiate into hepatocytes: hepatic stem cells (oval cells and hepatic progenitor 

cell populations) and extra-hepatic stem cells (bone marrow derived mesenchymal 

stem cells and Wharton’s jelly mesenchymal stem cells, WJ-MSC). Certainly ,the 

phenotypic characterization of adult stem cells is an important objective for 

defining the characteristics of different cell populations, as well as for determining 
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the safety of their use for regenerative medicine applications. In this research 

project, one of the objectives was to characterize (by the application of molecular 

biology, and immunological techniques), the expression pattern of WJ-MSC, 

focusing on   transcription factors typical of embryonic stem cells, responsible for 

undifferentiated state and pluripotency, of endodermal markers suggesting a 

probable differentiation capacity toward endodermal cellular lineages, and on the 

expression of immuno-modulatory molecules potentially involved in the 

establishment of a immune tolerance in the host suggesting a possible critical role 

in clinical applications. 

After a comprehensive characterization of the WJ-MSC, the other main objective 

will consist to differentiate these cells into hepatocyte-like cells applying a two 

step protocol: an induction phase and maturation phase, miming  in vitro the liver 

devolopmental processes.  

To confirm hepatic differentiation capacity by WJ-MSC, we will continue our 

analysis by molecular biology, flow cytometry and immunostaining, the 

expression of early and late hepatic molecules and  the expression of enzymes 

involved in some typical hepatic functions such as detoxyfication of xenobiotics, 

glycogenolisys, glycogensynthesis and gluconeogenesis.  

Another objective needed to establish if WJ-MSC could be considered as probable 

candidates for future clinical applications is the analysis of immuno-modulatory 

molecules involved in the establishment of an immune tolerance (or the existence 

of an immune privilege) in the host. In particular, we will highlight the expression 

of immuno-modulatory molecules both in undifferentiated cells and in 

hepatocyte-like differentiated cells to evaluate if the differentiation process will 

modify immune properties of WJ-MSC.  
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6. MATERIALS AND METHODS 

 
6.1 Cellular isolation protocol of Wharton’s Jelly Mesenchymal  Stem 

Cells 

Isolation protocol was adopted from our previously published data [63]. All 

umbilical cords were obtained after mother’s agreement according to tenets of the 

Declaration of Helsinki and local ethical regulation. After normal vaginal or 

caesarean delivery, after full-term birth, umbilical cords were stored aseptically in 

cold saline and cellular isolation was started within six hours from partum. The 

cords were washed in warm HBSS (Gibco), and then were cut in small pieces 

about 1.5 cm length, sectioned longitudinally so that to exhibit the Wharton Jelly 

under amniotic membrane. Different incisions, without vessels removal, were 

made within matrix with sterile scalpel to increase area exposed to the contact 

with medium composed by DMEM low glucose (Sigma), supplemented with 10% 

FCS (fetal cow serum, PAA), 1x NEAA (non-essential aminoacids, Sigma), 1x 

antibiotics-antimycotics (GIBCO), and 2mM L-glutamine (Sigma).This isolation 

protocol does not  use enzymatic activity to dissociate cells from the embedding 

matrix but is based on cells migratory ability. Cord pieces were left for 15 days 

with medium changed every second day. Therefore, the slow degradation of the 

matrix allowed growth factors and signalling molecules to exit from the cord and 

continuing provide a positive stimulation to the cultured cells. 

After 15 days of culture, cells widely adhered to the plastic surface, and were 

cultured until confluence. 

 
6.2 Cell culturing and passaging 

After reaching confluence, cells were removed from flasks with Tryple Select 

(Invitrogen) and were cultured for up to 15 passages corresponding to about 60 

population doublings. For immunocytochemical analysis, cells were plated in 8-

well chamber slides (BD Bioscience) and were used after reaching 90% 

confluence. For RNA extraction, cells were cultured either in 6-well tissue culture 

plates or in 25cm2 tissue culture flasks (Corning). 
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6.3 Immunocytochemical analysis 

Immunocytochemistry detects the expression of specific antigens recognized by 

primary antibody which are bound by secondary antibody. 

Cells, after removed the medium, were washed with PBS, fixed and dehydrated 

with methanol for 20 minutes at -20C°. Rinsed with PBS, cells were treated for 3 

minutes with Triton X-100 0,1% in PBS 1X. Removed Triton-X, two washes 

were performed with PBS followed by addition of 0,3% hydrogen peroxide to 

inactivate endogen peroxidases. After 20 minutes in a blocking solution (complete 

medium with 10% of serum in PBS 1X, in a ratio of 1:10), cells were incubated 

with specific primary antibodies for 1hour and 30 minutes at room temperature. 

After another wash with PBS, cells were incubated with species-specific 

secondary antibodies for 10 minutes. Subsequently, streptavidin- peroxidase 

(DAKO-Cytomation) was added followed by 3.3’-diaminobenzidine (DAB 

chromogenic substrate solution, DAKO). At the end, Hematoxylin (DAKO) was 

used to counter stain the nuclei of the cells.  

Immunopositivity was scored using a semiquantitative approach. Three 

independent observers (FC, LM,GLR) evaluated the immunocytochemical results 

and semi-quantified the percentage of positive cells for each specimen. Ten high-

power Fields were examined in each culture slide and counting of the cells was 

performed at 40X magnification. The antibodies used in the present study, with 

indications of the working conditions used, are listed in table n.2 
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Antigen Host Manufacturer Diluition 
Albumin Mouse Sigma 1.100 
B7H3 Rabbit Santa Cruz 1:100 

CYP 3A4 Mouse Santa Cruz 1:50 
Cytokeratin 8 Mouse Sigma 1:200 
Cytokeratin 18 Mouse Sigma 1:800 

Connexin 32 Mouse Santa Cruz 1:100 

Connexin-43 Mouse BD Laboratories 1:50 
HNF 4α Rabbit Santa Cruz 1:100 

 
Table N°2: List of antibodies used in the present study 

 
 
6.4 Total RNA extraction 

Total RNA extraction from Wharton’s jelly cells was made by RNAspin mini 

RNA isolation Kit (GE Healthcare). 

The cells were lysed by adding 350µl of Buffer RA1 and 3.5 µl of β-

mercaptoethanol, and were mixed vigorously. The obtained lysate was filtered 

through RNAspin Mini Column and was centrifuged for 1 minute to 10000 rpm. 

After centrifugation, the mini filter was discarded and the filtrate was transferred 

to a new 1.5 ml tube where were added 350µl of ethanol 70%. After mixing, the 

lysate was pipetted 2-3 times and was transferred to a RNAspin Mini Column, 

placed in a 2ml tube and centrifuged at 8500 rpm for 30 seconds. After 

centrifugation , the column was placed in a new tube, were added 350µl of MDB 

(Membrane Desalting Buffer), and centrifugation was performed for 1 minute at 

10000 rpm to dry the membrane. Each sample was incubated for 15 minutes with 

95µl of a mixture containing DNase to avoid a possible DNA contamination. 

Following washes were carried out with specific buffers supplied by the kit (RA2 

and RA3), the column was transferred into a 1.5 ml tube (nuclease-free). The 

RNA was eluted from the filter in 100µl of RNase-free H2O (by centrifugation at 

10000 rpm for 1 minute). The RNA extract was stored at -20 ° C until use. The 

concentration of RNA extracted was determined by spectrophotometer with a 

wavelength of 260nm. Only samples with A260/A280 ratio over 1-6 were 

considered usable for the following analyses. 
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6.5 RT-PCR ( Reverse Transcription Polymerase Chain  Reaction) 

Qualitative RT-PCR was performed using Phusion High-Fidelity RT-PCR kit 

(Finnzymes). RT-PCR consists of two phases: retro-transcription where RNA is 

converted in DNA complementary (cDNA) and amplification of cDNA. 

After treatment with DNase,  2 µg of RNA were added oligo dT and oligo N to 

select only mRNA from total RNA. Subsequently were added 5µl of Buffer 

Phusion 10x, 1µl dNTP mix, 1µl of RNase inhibitor, 1µl of AMV reverse 

transcriptase and RNase/DNase free water until to reach a final volume of 50µl. 

The reaction comprised a reverse transcription step of 50 minutes at 42 C° and an 

inactivation phase of 5 minute at 92 C°. 

Subsequently, at 2 µl cDNA were added 10pM of specific primers, 4µl of 5x 

Phusion  Buffer, 0,4µl 10mM dNTP, 0,6 µl DMSO, 0,2 µl of Phusion DNA 

Polymerase and water until to reach a final volume of 20µl. The amplification 

reaction was performed according to five steps. The initial denaturation of 30 

second at 98C°, followed by another denaturation step of 10 second at 98 C°, the 

annealing phases of 30 second at specific-primers temperatures, the extension step 

of 30 second at 72C°, and finale extension for 10 minutes at 72 C°. 

The specific primers pairs used in this study are listed in table 3. 



59 
 

Table 3: list of PCR primers used for the present study 

Name Product size Primers 

ABCG2 255 Forward 5-ATGGTGTATAGACGCCTGA-3 
Reverse 5-GGGACAGGTATGTGAAAAGC-3 

Actin, beta 350  Forward 5-AAACTGGAACGGTGAAGGTG-3 
Reverse  5-TCAAGTTGGGGGACAAAAAG-3 

 
α -A1AT 

 

 
271 

Forward 5-GGGAAACTACAGCACCTGGA-3 
Reverse  5-CAGCTTCAGTCCCTTTCTCG-3 

AFP 250 Forward 5-AGCTTGGTGGTGGATGAAAC-3 
Reverse 5-GTCCCTCTTCAGCAAAGCAG-3 

Albumin 180 Forward 5-ACATTCACCTTCCATGCAGA-3 
Reverse 5-CTCCTTATCGTCAGCCTTGC-3 

BAAT 
 

346 Forward 5-CCAAACTGGACATGGTGAAT-3 
Reverse 5-TCCTCCATTCCTTCTTTCCT-3 

B7H3 170 Forward 5-CCCTCCCTACAGCTCCTACC-3 
Reverse 5-CAGCAGGATGACTTGGGAAT-3 

BSEP 258 Forward 5-TCCTACATCGGAATCCAAGC-3 
Reverse 5-CCGAGGGTTCAAAAATGAAA-3 

CD66F 228 Forward 5-TCTACCTGACTGCCCCAGA-3 
Reverse 5-AGCCAAACCAAGGCTGACT-3 

CD80 259 Forward 5-AGGGCCTCCTTAGATCCCTA-3 
Reverse 5-TTAGCTGCCATGAGATGTGC-3 

CD86 250 Forward5-TCCTGGCTGAGAGAGGAAGA-3 
Reverse 5-AGACTGCCCCATCCCTTAGT-3 

CK-8 216 Forward5-TCTGGGATGCAGAACATGAG-3 
Reverse 5-AGACACCAGCTTCCCATCAC-3 

CK-18 263 Forward5-CTGCTGCACCTTGAGTCAGA-3 
Reverse 5-GTCCAAGGCATCACCAAGAT-3 

CK-19 295 Forward5-ATGAAAGCTGCCTTGGAAGA-3 
Reverse 5-CCTCCAAAGGACAGCAGAAG-3 

Connexin 26 215 Forward 5-ACTGTGGTAGCCAGCATCG-3 
Reverse 5-AGGCTGAAGGGGTAAGCAA-3 

Connexin 32 218 Forward 5-TCAGTGAGGAGGGATGTGG-3 
Reverse 5-TGGGGACTAGAGGCAGAGG-3 

Connexin 40 203 Forward 5-GTGTGTGTGTGGGTGCTGA-3 
Reverse 5-GATGGGCAGGTGAGTCAGA-3 

Connexin 43 240 Forward 5-CTTCAAGCAGAGCCAGCAG-3 
 Reverse 5-TACCCCATACACCCCCAGT-3 

Connexin 45 234 Forward 5-GCCAACATGGCAAAACTGT-3 
Reverse 5-CCTGGTTCAACAAGCCAAC-3 

FXR 365 Forward 5-CCAGCCTGAAAATCCTCAAC-3 
Reverse 5-GGATTCCCTGGAGCCTTTTA-3 

FGFR2 263 Forward 5-AGACTCTTTGGCGTTGGAGA.3 
Reverse 5-TTCATCTTGCACGGCTATTG-3 

FGFR4 221 Forward 5-GACACAGTGCTCGACCTTGA-3 
Reverse 5- GTATTGGGAGGCAGGAGGTT-3 

GATA-4 270 Forward 5- CCAGAGATTCTGCAACACGA-3 
Reverse5-ATTTTGGAGTGAGGGGTCTG-3 

GATA-5 259 Forward 5-GAATGGCCGGTGATGTATGT-3 
Reverse 5-TGAAGCTGATGCCAGACAAC-3 

GATA-6 259 Forward5-ACTAACCCACAGGCAGGTTG-3 
Reverse 5-GGTACAAAACGGCTCCAAAA-3 

G-6-Pase 323 Forward 5-GTACAGGGAGAGCTGCAAGG-3 
Reverse 5-ATACCAGTGCCCATTGCTTC-3 
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GYS2L 348 Forward 5-AGCTGAATGCACTGTGATGG-3 
Reverse5-TCTGTCGTTGGTGGTGATGT-3 

HCC-4 336 Forward 5-ATCTTTGCCCTCTGGGTCTT-3 
Reverse 5-TTTCTTTCCCTGTCCTGCAA-3 

HLA-A 262 Forward5-TGGGACTGAGAGGCAAGAGT-3 
Reverse5-ACAGCTCAGTGCACCATGAA-3 

HLA-DR 349 Forward5-GCACAGAGCAAGATGCTGAG-3 
Reverse 5-AGTTGAAGATGAGGCGCTGT-3 

HLA-E 245 Forward 5-CAAGGGCCTCTGAATCTGTC-3 
Reverse 5-CGTGTTAGCCAGGATGGTTT-3 

HLA-F1 202 Forward 5- TGGAGTTGCTCCGCAGATA-3 
Reverse 5-TCCACAAGCTCTGTGTCCTG-3 

HLA-F3 230 Forward 5-TGGAGTTGCTCCGCAGATA-3 
Reverse 5-GTCCCACACAAGGAAGCTGT-3 

HLA-G-C 287 Forward 5-GCTCCCACTCCATGAGGTATT-3 
Reverse 5- CTGGAGGGTGTGAGAACTGG-3 

HNF-1 α 
 

164 Forward 5-GCCCAGGAGAAGAAAGAGGT-3 
Reverse 5-GGTTCACAGGCTCCTTTGTC-3 

HNF-1 β 
 

192 Forward 5-TCCCCTCATGGAGAAACATC-3 
Reverse 5-CACAGGAAGCTGGCATGTTA-3 

HNF-3 α 228 Forward 5-TCCACAGTTGGACATGGTGT-3 
Reverse 5-TTCCACGGCTTAAAATCTGG-3 

HNF-3 β 322 Forward 5-AGGAGGAAAACGGGAAAGAA-3 
Reverse 5-TGGATTTCACCGTGTCAAGA-3 

HNF-3૪ 266 Forward 5-TTGGCCACCATTCTGTGTAA-3 
Reverse 5-AAATTCCCCACACCCTAACC-3 

HNF-4α 238 Forward5-CGAGCAGATCCAGTTCATCA-3 
Reverse 5-TTCCCATTTTTCTGGTGAGG-3 

HNF-6 318 Forward 5-TAAAACCTCGGTGGAAAAGC-3 
Reverse 5-AAAAGATGTCCGCTCAATGG-3 

ISL-1 360 Forward 5-TCAAGAAGTCTGAAGCGACT-3 
Reverse 5- AAGACCACCGTACAACCTTT-3 

MDR-1 425 Forward 5-ACAAAGCGCCAGTGAACTCT-3 
Reverse 5-TCACAGGCAGTTTGGACAAG-3 

MDR-3 255 Forward 5-GGGAGATAAGGGGACTCAGC-3 
Reverse 5-TGCTCCTTGACTCTCCCATT-3 

Nanog 209 Forward5-CTCCATGAACATGCAACCTG-3 
Reverse 5-CTCGCTGATTAGGCTCCAAC-3 

Nestin 275 Forward 5-TATAACCTCCCACCCTGCAA-3 
Reverse 5-AGTGCCGTCACCTCCATTAG-3 

NKX 2.5 316 Forward 5-CATGGTATCCGAGCCTGGTA-3 
Reverse 5-GAGCTCAGTCCCAGTTCCAA-3 

Oct 3/4A 273 Forward 5-AGTGAGAGGCAACCTGGAGA-3 
Reverse 5-GTGAAGTGAGGGCTCCCATA-3 

Oct 3/4 B 194 Forward 5-TATGGGAGCCCTCACTTCAC-3 
Reverse 5-CAAAAACCCTGGCACAAACT-3 

Sox-2 323 Forward 5-GCGAACCATCTCTGTGGTCT-3 
Reverse 5-ACATGGATTCTCGGCAGACT-3 

TDO2 292 Forward 5-CCTGCGATCAACTGTGAGTG-3 
Reverse 5-AGAGCATCGTGGTGCTGAAC-3 

Transferrin 
 

338 Forward 5-GGTACCAGGAAACCTGTGGA-3 
Reverse 5-CTACGGAAAGTGCAGGCTTC-3 
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6.6 Agarose gel electrophoresis  

After amplification of cDNA sequences through specific primers, the amplified 

were loaded in 2% agarose gel and were run in a Borax-EDTA 1x buffer. Sybr 

Safe DNA Gel Stain (Invitrogen) was used to stain DNA. All samples were 

loaded with Loading Buffer 10X (TBE 1X, bromophenol blue, glycerol and SDS 

10%). Following staining gels were evaluated by the Safe Imager TM 2.0 Blue-

Light Transilluminator. The size of DNA bands was estimated by parallel run of 

molecular weight markers. 

 
6.7 Induction of hepatogenic differentiation 

Isolated WJ-MSC through non enzymatic procedure were cultured in 25 cm2 

tissue flasks (Corning) and then expanded in 75 cm2 and 175 cm2 until to reach 

necessary number for experimental.  WJ-MSC,  around fifth and/or sixth  passage, 

were cultured with a proprietary protocol (Anzalone et al,  patent in preparation) 

in a medium supplemented with hepatic inducers. For three weeks, hepatic 

differentiation medium contained 1% FCS (fetal cow serum, PAA), 1x NEAA 

(non-essential aminoacids, Sigma), 1x antibiotics-antimycotics (GIBCO), and 

2mM L-glutamine (Sigma), 10 ng/ml of human Fibroblast growth factor-4 

(Miltenyi Biotech), 20 ng/ml of human Hepatic growth factor (Miltenyi Biotech), 

1x of Insulin-trasferrin-selenite (Sigma) and 0,1 µM of Dexamethasone (Sigma). 

After 3 weeks, the cells were cultured for another two weeks with the same 

medium supplemented with all  inducers  previously described, and with addition  

of 10ng/ml of oncostatin M (PROSPEC). In differentiation experiments, control 

cells were represented by WJ-MSC themselves but cultured in a classical growth 

medium with 10% of FCS (fetal cow serum, PAA), 1x NEAA (non-essential 

aminoacids, Sigma), 1x antibiotics-antimycotics (GIBCO), and 2mM L-glutamine 

(Sigma). Both treated and control WJ-MSC were analyzed at the end of third, 

fourth and fifth week of hepatic differentiation process. 

For immunocytochemical analysis and PAS Staining, cells were plated in 8-well 

chamber slides( BD Bioscience). For RNA extraction, cells were cultured either in 

25cm2 tissue culture flasks (Corning), and for flow cytometry analysis in 75 cm2 

tissue culture flasks (Corning). In addition, WJ-MSC were cultured in 96 well 
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plates (Braun) for CYP3A4 assay and in 12 well plates for Glucose 6-Phosphatase 

assay. 

 

6.8 Periodic Acid Schiff  staining  

Periodic Acid Schiff staining (PAS-staining) is a method that permit to detect 

glycogen and mucopolysaccharides presence in several tissues. The periodic acid 

oxides the diol functional groups in glucose and other sugars, creating aldehydes. 

In presence of Schiff reagent these aldehydes react generating a purple-magenta 

colour.  

WJ–MSC, plated into 8-well chamber slides, were fixed with a solution composed 

by 37% phormaldeyde and 95%.ethanol, for 1 minute. After washing with water 

for 1 minute, on the samples was added periodic acid for 15 minutes at room 

temperature. Subsequently to several washes with distilled water, was added 

Schiff reagent for 15 minutes at room temperature. 

At the end, to remove Schiff reagent, was performed another wash with running 

water and the samples were stained with Gill Hematoxylin for 90 seconds. Slides 

were air-dried and observed with inverted microscope.  

 

6.9 Flow cytometry 

Briefly, treated and control WJ-MSC, detached with Tryple (Gibco) from  

75 cm2 flasks, were divided in several centrifuge tubes at concentration of 1x106 

cells/ml of PBS. Then the cells were conjugated with fluorescent antibodies for 15 

minutes at room temperature and subsequently centrifuged at 1200 rpm for 5 

minutes. Samples were read at the flow cytometer  (see table 4). 

  



63 
 

Table 4: list of antibodies for flow cytometry analysis 

 

Antigen Clone Conjugated Dilution Manufacturer 

IgG1 G18-145 FITC undiluited 
Becton Dickinson Biosciences, San 
Jose, CA 

IgG2 PC10 PE undiluited Becton Dickinson 
albumin 188835 unconjugated 01:20 R&D Systems 
αFP 189506 unconjugated 01:40 R&D Systems, Minneapolis, MN 
CD29 mar-04 APC undiluited Becton Dickinson 
CD31 WM59 FITC undiluited Becton Dickinson 
CD34 581 FITC undiluited Becton Dickinson 

CD44 
G44-26 (also 
known as C26) APC undiluited Becton Dickinson 

CD45 2D1 PerCP undiluited Becton Dickinson 

CD73 AD2 APC 01:11 
Miltenyi Biotec GmbH, Bergisch 
Gladbach, DE 

CD90 
(Thy-1) 5 E10 FITC 01:20 Becton Dickinson 
CD105 SN6 FITC undiluited Abcam, Cambridge, MA 
CD117 YB5.B8 PE undiluited Becton Dickinson 
CD276 FM276 APC 01:11 Miltenyi Biotec GmbH 
CK18 C-04 FITC 01:20 Abcam, Cambridge, MA 

CK19 RCK108 PE 01:20 
Santa Cruz Biotechnology, Santa 
Cruz, CA 

E-Cadherin 36 FITC 1/100 Becton Dickinson 
EpCAM EBA-1 FITC undiluited Becton Dickinson 

HLA ABC W6/32 FITC 1/300 Abcam Cambridge, MA 

HLA DR L243 (G46-6) PerCP undiluited Becton Dickinson 
HLA-G 87G PerCP undiluited eBioscience Inc., San Diego, CA 
HLA-E 3D12HLA-E APC undiluited eBioscience 
Oval cell  OV-6 unconjugated 1/100 Santa Cruz Biotechnology 
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6.10 Cardiogreen staining 

Cardiogreen or indocyanine green(SIGMA) is a dye that forms non covalent 

fluorescent complexes with some plasma proteins, principally albumin but also 

ribonuclease A, transferrin and cytocrome C. Indocyanine green linked with 

albumin is rapidly taken up by the liver and then excreted unchanged into bile. 

For this reason this dye is used to evaluate liver function and cardiac output. 

WJC plated in chamber slides, at the concentration of 4x104/5x104 cells for well, 

after hepatogenic differentiation, were marked with cardiogreen with a final 

concentration of 1mg/mL and incubated at 37C° for 15 minutes. After washing 

with PBS, the cells were observed with an inverted phase-contrast microscope. 

The control cells, cultured in a normal growth medium were subjected at the same 

protocol. 

 

6.11 Glucose 6-Pase assay 

Glucose 6- phosphatase is a key enzyme in the glucose metabolism in particular in 

the gluconeogenesis and glycogenolisys. Glucose 6-Pase activity assay was based 

on capacity of this enzymes to transforme glucose-6 phosphate in a molecule of 

glucose and inorganic phosphate. This compound in presence of lead nitrate 

generates a precipitate of lead phosphate that with addition of ammonium 

sulphide originates lead sulphide, a brown precipitate. 

According to protocol used, provided by Professor Etienne Sokal (University of 

Louvain, Belgium), we added to cells a working solution pre-warmed at 37C°, 

composed by lead nitrate, glucose-6 phosphate and tris-acetate buffer. After 20 

minutes, the working solution was removed, three washing were performed with 

distilled water and subsequently, ammonium sulphide was added for 30 seconds. 

The presence of brown precipitates was observed by optical microscope. 
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6.12 CYP450 3A4 metabolic activity assay  

Detoxyfication of xenobiotics such as toxins and drugs,  is one of the main 

functions of the liver. 

This process is performed by cytochrome oxidases, known with term CYP 450. 

In the liver exists several isoforms of these enzymes, such as CYP450 3A4 and 

CYP450 2B6. 

P450-Glo™ CYP3A4 Assay (Luc-PFBE) evaluates the activity of the cytochrome 

P450 oxidase enzymes that is directly proportional to the produced luminescence. 

After addition of luminogenic substrate to the culture medium, intracellular 

enzymes convert this substrate to D-luciferin that is  released into medium  (non-

lytic assay), which in presence of detection reagent produces light. 

Kit P450-Glo™ CYP3A4 Assay (Luc-PFBE) (Promega) was performed on 

hepatocyte-differentiated WJ-MSC and control cells. Briefly, the cells plated in 

96-well plates, , were previously incubated for 48 hours, with an inducer of the 

enzyme,  rifampicin (Sigma) at the final concentration of 25µM, with or without 

addition of  ketoconazole (Sigma) at concentration of 10 µM, a known inhibitor of 

CYP 3A4. The medium change was performed daily. 

After washing with phosphate buffered saline, PBS, (Sigma) the cells were 

incubated with 50 µM of luciferin-PFBE, a luminogenic substrate, for 4 hours in 

the dark. Subsequently, 50 µl of medium from each well were transferred to a 96-

well opaque white luminometer plate and 50 µl of Luciferin detection reagent 

were added. After an incubation of  20 minutes at room temperature, samples 

were analyzed with a luminometer (Promega) using integration times of 0,5 

second. 

To determine background luminescence, luminogenic substrate was added in 

medium without cells. 
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6.13 Statistical analyses 

During the reading  of the luminometer, the light output of the luciferase reaction 

is proportional to CYP activity. Obtained data by were plotted using MS Excel 

software and statistical analyses were performed using GraphPad Prism 4 

software (GraphPad Software, San Diego, USA).  

The statistical methods used were nonparametric analyses.  

In particular, significance of differences of luminescence levels, expressed in 

RLU, between different conditions, control cell with rifampicin, treated cell in 

presence of rifampicin and treated cell in presence of rifampicin and rifampicin 

together ketoconazole, was analyzed by Mann-Whitney test. Values were 

considered significant for p < 0.05 
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7. RESULTS 
 

 
7.1 Morphological features of Wharton’s Jelly Mesen chymal Stem 
cells WJ-MSC 
 
To isolate WJC from the umbilical cord matrix, we used a non enzymatic method. 

In our experimental model, cord sections bearing all of the substructures, are 

placed in culture medium, and cells are left free to exit from the cord, based on 

their migratory ability (which is a key characteristic of all cells named as 

“mesenchymal”). The adoption of this method avoids the unsafe exposure of cell 

surface molecules to lytic enzymes. Moreover, the umbilical cord matrix (the 

“niche” of such stem cells) is still in contact with cells adherent to tissue culture 

plates. The slow degradation of the matrix allows growth factors and signalling 

molecules to exit from the cord and continuing provide a positive stimulation to 

the cultured cells. As visible in figure 4, WJ-MSC grow robustly on plastic 

surfaces, and maintain a fibroblastoid morphology both at low and high 

confluence. (see figure 5). 
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Figure 5: phase-contrast panel of micrographs of WJ-MSC at different 
confluences. Magnification 20x. Bar: 70µ. 
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7.2 Phenotypical characterization of undifferentiated W J-MSC by RT-

PCR and ICC 
Studies previously performed by our research group demonstrated that these cells 

can proliferate for several passages in culture, maintaining a constant telomere 

length over time, and a stable karyotype. 

In addition, molecular analyses highlighted the presence of mRNA of some 

endodermal molecules, such as GATA-4, -5, -6, and HNF4α (GATAs expression 

is shown in figure 6), assuming that these cells may differentiate into endoderm-

derived cell types such as hepatocyte-like cells. 

We therefore further characterized these cells by immunocytochemistry analysis 

and RT-PCR, evaluating expression of endodermal and mesodermal markers 

typical of differentiated cells and markers  of embryonic and mesenchymal stem 

cells. Moreover, to understand if these cells can be reliable candidates for cellular 

therapies we also analyzed expression of immune-modulatory molecules 

potentially involved in the establishment of a immune tolerance in the host. 

As shown in figure 7, undifferentiated WJ-MSC express some tissue–specific 

markers: BAAT (Bile acid-CoA:amino acid N-acyltransferase), a liver enzyme 

involved into bile metabolism conjugation, in particular in the step of conjugation 

before excretion into bile canaliculi; ISL-1 (insulin gene enhancer protein), a 

protein that links enhancer region of insulin gene, playing an important role in 

regulation of insulin gene; NKX2.5 (cardiac-specific homeobox, NK2 

transcription factor related, locus 5 Drosophila) involved in hearth formation and 

development. 

Molecular analysis also demonstrated that WJ-MSC express ABC carriers such as 

ABCG2 and MDR-3, responsible of multi-drug resistance phenotype. In literature, 

several works have recognized the presence of ABC carriers in adult and 

embryonic stem cells. 

A key feature of WJ-MSC is the capability to undergo self-renewal, maintaining 

their replicative potential together with their undifferentiated state. In this respect, 

as shown in figure 7, these cells express Nanog, Oct3/4A, Sox2, responsible for 

maintaining a long-term self-renewal and the undifferentiated state in embryonic 

stem cells.  
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Figure 6: RT-PCR analysis of expression of endodermal markers in WJ-MSC by 
RT-PCR. Marker 50 bp. 
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Figure 7: Analysis by RT-PCR of expression of tissue specific markers and self-

renewal markers typically expressed in embryonic stem cells. Marker 50 bp. 
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Moreover, we evaluated the expression of hepatocyte-specific markers by WJ-

MSC, demonstrating that also early and late hepatic molecules such as 

alphafetoprotein (AFP) and albumin are expressed by undifferentiated WJ-MSC 

at the mRNA level. (see figure 8) 

Taken together, these data extend our previous published results aiming to the 

characterization of markers expressed by undifferentiated cells. This analysis is of 

fundamental importance for the correct definition of the actual phenotype of these 

cells. 

To further extend our characterization effort, we investigated the expression of 

hepatic markers by RT-PCR on undifferentiated cells. Figure 8 shows the results 

of this analysis: WJ-MSC express factors belonging to the Fox A protein family, 

also known as Hepatocyte  nuclear factors, and involved in liver development at 

early or late stages such as HNF-1α, HNF-1β, HNF-3α and HNF-4α. Moreover, 

WJ-MSC expressed at messenger level also a hepato-specific enzyme such as 

tryptophan 2,3 dioxygenase, involved in tryptophan metabolism. On the contrary, 

undifferentiated cells did not express Glucose-6-phosphatase, a key enzyme 

involved in glycogen metabolism in liver. Alpha-1-antitrypsin, a serine protein 

inhibitor, was expressed by WJ-MSC, as well as epithelial cytokeratins such as 

CK-8, -18, -19. It is important to note that most of these “in vitro” markers are 

considered useful for characterizing differentiated cells, but cannot obviously 

constitute a reliable evidence on their own. This initial effort will guide us through 

the choice of reliable markers and enzymatic activities which should be induced 

or clearly upregulated in WJ-MSC subjected to hepatic differentiation. 

In liver there are 7 types of connexins, and connexin-32 represents the 90% of the 

total connexins. Studies in literature, evaluated the role of connexin-32 in liver 

specific processes such as xenobiotic biotransformation, ammonia detoxification, 

albumin secretion and glycogenolysis. RT-PCR analysis, illustrated in figure 9, 

showed expression by our umbilical cord cells of connexins 26, 43, data also 

confirmed by ICC (see in figure 10  panel D),  and 45 but  not of connexin-32 and 

connexin-40.  

For some of the selected markers which were investigated in undifferentiated cells 

by RT-PCR analyses, we also searched for their expression at the protein level. 
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Figure 10 shows the results of ICC analyses on undifferentiated WJ-MSC. As 

shown, undifferentiated cells are widely positive for hepatocyte-specific epithelial 

cytokeratins, namely CK-8 and CK-18, at the cytoplasm level. Moreover, as 

visible in figure 10 (panel C), HNF4α expression has been demonstrated in the 

vast majority of cells. As visible, this transcription factor shows a clear nuclear 

localization, therefore suggesting that also in undifferentiated cells it is active in 

the induction of regulated genes. The other evidences we reported here, namely 

the expression of albumin and alpha-fetoprotein, should be better explained by the 

strong nuclear positivity of this marker, since both have inducible elements 

responding to HNF4α binding in their promoter region. Moreover, we 

demonstrated the expression of connexin-43 with a clear membrane staining, 

therefore suggesting that gap junctions are extensively formed between these 

cells, with the obvious functional consequences. 
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Figure 8: Analysis by RT-PCR of expression of early and late hepatic molecules 
in undifferentiated WJ-MSC. Marker 50 bp 
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Figure 9: Analysis by RT-PCR of  expression of connexins in undifferentiated 

WJ-MSC by RT-PCR 
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Figure 10: Immunocytochemical analysis of expression of  CK8, CK18, HNF-4α 
and connexin 43 in undifferentiated WJ-MSC.A: CK-8, B:CK-18; C: HNF-4α, 
D:connexin 43. Magnification: 20X. Bar: 70µ. 
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7.3 Expression of immunomodulatory molecules by WJ-MSC  

According to general consensus mesenchymal stem may be considered good 

candidates for cellular therapy also for their features of hypoimmunogenicity and 

immune response modulation. Therefore, we investigated the expression of 

immunomodulatory molecules by WJ-MSC to understand if these cells could 

express molecules that would be useful in vivo to evade or modulate the host 

immune response. As shown in figure 11,  by RT-PCR analyses we evaluated the 

expression of first class non classical MHC (major histocompatibility complex) 

molecules, known to be involved in tolerance induction of natural killer cells and 

in the establishment of the tolerance process of mother toward fetus, such as 

HLA-E, HLA-G, HLA-F (isoforms 1 and 3). Moreover, we investigated also the 

expression of CD66f, a glycoprotein expressed by placental cells, capable to 

induce secretion of anti-inflammatory cytokines and abolish induced-antigen 

proliferation by T cells. As shown, all of these molecules are expressed by 

undifferentiated WJ-MSC at the messenger level. For some of these molecules, 

this is the first reported evidence of expression in any MSC subpopulation, and 

this should further increase the interest towards these cells as immunomodulators 

in vivo. We also confirmed our previous data showing that WJ-MSC express B7-1 

(CD80) and lack B7-2 (CD86). Literature data on BM-MSC point out that both 

co-stimulators should not be expressed in these cells, but there is supporting 

evidence that the combination of the expression of CD80 and lack expression of 

CD86 may favour a synergistic role in the induction of tolerance, as suggested by 

literature data. In fact, CD86 acts on T-lymphocytes mainly by CD28 binding, 

while CD80 alone may act via the CTLA-4 receptor, therefore resulting in a co-

inhibition mechanism, with respect to the classical co-stimulatory role. 
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Figure 11: Analysis by RT-PCR  of  expression of immuno-modulatory molecules 

involved in tolerance processes by undifferentiated WJ-MSC. 
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7.4 Hepatogenic differentiation of WJ-MSC: methodol ogy and 

morphological evidences 

After the extended phenotipycal characterization of WJ-MSC, we tried to induce 

hepatogenic differentiation in our cells. We developed a novel protocol of 

induction (Anzalone et al, patent in preparation) in order to partly replicate in 

vitro some of the inductive processes acting in vivo during liver morphogenesis 

and hepatocytes specification. As a pre-inductive step, we cultured WJ-MSC, for 

3 weeks, in a medium with 1% FCS, antibiotic/antimycotic, non essential 

aminoacids, HGF (hepatocyte growth factor), FGF-4 (fibroblast growth factor-4), 

sub-micromolar concentration of dexamethasone, and insulin-transferrin-selenite 

(ITS) supplement. After 3 weeks, the cells were cultured in a maturation medium 

composed by all factors previously described with the addition of oncostatin M, 

for another 2 weeks. Time points which were considered for the following 

analytical phase were: 3, 4, 5 weeks. Parallel controls were performed in which 

cells were cultured in the standard growth medium for same timeframe of treated 

cells, with medium changes at the same periodicity. Both control and 

differentiated cells were cultured on plastic surfaces in order to strictly determine 

the effects of growth factors administered, without the overlapping inductive 

effect of a three dimensional substrate further providing signals (e.g. matrigel). 

Applying this hepatic differentiation protocol in two steps we tried to mimic in 

vitro the succession of inductive processes occurring in vivo during hepatogenesis 

During early liver development phase, the cardiac mesodermal cells release FGF-

4, to induce hepatic pre-differentiation step into ventral cells. Successively, at hthe 

stage of hepatoblasts, septum transverse is broken and these cells contact 

endothelial cells which release HGF, enhancing therefore hepatic fate by these 

cells. Fetal liver is also an hematopoietic site, and studies demonstrated that 

hematopietic stem cells, residents in the organ, release OSM contributing to 

maintain hepatic differentiated phenotype. 

The monitoring of the differentiation process by phase-contrast microscopy, 

alongside differentiation experiments, allowed to determine first of all a clear 

morphological switch of treated cells compared with undifferentiated controls. In 

fact, at the considered time points (after 3-4-5 weeks), the cells cultured in an 
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hepatic differentiation medium appeared with a quite regular polygonal 

morphology, resembling cultured mature hepatocytes. The control cells, indeed, 

maintained fibroblastic-like morphology, as shown in figure 12. 
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Figure 12: Phase-contrast  micrographs panel of control cells (A; C; E) and 

hepatic induced cells (B; D; F) at different steps of hepatic differentiation. A-B: 3 

weeks; C-D: 4 weeks; E-F: 5 weeks. Magnification 20 x. Bar: 70µ. 
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7.5 Periodic Schiff Acid staining  

To confirm the acquisition of hepatocyte differentiation we performed PAS 

staining on treated and control cells. This stain highlights the presence of 

glycogen intracellularly. As shown in figure 13 A-C-E, control cells showed a 

pale blue staining, while treated cells, at all of the analyzed time points, showed a 

polygonal shape typical of hepatocytes and an intense diffused purple-magenta 

stain strongly suggesting the presence of glycogen deposits (Figure 13 B-D-F).  

 

7.6 Early and late hepatic expression by RT-PCR in differentiated WJ-

MSC 

We performed RT-PCR analysis to determine the expression of selected genes by 

untreated and differentiated cells at the different time points considered. As 

summarized in table 5, we observed that undifferentiated cell express some 

hepatic differentiation molecules such as albumin, HNF4α, CK18, CK19, CK8. 

After 3 weeks of treatment in an hepatic differentiation medium, WJ-MSC, at a 

stage which should resemble hepatoblasts, started expressing molecules and 

receptors for factors involved during liver development process. In particular, we 

demonstrated that since week 3 there is a clear induction of HNF6, a nuclear 

factor involved in hepatocyte differentiation, as well as GYS2L (glycogen 

synthase-2, liver specific isoform), an enzyme involved in glycogen metabolism. 

This datum provides a further confirmation of the acquired ability of these cells to 

produce and store glycogen as already demonstrated by PAS staining.  

After 4 weeks of treatment the cells maintained the expression of above 

mentioned molecules, and interestingly switched off the expression of CK19. In 

particular, this “cytokeratin switch” is known to be a later process in the 

maturation of hepatocytes from bipotential progenitors. In fact, the bipotential 

hepatoblasts express both CK-18 and CK-19, while mature hepatocytes feature 

CK-18 alone, and CK-19 specifically identifies colangiocytes population. 

Moreover, from fourth week onwards, cells started expressing the mRNA for 

BSEP (Bile salt export protein), a transmembran protein involved in bile transport 

across hepatocyte membrane towards biliar capillaries. At fifth  week of hepatic 

differentiation, the switch of expression of CK-19 was maintained, as well as the 
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other de novo induced molecules mentioned above. Part of these data were further 

analyzed and confirmed at the protein level by ICC and FC techniques see below). 

Taken together, these data clearly suggest that the protocol we used for 

differentiating hepatocytes from our undifferentiated starting population clearly 

causes the de novo expression of specific mRNAs of the mature hepatocyte 

lineage. 
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Figure 13:  Microscopic demonstration of glycogen deposits.  Micrographs panel 

of control cells (A-C-E) and treated cells (B-D-E) at 3-4-5 weeks, after PAS 

staining. A-B: 3 weeks; C-D: 4 weeks; E-F: 5 weeks. Magnification 20x. Bar: 70µ 
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Undifferentiated 

WJ-MSC 

WJ-MSC at III weeks 

hepatic 

differentiation  

WJ-MSC at IV weeks  

hepatic 

differentiation 

WJ-MSC at V weeks 

hepatic 

differentiation 

Albumin          + (*) Albumin          + (*) Albumin        + (*) Albumin        + (*) 

CK8                + (*) A1AT              + A1AT            + A1AT            + 

CK18              + (*) CK8                + BSEP             + BSEP             + 

CK19             +                  CK18              + (*) CK8               +  CK8               + 

HNF4α            + (*) CK19              + CK18             +(*) CK18             + 

Transferrin    +   GYS2L           + CK19              - CK19              - 

 HNF4α            + (*) GYS2L           + GYS2L           + 

HNF6              + HNF4α           + (*) HNF4α           + (*) 

FGFR2            + HNF6              + HNF6             + 

FGFR4            + FGFR2            + FGFR2           + 

Transferrin     +   FGFR4            + FGFR4           + 

 Transferrin     +   Transferrin     +   

 

Table 5: expression of early and late hepatic molecules at the mRNA level in 

undifferentiated and hepatic-induced cells, at different weeks (*) indicates data 

cross-confirmed by ICC and FC at the protein level. 
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7.7 Characterization of differentiated WJ-MSC by flow c ytometry 

analysis 

Flow cytometry analysis of undifferentiated and hepatocyte-differentiated cells 

was performed to analyze the expression of both MSC core markers and epithelial 

or hepatic specific molecules. As shown in figure 14, undifferentiated and 

differentiated cells at 3-4-5 weeks expressed CD29,CD44and HLA-ABC, at 

comparable levels with respect to the undifferentiated counterpart. Moreover, both 

undifferentiate3d and hepatocyte-differentiated cells lack expression of 

hematopoietic markers such as CD34, CD45 and HLA-DR. In addition, we 

showed that the differentiation protocol resulted in a clear down-regulation of 

CD105 expression, while levels of CD31, CD117, OV-6, remained similar 

between the two conditions. In particular, the results on the expression of OV-6, a 

marker for oval cells, thought to be a progenitor population resident in liver, 

which antigen is not yet known, show that also undifferentiated cells are highly 

positive to this marker, whose levels appear to be unaffected by the differentiative 

stimuli applied. The putative identity of OV-6 antigen with one member of the 

cytokeratins family in mice, further points out its limited value as specific 

differentiation marker, also in the light of the number of CK molecules we 

demonstrated to be expressed in WJ-MSC. 

Epithelial markers such as EP-CAM (Epithelial cell adhesion molecule, involved 

into interactions between lymphocytes and epithelial cells) and E-Cadherin 

(epithelial cadherin, a Ca2+ dependent transmembran protein) were expressed in 

control WJ-MSC and in all stages of hepatic differentiation. As shown in figure 

15,  is possible observe a net increase in the expression of both markers at most 

time points. 

AFP characterizes early hepatocytes, and flow cytometry analysis showed that its 

levels of expression were maintained higher than undifferentiated cells at all the 

considered time points of the differentiation process (Figure 16A). 

Also for albumin expression flow cytometry showed that its expression was 

higher in differentiated cells with respect to undifferentiated ones (see figure 

16B), further confirming what observed with ICC analyses. 
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Figure 17  shows the results of flow cytometry analysis of Cytokeratin-18 and -19 

expression. As visible, CK-18 clearly increases at fifth week of differentiation, 

while Cytokeratin 19 is expressed at lower levels which further decrease in 

differentiated cells. Therefore, flow cytometry analysis confirmed the 

“cytokeratins switch” in differentiated cells, as already showed by RT-PCR 

analyses. 

  



 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 14: Flow cytometry analysis of 
marrow derived mesenchynmal stem cells 
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Flow cytometry analysis of expression of “core markers” typical of bone 
marrow derived mesenchynmal stem cells  

 

 

expression of “core markers” typical of bone 
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Figure 15: Flow cytometry analysis of expression of epithelial markers in 
undifferentiated and hepatocyte-differentiated cells at the considered time points, 
assessed by flow cytometry. 
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A 

 B 
 
Figure16: A: Flow cytometry analysis of expression of alpha-fetoprotein (AFP), 
an early hepatic protein, by flow cytometry; B: expression of albumin, a late 
hepatic marker, by flow cytometry 
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Figure 17: Flow cytometry analysis of expression of cytokeratins by flow 
cytometry in undifferentiated and differentiated cells. 
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7.8 Expression of hepatic molecules in differentiated W J-MSC by ICC  

Confirm of hepatic phenotype by differentiated WJ-MSC  was further assessed by 

immunocytochemistry analysis. 

The expression of CK-18 in undifferentiated and differentiated cells was also 

confirmed by ICC after both three and four weeks of differentiation (see figure 

18). 

Flow cytometry allowed demonstrating that control cells expressed albumin, but 

its concentration decreased at fifth week. Conversely, in hepatic differentiation 

induced cells, in all weeks,  levels of expression of albumin protein were 

constantly higher than controls. As shown in figure 19,  immunocytochemistry 

allowed further confirming these data. 

Another hepatic marker evaluated by immunocytochemistry, was HNF-4α. This 

factor has an important role, in the conversion of parenchyma in epithelium 

during liver development and in maintaining the differentiated hepatic phenotype. 

In cells cultured in a standard growth medium, HNF-4α expression and nuclear 

localization decreased progressively with culture time, while in treated cells 

expression and nuclear localization were maintained at all the considered time 

points (see figure 20).  
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Figure 18 : Immunocytochemical analysis of expression of cytokeratin 18 in 
control cells (A-C) and hepatocyte-like cells (B-D) at 3 -4 weeks, respectively. 
A-B: 3 weeks; C-D: 4 weeks; Magnification 20x. Bar: 70µ 
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Figure 19: Immunocytochemical analysis of expression of albumin in control and 
treated WJ-MSC by ICC. A-C-E (control cells), B-D-F (hepatic differentiation). 
A-B: 3 weeks; C-D: 4 weeks; E-F: 5 weeks. Magnification 20x. Bar: 70µ  
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Figure 20: Immunocytochemical analysis of  expression of hepatic nuclear 
factor-4α (HNF-4α) in control cells (A-C-E) at 3-4-5 week respectively and 
treated cells (B-D-F) at 3-4-5 weeks. A-B: 3 weeks; C-D: 4 weeks; E-F: 5 weeks.  
Magnification 20x. Bar: 70µ.  
 



96 
 

7.9 ICG staining  

The acquisition of hepatic phenotype can also be confirmed by the presence of 

selective uptake of specific molecules. To this extent, both Ac-LDL and 

cardiogreen are widely used. It should be noted that Ac-LDL is also uptaken by 

endothelial cells, therefore Cardiogreen was chosen for this study. ICG 

(indocyanine green or cardiogreen) binds to the plasma proteins, in particular 

albumin, is taken up by hepatocytes and secreted into bile. For this reasons ICG 

staining may be used to assess liver function. As visible in figure 21, control cells 

appeared negative while hepatocyte-like cells exhibited a green cytoplasmatic 

staining. 

 

7.10 Glucose-6-Phosphatase assay 

Glucose 6-phosphatase assay was performed on control and hepatocyte-like cells 

to evaluate the presence and activity of one of main hepatic enzymes, involved 

into glucose metabolism. As visible in figure 22, cells cultured in a standard 

growth medium fail to form brown precipitates of lead sulphide. Conversely, 

hepatocyte-like cells, in all differentiation steps, exhibited a brown colouring due 

at the presence of precipitates. 
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Figure 21: Microscopic demonstration of Cardiogreen uptake by Hepatocyte-like 
cells. Control cells were negative, while treated cells are positive. A-C-E: control 
cells at 3-4-5 week, B-D-F differentiated  cells at 3-4-5 weeks. A-B 3 weeks; C-
D 4 weeks; E-F 5 weeks. Magnification 20x. Bar: 70µ  
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Figure 22: Microscopic demonstration  of  glucose-6-Pase activity in control cells 
(A-C-E) and hepatic differentiation-induced cells (B-D-F). A-B 3 weeks; C-D 4 
weeks; E-F 5 weeks. Magnification 20x. Bar: 70µ 
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7.11 CYP 450 3A4 activity metabolic assay  

Xenobiotics such as toxins and drugs are metabolized by cytochrome oxidase 

enzymes (kwon with term CYP 450) present in liver cells.  

One of the most specific hepatic isoforms is CYP450 3A4, whose activity is 

widely recognized as sign of differentiation of precursor cells into mature 

hepatocytes. We evaluated its activity in response to a specific inducer 

(Rifampicin), with or without specific inhibition by ketoconazole in control and 

treated WJ-MSC. 

The control cells, despite presence of rifampicin showed negligible CYP3A4 

activity. On the contrary, cells cultured in hepatic induction medium with addition 

of the inducer, exhibited a significantly different activity in all tested time points. 

Furthermore, specificity of CYP3A4 activity was demonstrated by the significant 

decrease caused by the contemporary administration of the specific inhibitor 

ketoconazole. Similar results were obtained at all the considered timepoints: at 

three weeks (Figure 23) rifampicin significantly (p=0.002) induced enzyme 

activity with respect to control cells, and ketoconazole significantly (p=0.002) 

inhibited the same activity in differentiared cells; after four weeks (Figure 24), 

rifampicin significantly (p=0.0079) induced enzyme activity with respect to 

control cells, and ketoconazole significantly (p=0.037) inhibited the same activity 

in differentiated cells; after five weeks (Figure 25), rifampicin significantly 

(p=0.0006) induced enzyme activity with respect to control cells, and 

ketoconazole significantly (p=0.027) inhibited the same activity in differentiated 

cells 

The expression of CYP3A4 was also confirmed by ICC, in control and 

hepatocyte-like differentiated cells at third and fourth week. As shown figure 26, 

both control cell and differentiated cells express at high rates CYP 3A4 enzyme 

following rifampicin challenge. The marked differences between expression 

detected by ICC and enzymatic activity are object of further studies in our 

laboratory. 
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Figure 23: evaluation of CYP4503A4 metabolic activity in control and 
hepatocyte-like WJ-MSC at III week of differentiation. A: control WJ-MSC with 
rifampicin, B: hepatocyte-like WJ-MSC with rifampicin, C: kepatocyte-like WJ-
MSC with rifampicin and ketoconazole. A/B p=0.002; B/C p= 0.002 
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Figure 24: evaluation of CYP4503A4 metabolic activity in control and 
hepatocyte-like WJ-MSC at IV week of differentiation. A: control WJ-MSC with 
rifampicin, B: hepatocyte-like WJ-MSC with rifampicin, C: kepatocyte-like WJ-
MSC with rifampicin and ketoconazole. A/B p=0.0079; B/C p= 0.037 
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Figure 25: evaluation of CYP4503A4 metabolic activity in control and 
hepatocyte-like WJ-MSC at V week of differentiation. A: control WJ-MSC with 
rifampicin, B: hepatocyte-like WJ-MSC with rifampicin, C: kepatocyte-like WJ-
MSC with rifampicin and ketoconazole. A/B p= 0.0006; B/C p= 0.027 
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Figure 26 : Immunocytochemical analysis of expression of CYP 3A4 by ICC in 
control cells (A-C-E) at 3- 4 week and hepatocyte-like differentiated cells (B-D-
F) at 3-4 week. ). A-B: 3 weeks; C-D: 4 weeks; E-F: 5 weeks. Magnification 20x. 
Bar: 70µ 
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7.12 Expression of immuno-modulatory molecules by 

undifferentiated and differentiated WJ-MSC through flow cytometry 

analysis 

Evaluation of immune-modulatory molecules expression pattern is very important 

to apply these cells in regenerative medicine. 

One of the main limits of cellular therapy is rejection by recipient host: knowing 

the behavior in vitro of cells candidates for transplant may help us to understand 

mechanisms underlying interplay of immune system of the host and engrafted 

cells. 

Flow cytometry analysis was performed on undifferentiated cells and cells and 

differentiated towards hepatocytes. In both conditions, cells expressed canonic 

molecules of major histocompatibility complex of I class, HLA-ABC but did not 

express HLA-DR (see figure 27).  

Moreover, control and hepatocyte-like cell exhibited expression of HLA-E and 

HLA-G, molecules involved into tolerance mechanism induced in NK and from 

mother towards fetus.(see figure 28-29). 

We further investigated the expression of further members of the B7 family, 

namely B7-H1, B7-H3 and B7-H4 for all of these molecules, literature reports 

highlighted co-inhibitory roles in addition to the known co-stimulatory ones. It is 

known that B7-H1 and B7-H4 are expressed by BM-MSC [212], while no 

literature data exist on B7-H3 expression in MSC. We previously demonstrated 

that of these three markers, only B7-H3 (CD276) is expressed in naïve WJ-MSC 

(data not shown). Now, we extend this analysis to the differentiated progeny of 

WJ-MSC. As visible in figure 30, CD276 is amply expressed at the protein level 

in both untreated and hepatocyte-differentiated cells This may constitute a further 

point in the characterization of differentiated cells not only on the basis of the 

expression of desired markers of the mature cytotype, but also for the 

maintenance of the immunomodulatory properties of naïve cells, which may 

further promote the reparative action of these cells if used in regenerative 

medicine applications.  
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Figure 27: Flow cytometry analysis of expression of  major histocompatibility 
complex molecules of the first and second class assessed by flow cytometry. 
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Figure 28: Flow cytometry analysis of expression of non –canonical molecule of 
major histocompatibility complex of I class in undifferentiated and treated WJ-
MSC. 
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Figure 29: Flow cytometry analysis of expression of non –canonical molecule of 
major histocompatibility complex of I class in undifferentiated and treated WJ-
MSC 
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Figure 30: Immunocytochemical analysis of expression of B7H3 (CD276) by 
ICC in control and treated cells. A-C-E: control cell at 3-4-5 week, B-D-F: 
hepatic differentiation induced cells. A-B: 3 weeks; C-D: 4 weeks; E-F: 5 weeks 
Magnification 20x.Bar: 70µ. 
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8. DISCUSSION 
 
In the last years, many advances were made on the biology of stem cells in vitro 

for future clinical applications and in particular for regenerative medicine. 

Certainly, a complete characterization  of stem cell may help researchers to better 

understand in vivo data, mechanisms of interactions between microenvironment 

and stem cells.  

Stem cells can originate from adult, embryonic and extra-embryonic tissues. 

While embryonic stem cells may be favorably viewed for their intrinsic 

pluripotency, studies demonstrated that use of embryonic stem cells in vivo can 

generate teratomas considering their undifferentiated state. Safety for human is the 

main parameter to be considered  in all experiments. For this reason many reports 

highlighted the application of several differentiation protocols on adult stem cells.  

My project was based on the characterization and evaluation of endoderm-related 

differentiation potential of Wharton’s jelly cells. In the world millions of people 

suffer of liver pathologies, and despite organ transplant  is considered the main 

therapeutic approach for end-stage diseases, cellular engraft should be a valid 

alternative therapy. The Wharton’s jelly, a mucous tissue, is the main component 

of extracellular matrix of umbilical cord. In this tissue there are mesenchymal  

stem cells (WJ-MSC) with fibroblast-like morphology. 

In our work, we initially evaluated the  phenotype of these cells, and then we tried 

to differentiate WJ-MSC into hepatocyte-like cells. 

Previous studies, carried out by our research group, demonstrated that these cells 

proliferate for several passages in vitro and showed a stable karyotype. Moreover, 

molecular analysis demonstrated expression of hepatic/endodermal-specific 

markers as GATA-4, GATA-5, GATA-6 and HNF-4α (hepatic nuclear factor4α). 

Therefore these data allowed hypothesizing the possibility to induce in these cells 

a hepatogenic differentiation. 

A key feature of MSC is the capability to undergo self-renewal, maintaining their 

replicative potential together with their undifferentiated state. In this respect, the 

RT-PCR highlighted expression of Nanog and Oct3/4A, Sox2, responsible for 

maintaining a long-term self-renewal and the undifferentiated state in ESC. The 

presence of these factors in undifferentiated WJ-MSC was demonstrated for the 
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first  time by our research group, and it constitutes a molecular confirmation of 

the clonogenicity experiments previously performed. In literature, several works 

recognized the presence of ABC carriers in adult and embryonic stem cells. 

Molecular analysis showed expression of ABC carriers such as ABCG2 and 

MDR-3, responsible of drug resistance phenotype in WJ-MSC.  

In addition, we wanted evaluate expression of some tissue-specific markers such 

as ISL-1, BAAT, NKX2.5 to further estimate the differentiative capability of 

these cells. In particular, to support the idea that WJ-MSC could generate 

endodermal cellular types we analyzed the presence of some hepatic transcripts as 

AFP, A1AT, BSEP, G6PASE, TDO2, several HNFs, and epithelial cytokeratins 

(CK-8, 18,19). It is important to note that most of these “in vitro” markers are 

useful for characterizing differentiated cells, but cannot constitute reliable 

evidence on their own. This initial effort guided us through the choice of reliable 

markers which should be induced in these cells subjected to hepatic 

differentiation. The expression of cytokeratins by WJ-MSC should indicate their 

ability to differentiate toward epithelial cytotypes. In particular, a “cytokeratin 

switch” can be observed as a later process in the maturation of hepatocytes from 

bipotential progenitors. In fact, the bipotential hepatoblasts express both CK-18 

and CK-19, while mature hepatocytes feature CK-18 alone, and CK-19 

specifically identifies colangiocytes population. This parameter has been further 

evaluated in our experiments aiming to differentiate WJ-MSC toward hepatocytes. 

A key feature of mesenchymal stem cells is hipoimmunogenicity, this factor could 

be very important for applications in regenerative medicine. 

Mechanisms underlying this immune-property are several: inhibition of  T-cells 

proliferation and dendritic cells differentiation, anergy, secretion of soluble factors 

and tolerance induction. In particular, we demonstrated by molecular analysis, 

that WJ-MSC expressed a various histocompatibility major complex non 

canonical molecules such as HLA-G, HLA-E, HLA-F1 and HLA-F3. 

These factors are implied into tolerance mechanism induced by NK and by mother 

toward fetus. Studies  highlighted that HLA-G bind two major inhibitor receptor 

of natural killer (KIR1 and KIR2) blocking NK killing process [213]. In addition, 

our umbilical cells showed expression  of CD80 but not of CD86. CD80 bound to 
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CD152 has an inhibitory role while CD86 bound to CD28 shows a role in the 

activation T-cells proliferation. Some researchers highlighted that in absence of 

CD86, the CD80 mostly exercise inhibitor effect through the link with CD152 

[214].  

Therefore, these B-7 co-stimulatory molecules appear to be involved into immune 

tolerance development together with HLA-G.   

CD66F , a glycoprotein expressed by placental cells, induces secretion of anti-

inflammatory cytokines and abolish antigen-induced T-cell proliferation. 

Undifferentiated WJ-MSC also expressed the transcript factors glycoprotein. In 

conclusion, all these data supported the idea that WJ-MSC could induce immune 

tolerance in the host but obviously further studies need to be performed in vitro to 

translate them successively in vivo experiments. 

After characterization of cells in the undifferentiated state, WJ-MSC were 

subjected to the hepatic differentiation protocol that mimed hepatogenesis 

process. For three weeks the cells were cultured in a proprietary medium 

supplemented with HGF (hepatocyte growth factor), FGF-4 (fibroblast growth 

factor-4), dexamethasone, and ITS. For another 2 weeks, the cells were cultured in 

another medium composed by all factors previously described with addition of 

OSM. After 3-4 weeks time points, the cells appeared with polygonal morphology 

similar to the hepatocytes, The control cells, indeed, cultured in  a standard 

growth medium maintained fibroblastic-like morphology. 

To confirm the acquisition hepatic differentiation we performed PAS staining on 

treated and control cells. This stain highlighted the presence of glycogen. The 

treated cells were  positive to the stain presenting reddish coloration and blue 

nuclei, while control cells were mainly negative to this stain. 

RT-PCR analyses were used to determine the expression of selected gene by 

untreated and differentiated cells: we have observed that undifferentiated cell 

expressed some hepatic differentiation such as albumin, HNF4α, CK18, CK19, 

CK8. After 3 weeks of treatment in an hepatic medium, the cells started 

expressing other markers such as GYS2L and HNF-6. After 4 weeks of treatment 

the cells switched off the expression of CK19, and expressed BSEP, a protein 
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responsible to transport of bile salts. After 5 weeks,  cytokeratins switch, and all 

markers previously expressed were maintained.  

Flow cytomerty analysis demonstrated that differentiated WJC-MSC still 

expressed some of the markers of undifferentiated MSC as  CD29, CD44, HLA-

ABC, while lacking expression of hematopoietic markers such as CD34, CD45, 

and HLA-DR.  

Expression of early and late hepatic molecules such as AFP and albumin was 

confirmed also in differentiated cells with an increase seemingly due to 

differentiation increase in albumin expression was also confirmed by 

immunocytochemistry analysis. Cytokeratins switch was confirmed also by flow 

cytometry analysis. 

Finally, the expression of HNF-4α was evaluated in control cells and in 

hepatocyte-like cell at different timepoints by ICC. Nuclear expression of this 

factor was visible in all steps of hepatic differentiation. 

Confirmation of hepatic phenotype acquisition by WJ-MSC was showed by 

indocyanine staining and functional assays where we evaluated metabolic activity 

of main hepatic enzymes. 

Indocyanine or cardiogreen is molecule that forms fluorescent compounds when 

bound to the plasmatic proteins, in particular albumin. Hepatic differentiated cells 

were positive to the stain, with cells exhibiting green granular cytoplasm, due to 

cardiogreen uptake. Control cells, were mostly.  

Glucose metabolism and xenobiotic detoxification are the main liver functions. 

Glucose-6-phosphatase is an enzyme involved during gluconeogenesis and  

glicogenolysis. We performed an assay to evaluate the metabolic activity of this 

enzyme, demonstrating that hepatocyte-like cells, in all different hepatic 

differentiation steps, showed presence of lead sulphide precipitates as 

consequence of enzymatic activity, unlike control cells. 

CYP 450 3A4 metabolic assay was performed in presence of an inducer and an 

inhibitor of CYP enzyme both in control and treated cells. Hepatocyte-like cells in 

presence of the inducer exhibited significantly elevated activity of CYP 4503A4 

when co-incubated with the inhibitor ketoconazole, the same cells expressed 

significantly lower  levels of enzymatic activity. 
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In conclusion we demonstrated that WJ-MSC, induced with a protocol resembling 

the succession of inductive processes occurring in vivo during hepatogenesis, 

showed morpho-functional characteristics of hepatocyte-like cells, expressed 

novel endoderm-restricted and hepatocyte-restricted genes and enzymes involved 

in some typical hepatic functions such as detoxyfication of xenobiotics, 

glycogenolisys, glycogensynthesis and gluconeogenesis. 

Final objective of all in vitro experiments is translation in vivo, and knowing the  

phenotype of WJ-MSC could be more important to understand the behavior of 

these cells in recipient host. For these reasons, we evaluated immune property of 

these cells also after hepatic differentiation. WJ-MSC induced to differentiate 

towards hepatocyte like-cells expressed some immune-modulating molecules 

involved in tolerance mechanism, previously characterized in WJ-MSC at 

undifferentiated state. 

Therefore, obtained data confirmed the possibility by these cells to establish 

immune tolerance or to have simply an immune privilege, suggesting their 

possible role for clinical applications. 
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