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ABSTRACT
Objectives: Main purpose To evaluate the feasibility
of a measurement-based assessment of benzene
exposure in case-control studies of paediatric cancer;
Additional aims To identify the sources of exposure
variability; to assess the performance of two benzene
biomarkers; to verify the occurrence of participation
bias; to check whether exposures to benzene and to
50 Hz magnetic fields were correlated, and might exert
reciprocal confounding effects.
Design: Pilot case-control study of childhood
leukaemia and exposure to benzene assessed by
repeated seasonal weekly measurements in breathing
zone air samples and outside the children’s dwellings,
with concurrent determinations of cotinine, t-t-muconic
acid (MA) and sulfo-phenylmercapturic acid (S-PMA)
in urine.
Participants: 108 cases and 194 controls were
eligible for inclusion.
Results: Full-participation was obtained from 46 cases
and 60 controls, with low dropout rates before four
repeats (11% and 17%); an additional 23 cases and 80
controls allowed the collection of outdoor air samples
only. The average benzene concentration in personal
and outdoor air samples was 3 μg/m3 (SD 1.45) and
2.7 μg/m3 (SD 1.41), respectively. Personal exposure
was strongly influenced by outdoor benzene
concentrations, higher in the cold seasons than in
warm seasons, and not affected by gender, age, area
of residence or caseness. Urinary excretion of S-PMA
and personal benzene exposure were well correlated.
Outdoor benzene levels were lower among participant
controls compared with non-participants, but did not
differ between participant and non-participant cases;
the direction of the bias was found to depend on the
cut-point chosen to distinguish exposed and
unexposed. Exposures to benzene and extremely low-
frequency magnetic fields were positively correlated.
Conclusions: Repeated individual measurements are
needed to account for the seasonal variability in
benzene exposure, and they have the additional
advantage of increasing the study power.
Measurement-based assessment of benzene exposure
in studies of childhood leukaemia appears feasible,
although it is financially and logistically demanding.

ARTICLE SUMMARY

Article focus
▸ Benzene is an established cause of acute non-

lymphocytic leukaemia, and there is limited evi-
dence for an association between exposure to
this agent and other haematological neoplasms.
Epidemiological studies of benzene and child-
hood leukaemia have provided inconsistent
results, possibly due to the use of surrogate
exposure proxies, and lack of analyses by leu-
kaemia subtype.

▸ Our pilot study was aimed at evaluating the
logistic feasibility of an assessment of benzene
exposure based on repeated measurements in a
case-control study of childhood leukaemia. A
few methodological issues were also addressed
(putative determinants of exposure variability;
performance of urinary levels of muconic acid
(MA) and sulfo-phenylmercapturic acid (S-PMA)
as benzene biomarkers in children; participation
bias; possible reciprocal confounding effects of
exposures to benzene and to extremely low fre-
quency magnetic fields (ELF-MF)).

Key messages
▸ Eligible for inclusion were 108 cases and 194

matched controls, aged 2–12 years at the time
of the survey. Full participation rates were low,
but the outdoor monitoring was accepted by
64% of cases and 72% of controls. Adherence
of full participants to the scheduled repeats was
very satisfactory (cases 89%, controls 83%).

▸ Personal exposure was strongly influenced by
outdoor benzene concentrations, was higher in
the cold seasons than in warm seasons and was
not affected by gender, age, area of residence or
caseness. Personal benzene exposure and
urinary excretion of S-PMA (but not of MA) were
well correlated. A participation bias was indeed
present. A positive association between expo-
sures to benzene and ELF-MF was observed.

▸ Epidemiological studies of paediatric cancer and
estimates of environmental benzene exposure
based on repeated seasonal measurements,
although challenging, appear logistically feasible.
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INTRODUCTION
Benzene is a ubiquitous air pollutant that needs to be
metabolised to become carcinogenic.1 2

Benzene exposure and acute non-lymphocytic leukae-
mia (AnLL) are causally related in adults, while there is
limited evidence for an association between exposure to
this agent and acute or chronic lymphocytic leukaemia,
multiple myeloma and non-Hodgkin’s lymphoma.3

Moreover, a dose-dependent association between
benzene exposure and incidence of myelodysplastic syn-
drome has been observed among petroleum workers.4

Exposure to benzene would increase the risk of AnLL
at levels of ≥40 ppm-years of occupational cumulative
exposure, equivalent to a lifetime (76 years) environ-
mental exposure of ≥120 ppb.5

Owing to the established carcinogenicity of benzene,
WHO has not developed any guideline value for this
chemical in air, while indicating that ambient benzene
concentrations of 17, 1.7 and 0.17 μg/m3 are associated
with excess lifetime risks of leukaemia of 10−4, 10−5 and
10−6, respectively.6 7

While it seems unlikely that benzene is a major cause
of leukaemia in the general population exposed in the
ppb range, children may represent a subpopulation with
increased susceptibility.1 3

Childhood leukaemias have distinctive features com-
pared with leukaemias in adults. The major subtypes are
acute lymphoblastic leukaemia (ALL) and acute myeloid
leukaemia (AML), accounting for 80% and 15% of cases,
respectively, in white populations aged 0–14 years.8 Both
subtypes are thought to develop through a first initiating
event in utero (eg, the TEL-AML1 gene fusion whose
prevalence in newborns has been estimated at around
1% while it is observed in 25% of ALL cases) followed by
further postnatal genetic changes.8 The ‘second hit’
might consist of additional idiopathic chromosomal
translocations, as well as of exposures to biological, chem-
ical or physical agents.9 Ionising radiation, benzene, alky-
lators and topoisomerase II inhibitors are among the few
confirmed environmental risk factors for AML, while
delayed, dysregulated responses to common infections
are quite likely to play a major role in the conversion of
preleukaemic clones into overt ALL.8 9

Findings from available studies of benzene and child-
hood leukaemia are inconsistent, possibly due to the use

of indirect estimates of exposure and lack of analyses by
leukaemia subtype.10

To advance current understanding of benzene health
effects and susceptibility, studies of paediatric cancers
that include estimates of environmental exposure to
benzene, rather than surrogate exposure indicators,
have been recommended.11

Major challenges in pursuing this suggestion include
the space variability and time variability of ambient
benzene levels, the low exposure levels in children and
the inherent susceptibility of case-control studies (the
design of choice for aetiological studies of rare disease
like childhood cancer) to selection and information bias.
We evaluated the logistic feasibility of an assessment of

benzene exposure based on repeated seasonal weekly
measurements in breathing zone air samples and outside
the children’s dwellings, with concurrent determinations
of cotinine, t-t-muconic acid (MA) and sulfo-
phenylmercapturic acid (S-PMA) in urine, in a pilot
investigation within an Italian case-control study on envir-
onmental risk factors for childhood leukaemia (SETIL).
Additional objectives of the pilot study were:

▸ to investigate the relationship between level personal
exposure to benzene and putative determinants
(atmospheric benzene, second-hand tobacco smoke,
individual traits);

▸ to assess the performance of t-t-MA and S-PMA as
benzene biomarkers in children;

▸ to verify the occurrence of participation bias from
differential adhesion to the benzene measurement
study, and estimate the amount and direction of the
distortion;

▸ to check whether exposures to benzene and to
extremely low-frequency magnetic fields (ELF-MF)
were correlated, and might eventually exert reciprocal
confounding effects on the relationship with child-
hood leukaemia.

METHODS
Study population
Incident cases of childhood leukaemia from 14 Italian
regions, aged 0–10 years at diagnosis in 1998–2001, were
eligible for enrolment in the SETIL study. Cases were
ascertained through the national registry run by the
Association of Paediatric Haematology and Oncology.
Controls, matched to cases (2 : 1 ratio) on gender, date
of birth and region, were randomly selected from popu-
lation lists. Information on several items concerning the
children, their next of kin and dwellings was collected
by interviewing parents. All interviewed families were
invited to participate in a measurement study of indoor
ELF-MF, while subsets of participants were asked to join
two side-investigations on exposure to gamma radiation
and benzene, respectively.
Eligibility for the benzene pilot study was restricted

to 108 childhood leukaemia cases from seven Italian
provinces (Turin, Milan, Florence, Rome, Catania,

ARTICLE SUMMARY

Strengths and limitations of this study
▸ To our knowledge, this is the first pilot study of childhood

leukaemia and measured personal benzene exposure.
▸ The study size is very small. The greater accuracy of

measurement-based exposures estimates, compared with sur-
rogate exposure proxies, does not necessarily correspond to
increased validity, especially when measurements are used for
retrospective postdiagnosis exposure assessments.
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Palermo and Cagliari), diagnosed between July 2000
and December 2001, and 194 matched controls.
The study protocol was approved by the Piedmont

Ethical Committee on 14 January 2002.

Sampling strategy and devices
Owing to the high daily and seasonal variability of
atmospheric benzene concentrations, the protocol
called for four repeated seasonal 1-week samplings of
breathing zone air per child over 1 year (‘personal’ air
samples), with a concurrent collection of urine samples
and atmospheric air samples in proximity of the chil-
dren’s homes (‘outdoor’ air samples).
Outdoor air sampling would also be performed, with

an identical strategy, near the homes of all eligible
non-participants.
To study the day-to-day variability in exposure, 24 h

repeated personal and indoor samples during four
season-specific weeks would be collected from a subset
of children and related homes.
Personal air samples were collected by passive

samplers (Radiello radial symmetry diffusive sampler)
worn by the child during the day and placed at the
bedside at night.
Radiello samplers were also used to collect outdoor air

samples, placed near the entrance of the dwellings
(within 1 m), at a vertical distance from the ground suit-
able to avoid infringements (2–2.5 m), stored in a plastic
case to avoid rain or snow.
At retrieval, the adsorbing cartridges were removed

from the diffusive bodies and placed in glass storage
tubes. The ID code of the child, along with dates and
times of sampling start and end, was recorded on self-
adhesive labels stuck on the tubes. The cartridges were
sent to a single laboratory (Fondazione Salvatore
Maugeri, Padova) for chemical analyses.
Daily urine samples (10 ml, from the last micturition

before sleep) were collected for seven subsequent days
(70 ml/week) during each seasonal survey. The daily
samples were pooled in one plastic vial, and kept in the
freezer compartment of the home refrigerator until col-
lection at the end of the week. The vials were trans-
ported to the local research centre in cool bags, and
stored at –5°C until delivery (packed in dry ice and
usually within 2 weeks) to the laboratory (Fondazione
Salvatore Maugeri, Pavia).
Field work began between March 2002 and January

2003, and ended in October 2003–July 2004, depending
on the local research centre.

Chemical determinations
Benzene concentrations were determined by an
automated thermal desorber (ATD400, Perkin Elmer)
coupled to a capillary gas-chromatography system
(Autosystem XL, Perkin Elmer). The expanded uncer-
tainty of the method, in the range 2.4–14.3 µg/m3, was
shown to be 18%.12 The limits of detection and quantifi-
cation, over 1 week exposure, are 0.05 and 0.1 µg/m3.

The urine analyses were performed using a high-
pressure liquid chromatography system (Alliance 2690,
Waters) equipped with a spectrometric (SM) detector
(ZQ, Waters) following a preliminary step of purification
of the samples on preactivated solid phase extraction
cartridges. The limit of detection (LOD), coefficient of
variation (CV) and accuracy of the method were:
LOD=1 μg/l, CV%=(1.22)–(1.10), accuracy%=(−2.39)–
(3.36) for S-PMA; LOD=20 μg/l, CV%=(1.33)–(1.06),
accuracy%=(−2.18)–(3.27) for MA; LOD=1 μg/l, CV
%=(1.25)–(1.09), accuracy%=(−2.29)–(3.33) for cotinine.
Further details are provided in Appendix 1.
The chemical determinations were completed

by May 2005.

Statistical analyses
Measurements below the chemical-specific detection
limits were assigned half of such values and included in
the analyses.
The relationships between personal exposure to

benzene and putative determinants (as well as between
urinary excretion of benzene metabolites, benzene
intake and other covariates) were assessed by generalised
least squares (GLS) models for repeated measurements
(STATA V.11, xtreg procedure). The GLS model is:
yit=α+XitB+uit+eit, where i (1 to n) is the number of
observations collected at time t (1 to 4) and uit and eit
are the error components.
As the concentrations of benzene and urinary analytes

were log-normally distributed, we always included log-
transformed dependent variables in the models.
We used the OR, calculated from generalised estimat-

ing equations (GEE) for repeated individual measure-
ments (STATA V. 11, procedure xtgee), to estimate the
association between benzene exposure and dichotomous
variables such as case-control or participation status. The
general equation of the GEE model is g{E(yj)}=xjβ,
where g is the link function, herein a logit function.
We calculated a participation bias factor following the

method suggested by Greenland (bias factor=(S1a*S0b)/
(S0a*S1b)), where S1a, S0a, S1b and S0b denote the prob-
abilities of selection (ie, full participation in the
benzene study) for exposed cases, unexposed cases,
exposed controls and unexposed controls.13 When the
bias factor equals 1, there is no bias; when it is above or
below 1, the true OR will be biased upward or down-
ward, respectively, by the magnitude of this factor.
Multiple regression models were used to analyse

the relation between estimated exposures to benzene
and ELF-MF.

RESULTS
Participation and sampling outcome
Out of 108 cases and 194 controls eligible for inclusion,
46 cases and 60 controls (43% and 31%) agreed to take
full part in the benzene side-study (figure 1).
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In addition, the parents of 23 cases and 80 controls
who refused the personal exposure assessment accepted
the outdoor monitoring (partial participation=21% and
41%, respectively).
In all, 1467 air samples were collected. A small per-

centage (2%) was lost during monitoring (22 samplers
stolen, 2 sampler plates broken, 3 cartridges lost), trans-
port (8 missing labels) or chemical analysis (2 cartridges
broken on arrival at the laboratory; 1 sample lost due to
equipment failure).
Benzene measurements from the day-to-day variability

substudy (19% of the total) could not be used
because only four control children accepted the 24-h
sampling scheme, and were replaced by the calculated
weekly averages.
A further 20% of benzene measurements were removed

from the data-set due to lack of compliance with the study
protocol (indoor samples collected in place of the personal
ones from children refusing to wear the sampler; time-or
place-mismatch of personal and outdoor samples; ‘orphan’
personal or outdoor samples; duplicate season-specific
measurements; non-participants replaced with children
ineligible for the benzene side-study).
For the same reasons, 107 of 417 chemical determina-

tions in urine (26%) were discarded.

Three cases and five controls were excluded from one
or more analyses due to lack of complete measurement
sets in all seasonal series, and although 89% and 83% of
full-participant cases and controls did adhere to all four
seasonal surveys, only 37% and 43% of them had four
repeated analysable observations.

Personal characteristics of the children
The families of cases participating in full in the benzene
study had been interviewed on average 1.3 years
(SD 0.47) after the date of diagnosis, and the control-
families 1.5 years (SD 0.46) after the corresponding ref-
erence date. The delay between diagnosis and the first
series of benzene measurements was 2 years (SD 0.53)
for both cases and controls.
Cases and controls were comparable in terms of

gender, age and father’s attained educational level
(table 1). A higher proportion of controls than cases
had both parents smoking, and control-mothers were
more educated than case-mothers. There were similar
proportions of only children in the case and control
groups, while firstborn children were more frequent
among controls than cases. Early schooling (day-care
attendance) was more common in cases than in con-
trols. At the time of the benzene survey, most children

Figure 1 Children eligible for

inclusion and participation rates.
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were still living in the home occupied at birth or in the
house they moved into after birth but before the date of
diagnosis (cases 95%; controls 91%).

Level, variability and determinants of personal exposure
to benzene
The analyses of level, variability and determinants of per-
sonal exposure to benzene were based on 43 cases (39
ALL and 4 AML) and 56 controls, with 261 valid pairs of
benzene concentrations in breathing zone and outdoor
air (110 from cases and 151 from controls). A large pro-
portion of these children (35%) had a single pair of con-
current measurements, unevenly distributed by season,
with a disproportionally high number of summer samples
(30 of 35, all but one from a single centre).
The distributions, overall and by season, of benzene

concentrations in personal and outdoor air samples,
and of cotinine, MA and S-PMA in urine are described
in table 2.
Personal exposure to benzene was log-normally distrib-

uted (Shapiro-Wilk test=0.938, p<0.001), and the mean
benzene level over the individual yearly averages was
3 μg/m3 (0.92 ppb).
The distribution of benzene outdoor concentration was

skewed to the left in all seasons and the yearly averages
were log-normally distributed as well (Shapiro-Wilk
test=0.948, p=0.001); the average yearly benzene level near
the children’s homes was 2.7 μg/m3 (0.83 ppb).
Both the outdoor benzene concentrations and personal

exposure levels were higher in the cold seasons (autumn-
winter) than in the warm ones (spring-summer).
The European limit for benzene in air (5 μg/m3) was

exceeded by 5% of the yearly average outdoor concen-
trations, and by 8% of the yearly average levels in breath-
ing zone air samples. A large proportion of autumn and
winter measurements were above 5 μg/m3 (35% and
25% outdoor; 26% and 30% of the personal exposure
estimates).
Cases and controls had similar levels of personal expos-

ure to benzene: the leukaemia OR for a unit increase
(1 μg/m3) in personal benzene exposure was 0.93 (95% CI
0.77 to 1.13) adjusting for gender, age at the benzene
survey (2–4; 4–6; 6–12 years), cotinine in urine (μg/g cre-
atinine), season and province of residence (Turin; Milan;
Florence—Rome; Catania—Palermo—Cagliari).
A similar lack of association was found between the odd

of disease and benzene concentration outside the chil-
dren’s homes (OR 0.94 (95% CI 0.80 to 1.09)), control-
ling for gender, age, smoking habits of the parents at the
interview (non-smokers, mother or father smoking; both
parents smoking), season and province of residence.
Further adjustment for birth order and age at first

schooling had no material effect on the observed leu-
kaemia–benzene relationship (personal exposure: OR
0.92 (95% CI 0.75 to 1.13); outdoor benzene: OR 0.95
(95% CI 0.81 to 1.13)).
As cases and controls had comparable levels of

benzene exposure, we carried out the analyses illustrated
in the forthcoming paragraphs on the whole data-set,
although always controlling for caseness.
Urinary cotinine concentration (μg/g of creatinine)

was higher in children of smoking parents compared

Table 1 Children included in the pilot study by selected

characteristics

Cases Controls

N % N %

Gender

Female 25 58 30 54

Male 18 42 26 46

Age at the survey

(2,4) years 5 12 9 16

(4,6) years 21 49 16 29

(6,12) years 17 40 31 55

Residence*

Turin 7 16 9 16

Milan 8 19 13 23

Florence 3 7 5 9

Rome 14 33 15 27

Catania 3 7 5 9

Palermo 4 9 6 11

Cagliari 4 9 3 5

Parent smoking†

None 20 47 27 48

One 16 37 18 32

Both 4 9 11 20

Missing 3 7 0 –

Father’s education†

No qualification – – 1 2

Primary school 17 40 21 38

High school 17 40 24 43

University degree 6 14 10 18

Missing 3 7 – –

Mother’s education†

No qualification – – – –

Primary school 19 44 17 30

High school 15 35 26 46

University degree 9 21 13 23

Missing – – – –

Birth order†

Only child 10 23 12 21

First born 10 23 20 36

Second born or higher birth order 23 53 24 43

Age at first schooling†

No schooling yet 15 35 16 29

<3 years (crèche) 14 33 9 16

(3,6) years (preschool) 14 33 30 54

(6–7) years (primary school) 0 – 1 2

Home at the time of the benzene survey‡

Occupied since birth 28 65 39 70

Moved into after birth and before

diagnosis

13 30 12 21

Moved into after diagnosis and

before interview

1 2 5 9

Moved into after interview 1 2 – –

Total 43 100 56 100

*At the time of diagnosis or the corresponding reference date for
controls.
†Information reported at the interview.
‡The extremely low-frequency magnetic fields measurements,
if the parents agreed, were made at the time of the interview.
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with children of non-smokers, and children with both
parents smoking excreted a larger amount of cotinine
than children with one parent smoking (Appendix
table A). Cotinine levels were higher in winter than in
other seasons, and higher in children from central and
southern Italy (Florence, Rome, Palermo, Catania and
Cagliari) than in children from northern provinces
(Turin and Milan). The high between-subject versus
within-subject R2 ratio (0.51/0.07) is worth noting.
Personal benzene exposure was strongly influenced

by outdoor benzene concentrations (table 3A), and
apparently not affected by gender or age; the season
showed a modifying effect, with increasing levels of
personal exposure during autumn and winter; the
fraction of variability explained by the model was
higher for the within-subject component than for the
between-subject one.
Exposure to second-hand tobacco smoke (estimated

by cotinine excretion or by parental smoking habits)
showed a trivial influence on personal exposure to
benzene. The inclusion of urinary cotinine (μg/g cre-
atinine) in the model described in table 3A slightly

decreased its goodness of fit (R2 overall=0.46; Wald
χ2=189.49; R2 within=0.55; R2 between=0.35; β (cotinine)
=0.012; 95% CI=−0.003 to 0.03)); an alternative model,
including smoking habits of the parents, did not
perform any better (R2 overall=0.46; Wald χ2=216.44; R2

within=0.52; R2 between=0.39; β (one parent smoking)
=0.14; 95% CI=−0.02 to 0.31; β (both parents smoking)
=0.17; 95% CI=−0.06 to 0.39).
Children from central Italy (Florence and Rome)

tended to have lower benzene concentrations in breath-
ing zone air samples compared with residents in other
provinces, all other things being equal (table 3A), pos-
sibly because of residual confounding from the lack of
samples collected in Rome other than in summer. We
tried to verify this hypothesis by restricting the analyses
to children with at least two series of measurements
in different seasonal periods (cold and warm). The
data-set reduced to 61 subjects (25 cases and 36 con-
trols) and 220 pairs of personal-outdoor benzene mea-
surements. Actually, children from Florence still showed
(not significantly) lower levels of personal exposure to
benzene (β=−0.27; 95% CI=−0.56 to 0.03; p=0.074)

Table 2 Benzene concentration in personal and outdoor air samples, and urine level of cotinine and benzene metabolites

by season and overall

Obs (#) Mean SD G-mean G-SD Min

Percentiles

Maxp25 p50 p75

Benzene in personal air samples (µg/m3)

Spring 57 2.51 1.89 2.10 1.75 0.60 1.50 1.82 3.11 11.12

Summer 86 2.26 1.45 1.90 1.82 0.47 1.25 1.85 3.10 8.13

Autumn 62 4.31 2.60 3.73 1.57 0.92 2.939 3.70 5.17 18.47

Winter 56 4.04 1.78 3.67 1.73 1.55 2.34 4.00 5.24 9.03

Individual yearly averages 99 3.00 1.45 2.66 1.67 0.75 2.05 2.90 3.83 9.00

Benzene in outdoor air samples (µg/m3)

Spring 57 2.29 1.30 1.93 1.84 0.48 1.20 1.91 3.15 5.67

Summer 86 1.94 1.20 1.65 1.75 0.39 1.12 1.58 2.28 6.92

Autumn 62 3.99 2.58 3.05 1.92 0.08 1.93 3.42 5.63 11.18

Winter 56 3.80 1.86 3.25 2.35 0.15 2.40 3.66 5.20 8.31

Individual yearly averages 99 2.70 1.41 2.33 1.78 0.27 1.59 2.37 3.63 6.92

Cotinine (µg/g creatinine)

Spring 78 3.92 7.04 1.91 3.26 0.05 1.00 1.94 3.50 49.0

Summer 78 3.20 5.52 1.50 3.59 0.09 0.82 1.68 3.71 41.4

Autumn 76 4.54 8.51 1.92 3.92 0.05 1.20 1.93 4.30 48.7

Winter 74 4.36 7.38 2.32 3.01 0.10 1.20 2.30 4.80 53.5

Individual yearly averages 98 3.73 5.99 2.14 2.67 0.30 1.08 2.09 3.58 41.9

MA (µg/g creatinine)

Spring 81 104.22 69.28 87.43 1.79 17.00 60.27 82.00 126.99 349.00

Summer 79 140.40 226.73 92.30 2.16 13.33 56.54 83.00 131.76 1680.00

Autumn 76 128.24 124.04 99.57 1.94 30.21 60.16 102.48 147.21 893.04

Winter 74 119.09 100.15 95.30 1.86 26.00 65.00 86.00 129.00 591.00

Individual yearly averages 98 116.65 84.89 101.06 1.62 46.42 73.33 92.66 122.50 593.42

S-PMA (µg/g creatinine)

Spring 81 1.13 0.60 1.00 1.62 0.21 0.80 1.00 1.30 3.70

Summer 79 1.12 0.54 1.02 1.54 0.41 0.72 1.00 1.39 3.30

Autumn 76 1.53 0.93 1.33 1.67 0.49 0.97 1.29 1.84 5.80

Winter 74 1.37 0.60 1.23 1.64 0.15 1.00 1.20 1.60 3.40

Individual yearly averages 98 1.28 0.50 1.20 1.43 0.56 0.94 1.20 1.46 2.97

MA, muconic acid; S-PMA, sulpho-phenylmercapturic acid.
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compared with children from Turin (data not shown).
In the restricted data-set, however, independent effects
of both outdoor benzene and urinary cotinine levels on
personal benzene exposure were observed (table 3B).

Benzene intake and urinary excretion of benzene
metabolites
Ninety-eight children (43 cases and 55 controls) and
310 pairs of urine and breathing zone air measurements
(138 from cases and 172 from controls) were available
for the analyses of the urinary excretion of benzene
metabolites (MA and S-PMA) in relation to personal
exposure to benzene.
Urinary concentrations of S-PMA (ln μg/g creatinine)

were related to personal exposure to benzene (table 4,
Model 1). Youngest children (2–4 years at the benzene

survey) excreted higher level of S-PMA compared with
children aged 6–12 years, all other conditions being
equal, and urinary concentrations of S-PMA were higher
in samples collected during the cold seasons compared
with spring samples. The model, however, explained just
19% of the overall S-PMA variability. In an alternative
model, including outdoor benzene concentrations and
urinary cotinine in place of personal benzene exposure,
we also observed an effect of the nicotine biomarker on
S-PMA excretion (table 4, Model 2).
On the contrary, neither benzene concentrations in

breathing zone air samples nor outdoor benzene con-
centrations or cotinine levels explained the intraindivi-
dual and interindividual variability in urinary levels of
MA, controlling for gender, age, season, area of resi-
dence and caseness (data not shown).

Table 3 Personal exposure to benzene (ln μg/m3) by outdoor benzene concentration, cotinine, gender, age, season,

province of residence and caseness

(A) Whole data-set (261 observation, 99 children)

β 95% CI (β) p(Z)

Outdoor benzene(μg/m3) 0.151 0.12 to 0.19 <0.001

Gender (male vs female) −0.052 −0.21 to 0.11 0.522

Age (at the benzene survey) Reference 6–12 years

(2–4) years 0.027 −0.20 to 0.25 0.814

(4–6) years −0.147 −0.32 to 0.03 0.098

Season Reference Spring

Summer −0.027 −0.18 to 0.12 0.717

Autumn 0.317 0.16 to 0.48 <0.001

Winter 0.330 0.17 to 0.49 <0.001

Residence Reference Turin

Milan −0.038 −0.28 to 0.20 0.759

Florence—Rome −0.208 −0.45 to 0.03 0.091

Catania—Palermo—Cagliari −0.086 −0.31 to 0.13 0.443

Case vs control −0.039 −0.19 to 0.12 0.623

R2 overall=0.4617 (within=0.5364; between=0.3603); Wald χ2=234.0; p<0.0001

(B) Restricted data-set (≥2 repeats; 175 observations, 61 children)

β SE (β) p(Z)

Outdoor benzene(μg/m3) 0.123 0.020 <0.001

Cotinine (μg/g creatinine) 0.023 0.011 0.039

Gender (male vs female) −0.057 0.116 0.623

Age (at the benzene survey) Reference 6–12 years

(2–4) years 0.050 0.161 0.757

(4–6) years −0.199 0.121 0.100

Season Reference Spring

Summer −0.055 0.081 0.494

Autumn 0.382 0.087 <0.001

Winter 0.351 0.086 <0.001

Residence Reference Turin

Milan 0.038 0.155 0.807

Florence −0.323 0.195 0.099

Catania—Palermo—Cagliari −0.00001 0.138 1.000

Case vs control −0.073 0.107 0.498

R2 overall=0.4858 (within=0.5564; between=0.3544); Wald χ2=171.89; p<0.0001
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Bias due to differential participation
The analysis of participation bias included 66 cases
(43 full-participant and 23 partial-participant) and
136 controls (56 and 80), with 652 measurements of
outdoor benzene concentrations (135 and 175 from
full-participant cases and controls; 81 and 261 from
partial-participant cases and controls).
Benzene concentrations near the homes of full-

participant controls were significantly lower than
those in proximity of partial-participants’ dwellings
(OR=0.88; 95% CI 0.80 to 0.97), adjusting for gender,
age, season and place of residence, while there was
no difference in ambient benzene levels between par-
ticipant and non-participant cases (OR=0.95; 95% CI
0.82 to 1.09). As participation in the study was also
associated with the case-control status, assuming a
causal association between exposure and disease, a

selection bias might ensue. However, as parents of
more exposed controls were less willing to accept to
be interviewed, an upward distortion would be
expected, which is at odds with the apparent lack of
association between personal benzene exposure and
leukaemia risk in the current study.
To the aim of the current analysis, personal exposure

to benzene was dichotomised around the median
(3.25 μg/m3), the 75th percentile (4.34 μg/m3) or
5 μg/m3 (the current limit for airborne benzene in
Europe). The amount and direction of bias were found
to depend on the cut-point chosen (Appendix table B),
whereas no bias is expected when the exposure is
categorised around the median (bias factor=1.03),
and biases in the opposite directions are predicted
using cut-offs at p75 and at 5 μg/m3 (0.64 and
1.42, respectively).

Table 4 Urinary excretion of S-PMA (ln μg/g creatinine) by personal benzene exposure (model 1) or outdoor benzene

concentration plus urinary cotinine (model 2), controlling for gender, age, season, province of residence and caseness

Model 1 (310 observations, 98 children) β 95% CI (β) p(Z)

Personal benzene exposure (μg/m3) 0.031 0.004 to 0.06 0.024

Gender (male vs female) −0.027 −0.16 to 0.11 0.695

Age (at the benzene survey) Reference 6–12 years

(2–4) years 0.395 0.22 to 0.57 <0.001

(4–6) years −0.011 −0.16 to 0.14 0.890

Season Reference Spring

Summer 0.043 −0.09 to 0.17 0.514

Autumn 0.250 0.11 to 0.38 <0.001

Winter 0.156 0.01 to 0.30 0.033

Residence Reference Turin

Milan 0.007 −0.21 to 0.23 0.949

Florence—Rome 0.013 −0.18 to 0.21 0.898

Catania—Palermo—Cagliari 0.068 −0.14 to 0.27 0.514

Case versus control 0.053 0.647 0.415

R2 overall=0.1894 (within=0.1263; between=0.2174); Wald χ2=58.97; p<0.0001

Model 2 (214 observations, 98 children)

Outdoor benzene concentration (μg/m3) 0.009 −0.02 to 0.04 0.605

Cotinine (μg/g creatinine) 0.014 0.001 to 0.03 0.040

Gender (male vs female) −0.012 −0.16 to 0.14 0.875

Age (at the benzene survey) Reference 6–12 years

(2–4) years 0.308 0.08 to 0.54 0.008

(4–6) years 0.055 −0.11 to 0.22 0.516

Season Reference Spring

Summer −0.040 −0.18 to 0.10 0.582

Autumn 0.200 0.04 to 0.36 0.012

Winter 0.082 −0.07 to 0.24 0.305

Residence Reference Turin

Milan −0.053 −0.28 to 0.18 0.657

Florence—Rome 0.048 −0.18 to 0.28 0.687

Catania—Palermo—Cagliari 0.003 −0.21 to 0.22 0.974

Case vs control 0.011 −0.14 to 0.16 0.882

R2 overall=0.1158 (within=0.1423; between=0.0925); Wald χ2=27.59; p=0.0063

S-PMA, sulfo-phenylmercapturic acid.
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Relationship between exposures to benzene and ELF-MF
Children with benzene and ELF-MF measurements
made at the same house qualified for inclusion in the
analysis of the relationship between estimated exposures
to these agents. As only 35 cases and 46 controls met
such criteria when benzene concentrations in breathing
zone air samples were used as the exposure indicator, we
performed the analysis on 48 cases and 77 controls with
place-comparable pairs of average yearly outdoor
benzene concentration (μg/m3) and 48 h TWAs of
ELF-MF level in the child’s bedroom (ln μT).
There was a positive association between estimated expo-

sures to ELF-MF (dependent variable) and benzene
(β=0.177; 95% CI 0.06 to 0.29; p=0.002); the multivariable
regression model (including gender, age, province of resi-
dence, caseness and participation in the benzene pilot
study as covariates) explained 16% of the variability in the
dependent variable (F (10, 114 df)=2.13; p>F=0.0271). A
steeper increase in the ELF-MF level per unit increase in
outdoor benzene concentration (β=0.520; 95% CI 0.09 to
0.95; p=0.019) was seen among the 81 children fully partici-
pating in the benzene pilot-study compared with the 44
partial-participants (Appendix table C).
Similar results, with a more accentuated increase in

the indoor magnetic induction level per unit increase in
outdoor benzene concentration (β=0.272; 95% CI=0.09
to 0.45; p(t)=0.003; R2=0.19), were observed in the
restricted data-set of 86 children with ≥2 weekly sam-
plings in alternate seasons.

DISCUSSION
We have carried out a pilot case-control study of child-
hood leukaemia and exposure to benzene assessed by
repeated individual measurements made on average
2 years after diagnosis. The pilot study included side-
investigations aimed at evaluating the performance of
two biological indicators of benzene exposure in chil-
dren, at estimating amount and direction of a possible
participation bias and at assessing the relation between
estimated exposures to benzene and ELF magnetic fields.
Owing to the relatively low incidence of childhood

cancers (10–15 for 100 000 person-years in the 0–14 year
range in most industrialised countries), the case-control
approach is the design of choice for analytical epidemio-
logical studies about potential risk factors for these dis-
eases. Such a study design, however, is inherently prone
to measurement errors stemming from the retrospective
reconstruction of the exposures of interest, and to differ-
ential participation leading to control samples not being
representative of the study base. Therefore, findings
from observational epidemiological studies of postulated
determinants for childhood malignancies are often
inconsistent and always require a cautious and thought-
ful interpretation.14

Although based on small numbers, some of the find-
ings from the current study have a certain factual and
methodological interest.

Repeated samplings of breathing and outdoor air are
indeed needed to account for the seasonal variability in
environmental benzene levels.15 16

On average, children participating in the current
study appear to experience mean yearly levels of per-
sonal exposure to benzene not exceeding the European
guidelines (although 8% of the yearly mean levels were
above 5 μg/m3).
What we a priori considered to be the main sources of

benzene exposure for children (ambient benzene levels
and second-hand tobacco smoke) explained no more than
half of the overall variability in personal exposure, which
indicates the need to identify other sources of exposure
particularly relevant, perhaps, during the cold seasons. In
fact, in autumn-winter compared with spring-summer, we
observed higher levels of personal exposure to benzene, of
urinary cotinine and of S-PMA excretion, all other things
being equal. These findings might be due to the lower ven-
tilation rates in homes and schools during the cold
seasons, to winter-specific sources of indoor benzene con-
centrations not considered in the current survey (eg, fire-
places or other combustion sources), and/or to the
seasonal variability in daily patterns of time spent in differ-
ent microenvironments (eg, within cars or buses).17

Some case-control studies have suggested an associ-
ation between exposure to traffic density and childhood
leukaemia18–21; however, negative findings have also been
reported.22–25 Positive associations between the incidence
of ALL in children and residential proximity to petrol sta-
tions were observed in three case-control studies.23 26 27

An increased risk of childhood leukaemia in relation to
estimated exposure to benzene was observed in a small
Italian study,28 but not in a much larger case-control
study carried out in Denmark and based on a sophisti-
cated and validated exposure modelling.29

To our knowledge, there is no previous study of child-
hood leukaemia and measured personal benzene expos-
ure. Moreover, as only children aged 0–10 years at
diagnosis were eligible for the SETIL study, the large
majority of cases included in the current investigation
were pre-B ALL.
Cases and controls did not differ in terms of exposure

to benzene, estimated either by benzene level in per-
sonal air samples or through outdoor benzene concen-
tration, but the interpretation of this finding is
hampered by the retrospective exposure assessment and
the low statistical power of this preliminary investigation.
That notwithstanding, owing to the design being based
on repeated individual observations, the risk estimates
have quite narrow CIs. Thus, the findings from this pilot
study, in accordance with the limited evidence for an
association between exposure to benzene and ALL,3 5

might also suggest that the levels of benzene exposure
experienced by children living in Italian towns do not
entail a detectable increase in the risk of ALL.
Current perspectives on the causes of childhood ALL

increasingly point toward an aetiological role of altered
patterns of infections and related immune stimulation
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during the first years of life, and one piece of supporting
evidence is the consistent observation of an inverse asso-
ciation between ALL risk and day-care attendance.30

Studies of childhood ALL and birth order, on the other
hand, have provided inconsistent result.31 Neither age at
first schooling nor birth order confounded the relation
between childhood leukaemia and indicators of
benzene exposure in the current study.
S-PMA concentration measured in repeated weekly

samples of the last micturition before sleep was found to
reflect personal exposure to benzene, although the avail-
able covariates explained a small fraction of the within-
subject and between-subject variability of this benzene
metabolite. This is a quite surprising result, considering
that S-PMA is believed to represent less than 1% of
urinary benzene metabolites for exposures to benzene at
air concentrations between 0.1 and 10 ppm.32

Benzene exposure proved to be unable to explain the
variability of MA urinary excretion observed in our chil-
dren, consistent with findings from a previous Italian
study.33 The low statistical power of the study, the low
level of benzene exposure and the lack of adjustment for
the confounding effect of dietary intake of sorbic acid (a
common food additive) may explain this finding.34

Full-participation rates were low, in line with a general
tendency to decreasing participation rates, especially in
epidemiological studies requiring adherence to complex
measurement protocols.14 35 That notwithstanding, the
outdoor monitoring was accepted by a fairly satisfactory
proportion of families (64% and 72% of eligible cases
and controls). This is an encouraging result, given the
strong correlation between personal benzene exposure
and ambient benzene level observed in the current study.
We observed a differential participation bias, which

underscores the need to plan parallel bias analyses in
any case-control study.36 The dependence of the partici-
pation bias factor on the cut-point chosen to dichotom-
ise the exposure variable is of methodological interest.
The positive association between the 48 h TWA of

ELF-MF induction in the child’s bedroom and the
average yearly concentrations of outdoor benzene will
need to be considered in the interpretation of findings
from the analyses of childhood leukaemia risk in rela-
tion to 50 Hz MF in the SETIL case-control study.
Incidental failures during sample collection, transport

or chemical analysis accounted for a negligible propor-
tion of lost air or urine samples. However, substantial
percentages of chemical measurements could not be
included in the current analyses because of a misunder-
standing of the sampling protocol.
The day-to-day variability substudy was clearly too

demanding to be acceptable.
In conclusion, the current pilot study suggests that epi-

demiological studies of childhood leukaemia risk and
measurement-based estimates of exposure to benzene are
challenging but logistically feasible (provided that the study
protocol specifies every single sampling detail and nothing
is considered so obvious as to be omitted). Such an

exposure assessment method could be considered by epide-
miologists willing to involve in the ‘genome–
exposome’ approach to gain further insight into the rela-
tionship between benzene exposure and childhood leukae-
mia risk, with priority given to AML.2 37–39 Owing to the low
incidence rates of AML in children, however, international
multicentre studies are needed to address this topic.
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