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Sommario 

La vegetazione è una componente importante degli ecosistemi terrestri, che 

gioca un ruolo significativo nei processi di bilancio idrologico e nella 

ripartizione dei flussi di energia. Lo studio degli ecosistemi caratteristici delle 

zone aride e semi-aride rappresenta un obiettivo particolarmente interessante 

nell’ambito ecoidrologico, poichè l’acqua è generalmente considerata la causa 

principale della limitazione delle risorse. Un fattore importante in tale analisi è la 

topografia, la quale influenza fortemente lo stato e l’organizzazione spaziale 

della vegetazione attraverso il ruolo regolatore della radiazione solare e la 

ridistribuzione laterale dei flussi idrici. In particolare, un’area di studio ancora in 

gran parte inesplorata è data invece dalle dinamiche spaziali con cui la 

vegetazione si adatta a questi effetti di regolazione, nonchè alle implicazioni 

legate al bilancio idrologico a scala di bacino. Inoltre, le dinamiche spazio-

temporali degli ecosistemi sono strettamente legate ai cambiamenti climatici e 

alle competizioni tra i diversi tipi di vegetazione. 

Lo studio qui presentato si propone di modellare le dinamiche della 

vegetazione del passato e quelle attese in futuro in diverse aree, utilizzando un 

modello eco-idrologico basato sugli automi cellulari (CATGraSS). Tale modello 

pemette lo studio dei patterns e delle dinamiche spazio-temporale della 

vegetazione in funzione delle caratteristiche morfoclimatiche del sito e della 

disponibilità delle specie vegetali. In questa tesi, sono stati analizzati tre casi 

studio: la variazione del pattern di vegetazione in un bacino del Mediterraneo, 

determinata dal possibile cambiamento climatico futuro, e l’invasione 

(encroachment) di specie arbustive e arboree nelle praterie del Nord-Ovest 

dell’America. 

Uno dei più importanti temi recentemente proposti nell’ambito 

dell’ecoidrologia è la previsione della risposta della vegetazione nelle regioni di 

transizione (ecotone) soggette agli ipotetici cambiamenti climatici. Nell’ambito 

di questa tesi il modello CATGraSS è stato utilizzato, sviluppato e migliorato, 

per modellare, a scala di bacino, i patterns di vegetazione in funzione 

dell’influenza della distribuzione spaziale della radiazione solare e della 

precipitazione. Il modello è stato implementato in un piccolo bacino in Sicilia. 

Tale modello è stato calibrato in modo da ottenere la distribuzione spaziale della 

vegetazione osservata nel clima attuale. L’analisi dei risultati del modello mostra 

l’importanza e il ruolo della radiazione solare nella determinazione dei patterns 
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di vegetazione in questo tipo di ecosistema e di clima. Al fine di studiare le 

dinamiche dei patterns di vegetazione legate ai cambiamenti climatici, il 

modello è stato inoltre utilizzato per la simulazione degli effetti di scenari 

climatici futuri ottenuti attraverso un generatore stocastico di precipitazione. A 

tal fine, gli output dei modelli climatici a scala globale (GCM) sono stati 

sottoposti ad una procedura di downscaling in modo da ottenere i parametri 

statistici della temperatura e della precipitazione future. È stata osservata 

un’elevata sensibilità della distribuzione della vegetazione alla variazione della 

precipitazione e della temperatura. In particolare, le simulazioni suggeriscono 

che i patterns di vegetazione osservati possono esistere solo nel clima attuale. 

Le dinamiche spazio-temporali possono anche essere analizzate per studiare 

il fenomeno dell’invasione delle vegetazioni arbustive e arboree (encroachment), 

ovvero l’aumento della densità di alberi o arbusti indigeni nelle praterie del Nord 

America occidentale, avvenuta nel corso degli ultimi 150 anni. Per riprodurre 

questo fenomeno, le invasioni della vegetazione arbustiva (creosote bush) e del 

ginepro occidentale, osservate rispettivamente in New Mexico e in Oregon, sono 

state simulate nel secondo e nel terzo caso studio con l’utilizzo del modello 

CATGraSS. Le cause prese in considerazione sono: l’aumento del tempo si 

ritorno del fuoco, l’aumento del pascolo, la dispersione dei semi provocato dagli 

animali e la competizione tra i diversi tipi di vegetazione. Mentre nel caso studio 

in Oregon, i risultati del modello riproducono l’invasione del ginepro 

occidentale su tutta l’area di studio, con la conseguente scomparsa della 

vegetazione erbacea e arbustiva, nell’area studio del New Mexico, viene invece 

riprodotta l’invasione degli arbusti con un aumento dal 2% nel 1860 al 42% nel 

2010 (percentuale attuale dell’arbusto). I risultati evidenziano come, tra i fattori 

più influenti nella modellazione dell’invasione, vi siano la riduzione della 

frequenza del fuoco e l’aumento del pascolo. Inoltre, tali risultati mostrano come 

il cambiamento climatico futuro possa determinare livelli di invasione che 

porteranno la diffusione dell’arbusto e del ginepro nelle rispettive aree di studio. 

 

 

 



________________________________________________________________ 
Domenico Caracciolo                                                                                                     v 

  

Abstract 

Vegetation is an important component of terrestrial systems, playing a 

significant role in the processes of land-surface water and energy partition. 

Ecosystems of arid and semi-arid areas represent a particularly interesting object 

for studies, as water is generally considered to be the key limiting resource. 

While it is commonly observed that topography strongly affects the state and 

spatial organization of vegetation through the regulation of incoming solar 

radiation and lateral redistribution of water and elements, a still largely 

unexplored area is how plants adjust to these regulating effects relative to their 

location in a landscape, what are the implications for the water balance, and 

whether catchment vegetation-hydrology dynamics can be generalized in the 

form of terrain indices. Moreover, space and time dynamics of ecosystems are 

tightly related to fluctuations and changes in the climate and to the competition 

strategies of individual plants for different resources. 

The research here presented aims to model the past and future dynamic of the 

vegetation at different scales using an existing ecohydrological Cellular 

Automata Model (CATGraSS). Vegetation patterns and dynamics are 

inseparably linked to initial conditions of site characteristics (i.e., topography, 

climate) and species availability. We have studied three case studies: the 

variation of the vegetation pattern in a Mediterranean basin subsequent to 

probable climate change, and the shrubs and junipers encroachment in the 

western north America grasslands. 

Predicting vegetation response in regions of ecotone transition under a 

changing climate is one among grand challenges in ecohydrology. The 

CATGraSS model of vegetation coexistence driven by solar radiation and 

rainfall has been used, developed and improved here to modeling the vegetation 

patterns. The model is implemented in a small basin in Sicily. The model is 

forced first by a representation of the present climate, comparing the vegetation 

pattern obtained from the model with the current vegetation pattern. The model 

analysis underscores the importance of solar irradiance in determining 

vegetation pattern in this type of ecosystem and climate. To understand how can 

change the vegetation spatial patterns in the future as result of the climatic 

changes, the model has been forced with future climate scenarios generated 

using a stochastic weather generator. A downscaling procedure allows for the 

downscaling of an ensemble of climate model outputs deriving the frequency 

distribution functions of factors of change for several statistics of the 

temperature and the precipitation from a multi-model ensemble of outputs of 
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General Circulation Models (GCMs). A high sensitivity of the vegetation 

distribution to variation of rainfall and temperature has been observed. In 

particular the simulations suggest that the observed vegetation patterns can exist 

only in the current climate.  

Spatio-temporal vegetation dynamics can be also discussed for studying the 

shrub and tree encroachment phenomenon that is an increase in density, cover 

and biomass of indigenous trees or shrubby plants occurred in the grasslands of 

western North America over the last 150 years. In order to reproduce this 

phenomenon, creosote bush and western juniper encroachments in New Mexico, 

and in Oregon have been simulated with the CATGraSS, respectively, in the 

second and third case study. The causes that have been considered for the 

encroachment in these case studies are: the fire return period increase, the 

grazing increase, the seed dispersal caused by animals and the plant type 

competition. While in the Oregon case study, the western juniper encroaches all 

the study area and the shrub and grass disappears, in the New Mexico site, the 

model is able to reproduce the shrub encroachment, simulating its increasing 

from 2% in 1860 to 42% (i.e., current shrub percentage) in 2010 highlighting 

among the most influent factors the reduced fire frequency and the increased 

grazing intensity. Moreover the future climate change will increase the 

encroachment and the shrub and juniper could settle in all the study areas.  
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Introduction 

The processes within the terrestrial biosphere and atmosphere are 

intrinsically coupled with the hydrological cycle. Vegetation is an important 

component of terrestrial systems, playing a significant role in the processes of 

land-surface water and energy partition. Ecosystems of arid and semi-arid areas 

represent a particularly interesting object for studies, as water is generally 

considered to be the key limiting resource. Interactions and feedbacks between 

the climate and biosphere have been the subject of a number of studies (e.g., 

Dickinson, 2000; Wang and Eltahir, 2000; Pielke, 2001). Recently, a multi-

outcome interplay between vegetation, climate, and soil has been illustrated in a 

series of papers: Rodriguez-Iturbe et al. (1999), D’Odorico et al. (2000), Laio et 

al. (2001), Ridolfi et al. (2000), Van Wijk and Rodriguez-Iturbe (2002), Caylor 

et al. (2005), Ivanov et al. (2008a, b), Istanbulluoglu et al. (2012). Understanding 

the basic processes and feedbacks in the vegetation-hydrology system is the 

crucial link to characterizing the existence of different biomes and hydrological 

mechanisms that underlie the coupled dynamics. As pointed out by a number of 

researchers (e.g., Eagleson, 1978; Rodriguez-Iturbe, 2000; Mackay, 2001), the 

fundamental variables determining the vegetation structure and function are light 

(i.e., energy), soil moisture, and nutrient supplies. Besides vegetation itself, they 

represent the diagnostic variables of climate, soil, and topography, the key 

factors affecting their spatio-temporal dynamics. Explicit modeling of each one 

of these factors requires the simultaneous treatment of the others. Significant 

variations and feedbacks, which may occur over a wide range of temporal and 

spatial scales, must be considered. If some of the hydrological or vegetation 

components are not considered, the lack of dynamic feedbacks could seriously 

alter the modeled system’s behavior (Band et al., 1993). Despite the recognition 

of the principal factors and their coupled nature, hydrology-vegetation modeling 

has been extremely simplified in at least one of the following contexts: the 

effects of climate forcing, soil spatial/vertical heterogeneity, and the impact of 

topography on lateral fluxes in the system and light exposure. Vegetation itself is 

considered as a static component with prescribed characteristics in most 

hydrology models. Therefore, hydrologic modeling has generally ignored the 

importance of vegetation as an important spatio-temporal dynamic component in 

the land-surface hydrological cycle and the existence of topographic controls on 

plant spatial distribution. Past simplifications are due to the overall extreme
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complexity of the problem and differences in opinion among ecologists and 

hydrologists about what simplifications are necessary. While ecologists tend to 

over-simplify the hydrological mechanisms involved in vegetation function, 

hydrologists choose to neglect the dynamic features of vegetation.  

Vegetation dynamics have temporal and spatial aspects. Indeed, time and 

space are related, in that forcing functions for vegetation change over large areas 

tend to be the same as those causing change over long time periods, and likewise 

for small areas and short time spans the causes of change are similar. Vegetation 

has been observed to exhibit a degree of spatial organization in a number of 

ecosystems in space and time. The emergence of these organization patterns is 

attributable to a range of spatial process such as local interactions between 

species, localized dispersal abilities and disturbance regime. Previous works 

suggest that topographic variables related to soil moisture and nutrient status 

(slope, hillslope position, upslope catchment area, topographic moisture index, 

topographically modeled soil moisture) are also related to plant species 

distributions. This mean that the vegetation distribution and pattern is mainly 

influenced by topography (e.g., Florinsky and Kuryakova, 1996; Sternberg and 

Shoshany, 2001; Walton et al., 2005; Dietrich and Perron, 2006; Franz et al., 

2012; Pizzolla et al, 2012b; Manfreda et al., 2013; Zhou et  al., 2013). While it is 

commonly observed that topography strongly affects the state and spatial 

organization of vegetation through the regulation of incoming solar radiation and 

lateral redistribution of water and elements, a still largely unexplored area is how 

plants adjust to these regulating effects relative to their location in a landscape, 

what are the implications for the water balance, and whether catchment 

vegetation-hydrology dynamics can be generalized in the form of terrain indices. 

Vegetation pattern and dynamics are inseparably linked to initial conditions 

of site characteristics (i.e., topography) and species availability. Moreover, space 

and time dynamics of ecosystems are tightly related to fluctuations in the climate 

and to the competition strategies of individual plants for different resources 

(Bachelet et al., 2001; Walther et al., 2002; Lenihan et al., 2003; Boisvenue and 

Running, 2006; Nathan et al., 2011; Hanenwinkel et al., 2012). The climatic 

regime influence species’ distributions, often through species-specific 

physiological thresholds of temperature and soil water potential tolerance. 

Divergent responses or susceptibilities of individual species to climate change 

may modify their interactions with others species at the same or adjacent trophic 

levels as long-term data on both terrestrial and marine organisms indicate 

(Walther et al., 2002).  

Space-time scales can be also discussed in the context of their suitability for 

studying a phenomenon that influences vegetation systems: the encroachment, 

that is the increase in density, cover and biomass of indigenous trees or shrubs in 

various grasslands, especially arid and semiarid grasslands (Buffington and 

Herber, 1965; Burkahardt and Tisdale, 1976; Archer at al., 1988; Grover and 

Musick, 1990; Bahre and Shelton, 1993; Archer, 1995; Asner et al., 2003; Miller 
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et al., 2005; Coop and Givnish, 2007; Browning et al., 2008; Knapp et al., 

2008a, b; He et al, 2010). The semiarid and arid grasslands of southwestern 

North America have changed dramatically over the last 150 years (Buffington 

and Herber, 1965; Archer et al, 1988; Archer, 1994, 1995; Browning et al., 

2008; van Auken, 2009). Most recent studies have attributed the encroachment 

of shrubs or trees into the semiarid grasslands to an interaction of several factors 

(van Auken, 2000; 2009; Miller et al., 2005). The major cause of the 

encroachment of these species seems to be the reduction of grass biomass (fine 

fuel) by chronic high levels of domestic herbivory coupled to a reduction of 

grassland fires (Burkahardt and Tisdale, 1976; van Auken, 2000), which would 

have killed or suppressed trees and shrubs to the advantage of the grasses 

(Grover and Musick, 1990; Archer, 1995; Coop and Givnish, 2007; van Auken, 

2009). The introduction of millions of domestic  animals into the grassland and 

high livels of constant herbivory (van Auken, 2009) have caused the reduction of 

the aboveground grass biomass and the fine fuel, required for large-scale 

ecosystem fires. With the reduction of the fuel there was a concomitant decrease 

in grassland fires (Archer, 1994). Bahre and Shelton (1993) showed that the 

historical climate change did not influence the encroachment. In fact, links 

between changing climate since 1870s and tree or shrub encroachment in the 

semiarid grasslands are weak (Bahre and Shelton, 1993; Van Auken, 2000; 

2009). Vice versa the future climate change could become the major cause of 

encroachment (Allen and Breshears, 1998; Van Auken, 2009). In the future, all 

of the above factors will probably continue to interact to regulate community 

composition and structure and the density of trees or shrubs will probably 

increase (Buffington and Herber, 1965; Bahre and Shelton, 1993; Miller et al., 

2008; van Auken, 2009). The encroachment of shrubs in North American 

deserts, has been particularly well documented in the Sevilleta National Wildlife 

Refuge (SNWR), located in the northern Chihuahuan desert of the Rio Grande 

Valley, New Mexico. The SNWR shows a dramatic encroachment front of 

creosote bush (Larrea tridentata) into native desert grassland (He et al., 2010). 

Other parts of USA experienced a tree encroachment. For example in Oregon, 

since 1870, the area occupied by western juniper has increased 125 to 625 

percent (Gedney et al., 1999; Miller et al., 2005; Miller et al., 2007). The 

increase of trees was a result of infill into shrub-steppe communities with 

relatively open low density stands of trees and expansion of juniper into 

sagebrush-steppe communities that previously did not support trees (Miller and 

Rose, 1995). This has also implications for future changes that will occur within 

these areas in the next 30 to 50 years (Miller et al., 2008). In the absence of 

disturbance or management, the majority of these landscapes will become closed 

woodlands resulting in the loss of understory plant species and greater costs for 

restoration (Miller, 2001). It is important to underlain that, even if the topic is 

strongly studied in literature, there are not studies that use hydrological or 

ecohydrological models in order to model and reproduce the phenomenon. 
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Moreover, in this context, regions of ecotone transitions, that are strongly 

interested to the phenomena above described, are also known to be highly 

sensitive to climate fluctuations (Zhou et al., 2013). In fact, the ecotone 

boundary is where plants actively migrate in space with changing environmental 

and climate conditions. Local competition processes have not received enough 

attention in ecological/hydrological climate change research because the existing 

models are typically simplistic and they do not explicitly model biomass 

dynamics in space. Therefore, traditional ecohydrological models are not able to 

predict how climate change could influence ecotone boundaries; this aspect 

makes our ability to predict such changes at the catchment and regional scales 

still limited. The importance of understanding and predicting climate change has 

been emphasized in many studies (IPCC, 2013). Climate change has potentially 

significant implications on the hydrological cycle and water resources (Bouraoui 

et al., 1999; Burlando and Rosso, 2002; Christensen et al., 2004; Liuzzo et al., 

2010; Fatichi et al., 2013) and vegetation. In this context, research on climate 

change impacts on the ecohydrology is urgently needed as testified by many 

studies on the topic  (Merritt et al., 2006; Bae et al. 2008; Bavay et al., 2009; 

Mooney et al., 2009; Manning et al., 2009; Morin and Thuiller, 2009; Pumo et 

al., 2010; Hirschi et al., 2012). Downscaling techniques were therefore 

developed to downscale information from General Circulation Models (GCMs) 

to local scales (Semenow and Barrow, 1997; Schmidli et al., 2006; Kilsby et al., 

2007; Burton et al., 2010; Fatichi et al., 2011; 2013). Time series of 

meteorological variables representative of climate change scenarios can be 

subsequently used to analyze the influence of the climate change on the 

vegetation spatial patterns and biodiversity, at local or catchment scale. The 

climate change and the global warming is considered to be a major potential 

threat to change in hydrologic cycle, water resources and vegetation dynamics. 

Also biodiversity, that is the degree of variation of vegetation life (i.e., the 

number, variety and variability of plants in a particular area or region), is 

threaten by climate change (Gitay et al., 2005; Kannan and James, 2009). 

However, while potential adverse effects of climate change on biodiversity were 

typically claimed, evidence supporting this statement is tenuous. Increasing 

atmospheric carbon dioxide certainly affects plant physiology (Ainswort and 

Long, 2004; Norby and Zak, 2011; Fatichi and Leuzinger, 2013) and 

temperature affects species ranges (Loarie et al., 2009; Randin et al., 

2013), phenology (Hegland, 2009; Körner and Basler, 2010; Richardson et al., 

2013), and weather (e.g., Min et al., 2011) but quantification of the impacts in 

biodiversity is still challenging (McMahon et al., 2011). It is difficult to 

document major extinctions, even though climate change drastically altered the 

biology of many species.  

In scientific literature the phenomena above described (i.e., dynamics of 

vegetation patterns) are often studied with cellular automata (CA) models that 

describe dynamics of local plant interactions by mathematical rules over a 
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domain of regular grids (e.g., Jeltsch et al., 1996; Jeltsch et al., 1998; van Wijk 

and Rodriguez-Iturbe, 2002; Caylor et al., 2004; Scanlon et al., 2007; Manfreda 

and Caylor, 2013; Zhou et al., 2013). Most CA model applications have 

emphasized biological processes including seed production, dispersal, and stem 

growth (e.g., Jeltsch et al., 1996, 1998; van Wijk and Rodriguez-Iturbe, 2002; 

Fernandez-Illescas and Rodriguez-Iturbe, 2004). Some recent ecohydrological 

CA models have linked plant competition to plant water stress, driven by rainfall 

characteristics (e.g., van Wijk and Rodriguez-Iturbe, 2002; Fernandez-Illescas 

and Rodriguez-Iturbe, 2004), leading to links between the statistical properties 

of vegetation cluster sizes and inter-annual rainfall variability. Patterns of 

vegetation on the landscape are mainly a function of the availability of different 

factors that support plant growth: light (Ricard and Messier, 1996; Martens et 

al., 2000), nutrients (Tilman, 1987; Lejeune et al., 2002; Rietkerk et al., 2004), 

water availability (Klausmeier, 1999; Couteron and Lejeune, 2001), and other 

environmental conditions that determine the timing and length of the growing 

season, such as temperature and snow (Myneni et al., 1997; Dunne et al., 2003). 

Therefore, plant types and patterns on the landscape are mostly controlled by 

climate at the regional scale, and soil texture, nutrients and site history at the 

local scale (Larcher, 1995; Svoray and Karnieli, 2010). Despite the potential 

important role of topography on water, nutrient and energy distribution, few 

studies have related topographic controls on the dynamics and patterns of plant 

co-existence (Caylor et al., 2005; Ivanov et al., 2008b; Franz et al., 2012; 

Manfreda and Caylor, 2013; Zhou et al., 2013). Especially in semiarid systems, 

topography mediates patterns of soil moisture feeding back on plant 

productivity, and could lead to specific vegetation patterns in certain hillslope 

with specific aspects and morphologies (e.g., Istanbulluoglu et al., 2008; Forzieri 

et al., 2011; Hwang et al., 2011; Svoray and Karnielli, 2011; Flores-Cervantes et 

al., 2013). Despite an explicit representation of topographic effects has been 

introduced in some recent ecohydrological models at the catchment scale (Tague 

and Band, 2004; Ivanov et al., 2008a; 2008b; Fatichi et al., 2012), these models 

have limited capacity to represent transitional plant dynamics and life histories 

(seed dispersal, establishment, age), which can critically dictate plant response to 

climate change and disturbances. As a result, there is a growing need to develop 

spatially-explicit transitional ecohydrologic CA models to predict: (1) the role of 

spatially varying resources (i.e., soil moisture and nutrients on vegetation 

responses); (2) shifts in ecosystem boundaries due to climate change and 

anthropogenic disturbances over complex terrain; and (3) spatially varying 

geomorphic responses which are tightly coupled with vegetation dynamics. 

While, climate change biogeoscientific studies concentrated on vegetation at 

large scales and mostly on carbon fluxes and storage, changes in species 

composition and ecotone boundaries were simulated crudely or almost 

neglected. In order to fill this gap and represent local processes enhanced CA 

models can be adopted.  
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Therefore, with regard to the ecohydrological analysis and modeling of the 

above mentioned processes there is still a vast field to explore, study and 

analyze. In this context, in this work, we used and further developed a spatially-

explicit Cellular Automata Tree-Grass-Shrub Simulator (CATGraSS) that try to 

bridge the gap between the process representation required for dynamic 

vegetation modeling and CA rules to simulate species competition for space 

(Zhou et al., 2013). The CATGraSS model is here developed to analyze three 

case studies: the current vegetation pattern and its future variation  in a 

Mediterranean basin subsequent to probable climate change, and the shrub and 

juniper encroachment in the western north America grasslands. 

In the first case study the CATGraSS model is developed, first, to reproduce 

the current vegetation distribution and pattern and then to analyze how the 

vegetation distribution could change with the climate change in a region 

composed of different ecotones. Topographic effects on solar radiation are 

explicitly solved, leading to spatial variability in evapotranspiration, soil 

moisture, and plant water stress. Plant growth is simply driven by 

evapotranspiration through the Water Used Efficiency (WUE) concept, and both 

plant establishment and mortality are linked to plant water stress, assuming no 

nutrients limitation. CATGraSS is tested in a small Sicilian basin (Italy), 

characterized by a vegetational spatial pattern strongly controlled by aspect, with 

north-facing slopes characterized by oaks, and south-facing slopes by Indian fig 

Opuntia (evergreen perennial species drought tolerant) and grasses. The model is 

calibrated to reproduce the observed ecotone with a 5,000 years base run 

simulation. The calibrated CATGraSS model is used with the future climate 

change forcings to analyze potential shifts in vegetation distribution and changes 

in catchment biodiversity. In order to assess these future climate change 

forcings, a transient climate scenario from 2001 to 2100 has been generated 

using the stochastic Advanced WEather GENerator (AWE-GEN) (Ivanov et al., 

2007; Fatichi et al., 2011; 2013). A downscaling procedure is applied to an 

ensemble of climate model realizations deriving the probability distribution 

functions of factors of change for several statistics of temperature and 

precipitation from a multi-model ensemble of GCMs’ outputs (Fatichi et al., 

2011; 2013). Specifically, the stochastic downscaling is carried out using 

realizations from twelve GCMs used in the fourth IPCC assessment report 

(4AR) for the future scenarios 2046-2065 and 2081-2100. Future increase in 

CO2 concentration has been also taken into account by introducing a change in 

vegetation WUE and stomatal resistance. This study tries then to highlight the 

importance of understanding local scale plant interactions and the role of climate 

variability in determining impacts on vegetation dynamics.  

In the second and third case studies the CATGraSS model is developed to 

reproduce and analyze, for the first time in literature, the shrub and juniper 

establishment and encroachment in two arid grassland areas in Sevilleta National 

Wildlife Refuge (SNWR, New Mexico) and in the Ochoco National Forest 
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(Oregon), respectively. Creosote bush and western juniper encroachment in the 

southwestern North America grasslands have been here simulated using a new 

version of the CATGraSS here developed and implemented. A fire cellular 

automata component has been introduced to simulate the fire effect. For each 

plant type, the probability of be ignited and killed by fire is a function of the fuel 

availability and of the vulnerability to fire. CATGraSS is also improved with 

grazing and seed dispersal functions, and its plant establishment algorithm has 

been modified. The causes here considered for the encroachment analysis are: 

the fire return period increase, the grazing increase, the seed dispersal caused by 

animals and the plant type competition. In order to understand if the wind 

direction could have influenced the shrub encroachment direction, the role of 

wind direction has been analyzed. First the model has been calibrated to 

reproduce the initial vegetation percentage in the study areas before 

encroachment in 1860 (in SNWR) or 1870 (in Oregon) with a 5,000 years 

simulation without encroachment causes. Then the CATGraSS has been run with 

the encroachment causes for 150 (or 140) years in order to obtain the vegetation 

distribution in 2010 (i.e., current vegetation distribution).  

This thesis can be considered the first application of an ecohydrological CA 

model to examine the current vegetation composition and the future vegetation 

dynamics within ecotone boundaries under future climate scenarios and the 

encroachment phenomenon. We want to demonstrate how this research field has 

found new focus and new directions, and how it can play a pivotal role in 

decision making at many scales in order to decide the best actions to reduce and 

control the encroachment and the vegetation pattern change.  

The manuscript is divided into two main parts: a theoretical part which 

includes the description of the phenomena, the state of the art and the models 

used for the analysis (three chapters); and an experimental part in which the 

three study cases are described and discussed (two chapters). A detailed 

description of each chapter is given below.  

Chapter 1 will provide a description of the phenomenon of changes in 

vegetational types in both time and space, describing the influence of slope and 

aspect on the spatial vegetation distribution at catchment scale, and providing an 

analysis of the influence of climate on the vegetation distribution at catchment 

scale. Chapter 2 will provide a detailed description of the shrubby encroachment 

analyzing also the causes of it, provides an overview of the state of the art about 

the juniper (i.e., tree) encroachment in the western North America; moreover an 

overview of the state of the art and the research about this phenomenon will be 

shown. While Chapter 3 describes models and methods used in this thesis; in 

detail the ecohydrological Cellular Automata model, CATGraSS, the weather 

generator model, AWE-GEN, the General Circulation Models (GCMs) and the 

downscaling procedure will be discussed and shown, Chapter 4 will present the 

study case about the prediction of the impacts of the climate change on plant 

dynamics and tree-grass-shrub competition using the CATGraSS model in a 



Introduction                                                                                                                                                                                               

 

________________________________________________________________ 
8                                                                                                         Domenico Caracciolo                                                                                   

 

Mediterranean catchment in Sicily. Finally, Chapter 5 will present the study 

cases about the shrub and juniper encroachment in SNWR (New Mexico) and in 

the Ochoco National Forest (Oregon), respectively. 
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Chapter 1 

Spatial and temporal vegetation 

dynamics 

The processes within the terrestrial biosphere and atmosphere are 

intrinsically coupled with the hydrological cycle. This coupling is non-linear and 

multi-directional, implying that an individual component of the system is both 

under the influence of, as well as impacting upon the remaining parts of the 

system (Eagleson, 1978; Eagleson, 2002). Vegetation is one of the essential 

components that significantly influences the water and energy balances, 

establishing bi-directional links with the climate (Foley et al., 2000). For 

instance, Arora and Boer (2002) show that on a global average, the combined 

evaporation from leaves and transpiration account for about 72% of the total 

evaporation from the land surface. Interactions and feedbacks between the 

climate and biosphere have been the subject of a number of studies (e.g., 

Dickinson, 2000; Wang and Eltahir, 2000; Pielke, 2001). Recently, a multi-

outcome interplay between vegetation, climate, and soil has been illustrated in a 

series of papers: Rodriguez-Iturbe et al. (1999), D’Odorico et al. (2000), Laio et 

al. (2001), Ridolfi et al. (2000), Van Wijk and Rodriguez-Iturbe (2002), Caylor 

et al., (2005), Ivanov et al. (2008a, b), Istanbulluoglu et al. (2012). 

Understanding the basic processes and feedbacks in the vegetation-hydrology 

system is the crucial link to characterizing the existence of different biomes and 

hydrological mechanisms that underlie the coupled dynamics. As pointed out by 

a number of researchers (e.g., Eagleson, 1978; Rodriguez-Iturbe, 2000; Mackay, 

2001), the fundamental variables determining the vegetation structure and 

function are light, soil moisture, and nutrient supplies. Besides vegetation itself, 

they represent the diagnostic variables of climate, soil, and topography, the key 

factors affecting their spatio-temporal dynamics. Explicit modeling of one of 

these factors requires the simultaneous treatment of the others. Significant 

variations and feedbacks, which may occur over a wide range of temporal and 

spatial scales, must be considered. If some of the hydrological or vegetation 

components are prescribed, the lack of dynamic feedbacks could seriously alter 
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the modeled system’s behavior (Band et al., 1993). Despite the recognition of 

the principal factors and their coupled nature, hydrology-vegetation modeling 

has been extremely simplified in at least one of the following contexts: the 

effects of climate forcing, soil spatial/vertical heterogeneity, and the impact of 

topography on lateral fluxes in the system and light exposure. Topography, 

observed to have a significant influence on vegetation distribution (e.g., 

Florinsky and Kuryakova, 1996; Franklin, 1998; Meentemeyer et al., 2001; 

Dirnbock et al., 2002; Kim and Eltahir, 2004), is particularly often disregarded 

in modeling analysis. Vegetation itself is considered as a static component with 

prescribed characteristics in most hydrology models. Therefore, understanding 

the impact of climatic disturbances, topography and soil variability on 

vegetation, however, requires dynamic vegetation modeling across the 

landscapes. 

In this context, coupling of a vegetation model that explicitly considers plant 

dynamics to a spatially-distributed hydrological model should provide a 

necessary step towards an integrated approach. The hydrological model will 

provide the framework to account for the spatial variability of the topography-

controlled continuous rainfall-runoff process, subject to stochastic climatic 

forcing. In this spatially explicit scheme, vegetation will grow and die, reflecting 

its biophysical and biochemical characteristics, seasonal and interannual climate 

forcing, and the competition for vital life resources. Such a framework offers a 

variety of opportunities to explore the bi-directional interactions between 

vegetation and hydrological mechanisms and represent an important 

advancement toward integrated ecohydrological modeling. Ecosystems of arid 

and semi-arid areas represent a particularly interesting object for studies, as they 

comprise some of the major biomes of the world, often exhibiting a delicate 

equilibrium between their essential constituents. In these systems, soil water is 

generally considered to be the key resource affecting vegetation structure, 

distribution and composition (Ivanov et al., 2008b). The mechanisms through 

which water limitation affects ecosystems are related to carbon assimilation via 

the control of photosynthesis and stomatal closure. Many important issues 

depend on the quantitative understanding of dynamics inherent to these 

ecosystems including human interference, climate change, environmental 

preservation, and proper management of resources. 

With regard to the potential constraints to the vegetation pattern at global 

scale, Nemani et al. (2003) constructed a map of the relative contributions of 

climatic controls on global vegetation, assuming no nutrient limitation. They 

used long-term monthly climate statistics to build simple bioclimatic indices. 

From these indices, they estimated that water availability most strongly limits 

vegetation growth over 40% of Earth’s vegetated surface, whereas temperature 

limits growth over 33% and radiation over 27% of Earth’s vegetated surface 

(Figure 1.1). These factors tend to be colimiting. For example, cold winter 

temperatures and cloudy summers limit high-latitude Eurasian vegetation, 
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whereas cold winters and dry summers limit vegetation in western North 

America. Tropical areas are never limited by low temperatures but may have 

either a sustained dry season or nearly perpetual cloud cover that limits solar 

radiation. 

 

 

Figure 1.1. Geographic distribution of potential climatic constraints to plant growth 

derived from long-term climate statistics (Nemani et al., 2003).  

Following the classification above described, in this thesis we worked in 

water limitated environments, moreover assuming no nutrients limitation.  

This chapter tries to highlight aspects of the vegetation dynamics related to 

water availability giving particular attention to two important aspects: the 

influence of the morphology and of the climate and of the possible climate 

changes on the spatial vegetation distribution. The chapter provides in section 

1.1 an ecological description of the phenomenon of changes in vegetational 

types in both time and space (plant succession), in section 1.2.1 a description of 

the influence of slope and aspect on the spatial vegetation distribution at 

catchment scale, trying to point out, in section 1.2.2, the influence of climate on 

the vegetation distribution at catchment scale. 

 

1.1. Plant succession 

1.1.1. Prediction of vegetation change 

What kind of plant communities occur in an area? How does the composition 

of a plant community change over time? These were the kinds of questions 

posed by pioneering plant ecologists. As explanations began to accumulate, it 
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became increasingly clear that the distribution and dynamics of vegetation were 

complex and intricate phenomena. What causes these diverse spatial and 

temporal patterns? One approach to answer to this question is to examine the 

proximate causes of the distribution of populations of species in space and time. 

This approach assumes that all macro or community-level features represent a 

collection or summation of micro- or population-level phenomena. In other 

words, community-level changes (succession, fluctuation, maturation) are 

ultimately the results of populations becoming established and spreading, the 

growth of individuals in those populations, and populations becoming extirpated 

(van der Valk, 1985; Glenn-Lewin et al., 1992). Succession is the term used to 

describe the phenomenon of changes in vegetational types in both time and 

space (Glenn-Lewin et al., 1992). 

The broadest goals of scientific theory are the understanding and explanation 

of observed reality through a system of concepts, laws and empirically based 

generalizations. An important means of testing the fit between theory and 

observed phenomena is prediction (Pickett and Kolasa, 1989). Prediction is used 

for testing the component models and for evaluating the appropriate scope of 

theory in vegetation science. Prediction, either as a means for testing theory or as 

a goal itself, is particularly important to the field of vegetation dynamics. 

Beyond the scientific goal of relating observed patterns of vegetation change 

to an explanatory theoretical framework, there are numerous practical reasons 

for predicting vegetation change.  

In the context of growing concern over the possibility of climate change 

resulting from global anthropogenic atmospheric changes, the need to be able to 

predict vegetation change at a variety of spatial and temporal scales has never 

been more urgent. 

The preservation of plant and animal species, biotic communities, and 

productive and aesthetically pleasing landscapes is unlikely without a thorough 

knowledge of the patterns and processes of vegetation change (Glenn-Lewin et 

al., 1992). 

Although humans have long recognized the phenomenon of succession, the 

scientific study of succession began only at the end of the nineteenth century. 

Many of the themes and problems recognized by plant ecologists during the first 

two or three decades of the twentieth century are still important research 

objectives in the modern field of vegetation dynamics. 

Clements (1904; 1916) viewed succession as a highly orderly and predictable 

process in which vegetation change represented the life history of a plant 

community that assumed organism-like attributes. From initially distinct, 

environmentally determined starting points, communities were believed to 

converge through succession towards a climax vegetation, whose characteristics 

were controlled solely by the regional climate. According to this viewpoint, the 

climax was a condition of great stability in which the vegetation had reached an 

equilibrium with the present climate. Clementsian successional theory was an 
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equilibrium viewpoint in its assumption that successional change necessarily 

progressed towards the development of a stable vegetation type in equilibrium 

with the regional climate. 

Clements (1904; 1916) developed a scheme of processes that drive 

succession: 

1. nudation, which is the creation of bare area or partially bare area by 

the disturbance which initiates succession; 

2. migration, arrival of organism at the open site; 

3. ecesis, the establishment of organisms at the site; 

4. competition, the interaction of organisms at the site; 

5. reaction, the modification of the site by the organisms thereby 

changing the relative abilities of species to establish and survive; 

6. stabilization, the development of a stable climax. 

Community dynamics are characterized by a complexity of processes, 

patterns and mechanisms, and repeated disturbance is important in many 

systems. 

In the 1960s Ramond Margalef and Eugene Odum attempt to draw together 

the disparate observations of successional phenomena into unifying theories of 

succession. Margalef (1958; 1963; 1968) applied information theory to 

ecological systems as a strategy for seeking and explaining universal patterns of 

successional change. He argued that the linkages among trophic levels and 

populations represented information and that succession represents a natural 

trend towards the accumulation of greater information in an ecosystem. He 

believed succession is driven from simple ecosystems towards more complex 

ecosystems with more trophic levels and greater diversity of species and life-

forms. 

Odum (1969) summarized a number of successional trends in community- 

and ecosystem-level properties (e.g., biomass, diversity) which he postulated 

result from the tendency of ecosystems to develop towards greater homeostasis. 

He urged that, within the limits set by the physical environment, succession 

necessarily proceeds towards an ecosystem of maximum biomass and diversity. 

Both theories include developmental schemes where successional change is 

viewed largely as the consequence of relationships and interactions within a 

community, whereas external influences such as large-scale disturbance, climate 

variation, and immigration of new species are either relegated to minor roles or 

are assumed to be constant. 

Therefore since its initial development in the late nineteenth century, the 

study of vegetation dynamics has cycled through periods of active study and 

quiescence. In the last four decades, advances in our knowledge of the nature of 

communities, the dynamics of populations, and the structure and function of 

ecosystems, along with our greatly increased capability for quantitative analysis 

and modelling of vegetation phenomena, have led to another re-examination of 

the conceptual basis of vegetation dynamics. 
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By the early 1970s, ecologists recognized the inadequacy of both 

Clementsian successional theory and the Margalef-Odum synthesis. There was 

an increased appreciation of the need for site-specific information on the 

mechanisms, or approximate causes, of vegetation change. 

Since 1970 two major conceptual trends have dominated research on 

vegetation dynamics: a shift away from holistic explanations of successional 

phenomena towards reductionist and mechanistic approaches emphasizing 

proximate causes of vegetation change; and a shift away from equilibrium 

towards non-equilibrium paradigms. Predictions are derived empirically from 

knowledge of the mechanisms of vegetation change which apply to a particular 

local habitat instead of being deductively derived from a universally applicable 

theory (Pickett et al., 1987).  

The view of succession as primarily a species replacement process driven by 

reaction, or plant-controlled environmental modification, has been rejected (Peet 

and Christensen, 1980). It has been superseded by several non-mutually 

exclusive hypotheses that may all apply in varying degrees to any one 

successional sequence. The hypotheses represent succession as gradients in time 

or resource availability (Tilman, 1985; 1988), the consequence of differential 

longevity and other population processes (Peet and Christensen, 1980), the result 

of differences in life history characteristics (Noble and Slatyer, 1980) or as a 

stochastic process (Horn, 1976). Common to all of these hypotheses is a 

reductionist perspective emphasizing life histories and competitive interactions 

of the component species rather than emergent properties of communities (Peet 

and Christensen, 1980). Contemporary ecologists view vegetation changes as the 

outcome of populations interacting within fluctuating environmental conditions. 

Thus, parameters such as birth and death rates, and plant growth rates under 

varying environmental conditions form the core of quantitative models of 

vegetation dynamics. For long-lived plants, the lack of data on demographic 

parameters is often a serious constraint for the calibration of these models 

(Glenn-Lewin et al., 1992). 

The modern view of vegetation changes emphasizes the importance of 

repeated, relatively frequent disturbance and accepts continuous change in 

vegetation as the norm (Pickett and White, 1985). Indeed, we have come to 

accept a view very much like the one articulated by Cowles (1901), who defined 

succession as a ‘variable approaching a variable rather than a constant’. 

1.1.2. Vegetation dynamics in space and time 

Vegetation dynamics are characterized by both temporal and spatial aspects 

deeply analyzed in the following sub-sections. Indeed, time and space are 

related, in that forcing functions for vegetation change over large areas tend to 

be the same as those causing change over long time periods                                                                                                                            

(Austin, 1981; Glenn-Lewin et al., 1992). The course of vegetation dynamics 

depends upon the spatial scale of the vegetation and any disturbance. 
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Conversely, spatial patterns of vegetation change with succession. The latter is a 

vegetation gradient in time and space, and different dynamic patterns can be 

ordered over the scale of time: fluctuations, patch dynamics, cyclic succession or 

log-term succession. 

Vegetation dynamics are based on the population processes of the constituent 

plants. It is in the population processes that one could find the mechanisms of 

vegetation dynamics, and the explanations for the patterns observed. 

Successional histories typically exhibit multiple pathways, and may also show 

community patterns such as convergence, divergence or cycles, which will 

depend not only upon the initial conditions and mechanisms of succession, but 

also on community circumstances such as species diversity, landscape 

complexity and community isolation. 

1.1.2.1. Temporal aspects of dynamics 

The temporal aspects of vegetation dynamics could be segmented in: (1) 

short term, or the domain of fluctuations; (2) long term, the domain of vegetation 

history on time scales of millennia; and (3) the middle range, or what is, usually, 

the domain of succession. 

Fluctuations are impermanent vegetation changes that comprise the natural 

temporal variation in plant abundance or aspect in a community over short time 

periods (Miles, 1979; Vale, 1982). Variation in an equilibrium state would be 

around a mean composition, but it is perhaps more likely that fluctuations will 

be around some kind of temporal trend in the vegetation. Many fluctuations in 

vegetation occur because of environmental changes on the same time scales, 

such as fluctuations in precipitation (Albertson and Tomanek, 1965) or growing 

season temperature. Mild disturbances on a short time scale might also produce 

what appear to be fluctuations (Gloaguen, 1990).  

In a shifting mosaic, species increase or decrease at any particular position, 

but the original average remains more or less constant. What appears to be a 

fluctuation on a small or meso-scale, might at the same time be part of a shifting 

mosaic such that over a large scale, the average composition changes little. 

Succession is compositional change, usually evident over a few decades to a 

few centuries. The change is in some way directional (Miles, 1979; 1987), uni- 

or multidirectional, although the directions followed may be determined only 

after the fact. Long-term change occurs over many centuries or millennia, and 

results from equally long-term environmental changes such as climatic change 

or soil development, from species’ migration, or from other long-term forces. 

The distinction between fluctuation and succession is arbitrary in that a large 

enough fluctuation over a long enough period of time becomes succession 

(Austin, 1981; Bornkamm, 1988). Vegetation cycles over a long enough period 

can, nevertheless, be thought as fluctuations. Distinguishing succession from 

long-term changes requires a similar arbitrariness. Species range changes are 

individualistic and probabilistic; vegetational composition and structure are not 
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stable over periods of centuries to millennia, nor are community boundaries 

stable. The underlying processes of plant population dynamics are the same for 

fluctuation, succession and long-term change. 

1.1.2.2. Spatial aspects of dynamics 

One can conceive of vegetation dynamics as a regional process, as 

development and change of vegetation in a landscape. Or, if we wish to consider 

only an area large enough for compositional change actually to occur, succession 

can occur in very small area. Thus, again vegetation dynamics exhibits a 

continuum, this one of horizontal scale: fine-scale gap phase processes, 

regeneration, community-wide dynamics, landscape dynamics. A community 

can be viewed as a changing mosaic of patches of different size, age, structures, 

and composition (Martinez-Ramos et al, 1989). This means that spatial patterns 

are important for an understanding of community change and cannot be ignored 

as random noise (Austin, 1981). 

The significance of spatial process in vegetation dynamics can be illustrated 

in several ways. In the nucleation concept of Yarranton and Morrison (1974), 

succession proceeds by the expansion and coalescence of initially small nuclei of 

a vegetation element. Other studies include:  

1. differential colonization resulting from both environmental 

heterogeneity (McDonnell, 1988) and the locations of seed sources;  

2. neighbourhood effects on establishment at a particular point (Ryser, 

1990);  

3. the influence of spatial heterogeneity on disturbances such as fire and 

grazing (e.g., Tutner and Bratton, 1987).  

Some of the most successful models of vegetation dynamics function by 

summing over small-scale or gap processes (Botkin, 1992) to produce a profile 

of community succession. Busing (1991) has developed a spatial model of forest 

dynamics that is based on gap theory, and the heathland dynamics model of 

Prentice et al. (1987) is explicitly spatial in that points given by spatial 

coordinates are covered by individual species.  

1.1.2.3. Vegetation dynamics as a gradient in time 

One of the difficulties in dealing with vegetation dynamics theory is that 

more than one thing may be changing (Glenn-Lewin et al., 1992). Miles (1979; 

1987), considers vegetation change to be the essence of succession. Contrast this 

with, Odum (1969) and Austin (1981), who treat succession more broadly as 

change in any measure of ecosystem character.  

Most communities exhibit multiple vertical strate. Some layers may undergo 

significant change while others show little change. For instance, a ground fire 

may initiate or modify change in the herbaceous layer, while having little direct 

effect on the canopy layer. Once again, if we accept that vegetation dynamics are 

population-based processes, we conclude that there is no fundamental ecological 
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reason to exclude any change in a community, regardless of kind or vertical 

distribution, from our concepts and models of vegetation dynamics. 

Succession can be thought of as a compositional gradient in time, either of 

species or of other community characters (Peet and Christensen, 1980). If the 

spatial axis of traditional gradient analysis is replaced by a temporal one, then 

the rise and fall of the species’ abundance curves represent the dynamics of plant 

populations and the shape of the curves will reveal the rates and degrees of 

change. With the concept of a temporal gradient, fluctuations and cycles will 

show up as repeating patterns: fluctuations will appear as periodic compositional 

change. Species replacement during succession will appear as aperiodic 

compositional change (Glenn-Lewin et al., 1992). 

Changing communities exhibit individualistic behaviour, and vegetation 

dynamics are population-based processes (Peet and Christensen, 1980). 

Consequently, community dynamics can be made more sensible if we directly 

address population-based change in the context of what is changing (e.g., 

structure, composition), the character of the environment and the scales, both 

physical and temporal, at which changes occur. For instance, treating changes in 

relative abundances (due to the differential plant growth) separately from species 

replacement processes has the advantage of separating growth-based, 

quantitative changes from those requiring immigration and establishment in an 

existing vegetation, or in a gaps in an existing vegetation (van der Valk, 1985). 

Such immigration and establishment reflect the invasive ability of the plants and 

the resistance to invasion of the existing vegetation.   

1.1.3. Mechanisms 

It is fruitful to examine the population mechanisms that lead to vegetation 

variation and distribution in time and space. 

The mechanisms that lead to community-level pattern are: colonization, 

competition, species interaction (inhibition, tolerance), disturbance. Then the 

mechanisms may result, on the one hand, from the properties of the plants 

themselves, such as colonization abilities, growth and development and life-

history characteristics. On the other hand, the mechanisms may result from plant 

interactions, which may be studied at the plant-plant level, or as net effects, or 

may be mediated by third parties (Grubb, 1988; Glenn-Lewin et al., 1992). 

1.1.3.1. Colonization 

Colonization results from interaction between the presence or immigration of 

the plants, the spatial patterns of the environment and existing vegetation, and 

the morphology and physiology of the plants. The presence or immigration of 

plants will reflect the varying contributions of seed banks, seedling banks and 

differential seed dispersal. Distance to seed sources, spatial distribution of seed 

source, neighbourhood influences on establishment and the movement of seed 
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from productive areas into unproductive ones, thereby maintaining populations 

in the unproductive sites are all important in determining the outcome of 

colonization. The colonization ability of organisms depends upon their 

morphological, physiological and reproductive characteristics. 

1.1.3.2. Competition  

In the competitive hierarchy model of Horn (1981), late succession plants are 

increasingly dominant by virtue of their competitive succession with early 

species, but the late successional species can also invade in the earliest stages of 

succession. Pattern of replacement, then, are determined by the outcome of the 

competition among the various species. However, if in a changing or non-

constant environment, the competitive relationships of the species are likely to 

change, the outcome of succession by this mechanism cannot be predicted 

(Connel, 1978). 

1.1.3.3. Changes due to species interactions 

Vegetation change resulting from the effects of particular species on other 

species, either directly or through environmental modification, has long been a 

central theme of succession. Connell and Slatyer (1977), in a seminal work 

summarized species’ interactions during succession into three processes: 

facilitation, inhibition and tolerance. 

Facilitation describes a situation in which one or more species enable the 

establishment, growth or development of other species. Facilitation may be 

caused by environmental changes that are favourable to future species. For 

example, in Alaska, the roots of shrubby plants contain nitrogen-fixing bacteria, 

which greatly increase the amount of inorganic nitrogen present in soils. This 

increased availability of nitrogen aids the growth of willow (i.e., Salix, a 

deciduous tree) seedlings in areas without other competition. Eventually, 

however, willows grow more rapidly than the shrubby plant, leading to a 

reduction in the abundance of the pioneer species.  

Inhibition is the prevention of plant maturation or growth, or, especially, the 

prevention of plant establishment, by existing plants. All of these constitute 

negative effects. An example of inhibition is the allelopathy, i.e., a biological 

process by which one plant produces one or more biochemicals that limit the 

growth, survival, and reproduction of other plants (Rizvi and Rizvi, 1992). Went 

(1955) first suggested that the creosote bushes (i.e., shrub), through its root, 

excretes toxic substances that kill seedlings of other plants (e.g., grass). Knipe et 

al. (1966) further analyzed the germination and growth of semi-arid grassland 

species treated with aqueous extract from creosote bush. Their data indicate that 

the germination of grasses (e.g., black grama) is significantly reduced, while 

shrub species were not affected.  

http://en.wikipedia.org/wiki/Alder#Nitrogen_fixation
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Tolerance describes the situation where one or more species neither inhibit 

nor enable other species during succession. It represents a zero net outcome of 

species’ interactions.    

1.1.3.4. Disturbance 

We have to distinguish among a number of different ways in which 

disturbance has been defined. Grime (1979) defines it as ‘the mechanisms which 

limit the plant biomass by causing its partial or total destruction’. Forman and 

Godron (1986) identify disturbance as ‘an event that causes a significant change 

from the normal pattern in an ecological system’. A third approach to 

disturbance defines it as processes which either the survivors of disturbance or 

new colonists respond (Runkle, 1989). Thus, accelerated growth of small 

individuals that are released from competition is one pattern of response to 

disturbance. Another is the creation of bare ground, loose soil, light gaps, or 

other situations which form microsites in which recruitment can occur. 

Three not entirely independent dimensions of disturbance are space, time and 

magnitude. The spatial dimension is the extent of the disturbance, the physical 

dimensions of area and volume, and location, in particular in relation to 

environmental gradients. The temporal dimension includes frequency and 

predictability. These temporal factors combine in the concept of turnover and 

return time (White and Pickett, 1985). In the case of fire, and probably other 

kinds of disturbance as well, the season of the disturbance is another important 

aspect of the temporal dimension of disturbance. The magnitude is the force of 

the event, or the severity as reflected by the effects on the vegetation (White and 

Pickett, 1985). The severity of disturbance will depend upon the character of the 

disturbance force and the nature of the existing vegetation, especially its 

sensitivity to disturbance. 

1.2. Ecohydrological approaches for vegetation 

dynamics 

As previously seen, the study of the vegetation dynamics is related to a 

complex multidisciplinary approach, which tries to take into account all the 

aspects that we have referred above.  

Since this thesis tries to highlight aspects of the vegetation dynamics related 

to water availability through approach that nowadays can be defined 

ecohydrological, particular attention is here given to two important 

ecohydrological aspects: the influence of the morphology which impacts on the 

hydrologic balance (section 1.2.1) and of the climate and of its possible changes 

(section 1.2.2) on the spatial vegetation distribution. 

Ecohydrology is the science that studies the mutual interaction between the 

hydrologic cycle and the ecosystems. The main purpose of ecohydrology, that is 
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to join together concepts and theories of two different disciplines, is, in part, 

contained in the etymological interpretation of its name, that derives from the 

crossing between the terms ecology (the science of the interrelationships 

between living organisms and their environment) and hydrology (the science of 

the hydrological cycle, dealing with the properties, distribution, and circulation 

of water in the environment). Thus, ecohydrology bridges the fields of hydrology 

and ecology and proposes new unifying principles derived from the concept of 

natural selection (Eagleson, 2002). In fact, natural ecosystems are complex 

structures whose peculiarities and properties depend on three fundamental 

factors, interacting with each other: climate, soil and vegetation. The first aim of 

ecohydrology is thus to understand the various and numerous characteristics and 

relationships of these factors. 

1.2.1. Influence of slope and aspect on the spatial vegetation 

distribution at catchment scale 

Topography is the major driver of irradiation distribution and hydrologic 

processes across a landscape (Nichols et al., 1998; Yeakley et al., 2000; Pierce et 

al., 2005; Suzaki et al., 2005; Gallardo-Cruz et al., 2009; Pizzolla et al, 2012a). 

Patterns of incoming solar radiation cause shifts in available energy, 

evapotranspiration and water balance conditions, which, in turn, are responsible 

for major changes in vegetation structure, diversity and pattern (Armesto and 

Martınez, 1978; Franklin et al., 2000; Martinez-Yrızar et al., 2000; Urban et al., 

2000; Vogiatzakis et al., 2003; Hietel et al., 2004; Caylor et al., 2005; Ivanov et 

al., 2008b; Pizzolla et al., 2012a, b; Manfreda et al., 2013; Zhou et al., 2013). In 

fact, the amount of solar radiation is one of the primary variables influencing 

evapotranspiration and thus soil moisture in semi-arid regions (Monteith, 1973).  

The importance of slope, aspect, and topographic variations to the 

distribution of terrestrial plant communities has been noted and analyzed by 

many authors (Cantlon, 1953; Yeaton and Cody, 1979; Lieffers and Larkin 

Lieffers, 1987; Kutiel, 1992; Florinsky and Kuryakova, 1996; Sternberg and 

Shoshany, 2001; Walton et al., 2005; Ivanov et al., 2008b; Caylor et al., 2009; 

Franz et al., 2012; Pizzolla et al, 2012b; Manfreda et al., 2013; Zhou et  al., 

2013). Mapping of vegetation spatial patterns at large scales based upon 

moisture and calculated solar radiation has been attempted with remote sensing 

technology (Dymond and Johnson, 2002). In Figures 1.2, 1.3, 1.4 three examples 

of vegetation patterns in relation to topography are shown for different sites in 

USA. 
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Figure 1.2. Distribution of plant types in relation to topography in Lost River Range 

(Idaho). 

 

 
Figure 1.3. The coastal sagescrub community of southern California’s Santa Monica 

Mtns. The slope on the left side is north-facing, thus moister and dominated by 

Ceanothus sp.. The south-facing slope on the right side is much drier (receiving more 

direct sun), and is more sparsely vegetated with the more drought tolerant Artemisia 

californica and Yucca whipplei. 

Shrub  

(Cercocarpus Ledifolius)   
Tree 

(Pseudotsuga) 

http://en.wikipedia.org/wiki/California
http://en.wikipedia.org/wiki/Santa_Monica_Mountains
http://en.wikipedia.org/wiki/Santa_Monica_Mountains
http://en.wikipedia.org/wiki/Ceanothus
http://en.wikipedia.org/wiki/Artemisia_californica
http://en.wikipedia.org/wiki/Artemisia_californica
http://en.wikipedia.org/wiki/Yucca_whipplei
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Figure 1.4. Vegetation pattern in relation to slope and altitude in South Baldy, New 

Mexico.   

The available solar radiation that depends on climatic conditions and 

morphology, may strongly modify hydrological processes at the local scale.  

Basin morphology, in fact, modifies the amount of direct solar radiation, and 

also the amount of diffuse and reflected solar radiation received by a given point 

of an area. The slope angle, aspect and elevation of surfaces affect the amount of 

direct solar radiation which is incident upon them. The effect of slope may be 

related to Lambert’s cosine law by which, for direct solar radiation, the angle 

between the solar beam and the sloping surface determines its intensity (Figure 

1.5). The orientation of such a slope, referred to as its aspect, also affect the 

intensity of solar radiation upon it.  
 

 

Figure 1.5. Surface orientation.   

In Figure 1.6 the solar radiation intensity as function of slope and aspect is 

shown. In this area, south-facing slopes receive higher solar radiation than the 
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north-facing slopes. Using the analytical model developed by Allen et al. 

(2006a), it is possible to describe the radiation balance taking into consideration 

the effects of basin morphology. This approach is extremely useful to describe 

the spatial distribution of solar radiation and the maps of potential 

evapotranspiration. The amount of solar radiation influences the potential 

evapotranspiration (PET) (or maximum evapotranspiration) of each vegetation 

type in the space. In fact, the Penman-Monteith equation (Monteith, 1965) used 

to calculate the PET is strongly related to the net solar radiation: fixed the other 

parameters of the equation, increasing the solar radiation the PET increases. But 

the actual vegetation evapotranspiration is function not only of the PET but also 

of the soil moisture available and then of the rainfall that falls in the study are. 

The plant evapotranspirates as function of the water available in the soil: more 

the water available in the soil and more the evapotranspiration of the plant. The 

actual evapotranspiration is critical in the characterization of soil moisture and 

vegetation water stress, which, in turn, have important implications on plant 

growth and stress leading to vegetation patterns formation. 

 

 

Figure 1.6. Solar radiation intensity in function of slope and aspect.   

In order to easy describe the influence of the topography on the spatial 

vegetation distribution in a basin, the hydrological phenomenon is described in 

Figure 1.7 (Manfreda et al., 2013): the morphology causes the solar radiation 

spatial distribution (Figure 1.7a), the solar radiation distribution influences the 

evapotranspiration spatial distribution (Figure 1.7b) that, in turn, influences the 

soil moisture and water stress spatial distribution through the water balance 

(Figure 1.7c), and finally determines the vegetation spatial distribution (Figure 

1.7d). 

North facing South facing 
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Figure 1.7. Morphology-vegetation distribution relationship. (a) basin topography; (b) 

potential evapotranspiration; (c) water stress; (d) vegeatation distribution (Manfreda et 

al., 2013).  

In analyzing topography-related vegetation regional patterns, ecologists often 

overlook the fact that insolation regimes are not exclusively linked to local 

terrain features such as altitude and surface orientation, i.e., inclination and 

aspect (Daubenmire, 1968; Pianka, 2000; Ricklefs and Miller, 2000; Gallardo-

Cruz et al., 2009), but that they also depend upon the latitudinal position on the 

Earth of the mountain under study (Holland and Steyn, 1975; Stoutjesdijk and 

Barkman, 1992). Perhaps, for this reason, it is difficult to generalise the effect of 

aspect on plant communities of tropical regions. At mid and high latitudes, 

slopes facing the Equator receive more radiation than slopes facing the closest 

Pole (Stoutjesdijk and Barkman, 1992). Unlike such predictions related to the 

geographic distribution of species, it is more difficult to make equivalent 

generalizations regarding vegetation development. This is so because the 

vegetational asymmetry is highly dependent upon the regional climate; for 

example, the observation that vegetation is better developed on the north slope in 

relatively dry regions of the northern hemisphere (Beaty and Taylor, 2001; 

a) b) 

d) c) 

Potential evapotranspiration (cm·d
-1

) 

Water Stress Vegetation distribution 

3D basin topography  
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Sternberg and Shoshany, 2001) may not be applicable in areas that do not 

experience water limitations (Sharma and Baduni, 2000). 

The radiation balance should be equal between the north- and south-facing 

slopes of a symmetric mountain located right on the equator, whereas in 

mountains located between the Equator and the Tropics of Cancer and 

Capricorn, both slopes receive direct insolation but during periods of very 

variable lengths throughout the year (Walter, 1973). Particularly, in seasonally 

dry regions of tropical latitudes of the northern hemisphere, the longest exposure 

of south-facing slopes to direct solar radiation usually coincides with the 

unfavourable period of low precipitation, a combination that results in a large 

water stress in plants. A different situation appears to take place in north-facing 

slopes, as they may be more suitable for plant growth because the season of 

higher energy for photosynthesis is synchronic with the period of positive water 

balance of the year. Thus, in these regions one may expect differences in floristic 

composition between slopes, along with a better developed vegetation on the 

slope facing north. 

Vegetation patterns as affected by slope and aspect in the Chihuahuan desert 

were investigated by Mata-Gonzalez et al. (2002) and Zhou et al. (2013) (Figure 

1.8). They concluded that topographic variations are an important influence on 

plant distributions and there is a correspondence between life cycles, senescence 

and solar radiation timing. Solar radiation and potential evapotranspiration were 

highly correlated and both offered essentially the same prediction of plant 

distributions. Flat and slightly sloping areas receive the most sunlight during the 

summer solstice. North-facing slopes may receive no solar radiation in winter 

and extended day lengths in the summer. At winter solstice, south-facing slopes 

receive the most radiation. Interestingly, south-facing slopes receive low solar 

radiation at the summer solstice and high radiation during the winter, leading to 

lower seasonal changes in solar radiation.  

In the Mediterranean basin region, south-facing slopes receive higher solar 

radiation thus affecting temperature, soil moisture, nutrients and soil aggregation 

processes which, in turn, affect the vegetation (Klemmedson and Wienhold, 

1992; Olivero and Hix, 1998; Kutiel and Lavee, 1999). In contrast, north-facing 

slopes generally receive lower solar radiation flux density, resulting in lower 

evapotranspiration rates and lower daily maximal temperatures during summer 

water stress periods. These differences are significant in Mediterranean plant 

communities where water availability is an important limiting factor. In view of 

favorable growing conditions in north-facing slopes in Mediterranean basin 

ecosystems, it is possible to hypothesize that plant community characteristics 

such as percentage cover, biomass, volume and density would be greater in this 

aspect than in opposing slopes. 
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Figure 1.8. Vegetation distribution in relation to topography in Sevilleta National 

Wildlife Refuge (New Mexico) (Zhou et al., 2013).  

Altitude, the second major component of topography, introduces further 

complexity into this scheme (Rahbek, 1995) (Figure 1.9). Numerous studies 

analysing altitudinal gradients in tropical mountains have established the 

magnitude of vegetational changes in response to environmental heterogeneity 

along this axis (Kappelle et al., 1995; Lieberman et al., 1996; Lovett, 1999; 

Grytnes and Vetaas, 2002; Grytnes and Beaman, 2006). Nevertheless, they have 

also shown the difficulty to predict the individual behaviour of each 

environmental factor with altitude (Bruijnzeel and Veneklaas, 1998). Water 

availability on the Earth’s surface is related to altitude as a result of two 

processes. For one, evapotranspiration rates decrease with altitude as a result of 

the corresponding temperature reduction (Stoutjesdijk and Barkman, 1992; 

Luttge, 1997; Bruijnzeel and Veneklaas, 1998). In addition, gravity-driven 

runoff causes a larger moisture accumulation in the lower topographic positions 

(Clark et al., 1999). Despite the vast number of studies analysing separately 

vegetation responses to either aspect or altitude (Cantlon, 1953; Vazquez and 

Givnish, 1998), the combined effects of these two factors have not been 

sufficiently examined. 

In scientific literature, several studies are available with regard to the 

influence of the morphology on the spatial vegetation distribution. These studies 

can be schematically split in studies which use statistical technique starting from 

observed data and studies based on numerical models (i.e., hydrological and 

ecological model). 

 

Sevilleta National Wildlife Refuge - New Mexico 
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Figure 1.9. Vegetation pattern in relation to slope and altitude in Karakorum, Pakistan.  

1.2.1.1. Qualitative studies and statistical techniques 

Isard (1986) demonstrated that slope-aspect influenced evapotranspiration, 

soil desiccation and vegetation distribution in the Niwot Ridge, Front Range, 

Colorado, through the control of the radiation. South- and east-facing sites 

received 18 and 14% more net radiation than the north-facing slope on clear sky 

and more typical summer days, respectively. West-facing slopes experienced 

moderate radiation loads. Water loss during two drying sequences for east-, 

west-, and north-facing slopes was 80%, 80%, and 60%, respectively, of 

evapotranspiration from the south-facing slope. Consequently, soil at the south-

facing site dried faster than soil on other slopes of the knoll. Dryas octopetala 

(i.e., grass) prefers more moist northern slopes on illustrating the importance of 

topoclimatic controls over soil moisture to vegetation distribution in the fellfield. 

Water relations during the growing season influence vegetation distribution 

within topographic depressions on Niwot Ridge. Where meltwater is supplied 

throughout the growing season wet meadow and moist shrub tundra occur.  

Sternberg and Shoshany (2001) investigated the effects of slope aspect on 

plant community characteristics such as plant cover, species composition and 

above-ground biomass production in Mediterranean trees and shrubs in two 

climatological regions. Two experimental sites were selected in a climatic 

gradient that runs from the foothills of the Judean Hills to the northern Negev 

desert in Israel (Figure 1.10). In each site, 16 quadrats of 10m·10m (eight south-

facing and eight north-facing slopes) were established and the vegetation was 

recorded. Dominant tree and shrub species were measured using allometric 

parameters of area and volume, and representative branches were cut and 

weighed. Species studied were Quercus calliprinos, Phillyrea latifolia, Pistacia 

lentiscus, Cistus creticus, Coridothymus capitatus, and Sarcopoterium spinosum. 

N 
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The results showed that slope aspect had significant effects on the composition, 

structure and density of the plant communities developing in both sites. 

Vegetation structure within a site changed significantly in the short distance 

separating the north and south-facing slopes, and that pattern remained generally 

constant when comparing the two sites along the rainfall gradient.  
 

Figure 1.10. Photographs of the study sites showing vegetation differences between 

slope aspects. (a) Ramat Avisur, representing Mediterranean maquis and (b) Lehavim, 

characterizing dwarf shrublands. (N) North-facing slope; (S) south-facing slope 

(Sternberg and Shoshany, 2001). 

Walton et al. (2005) examined timing and amount of solar radiation as factors 

influencing the distribution of seven perennial plants on a small mountain 

located in the Indio Mountains, in the Chihuahuan desert (Texas). Average direct 

beam solar radiation fluxes at differing times throughout the day and year were 

estimated with computer calculations. Principal components analysis was used 

to reduce the number of solar radiation parameters and include the maximum 

available information with a manageable number of variables. The remaining 

solar radiation parameters were compared to plant distributions using 

redundancy analysis and generalized additive models. Unimodal, bimodal, and 

monotonic responses were all found depending upon the species and solar 

radiation parameter. Niche separation at this location depended upon the timing 

as well as the amount of solar radiation. The research results clearly 

demonstrated that the timing of solar radiation is an important factor in the 

topographic distribution of vegetation. Solar radiation alone was able to predict 

38.5% of the variation in plant distributions. The statistical observations showed 

that dynamic water stress is an important factor in plant distributions in the 

desert. 

Another important contribution was also given by Gallardo-Cruz et al. 

(2009), who assessed that patterns of incoming solar radiation affect energy and 

water balances in Mexico, resulting in changes in vegetation attributes. They, 

first, modeled potential energy income for N- and S-facing slopes of Mt. Cerro 

Verde (Oaxaca) and then they examined the response of vegetation structure to 

slope aspect and altitude. Vegetation survey and modeling of potential energy 
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income were based on 30 plots equally distributed among three altitudinal belts 

defined for each slope of the mountain; combining the three altitudinal belts and 

two slopes produced six environmental groups, represented by five vegetation 

plots each. Potential energy income was about 20% larger on the S than on the N 

slope (9.735 versus 8.138 MJ·m
-2

), but it did not vary with altitude. In addition, 

the temporal behavior of potential energy income throughout the year differed 

greatly between slopes. The results of this study demonstrated a differential 

response of vegetational attributes to environmental heterogeneity along a short 

altitudinal gradient and between two contrasting aspects. The structure did not 

show significant changes linked to the environmental gradients, but altitude and 

aspect did affect species composition.  

1.2.1.2. Numerical ecological and hydrological models 

In order to explore topographic controls on vegetation, Ivanov et al. (2008b) 

employed a numerical model to analyze the dynamics of a generic C4 grass 

growing in the water-limited conditions of the semiarid climate of central New 

Mexico. A fully coupled dynamic model of vegetation-hydrology interactions 

known as tRIBS+VEGGIE was used (Ivanov et al., 2008a). The model mimics 

principal water and energy processes over the complex topography of a river 

basin and links them to the essential plant biochemical processes and phenology. 

Topography and drainage network of a domain of interest are represented using 

triangulated irregular network (TIN) of points. A set of numerical experiments 

were carried out for two small-scale synthetic domains that exhibited different 

landscape geometries. Linkages between landscape geometric characteristics and 

patterns of grass productivity and water balance components were examined. A 

conceptual procedure was used to partition the space in aspect-slope classes. The 

interplay among vegetation energy, and water processes led to a much more 

complex dependence of grass aboveground net primary productivity (ANPP) on 

site characteristics. It follows from above that in order to understand the effect of 

topographic features on grass productivity, both the water and energy aspects of 

hydrology-vegetation dynamics need to be considered. The results led to a 

conceptual relationship linking vegetation-hydrology quantities at different 

landscape locations. Certain topographic locations favored vegetation growth as 

compared to a flat horizontal surface. Moreover, grass ANPP for sites of a given 

aspect was completely determined by site slope. Figure 1.11 shows as the 

topography influences the solar radiation distribution which, in turn, influences 

the ANNP causing a vegetation pattern in function of the topography.  
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Figure 1.11. Influence of topography on solar radiation and vegetation production at 

catchment scale: (a) topography, (b) solar radiation map, (c) vegetation aboveground net 

primary productivity (Ivanov et al., 2008b). 

In Figure 1.12 the mean annual ANPP of C4 grass in function of the 

irradiance is shown. The three curves are related to three different aspect classes 

(i.e., north facing, east-west facing and south facing). For each curve, increasing 

the slope the ANPP decreases. Symbols with lighter color denote the data points 

for the CV domain (i.e., fluvial erosion dominated landscape that exhibits shorter 

hillslopes and higher drainage density), while the darker color corresponds to the 

data points for the CX domain (i.e., diffusion erosion dominated landscape that 

exhibits longer hillslopes and lower drainage density). The highest rate of 

decrease in the incoming solar radiation per unit slope angle is observed for 

north facing sites. Maximum ANPP occurs on sites of northerly aspect as a 

result of the trade-off between favorable (a reduction in the incoming radiation) 

and unfavorable (a decrease in precipitation) effects exerted by slope on grass 

dynamics. East facing sites show a minor increase (with respect to a flat surface) 

in productivity for very shallow slopes. For steeper slopes, ANPP continuously 

a) 

b) c) 



CHAPTER 1                                                      Spatial and temporal vegetation dynamics 

 

________________________________________________________________ 
Domenico Caracciolo                                                                                                     33 

 

decreases. Estimated ANPP for westerly slopes shows a continuous reduction 

with growing slope. The grass productivity for south facing sites exhibits a sharp 

continuous decrease with respect to the ANPP for a flat horizontal surface. 

Therefore, one can notice the strongly dependence of the surface irradiance and 

then of the ANPP on the aspect classes (Ivanov et al., 2008b). 

 

 

Figure 1.12. The mean annual aboveground net primary productivity (ANPP) of C4 

grass in function of the irradiance (Ivanov et al., 2008 b). Symbols with lighter color 

denote the data points for the CV domain while the darker color corresponds to the data 

points for the CX domain. 

Using the approach of  Allen et al. (2006a) with the analytical form of the 

soil water balance equation proposed by Laio et al. (2001), Pizzolla et al. 

(2012a) demonstrated that basin morphology significantly affects the spatial 

distribution of vegetation water stress increasing its variability. The variability of 

the water stress increased taking into consideration the initial conditions for the 

simulation, because during the winter period differences in the radiation balance 

were generally larger that during the growing period. 

Franz et al. (2012) developed a spatially explicit daily ecohydrologic model 

that investigates the processes that affect the organization of vegetation and the 

spatial structure of vegetation on hillslopes. Using observations from a dryland 

ecosystem in central Kenya where symmetry-breaking instabilities govern the 

observed vegetation patterns, they constructed a parsimonious spatially explicit 

daily ecohydrological model that is able to demonstrate a range vegetation 

patterns observed across this ecosystem. Of particular importance in this 

ecosystem and many dryland ecosystems, is the effect of redistribution of 

surface waters to downslope vegetation patches as a result of Hortonian runoff 

and overland flow. They used a rule-based method based on a complex adaptive 

systems approach to generate the basic patterns. In order to compare different 

possible static spatial vegetation patterns that exist, they constrained the hillslope 

North facing 

east-west 

facing 

South facing 
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model to the growing season water balance. Using the dryland resource trade-off 

hypothesis governing dryland vegetation patterns, proposed by Caylor et al., 

(2009), they were able to compare the different static patterns according to their 

hillslope water use efficiency. Starting with the same initial conditions and 

simulating a series of growing season daily precipitation events, they evaluated 

the changes in the growing season water balance between different static spatial 

patterns of vegetation with the same fractional cover. In addition, they varied the 

strength of the local facilitation and long-range competition effects by varying 

the model parameters that control the effectiveness of surface flowpath 

convergence and root to canopy ratios, respectively. By changing these two 

parameters they were able to demonstrate a range of most efficient static spatial 

patterns from highly organized to random, which maximizes hillslope water use 

efficiency.  

Manfreda et al. (2013) studied the mutual relationship between climate, 

vegetation and soil water budget within an ecohydrological framework. They 

investigated the influences of soil moisture, solar radiation distribution and 

seasonality of climatic forcing on the spatial organization of vegetation. To this 

end they adopted a coupled hydrological/ecological model to describe 

simultaneously soil water budget and vegetation pattern evolution in the 

semiarid Upper Rio Salado basin. The basin is characterized by a marked 

heterogeneity in vegetation composition that is influenced by the basin 

topography. Analyses have been carried out using a soil water balance model 

based on the soil moisture scheme proposed by Laio et al. (2001) coupled with a 

vegetation model for the description of the spatial organization of vegetation. 

They used a simple cellular automata approach to model the steady state 

conditions of a vegetation mosaic, initiated from a random condition containing 

1/3 each of trees, shrub and grass. In each model, the initial random vegetation 

mosaic is modified through the iteration of local interactions that occur between 

adjacent locations. Using this approach, they identified the dynamic water stress 

of vegetation during the growing season, taking into account effects of 

morphology on the spatial distribution of solar radiation. The impact of solar 

radiation was studied paying particular attention to the effects of basin 

morphology on the distribution of incoming radiation at the local scale using the 

analytical model of Allen et al. (2006a). The solar radiation distribution 

influences the potential evapotranspiration that is critical in the characterization 

of vegetation water stress. Results showed that the observed vegetation patterns 

in the Upper Rio Salado basin are significantly affected by the basin morphology 

and emerge from the minimization of dynamic water stress and the 

maximization of vegetation water use.  

Finally, Zhou et al. (2013), using the ecohydrological CATGraSS model (see 

chapter 3 for a more detailed description) demonstrated the importance of solar 

irradiance in determining vegetation composition over complex terrain under a 

water limited ecosystem. They implemented CATGraSS in a semiarid basin 
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within the Sevilleta National Wildlife Refuge (SNWR), New Mexico (USA), 

where plant distribution is strongly controlled by topographic aspect, juniper and 

dense black grama co-existing in the north-facing slopes, and creosote bush 

dominating the south-facing slopes. 

1.2.2. Influence of climate and its possible changes on the 

vegetation distribution  

As previously mentioned, patterns of vegetation on the landscape are mainly 

a function of the availability of light (Ricard and Messier, 1996; Martens, 2000), 

soil moisture (Klausmeier, 1999; Couteron and Lejeune, 2001) and nutrients 

(Tilman, 1987; Rietkerk et al., 2004) that support plant growth, and other 

environmental conditions, such as temperature, that determine the timing and 

length of the growing season (Myneni et al., 1997; Dunne et al., 2003). 

Therefore, plant types, species richness, structure and distribution of 

vegetation are under the influence of climate at the regional scale (Scheiner et 

al., 1994; Nemani et al, 2003), and resources availability (including water, 

nutrients), soil type and surface morphology at the local scale (Kramer and 

Boyer, 1995; Larcher, 1995). Vegetation patterns could have an important role 

in the coupled dynamics of water, energy, and carbon in a region (Levis et al., 

1996; D’Odorico et al., 2008). 

Vegetation, as interface between soil and atmosphere, plays a key role in 

biogeochemical cycles through photosynthesis and the subsequent production of 

oxygen and organic matter (Pignatti, 1994; Manfreda, 2009). It exerts important 

control on the entire water balance recycling more than one half of the annual 

precipitation (Chahine, 1992). Consequently change in land cover, such as 

deforestation in the lowland tropics as well as grazing in semiarid regions, can 

induce a reduction of the precipitation amounts and an increase of temperatures 

(Dickinson and Kennedy, 1992; Lean and Rowntree, 1997). Vice versa, a change 

in climatic conditions may modify the spatial patterns of vegetation in a way that 

is not fully understood. 

Climate controls vegetation through direct effects on establishment and 

growth, indirect effects mediated by soils, and effects on the disturbance regime. 

These effects modify the internal dynamics of vegetation, producing both 

geographic patterns and long-term changes in vegetation. 

If climate were stationary, vegetation dynamics would consist of fluctuations 

due to year-to-year weather variation, succession triggered by disturbances and 

gap-phase regeneration. These are stochastic processes, but their average 

behaviour can be predicted from physiological and life-history characteristics of 

the available species and information on climate and natural disturbance. 

Vegetation processes vary spatially in response to the broad-scale pattern of 

climate, and change through time in response to long-term variations in climate. 
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Vegetation can similarly be considered as an interacting system (Prentice, 

1986) that responds to external forcing. Climate provides the changing boundary 

conditions to which the vegetation adjusts through a combination of processes 

with different response times. The nature of vegetation’s response to climate 

change depends on the space and time scales on which it is observed (McDowell 

et al., 1991). The mode of response (stationary, dynamic equilibrium or 

disequilibrium) depends on the product of the forcing frequency and the 

system’s response time (Webb, 1986). Vegetation can be observed on time 

scales ranging from years to millions of years and on spatial scales ranging from 

the sample plot up to the globe. Different frequencies and strengths of climate 

change are important on different time scales, and different response times apply 

to the different spatial scales.  

Therefore, a major challenge facing ecologists today is to predict how 

ecosystems and vegetation patterns will respond to forecast environmental 

changes and to evaluate the consequences of those responses (Turner, 1989; 

Walther et al., 2002; Zhou et al., 2013). Future changes in climate are projected 

to cause changes in vegetation distribution (Bachelet et al., 2001; Bakkenes et 

al., 2002; IPCC, 2007; Kelly and Goulden, 2008; Lenihan et al., 2008). 

Even in this case ecohydrology suggests a renewed interdisciplinary 

approach that aims to provide a better comprehension of the effects of climate 

and its possible changes on terrestrial ecosystems. 

The assemblages of species in ecological communities reflect interactions 

among organisms as well as between organisms and the abiotic environment. 

We might expect, therefore, that rapid climatic change or extreme climatic 

events can alter community composition. In the Sonoran desert of the 

southwestern United States, for example, recent increases in woody shrub 

density have been attributed also to regional climatic shifts (Brown et al., 1997; 

Walther et al., 2002). 

In this context, there is a growing interest on the impacts of climate on the 

interplay between vegetation and water availability. The latest report on climate 

change of the Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2013) 

shows, on a global scale, a linear trend of increase in global average temperature 

of the last one hundred years (1901-2012) of about 0.89° C, and important 

changes in precipitation strongly heterogeneous in space. It is also virtually 

certain that maximum and minimum temperatures over land have increased on a 

global scale since 1950. Central Europe and the Mediterranean basin represent a 

vulnerable area, where rainfall reduction and increased temperatures may affect 

plant and animal species, regulating environmental characteristics. 

The plant species may respond to climate change adapting to new conditions, 

using their plasticity, or through the selection of genetic variants whose 

physiology allows survival under the new climatic conditions. An alternative or 

complementary response of some species is the shift in time of the phases of the 

life cycle, or in space and depth of the rooting system. The sensitivity of 
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different species to climate change can cause the abundance of common species 

and, conversely, the disappearance of the rarest (Körner and Walther, 2001). 

This process, together with a highly uneven distribution of species undermines 

vegetational biodiversity (i.e., the degree of variation of vegetation life). 

The preservation of environmental diversity is necessary for the regulation of 

the hydrological cycle and biogeochemical cycles of nitrogen and carbon, flood 

protection, the availability of genetic diversity in agriculture, the natural 

pollination and the stability of ecosystems (Duffy and Stachowicz, 2006). 

Leaving aside the processes of biological evolution, the effects of climate 

change on species and ecosystems can be grouped into the following categories: 

impacts on the physiology and behavior of species, impacts on the lifecycle, 

impacts on the composition and interactions of species in ecological 

communities, impacts on the geographical distribution (Hughes, 2000; Walther 

et al., 2002). 

If changes on physiology and life cycle may increase the resilience of 

ecosystems, changes in composition and distribution of vegetation patterns may 

deteriorate the environmental diversity. 

Several authors have investigated the effects of climate change on the spatial 

structure of vegetation. Some of these works relate the trends of precipitation 

and temperature with NDVI index (Normalized Difference Vegetation Index) 

and phenological measures. This type of analysis showed a negative effect of the 

decline in rainfall of Mediterranean forests, a positive effect due to the increase 

in temperature of mountain forests (Maselli et al., 2007) and an anticipation of 

the growing season and delayed senescence (grass and shrubs of the Alps and 

Central Europe) (Menzel et al., 2001; Studer et al., 2005). 

Poiani and Johnson (1993) constructed a Cellular Automata (CA) model of 

vegetation dynamics for semi-permanent prairie wetlands that considered seven 

dynamically evolving species, responding to changes in the hydrologic regime. 

The study evaluated the potential effects of climate change on wetland 

resources, with hydrologic components simplified by empirical relationships 

established for the region of interest.  

In coming decades, climate changes are expected to produce major shifts in 

vegetation distributions at unprecedented rates, in large part due to mortality. 

The responses of vegetation to variations in climate are expected to be most 

rapid and extreme at ecotones, the boundaries between ecosystems, with 

semiarid ecotones considered to be among the most sensitive. Allen and 

Breshears (1998) showed the most rapid landscape-scale shift of a woody 

ecotone ever documented taken place in response to climate change in northern 

New Mexico in the 1950s (from 1954 to 1963). This shift has persisted for 40 

years. Using GIS tools and historical photographs of the area (1935, 1954, 1963, 

1975) they demonstrated that the ecotone between semiarid ponderosa pine 

forest and pinõn-juniper woodland shifted extensively (2 km or more) and 

http://en.wikipedia.org/wiki/Life
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rapidly (<5 years, from 1955 to 1959) through mortality in response to a severe 

drought (Figure 1.13). 

 

 

Figure 1.13. Changes in vegetation cover between 1954 and 1963 in the study area in 

the Jemez Mountains of northern New Mexico, showing persistent ponderosa pine forest 

(365 ha), persistent pinõn-juniper woodland (1527 ha), and the ecotone shift zone (486 

ha) where forest changed to woodland (Allen and Breshears, 1998). 

Bachelet et al. (2001) have developed a model to simulate vegetation 

succession in the United States. A multitude of future climate scenarios has been 

used to produce a big variety of simulated ecological responses. Their objectives 

were to use an equilibrium model (Mapped Atmosphere-Plant-Soil system) and 

a dynamic model to simulate changes in potential equilibrium vegetation 

distribution under historical conditions and across a wide gradient of future 

temperature changes. Both models agreed that a moderate increase in 

temperature produces an increase in vegetation density across most of the US 

with small changes in vegetation types. Vice versa, a large increase in 

temperature causes losses of C with large shifts in vegetation types. In the 

western states, particularly southern California, precipitation and thus vegetation 

density increase and forests expand under all but the hottest scenarios. In the 

eastern US, particularly the Southeast, forests expand under the more moderate 

scenarios but decline under more severe climate scenarios, with catastrophic 

fires causing rapid vegetation conversions from forest to savanna.  

Bakkenes et al. (2002) demonstrated that the future climate change can 

strongly influence the diversity and distribution of species and, therefore, affect 

ecosystems and biodiversity. In order to assess these changes they developed a 
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model, called Euromove. The model uses climate data from 1990 to 2050 and 

determines climate envelopes for about 1400 plant species by multiple logistic 

regression analysis. The climate envelopes were applied to the projected climate 

to obtain predictions about plant diversity and distributions by 2050. For each 

European grid cell, Euromove calculated which species would still occur in 

forecasted future climate conditions and which not. The results showed major 

change in biodiversity by 2050. On average, 32% of the European plant species 

that were present in a cell in 1990 would disappear from that cell. Vegetation 

species will change in the 44% of the modeled European area. Individual 

responses of the plant species were diverse.  

Lenihan et al. (2008) simulated the response of vegetation distribution to 

three scenarios of future climate change for California using the Dynamic 

General Vegetation Model. To generate the three future climate scenarios 

(period 2004-2100), they used monthly output generated by the general 

circulation models (GCMs): the GFDL model (B1 and A2 scenario) and the 

PCM1 model (A2 scenario). The response of vegetation class distribution under 

the three future climate scenarios was determined by comparing the distribution 

of the most frequent vegetation type simulated for the 30-year historical period 

(1961-1990) against the same for the last 30 years of the future scenarios (2071-

2100). The simulated response of the vegetation classes in terms of changes in 

percentage coverage was surprisingly similar under the three future climates. 

Under all three scenarios, Alpine/Subalpine Forest cover declined, and increases 

in the productivity of evergreen hardwoods led to the displacement of evergreen 

conifer forest by mixed evergreen forest. Grassland expanded, largely at the 

expense of woodland and shrubland, even under the cooler and less dry climate 

scenario where increased woody plant production was offset by increased 

wildfire. The uncertainty due to differences among future climate scenarios and 

to unrepresented or poorly understood processes precludes the use of these 

simulations as unfailing predictions of the future. Nevertheless, the results 

underscore the potentially large impacts of climate change on California 

ecosystems, and the need for further analyses of both future climate change and 

terrestrial ecosystem responses. 

Therefore, there is a clear need to develop conceptual models that are capable 

of interpreting and predicting spatial pattern formation especially in dryland (and 

similar ecosystems) that are the most vulnerable environments to eventual 

climatic change (Smith and Goodman, 1987; Jeltsch et al., 1999). 

The CA ecohydrological models (see section 3.1.6) represent a useful tool to 

describe the effects of climate on natural ecosystems and landscape. Manfreda 

and Caylor (2013) explored the potential of this model using different climatic 

scenarios to explore the impact of changes on the climatic forcing on semiarid 

environments simulating vegetation pattern evolution and hydrological water 

budget at the basin scale using as test site the Upper Rio Salado basin. This 

enables quantitatively assessing the effects on soil water availability on future 
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climatic scenarios. They generated a number of synthetic vegetation patterns 

over the basin. Results highlighted that the relationship between climatic forcing 

(water availability) and vegetation patterns is strongly non-linear. This implies, 

under some specific conditions which depend on the ecosystem characteristics, 

small changes in climatic conditions may produce significant transformation of 

the vegetation patterns. In the basin, morphological characteristics (local 

elevation, basin aspect ratio, and local slope) seem to be relevant controlling 

factors even if it is an arid river basin, while soil texture has a minor role. 

Simulations have been carried out assuming different combinations of 

rainfall parameters, α and λ, with the same temperature values observed in the 

period 1990-2001 during the growing season. The authors focused on the impact 

of rainfall variations instead of modifying the potential evapotranspiration 

through the mean temperature of the season. They simulate different climatic 

conditions varying rainfall parameters α and λ. In particular, a mean spatial value 

of the parameter α varying from a minimum value of 0.403 cm to a maximum 

value of 0.688 cm, while the mean value of the parameter λ (rainfall frequency) 

varies from 0.196 day
−1

 to 0.481 day
−1

. Rainfall parameters have been modified 

producing 20 equally spaced values within the cited intervals that in total 

produce 400 climatic scenarios. The parameter space was set around the 

reference conditions of the Rio Salado Basin, which are described by α=0.575 

cm and λ=0.284 day
−1

. Consequently, the CA network model produced 400 

patterns of steady state vegetation maps. 

The percentages of each land cover types (tree, shrub, grass, and bare soil) as 

a function of the different climatic conditions are given in Figure 1.14. In 

particular, Figures 1.14a, d, which describes percentage cover of bare soil and 

trees, show a complementary behavior with an increase of trees when bare soil 

declines. The percentage of trees, in fact, increases with the increase of mean 

rainfall (greater frequency of rainfall λ, and greater mean daily rainfall depth α), 

up to a condition of stable equilibrium. In contrast, the percentage of bare soil 

tends to decrease with the increase of total rainfall. Different behavior is 

observed for shrub and grass that tends to prevail for intermediate values of the 

climatic conditions (Figures 1.14b, c). 

A synthesis of the landscape modifications is given in Figure 1.15 that 

describes the Shannon’s index (i.e., index commonly used in landscape diversity 

measurement and it accounts both abundance and evenness of species) for all 

range of parameters investigated for the Upper Rio Salado. The index shows a 

rapid and marked decrease with the reduction of both rainfall rate and mean 

rainfall depth. More humid climatic conditions favor the growth of the index that 

tends to a maximum and after a certain value it slight decreases up to a condition 

of equilibrium. It is useful to remind that SHDI increases as the number of 

different patch types increases and/or the proportional distribution of area among 

patch types become more equitable. 
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Analyses show that the spatial distribution of vegetation is mainly controlled 

by local climate and basin morphology that play a dual role, influencing the soil 

water balance at the local scale and the interaction between species. The 

landscape analyses show that landscape composition changes non-linearly with 

climate changing from dry to humid evidencing different sensitivities of the 

vegetation patterns to the climatic conditions. 

The main outcomes of their work can be summarized in the following points: 

the landscape analyses, based on the modeling applications, show that reduction 

of landscape diversity (described by the Shannon’s Index) may occur rapidly for 

small changes in the rainfall characteristics; these changes are exacerbated when 

rainfall modifications are due to reduction in the mean rainfall depth; the impact 

of climate change on the vegetation pattern depends on the vulnerability of a 

system with respect to the expected changes. These results are consistent with 

the analyses carried out by Walther et al. (2002) that evidenced how the 

responses to relatively low average rates of climate change may be significant, 

raising several concerns about its ecological and socio-economic consequences. 

 

 
Figure 1.14. Distribution in percentage of the types of soil cover as a function of the 

climatic conditions described by rainfall parameters α and λ. Percentage of (a) bare soil, 

(b) grass, (c) shrub, and (d) tree (Manfreda and Caylor, 2013). 

a) b) 

c) d) 
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Figure 1.15. Distribution of the Shannon’s Index computed on the simulated vegetation 

patterns as a function of the climatic conditions described by the rainfall parameters α 

and λ (Manfreda and Caylor, 2013). 

Zhou et al. (2013) analyzed how change the vegetation distribution varying 

the storm characteristics (rainfall frequency-magnitude statistics, and 

seasonality) in a small basin in the Sevilleta National Wildlife Refuge (SNWR), 

New Mexico, (in which a reduction of 25% of the mean annual precipitation in 

2100 is forecasted) using the ecohydrological CATGraSS model. In this basin 

plant distribution is strongly controlled by topography (aspect and slope), with 

juniper pine and grass savanna co-existing in the north-facing slopes, and shrub 

dominating the south-facing slopes. They analyzed the following storm cases: 

increased mean time between storms, decreased mean time between storms; 

enhanced monsoon precipitation, uniform climate. They kept the mean annual 

precipitation constant (250 mm·yr
-1

). In Figure 1.16 the final vegetation 

distribution maps obtained with the current climate (Figure 1.16a) and the four 

fictitious climates (Figures 1.16b, e) are shown. A 20% increase in the mean 

interstorm time (higher magnitude and lower frequency storms) reduces the 

shrub percentage and increases grass and tree percentage (Figure 1.16b). When 

the mean interstorm time is decreased by 20%, creosote bush becomes the 

dominant plant type (Figure 1.16c). A stronger monsoon is obtained increasing 

(decreasing) the wet (dry) season total rainfall by 50%, leading to an equivalent 

of 75% MAP falling in the monsoon season (180 mm of rain in 3 months). 

Under this scenario (Figure 1.16d) grass expands in the basin rapidly, while 

juniper pine and creosote bush die off. Under no seasonality scenario (Figure 

1.16e), with rainfall evenly distributed, juniper pines rapidly extends in the 

basin. They analyzed the influence of rainfall seasonality by forcing the model 

with a mediterranean climate (wet season: from November to January). The 

simulated vegetation pattern shows the dominance of the juniper pine. The 

sensitivity runs suggest that the observed vegetation pattern exists only in the 
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current climate (Figure 1.16a), and changes in the storm characteristics could 

lead to a dramatic reorganization of the plant composition on topography. 

 

                  

     

 

Figure 1.16. Vegetation distribution maps for: (a) current climate, (b) increased mean 

time between storms (+20% Tb), (c) decrease in mean time between storms (-20% Tb), 

(d) enhanced monsoon precipitation (+50% increase), (e) uniform climate (no Monsoon) 

(Zhou et al., 2013). 
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Chapter 2 

Shrub and tree encroachment in the 

american grasslands: state of the art 

The encroachment can be defined as the increase in density, cover and 

biomass of indigenous tree or shrubby plants in various arid and semiarid 

grasslands (Van Auken, 2000; 2009). 

Tree or shrubby plant encroachment into grasslands and the ‘thickening’ of 

tree or shrubby plant density in rangelands and savannas are well documented 

(Buffington and Herber, 1965; Burkahardt and Tisdale, 1976; Archer at al., 

1988; Grover and Musick, 1990; Bahre and Shelton, 1993; Archer, 1995; Asner 

et al., 2003; Miller et al., 2005; Coop and Givnish, 2007; Browning et al., 2008; 

Knapp et al., 2008a, b; Miller et al., 2008; He et al, 2010). This phenomenon has 

changed dramatically over the last 150 years the semiarid and arid grasslands of 

southwestern North America (Buffington and Herber, 1965; Archer et al, 1988; 

Archer, 1994, 1995; Browning et al., 2008; van Auken, 2009) (Figures 2.1, 2.2). 

There are many temporal photographs that may show that encroachment has 

occurred, without showing the possible causes of a such phenomenon. The best 

evidence demonstrating encroachment is found in studies that, examining a 

specific grassland area, have shown changes in coverage or density of one or 

more woody species in time (Knapp et al., 2008a). Most encroachment occurred 

well before scientists began looking at this phenomenon in a systematic way. In 

order to analyze the phenomenon, Miller et al. (2005; 2008) examined date of 

woodland community establishment retrospectively using tree-ring chronologies 

or dendrochronology. A large number of communities were aged and the ages of 

the communities were examined as a function of time. When this was done, a 

large, rapid increase in the number of recently established woodland 

communities was found. The increase in the number of new woodland 

communities started in the mid to late 1800s and continued through most of the 

1900s (Miller et al., 2005; Miller et al., 2008). 

In order to to understand the magnitude of the problem, the pictures in Figure 

2.1 show the rapidly western juniper encroachment in the Pecos National Park, 
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north central New Mexico, from 1916 to 1986, while the pictures in Figure 2.2 

show the juniper encroachment into the semiarid grassland of Albuquerque, New 

Mexico, from 1899 to 1977. Other evidences of encroachment times are 

provided bu Figures 2.3 and 2.4. In particular the graphic of Knapp et al. 

(2008b) in Figure 2.3 shows the increase in mean cover of Juniperus virginiana 

in northeastern Kansas. Area began grassland in 1956 and 40 years later it was 

forest community with +95% cover. The graphic of Miller et al. (2005), in 

Figure 2.4, shows moreover the number of newly established Juniperus 

occidentalis communities per decade for the past 400 years. There were 801 

communities examined in former northern California grasslands. The greater 

juniper encroachment occurred then from 1900 to 1990. 

 

 

Figure 2.1. Sagebrush steppe has been rapidly changing into woodlands of western 

juniper and pinyon pine since Euro-american settlement of the West in the middle of the 

nineteenth century. North central New Mexico, Pecos National Park: (a) 1916, (b) 1986 

(Dick-Peddie, 1993).  

 

Figure 2.2. Encroachment of juniper plants into semiarid grassland west of 

Albuquerque, New Mexico: (a) 1899, (b) 1977 (Allen et al., 2002). 

a) b) 
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Figure 2.3. Increase in mean cover of Juniperus virginiana in northeastern Kansas 

(Knapp et al., 2008a). 

 

Figure 2.4. The number of newly established Juniperus occidentalis communities per 

decade for the past 400 years (Miller et al., 2005). 

This chapter provides in section 2.1 a description of the shrub encroachment 

and in section 2.2 a description of the tree encroachment. In order to better 

clarifying the contents of this chapter, a brief distinction of the terms tree, shrub 

and woody plant is carried out here. Tree is a perennial plant with an elongated 

stem, or trunk, while shrub is distinguished from a tree by its multiple stems and 

shorter height, usually under 6 m tall. Plants of many species may grow either 

into shrubs or trees, depending on their growing conditions. Juniper that is 

usually a tree can be also considered a shrub when it is young and small. Both 

tree and shrub can be considered woody plants. 

2.1. Shrub encroachment 

The grassland communities have not been invaded by non-native shrubby 

species (invasion) but by native species (encroachment) (van Auken, 2000). 

Encroachment of native shrubby species (Figure 2.5) has changed the 

http://en.wikipedia.org/wiki/Tree
http://en.wikipedia.org/wiki/Height
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appearance and structure of many of these former semiarid grasslands to 

shrublands (Knapp et al., 2008a, b).  

Although some authors have attributed the encroachment of shrub into the 

semiarid grasslands to only one factor (Burkhardt and Tisdale, 1976), most 

recent studies have suggested an interaction of several factors (van Auken, 2000; 

2009; Miller et al., 2005). Putative causes of increased shrubby plant abundance 

vary, and include increased grazing intensity, reduced fire frequency, other 

alterations in local land management practices and rising atmospheric CO2 

concentrations. A second type of factors would include nutrient levels, global 

climate change, spread of seed by livestock, small animal populations, and 

combinations of these factors (Archer et al., 1988; Archer, 1994; 1995; Van 

Auken, 2000; 2009). In Figure 2.6 a conceptual model illustrating the causes of 

the shrub encroachment (D’Odorico et al., 2010) is shown. 

 

 

Figure 2.5. Shrub: creosote bush (Larrea tridentata) 

 

Figure 2.6. Conceptual model illustrating the causes of the shrub encroachment 

(D’Odorico et al., 2010). 
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Looking at Figure 2.6, the major cause of the encroachment of these shrubby 

species seems to be the reduction of grass biomass (fine fuel) by chronic high 

levels of domestic herbivory coupled to a reduction of grassland fires 

(Burkahardt and Tisdale, 1976; van Auken, 2000), which would have killed or 

suppressed the shrubby plants to the advantage of the grasses (Grover and 

Musick, 1990; Archer, 1995; Coop and Givnish, 2007; van Auken, 2009). The 

introduction of millions of domestic  animals into the grassland and high livels 

of constant herbivory (van Auken, 2009) have caused the reduction of the 

aboveground grass biomass and the fine fuel, required for large-scale ecosystem 

fires. With the reduction of the fuel there was a concomitant decrease in 

grassland fires (Archer, 1994). Herbivores removed light-fluffy fuel in the form 

of grass biomass and the grasslands could not burn because there was little fine 

fuel remaining to burn. However, grassland fires certainly interacted with 

herbivory, rainfall and temperature to complicate the interpretation of shrubby 

plant encroachment. These new ecological conditions favored the growth of the 

shrubby plants and not the grasses that had dominated these communities for 

thousands years (Miller and Rose, 1999; Miller et al, 2007; van Auken 2009). 

The role of plant competition and the spread of seeds by introduced domestic 

herbivores seem to be secondary and probabily modified the rate of change (van 

Auken, 2000). Moreover, the role of many small native mammals and insects 

that consume woodly plant seedlings seems to be secondary and possibly 

localized (van Auken, 2009). Secondary factors probabily modified the rate of 

change, rather than causing the change (van Auken, 2000; 2009). Elevated levels 

of atmospheric CO2 are not necessary to explain shrub encroachment in these 

semiarid grasslands. Moreover, the earth’s orbit which is becoming more 

circular and less elliptical (Mackenzie, 2003), which is a long-term cyclic 

change and background to antropogenic chanes occurring today appears to be 

another factor. 

Bahre and Shelton (1993) showed that the historical climate change did not 

influence the encroachment. In fact, links between changing climate since 1870s 

and shrub plant encroachment in the semiarid grasslands are weak (Bahre and 

Shelton, 1993; Van Auken, 2000; 2009). Vice versa the future possible climate 

change could become the major cause of encroachment (Allen and Breshears, 

1998; Van Auken, 2009). 

Thus, the shrub plants are not the cause of the changes in these semiarid 

grasslands as is so often presumed, but they are the result of the effect of 

changes of other factors on the species in these grassland communities. 

The composition of these communities will continue to change in the future 

(Bahre and Shelton, 1993) but the direction of future change and trends is 

difficult to predict (Buffington and Herber, 1965). All of the above factors will 

probably continue to interact to regulate community composition and structure 

and the density of shrubby plants will probably increase (Buffington and Herber, 

1965; Miller et al., 2008; van Auken, 2009). Probably the process will continue 
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into the future until shrubby plants will encroach into all or most of the 

grasslands (Bahre and Shelton, 1993; van Auken, 2009). 

The study of Buffington and Herber (1965) aimed to show the degree of 

encroachment of mesquite (i.e., a deciduous leguminous plant of 

the Prosopis genus found in northern Mexico; it can be classify as tree or shrub 

in function of its size, Figure 2.7) in the Jornada Experimental Range, near Las 

Cruces, New Mexico.  

 

 

Figure 2.7. Mesquite plant 

The study site is in the drier part of the semidesert grassland area. Vegetation 

surveys of 1858, 1915, 1928, and 1963 were compared. In this area, fires need to 

be periodic to keep mesquite under control. The value of fire in maintaining a 

mesquite-free semidesert grassland is questionable since black grama (i.e., grass) 

is susceptible to fire damage and mesquite is relatively resistant. Plant 

competition for space and moisture may have been a factor in keeping the 

mesquite invasion rate at a minimum under pristine conditions. If plant 

competition was a factor, any selective grazing by livestock or rodents would 

weaken the grass and favor the shrubs. In 1858 the Jornada Experimental Range 

was a great expanse of grass with only isolated spots of mesquite. On the higher 

areas along the mountains, mesquite was present; however, grass was also good 

in most places. Since 1858 the grass cover has decreased tremendously, and the 

mesquite has increased to the point that it was present on the entire study area in 

1963. In 1858 good grass was present on more than 90% of the study area. By 

1963 less than 25% of the area had good grass. Mesquite has been present on all 

soil types (Figure 2.8). However, the main invasion of mesquite was on sandy 

soils. As mesquite began to dominate a sandy site, low dunes form and grass 

cover was greatly reduced. In 1858 over 6,000 acres had abundant mesquite; by 

http://en.wikipedia.org/wiki/Legume
http://en.wikipedia.org/wiki/Prosopis
http://en.wikipedia.org/wiki/Mexico
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1963 an area more than ten times as great was dominated by mesquite, with half 

of that increase occurring after 1928. The authors listed five factors which were 

responsible for the increase in mesquite: changes in climate, grazing by domestic 

livestock, effect of rodents, suppression of grassland fires, competition. Fires 

could have been a factor, however, no extensive fires were reported. Domestic 

livestock may have used this area prior to the 1880s, but such use would have 

been only seasonal or intermittent due to lack of water and during the 1880’s, the 

number of cattle increased. Livestock was responsible for the dissemination of 

mesquite seed since the seed was capable of passing through their digestive 

tracts without being damaged. The authors concluded that the effect of livestock 

as a means of disseminating mesquite seed was more a factor in mesquite 

invasion than the effect of their grazing. Rodents and rabbits also consumed a 

large amount of range forage and they were also important in dissemination of 

seed. But authors stated that rodents should be considered only an aggravation of 

the problem rather than a primary cause.  

 
 

 

Figure 2.8. Summary of change in the areal coverage (ha) of several vegetation types on 

the Jornada Erperimental Range (Buffington and Herbel, 1965). 

Archer et al. (1988; 1995) stated that dense woodlands occupy what are 

thought to have been grasslands and savannas prior to settlement of the Rio 

Grande Plains of Texas. However, the tenet that grasslands have been converted 

to shrublands and woodlands in recent history is controversial and based largely 

upon conflicting historical accounts. They hypothesized the two-phase 

landscapes represented an intermediate stage in the conversion of grassland to 

woodland. As new shrub clusters were initiated and existing clusters expanded 

and coalesced, a gradual shift from grassland to savanna to woodland occurred. 

To address this hypothesis, Archer et al. (1988) inventoried herbaceous 

interspaces for woody colonizers, quantified the composition and distribution of 

shrub clusters on upland sites, and compared the structure of clusters to that of 

adjacent, more mesic areas with continuous woody plant cover. To assess the 
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physiognomic stability of the two-phase landscapes, cluster size, density, and 

cover were quantified for 1941, 1960, and 1983 from aerial photographs. They 

then compared the composition of clusters at advanced stages of development to 

that of an adjacent stand of closed-canopy woodlands. Three spatially distinct 

sites within the research area were randomly selected for mapping. Each site was 

characterized by the same sort of polygonal vegetation pattern. The data 

suggested that mesquite plants invaded grasslands and served as recruitment foci 

for bird-disseminated seeds of other 19 woody species previously restricted to 

other habitats. The result was a landscape composed of discrete chronosequences 

of woody plant assemblages organized about a mesquite nucleus. Woody plant 

cover changed significantly over time within portions of the landscape 

characterized by the two-phase vegetation pattern (Figure 2.9a).  

 

 

Figure 2.9. (a) Changes in percent woody plant cover within that portion of the 

landscape characterized by the two phase pattern, sites 1, 2, and 3. (b) Net change in 

total woody plant coverage resulting from border encroachment and cluster development 

within the two-phase pattern (Archer et al., 1988). 

Percent coverage of woody plants (e.g., Zanthoxylum, and Celtis, that are 

evergreen trees or shrubs) , comparable on the three sites in 1941, had increased 

significantly by 1983. Averaged over sites, woody cover within the two-phase 

area was 13.0, 13.6, and 23.3% for 1941, 1960, and 1983, respectively. When 

woody plant cover changes resulting from border encroachment were combined 

with those changes observed within the two-phase zone, the result was a net 

increase in area occupied by woody plants of 30, 16, and 24% on Site 1 (S1), 

Site 2 (S2), and Site 3 (S3), respectively, over the 42 years period (Figure 2.9b). 

Averaged over the three sites, areal coverage was comparable in 1941 and 1960 

(12.6 vs. 7.9%, respectively). By 1983 mean coverage of woody plants had 
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increased to 36.4%. Border encroachment and changes within the two-phase 

zone contributed equally to this overall increase in cover, (49% vs. 51%, 

respectively). The density of clusters and point locations within the two-phase 

area also changed over time. Cluster densities on S1 (3.7 clusters·ha
-1

) and S2 

(3.7 clusters·ha
-1

) were twice that of S3 (1.8 clusters·ha
-1

) in 1941. Cluster 

density on each of these sites had decreased to 2.1 and 2.8 clusters·ha
-1

, 

respectively, by 1960. By 1983 densities had returned to levels comparable to or 

slightly greater than those of 1941. S3, which began with a low cluster density in 

1941, changed little through 1960. However, density increased 42% to 2.7 

clusters·ha
-1

 between 1960 and 1983. 

Archer’s results indicate: (1) mesquite invaded grasslands and served as the 

nucleus of cluster organization on upland sites; (2) woody plant community 

development has been highly punctuated by variations in precipitation; (3) the 

two-phase pattern was moved toward a monophasic woodland. As a result, (4) 

shrub clusters on uplands represented an intermediate stage in the conversion of 

grassland to woodland. 

Bahre and Shelton (1993) examined long-term directional vegetation changes 

in the wild landscape of southeastern Arizona since the advent of major Anglo-

American settlement in the 1870s and their relation to climate variations (Figure 

2.10).  

 

 

 

Figure 2.10. Vegetation Change in southeastern Arizona. (a) 1910, (b) 1968, (c) 1988 

(Bahre and Shelton, 1993). 

Particular emphasis is placed on verifying the purported changes in the 

distribution of major vegetation types and the link between velvet mesquite 

a) 

c) 

b) 
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(Prosopis velutina Woot.) increases and precipitation trends since the turn of the 

century. While there is little doubt that climatic oscillations have resulted in 

short-term fluctuations in vegetation, precipitation variations do not appear to be 

connected to any major directional vegetation change since 1870 in southeastern 

Arizona. In fact, no single trend is evident in regional precipitation during this 

period. Furthermore, there is no clear evidence for the upward displacement 

along a xeric (i.e., a type of habitat with a moderate or well-balanced supply 

of moisture)-to-mesic (i.e., a type of habitat with a small amount of moisture) 

gradient of any major vegetation type, and, except possibly for increases in 

woody xerophytes such as mesquite, all of the identified long-term vegetation 

changes appeared to be of anthropogenic origin. Mesquite increases, however, 

were irregular, showed no clear relation to precipitation variations, and were 

most likely the result of livestock grazing and/or fire exclusion.  

Asner et al. (2003) have documented the local increases in shrub (i.e., 

mesquite, Prosopis glandulosa) cover in arid and semiarid ecosystems 

worldwide. They used historical aerial photography, contemporary Landsat 

satellite data, field observations, and image analysis techniques to assess spatial 

specific changes in shrubby vegetation cover and aboveground C stocks between 

1937 and 1999 in a 400 km
2
 region of northern Texas, USA. 

Remote sensing operations afford comprehensive and repeatable assessments 

of land cover change at broad spatial scales and yield a suite of tools for 

mapping and monitoring changes in vegetation cover (Asner et al., 2003). As 

such, remote sensing plays an increasingly prominent role in estimating 

terrestrial plant biomass. Quantifying land cover classification accuracy and 

uncertainty associated with estimates of plant biomass is paramount. One 

important, yet outstanding challenge associated with estimating biomass from 

remotely sensed imagery, is to appropriately link field data to remotely sensed 

estimates of aboveground biomass. Aerial photography provides opportunities to 

quantify shrubby patch dynamics and stand structure as a link to coarse 

resolution satellite imagery for improving accuracy of terrestrial biomass and 

carbon storage estimates. 

Browning et al. (2008) used a time-series of aerial photography to (1) 

quantify rates and dynamics of cover change on two distinct geomorphic 

surfaces; (2) relate patterns of shrubby cover change to rainfall seasonality and 

test the hypothesis that shrub cover increases will follow years of relatively high 

winter precipitation; (3) test the hypothesis that the rate and extent of P. velutina 

encroachment would be highest on coarse-textured soils and lowest on fine-

textured soils. To assess the accuracy of using aerial photography to estimate 

shrub biomass on landscapes, the authors used field data to quantify how much 

shrubby plant biomass they might be missing. The study was conducted on the 

Santa Rita Experimental Range, 45 km south of Tucson, Arizona, along the 

western edge of the semidesert grassland region of the Sonoran Desert. To 

quantify the extent to which soils influence the rate and extent of shrub cover 

http://en.wikipedia.org/wiki/Habitat
http://en.wikipedia.org/wiki/Moisture
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change and to minimize potential confounding effects of livestock grazing, fire, 

and precipitation, they confined their analyses to landscapes with similar land 

use history, topography, and elevation. Changes in shrub cover were assessed 

using aerial photography from 1936, 1966, and 1996 from the U.S. Geological 

Survey (Figure 2.11). The sample unit in their analysis was a shrub patch, 

defined as a shrubby plant canopy that could represent an individual plant or a 

cluster of plants with touching or overlapping canopies. Automated image 

classification protocols were used to delineate shrub patches in geocoded, 

orthorectified images. Classification accuracies were assessed using a random 

sample of points stratified by image class. Random points on photographic 

images were assigned manually to the reference class shrub or non-shrub for 

1936 and 1966 images and grass, shrub, or bare soil for the 1996 image. 

Classification accuracies represent the level of agreement between manual and 

automated image class assignments and are presented as error matrices along 

with Cohen’s kappa (k) statistic, an estimate of accuracy that incorporates 

agreement that may occur by chance (Cohen 1960). Values of k range from 0 to 

1.0; values 0.75 indicate strong agreement beyond chance; values 0.40 reflect 

poor agreement.  

 

 

 

Figure 2.11. Repeat ground photography (1922, 1962, and 2003) of vegetation change 

on a site in a semidesert grassland in Arizona, USA (Santa Rita Experimental Range). 

Arrows denote fixed-location rebar. (a) Shrub cover was low in 1922, (b) by 1962, 

velvet mesquite, cholla, and burroweed abundance had increased markedly, and (c) 

mesquite abundance remained high through 2003, while cholla and burroweed 

abundance decline (Browning et al., 2008). 

From this database, they extracted canopy dimensions for P. velutina (i.e., 

mesquite, here classified as shrub) plants present in 1948 but absent in 1932. 

a) b) 

c) 
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Thus, the maximum age of selected shrubs would be 16 years. Shrub percent 

cover on each landscape was determined by dividing the number of cells (i.e., 

pixels in classified photography) mapped as shrub by total number of cells in 

each landscape. There was a loose correlation between increases in shrubby 

plant abundance on aerial photos and periods of increased winter precipitation, a 

cause-effect assertion is perhaps too simplistic for several reasons. The increase 

in patch densities observed in their study also coincided with above-average 

summer rainfall and hence above-average annual rainfall. It could well be that 

the combination of elevated summer and winter rainfall was key to promoting 

recruitment. Although recruitment of new shrubs was observed during the 1966-

1996 period, rates of recruitment were comparable (sandy sites) to 4.3 times 

higher (clayey sites), between 1936 and 1966, a period of erratic and relatively 

non-remarkable fluctuation in winter precipitation; and a period of relatively dry 

summers. Fifth, although shrub patch density increased during the relatively 

high-rainfall 1966-1996 period, total cover actually declined.  

A better understanding of the relationship between shrub recruitment and 

climate is needed if we are to confidently forecast vegetation response to future 

environmental conditions. 

2.1.1. Changes in vegetation from mid 1800s 

Reports of increased density of shrubby plants in the arid and semiarid 

grasslands of southwestern North America date to the mid to late 1800s. This 

encroachment in Arizona is reasonably well documented, but still mostly 

anecdotal. It appears to be linked or coupled to increased cattle ranching in this 

area in the 1870s and the concomitant reduction in fire frequency about the same 

time (Bahre and Shelton, 1993). Additional evidence of dramatic changes in this 

area during the late 1800s and early 1900s has recently been presented. The 

shrubby increase is linked to human activity and was probabily caused by rapid 

expansion of livestock grazing at this time. This would be associated with 

reduced grass cover, reduced light fuel livel and a concomitant reduction in fire 

frequency. There is some documentation of the same phenomena in New 

Mexico and Texas as well, but possibly starting sooner (Archer, 1994). 

Nonetheless, increased shrubby plant density occurred before the major influx of 

CO2 into the atmosphere but the increased density was associated with 

increasing temperature, which can be considered a background factor. 

The area of grassland in southwestern North Americas that has been covered 

to shrubland is estimated as high as 60 million ha (van Auken, 2000). This 

encroachment in North American grassland is not limited to the arid  and 

semiarid southwest and some suggest that between 220 and 330 million ha of 

total grassland have been or are being encroached (Knapp et al., 2008b). 
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2.1.2. Shrub encroachment causes  

As previously mentioned, considerable discussion have centered on the 

factors that cause shrubby plant encroachment in the dry lands of the world 

(Archer et al., 1995; Van Auken, 2000; Peters et al., 2006; Knapp et al., 2008a, 

b; Van Auken, 2009). These debates have included changes in the arid and 

semiarid grasslands of southwestern North America.  

In the following paragraphs a description of the principal causes is shown: 

herbivory, fire, spread of seed, competition and global change. A synthetic 

model of shrub invasion is shown in Figure 2.12. The grazing caused the 

reduction of the perennial grass causing the mesquite and creosote bush 

invasion. Grass reduction caused the fire suppression that accelerated the 

perennial grass decline and the shrub encroachment. 

 

 

Figure 2.12. Synthetic model of shrubland invasion for the American southwest based 

on creosote bush and mesquite life histories and the observed consequences of their 

dominance (Grover and Musick, 1990). 
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2.1.2.1. Herbivory 

Herbivores may reduce the growth of individual plants by damaging the 

leaves, stems, or roots. Damage to plants by hebivores is determined by the 

timing of the encounter, location of the tissue eaten, amount of tissue eaten, and 

frequency of attack (Crawley, 1997). By damaging plant parts, herbivores may 

alter a plant’s ability to obtain resources or selectively eliminate a plant as a 

competitor, and thereby influence the outcome of species interactions. Damage 

to individual plants by removal of biomass may lead to changes in plant 

abundance and distribution through alteration in fecundity or ability to regrow or 

through changes in mortality. The ability of a plant to regrow after encounters 

with herbivores is usually reduced, and regrowth of grasses following removal 

of aboveground parts is usually associated with reductions in belowground 

growth and biomass. Only grasses are consumed by herbivores (Van Auken 

2000; 2009) and then they may be at a disadvantage in their ability to interact 

with other plant species.  

In the semiarid grasslands of the American southwest, brush encroachment 

has been coincident with or been preceded by development of the livestock 

industry (Archer, 1994; 1995; Bahre, 1995). Alterations in the grass species 

composition as well as reductions in herbaceous plant basal area, density, and 

aboveground and belowground biomass accompany chronic high levels of 

livestock grazing. Herbivory at low density and frequency may cause little 

change in a grassland community, but at high density and frequency, it can alter 

grassland composition, changing it to a shrubland (Archer, 1995). 

2.1.2.2. Fire 

Periodic burning is required to control or reduce the establishment and 

growth of shrubby plants in most grasslands: fire interacts with other factors 

such as topography, soil, herbivores, and amount of herbaceous fuel to 

determine the nature, density, and location of shrubby plants in a landscape (van 

Auken, 2009) (Figure 2.13).  

 

  

Figure 2.13. Fire in Sevilleta. 
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Fire frequency in the semiarid grasslands has decreased in the past 150 years, 

while the size and density of shrubby plants has increased and biomass of grass 

has decreased. Most changes in the composition of the semiarid grasslands in 

southeastern Arizona, and probably in New Mexico and western Texas as well, 

occurred after the beginning of large-scale cattle ranching and fire exclusion in 

the 1870s (Van Auken, 2009). Today, wild-fires are rare. High densities of 

shrubby plants, low amounts of fuel, and grazing seem to be the cause. In fact 

the fire return period increased because of fine fuel removal by cattle, sheep, 

horses. 

In the past,  the fire return was 10 years (White et al., 2006; Wright et al., 

1980; Wright and  Bailey, 1982). Wide spread of fire at 5 to 10 years intervals 

maintained the semiarid grasslands of the pre-1900 (White et al., 2006). Wright 

et al. (1980), suggested fire return of 5-10 years for the control of shrubby cover 

in semiarid grasslands. Actual fire return is on a decadal order. Fire return 

intervals are greater than 10 years, and may actually occur only 1 or 2 times for 

century  (fire return period equal to 100 years) (Parmenter, 2008).  
The seedling of many shrubs of the semiarid grasslands are sensitive to fire 

(Van Auken, 2000). Some will no resprout if their tops are killed, and others are 

susceptible to fire mortality until reaching an appreciable size. If these plants do 

not produce seeds before they are 10 years of age, then a fire return time of 10 

years or less would keep these semiarid grasslands relatively free of shrubs. Fire-

tolerance species would be suppressed by recurring fires and remain in the 

grassland at a small size (Archer, 1994). However, with a reduction of the fine 

fuel load by heavy and constant herbivory, fire frequencies would decrease. 

Further increases in shrubby plant cover and density would follow. Therefore, if 

intermittent fires do not occur in grassland, they will be converted shrublands. 

Fire frequency is variable, but there is general agreement that recurring fires are 

required to control or reduce the establishment, density and growth of shrubby 

plants in most if not all grasslands (Van Auken, 2009). Moreover, fire frequency 

and intensity are linked to climate patterns and conditions.  

2.1.2.3. Spread of seed 

Some large and small mammals, including domestic livestock, feed on the 

fruit of shrubby plants and act as seed dispersal agents (van Auken, 2000; 2009). 

The introduction of domestic herbivores may have increased the dispersal of 

shrubby plant seeds, but many native herbivores could and probably still do the 

same thing (van Auken, 2009). These increases in shrubs density would not 

seem to require long-distance seed dispersal by domestic herbivores and could 

have been dispersed as far by native species. 

Miller (1921) considered the role of livestock in causing juniper invasion to 

be through increased seed dispersal. He claimed that sheep consume quantities 

of juniper fruits which pass through the digestive tract and are scattered in the 

droppings. Johnsen (1962) demonstrated that although germination percentage 
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was not increase, juniper seeds germinated faster after passing through the 

digestive tract of animals. Parker (1945) pointed out that juniper seed has always 

been disseminated by birds, rodents, and water.  

2.1.2.4. Competition 

The importance of competition between grass and shrubs has been 

demonstrated in many arid and semiarid communities (Fowler, 1986). In 

addition, interaction between and among species are known to be important in 

determining community structure and function. Competition between species is 

considerede one of the major factors determining community characteristics 

(Wilson, 1998), but it is one of the several factors (Weltizin and McPherson, 

1999) and is continually debated.  

Changes in competition between grasses and shrubs are implicated in the 

encroachment of shrubs into semiarid grasslands, where competition is primarily 

belowground (Van Auken, 2000). Because of the low stature of the plants, 

relatively low plant density, high belowground biomass, and high root: shoot 

rations (Van Auken and Bush, 1988; 1997) competitive ability of plants in these 

communities may depend on root biomass, root density, root branching, root 

radius, root hair characteristics, mycorrhizae, timing of growth, or interactions 

with other soil organisms (Van Auken, 2000; 2009). Competition in these 

semiarid grasslands seems to change depending on the species and 

environmental conditions. Grasses inhibit the shrubs most during the 

germination, establishment, and early growth of the shrubby plants (Van Auken, 

2000; 2009). However, the interaction seems to be reversed once the shrub root 

are below the root zone of the grasses. 

2.1.2.5. Global change 

There is not an evidence that changes in precipitation patterns or temperature 

in south-western North America since 1860s are linked to the recent shrub 

encroachment in the semiarid grasslands (Van Auken, 2009). 

It has also been proposed that the rising livel of atmospheric CO2 is the cause 

of shrub encroachment (Polley et al., 1992). It is based on observations that most 

shrubs have the C3 photosynthetic pathway and in the semiarid grasslands, the 

grasses that are being replaced have the C4 photosynthetic pathway. Plants with 

the C3 photosynthetic pathway have a growth advantage at higher levels of CO2 

compared to plants with the C4 photosynthetic pathway. 

Modeled precipitations of current and future climatic trends in southwestern 

North America show a warmer drier climate, especially during summer 

(Solomon et al., 2009). However, links between changing climate since the 

1870s and recent shrub encroachment in the semiarid grasslands are weak 

(Bahre and Shelton, 1993; Van Auken et al., 2000; Van Auken 2009). 

Precipitation variations do not appear to be connected to any major directional 

vegetation change since 1870 (Bahre and Shelton, 1993). Moreover, elevated 
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levels of CO2 and parallel increases in temperature are background factors and 

not the principal causes of the encroacment (Van Auken, 2009). 

In the future the severity and frequency of drought are expected to increase as 

the climate continues to get warmer and drier. The future climate change could 

become the major cause of encroachment (Allen and Breshears, 1998; Van 

Auken, 2009). 

2.1.3. Control and management methods 

In the past, the encroaching shrubs were considered alien and invader species 

with a high degree of aggressiveness. In order to deal with what appeared to be a 

serious grassland and rangeland problem various mechanical (chaining, rolling, 

chopping or shredding) and chemical (various herbicide) treatments were used 

(Scifres, 1980; Miller et al., 2005). Other treatments were tried including fire 

and biological control without a lot of apparent success. Fire would not work 

with little fuel. In addition, shrub mortality is size and temperature dependent, 

with large size plants being fire resistent. As soon as the grasses started to re-

grow after treatment, usually after one or more rains, the animals (cattle) were 

put back on the treated area. The result of this type of treatment was an 

approximate 20 years cycle of treatment, grass re-growth, shrub encroachment 

followed by re-treatment. 

More recently, combinations of treatments have been used with greater 

success but difficulties still occur and without fire, treatments are very expensive 

with limited success. Management usually includes some degree of mechanical 

or chimical treatment but success is still limited and reversing the process or 

going from a shrubland to grassland is complex and difficult. Biotic controls are 

usually more sophisticated, and usually combined with fire and may include 

genetic manipulation of some of the browsing species (Taylor, 2008). 

2.2. Tree encroachment  

Tree encroachment into shrublands and grasslands is one of the most 

pronounced environmental changes observed in rangelands of western North 

America in recent decades (Burkhardt and Tisdale, 1976; Miller and Rose, 1995; 

1999; Miller et al., 2000; 2005). The lack of information on the rates, dynamics, 

and extent of increases in tree abundance is one of the major source of 

uncertainty in assessing how this vegetation change has influenced 

biogeochemical and hydro-ecological cycles.  

As previously seen for the shrub encroachment, the fast expansion of tree 

into neighboring plant communities during the past 150 years has caused 

considerable concern because of increased soil erosion, reduced stream flows, 

altered wildlife habitat, reduced forage production, biodiversity, changes in plant 

community composition, and the replacement of semi-arid plant communities 
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with woodlands. However, the impacts of tree expansion are not always clear 

and have led to debate and legal challenges over control projects and 

management plans (Miller et al., 2005). Tree encroachment in the United States 

mainly occurred in central and eastern Oregon, southwestern Idaho, northeastern 

California, northwestern Nevada, in southern Washington and in New Mexico. 

Burkhardt and Tisdale (1976), studied the invasion of western juniper into 

vegetation dominated by perennial bunchgrass on the Owyhee Plateau of 

southwest Idaho. The encroachment appears to be directly related to cessation of 

periodic fires (Figure 2.14). Evidence from adjacent climax juniper stands 

indicated that fires were frequent for at least several hundred years preceding 

settlement. Fires have been much less frequent during the past century due to 

active fire control, development of roads and other fire barriers, and reduced fuel 

because of heavy grazing and shift towards decreased precipitation. 

 

 

Figure 2.14. Frequency of fires and rate of western juniper invasion on the Owyhe. 

Plateau of southwest Idaho (Burkhardt and Tisdale, 1976). 

Coop et al. (2007) have analyzed tree (i.e., ponderosa pine, blue spruce and 

aspen) encroachment into montane and subalpine grasslands that has occurred in 

the Rocky Mountains and many other mountain ranges globally. The timing, 

rate, and extent of invasion can depend on interactions among topography, 

positive spatial feedbacks, and temporally variable factors (especially climate, 

grazing, and fire). They examined spatial and temporal patterns of tree invasion 

in the Valles Caldera of the Jemez Mountains, New Mexico. They used a GIS 

analysis of orthorectified aerial photos taken in 1935 and 1996, covering a 

40,000-ha study area, to quantify the extent of tree invasion and to assess its 

relationship to spatial factors. They obtained dates of establishment from 299 

increment cores and basal disks from 50 sites to reconstruct temporal patterns of 

tree invasion. The area of grasslands in the study area declined from 11,747 to 

9,336 ha (nearly 18%) between 1935 and 1996. Tree invasion increased with 
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slope, elevation, and proximity to the previous tree line, but showed no 

relationship to aspect. Invasion was more rapid and continuous on upper 

mountain slopes, while the invasion of valley-bottom grasslands below reversed 

tree lines was more episodic, and appeared to track mean summer minimum 

temperatures. The rapid and continuous invasion of steep, high-elevation slopes 

suggested that frequent fire was the single most important factor in maintaining 

grassy communities in these sites. The slower, episodic invasion of valley-

bottom grasslands, and the apparent relationship between increased invasion and 

years of higher summer minimum temperatures were consistent with the 

hypothesis that these grasslands have been maintained by low temperatures or 

frosts damaging to tree seedlings.  

In particular, in this section, among all the possible tree encroachment, 

particular attention is paid to the western juniper encroachment since it 

represents the encroachment case study analyzed in section 5.2. 

The importance of western juniper expansion into sagebrush grassland is due 

to the possibility to affect the spatial distribution of soil organic matter, nutrients 

and carbon. The loss of nutrients could also increase if woodland development 

results in accelerated erosion. Changes in hydrologic processes and water 

balance as tree abundance and dominance increase are not well understood. 

Evidence suggests that juniper can impact infiltration rates, sediment loss, and 

soil water storage and depletion rates.  

In order to understand the magnitude of the problem, the photos in Figure 

2.15 show the western juniper encroachment over the 34-year period from 1973 

to 2007 in the Shoshone Mountains, Nevada (Miller et al., 2008), while the 

photos in Figure 2.16 show the western juniper encroachment in the Keystone 

Ranch, east of Prineville, Oregon, from 1890 to 1989. Majority of trees are 

juniper with a few ponderosa pine. The smaller trees in the foreground of Figure 

2.16a appear to be about 10 to 25 years old, and larger trees 60 to 70 years 

(Miller et al., 2005).  

 

 

Figure 2.15. Woodlands closure over the 34-year period from (a) 1973 to (b) 2007, 

resulting in a shift from phase I and II to phase II and III in the Shoshone Mountains, 

Nevada (Miller et al., 2008). 

a) b) 
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Figure 2.16. Keystone Ranch east of Prineville, Oregon, in Crook County on Ochoco 

Creek, (a) 1890, (b) 1989 (Miller et al., 2005). 

Western juniper (Juniperus occidentalis var. occidentalis Hook.) (Figure 

2.17) which is, together with sierra juniper (J. occidentalis var. australis), a 

variant of Juniperus occidentalis, occupies 9 million acres in central and eastern 

Oregon, southwestern Idaho, northeastern California, and northwestern Nevada, 

and in southern Washington (USDA Forest Service, 1981; Gedney et al., 1999; 

Miller and Tausch, 2001; Azuma et al., 2004) (Figure 2.18). It represents the 

northwestern portion of the piñon and juniper region in the Intermountain West. 

Western juniper is usually the only conifer species occupying a site except 

where western juniper woodlands adjoin ponderosa pine (Pinus ponderosa) 

forests. Presettlement changes in woodland abundance and distribution are 

attributed to the increase of the return intervals of fire, long-term changes in 

temperature, amounts and distribution of precipitation (Davis, 1982; Thompson 

and Hattori, 1983; Mehringer, 1987; Van Devender et al., 1987; Wigand et al., 

1995). Evidence supporting rapid post-settlement expansion is derived from old 

surveys, photographs, the distribution of relict presettlement woodlands, and 

tree-ring chronologies. Precipitation across most of the western juniper zone 

varies between 180 and 500 mm (Gedney et al., 1999), falling during the winter 

and spring (October through June). It grows over a wide array of environments 

and occupies elevations ranging from 200 to 2500 m (Sowder and Mowat, 1958; 

Miller and Rose, 1995; Gedney et al., 1999; Miller et al., 2000).  

 

a) 

b) 
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Figure 2.17. a) Western juniper, b) juniper’s leaves. 

Sierra juniper (J. occidentalis var. australis), extends along the eastern slopes 

of the Sierra Nevada mountain range south of Susanville, California, and east 

and south from the Anchorite Hills (Nevada) to the San Bernardino mountains 

(USDA Forest Service, 1981) (Figure 2.18). This species is usually found 

growing as widely scattered trees mixed with other conifers at elevations 

between 1,250 and 2,800 m. Recent work has documented small pockets of 

Sierra juniper growing in the mountains of central and eastern Nevada (Charlet 

1996). Although stands typically occur well above Utah juniper (J. osteosperma) 

in this region, mixed stands including hybrids of Sierra and Utah juniper are 

occasionally found along drainages at lower elevations (Charlet, 1996; Terry et 

al., 2000). 

Western juniper is a long-lived species (more than 1000 years) with a mean 

age of 800 years and has got an elevation of 4-10 m (mean elevation: 7 m) 

(Miller et al., 2005). The tree develops male cones in early spring, which attain 

full size the first summer and mature during the second summer. Seed dispersal 

of western juniper occurs through gravity, overland flow, and animals. At least 

12 species of birds feed on the fruits and as a group are the most important 

disseminator’s of western juniper seed. Western juniper grows on a wide variety 

of parent materials and soils including materials derived from sedimentary, 

aeolian and igneous sources. Soil textures range from clay to sandy. 
 

a) 

b) 
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Figure 2.18. Distribution map of western juniper (Juniper occidentalis var. 

Occidentalis) and Sierra Juniper (J. occidentalis var. australis) (Gedney et al. (1999) and 

USGS: 1:250,000 maps). 

Western juniper communities may be separated into presettlement (old-

growth) or post-settlement (expansion) communities. Miller et al. (2005) suggest 

1870 as a cut-off to separate the two age classes. Western juniper is a long-lived 

species (more than 1,000 years). Old-growth trees and stands can easily be 

separated from post-settlement stands based on morphological and stand 

structure characteristics. 

The majority of post-settlement communities are still in a state of transition. 

The stage of woodland succession (defined as phases I, II, and III) directly 

affects plant community composition, wildlife habitat, and ecological processes 

including hydrologic and nutrient cycles. As the tree increases, the shrub and 

grass decrease (Miller et al., 2005). The minimum time for the tree overstory to 

begin suppressing the understory is 45-50 years and to approach stand closure 

70-90 years on cool wet sites (Johnson, 2005) and 120-170 on dry warm sites.  

As a result, control of western juniper has been a major concern of land 

management since the early 1960’s. In the 1960’s through the early 1970’s 

chaining and dozing were the most common forms of western juniper control. In 

the 1970’s, chainsaws became a widespread tool used for juniper control. In the 

1990’s, the use of prescribed fire for juniper control also increased (Miller et al., 

2005).  
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2.2.1. Woodland expansion history 

2.2.1.1. Presettlement expansion 

The distribution and density of western juniper changed across the 

Intermountain West around the late Pleistocene and into the Holocene. During 

much of the Pleistocene, 45,000-12,500 years BP (before present), western 

juniper had a much more southerly distribution, with the northern boundary near 

Kings Canyon National Park, California (Cole, 1983). Towards the end of the 

Pleistocene, 12,000-15,500 years BP, its northernmost distribution was the 

Winnemucca Lake Basin in Nevada (Thompson, 1984). Only prostrate juniper 

and common juniper occupied southeastern Oregon at the end of the Pleistocene 

(Wells, 1983). As temperatures warmed during the early Holocene, western 

juniper began migrating north into its present range. Macrofossils from pack rat 

middens found in caves at the Lava Beds National Monument in northern 

California date its arrival around 5,300 years BP (Mehringer and Wigand, 1984). 

In Oregon, the earliest evidence of western juniper was dated 6,600 years BP in 

the Fort Rock Basin in south-central Oregon (Bedwell, 1973) and 4,800 years 

BP at Diamond Craters in eastern Oregon (Wigand, 1987).  

Since the arrival of western juniper in central and eastern Oregon, 

northeastern California, and southeastern Idaho, its abundance and distribution 

have fluctuated (Mehringer, 1985; Mehringer and Wigand, 1990; Miller and 

Wigand, 1994). Following a very dry period during the mid-Holocene, 7,500-

5,000 years BP, western juniper rapidly expanded into its new range. 

Precipitation increased while temperatures remained warm between 5,000 and 

4,000 years BP (Mehringer, 1986; Wigand, 1987). Between 4,000 and 3,000 

years BP climatic conditions were relatively cool and wet. Western juniper 

continued to increase, but retreated from higher elevations and expanded to 

lower elevations during this period. Western juniper reached most of its current 

geographic range approximately 3,000 years BP (Wigand et al., 1995). Severe 

drought and major fires during the late Holocene, 2,500-1,500 years BP, resulted 

in regional declines in western juniper (Mehringer and Wigand, 1987; Wigand et 

al., 1995). Around 1,200 years BP summer precipitation increased, resulting in 

increases in abundance of both grasses and western juniper. A drying period 

between 900 and 700 years BP again reduced woodland abundance (Wigand et 

al., 1995). The Little Ice Age, 700-150 years BP, was the wettest and coolest 

period during the last half of the Holocene. Increased grass cover during this 

period (Wigand et al., 1995) probably supported higher fire frequencies (Miller 

and Rose, 1999), which limited woodland distribution and abundance (Wigand, 

1987; Miller and Wigand, 1994). The abundance of juniper pollen has gradually 

increased since 1500 A.D., fluctuating in the early 1800’s and sharply increasing 

in the mid-1900’s (Mehringer, 1987). Since the end of the Little Ice Age around 

1850, annual temperatures have been slowly but steadily rising (Ghil and 

Vautgard, 1991). Relict juniper woodlands, tree age chronology data, down and 
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dead trees and stumps, and historic documents generally indicate that 

presettlement western juniper trees were typically confined to rocky ridges, low 

sagebrush flats, and pumice soils where fine fuels were too low in abundance to 

carry fire (Burkhardt and Tisdale, 1976; Miller and Rose, 1995; Waichler et al., 

2001).  

2.2.1.2. Post-settlement expansion 

During the past 140 years, western juniper has been expanding within its 

geographic range at unprecedented rates compared to any other time period 

during the Holocene (Miller and Wigand, 1994; Miller and Tausch, 2001). 

Historical expansions of western juniper and other piñon and juniper species 

throughout the West are well documented in the literature (Burkhardt and 

Tisdale, 1976; Tausch and West, 1988, 1995; Miller and Rose, 1995, 1999; 

Gedney et al., 1999; O’Brien and Woudenberg, 1999; Soulé and Knapp, 1999; 

Tausch and Nowak, 1999; Coppedge et al., 2001; Soulé et al., 2004). For 

western juniper, evidence supporting rapid post-settlement expansion is derived 

from old surveys, photographs (i.e., Figures 2.15, 2.16), the distribution of relict 

presettlement woodlands, and tree ring chronologies. Its rapid increase in 

abundance and expansion since the late 1800’s, has largely been attributed to 

anthropogenic factors (Miller and Wigand, 1994; Knapp et al., 2001; Miller and 

Tausch, 2001). 

Western juniper woodlands in eastern Oregon with more than 10 % canopy 

cover increased from 456,000 acres in 1936 (Cowlin et al., 1942) to 2.2 million 

acres in 1988 (Gedney et al., 1999). Other evidence supporting the post-

settlement expansion of western juniper is the sharp rise in pollen in the mid-

1900’s, which Mehringer (1987) detected in lake sediment cores. The presence 

of old stumps and logs, which can persist on a site for hundreds of years in this 

semi-arid climate, are good indicators as to whether woodlands were present on 

a site prior to the 1860’s (Miller and Rose, 1995, 1999; Miller et al., 2000; 

Miller and Tausch, 2001; Wall et al., 2001).  

The strongest evidence for the post-settlement expansion of western juniper 

is from tree-ring chronologies. These chronologies, which describe the age 

composition and establishment of woodlands over time, show a rapid increase in 

establishment since the 1870’s (Miller and Tausch, 2001; Soulé et al., 2004). In 

southeastern Oregon peak establishment in some closed woodland stands 

occurred between 1900 and 1920 (Miller and Rose, 1999).  

A similar pattern of western juniper encroachment has occurred in aspen 

communities throughout the range of western juniper (Miller and Rose, 1995; 

Wall et al., 2001). In southeastern Oregon and northwestern Nevada, 12 % of the 

aspen stands measured were completely replaced by western juniper (Wall et al., 

2001). In addition, post-settlement western juniper was the dominant tree species 

in 23 % of the stands and common to codominant in 42 % of the aspen stands 

measured. Western juniper began invading aspen stands in the 1890’s, with peak 
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establishment occurring between 1900 and 1940. No western juniper in these 

aspen stands exceeded 140 years in age.  

In much of its range, western juniper has increased the area it occupies by an 

estimated 10-fold in the past 140 years (Miller et al., 1999a) and has the 

potential to occupy far more area than it now does (West and Van Pelt, 1986; 

Betancourt, 1987; Miller et al., 2000). Most of the 9 million acres occupied by 

western juniper is still in transition from shrub-steppe to western juniper 

woodland (Miller et al., 2000) and the species continues to expand its range and 

increase in density (Miller and Rose, 1995, 1999; Wall et al., 2001).  

2.2.1.3. Factors affecting post-settlement expansion  

Factors most frequently attributed to the increase in both density and area of 

piñon and juniper are: the reduced role of fire, the introduction of livestock, 

climate and the industrial increases in atmospheric CO2 (Figure 2.19).   
 
 

 

Figure 2.19. Conceptual model illustrating factors influencing the expansion of western 

juniper since the late 1800’s and throughout the 1900’s (Miller and Tausch, 2001). 

2.2.1.3.1. Fire 

Fire is considered to have been the most important factor in limiting conifer 

encroachment into shrub-grassland communities (West, 1999; Miller and 

Tausch, 2001). However, only a few studies have documented fire regimes 

across shrub-steppe communities and woodlands throughout this region. Fire 

scars on western juniper are occasionally found, but most presettlement trees do 

not grow on sites representative of more productive deeper-soil sites, which now 

support expanding postsettlement woodlands. Old-growth western juniper is 

commonly found on relatively fire-safe sites characterized by low production 
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with limited fine fuels (Burkhardt and Tisdale, 1976; Vasek and Thorne, 1977; 

Young and Evans, 1981; Holmes et al., 1986; Miller and Rose, 1995; 1999). 

Evidence that woodland expansion was limited by fire events prior to settlement 

includes: (1) sites supporting old-growth trees are usually fuel-limited, (2) most 

young stands occupy the more productive communities where fine fuel loads 

could carry a fire, and (3) the time sequence of woodland expansion is 

synchronous with the decline in fire occurrence.  

In productive mountain big sagebrush plant associations in the Northwest, 

such as those characterized by Idaho fescue (Festuca idahoensis), MFRIs (mean 

fire return intervals) typically ranged between 10 to 25 years and large fires 

every 38 years.  

MFRIs were determined from fire scars collected on ponderosa pine or 

Douglas-fir (Pseudotsuga menziesii) growing in or adjacent to mountain big 

sagebrush communities. In two studies, where presettlement MFRIs were 12-15 

years, fire-free intervals varied between 3 and 29 years (Gruell, 1999; Miller and 

Rose, 1999). Based on tree growth, age structure, and the scarcity of 

presettlement trees or the presence of large dead wood, the maximum MFRI in 

the mountain big sagebrush/Thurber needlegrass (Stipa thurberiana) plant 

association was probably 50-70 years. Fire return intervals up to 50 years were 

probably adequate to limit western juniper encroachment into the mountain big 

sagebrush alliance (Burkhardt and Tisdale, 1976; Miller and Rose, 1999). A fire 

free period of more than 70 years will also increase the potential for leaving 

large-diameter charred wood consisting of heartwood (that can persist on the site 

for more than 100 years), resulting from the development of mature trees on the 

site. In northern California, a plant community identified as a western juniper/ 

sagebrush/needlegrass (Stipa occidentalis) plant association burned in 1856 

(Miller et al., 2003). Intact charred wood and fire-killed trees are still present on 

the site. A number of studies in mountain big sagebrush communities in the 

Intermountain West have reported significant declines in fire events since the 

late 1800’s (Miller and Tausch, 2001). Several studies have shown a close 

relationship between the early expansion of western juniper in the late 1800’s 

and the sudden decline in fire occurrences in the mountain big sagebrush 

alliance (Miller and Rose, 1999; Miller et al., 2001; 2003). MFRIs reported for 

the low sagebrush/ bluegrass association were considerably longer than for 

neighboring mountain big sagebrush communities (Young and Evans, 1981; 

Miller and Rose, 1999). Fire-free periods of 90 (Young and Evans, 1981) and 

138 years (Miller and Rose, 1999) were reported for this plant association in 

northern California and south-central Oregon and it is not unlikely that fire-free 

periods exceeded 150 years for some sites. This plant association can be 

characterized by a low density of widely scattered old-growth western juniper, 

which suggests infrequent fires. Tree growth rates are relatively slow with the 

average age of a 3-m-tall tree ranging from 75 to 90 years. 
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2.2.1.3.2. Livestock grazing  

Introduction of livestock in the 1860’s and the large increase of animals from 

the 1870’s through the early 1900’s (Oliphant, 1968; Miller et al. 1994) coincide 

with the initial expansion of western juniper woodlands. Season-long grazing by 

the large numbers of domestic livestock during this period is believed to have 

reduced fine fuel loads, thus contributing to a significantly reduced role of fire in 

the northern Great Basin (Burkhardt and Tisdale, 1976; Miller and Rose, 1999; 

Miller and Tausch, 2001). Fire occurrence and fire size declined dramatically in 

the late 1800’s. Miller and Rose (1999) reported a large decrease in fire 

occurrence in southeastern Oregon shortly after large numbers of livestock were 

introduced in the late 1860’s. The lack of fire and decreased competition from 

herbaceous species probably contributed to an increase in shrub density and 

cover, thus providing a greater number of safe sites for western juniper 

establishment (Miller and Rose, 1995; 1999). The role of livestock as a 

mechanism for western juniper seed dispersal appears to be also important 

(Burkhardt and Tisdale, 1976). 

2.2.1.3.3. Climatic influences  

From 1850 to 1916, winters became milder and precipitation was greater than 

the current long-term average in much of the Great Basin (Antevs, 1938; Wahl 

and Lawson, 1970; LaMarche, 1974; Graumlich, 1987). There is some 

indication that woodland expansion was initiated between 1850 and 1870 

(Johnson, 2005). Annual tree ring growth in western juniper is strongly related 

to local climatic conditions (Pohl et al., 2002). Soulé et al. (2004) reported that 

western juniper annual ring growth across five sites in eastern Oregon were 

above-average from the late 1800’s through the early 1900’s. This wet period 

coincides with post-settlement establishment and the peak period of woodland 

establishment for closed stands. Wet, mild conditions promote vigorous growth 

in western juniper (Fritts and Wu, 1986; Holmes et al., 1986).  

2.2.1.3.4. Atmospheric CO2  

Rising levels of atmospheric CO2 seem to have enhanced the increase in 

woody species throughout the West (Johnson et al., 1993; Knapp and Soulé, 

1999). Increases in atmospheric CO2 levels do not coincide with the initial 

increase or peak periods of western juniper establishment (Table 2). However, 

elevated atmospheric CO2 during the last half of the 20th century may be an 

important contributing factor accelerating tree canopy expansion and 

establishment in some areas (Knapp and Soulé, 1996, 1998, 1999; Soulé et al., 

2004).  
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2.2.1.3.5. Climate and fire 

In semi-arid ecosystems, fuels are often limited in abundance and continuity. 

A series of wet years allows fuels to accumulate and become more contiguous 

(Miller and Rose, 1999). Wetter than average conditions in the late 1800’s 

would have resulted in the accumulation of fine fuels. However, high livestock 

stocking rates and season-long or heavy grazing during this period reduced fine 

fuel accumulations and thus significantly decreased the potential for fire 

(Burkhardt and Tisdale, 1969; Miller and Rose, 1999). The combination of 

reduced fire occurrences (Miller and Tausch, 2001) and optimal climatic 

conditions for conifer establishment (Fritts and Wu, 1986) at the turn of the 

century were probably the two dominant factors that initiated post-settlement 

western juniper expansion. 

2.2.2. Woodland succession 

Most communities occupied by postsettlement western juniper are in a 

transitional state, ranging from open stands of trees with a dominant understory 

of shrubs and grasses to mid or late succession, where trees are beginning to 

dominate the site (Miller et al., 2000). It is important to identify the woodland 

transitional state in resource evaluations or inventories. The state of woodland 

development directly affects plant community structure, composition, wildlife 

habitat, and ecological processes. The stage of woodland succession will also 

directly affect the selection of management treatment, response following 

treatment and treatment cost. Moreover continued changes in structure and 

composition in developing woodlands over time should be considered when 

developing resource plans and setting management priorities.  

2.2.2.1. Identification of the woodland stage of succession  

Woodland succession can be separate into three transitional phases (Figure 

2.20): 

 phase I, trees are present but shrubs and grasses are the dominant 

vegetation that influence ecological processes on the site (Figure 2.21a); 

 phase II, trees are codominant with shrubs and grasses and all three 

vegetation layers influence ecological processes on the site (Figure 

2.21b); 

 phase III, trees are the dominant vegetation and the primary plant layer 

influencing ecological processes on the site (Figures 2.21c, d). 

There are several characteristics that can be used to define the phase of 

woodland development (Miller et al., 2000). Early signs of western juniper 

domination on a site are canopy mortality of the shrubs in the interspace and the 

reduction of leader growth on sapling size (less than 3 m tall) trees.  
 

 



CHAPTER 2      Shrub and tree encroachment in the american grasslands: state of the art 

________________________________________________________________ 
Domenico Caracciolo                                                                                                     73 

 

 

Figure 2.20. A conceptual model illustrating the relationship between shrub canopy 

cover, tree canopy cover and relative growth rates (Miller et al., 2005). 

 

 

Figure 2.21. Three phases of woodland succession in mountain big sagebrush 

communities: (a) phase I, (b) phase II, (c) (d) phase III (Miller et al., 2005). 

2.2.2.2. Rates of woodland development 

The rate of woodland succession from initial encroachment to entirely 

developed woodlands is a function of the rates of tree establishment and growth. 

There is a high degree of variability in woodland succession rates across and 

within plant associations. In eastern Oregon, all three transitional phases of 

a) 

d) 

b) 

c) 
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western juniper stand development can be observed where encroachment began 

in the late 1800’s (Miller and Rose, 1999; Miller et al., 2000).  

Dense fully developed post-settlement woodlands that initiated establishment 

in the late 1800’s had reached phase III (Figures 2.21c, d) by the 1950’s and 

early 1960’s, based on tree growth rates. In closed stands in southwestern Idaho, 

a significant decrease in growth of annual tree rings occurred during the 1950’s, 

suggesting the onset of intra-species competition.  

The primary factor controlling the number of years between initial 

encroachment and stand closure is establishment rate of tree seedlings. This is 

largely determined by seed input and the abundance of safe sites for seedling 

establishment. There may be a lag period of tree establishment immediately 

following fire, because of the reduction in shrubs (Erdman, 1970; Burkhardt and 

Tisdale, 1976).  

2.2.3. Understory dynamics 

2.2.3.1. Shrubs 

As western juniper begins to dominate a site, shrubs begin to decrease 

(Figure 2.20) (Burkhardt and Tisdale, 1969; Adams, 1975; Bunting et al., 1999; 

Miller et al., 2000; Roberts and Jones, 2000; Schaefer et al., 2003). This has a 

significant impact on ladder fuels, ground- and shrub-nesting birds, seed pools, 

and structural complexity of the plant community. At a site near Silver Lake, 

Oregon, 71 % of the trees established during 1900-1936 (Adams, 1975). The 

rapid decline in bitterbrush and sagebrush on these sites began in 1948. In the 

John Day Province near Prineville, Oregon, shrub cover in untreated western 

juniper plots was 0.4 % compared to 9.4 % cover in adjacent plots cut 18 years 

earlier (Eddleman, 2002). The decline in mountain big sagebrush is not 

proportional to the increase in western juniper (Figure 2.20). As western juniper 

approaches 50 % of maximum potential, sagebrush declines to about 20-25 % of 

maximum potential (Miller et al., 2000). Tausch and West (1995) also reported a 

disproportionate decline: shrubs declined to one-fourth of maximum when 

single-leaf piñon (Pinus monophylla) and Utah juniper cover reached 50 % of 

maximum in Nevada. 

2.2.3.2. Grasses and forbs 

Even if it is often stated that the grass declines as western juniper increases in 

dominance, only a few studies have evaluated this relationship for western 

juniper. Two types of experiments support the hypothesis that western juniper 

overstory significantly affects production, diversity, and cover of the grass: (1) 

spatial, comparing different transitional states within plant associations (Bunting 

et al., 1999; Miller et al., 2000), and (2) temporal, comparing herbaceous 
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response over time between cut and uncut western juniper plots (Bates et al., 

2000; Eddleman, 2002).  

Miller et al. (2000) reported that the relationship between herbaceous cover 

and western juniper canopy cover differed among plant associations. Grass in 

plant associations characterized by Thurber needlegrass, which often had a 

restricted subsoil layer or strong argillic horizon, was the most sensitive to 

increasing tree dominance. Mean herbaceous cover, in early states of woodland 

development, was 16 %, compared to 5 % in late stages of development. In 

central Oregon, the presence of western juniper was associated with an increase 

in bare ground and smaller, more widely spaced grass clumps on relatively 

shallow soils (Roberts and Jones, 2000) and a significant decrease in ground 

cover (Knapp and Soulé, 1998). This was consistent with results from 

southwestern Idaho, where grass also decreased in the mountain big sagebrush 

alliance as western juniper dominance increased (Bunting et al., 1999). 

However, changes in species richness across the transitional phases of woodland 

development were not consistent. In southwestern Idaho and southeastern 

Oregon, species richness did not change as western juniper increased in 

dominance (Bunting et al., 1999; Miller et al., 2000). In contrast, species 

richness declined in Thurber needlegrass communities in Oregon and in Idaho 

fescue communities in northeast California (Miller et al., 2000). Grass diversity 

and richness also significantly increased following western juniper removal on a 

mountain big sagebrush/Thurber needlegrass plant association (Bates et al., 

2000). 

2.2.4. Inventory of western juniper in Oregon 

Gedney et al. (1999) analyzed and summarized a 1988 inventory of western 

juniper (Juniperus occidentalis Hook.) in eastern Oregon. The inventory of all of 

the forest resources of eastern Oregon, by the Pacific Resource Inventory, 

Monitoring, and Evaluation (PRIME) Program of the Pacific Northwest 

Research Station (Gedney et al., 1989), was intensified to meet increased need 

for more information about the juniper resource than was available in previous 

inventories. An earlier inventory of juniper, made in 1936, estimated the area of 

juniper forest to be 420,000 acres. The 1988 inventory estimated the current area 

of juniper forest to have increased fivefold. Over half of the area of the present 

juniper forest became established between 1850 and 1900. After initial stand 

establishment, the juniper forest increased in density with the greatest increase 

occurring between 1879 and 1918. This rapid increase in juniper stand 

establishment occurred during a period of favorable climatic conditions and 

reduced fire frequency and intensity. Eleven shrub species grew on plots with 

juniper forest. Shrubs were present on 88 % of the area sampled. The most 

common shrub was big sagebrush, which was present on 55 % of the juniper 

forest sampled. On 88 % of the area with shrubs, there were fewer than three 

shrub species present. 
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Periodic forest inventories, which have been conducted by the station since 

the early 1930s, have differed in the amount of information presented about 

western juniper. The 1936 inventory of eastern Oregon mapped the area 

occupied by western juniper by crown cover class producing a type map 

showing the location of juniper stands (Cowlin et al., 1942). Inventories of 

eastern Oregon made between 1953 and 1977 were less intensive, presenting 

only statistical information on the area of western juniper forests (Bolsinger and 

Berger, 1975; Farrenkopf, 1982).  

To determine when the present juniper forests of eastern Oregon became 

established, a chronology was developed based on the age of juniper trees in 

each of the juniper forest inventory plots. The age when each stand became 

established was determined from the age of the oldest tree in each field plot. 

Juniper forests are mostly uneven aged. Over 30 % of the area of juniper forests 

has trees with a range of ages greater than 100 years. Only 26 % of the juniper 

forests have trees with a range of ages less than 30 years old.  

From the analysis it was concluded that between 1650 and 1800, the annual 

rate of stand establishment was 2,900 acres a year, increasing to 8,200 acres 

between 1800 and 1850 (Table 2.1). During the 200 years between 1650 and 

1850, 37 % of the present juniper forest became established. In the 50 years 

between 1850 and 1900, the annual rate of juniper establishment increased 

sharply to 23,100 acres a year, and more than half of the present juniper forest 

became established. During the 40-year period from 1900 to 1940, the annual 

rate of juniper establishment decreased to 6,000 acres a year and a little more 

than a 10th of the present juniper forest originated.  

Gedney et al. (1999) examined the percentage of Juniper forest and savanna 

by precipitation, elevation, and soil classes to determine if there were influence 

factors or variables influencing the Juniper encroachment (Figure 2.22). There 

are more Juniper in the places with precipitation between 254 and 508 mm 

(Figure 2.22a), and where the elevation is between 1219 and 1524 m (Figure 

2.22b). The Juniper percentage is very high in the soil types: Xeric-Aridic mesic 

soils on terraces and flood plains (S) and Xeric frigid soils on grass-shrub 

uplands (Q) (Figure 2.22c). 

Table 2.1. Percentage of western juniper forest between 1650 and 1940, eastern Oregon 

(Gedney et al., 1999). 
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Figure 2.22. Distribution of the area of juniper forest and savanna in the eastern Oregon 

in 1988 by (a) precipitation classes, (b) elevation classes, and (c) soil classes (Gedney et 

al., 1999). 

2.2.5. Management and control methods 

Control of western juniper has been a major concern of land management 

since the early 1960’s. Justifications used for western juniper control include 

restoration of preinvasion plant communities, increasing forage production and 

quality, reducing soil erosion, increasing water capture on site, increasing spring 

and stream flow, increasing biological diversity and improving wildlife habitat 

(Miller, 2001; Miller et al., 2005; Miller et al., 2007).  

In the late 1970’s, the U.S. Bureau of Land Management (BLM) Prineville 

district began using chainsaws as its primary method of western juniper control. 

By the 1980’s and 1990’s this practice became widespread. Research on the 

effects of western juniper cutting began in the early 1980’s and has quickly 

expanded. Chemical control of western juniper has been tested but has produced 

mixed results. In the 1990’s, the use of prescribed fire to control western juniper 

greatly increased. The use of mechanical shears and whole tree chipping of 

western juniper has increased since 2000 in northeastern California and 

southcentral Oregon (Lake County). Several studies now provide information 

from treatments that are older than 10 years. Work in central Oregon provides 

long-term assessments of vegetation response and successional patterns using 

several treatment methods (Miller, 2001). 

 

a) 

c) 

b) 
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Chapter 3 

Methods and Models 

This chapter provides in section 3.1 the description of the ecohydrological 

Cellular Automata model, CATGraSS, used to analyze the influence of 

topography and climate change on the vegetation spatial distribution and the 

shrub and tree encroachment, while in section 3.2 the description of the weather 

generator model, AWE-GEN; finally in section 3.3 the description of the 

General Circulation Models (GCMs) and the downscaling procedure. 

3.1. CATGraSS 

The Cellular Automata Tree-Grass-Shrub Simulator (CATGraSS) has been 

implemented by Zhou et al. (2013) and in this thesis it has been furtherly 

developed and improved with new algorithms and equations that will be 

described in the following. In particular, the new algorithms that we have 

implemented are: soil thickness code, described in section 3.1.5, fire component, 

described in section 3.1.6.3, and encroachment model codes, described in section 

3.1.7. 

In the CATGraSS catchment topography, soil, and vegetation properties are 

represented using a regular grid of cells. Each cell can hold a single Plant 

Functional Type (PFT) hereafter denoted by X (G: grass, SH: shrub, T: tree) or 

can be bare soil. Topographic informations needed to the model are retrieved 

from a Digital Elevation Model (DEM). The model combines the functionality 

of a simplified dynamic global vegetation model (DGVM), which includes the 

dynamics of local water balance (e.g., evapotranspiration), plant life processes 

(productivity, carbon allocation), and plant mortality (e.g., Kucharik et al., 2000; 

Sitch et al., 2003) with a rule-based probabilistic cellular automata (CA) 

component that simulates seed dispersal and plant establishment processes (e.g., 

Jeltsch et al., 1996, 1998; van Wijk and Rodriguez-Iturbe, 2002). CATGraSS is 

driven by daily rainfall and maximum (i.e., unstressed) evapotranspiration, 

ETmax, and treat these quantities with a daily or inter-storm time steps in a 

spatially explicit way using slope and aspect look-up tables. It simulates water 

budget dynamics for each PFT and their seedlings within each bin of the slope-
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area histogram. Local soil and plant dynamics are modeled continuously and 

include soil moisture, ET, net primary productivity (NPP), driven by ET with a 

simple WUE approach, assuming no nutrients limitation. The NPP is allocated to 

aboveground and belowground biomass pools, and plants experience 

senescence. The age of each plant in each vegetation grid cell is tracked and 

used in an age-dependent plant mortality function. The Cellular Automaton 

component of CATGraSS simulates plant spatial processes including seed 

dispersal and probabilistic seedling establishment which are based on water 

stress. A flowchart illustrating the CATGraSS components is shown in Figure 

3.1. 

The model water balance is run at daily or inter-storm time scale, while the 

plant spatial dynamics (probabilistic plant establishment and mortality 

algorithms) are run with an annual time step. Earlier work using the point 

version of the grassland component of this model illustrated that using inter-

storm model time step captures soil moisture and biomass (live and dead) 

dynamics with sufficient accuracy (Istanbulluoglu et al., 2012).  

Each of the model components outlined above are discussed in the following 

sections. 

 

 

Figure 3.1. Model flowchart illustrating the ecohydrological processes linked to model 

state variables in the middle. Topography influences the water balance through 

modulating solar radiation and effective rainfall amount at a point. PFT is plant 

functional type. 
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3.1.1. Point water balance 

The basis of the CATGraSS model is the depth-averaged soil moisture 

balance in the root zone represented as (e.g., Eagleson, 1982; Rodriguez-Iturbe, 

2000): 



nZr
ds

dt
 Ia  ETa (s) D(s)                                                                                           (3.1) 

where n [-] is soil porosity, Zr [mm] is the effective soil rooting depth, s [-] is the 

degree of soil saturation (volumetric soil moisture normalized by n), t [d] is time, 

Ia [mm·d
-1

] is the rate of infiltration, ETa [mm·d
-1

] is the actual rate of 

evapotranspiration, D [mm·d
-1

] is the rate of drainage from the root zone. 

The actual infiltration rate is the amount of rainfall that enters the soil when 

rainfall depth is larger than canopy interception capacity (daily or inter-storm 

time scale). When the soil is unsaturated, Ia is determined by the minimum of the 

rate of rainfall and soil infiltration capacity after the canopy storage is satisfied. 

Upon soil saturation, infiltration rate is reduced to the rate of drainage D as: 



Ia 

0 P CI

Min[p,Ic ] 0  s 1, P CI

D s 1, P CI









                                                                (3.2) 

where Ic [mm·d
-1

] is infiltration capacity (constant), p [mm·d
-1

] is the mean rate 

of rainfall (p=P/Tr, where Tr [d] is storm duration), and P [mm] is the depth of 

rainfall. CI [mm] is canopy interception capacity. Infiltration is typically higher 

in under-canopy space than inter-canopy spaces for semiarid ecosystems, and 

often varies with vegetation types (Reid et al., 1999; Bhark and Small, 2003). To 

examine the role of variable infiltration in the model, we introduce a canopy-

intercanopy infiltration capacity coefficient, Rin [-] (equal to 2 for tree and shrub 

and 1.2 for grass), that scales bare soil infiltration capacity, Ic-b, to estimate 

infiltration capacity of a vegetated area, Ic-v (Bhark and Small, 2003): 



Icv  RinIcb                                                                                                               (3.3) 

The canopy interception capacity CI is approximated by: 



CI min(ImaxVt,PVt )                                                                                                 (3.4) 

where Imax [mm] is the full canopy interception and Vt [-] is the fraction of 

vegetation cover that includes both dry and live biomass components. Vt is only 

used for grass model elements and calculated from the total leaf area index, LAIt 

[-], (sum of live and dead leaf area) using an exponential function: Vt=1-exp(-

0.75LAIt) (e.g., Lee, 1992). For other vegetation types a constant Imax is used. 

In this model, we assume all rain drops fall vertically (PM, mm), and the 

actual amount of rainfall (P) intercepted by the ground is calculated by using a 

cosine correction of the slope angle, S [rad], (Ivanov et al., 2008b): 
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

P  PM cos(S)                                                                                                             (3.5) 

Maximum unstressed evapotranspiration rate used for solving the soil 

moisture balance of a model element covered by a PFT of X, ETmax-X [mm·d
-1], is 

defined similar to the model used by Brolsma and Bierkens (2007):   



ETmax X 

Tmax X CI X , LAIlX  LAImax X

Tmax X
LAIlX

LAImax X
 Eb (1

LAIlX

LAImax X
)









CI X , LAIlX  LAImax X









 

     (3.6) 

where Tmax-X [mm·d
-1

] is plant maximum transpiration rate of a single PFT. Tmax-X 

is calculated for each PFT using the Penman-Monteith equation (Monteith, 

1965) with LAImax-X. Eb [mm·d
-1

] is maximum soil evaporation. LAIl-X [-] is the 

live leaf area index of the canopy and LAImax-X is maximum LAIl-X for a PFT of 

X, given as input to the model. When LAIl-X ≤ LAImax-X, Tmax-X is scaled by the 

LAIl-X to LAImax-X ratio, which is assumed to represent the fraction of live 

vegetation cover in a model cell. The remaining area fraction is assumed to be 

subject to potential evaporation rate of a bare surface, Eb. To reduce data 

requirements and keep the model simple, Eb is taken as a fraction (fb) of the 

reference grass evapotranspiration rate, Tmax-G (Eb=fb Tmax-G) (e.g., Mutziger et 

al., 2005; Istanbulluoglu et al., 2012). The value of fb is set to 0.7 after 

Istanbulluoglu et al. (2012). The intercepted rainfall of PFT X, CI-X is assumed to 

satisfy the initial atmospheric demand for evapotranspiration. For long-term 

simulations forced by generated rainfall, Tmax-X for each PFT is prescribed by a 

sinusoidal curve (TCOS-X) fitted to the calculated Tmax-X from historical daily 

weather data using the Penman-Monteith equation. 

With ETmax-X obtained from (3.6), actual evapotranspiration, ETa-X [mm·d
-1

], 

is calculated using a soil moisture limitation approach as:  



ETaX  ETmaxX  s(s)                                                                                               (3.7)  

where βs [-] is evapotranspiration efficiency term based on the depth-averaged 

soil moisture in the root zone (e.g., Dyck, 1983; Laio et al., 2001): 



s(s) 

0, sh  s  sw

s  sw

s*sw
, sw  s  s*

1 s*  s













                                                                                  (3.8) 

where sh, sw and s
*
 [-] are soil moisture levels at hygroscopic capacity, wilting 

point, and incipient water stress, respectively (Laio et al., 2001). For bare soil, sw 

is replaced by sh.  

Surface runoff, R [mm·d
-1

], is generated when 
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

R 
(p  Ia ) p  Ia

0 p  Ia





                                                                                        (3.9) 

Drainage from the root-zone is expressed by unsaturated hydraulic 

conductivity:

 



D(s) 
KS, s 1

K(s) KSs
(2b3) s fc  s 1





                                                                      (3.10) 

 

where Ks [mm·d
-1

] is saturated hydraulic conductivity, s is relative root-zone soil 

moisture, sfc [-] is field capacity soil moisture, and b [-] is water retention 

parameter (Campbell, 1974). 

In storm generation, we have used the Poisson Rectangular Pulses (PRP) 

model, with a one-parameter exponential distribution for time between storms 

(Tb) and storm durations (Tr); and a Gamma distribution for rainfall depth h 

conditioned on Tr (e.g., Ivanov et al., 2007).  

3.1.2. Local plant dynamics 

Net primary productivity (NPP, gDM·m
-2

·d
-1

) of each PFT is calculated as the 

difference between gross primary productivity (GPP, gDM·m
-2

·d
-1

) and plant 

autotrophic respiration (Re, gDM·m
-2

·d
-1

). GPP is linearly related to daily ETa by 

an ecosystem water use efficiency parameter (WUE, kgCO2·kg
-1

H2O), ratio of the 

amount of carbon gained for unit water loss (Emmerich, 2003; Williams and 

Albertson, 2004; Scott et al., 2006).  



NPP GPP Re  ETa WUE v  w Re                                                        (3.11)  

where ρν [kg·m
-3

] is water density and w [kgDM·kg
-1

CO2] converts CO2 to dry 

matter. Plant autotrophic respiration (Re) consists of maintenance (Rm) and 

growth (Rg) respirations Re = Rm + Rg, which are often related to photosynthesis, 

Rubisco level, and soil, air, and leaf temperatures (Collatz et al., 1992; Arora, 

2002, Fatichi et al., 2012). Through studying the daytime and nighttime net 

ecosystem CO2 exchange, Williams and Albertson (2005) found that Rm could 

take up approximately 29% to 47% of daytime GPP. Using the same 

assumptions of Zhou et al. (2013), we introduced a coefficient μ [-] representing 

the ratio of Rm to GPP, and we assumed that Rg represent the 0.25 of GPP and 

we assumed Rg is approximately 25% of GPP, less of Rm, Rg=0.25(GPP-Rm) 

(e.g., Ryan, 1991, Sitch et al., 2003). Adding Rm and Rg, and substituting into Re 

in (3.11) gives NPP as:  



NPP  0.75 (1)ETa WUE v  w                                                                    (3.12)  

The partitioning of NPP is based on the mass balance concept similar to most 

DGVMs (e,g. Kucharik et al., 2000; Cramer et al., 2001; Bonan et al., 2003; 

Sitch et al., 2003; Krinner et al., 2005) and ecohydrological models (Ivanov et 
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al., 2008a; Fatichi et al., 2012). Dynamics of aboveground green/live (Bl), 

aboveground dead (Bd), and structural (Bs) biomass (gDM·m
-2

) are modeled based 

on ordinary differential equations (e.g., Arora, 2002; Montaldo et al., 2005; 

2008; Williams and Albertson, 2005; Ivanov et al., 2008a). Bs consists of both 

root and sapwood biomass for trees and shrubs, and only represents root biomass 

for grasses. 

lsflsgXa

l BkBkNNP
dt

dB
  

,                                                                       (3.13a)  



dBs

dt
 NPP(1aX )  kssBs,                                                                        (3.13b) 



dBd

dt
 ksgBg  kddsdBd                                                                                     (3.13c) 

where ksg, kss, and kdd [d
-1

] are decay coefficients for green, structural, and dead 

biomass respectively. In the simulation, ksg and kss are used in both the growing 

and dormancy periods. During dormancy, ksg is doubled to represent unfavorable 

environmental conditions for growth. NPP is partitioned between Bl and Bs using 

an allocation coefficient, ϕa-X [-], that depends on available space. The allocation 

coefficient for grass is taken from Istanbulluoglu et al. (2012), and those for 

woody plants (e.g., shrubs and trees), are based on Williams and Albertson 

(2005), respectively:  



aG  1
LAIl

LAImax  LAId









 ,                                                                                    (3.14a)   



aG 1
LAIl

LAImax
                                                                                           (3.14b)

                             

 

In (3.13a), ksf [d
-1

] represents the maximum drought induced foliage loss rate 

(Ivanov et al., 2008a). ξ [-] is plant cumulative water stress during growing 

season defined by multiplying an index of water stress by its duration (Porporato 

et al., 2001): 



 

1 s  sw

s*  s

s*  sw











M

Tb sw  s  s
*

n1

N is



0 s  s*













                                                                         (3.15) 

where



s[-] is mean inter-storm soil moisture content, Nis [-] is number of inter-

storm periods in growing season, Tb [d] is the time between storms. M is an 

index related with nonlinear effects of water deficit on plants (we used M = 4.0 

for all PFTs following Ivanov et al., 2008). In (3.13c), kdd represents the 
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maximum decomposition rate of dead biomass during the peak of the warm 

season. The adjustment coefficient for dead biomass loss rate nsd [-] is included 

to introduce the effect of weather such that the rate of decomposition is at its 

maximum level when Tmax-X  reaches a threshold value using the Tmax-X / Td-max 

ratio: 



sd min(Tmax X /Td max ,1)                                                                                     (3.16)  

where Td-max [mm·d
-1

] is a calibration parameter. Application of (3.16) has 

greatly improved model performance in grasslands (Istanbulluoglu et al., 2012). 

The specific leaf area for green (cg) and dead (cd) biomass are used to calculate 

live, dead, and total LAI respectively as: 

 
lgl BcLAI  ,



LAId  cdBd ,



LAIt  LAIl LAId                                                (3.17)  

In DGVMs, the onset and the offset of the growing season is often triggered 

when a set of environmental conditions (e.g., air and soil temperatures, soil 

moisture, positive net photosynthesis) are satisfied for certain period of time 

(Cayrol et al., 2000; Sitch et al., 2003; Ivanov et al., 2008a). For simplicity, we 

used the 30-day-averaged Tmax-X, Tmax-X-30 [mm·d
-1

], as a surrogate variable for 

climatic favorability (Istanbulluoglu et al., 2012). The growing season starts 

when Tmax-X-30 is higher than GT (growth threshold), and ends when Tmax-X-30 falls 

below DT (dormancy threshold). This approach is preferred to minimize the 

model parameters in long-term model simulations. For evergreen plants growth 

and dormancy thresholds are not used. 

3.1.3. Clear-sky solar radiation on slopes  

In this section the clear-sky solar radiation estimation for inclined surface, 

used for the evapotranspiration evaluation, is detailed. Daily extraterrestrial solar 

radiation calculation on sloped surface has been established by Allen et al. 

(2006a). For clear-sky solar radiation, atmospheric absorption and scattering 

effects has been approximates by applying the empirical method from Bras 

(1990) for cloud-free conditions. 

3.1.3.1. Extraterrestrial solar radiation 

Instantaneous extraterrestrial solar radiation Ra is calculated as: 

0 cos( )a scR I E                                                                                                (3.18) 

in which Isc is solar constant, E0 is eccentricity correction,   is solar zenith angle 













365

2
cos033.01

1
0

DOY
E


                                                                            (3.19) 
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where DOY is the day of the year and (2πDOY/365) is in radians. 

Estimation of instantaneous angle of incidence for solar radiation on sloped 

surfaces is based on Duffie and Beckman (1980): 

cos( ) sin( )sin( )cos( )

sin( )cos( )sin( )cos( )

cos( )cos( )cos( )cos( )

cos( )sin( )sin( )cos( )cos( )

cos( )sin( )sin( )sin( )

S

S

S

S

S

 

 

 

  

  

 

 

 

 



                                                    (3.20) 

where δ is the declination of the earth (positive during northern hemisphere 

summer), Λ is the latitude of the location (positive for the northern hemisphere 

and negative for the southern hemisphere), S the surface slope, where S=0 for 

horizontal and S=π/2 for vertical slope (S is always positive and represents the 

slope in any aspect), and γ is the surface aspect angle, where γ=0 for slopes 

oriented toward south, γ=-π for slopes oriented toward east, γ=π/2 for slopes 

oriented due west, and γ=π for slopes oriented toward north. Parameter ω is the 

hour angle, where ω=0 at solar noon, ω is negative in morning and ω is positive 

in afternoon. 

Declination of sun δ (radians), is calculated as a function of Day angle Γ, 

which is estimated as 2π(DOY-1)/365. 

)]3cos(00148.0)3cos(002697.0)2sin(000907.0

)2cos(006758.0)sin(070257.0)cos(399912.0006918.0[




     (3.21) 

For horizontal surface, S=0 and (3.20) can be reduced to: 

)cos()cos()cos()sin()sin()cos(                                                 (3.22) 

Daily extraterrestrial solar radiation on horizontal surface RE-h can be 

expressed as: 

hs

hr

E H aR R





                                                                                                     (3.23) 

where the integration can be limited by sunrise hour angle ωhr and sunset hour 

angle ωhs:  

))tan()tan((cos 1   hr                                                                   (3.24a) 

))tan()tan((cos 1   hs                                                                      (3.24b) 

Daily extraterrestrial solar radiation on slope area RE-S can be expressed as: 
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ss

sr

E S aR R





                                                                                                      (3.25) 

where the integration limit sunrise hour angle ωsr and sunset hour angle ωss, are 

computed as: 


















 

22

222
1sin

cb

acbbac
sr                                                                   (3.26a) 


















 

22

222
1sin

cb

acbbac
ss                                                                  (3.26b) 

where a, b, and c are constants for a given day, latitude, slope and slope azimuth: 

sin( )cos( )sin( )cos( ) sin( )sin( )cos( )

cos( )cos( )cos( ) cos( )sin( )sin( )cos( )

cos( )sin( )sin( )

a S S

b S S

c S

  

  

 

   

   



                                       (3.27) 

3.1.3.2. Clear-sky shortwave radiation 

Total clear-sky shortwave radiation consists of direct, diffusive and reflected 

solar radiation. In this model we calculated clear-sky shortwave radiation normal 

to the surface without cloudiness effect. For both slope area and horizontal 

surface, clear-sky direct solar radiation Rdir (H: horizontal, S: slope) at the 

surface is calculated following Bras (1990):   

diHEHdir fRR                                                                                           (3.28a) 

diSESdir fRR                                                                                            (3.28b) 

in which 
10exp( (0.128-0.054log ))di tf f m m  , where ft is turbidity factor varies 

from 2.0 for clear mountain air to 4 or 5 for smoggy urban areas; m is the optical 

air mass approximated as 1/sin α, in which α is the solar altitude and it varies for 

time of the day. Daily averaged sin α is calculated based on Allen et al. (2006a) 

weighted according to Ra.  

Diffuse solar radiation on horizontal surface, Rdif-H is computed based on RE-H 

following ASCE-EWRI (2005) by multiplying a diffusive coefficient fdf : 

dfHEHdif fRR                                                                                           (3.29) 

where fdf is determined by ASCE-EWRI based on 49 locations across the U.S.: 
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















065.008.210.0

15.0065.082.018.0

15.036.035.0

didi

didi

didi

df

ff

ff

ff

f                                                      (3.30) 

Total clear-sky shortwave radiation for horizontal surface, Rc-H is expressed 

as: 

c H dir H dif HR R R                                                                                                                                         (3.31) 

Diffuse solar radiation on sloped surface, Rdif-S is assumed as a fraction of Rdif-

H following Allen et al. (2006a): 

iaHdifSdif fRR                                                                                           (3.32) 

in which fia is simulated by applying isotropic approach following Tian et al. 

(2001): 

2/)cos(25.075.0 SSf ia                                                                (3.33) 

Reflected (or backscatter) solar radiation, Rref-S, is calculated only for slope 

areas and is estimated by assuming that both the direct and diffuse solar 

radiation reflect isotropically from a horizontal surface at the foot of the inclined 

slope (Allen et al., 2006a): 

HciasSref RfR   )1(                                                                              (3.34) 

where αs is average albedo of surrounding ground surface varies with vegetation 

coverage. 

Total clear-sky shortwave radiation for sloped surface, Rc-S is expressed as: 

c S dir S dif S ref SR R R R                                                                                 (3.35) 

3.1.4. Spatial patterns in evapotranspiration 

CATGraSS is designed to perform long-term simulations (greater than 

thousand years) to examine vegetation pattern development. To improve 

computational efficiency, topography can be classified into topographically 

similar slope, aspect (S-A) groups. This classification is performed with a ΔS 

degree increment for local slopes, and a ΔA degree increment for aspect, leading 

to x different combinations (S-A groups). In each of the S-A group, the coupled 

water balance and biomass production models (from (3.1) to (3.16)) are run for 

all PFTs separately. Methods used to calculate Tmax-X for different PFTs in each 

S-A group are described below.  

CATGraSS can be run both by observed and generated weather data. In the 

case of the former, the Penman-Monteith equation (Monteith, 1965) is directly 

used in the model:  
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

Tmax X 
(RnX G) acP (es  ea ) /raX

vw(  (1 rsX /raX ))
                                                       (3.36)   

where Rn-X [W·m
-2

] is net radiation. G is the ground heat flux and is neglected 

for daily estimation (Allen et al., 1998). es and ea [kPa] are saturation and actual 

vapor pressure at air temperature, respectively. ρa [kg·m
-3

] is air density. cp 

[W·°C
-1

] is the specific heat of the air, Δ [kPa·°C
-1

] represents the slope of the 

saturation vapor pressure versus air temperature curve. γ [kPa·°C
-1

]
 

is the 

psychrometric constant. rs-X and ra-X [s·m
-1

] represents plant canopy and 

aerodynamic resistances, respectively. rs-X = rl-X / 0.5LAImax-X where rl [s
·
m

-1
] is 

stomatal resistance. ra-X is calculated based on the von-Karman logarithmic 

profile as a function of vegetation height and heights at which wind and relative 

humidity were measured (e.g., Allen et al., 1998).  

The influence of topography is introduced in the calculation of Rn-X. In each 

S-A group, we start with postulating that the daily incoming shortwave radiation 

on a hillslope element, Rs,H [W·m
-2

], and on a flat surface, Rs,F [W·m
-2

] (from 

observation), can be related through a radiation factor fR [-], assuming that both 

hillslope and flat landscape elements have identical cloud cover (e.g., Dingman, 

2002): 



Rs,H  fR  Rs,F                                                                                                          (3.37a)   



fR 
Rc,H

Rc,F
                                                                                                      (3.37b) 

where fR is described as the ratio of the clear-sky incoming shortwave radiation 

on a hillslope element, Rc,H, to that of a flat surface, Rc,F [W·m
-2

] (fR = 1 for flat 

surface) (Dingman 2002). In each S-A group, the model proposed by Allen et al. 

(2006a) is used to calculate Rc,H and Rc,F as a function of the DOY, latitude, 

slope and aspect angles at the mid points of the S-A ranges, with the clear-sky 

atmospheric transmissivity coefficient obtained from (Bras, 1990). Calculated fR 

values for the S-A groups for each DOY are compiled into a look-up table and 

used in the model in all simulations. 

The net radiation Rn-X on the terrain for each PFT is calculated based on the 

approximation of radiation balance (e.g., Caylor et al., 2005): 



RnX  (1X )Rs,H Ts
4 (Ta 273.15)

4                                                         (3.38) 

where αX [-] is the shortwave albedo, σ is the Stefan–Boltzmann constant 

(5.67×10-8 Wm
-2

·K
-4

), Ta [
o
C] is the air temperature used to estimate the 

outgoing longwave radiation, assuming surface and air temperatures are equal. 

Ts [K] is the apparent radiative temperature of the atmosphere, approximated 

empirically from (Friend, 1995): 



Ts Ta 273.15 0.825exp(3.5410
3RH fR ) ,                                                  (3.39)   
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and used to estimate the incoming longwave radiation in (3.38).  

In long-term simulations with generated storms, the model is forced by 

prescribed Tmax-X, obtained from a cosine function of DOY, calibrated to 

calculated Tmax-X ((3.36), using local observed weather data) of flat surface, 



Tmax X
F  (e.g., Small, 2005): 



TCosX
F 



2
cos 2

DOY  LT Nd /2

Nd



















Tmax X

F











                                    (3.40)   

where 



  [mm·d
-1

] is the calibrated difference between the maximum and 

minimum values of daily 



TCosX
F  throughout the year. LT [d] is the lag between 

the peak 



TCosX
F  and solar forcing. 



Tmax X
F

[ mm·d
-1

] is the mean annual rate of 

calculated Tmax-X for flat surface (3.36). Nd [d] is the number of days in the year.  

With 



TCosX
F  obtained from (3.47), 



Tmax X
H  for each S-A group is obtained by 

scaling 



TCosX
F  with a maximum transpiration ratio, f 

H
T-X: 



TmaxX
H  fT X

H  TCosX
F                                                                                               (3.41a) 



fT X
H 

Tmax X
H

TCosX
F

                                                                                               (3.41b) 

where f 
H

T-X [-] is the ratio of the mean daily 



Tmax X
H  on a S-A group to the flat-

terrain mean daily 



Tmax X
F , both calculated in each DOY, for all PFTs, using the 

historical daily weather data (following (3.36), (3.37), (3.38), and (3.39)). The 

f
H

T-X ratios are compiled into a look-up table for each PFT, as a DOY and S-A 

group matrix. No year-to-year variation in f 
H

T-X is considered. 

3.1.5. Soil thickness 

In the first version of CATGraSS (Zhou et al., 2013), a spatially uniform soil 

thickness was assumed, as the case study was located in a catchment developed 

on an alluvial fan deposits with no distinct bedrock formation below the root 

zone. Since the landscape may generally show spatial variability of soil 

thickness, a soil thickness spatial variation has been introduced. Soil depth has 

been assumed to vary linearly from high values at the basin outlet to low values 

in the upstream area following the simple soil depth model of Saulnier et al. 

(1997), whose simple model was preferred over more complex ones (e.g., 

Pelletier and Rasmussen, 2009) as the first approximation considering a possible 

absence of any detailed soil depth maps in the region to compare the model 

results against. In particular the authors modeled the soil thickness, hi, as 

function of the elevation: 

 minmax

minmax

min

max hh
zz

zz
hh i

i 



                                                              (3.42)                         
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where zi [m] is the local elevation, zmax and zmin [m] are the maximum and 

minimum elevation in the analyzed basin, hmax and hmin [m] are the maximum and 

minimum soil thickness values obtained from field observations. The elevation, 

from a computational point of view, can be subdivided in classes and for each 

class we calculated the soil thickness using (3.42). In the water balance equation 

the value of Zr is limited to the minimum of the depth of the plant root of the 

PFT that occupies a model element and soil depth.  

3.1.6. The Cellular Automata (CA) component  

Ecohydrological cellular automata (CA) model provides a way of organizing 

and extending our understanding of the mechanisms and processes of the 

vegetation dynamics to make prediction. 

A CA model consists of a regular grid of cells, each in one of a finite number 

of states, such as on and off (in contrast to a coupled map lattice). The grid can 

be in any finite number of dimensions. For each cell, a set of cells called 

its neighborhood is defined relative to the specified cell. An initial state (time 

t=0) is selected by assigning a state for each cell. A new generation is created 

(advancing t by 1), according to some fixed rule (generally, a mathematical 

function) that determines the new state of each cell in terms of the current state 

of the cell and the states of the cells in its neighborhood. Typically, the rule for 

updating the state of cells is the same for each cell and does not change over 

time, and is applied to the whole grid simultaneously, though exceptions are 

known, such as the stochastic cellular automaton and asynchronous cellular 

automaton. 

The first example of CA is the Game of Life devised by the british 

mathematician John Horton Conway in 1970 (Gardner, 1970). The Game of life 

is a zero-player game, meaning that its evolution is determined by its initial 

state, requiring no further input. One interacts with the Game of Life by creating 

an initial configuration and observing how it evolves.  

The Game of Life is an infinite two-dimensional orthogonal grid of 

square cells (Figure 3.2), each of which is in one of two possible states, alive 

(blue cell in Figure 3.2) or dead (red cell in Figure 3.2) . Every cell interacts with 

its eight neighbours, which are the cells that are horizontally, vertically, or 

diagonally adjacent. At each time step, the following transitions occur: 

 Any live cell with fewer than two live neighbors dies, as if caused by 

under-population. 

 Any live cell with two or three live neighbors lives on to the next 

generation. 

 Any live cell with more than three live neighbors dies, as if by 

overcrowding. 

 Any dead cell with exactly three live neighbors becomes a live cell, as if 

by reproduction. 

http://en.wikipedia.org/wiki/State_(computer_science)
http://en.wikipedia.org/wiki/Coupled_map_lattice
http://en.wikipedia.org/wiki/Stochastic_cellular_automaton
http://en.wikipedia.org/wiki/Asynchronous_cellular_automaton
http://en.wikipedia.org/wiki/Asynchronous_cellular_automaton
http://en.wikipedia.org/wiki/Zero-player_game
http://en.wikipedia.org/wiki/Orthogonal
http://en.wikipedia.org/wiki/Moore_neighborhood


Methods and Models                                                                                       CHAPTER 3                                                                                   

 

________________________________________________________________ 
92                                                                                                     Domenico Caracciolo                                                                                   

 

The initial pattern constitutes the seed of the system. The first generation is 

created by applying the above rules simultaneously to every cell in the seed-

births and deaths occur simultaneously, and the discrete moment at which this 

happens is sometimes called a tick (in other words, each generation is a pure 

function of the preceding one). The rules continue to be applied repeatedly to 

create further generations. 

 

 

Figure 3.2. Example of CA grid. 

In our context, we can find different CA developed and used into an 

ecohydrological model (Wolfram, 1983; 1984; 1986); these models usually sub-

divide the computational domain into a grid of cells, whose size is determined 

by some typical biological scale (e.g., 5m grid cell resolution is common for 

individual-based modeling of vegetation dynamics). The necessary biological 

information for the modeled process is included in the form of heuristic rules, 

rather than physically-based equations. Evolution of state of any cell depends on 

its current state and state of its neighboring cells. Most of such models operate at 

time steps larger than one month, usually ranging between 1-5 years. Because 

vegetation physiological processes, such as seed production, germination, and 

survival are dependent on the timing of rainfall and its amount, these processes 

are accounted for in an implicit manner. CA models thus attempt to recreate 

complex ecosystem dynamics without explaining the underlying mechanisms of 

hydrology-vegetation interactions.  

Three examples of CA application to the vegetation dynamics are represented 

by the works of Jeltsch et al. (1996), Van Wijk and Rodriguez-Iturbe (2002) and 

Perry and Enright (2002). Jeltsch et al. (1996) developed a more elaborate CA 

model that considered the moisture availability scenarios in the two-layer soil. 

Driving the ecosystem processes (e.g., growth, mortality, competition, etc.) with 

yearly rainfall, the dynamics of tree-grass coexistence was studied. Jeltsch et al. 

(1996) argued that disturbances are likely to be the key processes driving the 

dynamics of plant community and plant coexistence. A concurrent conclusion 

was made later by Van Wijk and Rodriguez-Iturbe (2002) using a more 

hydrologically sound model. Perry and Enright (2002) developed a gridbased 

model of vegetation dynamics, applied in particular to maquis. Although the 
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position of vegetation in topography was explicitly considered via simple 

categories of slope favorability, the role of soil moisture was not explicitly 

accounted for with the time step of one year. 

In CATGraSS, a cell can be occupied by one of the following five plant 

states: tree, shrub, grass, tree seedling, shrub seedling; or can be bare soil. 

Seedlings can continue to grow to mature plants or die before they mature. No 

mixed occupation of PFTs in a single cell is allowed. Spatial changes occur only 

when a plant dies and leaves the site as bare soil. Plant establishment only occurs 

on empty (bare soil) cells, and follows a set of rules based on the water stress of 

neighboring cells with mature plants. The vegetation can die also for the fire 

event, and the probability of death is a function of the fuel availability and of the 

vulnerability to fire of each plant type.  

3.1.6.1. Plant establishment 

As previously mentioned the probabilistic plant establishment algorithm is 

run once a year at the beginning of the growing season at each bare soil cell, by 

postulating the probability of establishment (PE-X) as an aggregate measure of 

seedling availability from the plant community neighboring the bare soil cell, 

conditioned on their water stress. 

For grass plant type, we make the assumption that seeds are available for 

growth everywhere in the simulation domain. Following the earlier CA models 

of savanna ecosystems, it is assumed that shrubs provide seeds to their first ring 

of surrounding neighboring cells (8 cells), and trees provide seeds to their both 

first and second ring of neighboring cells (16 cells) following Jeltsch et al. 

(1996) and Van Wijk and Rodriguez-Iturbe (2002). Considered vegetation 

seedlings cannot send seeds until they become mature (Jeltsch et al. 1996). 

We postulate that the probability of establishment (PE-X) due to seedling 

dispersal can be related to the ecohydrological “well-being” of the seedling 

source in the neighboring plants. In order to measure plant well-being, we 

introduce a plant live index, φX, defined as the complement to one of the water 

stress index, WSX [-]: 



X 1WSX                                                                                                              (3.43) 

where WSX [-] is defined following Porporato et al. (2001) as the cumulative 

plant water stress (3.15) normalized by the growing season length, Tseas [d], 



WSX   /Tseas. The plant live index φX is calculated at the end of each growing 

season in each model cell in the first ring (I), for mature shrub neighbors, and 

both first (I) and second (II) rings, for mature tree neighbors, of a bare soil cell 

(Figure 3.3). Instead of using the values for individual cells, we estimate the 

cumulative live index of mature shrub neighbors and tree neighbors, to use for 

the probability of establishment for these PFTs in the bare cell as: 



SH  SH
I /8                                                                                                        (3.44)  
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

T  T
I /8  T

II /16                                                                                          (3.45)  

Since we assume grass seeds are abundant everywhere in the basin (Jeltsch et 

al., 1996; Van Wijk and Rodriguez-Iturbe, 2002), the live index of grasses is 

taken as the mean live index of all grass cells within the modeled domain located 

with similar slope and aspect as the bare cell.  

 

SH SH SH SH T

SH SH T T T

SH Bare Bare SH T

T Bare T SH T

T T T T T   

Figure 3.3. Example of CA grid for the establishment. 

A second component in the calculation of establishment probability relates 

with the allelopathy phenomenon, which has also been recognized as a biotic 

mechanism regulating plant communities in arid and semiarid ecosystems 

(Went, 1955; Knipe et al., 1966; Fowler, 1986; Esudero et al., 2000). 

Allelopathy is defined as a biological process by which one plant produces one 

or more biochemicals that limit or support the growth, survival, and reproduction 

of other plants (Rizvi and Rizvi, 1992). Went (1955) first suggested that the 

regular spacing of creosote bushes can be attributed to the fact that its roots 

excrete toxic substances that kill seedlings of other plants. Knipe et al. (1966) 

further analyzed the germination and growth of semi-arid grassland species 

treated with aqueous extract from creosote bush. Their data indicate that the 

germination of grasses (e.g., black grama) is significantly reduced, while shrub 

species were not affected.  

In the encroachment application (chapter 5) we assume that shrubs (creosote 

bushes) only influence grasses based on the work of Knipe et al. (1966). 

Allelopathy is incorporated in CATGraSS by using an inhibitory factor, ING, 

with a subscript G referring to the PFT affected by the allelochemicals produced 

by shrub, which is limited to grasses in this study. ING is defined for each shrub 

cell. Knipe et al. (1966) indicated that the inhibition effect increases with the 

concentration of the extract from creosote bush roots. Therefore, a cumulative 

inhibition effect is calculated as the product of single shrub inhibition factor on 

grass (ING) and the number of shrub cells in the 1
st
 ring (N

I
) of a bare soil cell, 

ING·N
I
.  

Finally, the establishment probability for grasses (PE-G), tree (PE-T) and shrub 

(PE-SH) on a bare soil cell are defined as: 

Shrub ring 

Tree ring 
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                             (3.46a)                                                       

 max,min   SHESHSHE PP 
                                                                      (3.46b)                                                                                                                                      

 max,min   TETTE PP                                                                                        (3.46c)                                                                          

A maximal establishment probability value, PE-X-max [-] is introduced as an 

upper limit to prevent unrealistically fast plant colonization rate of a PFT in a 

bare soil cell during favorable conditions (Jeltsch et al., 1996; Van Wijk and 

Rodriguez-Iturbe 2002).   

The plant establishment processes includes the following two major steps 

(Figure 3.4). In each iteration of the algorithm, first all bare soil cells are 

identified, and a “candidate” PFT (tree, shrub or grass) is randomly selected, 

with an equal chance (33%), to establish in each bare soil cell. Second, PE-X is 

calculated for the selected PFTs (3.46) and compared with a uniformly 

distributed random number ~U(0,1). If the generated number is less than PE-X, 

the selected PFT in the first step is placed in the cell. If the random number is 

higher than PE-X the cell is left bare for a year.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. A flowchart of the plant establishment algorithm. 

 

 

Selection “candidate” 

PFT (equal chance) 

Identification 

bare cell 

If PE-X > ~U(0,1) 
The PFT establishes 

the cell 

else The cell is left bare 

Calculation PE-X 

for the PFT 

Calculation random 

number ~U(0,1) 
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3.1.6.2. Plant mortality 

In the model application, plant mortality removes the plant from a cell, and 

sets the cell status to bare soil, opening the cell for competition for 

establishment. Plant mortality is also treated probabilistically and operates at the 

end of the year. Annual probability of plant mortality is defined as the sum of 

three probabilities: mortality due to drought stress (PMd-X [-]), plant aging (PMa-X 

[-]) and local disturbance (PMb-X [-]) such as grazing. 

PM-X  = min(PMd-X + PMa-X + PMb-X, 1)                                                            (3.47) 

PMd-X [-] is calculated as difference between WSX and a PFT specific drought 

resistance threshold value, θX [-] (Van Wijk and Rodriguez-Iturbe, 2002). 

PMd-X = max(WSX-θ, 0)                                                                                   (3.48)                                                                                                                                                                                          

Mortality due to aging is caused by the accumulation of physiological 

changes that are associated with increased susceptibility to diseases and other 

environmental factors, and finally death with advancing age. Mortality due to 

aging is only modeled for woody plants (e.g., trees and shrubs), as a piecewise 

function of plant age (Jeltsch et al., 1998): 



PMaX 

0 tX  0.5tmax X

tX  0.5tmax X

0.5tmax X
0.5tmax X  tX  tmax X

1 tX  tmax X













                                             (3.49)  

where tmax-X [yr] is the maximum age and tX [yr] is the current age of the plant, 

with the subscript X denoting vegetation type. In this equation, mortality due to 

age is assumed to be negligible before plant reaches its half-life (0.5tmax-X). As 

aging continues mortality probability grows with plant age linearly.  

Finally PMb-X [-] is introduced as background probability that could 

incorporate the influence of disturbances, fires, and diseases. In the 

implementation of the model PM is calculated for each plant group and compared 

with a random number, U~(0,1). Plant is removed when U~(0,1)<PM.  

3.1.6.3. Fire 

The probability of death caused by fire will increase with the amount of the 

grass fuel available (Frost and Robertson, 1987) and it is therefore modeled to 

increase with an increased number of cells dominated by grass (Jeltsch et al., 

1996). In order to avoid too much complexity, we assumed a probability of fire, 

PF, (i.e., the reverse of fire return period, TF) to be compared to a random 

number, U~(0,1), created each year. For each year, if the probability of fire is 

greater than the random number (PF >U~(0,1)) then the fire starts. For each cell, 

the plant dies (i.e., it is burned) if its vulnerability to fire, VF-X, is greater than a 
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random number, U~(0,1), created each year (VF-X >U~(0,1)). For each tree and 

shrub cell, this comparison between VF-X  and U~(0,1) is repeated as many times 

as the number of neighbor grass cells in the first ring, therefore  more are the 

neighbor grass cells of a tree or shrub cell and more is the probability to be 

ignited and killed by fire. 

3.1.7. Encroachment model codes 

In order to analyze the encroachment phenomenon, the new following 

algorithms have been implemented in the CATGraSS model: fire (section 

3.1.6.3), grazing, seed dispersal caused by animals and wind effect. In the new 

version of the CATGraSS the plant establishment algorithm is modified and 

described in paragraph 3.1.7.4. 

3.1.7.1. Grazing 

The grazing effect is limited to the grass. The animals eat only the 

herbaceous vegetation (herbivores) (Van Auken 2000; 2009). Grazing effect is 

obtained like Zhou et al. (2013), considering a constant background probability 

for disturbance factor, PMb, to be added to the annual probability of plant 

mortality, PM.  

3.1.7.2. Seed dispersal caused by animals 

Dispersal of seeds of woody plants by domestic animals has increased the 

encroachment (Van Auken, 2000; 2009). Miller (1921) considered the role of 

livestock in causing juniper invasion to be through increased seed dispersal. He 

claimed that sheep consume quantities of juniper fruits which pass through the 

digestive tract and are scattered in the droppings. Moreover, Johnsen (1962) 

demonstrated that although germination percentage was not increase, juniper 

seeds germinated faster after passing through the digestive tract of animals. 

Phillips (1910), Emerson (1932) and Parker (1945) pointed out that juniper seed 

has always been disseminated by birds, rodents, and water. 

The spread of seed probability (SSP) represents the probability that a seed 

can arrive in the bare cell from everywhere caused by the animal that carry the 

seed (birds, cows or other animals) or through the animal faeces. 

The CA rules for plant establishment include the following steps: 

1. in each annual iteration of the algorithm, all bare soil cells are identified 

and a “candidate” PFT (tree, shrub or grass) is selected to establish in 

each of them; 

2. the plant establishment probability, PE, is calculated for the selected PFT 

(3.46) and compared with an uniformly distributed random number 

~U(0,1);  
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3. if the generated number is less than PE, the selected PFT in the first step 

is placed in the cell; otherwise in a second step the SSP  is compared  

with another uniformly distributed random number ~U(0,1);  

4. if the generated random number is less than SSP, the selected PFT is 

placed in the cell, otherwise cell is left bare for one year. 

3.1.7.3. Wind Effect 

In order to consider the wind direction effect on the seed dispersal, before to 

estimate the mean live index of PFTs (different from grass), the plant live index, 

φX, is multiplied for a pair of coefficients named wind direction factor, WD. It is 

an amplification coefficient (i.e., WD > 1). One the prevalent wind direction has 

been identified (for example in Figure 3.5 it is from south-east, SE, to north-

west, NW), the plant live index, φX, of the cells in the same direction of the 

prevalent wind direction (blue cells) is multiplied for WD’, while the φX of the 

neighbor cells of the cells in the same direction of the wind (red cells) is 

multiplied for WD’’ (WD’’ < WD’). Using this factor, the probability of 

establishment of the PFTs along the wind direction increases, increasing the 

encroachment phenomenon along the same direction of the wind. 

  

bare 

cell

PSH*WD’

PSH

PSH*WD’’

 

Figure 3.5. Wind speed direction modeling assuming a prevalent wind direction from 

SE to NW. 

3.1.7.4. New plant establishment algorithm  

The plant establishment algorithm described in section 3.1.6.1 and used in the 

case study in Chapter 4 considers the coexistence of the vegetation types and not 

the competition, in fact the “candidate” PFT (tree, shrub or grass) is randomly 

selected to establish in each bare soil cell, with an equal chance (33%). The 

encroachment phenomenon is tightly related to the competition between 

vegetation types. In order to take into account the competition a new plant 

establishment algorithm has been implemented.  

φX 

φX·WD’’ 

φX·WD’ 
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In order to select the “candidate” PFT in the bare cell the following 

competition procedure has been used with two vegetation types (shrub, SH, and 

grass, G).  

The cumulative live index for shrub is:  

 


III N IIII

SH

N II

SHSH NN
1111

//                                                       (3.50)                                         

I

SH  and II

SH  are the shrub plant live index in the first and second ring, 

respectively. N
I 
and N

II
 are the number of mature shrub neighbors in the first and 

second ring, respectively. The mean live index for grass, 
G , is taken as the 

averaged live index of all grass cells within the modeled domain located with 

similar slope and aspect as the bare cell (Zhou et al., 2013).  

The total live index is:  

GSHTOT                                                                                             (3.51)                                                  

and then the normalized live index is:  

TOTSHSH  /'                                                                                         (3.52a)                                  

TOTGG  /'                                                                                             (3.52b)                                  

A uniform random number ~U(0,1) for shrub probability of selection, PSH, is 

generated. The probability of grass selection is:  

PG=1-PSH                                                                                                        (3.53)                                           

If PSH< 'SH , shrub is selected, otherwise PG is less than 'G and grass is 

selected. Once the plant type is selected, the establishment probability PE-X is 

calculated for the selected PFTs and compared with a uniformly distributed 

random number ~U(0,1). If the generated number is less than PE-X, the selected 

PFT in the first step is placed in the cell, otherwise the cell is left bare for a year.  

Using three vegetations types (grass, G, shrub, SH, and tree, T) the initial 

selection procedure changes. The total live index is:  

TGSHTOT  
                                                                                 

(3.54)                                          
 

and then the normalized live index is:  

TOTSHSH  /'                                                                                          (3.55a)                                           

TOTGG  /'                                                                                             (3.55b)                                           

TOTTT  /'                                                                                              (3.55c)                                           
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A uniform random number ~U(0,1) for shrub, tree and grass probability of 

selection PSH, PT, PG is generated. The normalized random number is calculated: 

 rTOT= PSH+PT+PG                                                                                          (3.56)                                           

rSH=PSH/rTOT,  rSH=PSH/rTOT,  rSH=PSH/rTOT                                                     (3.57) 

If rSH< 'SH , shrub is selected, otherwise if rG is less than 'G  grass is selected 

or if rT is less than 'T  tree is selected. If two vegetation type are selected, we 

compare: 

 '/)'('_ XXXXr r  
                                                                              

(3.58)
 

The vegetation type with the greater value obtained from (3.58) is taken (X si the 

PFT: G, T or SH).
 

3.2. AWE-GEN 

Advanced WEather GENerator (AWE-GEN) (Fatichi et al., 2011), is an 

hourly stationary weather generator. The generator is capable of reproducing low 

and high-frequency characteristics of hydro-climatic variables and essential 

statistical properties of these variables. The weather generator employs both the 

physically-based and stochastic approaches and can be considered a substantial 

evolution of the model presented by Ivanov et al. (2007). 

The main modules of the model are the following: the precipitation module 

based on the Poisson-Cluster process, the module simulating vapor pressure, the 

wind speed module, the shortwave radiation module, the cloudiness and air 

temperature components, and the atmospheric pressure module. Furthermore, a 

procedure to take into account non-stationary change of climate has been 

incorporated in the AWE-GEN framework. The procedure is based on a 

stochastic downscaling of GCM predictions (Fatichi et al., 2011; 2013).  

The variables simulated by the weather generator at hourly scale are 

precipitation, cloud cover, shortwave radiation with partition into various type 

and spectral bands, air temperature, vapor pressure, wind speed, and atmospheric 

pressure.  

Interested readers are referred to Fatichi et al. (2011; 2013) and to the on-line 

technical documentation available at http://www.umich.edu/ivanov for details 

concerning the model structure and parameterization. A brief description of each 

one of the model components is provided in the following sections. 

3.2.1. Precipitation 

The precipitation component of the AWE-GEN is based on the Poisson-

cluster rainfall model (Onof et al., 2000) that was originally introduced by 
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Rodriguez-Iturbe et al. (1987) and Rodriguez-Iturbe and Eagleson (1987) and 

was further developed by Rodriguez-Iturbe et al. (1988), Entekhabi et al. (1989), 

Cowpertwait (1991) and Cowpertwait et al. (1996). Recently, this type of 

precipitation occurrence has been extended to the two-dimensional space; a third 

moment theoretical function of the rainfall process has been developed to better 

fit extreme values; and an overlapping model of two rectangular pulse processes 

has been proposed to enhance the capability in reproducing finer structure of the 

process (Cowpertwait, 1994; Cowpertwait, 1995; Cowpertwait, 2003; 

Cowpertwait, 2007; Baton et al., 2008; Leonard et al., 2008).  

 

3.2.1.1. Neyman-Scott Rectangular Pulse process 

The Neyman-Scott Rectangular Pulse (NSRP) approach (Figure 3.6) is used 

in AWE-GEN to generate the internal structure of precipitation process. The 

model is primarily based on the approach of Cowpertwait (1998), Cowpertwait 

et al. (2002), and Cowpertwait (2004). The storm time origin occurs as a Poisson 

process with the rate λ [h
-1

]. A random number of cells C is generated for each 

storm according to the geometrical distribution with the mean μc [-]. Cell 

displacement from the storm origin is assumed to be exponentially distributed 

with the mean β
-1

 [h]. A rectangular pulse associated with each precipitation cell 

has an exponentially distributed life time with the mean η
-1 

[hr] and intensity X 

[mm·h
-1

]. The latter is distributed according to the Gamma distribution with the 

parameters α and θ. The distributions adopted for the random process within the 

NSRP model fully define the statistical properties of the aggregated process over 

an arbitrary time-scale h (Cowpertwait, 1998). 

The parameter estimation procedure follows that of Cowpertwait et al. 

(2002), Cowpertwait (2006), Cowpertwait et al. (2007), i.e., an objective 

function containing statistical properties of precipitation at different aggregation 

times is used. After a large number of tests using available data, the following 

properties are used in the objective function: the coefficient of variation 

hhC  /0, ; the lag-1 autocorrelation 
0,1, /)( hhh   ; the skewness 

2/3

0,/)( hhhk  ; and the probability that an arbitrary interval of length h is dry, 

Φ(h). The parameters μh, γh,l, and ξh represent the mean, the covariance, and the 

third moment of precipitation process at a given aggregation time interval h and 

lag-l. The utilized fitting procedure assumes that hourly rainfall time series are 

available as the coarsest temporal resolution. The procedure specifically uses the 

above statistical properties of the rainfall process at four different time scales h: 

1, 6, 24, and 72 h. The simplex method (Nelder and Mead, 1965) is used as a 

minimization method for the imposed objective function. The method has been 

previously employed by Cowpertwait (1998), Cowpertwait et al. (2007) with 

good performance in terms of its convergence characteristics. In order to take 
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into account the seasonality of site climatology, the parameters are estimated on 

a monthly basis, i.e., six parameters for each month need to be inferred to 

completely define the NSRP model: λ, μc, β, η, α, and θ.  
 

 

Figure 3.6. Schematic representation of Neyman-Scott model with rectangular pulses. 

3.2.1.2. Low-frequency properties of precipitation process 

Previous efforts of validation of the NSRP model at larger time intervals, for 

instance, at the yearly time scales, have indicated that the variance of the 

simulated process was smaller than the one inferred from observed data (Wilks 

and Wilby, 1999). This underestimation, sometimes referred to as 

‘‘overdispersion’’ (Katz and Parlange, 1998; Wilks, 1999), is probably because 

of the underlying stationarity assumption of weather generators (Wilks and 

Wilby, 1999).  

In order to introduce the capability for reproducing lowfrequency properties 

of the precipitation process and overcome the problem of ‘‘overdispersion’’, a 

numerical procedure of external selection of hourly precipitation series 

generated with the NSRP model on the basis of the annual precipitation series 

generated with the model is implemented in the AWE-GEN (Bates et al., 2008). 

The approach therefore aims to preserve the variance and the autocorrelation 

properties of the precipitation process at the annual scale, rather than at the 

monthly scale. It does not undermine the capability of the model to preserve the 

intra-annual precipitation statistics. The latter is guaranteed by the NSRP model, 

which is applied seasonally at the hourly scale. 

Markov-type models have been commonly used to reproduce annual time 

series of precipitation (Srikanthan and McMahon, 1982; Srikanthan and 

McMahon, 2001), though they neglect the possible long term persistency of the 

process (Wilson and Hilferty, 1931). The inter-annual variability of precipitation 

at the annual time scale is simulated using an autoregressive order-one model, 

AR(1), with the skewness modified through the Wilson-Hilferty transformation 

(Wilson and Hilferty, 1931; Fiering and Jackson, 1971): 
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21)())1(()(
yryryr PPyryrPyryr iPiPPiP                                              (3.59) 

where 
yrP  is the average annual precipitation, σPyr

 
is the standard deviation, and 

ρPyr

 
is the lag-1 autocorrelation of the process. The term η(i) represents the 

random deviate of the process, which is transformed according to the Wilson and 

Hilferty (1931) approach. The parameters Pyr, σPyr, ρPyr, and γPyr

 
are determined 

from annual observations. 

The NSRP model that captures intra-annual precipitation regime (the high-

frequency properties) is coupled with the AR(1) model (Bates et al., 2008) that 

reproduces precipitation inter-annual variability (the low-frequency properties) 

in the following manner. First, the NSRP model is used to simulate precipitation 

series at the hourly time scale for the period of one year. The obtained total 

precipitation is then compared with the annual value estimated with the 

autoregressive model (Bates et al., 2008). If the difference between the two 

values is larger than a certain percentage p


of the measured long-term mean 

annual precipitation, the simulated one-year long hourly series are rejected; a 

new series is generated and the above comparison is repeated. Once the 

difference between the two values is below the p


 threshold, the NSRP model 

simulated time series of precipitation are accepted. The entire procedure is 

repeated until all annual values generated with the model (Bates et al., 2008) 

have matching hourly series generated with the NSRP model. The rejection 

threshold p


 can be chosen according to the information about observational 

errors of annual precipitation.  

Given the stationary nature of the NSRP model, the search of ‘‘suitable’’ 

years can be computationally exhaustive for locations characterized by a high 

variance of annual precipitation. In order to reach the convergence in a 

reasonable computational time, an adjustment procedure similar to that proposed 

by Kysely and Dubrovsky (2005) is introduced after a pre-defined number of 

iterations without a satisfactory match. Specifically, discarded one-year long 

hourly NSRP precipitation series are first selected that have the closest match to 

the precipitation simulated with the AR(1) model. These series are subsequently 

multiplied by a correction factor to match the annual precipitation simulated 

with the AR(1) model.  

3.2.2. Air temperature component 

Air temperature is simulated with a mixed physics-based, stochastic approach 

developed by Curtis and Eagleson (1982) and Ivanov et al. (2007). AWE-GEN 

utilizes the same approach with further improvements. 

The generation of air temperature T(t) [°C] is simulated as the sum of a 

stochastic component dT(t) and a deterministic component 

)()(
~

)(:)(
~

tdTtTtTtT  . The deterministic component of air temperature 
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dttTd /)(
~

 is assumed to be directly related to underlying physical processes 

such as the divergence of radiative and eddy heat fluxes. The deterministic time-

gradient of temperature dttTd /)(
~

 
is a function of the air temperature itself, and 

of the incoming long-wave radiation (which exhibits a dependence on cloud 

cover). It is further related to the site geographic location and Sun’s hourly 

position, used as a proxy for shortwave irradiance (Curtis and Eagleson, 1982). 

The stochastic temperature component )(
~

)()( tTtTtdT  , is estimated 

through an autoregressive model. The random deviate exhibits a significant 

dependence on the hour of the day, with differences noticeable in various 

statistics of dT(t) for morning, midday, afternoon, evening, and night. 

Consequently, the average of the stochastic component 
hdT and its standard 

deviation σdT,h  are estimated differently for each hour of the day.  

The coefficients and the parameters used to estimate the deterministic and 

stochastic components are evaluated at the monthly scale. Ivanov et al. (2007) 

describe the procedure for estimation of the coefficients. The parameters 
hdT ; 

hdT , , and 
dT  (the lag-1 autocorrelation of the stochastic component) are 

estimated from dT(t) using conventional techniques.  

3.2.3. Cloud cover component 

The cloud cover simulated in AWE-GEN is based on the framework first 

developed by Curtis and Eagleson (1982) and Ivanov et al. (2007). Cloud cover 

N(t) is the fraction of the celestial dome occupied by clouds. In the model of 

Ivanov et al. (2007), N(t) [-] is considered to be a random variable that has 

different dynamics during intra-storm and inter-storm periods. During an intra-

storm period, the value of cloudiness is assumed to be equal to 1. During an 

inter-storm period, the existence of the ‘‘fair weather’’ region, R0, is assumed. 

The region is sufficiently distant from storms, thus the cloud cover can be 

assumed stationary and fully characterized by the first two statistical moments: 

the mean   00
)( MtNE

Rt


  
and the variance   2

0
)( MRt

tNVAR 


of the process. 

TR [h] is the length of the post-storm period after which the cloud cover process 

can be considered stationary. The second assumption is that the transition of the 

cloud process between the boundary of a storm and the fair weather period is 

described through an exponential function J(t). The latter is characterized by two 

coefficients controlling the transition rates ξ and γ [h
-1

], and by the average cloud 

cover of the first hour after a storm and of the last hour of an inter-storm, J1.  

The parameters required for the model are M0,
2

m , )1(m (lag-1 

autocorrelation value for the fair weather region), 
1, J  , and 11 parameters 

of the Beta distribution that are used to generate random variables.  
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3.2.4. Shortwave incoming radiation component 

In weather generators, shortwave radiation, Rsw [W·m
-2

], is commonly 

estimated through regression with other variables (Richardson, 1981; Parlange 

and Katz, 2000). The likely reason for such an approach is a lack of a 

conventional methodology for direct estimation of cloudiness and optical 

properties of the atmosphere. Once the site geographic location and cloudiness 

are known, several deterministic models with different degrees of complexity 

can be used to calculate the incoming shortwave radiation for clear-sky and 

overcast conditions (Gueymard, 1989; Freidenreich and Ramaswamy, 1999; 

Muneer et al., 2000; Gueymard, 2001; Gueymard, 2008; Ineichen, 2006). These 

methods use empirical coefficients to determine the atmospheric transmittances 

and the scattering fractions for direct and diffuse shortwave radiation. The 

incoming shortwave radiation is estimated with the model REST2 developed by 

Gueymard (Gueymard, 2008) for clear sky conditions. 

The parameterizations of Stephens (1978) and Slingo (1989) are used to 

compute transmittances for arbitrary cloudy conditions. The simulation of cloud 

cover, directly affects the computed shortwave fluxes. The partition of the 

incoming energy into different spectral bands could be useful for several 

purposes, such as ecological or eco-hydrological simulations that require the 

photosynthetically active radiation, PAR, as input. The discussed weather 

generator considers two bands K: the ultraviolet/ visible UV/VIS band, with 

wavelengths within the interval [0.29-0.70 μm], and the near infrared NIR band, 

with wavelengths within the interval [0.70-4.0 μm] (Gueymard, 2008). In the 

first band, ozone, nitrogen dioxide absorption, and Rayleigh scattering are 

concentrated; the absorption by water vapor and uniformly mixed gases is 

concentrated in the second band.  

The output of the radiation component of the weather generator contains the 

direct beam, RBn,Λ [W·m
-2

], and diffuse, R D,Λ [W·m
-2

], radiation fluxes for the 

ultraviolet/visible UV/VIS [0.29-0.70 μm] and the near infrared NIR [0.70-4.0 

μm] bands. PAR is also explicitly computed in AWE-GEN: conversion factors 

are applied to the first radiation band UV/VIS to compute PAR (Gueymard, 

2008). The same factors are applied for both clear and cloudy sky conditions. 

The spatial distribution of solar radiation over a terrain is a function of 

surface geometry: site slope βT [rad] and aspect ζT [rad] alter the daily 

distribution of incoming energy at the ground. Furthermore, the reflection and 

shadow effects of the surrounding terrain can strongly influence site radiation 

fluxes (Dubayah and Loechel, 1997; Rigon and Bertoldi, 2006; Ivanov et al., 

2007; Fatichi, 2010).  

3.2.5. Vapor pressure component 

The vapor pressure is not commonly simulated by weather generators 

(Semenow et al., 1998). Some weather generators, for instance, include relative 
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humidity (Sharpley and Williams, 1990; Sheppard et al., 2002) or dew point 

temperature (Parlange and Katz, 2000; Ivanov et al., 2007). While the 

conversion of relative humidity or dew point temperature into vapor pressure is 

mathematically straightforward, it involves non-linearity. Because of that, an 

accurate simulation of dew point temperature or relative humidity does not 

necessary imply a good fit for vapor pressure. Dew point or relative humidity 

outputs of weather generators should therefore be checked before asserting their 

suitability for applications that require vapor pressure. 

This model approaches the simulation of air humidity via the simulation of 

vapor pressure deficit, Δe [Pa], i.e., the difference between the vapor pressure at 

saturation esat [Pa], and the ambient vapor pressure ea [Pa]. Following Bovard et 

al. (2005), who pointed out a correlation between vapor pressure deficit Δe and 

PAR during daylight time, the correlation of vapor pressure deficit with 

shortwave radiation and temperature has been analyzed. The possibility of such 

a linkage stems from the observation that specific humidity and vapor pressure, 

ea, remain almost constant throughout the day, especially in dry climates. 

Therefore, the variations of Δe should be well explained by the diurnal cycle of 

air temperature. The assumption is primarily valid when the atmosphere is stable 

and the exchange between air masses with different characteristics is limited.  

In order to simulate vapor pressure, a framework similar to the one used to 

model air temperature is used: Δe is simulated as the sum of the deterministic 

component, Δe, and the stochastic component, dΔe: Δe(t)= Δe(t)+dΔe(t). The 

term Δe is related to air temperature through a cubic function, which is 

essentially an approximation of the commonly used exponential relation between 

Ta and esat (Dingman, 1994). From observational data, a significant correlation 

was also detected with global shortwave radiation, Rsw [W m
-2

], at the lag of one 

and two hours: 

)2()1()()( 32

3

10  tRatRatTaate swswa
                                                (3.60) 

where ai (i = 0,1,. . . ,3) are the regression coefficients. The deterministic 

component Δe usually shows a minor hourly variance when compared to Δe(t). 

The residuals dΔe(t) are modeled with the AR(1) approach. Finally, the ambient 

vapor pressure ea is calculated as the difference between esa and Δe(t). 

The parameters ai (i = 0,1,. . . ,3) are estimated on a monthly basis using 

conventional regression techniques, for example, the least squares approach. The 

parameters of the stochastic component: the average vapor pressure deficit 

deviations, ed , the standard deviation, ed , and the lag-1 autocorrelation of 

the process, ed , are evaluated using the time series of dΔe(t) after removing 

the deterministic component from the observed series of Δe(t). 
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3.2.6. Wind speed and atmospheric pressure components 

Several studies highlight that cross-correlation between wind speed and other 

variables is typically very weak (Curtis and Eagleson, 1982; Ivanov et al., 2007) 

and thus wind speed is usually modeled as an independent variable. 

Fatichi et al. (2011) observed that wind speed exhibits a marked daily cycle 

in some locations and therefore the assumption of independence may need to be 

questioned. From a physical point of view, the wind speed daily cycle is related 

to turbulent fluxes occurring in the surface boundary layer that are enhanced 

during the daytime by the dissipation of sensible heat. The wind daily cycle is 

thus more pronounced in dry climates. Starting from this concept, a relation 

between the global solar radiation and wind speed has been investigated. As 

found, the maximum correlation between the two cycles is usually shifted by 

several hours, possibly due to the difference in thermal properties of the ground 

surface and air.  

The method adopted to simulate the wind speed, Ws [m·s
-1

], is based on 

representing the process as a sum of the deterministic component Ws and the 

stochastic component dWs. This is a new approach as compared to methods 

developed previously. The deterministic component relates wind speed to the 

incident global shortwave radiation. The correlation is shifted by several hours 

(up to 3 h) and the shift strongly depends on the site location, as inferred from 

our tests: 

)3()2()1()()( 43210  tRctRctRctRcctW swswswsws
                    (3.61) 

where ci (i = 0,1, . . . ,4) are the regression coefficients. The stochastic 

component dWs(t)= Ws(t)-Ws(t) is modeled with the autoregressive AR(1) model 

including the Wilson–Hilferty transformation (Wilson and Hilferty, 1931; 

Fiering and Jackson, 1971). This transformation is necessary to represent the 

generally positive skewness exhibited by hourly wind speed data (Takle and 

Broen, 1978; Deaves and Lines, 1997).  

The parameters ci are estimated with conventional regression techniques. The 

parameters of the stochastic component: the average wind speed deviation, 
sdW , 

the standard deviation, σdWd, the lag-1 autocorrelation, ρdWs, and the skewness of 

the process, γdWs, are evaluated using time series of dWs(t) after removing the 

deterministic component from the observed series of Ws(t). Wind speed 

generally does not present marked differences throughout the year, therefore the 

parameters are derived and assumed to be valid for all months. 

The atmospheric pressure Patm [mbar] is generally neglected in weather 

generators, given its low impact on hydrological and ecological processes. 

However, it is used in many non-linear equations describing physical 

phenomena, such as evaporation. This observation implies that using a constant 

value of atmospheric pressure is theoretically incorrect. In the AWE-GEN, a 

simple autoregressive model AR(1) is employed with parameters valid for the 
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entire year. It has been observed that AR(1) model is suitable for reproducing 

hourly atmospheric pressure dynamics in several different climates. 

3.3. General Circulation Models (GCMs) and 

downscaling procedure 

3.3.1. General Circulation Models 

 The General Circulation Models (GCMs) are complex numerical tools able 

to simulate globally the climate system of the Earth. GCMs include five 

components: atmosphere, oceans, land surface, sea-ice and the biological and 

biogeochemistry cycles. There is a disagreement with regards to the reliability of 

GCMs skill to reproduce much more than global averages of climatic variables 

within the Earth system. Since GCMs realizations are the foundation of any 

climate change prediction study, questioning the reliability of GCMs means 

questioning the overall possibility of making inferences about future climate and 

consequently whatever scientific discussion about climate change predictions 

must be looked as biased from the beginning. But, while climate models provide 

information that may not be exact in the absolute sense, yet due to their 

physically-based nature and their global scale of application, they still provide a 

robust prediction of a tendency, or at least they identify the emergence of a 

climate change signal. Nonetheless, the possibility that model artifacts can 

undermine the credibility of the study could not be totally dismissed but 

currently few alternatives, if any, are available. Moreover, GCMs have two 

important drawbacks: 1) the realizations spatial resolution is too coarse to be 

used directly in local studies (each model has a different pixel dimension that 

range from 130 to 550 km), 2) GCMs realizations are only available at the daily 

or larger aggregation intervals.  

In this thesis, we used the GCMs (atmospheric component) employed in the 

Intergovernmental Panel on Climate Change - Fourth Assessment Report (IPCC 

4AR) (IPCC, 2007). Specifically, in the Chapter X (Meehl et al., 2007) of the 

Working Group I, climate models are assessed and their projections discussed. 

The GCMs used in the IPCC 4AR are 25 in total including different versions of 

same climate models (Table 3.1). An overview of availability of GCM outputs 

used in the 4AR of the IPCC, can be found on the website of the Program for 

Climate Model Diagnosis and Intercomparison (PCMDI) (http://www-

pcmdi.llnl.gov/ipcc/about_ipcc.php). 

Since projections of climate change depend upon future human activity, 

climate models are run assuming different scenarios. There are 40 different 

scenarios, each making different assumptions for future greenhouse gas 

pollution, land-use and other driving forces. Assumptions about future 

technological development and future economy are also made for each scenario. 
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Most include an increase in the consumption of fossil fuels and Gross Domestic 

Product (GDP) all around the world. 

The emission scenarios of IPCC (2007) are organized into four families, 

which contain scenarios that are similar to each other in some respects. IPCC 

assessment report projections for the future are made in the context of a specific 

scenario classes. The considered classes are: 

• The A1 storyline and scenario family describes a future world of very 

rapid economic growth, global population that peaks in mid-century and 

declines thereafter, and the rapid introduction of new and more efficient 

technologies. Major underlying themes are convergence among regions, 

capacity building, and increased cultural and social interactions, with a 

substantial reduction in regional differences in per capita income. The 

A1 scenario family develops into three groups that describe alternative 

directions of technological change in the energy system. The three A1 

groups are distinguished by their technological emphasis: fossil 

intensive (A1FI), non-fossil energy sources (A1T), or a balance across 

all sources (A1B). 

• The A2 storyline and scenario family describes a heterogeneous world. 

The underlying theme is self-reliance and preservation of local 

identities. Fertility patterns across regions converge very slowly, which 

results in continuously increasing global population. Economic 

development is primarily regionally oriented and per capita economic 

growth and technological changes are more fragmented and slower than 

in other storylines. 

• The B1 storyline and scenario family describes a convergent world with 

the same global population that peaks in midcentury and declines 

thereafter, as in the A1 storyline, but with rapid changes in economic 

structures toward a service and information economy, with reductions in 

material intensity, and the introduction of clean and resource-efficient 

technologies. The emphasis is on global solutions to economic, social, 

and environmental sustainability, including improved equity. 

• The B2 storyline and scenario family describes a world in which the 

emphasis is on local solutions to economic, social, and environmental 

sustainability. It is a world with continuously increasing global 

population at a rate lower than A2, intermediate levels of economic 

development, and less rapid and more diverse technological change than 

in the B1 and A1 storylines.  

The emission scenarios considered in the 4AR are only a subset of the forty 

defined on the Special Report on Emissions Scenarios (SRES) and they include 

the scenario A2, A1B and B1 (Meehl et al., 2007). They represent “low” (B1), 

“medium” (A1B) and “high” (A2) forecasts, with respect to the prescribed 

concentrations of greenhouse gases and the resulting radiative forcing (Meehl et 

al., 2007). The B1 is the closer to the low end of the range of CO2 emission 
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projections, (CO2 concentration of about 550 ppm by 2100), the A2 is closer to 

the high end of the range (CO2 concentration of about 850 ppm by 2100) and the 

A1B is almost in the middle of the range (CO2 concentration of about 700 ppm 

by 2100).  

Table 3.1. GCMs of the IPCC 4AR. 

Group Country Model 

Beijing Climate Center China BCC-CM1 

Bjerknes Centre for Climate Research Norway BCCR-BCM2.0 

National Center for Atmospheric Research USA CCSM3 

Canadian Centre for Climate Modelling and 

Analysis 
Canada CGCM3.1 (T47) 

Canadian Centre for Climate Modelling and 

Analysis 
Canada CGCM3.1 (T63) 

Centre National de Recherches 

Meteorologiques 
France CNRM-CM3 

CSIRO Atmospheric Research Australia CSIRO-Mk3.0 

CSIRO Atmospheric Research Australia CSIRO-Mk3.5 

Max Planck Institute for Meteorology Germany ECHAM5/MPI-OM 

Meteorological Institute of the University of 

Bonn, Meteorological Research Institute of 

KMA, and Model and Data group 

Germany-Korea ECHO-G 

LASG / Institute of Atmospheric Physics China FGOALS-g1.0 

US Dept. of Commerce- NOAA - 

Geophysical Fluid Dynamics Laboratory 
USA GFDL-CM2.0 

US Dept. of Commerce- NOAA - 

Geophysical Fluid Dynamics Laboratory 
USA GFDL-CM2.1 

NASA Goddard Institute for Space Studies USA GISS-AOM 

NASA Goddard Institute for Space Studies USA GISS-EH 

NASA Goddard Institute for Space Studies USA GISS-ER 

Instituto Nazionale di Geofisica e 

Vulcanologia 
Italy INGV-SXG 

Institute for Numerical Mathematics Russia INM-CM3.0 

Institut Pierre Simon Laplace France IPSL-CM4 

Center for Climate System Research, 

National Institute for Environmental 

Studies, and Frontier Research Center for 

Global Change (JAMSTEC) 

Japan MIROC3.2 (hires) 

JAMSTEC Japan MIROC3.2 (medres) 

Meteorological Research Institute Japan MRI-CGCM2.3.2 

National Center for Atmospheric Research USA PCM 

Hadley Centre for Climate Prediction and 

Research Met Office 
UK UKMO-HadCM3 

Hadley Centre for Climate Prediction and 

Research Met Office 
UK UKMO-HadGEM1 

 

The realizations here used correspond to the A1B emission scenario (IPCC, 

2007), in which rapid economic growth, global population that peaks in the mid-

century and an efficient use of technologies to reduce emissions are forecasted. 
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The A1B scenario is an intermediate case between the B1 and A2 and it should 

supposedly provide an intermediate effect of climate change, that approximately 

corresponds to the median curve of global temperature increase among all 

considered scenarios in the 4AR (IPCC, 2007). Moreover realizations for this 

scenario are available from almost all GCMs used in the 4AR of the IPCC. 

Among the 25 General Circulation models that are used in IPCC 4AR (Meehl et 

al., 2007), only a subset of models is usually used for the stochastic downscaling 

procedure. GCM realizations are obtained from the dataset compiled in the 

World Climate Research Programme’s (WCRP’s), Coupled Model 

Intercomparison Project phase 3 (CMIP3) (Meehl et al., 2007). The selection of 

models can be typically based on two criteria: data availability (availability of 

daily precipitation time series as the principal constraint) and a relative 

independence among the models (the mutual independence between model 

realizations is one of the requirements for using the multi-model ensemble 

approach). Climate models developed by different groups around the world can 

be assumed to be independent to a certain extent, they can share components or 

have similar theoretical arguments for their parameterizations (Tebaldi and 

Knutti, 2007). In order to preserve the relative independence among models, 

when multiple or updated versions of the same climate model are available, only 

a single version of such a GCM is used. The same discrimination is usually 

realized, for different models provided by the same originating group or for 

models that borrow many components by other ones. 

3.3.2. Stochastic downscaling procedure 

In the presented approach of stochastic downscaling only precipitation and 

air temperature are directly considered. But, once precipitation and temperature 

factors of change are introduced into AWE-GEN, the other variables might be 

affected as a result of linkages considered by the weather generator. 

Various GCMs multi-model ensemble and probabilistic approaches to the 

analysis of climate projections have been recently proposed, like the Bayesian 

methods (Tebaldi and Knutti, 2007). The underlying idea is that a performance 

forecast can be improved by weight-averaging results from multiple models. The 

multi-model ensemble approach realized in this thesis follows that of Tebaldi et 

al. (2005) where model combines information coming from several GCMs and 

observations to determine the probability density functions (PDFs) of future 

changes of different certain climatic variables at the regional scale (Fatichi et al., 

2011). In the Bayesian framework, all uncertain quantities are modeled as 

random variables, with a prior probability distributions. The method assigns 

weights to climate models, according to two criteria: the bias and the 

convergence. The bias measures the difference between GCM simulations and 

the best approximation of the “truth” value of a certain variable for the control 

scenario, μ. The convergence criterion measures the distance between the GCM 

simulations and the “true” value of a certain variable of the future realizations, ν. 
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Note that for each statistic ν represents the expected value of the PDF for the 

future.  

The multi-model ensemble approach of inference is used for all statistical 

properties of climatic variables that are part of stochastic downscaling, i.e., the 

mean, the variance, the frequency of non precipitation, and the skewness of fine-

scale precipitation (for each month), the coefficient of variation and the 

skewness of annual precipitation, and the mean monthly air temperature (Fatichi 

et al., 2011; 2013). Long-term statistics of present climate X0 are calculated from 

observed values based on point measurements, which therefore represent a much 

smaller area as compared to a typical GCM grid cell size. The difference 

between observations and climate model realizations is accounted for by the bias 

criterion used to weight different GCM realizations in getting proper 

downscaling information. This implies that the shape of the probability density 

functions of the factors of change is somewhat dependent on the observed 

climate.  

In Figure 3.7 a flowchart of the used stochastic downscaling methodology is 

presented (Fatichi et al., 2011). More specifically, a set of factors of change is 

computed to reflect changes in the mean monthly air temperature and several 

statistics of precipitation (e.g., mean, variance, skewness, frequency of no-

precipitation) at different aggregation periods (24, 48, 72, 96 h), as a result of 

comparing historical and projected climate model outputs. The factors of change 

derived from the ensemble of GCM realizations are subsequently applied to a set 

of statistics of the observed climate in order to obtain statistics representative of 

the future climate. Using these statistical properties, an updated set of AWE-

GEN parameters can be estimated. Each of these AWE-GEN parameters set is 

calculated assuming stationary climate for any considered period. Finally, the re-

parameterized weather generator is used to simulate hourly time series of hydro-

climatic variables that are considered to be representative of the predicted 

climate. For a more detailed description of the procedure, interested readers are 

referred to Fatichi et al. (2011) and Fatichi et al. (2013).  

It is important to remind that the uncertainties captured by the proposed 

procedure and quantified by the PDFs are only a part of the total uncertainty of 

climate change predictions. The PDFs of factors of change are the result of 

climate model differences in predicting future; these PDFs do not contain any 

information about other sources of uncertainty (e.g., model structure, different 

CO2 emission scenarios, etc.). However, the variation of climate change 

predictions between different models is probably the most meaningful measure 

of uncertainty that is presently available, although, this measure is more likely to 

underestimate than overestimate the total uncertainty. 
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Figure 3.7. A flowchart of the used stochastic downscaling methodology 

(Fatichi et al., 2011). 

3.3.2.1. Factor of change 

The factors of change for precipitation (Pr) are calculated for each statistic 

used by the weather generator: the mean EPr(h), the variance VARPr(h), and the 

skewness SKEPr(h), where h is the aggregation interval (24, 48, 72, 96 h). The 

product factor is also applied to the frequency of non-precipitation ΦPr, 

following a logit-like transformation: f(ΦPr)= ΦPr /(1-ΦPr), as proposed by 

Kilsby et al. (2007). This transformation allows the linearization of ΦPr across a 

wide range of values, reducing inaccuracies in the computation of the product 

factor. The downscaling of the lag-1 autocorrelation ρPr(h) is neglected due to 

difficulties in finding a proper relationship for the factor of change of this 

statistic, and due to the weaker sensitivity of weather generator realizations to 

ρPr(h) variations.  

The stochastic downscaling uses a Bayesian approach to weight climate 

model realizations (Tebaldi et al., 2004, 2005; Fatichi et al., 2011) which allows 

one to derive the probability distributions of factors of change (FOC) 

representative of the ensemble of GCM projections. FOC from single climate 
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models can be calculated as ratios (FOCR) or “delta” (FOCD), i.e., differences 

of climate statistics for historical and future periods. The general equation, 

which using FOCR provides the statistical properties S at the time aggregation h 

in the future scenario reads: 

OBSOBS

CTSGCM

FUTGCM
FUT hSFOCRhS

hS

hS
hS )()(

)(

)(
)(

,

,

                                              (3.62)                                                                                                                               

where the superscript FUT denotes the future scenario, OBS denotes 

observations, and CTS denotes the control scenario, which is the GCMs run 

representing the current climate. The notation GCM implies General Circulation 

Models outputs. The sought statistical property for future climate, S
FUT

, is then 

calculated from the observed statistics of present climate, S
OBS

, and the product 

factor of change computed using statistics derived from the control and the 

future scenarios, S
GCM,FUT

/S
GCM,CTS

 (obtained from GCM outputs). 

In order to include the effects of intra-annual seasonality, the factors of 

change are calculated on a monthly basis. 

Low-frequency effects are important in the detection of climate change 

impacts, especially when long-term variations in the occurrence and duration of 

drought or wet periods are likely to be encountered. AWE-GEN is capable of 

taking into account such features of precipitation regime. Therefore, statistical 

properties describing the inter-annual variability of precipitation are also 

downscaled using the derived factors of change from GCM realizations. 

Specifically, once downscaling is carried out for the mean precipitation at finer 

aggregation intervals and realized independently for each month, the total annual 

precipitation 
FUT

yrP is obtained as the sum of modified monthly precipitation. The 

application of independent factors of change on a monthly basis, however, has a 

not immediately apparent implication: 
FUT

yrP may not be exactly equal to 







CTSGCM

yr

FUTGCM

yr

OBS

yr PPP
,,

/ , where the expression in the brackets is the factor of 

change estimated at the annual scale. This outcome is due to the fact that 

applying the factors of change at the monthly scale is different from applying a 

factor of change at the annual scale. However, in order to account for seasonality 

and to be coherent with the factors of change calculated at the aggregation 

periods smaller than 1 year, 
FUT

yrP is used as the mean annual precipitation of the 

FUT scenario. Furthermore, the coefficient of variation and the skewness of 

annual precipitation must be downscaled using (3.62): the downscaling of the 

former is necessary in order to introduce changes in the variance of precipitation 

annual time series. It is necessary to compute a factor of change for the 

coefficient of variation and not directly for the variance because of the issue of 

the mean annual precipitation. The autocorrelation property of annual 

precipitation process is not directly downscaled. The value inferred from 

observations is kept for simulations of future climate. 
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With regard to the mean monthly temperature, its statistical properties S, is 

obtained by the following equation, which uses the “delta” factor of change 

FODC: 

  FOCDhShShShShS CTSGCMFUTGCMOBSFUT  )()()()()( ,,                                (3.63)   

Correcting only the mean does not permit to infer changes of higher order 

statistics and thus to capture the changes in the daily cycle or frequency of 

extremes. This limitation is related to the procedure adopted for the estimation of 

the parameters of the air temperature model. Nevertheless, in many cases intra-

daily variation of changes can be considered to have a fairly minor effect on the 

hydrological dynamics. The correction CTSGCM
mon

FUTGCM
mon TTFOCD ,,   is applied on a 

monthly basis to air temperature simulated by the weather generator at the 

hourly scale.   

3.3.2.2. Extension of precipitation statistics to finer time scales 

Since, several statistics of precipitation in the weather generator are required 

at the aggregation intervals of 1 h and 6 h, a methodology to infer the factors of 

change for these periods is necessary. The extension to shorter time scales is 

straightforward for the mean, i.e., given the linearity of the mean operation, the 

factors of change are equal at each aggregation period. The extension to shorter 

time scales is not such a trivial task for the other statistical properties, such as 

the variance VARPr(h), the frequency of non-precipitation ΦPr(h), and the 

skewness SKEPr(h). 

In order to infer VARPr at 1 h and 6 h aggregation intervals, a theoretical 

derivation of Marani (Marani, 2003; Marani, 2005) is applied. The parameters 

for the VARPr(h) of Marani (2003) are estimated from the variance )(Pr hVAR FUT  at 

different aggregation periods equal to or larger than 24 hours (24, 48, 72, and 96 

h). The values of )(Pr hVAR FUT  are thus calculated once )(Pr hVAR OBS and the factors 

of change for precipitation variance are known at the aggregation period 

hh 24 . 

The extension to 1 h and 6 h aggregation periods of the frequency of non-

precipitation )(Pr h  is realized through an exponential function heh  )(Pr
, 

that links ΦPr( 24) to ΦPr(<24), considering that ΦPr(0) = 1, by definition. The 

exponential decay of the frequency of non-precipitation ΦPr(h) has been 

observed in practically all of the analyzed time series. The parameter γ is 

estimated from ΦPr(24)
FUT

 and ΦPr(48)
FUT

. The values of ΦPr(h)
FUT

 are 

calculated from the observed ΦPr(h)
OBS

 using the factors of change FC for logit 

transformed frequency of non-precipitation. Since the fitting of ΦPr(h < 24) is 

carried out with two values of ΦPr( 24), γ is determined using the least squares 

method.  
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Skewness SKEPr(h) is not extended to 1 h and 6 h aggregation periods since 

no suitable relationship was found for this statistic. The factors of change for 1 h 

and 6 h skewness are taken equal to one. This implies that the values obtained 

from observations are employed for generating future scenarios.  
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Chapter 4 

Modeling the role of climate change on 

small-scale vegetation patterns in a 

mediterranean basin using a Cellular 

Automata model. Case study  

 

4.1. Study catchment 

4.1.1. Basin framework  

The CATGraSS is applied to the Zafferia catchment located in the Peloritani 

Mountains area, near the town of Messina, located in the island of Sicily, Italy. 

In Figure 4.1 the Google Earth aerial photo of the basin and its location are 

shown (38°9’ N, 15°29’ E). In Sicily climate shows a clear gradient moving 

from the coast to the mountains and is characterized by a marked seasonal 

variability, with wet temperate winters, and hot dry summers. The mean annual 

temperature ranges from 10.5° C (in high elevation areas) to 19.5° C (in the 

coast) (Viola et al., 2013) while the mean annual precipitation ranges from 380 

mm (in the coast) to 1345 mm in the mountains (Di Piazza et al., 2011). The 

study region has experienced trends in temperature and precipitation in the 20
th
 

century. For the period from 1924 to 2006 regional temperature has risen 0.2° 

C·decade
−1

 (2° C·century
−1

), a rate higher than the global average (Viola et al., 

2013). In the last 25 years the regional data shows a warming twice the long-

term trend (0.4° C·decade
−1 

increase). Temperature trend is uniformly distributed 

over the seasons while rainfall has dropped as much as 2.5 mm·yr
-1

 especially in 

the winter season (Cannarozzo et al., 2006).  
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The Peloritani Mountain area is characterized by elevation ranging from 100 

to 1374 m above mean sea level (a.s.l.). The mean annual temperature ranges 

from 11° C to 16° C (Viola et al., 2013) and the MAP range from 750 to 1500 

mm (Di Piazza et al., 2011). The morphology of this region is very complex and 

is characterized by a long series of peaks, ridges and ravines. The vegetation of 

this area includes mainly Quercus ilex and Quercus rotundifolia forests (1405 

ha), Platanus orientalis and Liquidambar orientalis woods (Platanion orientalis) 

(242.5 ha), Fagus, Taxus and Ilex forests (195.5 ha), Quercus suber forests (114 

ha), Tilio-Acerion forests (43.5 ha) and Arborescent matorral with Laurus 

nobilis (3.5 ha) and Pinus (Picone et al., 2008).  

4.1.2. Basin description 

The Zafferia catchment covers 1.3 km
2
 of area, spans an elevation range from 

160 m to 866 m a.s.l., with an average slope of 61.1% (31.42°) and a main 

channel length of 2.42 km (Figures 4.1, 4.2). The mean annual precipitation 

(MAP) is ~815 mm, with a dry season from May to September (165 mm) and a 

wet season from October to April (650 mm). The mean annual temperature is 

15.4° C. Climatic data have been recorded from SIAS (Servizio Informativo 

Agrometeorologico Siciliano) from January 2002 to December 2011 in the 

Acquaurtedditi San Pier Niceto (ME) weather station (38°9’ N, 15°21’ E, 180 m 

a.s.l.).  

Sandy loam texture is the main soil type in the basin (obtained from field 

data, Figure 4.3). The landscape show spatial variability of soil thickness. 

Typically soils get shallower as slopes get steeper toward high-elevation areas of 

the basin. 

The vegetation pattern has an evident aspect dependence, with opposing 

hillslope aspects hosting different and contrasting plant types (Figures 4.1, 4.2). 

In the N-facing slopes, oak (Quercus Ilex) is the dominant plant and co-exist 

with grass C3. In the S-facing slopes, Indian fig Opuntia (Opuntia ficus-indica) 

and grass C3 are the dominating plant types and co-exist with sparse oaks. Oak 

and Indian fig Opuntia are evergreen species, while grass C3 have a strong 

seasonal phenology. It is important to point out that Indian fig Opuntia is a 

succulent specie with CAM photosynthesis. The detailed description of the 

vegetation types is in section 4.1.3.  

A 2 m LIDAR DEM, resampled at 10 m (Figure 4.4a), has been used for the 

modeling study. The slope (Figure 4.4b) and aspect (Figure 4.4c) maps at the 

same resolution are obtained from the DEM using Spatial Analysis techniques 

within ESRI ArcGIS. The estimated slope within the basin ranges from 0.5° to 

58.54° (from 0.87% to 163.5%) (Figure 4.4b). In order to illustrate the role of 

topography on incoming solar radiation, the mean daily clear-sky radiation over 

the catchment has been assessed (Figure 4.5) showing as, annually, S-facing 

slope receive as much as twice the solar radiation received by N-facing slopes.  
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Figure 4.1. Google Earth view of the study catchment and its location in Sicily. 

N
North facing 

slope

South facing 

slope

Oak

(Quercus Ilex)

Grass
Indian fig

(Opuntia Ficus Indica)

Grass

Oak 

(Quercus Ilex)

 

Figure 4.2. Distribution of plant functional types in relation to topography in the basin. 
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Figure 4.3. Sampled soil in the field site. 

 

 

 

Figure 4.4. Topography of the basin: (a) DEM, (b) slope, (c) aspect. 

a) 

b) 

c) 
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Figure 4.5. Simulated mean daily incoming clear-sky shortwave radiation over the study 

area over a year. 

4.1.3. Vegetations types 

In the following section a brief description of the vegetation types is done 

with a greater focus on the Indian fig Opuntia since it is a typical species of the 

sicilian environments, and it is rarely modeled in the hydrological and 

ecohydrological models. 

4.1.3.1. Grass and oak 

In the basin there are different grass C3 species with a strong seasonal 

phenology. Figure 4.6 shows some grass species of the study area.  

Quercus ilex (Figure 4.7), the holm oak or holly oak is a large evergreen oak 

native to the mediterranean region. It is a medium-sized tree  (from 4 to 10 

meters tall) with finely square-fissured blackish bark and leathery 

evergreen leaves. The old leaves fall 1-2 years after new leaves emerge. The 

leaves are dark green above and pale whitish-grey with dense short hairs below. 

The flowers are catkins, produced in the spring; the fruit is an acorn, which 

matures in about six months. 

 

http://en.wikipedia.org/wiki/Tree
http://en.wikipedia.org/wiki/Bark
http://en.wikipedia.org/wiki/Evergreen
http://en.wikipedia.org/wiki/Leaf
http://en.wikipedia.org/wiki/Flower
http://en.wikipedia.org/wiki/Catkin
http://en.wikipedia.org/wiki/Fruit
http://en.wikipedia.org/wiki/Acorn
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Figure 4.6. Grass in the study basin. 

 

Figure 4.7. Quercus Ilex in the study basin. 

4.1.3.2. Indian fig Opuntia 

As previously mentioned Opuntia ficus-indica (Figure 4.8) is a drought-

tolerant cactus, widely cultivated in arid and semi-arid regions worldwide and 

exhibits Crassulacean Acid Metabolism (CAM), with nocturnal stomata opening 

and CO2 uptake occurring, typically, from dusk to dawn, when, through 

phosphoenolpyruvate (PEP) carboxylation, malate is formed and stored in 

vacuoles (Nobel, 1988). Its native area is Mexico but it is cultivated for fruit 

production in many other countries as in the mediterranean basin, temperate 

zones of South America, Asia and Oceania, also for vegetable, juices, cattle 

fodder and forage production (Nobel, 2002). In Sicily, where the prickly pear 

(i.e., the fruit of the Opuntia ficus-indica) is known as ficudinnia (the Italian 
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name being “fico d'India”, meaning “indian fig”), the Opuntia ficus-indica 

grows wild and cultivated to heights of 1-5 meters. In these regions, production 

system has to cope with strong seasonal variations in environmental conditions, 

which considerably reduce land productivity. Specifically, rainfall distribution is 

a critical limiting factor as well as extensive and variable dry seasons, high soil-

water deficit conditions and dry atmosphere. Thus, the selection of CAM 

cultivars for cropping in stress-prone areas could be a major component in 

agricultural strategies to improve land management. In particular, CAM species 

thrive in areas with restricted water supply (200 or 300 mm of annual rainfall) or 

where long periods of drought occur, because of the ecological advantage related 

to the daily timing of stomata opening. In fact, CAM plants open the stomata 

when lower temperature and water pressure deficit account for a lower 

evaporative demand (during the night), leading to a twofold to sixfold lower 

transpiration rate compared with the same degree of stomata opening during the 

day (Nobel, 1988; San-José et al., 2007). Ultimately, the water use efficiency of 

the species reaches values of about 250-300 kgH2O·kgDM
-1

 (De Kock, 1980; Le 

Houèrou, 2000).  

Nobel (1988), showed that three weeks of drought conditions are required for 

halving net CO2 uptake over 24-h periods, and after 50 days of drought net CO2 

uptake of cladodes (stem-like flattened organs) is around zero (Acevedo et al., 

1983). Moreover, three months of drought decreased nocturnal acid 

accumulation by 73%, essentially abolished transpiration and reduced cladode 

water content by 45% (Goldstein et al., 1991). However, fruit quality, i.e., fruit 

size, is reduced by water deficit long before the tree shows any symptom of 

water stress (Gugliuzza et al., 2002).  

Indeed, in the northern hemisphere, most of the fruit development period 

coincides with long and dry summers, with a water deficit period that may last 

for 3-4 months (June-September). Nerd et al. (1989) report that in the Negev 

desert, with an annual rainfall lower than 300 mm, winter irrigation is needed to 

reach a regular plant fertility at springtime. An annual volume of 60-100 mm of 

irrigation water, during the fruit development period, coupled with fruit thinning 

is required to get export-size fruit with regular flesh percent (55-65%), and to 

increase marketable yield composition (Barbera, 1984; Gugliuzza et al., 2002). 

Though irrigation is used and successful in all cultivated area for Indian fig 

fruit production (Barbera, 1984; Gugliuzza et al., 2002; Nerd et al. 1989; Van 

der Merwe et al., 1997), its timing and applied volumes are still defined on an 

empiric basis. Evapotranspiration of cacti have been evaluated using the soil 

water balance technique (Han and Felker, 1997), and, measurements of mass 

(CO2, H2O) and energy exchanges (solar radiation) for a CAM community was 

reported by Nobel and Bobich (2002) at the Biosphere 2 Center in Arizona. 

Measurements of gas exchange in Indian fig began in the early 1980s, when 

Nobel and Hartsock (1983) measured CO2 uptake on single cladodes, using 

portable infrared gas-analyzers (IRGA), with cuvettes adapted to fit cladode 
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morphology. At optimal temperature and intercepted radiation, instantaneous 

values of net CO2 uptake of 1-year-old cladodes may reach 18 μmol m
-2

·s
-1

, with 

a total daily CO2 uptake of 680 mmol·m
-2

 (Nobel and Bobich, 2002).  

The response of Indian fig to water stress, in term of gas exchange rate, has 

been investigated on individual, terminal or basal, cladodes while there are no 

data integrating whole-tree behaviour where cladode interactions are more 

complex (Andrade et al., 2009; Nobel and Bobich, 2002). Cladode succulence 

acts as a buffer to maintain turgescence in the photosynthetic tissue 

(chlorenchyma), making it possible for the cladode to continue 

photosynthesizing during dry periods. Small changes in daily net CO2 uptake of 

single cladodes occur during the first 7 days of drought (Nobel and Bobich, 

2002); after 17 days of drought, cladode net CO2 uptake over a 24-h period 

halved, and became almost zero at 50 days (Acevedo et al. 1983; Nobel and 

Hartsock, 1984). Drought combined with an increase of daughter cladodes 

shortened the period of positive net CO2 uptake and reduced the maximum rates 

of CO2 uptake of 1-year-old basal cladodes, while total daily CO2 uptake does 

not change if trees are watered (Pimienta-Barrios et al., 2005).  
 

 

Figure 4.8. Opuntia ficus-indica in the study basin. 

4.2. Model simulations 

4.2.1. Model set up  

As mentioned in chapter 3, in order to improve computational efficiency, 

basin morphology has been classified into topographically similar slope and 

aspect (S-A) groups. In each of the S-A group, the coupled water balance (i.e., 

soil moisture dynamic, evapotranspiration, water stress) and biomass production 

equations ((3.1) to (3.16)) are used for each PFTs separately (Zhou et al., 2013). 
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In particular, the influence of topography is explicitly introduced in the 

calculation of the net radiation using the daily incoming shortwave radiation for 

each S-A group. This classification is performed considering a 14 degree 

increment for local slopes (5-61°) (5 slope classes) and a 45 degree increment 

for aspect (0-360°) (8 aspect classes) leading to 40 different combinations (S-A 

groups) in order to get and analyze the effect of the S-A group on the vegetation 

distribution.  

In this study case since the landscape shows spatial variability of soil 

thickness with deep soils in the valleys in low lying areas and shallower soils as 

slopes get steeper toward high-elevation areas, a soil thickness spatial variation 

has been introduced. As elevation grows and the soil thickness decreases 

together with water storage capacity, oak gives way to grass because the former 

is not able to settle and grow in soil with small thickness. On the basis of 

observation, soil depth has been assumed to vary linearly from high values at the 

basin outlet to low values in the upstream area following the simple soil depth 

model of Saulnier et al. (1997). In particular the authors modeled the soil 

thickness, hi, as function of the elevation using (3.42), zmax and zmin (the 

maximum and minimum elevation in the analyzed basin) are 866.2 and 160 m, 

respectively, hmax and hmin (the maximum and minimum soil thickness values 

obtained from field observations) are 3 and 0.01 m, respectively.  

The elevation, from a computational point of view, was subdivided in 5 

classes (elevation increment for each class equal to about 140 meters) and for 

each class we calculated the soil thickness using (3.42) (Table 4.1). The 5 

elevation classes are integrated into the 40 S-A groups creating a total of 200 

slope-aspect-soil thickness classes. It is important to underline how the choice of 

elevation classes does not influence the solar radiation assessment but only the 

soil moisture. In the water balance equation the value of Zr is limited to the 

minimum of the depth of the plant root of the PFT that occupies a model element 

and soil depth.  

PFTs and the cellular automaton processes for spatial plant dynamics are 

represented using a 5m grid cell resolution, which is approximately the size of a 

mature oak tree. The same resolution was also used in CATGraSS in central 

New Mexico for simulating juniper pine trees (Zhou et al., 2013) and in a Texas 

savanna (Van Wijk and Rodriguez-Iturbe, 2002). This finer scale is achieved by 

dividing each model DEM grid cell into 4 equal-size cells. Identical grid 

resolution is used for the other two plant types.  

Table 4.1. Soil thickness for each elevation class. 

class min z [m] max z [m] mean z [m] thickness [m] 

1 160 302 231 3.0 

2 302 444 373 2.2 

3 444 586 515 1.5 

4 586 728 657 0.7 

5 728 866.2 797.1 0.01 
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4.2.2. Model experiments  

Two different sets of simulations are performed using CATGraSS: (1) Base 

run: CATGraSS is calibrated for the chosen study site to reproduce the observed 

ecotone of N and S facing slopes using a stationary climate, and the model is 

also run without soil depth limitation to illustrate the role of soil depth on 

modeled vegetation organization in the catchment. PFTs are initialized randomly 

in space, with identical random initial cover fractions (33.3% grass, 33.3% 

Indian fig, 33.3% tree). The simulation is run for 5,000 years, forced by 

statistically generated storms using a Poisson process and a cosine function to 

reproduce the annual cycle of the potential evapotranspiration. (2) Future run: 

CATGraSS is run for 100 years with 50 realizations of future climate scenarios 

generated with a stochastic downscaling procedure using GCMs output and the 

AWE-GEN model. The initial vegetation spatial distribution is that provided by 

the base run after simulating 5,000 years. This simulation is designed and 

carried out with the aim to understand how the vegetation spatial pattern could 

change in the future as result of the expected climatic changes. 

4.2.2.1. Weather forcings 

In this section before to describe the Base run (section 4.2.2.1.2) and Future 

run (section 4.2.2.1.3) weather forcings, a briefly example of the results obtained 

with the AWE-GEN in the current climate and stationary conditions using the 

SIAS weather station data is shown (section 4.2.2.1.1).  

4.2.2.1.1. AWE-GEN results in stationary conditions and current climate 

In order to test the AWE-GEN model the current climate has been simulated 

in stationary conditions using the data of the SIAS weather station in San Pier 

Niceto (ME) with 10 years of hourly weather data (2002-2011). A description of 

the results is shown below. 

In Figure 4.9 the observed and simulated monthly precipitation are shown. In 

Figures 4.10 and 4.11 a comparison between observed and simulated monthly 

statistics of precipitation (mean, variance, lag-1 autocorrelation, skewness, 

frequency of non precipitation, transition probability wet-wet), for the 

aggregation period of 1 hour and 24 hours, respectively, are shown. 

In Figure 4.12 the annual precipitation simulated with the NSRP model after 

the external selection based on the AR(1) precipitation series has been carried 

out. In Figure 4.13 the observed and simulated values of extreme precipitation at 

1-hour and 24-hour aggregation periods and extremes of dry and wet spell 

durations are shown. 
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Figure 4.9. A comparison between observed (red) and simulated (green) monthly 

precipitation. The vertical bars denote the standard deviations of the monthly values. 

 

Figure 4.10. A comparison between observed (red) and simulated (green) monthly 

statistics of precipitation (mean, variance, lag-1 autocorrelation, skewness, frequency of 

non precipitation, transition probability wet-wet), for the aggregation period of 1 hour.  
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Figure 4.11. A comparison between observed (red) and simulated (green) monthly 

statistics of precipitation (mean, variance, lag-1 autocorrelation, skewness, frequency of 

non precipitation, transition probability wet-wet), for the aggregation period of 24 hours.  

 

Figure 4.12. The annual precipitation simulated with the NSRP model (red line) after 

the external selection based on the AR(1) precipitation series (magenta dots) has been 

carried out. The vertical bars denote the p of the long-term average annual precipitation.  
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Figure 4.13. A comparison between the observed (red crosses) and simulated values of 

extreme precipitation (green crosses) at (a) 1-hour and (b) 24-hour aggregation periods; 

(c) extremes of dry and (d) wet spell durations. Dry/wet spell duration is the number of 

consecutive days with precipitation depth lower/larger than 1 mm.  

In Figure 4.14 the observed and simulated average air temperature for every 

month, aggregation period of 1 h (a) and 24 h (b) are shown. In Figure 4.15 a 

comparison between the observed and simulated daily maximum (a) and 

minimum (b) air temperature for every month is shown.  
 

 

Figure 4.14. A comparison between the observed (red) and simulated (green) average air 

temperature for every month, aggregation period of 1 h (a) and 24 h (b). The vertical 

bars denote the standard deviations. 
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Figure 4.15. A comparison between the observed (red) and simulated (green) daily 

maximum (a) and minimum (b) air temperature for every month. The vertical bars 

denote the standard deviations. 

In Figure 4.16 a comparison between the observed and simulated air 

temperature distribution (a) and average daily cycle (b) is shown. The triangles 

are the standard deviations for every day hour. 

 

 

Figure 4.16. A comparison between the observed (red) and simulated (green) air 

temperature distribution (a) and average daily cycle (b). The triangles are the standard 

deviations for every day hour. 
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In Figure 4.17 a comparison between the observed and simulated mean 

monthly shortwave radiation is shown: a) Global radiation, b) Direct radiation 

radiation, c) Diffuse radiation. The vertical bars denote the standard deviations 

of the monthly values. 

 

Figure 4.17. A comparison between the observed (red) and simulated (green) mean 

monthly shortwave radiation. (a) global radiation, (b) direct beam radiation, (c) diffuse 

radiation. The vertical bars denote the standard deviations of the monthly values. 

In Figure 4.18 a comparison between the observed and simulated mean 

monthly vapor pressure for 1 h (a) and 24 h (b) aggregation time periods is 

shown.   
 

 

Figure 4.18. A comparison between the observed (red) and simulated (green) mean 

monthly vapor pressure for 1 h (a) and 24 h (b) aggregation time periods. The vertical 

bars denote the standard deviations of the monthly values.   
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In Figure 4.19 a comparison between the observed and simulated wind speed 

probability density function (a) and daily cycle of wind speed (b) are shown. 

In Figure 4.20 a comparison between the observed and simulated monthly 

average relative humidity for 1 h (a) and 24 h (b) aggregation time periods is 

shown.  

 

 

Figure 4.19. A comparison between the observed (red) and simulated (green) wind 

speed probability density function (a) and daily cycle of wind speed (b).  

 

Figure 4.20. A comparison between the observed (red) and simulated (green) monthly 

average relative humidity for 1 h (a) and 24 h (b) aggregation time periods. The vertical 

bars denote the standard deviations. 
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In Figure 4.21 a comparison between the observed and simulated relative 

humidity daily cycle (a) and vapor pressure probability density function (b) are 

shown. The triangles in (a) represent the daily cycle of relative humidity 

standard deviation. 

 

 

Figure 4.21. A comparison between the observed (red) and simulated (green) relative 

humidity daily cycle (a) and vapor pressure probability density function (b). The 

triangles in (a) represent the daily cycle of relative humidity standard deviation. 

4.2.2.1.2. Base run weather forcings  

In the base run storm generation, we used the Poisson Rectangular Pulses 

(PRP) model, with a one-parameter exponential distribution for time between 

storms (Tb) and storm durations (Tr); and a Gamma distribution for rainfall depth 

h conditioned on Tr (e.g., Ivanov et al., 2007). The storm intensity p, is 

calculated as: p = h/Tr. We have considered two rainfall seasons: wet, from the 

1
st
 of January to the 30

th
 of April and from the 1

st
 of October to the 31

st
 of 

December, and dry, from the 1
st
 of May to the 30

th
 of September, following 

Pumo et al. (2008) findings, with seasonal precipitations denoted by Pw and Pd. 

The weather station data, from 2002 to 2011, are used to estimate the above 

mentioned rainfall model parameters (h, Tb, Tr) and to calculate the annual cycle 

of Tmax-X using the Penman-Monteith equation. Table 4.2, which compares all the 

rainfall statistics obtained from the San Pier Niceto Acquaurtedditi station 

weather data with those obtained with the Poisson Rectangular Pulses generator, 

confirms the good weather performances of the generator. 
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Table 4.2. Rainfall parameters in the San Pier Niceto station (2002-2011). 

Parameter Description Observation 
Modeled 

values 

P Mean annual precipitation [mm] 815.04 815 

fd Dry season lenght [yr] 0.202 0.202 

fw Wet season lenght [yr] 0.798 0.798 

Pd Dry season precipitation [mm] 164.8 166 

Pw Wet season precipitation [mm] 650.24 649 

Tb,d Dry season interstorm period [h] 94.15 95.3 

Tb,w Wet season interstorm period [h] 51.39 50.8 

Tr,d Dry season storm duration [h] 2.4 2.1 

Tr,w Wet season storm duration [h] 6.6 6.8 

hd Mean storm depth dry season [mm] 4.22 4.25 

hw Mean storm depth wet season [mm] 6.57 6.55 

λd 
Frequency of storm event dry season 

[d
-1

] 
0.255 0.252 

λw 
Frequency of storm event wet season 

[d
-1

] 
0.467 0.472 

 

With regard to the evapotranspiration processes, CATGraSS uses prescribed 

annual cycle of the maximum transpiration Tmax-X for a flat topography as a 

function of day of year (DOY) based on a stationary cosine function for each 

PFT. The cosine function is fitted to mean daily values of Tmax-X calculated from 

the daily Penman Monteith equation. The fitted annual mean daily 



Tmax X
F

 and 

the difference between the max and minimum points of the cosine curve Δ for 

each PFT are respectively 5.8 mm·d
-1

 and 4.7 mm·d
-1

 for oak, 4.9 mm·d
-1

 and 

3.9 mm·d
-1

 for grass and 2.8 mm·d
-1

 and 1.8 mm·d
-1

 for Indian fig (Figure 4.22). 

In order to take into account the Indian fig behavior (see sections 4.1.3.2), its 

Tmax-X value was calculated using the modified Penman-Monteith equation (Allen 

et al, 2006), and multiplying the estimated value by a correction coefficient Kc 

equal to 0.35 following Consoli et al. (2013). Following this approach, the ETa-X 

curve of the Indian fig results in agreement with the observed data of Han and 

Felker (1997) and Consoli et al. (2013).  

In order to illustrate the role of topography and incoming solar radiation on 

the potential evapotranspiration distribution, the mean Tmax-X for each vegetation 

type over the catchment is plotted (Figure 4.23). Annually, in the S-facing slope 

the Tmax-X is greater than in the N-facing slopes because it receives as much as 

twice the solar radiation received by N-facing slopes. 

In order to reduce data requirements and keep the model simple, the bare soil 

evaporation, for a bare soil grid cell, Eb, is taken as a fraction (fb) of the 
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maximum grass transpiration rate, Tmax-G (e.g., Eb=fb·Tmax-G) (e.g., Mutziger et 

al., 2005; Istanbulluoglu et al., 2012, Zhou et al., 2013); the value of fb is here set 

to 0.7 (Istanbulluoglu et al., 2012; Zhou et al., 2013). 

 
 

 

Figure 4.22. Calibration of Tmax-X annual curve: (a) oak, (b) grass, (c) Indian fig. 

 

 

Figure 4.23. Mean annual Tmax-X over the basin for: oak (a), grass (b) and Indian fig (c). 
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4.2.2.1.3. Future runs, weather forcings  

For generating the future runs weather we used realizations from a subset 

(twelve) of the GCMs used in the IPCC-4AR (Meehl et al., 2007). The selection 

of models is based on two criteria: data availability (availability of daily 

precipitation time series as the main constrain) and a relative independence 

among the models (different developing groups). The GCM realizations 

correspond to the A1B emission scenario (IPCC, 2000). The models used in this 

work are: BCCR-BCM2.0, CCSM3, CGCM3.1 (T63), CNRM-CM3, CSIRO-

Mk3.5, ECHAM5/MPI-OM, GFDL-CM2.1, GISS-ER, INGV-SXG, IPSL-CM4, 

MIROC3.2 (medres) and PCM. 

The stochastic downscaling is applied to the location of San Pier Niceto 

meteorological station, where the observed SIAS data are available from 2002 

through 2011. This period thus represents the interval of the control scenario 

(CTS), for which both observations and climate model simulations can be used. 

The future climate scenario is based only on GCM projections for the period of 

2045-2065, 2081-2100 (FUT). The downscaling procedure uses the GCMs 

outputs of the grid cell containing the study catchment.  

An illustration of the relative performance of twelve GCMs in terms of 

monthly precipitation and temperature for the period 2045-2065 and 2081-2100 

is provided in Figures 4.24-4.27. The time series of the mean monthly 

temperature (Figures 4.24, 4.26) and precipitation (Figures 4.25, 4.27) represent 

the Control scenario (CTS) (a), the Future scenario (FUT) (b), and the Factors of 

change (c). 

The GCMs outputs exhibit a large spread, underlining inherent uncertainties 

in climate model predictions. This is particularly evident for precipitation where 

factors of change are substantially different among the models. Changes in air 

temperature are generally more coherent among climate models outputs (Figures 

4.24, 4.26) and all of the factors of change are positive.  

In a successive step, the posterior distributions of the factors of change (step 

3 in Figure 3.7) are calculated for the analyzed statistics for each month using 

the Bayesian multi-model ensemble approach of Tebaldi et al. (2005). 
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Figure 4.24. The time series of mean monthly temperature calculated from twelve 

GCMs: CCSM3, CSIRO-Mk3.5, ECHAM-5, IPSL-CM4, CGCM3.1, GFDL, INGV, 

MIROC3.2, BCCR-BC2, CNRM-CM3, GISS-ER, PCM for the location of San Pier 

Niceto. (a) Control scenario (CTS); (b) Future scenario (FUT), 2046–2065; (c) Factors of 

change for mean monthly temperature.      

a) 

b) 

c) 
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Figure 4.25. The time series of total monthly precipitation calculated from twelve 

GCMs: CCSM3, CSIRO-Mk3.5, ECHAM-5, IPSL-CM4, CGCM3.1, GFDL, INGV, 

MIROC3.2, BCCR-BC2, CNRM-CM3, GISS-ER, PCM. (a) Control scenario (CTS); (b) 

future scenario (FUT), 2046-2065; (c) Factors of change for monthly precipitation. 

a) 

c) 

b) 
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Figure 4.26. The time series of mean monthly temperature calculated from twelve 

GCMs: CCSM3, CSIRO-Mk3.5, ECHAM-5, IPSL-CM4, CGCM3.1, GFDL, INGV, 

MIROC3.2, BCCR-BC2, CNRM-CM3, GISS-ER, PCM for the location of San Pier 

Niceto. (a) Future scenario (FUT), 2081–2100; (b) Factors of change for mean monthly 

temperature. 

 

 

 

 

a) 

b) 
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Figure 4.27. The time series of total monthly precipitation calculated from twelve 

GCMs: CCSM3, CSIRO-Mk3.5, ECHAM-5, IPSL-CM4, CGCM3.1, GFDL, INGV, 

MIROC3.2, BCCR-BC2, CNRM-CM3, GISS-ER, PCM. (a) future scenario (FUT), 2081-

2100; (b) Factors of change for monthly precipitation. 

For example, the Figure 4.28a illustrates the posterior probability density 

functions (pdf) of average temperature in March using simulations of the CTS 

and FUT scenarios for the period 2081-2100. The March temperature based on 

individual simulations by 12 models for the CTS and FUT is also shown (green 

and magenta dots, respectively). Figure 4.28b shows the posterior pdf of the 

additive factor of change, together with the factors of change predicted by the 

individual models. Figure 4.28c illustrates the probability density functions of 

the total precipitation in March for the CTS and FUT scenarios for the period 

2081-2100. Figure 4.28d shows the pdfs of the product factor of change for the 

total precipitation in March as well as the factors of change predicted by the 

individual models. An illustration of the factors of change for the period 2081-

2100, including the mean, and the 10-90 percentile intervals calculated for 

a) 

b) 
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several precipitation statistics at the aggregation period of 24 h is shown in 

Figure 4.29. As seen, the uncertainty present in the estimation of the factors of 

change for precipitation statistics is very high with a tendency to increase for 

higher order statistics. The uncertainty is also strongly related to seasonality, 

since in some months model predictions tend to provide a more accurate 

estimation than in others.  

In this study only the medians of the probability distributions of FOC are 

used to re-estimate climate statistics for the central years (2055 and 2090) of the 

periods 2046-2065 and 2081-2100. FOCs for the central year (2006) of period of 

2002 through 2011 are all equal to unity or zero, being 2002-2011 assumed as 

the control scenario period for which observations are available. FOCs for all of 

the other years in the period 2001-2100 were linearly interpolated between the 

downscaled years (2006, 2055 and 2090) using the same methodology presented 

by Burton et al. (2010) to obtain transient climate change scenarios (see also 

Fatichi et al., 2013). In this way one hundred sets of AWE-GEN parameters (one 

for each year) are estimated and can be used to generate meteorological time 

series of a given year. In Figure 4.30 a flowchart illustrating each step of the 

used methodology is shown. Due to the stochastic nature of AWE-GEN each 

year can be generated multiple, n, times. In this study we used n equal to fifty as 

a reasonable number of realizations which allows us to analyze the effect of 

natural climate variability without increasing excessively computational costs.  

All this procedure provides fifty realizations of a 100-year hourly climate 

data between 2001-2100 which contain rainfall depths, and allow to calculate 

Tmax-X from the Penman-Monteith equation. 
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Figure 4.28. The posterior probability density functions (PDF) obtained from the multi-

model ensemble for the location of San Pier Niceto (ME) 2081-2100, the month of 

March. (a) The PDF of mean March temperature for the CTS (yellow bars) and the FUT 

(red bars) scenarios. Also shown are the results from the individual models for the CTS 

(green dots) and FUT (magenta dots). (b) The PDF of the additive factor of change for 

air temperature, (blue bars) and predictions by the individual models (black dots). (c) 

The PDF of mean March precipitation for the CTS (yellow bars) and the FUT (red bars) 

scenarios. Also shown are the results from the individual models for the CTS (magenta 

dots) and FUT (green dots). (d) The PDF of the product factor of change for 

precipitation, (blue bars) and predictions by the individual models (black dots).  

 

 

 

Figure 4.29. The factors of change estimated for different precipitation statistics at the 

aggregation interval of 24 h, 2081-2100. The mean and the 10-90 percentile intervals are 

computed from the posterior PDFs of these statistics. (a) Mean precipitation, (b) 

Variance of precipitation, (c) Skewness of precipitation, (d) Frequency of no-

precipitation.  

a) b) 

c) d) 
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Figure 4.30. Flowchart illustrating each step of the AWE-GEN future transient climate 

methodology. 

4.3. Results: base run 

4.3.1. Model calibration  

As previously said, the main purpose of the base run is to compare the model 

results with observed vegetation patterns (Figures 4.1, 4.2). As the basis of the 

model calibration, we compared the current vegetation map with the base run 

dominant vegetation (i.e., the vegetation type that has got the maximum 

occurrence of existence in the cell) spatial distribution. To generate this map, the 

model output from the last 3,000 years of the simulation has been used since it 

shows a relatively stable behavior while the first 2,000 years can be considered 

the spin-up period and removed. The current vegetation map has been obtained 

from a supervised classification (considering three vegetation classes), using the 

Google Earth aerial photo of the basin area together with field survey (Figure 

4.31).  
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Figure 4.31. Edited Oak (black dots) and Indian fig (red dots) used for the basin 

calibration and the Google Earth aerial photo. 

All the soil (modeled as a sandy-loam) and vegetation parameters used for 

simulating local water balance and plant dynamics (e.g., biomass production and 

loss) are listed in Tables 4.3-4.7. The parameters used to model soil water 

balance, ET, and local biomass dynamics are largely assigned according to 

typical published values in ecohydrology and land surface modeling literature 

(Tables 4.4, 4.5) presenting the source of each parameter as footnotes in the 

same Tables. We reserved only a limited number of parameters for calibration, 

including plant mortality and establishment parameters (Table 4.6), and plant 

decay coefficients which are calibrated against remote sensing-derived Leaf 

Area Index (LAI) within the ranges reported in other studies (discussed below). 

In particular the decay coefficients for green biomass (ksg), structural biomass 

(kss), dead biomass (kdd), the maximum drought induced foliage loss (ksf), the 

water use efficiency (WUE), the specific leaf are for green (cg) and dead biomass 

(cd) and the LAImax are identified with calibration, using the ranges reported in 

the literature for semiarid ecosystems (e.g., Montaldo et al., 2005; Williams and 

Albertson, 2005; Ivanov et al., 2008a).  

The MODIS (Moderate-resolution Imaging Spectroradiometer) data have 

been here used to calibrate the model as well as previously done with other 

ecohydrological models (i.e., Istanbulluoglu et al., 2012; Fatichi et al., 2012; 

Zhou et al., 2013). MODIS sensors, on the Terra and Aqua satellites, can 

provide valuable information to assess vegetation state at basin scales. The LAI 

is included in the products MOD15A2 and MYD15A2 (NASA Land Processes 

Distributed Active Archive Center, LP DAAC) and provided every 8 days at 1 

km spatial resolution. Since three PFTs cover the basin area, we identified 

MODIS cells that have a relatively uniform cover of a given plant type (oak, 

Indian fig 

Oak N 
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grass or Indian fig). The MODIS pixels selected to represent the LAI of trees are 

uniformly covered by oaks only and cover the north face of the basin and also 

areas outside the basin. The MODIS pixels selected to represent grass are 

located in the highest part of the basin and also contain areas that are outside the 

basin boundaries. The identification of MODIS pixels representative of the 

Indian fig Opuntia cover was not possible given the fact that Indian fig is 

typically mixed with the other two plant types and therefore it would have been 

impossible to separate the LAI from the different plants. Moreover, the 

algorithms used by MODIS to process reflectance data are not able to reproduce 

the spectral signature of succulent plants such as the Indian fig undermining the 

overall validity of MODIS data for this vegetation type.  

The MODIS data for 12 years, from 2000 to 2012, are compared with LAI 

simulated by CATGraSS. In the calibration procedure, the lowest MODIS LAI 

values (LAI<2 for oak and LAI<0.5 for grass) are not considered because of their 

low signal-to-noise ratio. The decay coefficients ksg, kss, kdd, ksf, the WUE, the cg, 

the cd, and the LAImax have been manually adjusted within the literature 

parameter ranges so as to match the MODIS LAI data for oak and grass 

(Montaldo et al., 2005, 2008). The comparison between MODIS LAI and 

modeled LAI is shown in Figures 4.32a, b for oak and grass, respectively. The 

model shows consistency in estimating the onset of the growing and dormant 

seasons, and the LAI peak is estimated correctly in each years. The standard 

error of estimation (SEE), the Nash-Sutciffe efficiency (NSE) (Nash and 

Sutciffe, 1970), the coefficient of determination (R
2
) and the coefficient of 

correlation (R) (for oak SEE=0.21, NSE=0.16, R
2
=0.67, R=0.82 and for grass 

SEE=0.15, NSE=0.12, R
2
=0.64, R=0.80) show good agreement between model 

predictions and remote sensing estimation. The model parameters for the Indian 

fig were obtained using for each parameter a value within a realistic range 

provided by scientific literature (Table 4.5) and imposing an evergreen behavior, 

and they provide a simulated LAI in agreement with other studies (Han and 

Felker, 1997; Inglese et al., 2009; Consoli et al., 2013).  

The spatial patterns of plants obtained with CATGraSS are most sensitive to 

the mortality and establishments parameters reported in Table 4.6 (θ, PMb, PE-max) 

which are obtained with a calibration as well. The conceptual design of the CA 

component of CATGraSS is very similar to that of van Wijk and Rodriguez-

Iturbe (2002), which was used to simulate a semiarid Texas savanna. As such, 

we took the parameters used by van Wijk and Rodriguez-Iturbe (2002) and Zhou 

et al. (2013) as initial values, and calibrated CATGraSS through numerous 

simulations until the predicted vegetation patterns agreed with the current 

vegetation map. 

Plant mortality is a key component of the vegetational model as it opens 

space for competition and can define the occupation density of a plant type in a 

given domain. Therefore, in calibrating the model with the current vegetation 

map, we started with the drought resistance threshold, θ, used for calculating the 
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probability of drought-induced plant mortality, PMd. Since Indian fig is more 

drought resistant than oak and grass, we rank the PFTs as Indian fig, oak, and 

grass, e.g., from high to low drought resistant species, and calibrated the model 

by preserving this drought resistance ranking. In order to account for the fact 

that plant seedlings are in general more vulnerable to drought than mature plants, 

we assumed that all the seedlings are 20% less drought resistant than mature 

plants (Fenner, 1987; Zhou et al., 2013); this assumption is generally satisfied 

for both oak and Indian fig (Chew and Chew, 1965).  

The background mortality probability (PMb-X) which represents the influence 

of local disturbances (e.g., diseases and grazing) has been fixed in a similar way 

to van Wijk and Rodrigues-Iturbe (2002) due to lack of observations. This 

parameter is assumed to take the same value for oaks and Indian fig, and a three-

fold higher value for oaks and Indian fig seedlings using the same scheme 

adopted in Zhou et al. (2013).  

The maximum probability of establishment parameter, PE-max, has been also 

calibrated until the predicted plant patterns agreed with the vegetation cover map 

considering that grasses usually has a higher capability for colonization than 

trees (Jeltsch et al., 1996).  

The inhibition factor, ING, was not used because in this case study there is not 

the allelopathy phenomenon. In fact the vegetation types that are in this area do 

not produce allelochemicals that affect the other vegetation types. 

For the fire event we have assumed a probability of fire, PF, (i.e., the inverse 

of return period, TF) like to 0.05 (return period, TF: 20 years; Casagrandi and 

Rinaldi, 1999) and the vulnerability to fire of each vegetation, VF-X, is shown in 

Table 4.7 (plant seedlings are more vulnerable to fire than mature plants).  

Table 4.3. Soil parameters used in the point water balance component (Laio et al., 

2001). 

Soil 

Type 

Coefficient of 

the hydraulic 

conductivity 

power low 

Saturated 

hydraulic 

conductivity 

Porosity 

Soil 

saturation 

degree at 

field 

capacity 

Bare soil 

infiltration 

capacity 

β [-] ks [mm·d
-1

] N [-] sfc [-] Ib [mm·d
-1

] 

Sandy 

loam 
    13.8 1.75 0.43 0.56 0.83 
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Table 4.4. Plant parameters used in the point water balance component. 

Parameters Description Oak Indian fig Grass 

Zveg Vegetation height [m] 4 
1
 1.5 

2
 0.5

3
 

LAImax Maximum leaf area index [m
2
·m

-2
] 7.1 

8
 3 

7,8
 2.7 

8
 

        rl Stomatal resistance [s·m
-1

] 280 
3
 1000 

4
 100 

3
 

  αs shortwave albedo [-] 0.1 
1
 0.2 

4
 0.2

 3
 

  Zr Root depth [m] 1.5 
1
 0.1 

5
 0.3 

6
 

Imax Full canopy interception [mm] 2 
6
 1.5 

6
 1 

6
 

Source: (1) Pumo et al. (2008); (2) Singh and Singh (2003) ; (3) Montaldo et al. (2013); (4) 

Acevedo (1983); (5) Snyman (2005); (6) Caylor et al. (2005); (7) Han and Felker (1997), Inglese 

et al. (2009), Consoli et al. (2013); (8) Calibration. 

Table 4.5. Local plant dynamics component parameters. 

Parameters Description Oak Indian fig Grass 

WUE 
Water Use Efficiency [kgCO2 

·kg
-1

H2O] 
0.009

 1,8
 0.022 

2,8
 0.005 

1,8
 

ksg 
Decay coefficient of green 

biomass [d
-1

] 
0.002 

3,8
 0.002 

3,8
 0.0025 

3,8
 

kss 
Decay coefficient of 

structural biomass [d
-1

] 
0.005 

4,8
 0.005 

3,8
 0.001 

3,8
 

kdd 
Decay coefficient of dead 

biomass [d
-1

] 
0.05

 3,8
 0.07 

3,8
 0.15 

3,8
 

ksf 
Maximum drought induced 

foliage loss rates [d
-1

] 
0.001

 8
 0.0005 

8
 0.005 

8
 

cg 
Specific leaf area for green 

biomass [m
2
 leaf ·g-1

DM] 
0.019 

3,8
 0.015 

3,8
 0.019 

3,8
 

cd 
Specific leaf area for dead 

biomass [m
2
 leaf ·g

-1
DM] 

0.07 
4,8

 0.02 
3,8

 0.07 
4,8

 

Tdmax 
Constant for dead biomass 

loss adjustment [mm ·d
-1

] 
10 

5
 10 

7
 10

 7
 

s* 
Saturation degree at stomata 

closure [-] 
0.22

6
 0.24

6
 0.33

6
 

Sω 
Saturation degree at wilting 

point [-] 
0.15

6
 0.13

6
 0.13

6
 

sh 
Saturation degree at soil 

hygroscopic [-] 
0.1

6
 0.1

6
 0.1

6
 

Source: (1) Montaldo et al. (2013); (2) Nobel (1988), Nobel and Bobich (1995); (3) Montaldo et 

al. (2005); (4) Montaldo et al. (2008); (5) Istanbulluoglu et al. (2012); (6) Caylor et al. (2005); (7) 

Zhou et al. (2013); (8) Calibration. 
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Table 4.6. Model parameters for plant mortality and establishment. 

Parameters Description Oak 
Oak 

Seedling 

Indian 

fig 

Indian fig 

Seedling 
Grass 

θx 

Drought-

resistant 

threshold [-] 

0.75
2
 0.6

2
 0.8

2
 0.64

2
 0.53

2
 

PMb-X 

Background 

mortality 

probability [-] 

0.01
1
 0.03

1
 0.01

1
 0.03

1
 0.05

1
 

PE-X-max 

Maximal 

establishment 

probability [-] 

0.25
2
 N/A 0.25

2
 N/A 0.35

2
 

  Source: (1) Zhou et al. (2013), (2) Calibration. 

Table 4.7. Fire parameters. 

Parameters Description Oak 
Oak  

Seedling 
Indian fig 

Indian fig 

Seedling 
Grass 

PF 
Probability 

of fire [yr
-1

] 
0.05 

1,3
 

TF 
Fire return 

period [yr] 
20 

1,3
 

VF-X 
Vulnerability 

to fire [-] 
0.06 

2,3
 0.2 

2,3
 0.1 

2,3
 0.2 

2,3
 0.8 

2,3
 

Source: (1) Casagrandi and Rinaldi (1999), Le Houèrou (1974), Thomas (1991), (2) Accatino et al. 

(2010), (3) Calibration. 
 

           

 

 

Figure 4.32. Calibration LAI: (a) oak, (b) grass. 

a) 

b) 
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4.3.2. Comparison between real and CATGraSS base run 

vegetation maps  

In order to verify the goodness of the calibration, current vegetation map has 

been compared with the base run dominant vegetation distribution using the 

error Matrix (Cohen, 1960; Congalton, 1991; Foody, 2002). The error Matrix is 

a square matrix of size r (here equal to the number of the vegetation types). It 

expresses the number of vegetation cells assigned to a particular vegetation type 

(base run dominant vegetation map) related to the actual vegetation type as 

computed in the current vegetation map. The columns represent the actual data 

(current vegetation map) while the rows indicate the predictions (base run 

dominant vegetation map). The value xij (ij=1,2,3) denotes the number of pixel 

of i-th actual vegetation reproduced by the model as j-th vegetation. Pixels along 

main diagonal represent correct reproduction by the model. We calculated the 

Kappa coefficient, K, (Cohen, 1960) and the percentage corrected, PC (Foody, 

2002): 



 
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K                                                                                (4.1)                        

2
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N

x

PC i

ii
                                                                                                       (4.2)                                

where xii is the number of corrected model reproduction for the i-th 

vegetation observation in row i and column i, xi+ and x+i are the marginal totals 

of row i and column i, respectively, and N is the total number of observation 

(total number of vegetation cells in the basin). K and PC values provide an 

objective assessment of model simulation. For instance, Fleiss (1981) 

characterizes K exceeding 0.75 as excellent, 0.40 to 0.75 as fair to good, and 

below 0.40 as poor, while Thomlinson et al. (1999) characterize PC exceeding 

0.85 as excellent. In our case, the performance indices K (equal to 0.77), and PC 

(equal to 0.87) shows that our model result, after calibration, matches reasonably 

well with the actual vegetation distribution.  

4.3.3. Aspect influence on water stress 

The role of topography on the vegetation spatial distribution can be 

illustrated by plotting the mean annual plant water stress as a function of slope 

and aspect by averaging 5,000 years of model outputs for each of the 40 S-A 

classes and considering only those with soil thickness equal to 3 m for simplicity 

(Figure 4.33). Among the three PFTs, the modeled mean annual water stress 
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(WS) follows the order, from high to low, grass (WSG=0.62), oak (WST=0.54), 

and Indian fig (WSIF=0.37) averaged across the slope-aspect domain (Figure 

4.33). The role of morphology is more pronounced for oak and Indian fig than 

grass (Figure 4.33). Water stress for grasses shows a relatively small range, with 

higher (lower) values corresponding to steep S-facing (N-facing) slopes. In the 

north face the water stress is lower than in the south face because of the lower 

radiation and thus ETmax-X (Figure 4.5). Lack of a considerable aspect influence 

on grass water stress suggests that grasses could grow opportunistically 

everywhere in the basin where bare soil, “space”, is available. Water stress 

increases with slope angle dramatically on S-facing slopes for the other species. 

In the E and S facing slopes oak shows the greatest increase in water stress as 

slope steepens, while high water stress value of Indian fig is only confined to 

steep south facing slopes. In shallow to moderate slopes and for all aspects, oak 

shows more water stress than Indian fig. This greater water stress experienced by 

oak in the E and S facing could cause a slight chance for this specie to settle in 

this area, pushing it to establish on the N-facing while the grass and Indian fig 

mainly on the S-facing.  

 

 

Figure 4.33. Mean annual water stress for grass (a), Quercus Ilex (b), and Opuntia ficus-

indica (c) with different slope and aspect combinations. 

4.3.4. Vegetation spatial patterns 

Vegetation maps at three selected time steps, 1,000 years (lower tree 

population), 3,700 years (higher tree population), and 5,000 years, and the entire 

time series of vegetation cover percentages of the base run are presented in 

Figures 4.34a, b, c, e, respectively. In Figure 4.34d the map of the dominant 

vegetation cover, which is in agreement with field observations, is represented. 

Oak is dominant on the N-facing and coexist with grass. Indian fig coexists with 

grass and with a small oak clusters in S-facing slopes while in the steeper part of 

the basin whereas the soil is very shallow, the grass is dominant. 

Cover percentages of the different species are dynamic, even under a 

stationary climate, and behave markedly different among species. The highly 

variable nature of grass fraction is typically driven by the inter-annual 

fluctuations in precipitation. Because grasses have an overall higher water stress 

a) b) c) 
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and lower drought resistance, they die rapidly during dry years, but also grow 

back quickly in the following wetter years, as their seeds are assumed to be 

available everywhere in space. In addition, the establishment and mortality of 

grass depend on the rainfall of a given year and therefore subjected to the same 

inter-annual variability of rainfall.  

In contrast, the establishment of oak seedlings depends on the population of 

the parent plants in the area, which leads seedling establishment to depend 

significantly on the memory of the historical precipitation magnitudes. As a 

result, compared to grass vegetation, the areal coverage of oak shows a strong 

persistence over time. The India fig has got also a strong persistence over time 

due to its high resistance to the water stress.  The coverage of oak is slightly 

more dynamic than that of Indian fig. In fact, the lag-1 autocorrelation is 0.996 

for oak, 0.994 for Indian fig and 0.813 for grass. Overall, with the selected 

model parameters, oak coverage exhibits persistence with multi-century trends.  
 

 

   

Figure 4.34. Base run: simulated plant distribution in the basin at years: (a) 1,000; (b) 

3,700. 

a) 

b) 

N 
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Figure 4.34. Base run: simulated plant distribution in the basin at years: (c) 5,000 and 

(d) dominant vegetation from 2,000 to 5,000, respectively; and (e) time series of percent 

coverage of PFTs in the modeled catchment. 

Even though the plant distribution map provides an important indication of 

aspect control on plant patterns (Figures 4.34 c, d), the role of topography can be 

better viewed by illustrating, for the three species, the boxplots of annual percent 

c) 

e) 

d) 

b a 

 
c 

 

Oak 

Grass 

Indian fig 

Bare soil 

Channel  
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cover with respect to aspect (Figure 4.35 left panel), and the time probability of 

occurrence (PO) over the modeled domain (Figure 4.35 right panel) here defined 

as the number of years of existence of a specific species on a cell divided by the 

total duration of simulation, using the last 3,000 years of the simulation (see 

section 4.3.1).  

From N to S aspects the modeled dominant plant type changes from oak to 

grass and Indian fig (Figures 4.35a, c, e). The range of the modeled cover 

percentages of oaks in a given aspect category captures the existing abundance 

in the field (Figure 4.35c). Grass shows a muted response to aspect (Figure 

4.35a), which can be attributed to its relatively uniform water stress across the 

domain (Figure 4.33a). Conversely Indian fig shows a considerable variation of 

its percentage in function of the aspect (Figure 4.35b). It is in fact located only in 

the S, S-E and E aspects where it is actually observed in the basin.  

We obtained the oak coverage for each aspect class from current vegetation 

map using spatial analysis techniques within ESRI ArcGIS. This presents an 

opportunity for a direct comparison of the model results with oak mapped from 

current vegetation map. In Figure 4.35c the red central line of the box-whisker 

plot is the median of the oak coverage for each aspect group obtained with the 

CATGraSS and the dotted black line represents the oak coverage derived from 

the current vegetation map. This comparison shows a good agreement of the oak 

coverage for each aspect group.  
 

 

           

Figure 4.35. Model results for the base run: percent plant coverage with respect to 

aspect (left panel), and plant Probability of Occurrence, PO (right panel) for grass (a, b), 

oak (c, d) and Indian fig (e, f). In the box-whisker plots, the red central line is the 

median, the edges of the box are the 25
th

 and 75
th
 percentiles, the whiskers extend to the 

most extreme data points not considered outliers, and outliers are plotted as read squares. 

The dotted black line in (c) represents the oak coverage derived from the aerial photo of 

the basin editing the tree. 

f) 

c) 

e) 

b) 

Grass 

Oak 

Indian 

fig 

d) 

a) 
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With regard to the base run, an attempt to analyze how the biodiversity 

changes during the 5,000 year simulation has been carried out using the Shannon 

index (SHDI, Shannon and Weaver, 1949): 





N

i

ii ppSHDI
1

ln1                                                                                   (4.3)                      

where N is the number of vegetation type and pi the proportional abundance of 

the i
th
 type. This index, ranges from 1 to infinity and it increases as the number 

of different vegetation types increases and the proportional distribution of area 

among vegetation types become more even. The SHDI for 5,000 years is shown 

in Figure 4.36. The minimum of biodiversity is reached after a 1,000 years when 

the grass is dominant and there are few trees and Indian figs (Figure 4.34a), 

while for the period between 2,000 and 5,000 years, SHDI remains fairly 

constant highlighting a general stability and stationarity of the ecosystem. 

 

 

Figure 4.36. Shannon index of diversity, SHDI, for 5,000 years. 

The model results presented above are not sensitive to the initial condition 

used for spatial plant distribution. The influence of initial vegetation pattern was 

tested by conducting ten numerical experiments with CATGraSS in which the 

model was started with a different random vegetation distribution, but with the 

same probability of assignments for all PFTs (33%). In the simulations we 

observed that the model forgets the initial condition within the first thousand 

year, during which aspect-driven vegetation organization emerges on the 

landscape. 
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4.3.5. Influence of PFTs size, soil thickness and topography in 

the vegetation spatial patterns  

In this section a brief description of the influence of PFTs’ size, soil thickness 

and topography on the vegetation spatial distribution has been carried out. 

In order to analyze the influence of the PFTs’ size in the vegetation patterns, 

we have run the model by using the identical rainfall, and the initial conditions 

and parameters of the base run for different PFTs’ sizes: 2.5 m, 5 m and 10 m. 

In Figure 4.37 the dominant vegetation distribution for different PFTs’ sizes, i.e., 

2.5 m, 5 m and 10 m, is shown. Increasing the PFTs’ size, from 2.5 m to 5 m to 

10 m, the oak percentage increases (Table 4.8) and the grass percentage 

decreases. It can be explained considering that increasing the PFTs’ size, the oak 

seed spread increases from 5 m (PFTs’ size: 2.5 m) to 10 m (PFTs’ size: 5 m) to 

20 m (PFTs’ size: 10 m) and the establishment ability of the oak increases. The 

seed spread of the Indian fig increases from 2.5 m (PFTs’ size: 2.5 m) to 5 m 

(PFTs’ size: 5 m) to 10 m (PFTs’ size: 10 m) and, therefore, the establishment 

ability of the indian fig increases less than the establishment ability of the oak. 

The few changes of the vegetation percentage (i.e., Indian fig) could be also 

related to the stochastic component of the rainfall. In Figure 4.38 the time series 

of percent coverage of PFTs in the modeled catchment for different PFTs’ sizes 

are shown. Using different PFTs’ sizes, the variation of the cover fractions of 

each PFT in the years also changes.  
 

Dominant Vegetation PFT 5 mDominant Vegetation PFT 2,5 m

Dominant Vegetation PFT 10 m

 

Figure 4.37. Dominant vegetation 2,000-5,000 years for different PFT size: (a) PFT 2.5 

m, (b) PFT 5 m, (c) PFT 10 m. 

a) 

c) 

b) 

Indian fig 

Oak 
Grass 

Legend 

Bare soil 

N 

Channel  
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Table 4.8. Mean vegetation voverage [%] (5,000 years), for different PFT size (2.5 m, 5 

m, 10 m). 

Mean  Vegetation Coverage [%] 5,000 Years 

PFT Size Oak  Indian fig  Grass 

2.5 m 18.85 6.11 42.74 

5 m 23.00 6.30 39.95 

10 m 24.62 6.58 38.16 

 

 

 

  

Figure 4.38.  Time series of percent coverage of PFTs in the modeled catchment for 

different PFT sizes: (a) PFT 2.5 m, (b) PFT 5 m, (c) PFT 10 m. 

 

CATGraSS was also run without soil depth limitation to examine the plant 

pattern in the absence of soil depth limitation. We have run the model by using 

the identical rainfall, and the initial conditions and parameters of the base run. 

The results in Figure 4.39 show that, in this case, since there is not soil thickness 

limitation, as elevation grows, oak and Indian fig are able to establish and grow 

also in the upstream area of the basin. These results underline that, for the 

Zafferia catchment, the vegetation distribution is tightly related to the spatial 

variability of the soil thickness in the basin. 
 

b) 

a) 

c) 
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Figure 4.39. Simulation without soil depth limitation: vegetation distribution after 5,000 

years in the modeled catchment. 

In order to examine the influence of topography on the vegetation spatial 

patterns, CATGraSS was run on flat terrain (effect of topography) and with no 

soil depth limitation. We have run the model by removing the topography effect 

within the watershed boundaries and setting the elevations to the basin outlet 

elevation, using the identical rainfall sequencing, and the initial conditions and 

parameters of the base run. There is not the influence of the solar radiation and 

of the slope-aspect classes and the results in Figure 4.40 show that vegetation 

has got a random distribution. These results underline again that the vegetation 

distribution is tightly related to the topography of the basin. 

 

 

Figure 4.40. Flat surface simulation: vegetation distribution after 5,000 years in the 

modeled catchment. 
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Finally, in order to analyze the role of coexistence of the PFTs, simulations 

with single vegetation type in the basin for 5,000 years have been done (without 

effect of the soil thickness). In Figure 4.41 the time series of percent coverage of 

single vegetation type are shown. Looking at these results, we can state that 

using three vegetation types the observed pattern results from the competition. 

Without competition (single vegetation type) the single vegetation colonizes all 

the basin without a pattern. The percent plant coverage for each aspect class is 

almost the same (Figure 4.42). 

 

       

    

   
Figure 4.41. Time series of percent coverage of single vegetation type in the modeled 

catchment: (a) oak, (b) Indian fig, (c) grass. 

   
 

 
Figure 4.42. Percent plant coverage with respect to aspect for each vegetation: (a) oak, 

(b) Indian fig, (c) grass. 

a) 

c) 

b) 

c) 

b) a) 
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4.4. Result: future run, climate change analysis 

4.4.1. Future scenarios 

For the climate change analysis a transient climate scenario from 2001 to 

2100 was generated as previously discussed (Section 4.2.2.1.3).  

The annual cycles of observed temperature and precipitation along with the 

median predicted future temperature and precipitation for the period 2081-2100 

are shown in Figure 4.43. As seen, the relative uncertainty for precipitation 

prediction is much higher than for air temperature. Results suggest a reduction of 

the annual precipitation and an increase of the annual temperature confirming 

the large scale predictions for the Mediterranean area (e.g., Giorgi and Lionello, 

2008). Significant decreases of precipitation are predicted especially for March 

(26 mm), April (39 mm), November (22 mm), and December (45 mm). The 

maximum increase of temperature, 3° C, is predicted for the summer months, 

July and August, vice versa, the minimum temperature increase, 1.8° C, is 

predicted for April, November and December. 

Using the re-parameterized AWE-GEN, we generated fifty realizations for 

the future climate, each consisting of hourly weather variables for 100 years. 

The median and the 5
th
 and 95

th
 percentiles of the fifty runs representing the 

stochastic variability in future annual precipitation and mean annual temperature 

are represented in Figure 4.44 and Figure 4.45, respectively. According to the 

median, the generated future climate scenarios are characterized by an annual 

precipitation reduction, from 815 mm to 576 mm (about 30% less in 100 years) 

and by a mean annual temperature increase, from 15.3° C to 18.1° C (+2.8° C in 

100 years). The model uncertainty regarding precipitation prediction is much 

higher than that for air temperature. 

Solar radiation, relative humidity and wind speed were also generated using 

AWE-GEN at hourly time scale. Changes of solar radiation, relative humidity 

and wind speed are not a direct consequence of the calculated factors of change, 

but are only due to the internal relationships used in the weather generator. For 

instance simulated changes in solar radiation are typically minor, as also 

confirmed by GCM outputs.  

It is important to underline that the used stochastic downscaling do not 

contain any information about sources of uncertainty different from stochastic 

climate variability (e.g., future emission scenarios). Moreover, the uncertainty of 

climate change predictions due to different GCM realizations is only partially 

accounted for by the Bayesian weighing of the multi-model ensemble but not 

directly on the sampling of factors of change as done for instance in Fatichi et al. 

(2013). In order to derive the transient scenarios we were indeed forced to use 

only the median factors of change for all of the downscaled statistics. 
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Figure 4.43. The effect of the factors of change on the annual cycles of monthly 

temperature and precipitation. The monthly temperature (a) and precipitation (c) for the 

period 2002-2011 (blue line) and for the period 2081-2100 (red dashed line) and the 10-

90 percentile intervals (vertical bars); (b) the mean monthly temperature change (red 

dots) and the 10-90 percentile bounds (red vertical bars).  

a) 

b) 

c) 
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Figure 4.44. Annual precipitation (Median (black line), 5
th

 percentile and 95
th

 percentile 

(red lines)), 50 future runs. 

 

Figure 4.45. Mean annual temperature (Median (black line), 5
th

 percentile and 95
th

 

percentile (red lines)), 50 future runs. 

4.4.2. Effect of the future CO2 concentration increase on 

vegetation 

Climate change may also affect Tmax-X due to changes in air temperature, 

humidity, wind speed, and effects on cloudiness and atmospheric turbidity 

which, in turn, affect shortwave and longwave radiation. The increases in the 

concentration of CO2 may also cause reductions in Tmax-X rates, due to the 

expected decrease of stomatal conductance which cause an increase in canopy 

resistance (Long et al., 2004, Moratiel et al., 2011; Fatichi and Leuzinger, 2013).  

For grass the minimum canopy resistance rc = 74.1 s·m
−1

 was derived by 

dividing the typical stomatal resistance rs, equal to 100 s·m
−1

 (Table 4.4), for the 
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actively transpiring grass leaf surface, which was estimated as half of the LAImax 

= 2.7 m
2
·m

-2
 as in Allen et al. (1998): 

rc=rs/(0.5·LAImax)                                                                                              (4.4)                                     

Assuming that the rc = 74.1 s·m
−1

 applies under the current atmospheric CO2 

concentration, estimating a new rc value for higher CO2 concentrations could 

allow to estimate possible impacts of higher CO2 concentrations on Tmax-X. The 

current global CO2 concentration is close to 400 ppm and it is projected to reach 

about 550 ppm by 2050 and 700 ppm by 2100 (IPCC, 2000).  

Long et al. (2004) observed decreased stomata conductance by about 20% 

average for C3 plants grown in elevated CO2 concentration (about 550 ppm) in 

FACE (Free-Air CO2 Enrichment) experiments, based on more than 200 

independent measurements. Similar values were found in modeling studies (e.g., 

Fatichi and Leuzinger, 2013). Considering this 20% estimate as a reasonable 

estimate for the C3 species, if the canopy resistance is 100 s·m
−1

, the stomatal 

resistance for grass should increase to rs = 125 s·m
−1

. Using the same approach 

to calculate rc in the evapotranspiration equation (Allen et al., 1998), the rc for 

550 ppm is calculated as: 

rc=rs/(0.5·LAImax)=125s·m
−1

/(0.5·2.7m
2
·m

-2
) =92.6s·m

-1
                                (4.5)                     

assuming that the LAImax will not change in the future. The approach was also 

applied to calculate rc for oak and Indian fig.  

Given the overall uncertainty of the CO2 effects in reducing stomatal 

conductance especially in the long-term when plants might undergoes 

acclimation effects (Ainsworth and Long, 2005), the climate change simulations 

were carried out without and with the CO2 concentration increase effect, using 

the following three schemes:  

A. no decrease of stomatal conductance  

B. linear decrease of stomatal conductance until 2100 (20% of decrease in 

2050 and 40 % in 2100).  

C. linear decrease of stomatal conductance until 2050 (20 % of decrease) 

and constant afterwards from 2051 to 2100. 

The mean annual Tmax-X and ETa-X of each vegetation for the 2001-2010 and 

2091-2100 periods and relative to the three above mentioned schemes are shown 

in Table 4.9 and 4.10 respectively. In the scheme A, e.g., without CO2 effects on 

stomatal conductance, oak mean annual Tmax will increase from 1383 mm in the 

period 2001-2010 to 1618 mm in the period 2091-2100 (+235 mm), the grass 

Tmax will increase from 1175 mm to 1318 mm (+143 mm) and the Indian fig will 

increase from 571 to 657 mm (+86 mm). These increases are in the order of 11-

15% for the different species.  

In the scheme B, the oak Tmax in the period 2091-2100 will be 1474 mm (+98 

mm), the grass Tmax will be 1269 mm (+97 mm) and the Indian fig Tmax will be 

585 mm (+20 mm). These increases are comprised between 3% for Indian fig 
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and 8% for grass. Therefore the CO2 concentration increase can cause a 

considerable reduction of the Tmax-X increase.  

Finally, if we considered the linear-constant decrease of the stomatal 

conductance (scheme C) the annual Tmax-X increase will be in the order of 6 to 

10%.  

The effect of the CO2 increase is less marked for ETa-X due to the relatively 

dry nature of the analyzed climate. From 2001 to 2100, a reduction of the ETa-X 

due to the reduction of the precipitation can be observed. The oak mean annual 

ETa-X will be 431 mm (-19%) in the period 2091-2100 with the scheme A, 425 

mm with the scheme B and 428 mm with the scheme C highlighting small 

differences and the dominant effect of precipitation changes. Similar small 

differences are observed for the two other species. 

As consequence of the CO2 increase and consequent stomatal closure, in the 

scheme B and C, we also considered a linear increase of the WUE for the three 

vegetation types from 2001 to 2100, in agreement with Wang et al. (2012) 

(Table 4.11). WUE has been estimated following Farquhar et al. (1989): 

 

                                                                                                                    (4.6)       

                                                                                                                                      

where Pair is the air pressure (KPa), CCO2 is the molar concentration of ambient 

CO2 in the air (ppm), α is the ratio of intercellular to ambient CO2 concentration 

(-), gv and gc are air diffusivities of water vapor and CO2 respectively (m
2
·s

-1
), ei 

and ea are water vapor pressures inside the leaf and in the air respectively (KPa), 

Rc-a is the ratio of mol weight of CO2 to mol weight of air (gCO2·gair
-1

). We have 

considered CCO2 equal to 390 ppm in 2010 and 700 ppm in 2100 in accordance 

with the A1B emission scenario (IPCC, 2000). 

Table 4.9. Mean annual Tmax-X for oak, grass and Indian fig in 2001-2010 and 2091-2100 

period, for each scheme. 

Tmax-X [mm] 

 
Scheme A Scheme B Scheme C 

Years Grass Oak 
Indian 

fig 
Grass Oak 

Indian 

fig 
Grass Oak 

Indian 

fig 

2001-2010 1175 1383 571 1172 1376 565 1172 1376 565 

2091-2100 1318 1618 657 1269 1474 585 1291 1537 604 

increase 143 235 86 97 98 20 119 161 38 

% 11 15 13 8 7 3 9 10 6 
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Table 4.10. Mean annual ETa-X for tree, grass and shrub in 2001-2010 and 2091-2100 

period, for each scheme. 

ETa-X [mm] 

 
Scheme A Scheme B Scheme C 

Years Grass Oak 
Indian 

fig 
Grass Oak 

Indian 

fig 
Grass Oak 

Indian 

fig 

2001-2010 397 532 200 396 531 200 396 531 200 

2091-2100 344 431 179 335 425 161 339 428 169 

Table 4.11. Future WUE linear increment. 

WUE  [KgCO2·Kg
-1

H2O] 

Years CO2 (ppm) Oak Grass Indian fig 

2010 390 0.009 0.005 0.02 

2050 550 0.0103 0.0057 0.0228 

2100 700 0.0111 0.0062 0.0243 

4.4.3. Simulations of future scenarios   

Fifty future simulations corresponding to fifty possible stochastic realizations 

of the 2001-2100 transient scenarios were simulated using CATGraSS for each 

scheme, for a total of one hundred and fifty transient simulations. Results are 

analyzed to identify the effect of the expected climate change on the vegetation 

distribution and on the biodiversity.  

Changes of vegetation cover over time in the future climate scenarios for the 

50 ensemble members of scheme A are shown in Figure 4.46, using the median, 

and the 5
th
 and 95

th 
percentile. The median trajectory highlights a decrease of oak 

(from 30.3% in 2001 to 20.7% in 2100) and Indian fig (from 5.3% in 2001 to 

3.8% in 2100) and an increase of grass (from 40.9 % in 2001 to 54.8% in 2100). 

Looking at the 5
th
 and 95

th 
percentile of the fifty simulations in each year a large 

variability of grass cover can be observed (28.1-63.9%), oak shows a smaller 

variability (12.5-26.8%), and for the Indian fig the 5
th
 and 95

th 
are almost the 

same (3-4.3%). 

For the same scheme A, the mean vegetation distribution for 2100 obtained 

considering the 50 runs of climate change still shows that aspect and slope will 

have an influence in the vegetation distribution but that grasses will be overall 

more dominant in the future scenario (Figure 4.47). 

The estimated mean percentage of each vegetation type in 2001 and in 2100 

according to the three schemes is shown in Table 4.12. In scheme A, in 

percentage there will be a 33% decrease for the oak, 28% for the Indian fig and a 

26% increase for the grass. The effect of including a stomatal conductance 
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reduction effects due to the CO2 concentration increase is illustrated in Figure 

4.48 for the scheme B and in Figure 4.49 for scheme C. Comparing the three 

schemes, differences in the final results are very small as shown in Table 4.12. 

This aspect points out as the effect of the CO2 concentration increase can be 

considered not important for the estimation of the future vegetation distribution 

in the Zafferia catchment because the overall ETa-X is very similar among the 

three schemes and dictated mostly by the available water resource (i.e., 

precipitation) (Table 4.10).  

 

 

Figure 4.46. Vegetation coverage over time, 50 future runs, without CO2 concentration 

increase (Median, 5
th

 percentile and 95
th

 percentile). 

 

Figure 4.47. Final vegetation distribution (2100), mean 50 runs, without CO2 

concentration increase effect. 

Oak 
Grass 

Indian fig 

Bare soil 

N 

Channel  
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Table 4.12. Estimated mean percentage of each vegetation type in 2001 and in 2100. 

Mean vegetation percentage [%] with climate change (50 runs) 

 
Oak Indian fig Grass 

Initial Vegetation 30.29 5.29 40.99 

Scheme A 20.27 3.78 51.94 

Scheme B 20.71 3.82 51.65 

Scheme C 19.85 3.73 52.66 

 

 
Figure 4.48. Vegetation coverage over time, 50 future runs, with linear decrease of 

stomatal conductance until 2100 (from 0 % to 40 %) (Median, 5
th

 percentile and 95
th

 

percentile). 

 

Figure 4.49. Vegetation coverage over time, 50 future runs, with linear decrease of 

stomatal conductance until 2050 (from 0 % to 20 %) and constant decrease from 2051 to 

2100 (20 %) (Median, 5
th

 percentile and 95
th

 percentile). 
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Figure 4.50 shows the increase of the growing season length of the grasses 

with the climate change, in agreement with Walther et al. (2002). 

In order to analyze how biodiversity change with the climate change in the 

scheme A we have used the already mentioned SHDI (Figure 4.51) and the 

Simpson index of biodiversity (SIDI) (Simpson, 1949) (Figure 4.52). While the 

SHDI is designed to emphasize the richness component of diversity, the SIDI, 

which ranges from 0 to1, emphasizes the evenness component and is defined as: 





N

i

ii ppSIDI
1

1                                                                                         (4.7)                                

where N is the number of vegetation type and pi the proportional abundance of 

the i
th
 type. The median SHDI decreases from 1.88 in 2001 to 1.78 in 2100 

(Figure 4.51). The median SIDI decreases from 0.74 in 2001 to 0.65 in 2100 

(Figure 4.52). Therefore, the end of the century could be characterized by a 

reduction of the biodiversity, due to the grass expansion and reduction of oaks 

and Indian figs. 
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Figure 4.50. Growing season grass over the future years. 

In order to identify the critical point in this evolving situation that may lead 

to a new and irreversible change (search of a tipping point), the model has been 

run, for another 800 years, starting from the mean final vegetation distribution of 

the 2100 (Figure 4.53). The climate forcing of this simulation has kept identical 

to the 2100 climate. The result of this simulation shows that a tipping point can 

occur after 300 years, and after 800 years most of the trees will disappear (oak 

percentage will be very low) (Figure 4.53a) and consequently the SHDI index 

will largely decrease (Figure 4.53b). In Figure 4.54 are shown: (a) vegetation 

distribution in 2100, (b) vegetation distribution in 2300, (c) vegetation 

distribution in 2500, that underline the strongly increasing of grass and reduction 

of oak in 400 years. These results indicate that the simulated vegetation 
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distribution is not in stable condition in the year 2100, and will eventually move 

from an ecotone environment (high-biodiversity) towards a grassland-dominated 

landscape (low-biodiversity) if climate change persists.   

  

 

Figure 4.51. Shannon index of diversity, SHDI, 50 future runs (Median (black line), 5
th

 

percentile and 95
th

 percentile (black dashed lines)). 

 

Figure 4.52. Simpson index, SIDI, 50 future runs (Median (black line), 5
th

 percentile and 

95
th

 percentile (black dashed line)). 
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Figure 4.53. Tipping point analysis: (a) vegetation coverage over 800 years, (b) SHDI 

index. 

 

Figure 4.54. Tipping point analysis starting from 2100 to 2500 with constant climate of 

2100: (a) vegetation distribution in 2100, (b) vegetation distribution in 2300, (c) 

vegetation distribution in 2500.  

a) b) 

a) 

c) 

b) 
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Chapter 5 

Modeling the shrub and juniper 

encroachment in the american grasslands  

Numerous studies have documented the expansion of woodlands and 

shrublands in the intermountain West America grasslands; however, few have 

compared the chronology of expansion for woodlands and shrubland across 

different geographic regions or determined the mix and extent of presettlement 

stands. We have studied this problem using, for the first time in literature, an 

ecohydrological CA model. We evaluated shrub and juniper establishment and 

encroachment for two grassland areas in Oregon and New Mexico, respectively.  

Since 1870, the area occupied by western juniper has increased 125 to 625 

percent in Oregon (Miller et al., 2008). The increase of trees was a result of infill 

into shrub-steppe communities with relatively open low density stands of trees 

and expansion of juniper into sagebrush-steppe communities that previously did 

not support trees. The majority of woodlands are still in the early to mid phases 

of stand closure, which means they often support an understory of shrubs and 

herbaceous vegetation. This has implications for future changes that will occur 

within these woodlands in the next 30 to 50 years. In the absence of disturbance 

or management, the majority of these landscapes will become closed woodlands 

resulting in the loss of understory plant species and greater costs for restoration 

(Miller et al., 2008). In this thesis juniper encroachment is studied inside the 

Ochoco National Forest, Crook County, in Oregon where a strongly western 

juniper encroachment started in 1870 (Miller et. al., 2005). 

On the other side, since 1860, the encroachment of shrubs in North American 

deserts, has been particularly well documented for the Sonoran and Chihuahuan 

deserts (Buffington and Herbel, 1965; Archer et al., 1988). To this end, data 

from the Sevilleta National Wildlife Refuge (SNWR), located in the northern 

Chihuahuan desert, New Mexico, have been used. The creosote bush 

encroachment into native desert grassland of the SNWR is here studied. 

This chapter provides in section 5.1 the case study of the shrub encroachment 

in SNWR and in section 5.2 the case study about the juniper encroachment in the 

Ochoco National Forest. 
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5.1. Case study: Sevilleta encroachment 

5.1.1. Site description 

In order to simulate the shrub encroachment, we selected a site in the SNWR 

(34°24’ N, 106°59’ W), located in the northern Chihuahuan desert of the Rio 

Grande Valley, approximately 80 km south of Albuquerque and 32 km north of 

Socorro, New Mexico (South-West of USA) (Figure 5.1). The Rio Salado flows 

through the refuge. The SNWR shows a dramatic encroachment front of 

creosote bush (Larrea tridentata) shrubs into native desert grassland (Figures 

5.2, 5.3). Encroachment started in 1858 (Buffington and Herbel, 1965), 150 

years ago (Van Auken, 2000).  

More than 50 % of the annual precipitation falls during the North American 

Monsoon (MAP ~ 250 mm), and mean monthly temperatures ranges between 

2.5° C in January and 25° C in July. Climatic data have been registered from 

Deep Well Weather Station Site (DWWSS) maintained by the Sevilleta Long 

Term Ecological Research (LTER), from 1990 to 2008. 

 

 

Figure 5.1. Location of the Sevilleta National Wildlife Refuge, central New Mexico 

(Kurc and Small, 2004; 2007).  

 

Figure 5.2. (a) Desert grassland, (b) shrubland (creosote bush), and (c) tree (juniper) in 

SNWR.  

a) b) c) 

Socorro County 

http://en.wikipedia.org/wiki/Rio_Salado_(New_Mexico)
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Figure 5.3. Grassland-shrubland transition zone in the northern Chihuahuan Desert 

(D’Odorico et al., 2010). 

The study area location is shown in Figure 5.4 and it has got an area of 7.34 

Km
2
. The land cover map of the SNWR, overlain by the boundary of the study 

site and the DWWSS are shown in Figure 5.5. The study site is an alluvial fan 

deposit of the Sierra Ladrones formation (Green and Jones, 1997), sandy loam 

texture, overlain by a gravelly desert pavement, generally characterizes the soil 

type (Gutiérrez-Jurado et al., 2006).  

A Sevilleta 10 m Interferometric Synthetic Aperture Radar (IFSAR) DEM 

(Figure 5.6a) (source: http://sev.lternet.edu/) is used for the modeling study 

(Gesch et al., 2002). This area is located in the elevation range of 1558 m to 

1634 m a.s.l., the slope angle ranges from flat surfaces to as high as 45.9° on 

hillslopes, with an average of 3.9° (Figure 5.6b). The aspect map is also shown 

in Figure 5.6c.  

 

 

Figure 5.4. Location of the site in the SNWR.  

Socorro County 

Chihuahuan desert 

study site 

http://sev.lternet.edu/
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Figure 5.5. Study site in central New Mexico: the land cover map of the SNWR, 

overlain by the watershed boundary of the study site and the DWWSS. 

                      

          

                      

     

Figure 5.6. Topography of the site: (a) DEM, (b) slope, (c) aspect. 

a) 

c) 

b) 
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In Table 5.1 the general site characteristics for the study site are shown. The 

mean annual precipitation (MAP) is 242 mm, the mean annual temperature 

(MAT) is 13.3° C and the potential evapotranspiration (PET) is 747 mm.  

Table 5.1. Site characteristics (Knapp et al., 2008b). 

 

5.1.2. Data 

5.1.2.1. Vegetation distribution 

The Sevilleta Refuge contains extensive semi-arid grassland dominated by C4 

perennial grasses: blue grama (Bouteloua gracilis), black grama (Bouteloua 

eriopoda), galleta (Pleuraphis torr.), poaceae (Sporobolus spp.), James’ galleta 

(Hilaria jamesii) and muhley grass (Muhlenbergia spp.); they are located on 

relatively level topography along western edge of the Los Pinos Mountins. The 

shrub is creosote bush (Larrea tridentata) (see section 2.1) with a current 

coverage equal to 42%. Grass is deciduous and creosote bush is evergreen. The 

growing season length is equal to 210 days and the dominant vegetations are 

blue grama and creosote bush. 

In Figure 5.7 the current vegetation distribution of the study area is shown in 

the SNWR National Land Cover Database 2006 (NLCD, 2006) map having a 

28.5 meters resolution (http://sev.lternet.edu/), while Figure 5.8 shows the 

Google map 2013 of the Sevilleta study site using the exact extent of Figure 5.7 

(i.e., the two figures can be perfectly overlapped). 

 

Black grama  

 

Creosote bush  

 

http://en.wikipedia.org/wiki/Poaceae
http://sev.lternet.edu/
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MODIS LAI
 

Figure 5.7. Vegetation distribution in the study site (NLCD, 2006). 

 

Figure 5.8. Google map of the Sevilleta study site (2013). 

In order to compare the different vegetation pattern and coverage in the 

shrubland and in the grassland relative to this area, Kurc and Small (2004) 

collected data from the McKenzie flats area. They collected measurements from 

a grassland and a shrubland which are separated by 2 km. The grassland is 

nearly monospecific, dominated by black grama which covers about 60% of the 

ground surface (Figure 5.9a). The shrubland site is also monospecific, dominated 

by creosote bush which covers about 30% of the ground surface (Figure 5.9b). 
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Figure 5.9. Overhead photo surveys of (a) grassland and (b) shrubland taken in January 

of 2002. The grassland has ~60% cover, and the shrubland has ~30% cover (Kurc and 

Small, 2004).  

5.1.2.2. Historical precipitation, temperature and wind 

In Figure 5.10 the historical annual precipitation in Socorro County, NM, 

from 1893 to 2008 is shown (source NOAA - National Oceanic and 

Atmospheric Administration); the MAP is equal to 239 mm (like Hall and 

Penner, 2013) (station elevation: 1398 m a.s.l.). The historical annual 

precipitation is in accordance with the historical annual precipitation measured 

by 8 stations in the Southeastern Arizona from 1898 to 1989 (Bahre and Shelton, 

1993). In Figure 5.11 and 5.12 the wet and dry season annual precipitations are 

shown, respectively. Hall and Penner (2013) demonstrated that 12,800 years ago 

the temperature was about 2.4° C cooler and the precipitation over 100 mm than 

today. The greatest change was between 12,800 years ago and 3,300 years ago 

and in the last 150 years there was not climate change. 

There was not climate change during the period 1893-2008. In fact, the 

Mann-Kendall (Mann, 1945; Kendall, 1962) test has been carried out with a 

significance level (α) equal to 0.01 for the annual precipitation data, for the wet 

and dry season precipitation data and results show the absence of a statistically 

significant trend in all the cases. 

In Figure 5.13 the historical MAT in Socorro (1893-2008) is shown. The 

MAT is about 14° C. The Mann-Kendall test has been done with α equal to 0.01 

for the mean annual temperature data and there is not a statistically significant 

trend at annual scale.  

Moreover, even if the temperature and the precipitation are available, for this 

site there are missing data in forty-one years. The solar radiation, humidity, 

vapor pressure and wind speed are not measured by the station. Since these data 
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are missing, in order to have a better description of the site weather, the data of 

the DWWSS have been used. 

 

0

100

200

300

400

500

600

1
8

9
3

1
8

9
8

1
9

0
3

1
9

0
8

1
9

1
3

1
9

1
8

1
9

2
3

1
9

2
8

1
9

3
3

1
9

3
8

1
9

4
3

1
9

4
8

1
9

5
3

1
9

5
8

1
9

6
3

1
9

6
8

1
9

7
3

1
9

7
8

1
9

8
3

1
9

8
8

1
9

9
3

1
9

9
8

2
0

0
3

2
0

0
8

A
n

n
u

al
 P

re
ci

p
it

at
io

n
 (m

m
/y

r)

Years (1893-2008)

Annual Precipitation Socorro

 

Figure 5.10. Historical annual precipitation in Socorro County. 
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Figure 5.11. Historical annual precipitation in the wet season in Socorro County. 
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Figure 5.12. Historical annual  precipitation in the dry season in Socorro County. 
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Figure 5.13. Historical MAT in Socorro County.  

Assuming the absence of climate change in the past 150 years, nineteen years 

of the DWWSS data, from 1990 to 2008, for which all the weather variable data 

are available (i.e., hourly precipitation, temperature, wind speed, relative 

humidity, incoming shortwave solar radiation, vapor pressure, soil moisture 

potential, and soil temperature) have been used. The MAP is 246.4 mm with 

more than half of the precipitation falling during the monsoon season (July-

September): high-intensity summer monsoon season during which 

approximately 50% of the MAP falls, and low-intensity winter rainfalls, 

controlled by broad-scale frontal systems (Gosz et al., 1995; Gutiérrez-Jurado et 

al., 2006). The wet season can be considered coincident with the monsoon 

season from July to September, 92 days, while the dry season is from October to 

June, 273 days. In Table 5.2 the observed rainfall parameters for the Deep Well 

weather station has shown.  

Table 5.2. Observed rainfall parameters for the DWWSS (1990-2008). 

Parameter Description Observations 

    P Mean annual precipitation [mm] 249.1 

        Pd Dry season precipitation [mm] 125.6 

   Pw Wet season precipitation [mm] 123.5 

  Tb,d Dry season interstorm period [h] 159.3 

  Tb,w Wet season interstorm period [h] 84.1 

  Tr,d Dry season storm duration [h] 2.1 

  Tr,w Wet season storm duration [h] 2.5 

  hd Mean storm depth dry season [mm] 4.8 

  hw Mean storm depth wet season [mm] 3.1 

 
In order to understand if the wind direction could have influenced the shrub 

encroachment direction, the wind direction data have been retrieved and 

analyzed. In particular, the wind direction predominant at the study site is from 
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southeast to northwest (source: http://www.eldoradocountyweather.com) as 

shown in Figure 5.14. While the red circle indicates the study area in New 

Mexico, the blue circle indicates the study site in Oregon (see section 5.2). 
 

 

Figure 5.14. Wind speed direction in the USA (source: Western Regional Climate 

Center).  

5.1.2.3. Future precipitation and temperature 

The latest report on climate change of the Intergovernmental Panel on 

Climate Change (IPCC) (IPCC, 2013) shows, in the study area, a reduction of 

the monsoon precipitation of 20 mm and an increase of the temperature of 4° C. 

Using a GCMs ensemble (eight GCMs: CCSM3, CSIRO-Mk3.5, ECHAM-5, 

IPSL-CM4, CGCM3.1, GFDL, INGV, MIROC3.2) and doing a stochastic 

downscaling, the medians of the future precipitation and temperature, for the 

period 2001-2100, were obtained with the AWE-GEN (Figures 5.15-5.17). The 

procedure was already described in section 4.2.2.1.3. In the period 2001-2010, 

the MAP is 104.5 mm in the wet season (July-September) and 149.15 mm in the 

dry season. In the period 2091-2100, the MAP is 88.97 mm in the wet season 

and 168.98 mm in the dry season (Figure 5.15a). For the future, the GCMs 

forecast a reduction of the Monson precipitation, from 104.5 mm to 88.97 mm, 

and an increase of the temperature of 4.2° C (Figure 5.15b). 

The present and future precipitation and temperature for each month are 

shown in Figures 5.16a, c, respectively. The 10-90 percentile intervals inferred 

from monthly posterior distributions of the factor of change for the future 

scenario (FUT) are plotted along with the annual cycles of air temperature and 

precipitation. In the Monson season the precipitation will reduce, but it will 

increase in the dry season. The prediction of an increase of air temperature can 

Study site  

in Sevilleta 

Study site  

in Oregon 

http://www.eldoradocountyweather.com/
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be regarded as very likely. The magnitude of this change is around 3-5° C. In 

Figure 5.16b the mean monthly temperature change (black dots) and the 10-90 

percentile bounds (red vertical bars) are shown. The maximum monthly 

temperature increase will be in September, 5° C, and the minimum increase will 

be in February, 2.8° C. The uncertainty bounds for the air temperature changes 

are generally less than 2° C. Figure 5.16c shows the annual cycle of observed 

precipitation along with the mean predicted future precipitation that also 

includes the 10-90 percentile intervals. As seen the relative uncertainty for 

precipitation prediction is much higher than for air temperature. For instance, for 

the month of November the 10-90 percentile interval may indicate both a 

reduction and an increase in precipitation. Nonetheless, for most months the 

confidence about sign of the future change is much higher. Significant decreases 

are predicted for July, August and September, vice versa significant increase are 

predicted for January and February. 
 

 

            

Figure 5.15. Downscaling GCMs: (a) future annual precipitation (AP); (b) future MAT. 

a) 

b) 
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Figure 5.16. The effect of the factors of change on the annual cycles of monthly 

temperature and precipitation for the location of Sevilleta: (a) monthly air temperature, 

(b) factor of change MAT, (c) monthly precipitation (2081-2100).  
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Figure 5.17. (a) Historical and future mean annual precipitation, and 

(b) temperature (1893-2100). 

a) 

b) 
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Comparing the historical and future precipitation (Figure 5.17a) and 

temperature (Figure 5.17b), the future MAP will be the same of the period 1960-

2000, while the future temperature will increase. In 1903 the MAP is 569 mm 

and there is a reduction of MAP from 1903 to 1956 (77 mm); after this period 

the precipitation is almost stationary. In accordance with Seager et al. (2007) and 

http://www.nmdrought.state.nm.us/ClimateChangeImpact/completeREPORTfin

al.pdf, in the past there was not a trend of temperature and precipitation change, 

vice versa in the future there could be a strong increase of the temperature and a 

reduction of the monsoon precipitation.  

5.1.3. Model simulations 

The verb encroach means: advance gradually causing damage. So by the 

selection of the verb used in the literature we know that a shrub line has moved 

during the time. It can be assumed that this movement is characterized by two 

time scales, long (5,000 years) and short (150 years). Most of the encroachment 

literature talks about the last 150 or more years. However shrubs have moved 

before from far south to north Mexico during a long term and slow processes in 

the last 4,000 or more years (e.g., Holmgren et al., 2007). In fact C4 herbs and 

grasses persisted from late Pleistocene to the present, whereas many C3 desert 

shrubs did not occupy the northern extent of their ranges until the last 4,000-

5,000 years. 

 Our approach, ideally, builds potential cases of simulation scenarios and 

discusses the processes starting from that has been observed in the region: 

a) long time scale: 5,000 years - under this scenario, we setup the model with 

equally distributed species (33% grass, shrub and bare soil), trying to obtain a 

stationary vegetation behavior coherent with the observed pattern. The 

simulation is run for 5,000 years, forced by statistically generated storms using a 

Poisson process and a cosine function to reproduce the annual cycle of the 

potential evapotranspiration. 

b) short time scale: 150 years (from 1861 to 2010) - encroachment from 

ecotone boundary. This simulation is designed and carried out with the aim to 

reproduce the fast and recent encroachment phenomenon. Starting from 19 years 

of observed weather data of the DWWSS, 150 years of weather data have been 

obtained using the AWE-GEN and they have been used in input to the 

CATGraSS model for the encroachment simulation from 1861 to 2010, using as 

initial condition the final vegetation percentage obtained in the long time scale 

simulation. 

5.1.3.1. Model set up  

PFTs are defined at a 5m by 5m grid as described in section 4.2.1 for the 

Zafferia catchment.  

http://www.nmdrought.state.nm.us/ClimateChangeImpact/completeREPORTfinal.pdf
http://www.nmdrought.state.nm.us/ClimateChangeImpact/completeREPORTfinal.pdf
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The soil is modeled as sandy-loam and the parameters used in the model are 

shown in Table 5.3 assuming a spatially uniform soil thickness. 

Site morphology has been classified into topographically similar slope-aspect 

(S-A) groups, considering a 6 degree increment for local slopes (5-47°) (8 slope 

classes) and a 30 degree increment for aspect (0-360°) (13 aspect classes) 

leading to 104 different combinations (S-A groups) in order to get and analyze 

the effect of the Slope-Aspect group on the vegetation distribution.  

Table 5.3. Soil parameters used in the water balance component of the model. 

Soil Texture N [-] sfc [-] Ic-b [mm·d
-1

] Ks [mm·d
-1

] B [-] 

Sandy Loam
1
 0.43

2
 0.56

2
 0.83

3
 1.75

4
 4.9

2
 

Source: (1) Soil Survey Staff (1994); (2) Laio et al. (2001); (3) calibrated based on Gutierrez-

Jurado et al. (2006); (4) Bhark and Small (2003). 

5.1.3.2. Weather forcings 

5.1.3.2.1. Long time scale weather forcings 

The model has been forced by daily rainfall and PET. The precipitation time 

series has been generated with a simplified stochastic Poisson process calibrated 

with the historical observed precipitation. The PET annual cycle has been 

obtained from a stationary cosine function fitted to mean daily values of PET 

calculated from the daily Penman-Monteith equation using the DWWSS data. 

In storm generation, the Poisson Rectangular Pulses (PRP) model has been 

used, with a one-parameter exponential distribution for time between storms (Tb) 

and storm durations (Tr); and a Gamma distribution for rainfall depth h 

conditioned on Tr (e.g., Ivanov et al., 2007). The storm intensity p, is calculated 

as: p=h/Tr. The two rainfall seasons (wet and dry) have been considered, with 

seasonal precipitations denoted by Pw and Pd. For the wet season the parameters 

are (subscript w denotes the wet season):  

Tb,w=3260·(Pw·365/Nd,w)
0.59

                                                                              (5.1) 

Hw=Pw·(Tb,w/(Nd,w·24))                                                                                     (5.2) 

Rvar,w=7500·((Pw/Nd,w)·365)
-0.6                                                                                                                   

(5.3) 

Tr,w=Tb,w/(Rvar,w-1)                                                                                            (5.4) 

where Rvar,w is the rainfall variability and Nd,w is the number of day of the wet 

season. The same equations are used for the dry season. These equations are 

obtained from calibration using DWWSS data (Istanbulluoglu and Bras et al, 

2006). The rainfall parameters are shown in Table 5.2.  
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Daily maximum transpiration (Tmax-X) is obtained from the cosine function 

fitting (3.40) to calculated Tmax-X for each PFT (3.36). 



Tmax X
F

 (



Tmax X
F

=5.4901-

0.0021·P), LT equal to 0 days (peak 



TCosX
H

 occurs when DOY is equal to Nd /2, 

consistent with the climate in the region), and Δ (Δ=0.858·



Tmax X
F

+2.8662) are 

obtained for each vegetation from calibration using DWWSS data (following 

Istanbulluoglu and Bras, 2006). As previously made in chapter 4, to reduce data 

requirements and keep the model simple, the bare soil Tmax, Eb, is taken as a 

fraction (fb) of the maximum grass transpiration rate, Tmax-G (e.g., Eb=fb·Tmax-G) 

(e.g., Mutziger et al., 2005; Istanbulluoglu et al., 2012; Zhou et al, 2013). The 

value of fb is set to 0.7 like Istanbulluoglu et al. (2012) and Zhou et al. (2013). 

5.1.3.2.2. Encroachment weather forcings 

For the encroachment analysis, starting from 19 years of observed weather 

data (from 1990 to 2008) of the DWWSS, 150 years of weather, obtained using 

the AWE-GEN, have been used as input to the CATGraSS model for the 

encroachment simulation from 1861 to 2010. Since the CATGraSS model works 

at daily and interstorm time scale, the hourly precipitation data have been 

aggregated. The potential evapotranspiration has been calculated using the 

DWWSS data with the Penman-Monteith equation. Stationary precipitation 

(Figure 5.18) and temperature have been considered because, as previously 

mentioned, there was not a statistically significant variation of such variables in 

the past century (Figures 5.10, 5.13).  

 

 

Figure 5.18. Annual precipitation for the period 1861-2010 obtained with the AWE-

GEN using DWWSS data. 
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5.1.4. Long time scale: 5,000 years simulation 

5.1.4.1. Model calibration 

The model has been calibrated to reproduce the initial shrub percentage in the 

study area before encroachment in 1860 with a 5,000 years simulation without 

encroachment causes (fire return period, TF, constant and equal to 10 years and 

no grazing effects).  

Vegetation parameters here used for simulating local water balance and plant 

dynamics (e.g., biomass production and loss) come from the work of Zhou et al. 

(2013) and they are listed in Table 5.4.  

Table 5.4. Plant parameters used to simulate soil moisture and vegetation dynamics. 

Parameters Description Grass Shrub 

Imax Full canopy interception [mm] 1.0
1
 1.5

1
 

   Zr Root depth [m] 0.3
2
 0.5

3
 

Zveg Vegetation height [m] 0.3
4
 1.0

3
 

   rl Stomatal resistance [s·m
-1

] 130
4
 210

4
 

   s* Saturation degree at stomata closure [-] 0.33
1
 0.24

1
 

  sw Saturation degree at wilting point [-] 0.13
1
 0.13

1
 

  sh Saturation degree at soil hygroscopic [-]  0.10
5
 0.10

5
 

LAImax Maximum leaf area index [m
2
·m

-2
] 2.0

4
 2.0

3
 

 Rin 
Ratio of canopy-interspace infiltration 

capacity [-] 
1.2

6
 2.0

11
 

WUE Water Use Efficiency [kgCO2kg
-1

H2O] 0.01
7
 0.0025

8
 

  ksg Decay coefficient of green biomass [d
-1

] 0.012
7
 0.002

9
 

  kss 
Decay coefficient of structural biomass 

[d
-1

] 
0.01

7
 0.005

9
 

 kdd Decay coefficient of dead biomass [d
-1

] 0.013
7
 0.013

13
 

 ksf 
Maximum drought induced foliage loss 

rates [d
-1

] 
0.02

10
 0.02

8
 

        cg 
Specific leaf area for green biomass [m

2
 

leaf ·g
-1

DM] 
0.0047

7
 0.004

6
 

   cd 
Specific leaf area for dead biomass [m

2
 

leaf ·g
-1

DM] 
0.009

7
 0.01

12
 

   αs
 

Shortwave albedo [-] 0.12
1
 0.15

1
 

GT, DT 
Growth and dormancy thresholds 

[mm·d
-1

] 
3.8, 6.8

7
 N/A 

Tdmax 
Constant for dead biomass loss 

adjustment [mm·d
-1

] 
10

7
 10

7
 

Source: (1) Caylor et al. (2005); (2) Kurc and Small (2004); (3) Gutierrez-Jurado et al., (2006); (4) 

Guan and Wilson (2009); (5) Laio et al. (2001); (6) Bhark and Small (2003); (7) Istanbulluoglu et 

al. (2012); (8) Lajtha and Whitford (1989); (9) Montaldo et al. (2005); (10) Ivanov et al. (2008a); 

(11) Paul and Litvak (2009); (12) Williams and Albertson (2005); (13) Calibration. 
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The parameters in Table 5.4 are obtained by Zhou et al. (2013) from 

literature and from calibration and compared with the literature for given plant 

types in the field. For a more detailed description of the selection procedure of 

these parameters, interested readers are referred to Zhou et al. (2013). Table 5.5 

reports parameters used for simulating plant establishment and mortality, mostly 

obtained from literature and calibration as described in the Zafferia study case 

(see section 4.3.1). Allelopathy (i.e., the allelochemicals produced by shrub 

which can influence the grasses growth) is incorporated in CATGraSS by using 

the inhibitory factor, ING. The ING was obtained from calibration: we have done 

different simulations considering first the absence of the inhibition factor 

(ING=1), and then increasing it to 2 (maximum inhibition), for a total of ten 

simulations. We obtained ING equal to 1.12.  

For the fire event a probability of fire, PF, (i.e., the reverse of return period, 

TF) has been assumed equal to 0.1 (return period, TF: 10 years in accordance 

with Casagrandi and Rinaldi, 1999) and the vulnerability to fire of each 

vegetation, VF-X, is shown in Table 5.6 (plant seedlings are more vulnerable to 

fire than mature plants). 

Table 5.5. Model parameters for modeling plant mortality and establishment. 

Parameters Description Grass 
Creosote 

bush 

Shrub 

Seedling 

    θX Drought-resistant threshold [-] 0.62
3
 0.80

3
 0.64

3
 

  PMb-X 
Background mortality 

probability [-] 
0.01

3
 0.01

3
 0.01

3
 

 PE-X-max 
Maximal establishment 

probability [-] 
0.35

3
 0.2

3
 N/A 

  INX Inhibitory factor [-] 1.12
3
 N/A N/A 

  tmax Maximum age [yr] N/A 600
1
 18

2
 

Source: (1) Bowers et al. (1995); (2) Chew and Chew (1965); (3) Calibration. 

Table 5.6. Fire parameters. 

Parameters Description Shrub 
Shrub 

Seedling 
Grass 

PF Probability of fire [yr
-1

] 0.1
1
 

TF Fire return period [yr] 10
1
 

VF-X Vulnerability to fire [-] 0.11 
2,3

 0.2 
2,3

 0.8 
2,3

 

Source: (1) Parmenter (2006), Le Houèrou (1974), Thomas (1991), (2) Accatino et al. (2010), (3) 

Calibration. 
 

In order to demonstrate the utility of the model in predicting local 

ecohydrologic dynamics of soil moisture (s), evapotranspiration (ET), and leaf 

area index (LAI), a limited model confirmation study is performed at the 
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DWWSS site by Zhou et al. (2013). The vegetation in the site is mainly grasses 

C4, composed of black and blue grama (Bouteloua gracilis). Soil moisture is 

obtained from three different soil pits at 10 and 30 cm depths positioned nearby 

the DWWSS site, and averaged to represent the daily root-zone-average soil 

water content. ET is obtained from an adjacent Bowen ratio tower, which 

operated from 1996 (only partially) until the end of 1999. The weather variables 

measured at the DWWSS, Bowen ratio observations, and soil moisture 

measurements can be found on the web site http://sev.lternet.edu/data/sev-079. 

The modeled LAI has been confirmed by using satellite-derived LAI from the 

MODIS. MODIS data became online in 2000 at a 1 km spatial resolution for 

every 8 days. The effect of local variability in MODIS LAI is eliminated by 

taking the mean value of a window of 3 by 3 MODIS grid cells. 

CATGraSS is forced to run at a point using only grass vegetation type from 

1996 to the end of 2008. Time series of daily rainfall, and modeled and observed 

relative soil moisture content (s), actual ET and MODIS-derived LAI (for 9 

years, from 2000 to 2008) are presented in Figure 5.19. The modeled s shows 

good agreement with observations at three different pits for the 10 year-period 

between 1996 and 2006, reasonably capturing the timing and magnitude of soil 

moisture pulses and the slower rate of decays (Figure 5.19a). To better quantify 

the ability of CATGraSS in predicting soil moisture dynamics during the 

growing season, the modeled daily soil moisture was plotted against measured 

soil moisture (averaged over the three pits) in Figure 5.19b. The standard error 

of estimation (SEE) with respect to the one-to-one line and the Nash-Sutciffe 

efficiency (NSE) (Nash and Sutciffe, 1970) are reported in Figure 5.19b, 

showing good agreement between model predictions and field measurements. 

The model represents the observed seasonal behavior of ET with some skill 

(Figure 5.19c). The model shows a good agreement with observations in 1997, 

underestimates ET in the first half of 1998, and slightly overestimates ET during 

the peak of the rainy season in 1999. These discrepancies might result from the 

highly spatially variable nature of storms in the region, leading to differences in 

the rainfall received between the rain gage and the footprint of the Bowen ratio 

tower; or other errors in rainfall measurement, especially in 1998 when ET was 

measured in absence of rain. Because of these uncertainties we have not done a 

one-to-one comparison between the modeled and estimated evapotranspiration 

rates from the Bowen ratio tower. 

The MODIS LAI consistently gives 0.1 in the winter and 0.2 in the spring 

before the growing season at this site, which could arguably be an artifact of the 

algorithm used for calculating LAI (Figure 5.19d). Therefore, as the basis of our 

model comparison, we focus on the periods when MODIS LAI is larger than 0.2. 

The model shows consistency in estimating the onset of the growing and 

dormant seasons except for 2003, the driest year in the simulations, while the 

peak LAI is overestimated in some years. In order to assess model capability, the 

modeled LAI is plotted against MODIS LAI (larger than 0.2) during the growing 

http://sev.lternet.edu/data/sev-079
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seasons (Figure 5.19e). The result shows that CATGraSS can reasonably capture 

the local ecohydrological dynamics of grass. 
 

 

 
Figure 5.19. (a) Time series of observed precipitation, and depth-averaged relative soil 

moisture content (s) in the root zone obtained from model and observations at soil pits; 

(b) scatterplot of modeled against pit-averaged s during the growing season; (c) modeled 

and Bowen ratio-estimated evapotranspiration (ET); (d) modeled and MODIS-derived 

LAI; (e) scatterplot of modeled against MODIS-derived LAI during the growing season 

(Zhou et al., 2013). 

5.1.4.2. Model simulation and results 

As previously said, the model was initially run with a random vegetation 

distribution, characterized by the same probability of assignments for all PFTs 

and bare soil (33.3%). It is important to point out that the main goal of this long 

time scale simulation was to reproduce the initial condition of the fast 

encroachment occurred between 1860 and 2010, which corresponds to the 

vegetation distribution of 1860.  

The shrub distribution in 1860 is not known in pattern and percentage; Knapp 

et al. (2008b) is one of the few works which talks about the shrub percentage in 

1860, stating that “the shrub percentage was very low”. In order to calibrate the 

model, a quantitative interpretation of Knapp et al. (2008) statement has been 

done by fixing shrub percentage equal to 2%.  

The final vegetation distribution after 5,000 years and the time series of 

percent coverage of PFTs in the study site over the 5,000 years are shown in 

Figures 5.20a, b, respectively. The vegetation percentages in 1860 obtained at 

the end of the 5,000
th
 year are: shrub 2 %, grass 78%, bare soil 20%.   

After 5,000 years the shrubs are distributed following a sort of cluster pattern. 

The vegetation composition is not influenced by the topography because the 

study site is in a flat area. 
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While the shrub time series in Figure 5.20b decreases mainly from 2,000 to 

5,000 years, the grass time series increases constantly from 0 to 5,000 years. The 

lag-1 autocorrelation is equal to 0.78 for grass and to 0.997 for shrub. The highly 

variable nature of grass percentage, proved by a lower lag-1 autocorrelation 

coefficient, is typically driven by the inter-annual fluctuations in precipitation. 

Because grasses have an overall higher water stress and lower drought 

resistance, they die rapidly during dry years, but also grow back quickly in the 

following wetter years, as their seeds are assumed to be available everywhere in 

space. In addition, the establishment and mortality of grass depend on the 

rainfall of a given year and therefore subjected to the same inter-annual 

variability of rainfall.  
 

 

 

 

Figure 5.20. (a) Final vegetation distribution after 5,000 years of simulation, (b) time 

series of percent coverage of PFTs in the study site. 

5.1.5. Short time scale: encroachment  

While the information of shrub percentage can be considered as available in 

the work of Knapp et al. (2008), its initial spatial distribution in 1860 is 

unfortunately not known; for this reason three initial vegetation distribution 

hypothesis have been assumed in this work. 

Three cases have been considered:  

a) 

b) 
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 C1. since Knapp et al. (2008b) stated that shrub line moved gradually 

from south to north, a particular spatial pattern of PFTs and bare soil, 

which respects vegetation percentage above mentioned, has been 

created in our work domain (extent: 422, 696 pixels): i.e., shrub 

percentage equal to 4% in the first 85 rows starting from the bottom, 

and a progressive reduction of this species from 4% to 0% moving 

upward (Figure 5.21); 

 C2. the initial shrub distribution is obtained considering eight circular 

kernels and it is shown in Figure 5.22. From each kernel centre, 

moving from 0 to 100 pixels the  shrub percentage is equal to 8%,  

from 100 to 300 pixels it is 4%, from 300 to 500 pixels it is 2%, from 

500 to 700 pixels it is 1% and from 700 to 831 pixels it is 0% (shrub 

mean percentage equal to 2.4%);  

 C3. the initial vegetation distribution is that obtained at the end of the 

long time scale simulation (i.e., 5000 years) and shown in Figure 

5.20a. 
 

 

 
Figure 5.21. Initial vegetation distribution: shrub distribution gradual rectangular (C1). 

 

Figure 5.22. Initial vegetation distribution: shrub distribution obtained considering eight 

circular kernels (C2). 
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We will mainly discuss the results obtained starting from the C1 because 

according to the literature sources (e.g., Knapp et al., 2008) the C1 is the more 

realistic vegetation distribution in 1860. Therefore, the C1 is used to calibrate 

the encroachment model in order to obtain the current shrub percentage, 42%, 

and the other cases (C2, C3) are simulated with the same parameters and they 

are used to analyze how change the final vegetation percentage starting from a 

different vegetation distribution. 

5.1.5.1. Encroachment factors parameters used in the CATGraSS 

The causes that have been considered for the shrub encroachment in this case 

study are summarized in Figure 5.23: the fire, the grazing increase, the seed 

dispersal caused by animals, the shrub-grass inhibition effect (i.e., allelopathy) 

and the plant type competition. 

In order to obtain the value of these encroachment factors, we changed the 

model parameter values systematically assuming fixed ranges and doing 

multiple simulations, starting from C1. First, a base simulation (BS), i.e., the 

base simulation of 150 years (1861-2010) without encroachment factors [Zhou 

et al. (2013)’s parameters], has been carried out.  

 

 

Figure 5.23. Conceptual model illustrating the causes of the encroachment. 

White et al. (2006) and Parmenter (2008) stated that the fire return period, TF, 

increased from 10 years in 1860 to 100 years in 2010 in the Sevilleta site. This 

increase is caused by the reduction of the fuel (grass) eaten by herbivores and it 

is one of the possible causes of the shrub increase because increasing the fire 

return period the shrub settle capacity increased. In fact, TF equal to 10 years is 

able to maintain the semiarid grasslands of the pre-1900 and control shrub cover, 

while increasing the TF the shrubs are not controlled and they are able to 

encroach the area. In CATGraSS we modeled the fire effect by considering a TF 
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linear increasing from 10 years (in 1861) to 100 years (in 2010) according to 

Wright et al. (1980), Wright and  Bailey (1982), White et al. (2006) and 

Parmenter (2008). The vulnerability to fire, VF-X, has been setted equal to 0.8 for 

grass and to 0.11 for shrub (0.2 for young shrub, Burkhardt and Tisdale, 1976) 

after a sensitivity analysis carried out using Accatino et al. (2010) value ranges. 

This parameter varies from 0.02 if trees (or shrub) are very fire resistant, to 0.6 if 

trees are easily killed by fire in according to Casagrandi and Rinaldi (1999).  

While in literature the fire model, that we used in the CATGraSS, has been 

previously studied and applied and values of its parameters are presented in 

different works, for grazing and seed dispersal there is not enough scientific 

literature useful to allow to us their choice. For this reason, for each single 

factor, different values have been first fixed trying to understand the effect of the 

choice of the single factor on the encroachment; then these factors have been 

combined, and among all the combinations, the one that provides the more 

acceptable reproduction of the current vegetation percentage has been selected.   

Van Auken (2000; 2009) demonstrated that grazing increased from 1860 to 

2010 causing a reduction of the grass and an increase of the shrub. In fact, in 

1860 the grazing was introduced in this area and it progressively increased from 

1860 to 2010. The grazing effect is only for grass. The animals eat only the 

herbaceous vegetation (herbivores) (Van Auken 2000; 2009). Grazing effect is 

obtained like Zhou et al. (2013), considering a constant background probability 

for disturbance factor, PMb, to be added to the annual probability of plant 

mortality, PM (0.05 in Zhou et al., 2013). According to Van Auken (2000; 2009), 

the parameter has been obtained increasing it in the years to simulate the 

increase of the grazing effect. We do not know the initial and final PMb value, 

therefore, eight different grazing cases, that provide a linear increase of PMb from 

1861 to 2010, have been assumed. In Table 5.7 the final shrub (SH) and grass 

(G) percentages for each PMb case are shown (e.g.,  case “0.01-0.05” means PMb 

equal to 0.01 in 1861 and PMb equal to 0.05 in 2010). In Figure 5.24 the final 

vegetation percentages in function of the PMb are shown. In the PMb axis, for each 

case the PMb value in 2010 is shown. As evident in Figure 5.24, the grazing alone 

could not cause the total shrub encroachment, since current shrub coverage is 

equal to 42%. In fact, with a PMb equal to 0.4 in 2010, the shrub increases from 

0.65 to 13.10%. Obviously, values of PMb greater than 0.4 could cause a greater 

increase of the shrub percentage but they would be unrealistic values.  

The grazing can not only cause the death of the plant in the cell (simulated 

using the PMb) but also reduce the percentage of the grass in the cell, i.e. 

reduction of the LAI in the cell (partial removing of grass biomass by cattle). In 

order to simulate this effect of biomass reduction (i.e., LAI reduction), the grass 

decay coefficient of green biomass, Ksg-G has been increased from 1861 to 2010. 

This coefficient, that describes the decay (or senescence) of the plant in the time, 

has been assumed linearly increasing from 0.004 d
-1

 in 1860 to 0.012 d
-1

 in 2010, 

using the range of Montaldo et al. (2005) and the actual value used by Zhou et 
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al. (2013). In Figure 5.25 the modeled grass LAI for ten synthetic years in 1860 

(lower Ksg-G) and in 2010 (higher Ksg-G) is shown. 

Table 5.7. Final vegetation percentages in function of the grazing factor (PMb).  

Grazing 

Encroachment 

Factor 

Final Vegetation 

Percentage [%] 

PMb (-) SH G 

BS 0.65 82.43 

0.01-0.05 1.27 74.51 

0.02-0.10 2.28 72.23 

0.03-0.15 3.27 52.89 

0.04-0.20 4.34 50.80 

0.05-0.25 5.69 46.15 

0.06-0.30 5.71 41.20 

0.07-0.35 5.78 34.56 

0.08-0.40 13.10 25.24 
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Figure 5.24. Final vegetation percentages in function of the grazing factor (PMb). 
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Figure 5.25. Modeled grass LAI increasing the ksg-G in 1860 and in 2010. 

With regard to the seed spread, Van Auken (2000; 2009) stated that the 

introduction of the animals in the study area from 1860 caused the possibility 

that a seed can arrive in the bare soil from everywhere. In order to take into 

account this aspect within the model framework, the spread of seed probability, 

SSP, for the shrub has been introduced in the model and its value has been 

ranged from 0.001 to 0.02 for a total of seven values. In Table 5.8 the final 

vegetation percentages for different values of SSP factor are shown while Figure 

5.26 shows the final vegetation percentages as function of the SSP. Also in this 

case, only the seed dispersal caused by animals could not cause the total shrub 

encroachment. In fact, with SSP equal to 0.02, the shrub increases from 0.65 to 

18.05%. The decrease of the grass from BS to SSP equal to 0.001 and the 

subsequent increase from SSP equal to 0.001 to SSP equal to 0.002 could be 

linked to the highly variable nature of grass percentage as mentioned in section 

5.1.4.2. 

Table 5.8. Final vegetation percentages in function of the SSP.  

Seed Dispersal caused by animals 

Encroachment 

Factor 

Final Vegetation 

Percentage [%] 

SSP (-) SH G 

BS 0.65 82.43 

0.001 1.02 59.20 

0.002 1.56 94.50 

0.004 2.38 93.21 

0.005 5.03 79.12 

0.008 6.03 65.76 

0.01 6.35 39.77 

0.02 18.05 28.70 

 

Years 
1         2          3          4          5          6         7          8          9         10 
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Figure 5.26. Final vegetation percentages in function of the SSP. 

In order to take into account the wind direction influence on the vegetation 

pattern, the wind direction factors WD’ and WD’’ have been introduced, as 

previously described in section 3.1.7.3. It is important to point out that wind is 

not an encroachment factor since in literature it was not mentioned as cause. The 

wind may cause a directionality of the seed dispersal that, in cascade, may 

influence the encroachment pattern. We assumed WD’ ranging from 1.5 to 5 and 

WD’’ from 1 to 4 obtaining six different WD’-WD’’ combinations. In Table 5.9 

the final vegetation percentages for each WD’-WD’’ combination are shown 

(e.g., case “1.5-1” means WD’ and WD’’ equal to 1.5 and 1, respectively; the 

plant live index, φX, of the cells in the direction of the wind increases by 50% 

while the φX of the neighbor cells is unchanged). In Figure 5.27 the final 

vegetation percentages in function of the WD’ are shown. Increasing the WD’ to 

5 (i.e., the greatest effect of the wind direction) the shrub increases from 0.65 to 

5.02%, highlighting a non relevant effect of the wind direction. This behavior 

can be explained by the already high value of φX_SH due to the low water stress 

characterizing the shrub. Therefore, multiplying φX_SH for WD, the shrub 

establishment probability is not sensibly affected as it is limited by the maximal 

establishment probability value, PE-X-max, and then the WD increase causes a low 

shrub percentage increase. Therefore, we can affirm that the main effect of WD 

increase is to affect the directionality of the shrub establishment and 

encroachment, even if its role on encroachment velocity is low.  
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Table 5.9. Final vegetation percentages in function of the WD factor.  

Wind 

Encroachment Factor 
Final Vegetation 

Percentage [%] 

WD (-) SH G 

BS 0.65 82.43 

1.5-1 1.13 86.00 

2-1.5 1.62 93.92 

2.5-2 2.38 58.08 

3-2.5 2.56 60.67 

4-3 3.93 63.28 

5-4 5.02 59.20 
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Figure 5.27. Final vegetation percentages in function of the WD. 

Climate change has not been considered as encroachment cause in 

accordance with Bahre and Shelton (1993) and Van Auken (2000; 2009) and 

because in the past there was not a statistically significant trend of temperature 

and precipitation.  

In order to define the combination of the above mentioned parameters which 

provides the actual vegetations percentages at 2010, a total of 1008 simulations 

have been carried out. This number derives from the combination of all the cases 

of each factor, considering also the BS simulation: 2 fire cases, 9 grazing cases, 8 

seed dispersal cases, 7 wind cases. Among the 1008 combinations, that shown in 

Table 5.10 has been selected since it provides the current (i.e., 2010) vegetation 

percentages, even if it is important to point out that other simulations provided 

similar “acceptable” reproduction of the current vegetation percentages.  
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Table 5.10. Encroachment factor parameters used for each period. 

Years TF [yr] PMb [-] Ksg-G [d
-1

] SSP [-] WD [-] 

1861-1890 10 0.02 0.004 

0.005 2-1.5 

1891-1920 32.5 0.04 0.006 

1921-1950 55 0.06 0.008 

1951-1980 77.5 0.08 0.010 

1981-2010 100 0.10 0.012 

 

In Figure 5.28a the final vegetation distribution after the encroachment in 

case C1, using all the factors parameterized as shown in Table 5.10, is shown. 

The time series of percent coverage of PFTs in the study site over 150 years is 

shown in Figure 5.28b.   
 

 

 

Figure 5.28. (a) Final vegetation distribution combining all the factors, F-GR-W-SD; (b) 

time series of percent coverage of PFTs in the study site, C1. 

The model is able to simulate the encroachment, with an increasing of the 

shrub from 2% to 42.6% (grass 27.2% and bare soil 30.1%) like the current 

vegetation percentage in Figure 5.7 and, at the same time, simulating the shrub 

encroachment from south to north. The final vegetation pattern is very similar to 

that shown in Figure 5.7, therefore we can affirm that the model is able to 

F-GR-W-SD a) 

Bare soil 
Shrub 

Grass 

Legend 

b) 
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reproduce the final vegetation percentage and pattern. In Figure 5.28b, the shrub 

time series shows a low increase in the first 30 years (i.e., from 1960 to 1890), 

and a greater increase from 1930 to 1975 and from 1990 to 2010, vice versa 

from 1975 to 1990 the shrub percentage decreases. The grass time series shows a 

high variability as in the long time scale simulation. The lag-1 autocorrelation is 

0.913 for grass and 0.974 for shrub. 

5.1.5.2. Results and discussion 

5.1.5.2.1. Analysis of the influence of the single factors on the encroachment 

in the past 150 years 

In order to understand the effect of each single factor on the encroachment 

phenomenon, a series of different simulations have been carried out assuming 

the presence of each factor separately and then different combination of such 

factors. These simulations have been compared with the BS, previously 

introduced. A multi-step strategy has been then used to explore what we learn 

with the model with respect to the contribution of different parameters that 

contribute to the observed vegetation change. We have combined fire return 

period (F), grazing (GR), wind direction (W) and seed dispersal caused by 

animals (SD): first using a single cause then combining these causes in pairs, 

three by three, and all the causes together for a total of 16 factors combinations. 

In Tables 5.11 the final vegetation percentages for each factors combination, 

starting from C1, is shown. For a fixed number of factors, the combinations that 

give the greatest shrub percentage increase are highlighted in italic. 

Using only a cause, F has provided the greatest influence. Combining two 

factors, F and SD showed the greatest influence while combining three factors, 

the greatest influence is provided by F, SD and GR. The fire frequency reduction 

and the increased grazing intensity have the greatest influence on the 

encroachment. In fact, the fire causes the greatest increase of the shrub (from 

0.65 to 10.32%) and the grazing causes the greatest reduction of grass (from 

82.43 to 72.23%). The final vegetation distributions for each factors combination 

are shown in Figure 5.29. 

Table 5.11. Final vegetation percentage for each factors combination (starting from C1).  

Final Vegetation Percentage [%] 

Factors SH G Factors SH G 

BS 0.65 82.43 GR-W 2.65 64.28 

F 10.32 81.11 GR-SD 8.24 64.40 

GR 2.28 72.23 W-SD 5.99 87.51 

W 1.62 93.92 F-GR-W 19.97 51.18 

SD 5.03 79.12 F-GR-SD 36.86 30.78 

F-GR 12.80 58.09 F-W-SD 27.89 57.24 

F-W 12.20 78.92 GR-W-SD 13.71 57.56 

F-SD 25.53 61.79 F-GR-W-SD 42.67 27.20 
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Figure 5.29. Final vegetation distribution for each factor combinations, C1. 

In order to understand how the final vegetation percentages and its pattern 

may change starting from a different initial vegetation distribution, the cases C2 

and C3 have been analyzed as well. 

In Tables 5.12-5.13 the final vegetation percentage for each factors 

combination, starting from C2, C3, respectively, are shown.  

Using only a cause in the C2, F has provided the greatest influence, while in 

the C3, SD has got the greatest influence because starting from a cluster 

distribution the seed dispersal caused by animals have a greater effect on the 

encroachment increase. In fact, in C3 the shrub settlement process is strongly 

slowed down because the shrub is mainly present in the cluster and the 

mechanism of establishment (see section 3.1.6.1), based on the average value of 

the φX, provides a very modest progress, but inserting the ability to establish 

through seed dispersal caused by animals, the settlement increases because the 

F GR BS 

W SD F-GR 

F-W F-SD GR-W 

GR-SD W-SD F-GR-W 

F-GR-SD F-W-SD GR-W-SD 

Grass Shrub Bare soil 
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seed can establish everywhere. The SD in C3 presents an influence more evident 

than that relative to C1 and C2; these two latter cases, starting from a more 

uniform spatial pattern, are characterized by a settlement process faster than C3 

even if in essence of seed dispersal. Combining two factors, F and SD showed 

the greatest influence in all the cases while combining three factors, the greatest 

influence is provided by F, SD and GR in all the cases. The final vegetation 

distributions for each factors combination, for each case, are shown in Figures 

5.30-5.31a, respectively, while Figures 5.30-5.31b shows the final vegetation 

distribution after the encroachment using all the factors for the C2, C3, 

respectively.  

Therefore, the final vegetation patterns for C2 and C3 is different from C1 

because it is strongly influenced by the initial vegetation distribution. As 

previously seen in section 4.3.4, for the Zafferia case study, in the long time 

scale simulation, the model results are not sensitive to the initial condition used 

for spatial plant distribution because the model forgets the initial condition after 

the first thousand year, during which aspect-driven vegetation organization 

emerges on the landscape. Vice versa, when we run short time scale simulation 

the results are very sensitive to the initial condition and the model is not able to 

forget the initial condition. In fact, the establishment procedure (i.e., cellular 

automata component), is strongly influenced by the neighbors cells of the 

candidate cell, and therefore the initial vegetation distribution can limit or 

accelerate the establishment and also the final vegetation distribution. 
 

Table 5.12. Final vegetation percentage for each factors combination (starting from C2).  

Final Vegetation Percentage [%] 

Factors SH G Factors SH G 

BS 1.49 75.29 GR-W 5.05 49.41 

F 9.89 82.00 GR-SD 7.09 65.94 

GR 1.90 68.67 W-SD 5.18 89.27 

W 1.74 93.42 F-GR-W 24.96 46.10 

SD 4.80 41.03 F-GR-SD 34.90 32.42 

F-GR 12.50 58.36 F-W-SD 34.01 51.69 

F-W 12.48 76.25 GR-W-SD 12.72 58.59 

F-SD 16.27 72.45 F-GR-W-SD 40.72 29.05 

Table 5.13. Final vegetation percentage for each factors combination (starting from C3).  

Final Vegetation Percentage [%] 

Factors SH G Factors SH G 

BS 2.28 41.65 GR-W 2.86 65.31 

F 2.48 93.74 GR-SD 5.30 65.40 

GR 2.58 71.68 W-SD 4.87 42.96 

W 2.59 62.43 F-GR-W 3.42 72.44 

SD 4.67 86.21 F-GR-SD 14.23 36.41 

F-GR 2.84 72.77 F-W-SD 10.73 81.34 

F-W 2.78 93.42 GR-W-SD 8.87 51.73 

F-SD 7.00 86.44 F-GR-W-SD 22.80 42.70 
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Figure 5.30. Final vegetation distribution for each factor combinations, C2. 
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Figure 5.31. Final vegetation distribution for each factor combinations, C3. 
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Time series of percent coverage of PFTs in the study site over 150 years for 

C2 and C3 are shown in Figures 5.32-5.33, respectively. Combining all the 

factors, after 150 years (i.e., 2010), while in the C2 shrub is 40.7%, grass is 

29.1% and bare soil is 30.2%, in the C3, shrub is 22.8%, grass is 42.7% and bare 

soil is 34.5%. Then, starting from the vegetation distribution obtained in the long 

time scale simulation (C3), the final shrub percentage is lower than in the other 

cases (C1, C2); this could be due to the establishment procedure. In fact, in C3 

the shrub settlement process is strongly slowed down because the shrub is 

mainly present in the cluster and the mechanism of establishment (see section 

3.1.6.1), based on the average value of the φX, provides a very modest progress. 

In C2 (Figure 5.32) the shrub time series shows a constant increase, and only 

from 1975 to 1990 the shrub percentage decreases. The grass time series shows a 

high variability as in the C1. The lag-1 autocorrelation is 0.927 for grass and 

0.973 for shrub. In C3 (Figure 5.33), the shrub time series shows a low increase, 

and the grass time series shows a high variability. The lag-1 autocorrelation is 

0.8573 for grass and 0.967 for shrub. As previously seen in Figures 5.30 and 

5.31, the shrub in C2 has a greater increase than in C3. Comparing the Figures 

5.28, 5.32 and 5.33 and the lag-1 autocorrelation, while the grass in C1 and C2 

show a greater persistence than in C3, the shrub has the same persistence in all 

the cases. 

 

Figure 5.32. Time series of percent coverage of PFTs in the study site, C2.  

Figure 5.33. Time series of percent coverage of PFTs in the study site, C3.  
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5.1.5.2.2. Encroachment in the future and possible management strategies 

Starting from the simulated vegetation distribution at 2010, we tried to figure 

out the possible vegetation pattern at 2100. Different scenarios named S1 and S2 

have been assumed: absence of climate change (S1), presence of climate change 

(S2); moreover starting from the results of such scenarios, some management 

strategies have been depicted.  

The future vegetation distributions at the end of 2100 adopting S1 and S2 

scenarios have been obtained through simulations starting from the final 

vegetation distribution of C1 (Figures 5.34 and 5.35, respectively). The fire 

return period has been considered constant and equal to 100 years like the actual 

condition, the grazing coefficient has been considered constant and equal to 0.10 

while seed dispersal and wind effect are considered the same of the 

encroachment in the period 1861-2010 (i.e., parameters of the 1981-2010 period 

in Table 5.10).  

 

 

 

Figure 5.34. (a) Final vegetation encroachment in S1, in 2100; (b) future time series of 

percent coverage of PFTs in the study site, starting from C1.  

The S2 has been carried out considering the CO2 concentration increase effect 

on the plant stomatal conductance and on the WUE. A linear decrease of 

stomatal conductance until 2100 (20% of decrease in 2050 and 40% in 2100) has 

been considered following that mentioned in section 4.4.2. A linear increase of 

the WUE has been also taken into account: grass WUE equal to 0.01 kgCO2·kg
-1

H2O 

a) 

b) 
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in 2010 and 0.0114 in 2100, shrub WUE equal to 0.0025 kgCO2·kg
-1

H2O in 2010 

and 0.0033 in 2100 (the values are obtained using the same procedure of the 

section 4.4.2).  

 

 

 
Figure 5.35. (a) Final vegetation encroachment in S2, in 2100; (b) future time series of 

percent coverage of PFTs in the study site, starting from C1. 

The results of these simulations point out as the shrub increases from 42% to 

90% without climate change (S1) and to 95.9% with the climate change (S2). 

The climate change, precipitation decrease and temperature increase, could then 

accelerate the encroachment and the shrub could settle in all the study area 

confirming the studies of Allen and Breshears (1998) and Van Auken (2009) 

which stated that the climate change could be another important cause of the 

future fast encroachment 

Finally, in order to point out the best management practices to reduce 

encroachment in this area, for each one of the three cases C1, C2 and C3, 

starting from the relative final vegetation distribution (Figures 5.28, 5.30, 5.31b), 

we have simulated the future encroachment, S2 scenario (presence of climate 

change), assuming two different management practices in the area: the 

increasing of fire frequency (obtained fixing TF equal to 10 years) and the 

removing of grazing (obtained fixing PMb equal to 0). In Figure 5.36-5.38 the 

final vegetation distribution in 2100, without management practices (TF equal to 

100 and PMb equal to 0.10) (Figures 5.36-5.38a, c) and with management 

practices (Figures 5.36-5.38b, d) are shown for each single case. It is important 

a) 

b) 
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to point out as, for the cases without management, the initial condition does not 

play any rule on the final shrub percentage (ranging from 93.7% to 95%). 

Moreover one can observe that the reduction of the fire return period and the 

removal of grazing are able to cause a great reduction of the future 

encroachment for the three cases. But, while in C1 and C2 the future shrub 

percentage is 95% considering grazing and fire return period equal to 100 years 

(Figures 5.36-5.37a) and 73% considering grazing removal and fire return period 

reduction (Figures 5.36-5.37b), in C3 the reduction of shrub is more evident: 

from 93.77% in Figure 5.38a it reduces to 50.49% in Figure 5.38b. This can be 

simply explained with the different initial condition at 2010 for the three cases 

(C1 and C2 equal to about 40% and C3 equal to 22%). 
 

 

Figure 5.36. Final vegetation encroachment in 2100 and future time series of percent 

coverage of PFTs in the study site without management practices (a, c), and with 

management practices (b, d), starting from C1.  

 

 

Figure 5.37. Final vegetation encroachment in 2100 and future time series of percent 

coverage of PFTs in the study site without management practices (a, c), and with 

management practices (b, d), starting from C2. 

a) b) 

a) b) 

c) d) 

c) d) 
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Figure 5.38. Final vegetation encroachment in 2100 and future time series of percent 

coverage of PFTs in the study site without management practices (a, c), and with 

management practices (b, d), starting from C3. 

Therefore, the best treatments or control methods that can be introduced to 

reduce the future shrub encroachment in the study area are the fire return period 

decrease, triggering the fire intentionally and in a controlled way, and the 

decrease of the grazing, removing or limiting cattle and herbivores from the site, 

in accordance with Miller et al. (2005; 2007).  

5.2. Case study: Oregon encroachment 

As diffusely mentioned in chapter 2, strong evidences indicate that western 

juniper (Juniperus Occidentalis) has significantly expanded its range since the 

late 1800s by encroaching into landscapes once dominated by shrubs and 

herbaceous vegetation. As the juniper layer increases in dominance, the shrub 

and herb layer decline. The minimum time for the juniper overstory to begin 

suppressing the understory is 45-50 years and to approach stand closure 70-90 

years on cool wet sites and 120-170 on dry warm sites. 

Presettlement western juniper (before 1870) is estimated to account for only 

10 percent or less of present day woodlands (Miller et al., 1999a; Johnson, 

2005). Most woodlands have developed during the past 140 years. The 

chronologies, which describe the age composition and establishment of 

woodlands over time, show a rapid increase in establishment since the 1870’s 

(Miller and Tausch, 2001; Soulé et al., 2004). As previously described in section 

2.2.2.1, the juniper encroachment could be divided in three phases (Figure 5.39). 

In Figure 2.20 (see chapter 2) and 5.40 two conceptual models illustrating the 

relationship between shrub canopy cover and juniper canopy cover during the 

three phases of woodland development in the western United States (Oregon, 

California, Idaho and Nevada) are shown. While in phase I junipers are present 

but shrubs and herbs are the dominant vegetations that influence ecological 

a) b) 

c) d) 
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processes on the site, in phase II junipers are codominant with shrubs and herbs 

and all three vegetation layers influence ecological processes on the site, finally, 

in phase III junipers are the dominant vegetation and the primary plant layer 

influencing ecological processes on the site.  
 

 

Figure 5.39. The three phases of woodland encroachment (Miller et al., 2005). 

 

Figure 5.40. Encroachment phases (Miller et al., 2005). 

5.2.1. Site description 

Juniper encroachment is studied inside the Ochoco National Forest, Crook 

County, in Oregon where a strongly western juniper encroachment started in 

1870 (Miller et al., 2005) (Figures 5.41, 5.42). In Figure 5.43 the position of the 

study site in the Google 2005 Map (Figure 5.43a), the boundary (Figure 5.43b) 

and the 3D view (Google Earth map, Figure 5.43c) are shown.  

The Ochoco National Forest is located in Central Oregon in the United 

States, north-east of Prineville, location of the National Forest Headquarters. It 

encompasses 3,440 km
2
 of rimrock, canyons, geologic oddities, dense pine 

http://en.wikipedia.org/wiki/Central_Oregon
http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Prineville,_Oregon
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forests, and high desert terrain, as well as the headwaters of the North Fork of 

the Crooked River. 

The study site has got an area of 11.86 Km
2
. The Oregon 10 m DEM (source: 

http://library.uoregon.edu/map/gis_data/or_10mdemlist.htm) is used for the 

modeling study. This area is located in the elevation range of 1351 m to 1797 m 

a.s.l. (Figure 5.44a), the slope angle ranges from flat surfaces to as high as 50.7° 

on hillslopes (Figure 5.44b), with an average of 10.9°. The aspect map is also 

shown in Figure 5.44c. To illustrate the role of topography on incoming solar 

radiation, the mean daily clear-sky radiation over the study area is plotted 

(Figure 5.45). Annually, S-facing slope receives as much as twice the solar 

radiation received by N-facing slopes. The soil texture is sandy-loam (Web Soil 

Survey USDA).  
 
 

 
Figure 5.41. Distribution map of western juniper (Juniperus occidentalis var. 

occidentalis) and Sterra Juniper (J.s occidentalis var. australis) (derived from Griffin 

and Critchfield, 1972; Charlet, 1996; Gedney et al., 1999; and USGS 1:250,000 maps) 

and study area position.  

 

 
Figure 5.42. Western juniper in the Keystone Ranch east of Prineville, Oregon, in Crook 

County on Ochoco Creek.  

Study site 

http://en.wikipedia.org/wiki/Crooked_River_(Oregon)
http://library.uoregon.edu/map/gis_data/or_10mdemlist.htm
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Figure 5.43. Study site: (a) position, (b) boundary, (c) 3D view. 

a) 

c) 

b) 

Study site 

c) 
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Figure 5.44. Topography of the site: (a) DEM, (b) slope, (c) aspect. 

      

Figure 5.45. Simulated mean daily incoming clear-sky shortwave radiation over the 

study area over a year. 
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5.2.2. Data 

5.2.2.1. Vegetation cover 

The dominant plant types are: western juniper (tree), sagebush (shrub) and 

bunchgrass C4 (grass). Grass is deciduous and western juniper and sagebush are 

evergreen. Western juniper is a long-lived species (the maximum age is 1000 

years) and has got an elevation of 4-10 m (Miller et al., 2005) with a mean 

elevation equal to 7 m. Seed dispersal of western juniper occurs through gravity, 

overland flow, and animals. At least 12 different species of birds feed on the 

fruits and as a group are the most important disseminator’s of western juniper 

seed (Miller et al., 2005). 

In Figure 5.46a the actual vegetation distribution is shown using the National 

Land Cover Database (NLCD) 2006 map with 30 meters resolution (obtained 

from Landsat) (http://www.mrlc.gov/nlcd06_data.php): 86.5 % western juniper, 

13% shrub, 0.5% grass. The database for this project was Landsat TM data, 

2006 acquisition. National Land Cover Database 2006 (NLCD2006) (published 

in Feb. 2010) is a 16-class land cover classification scheme that has been applied 

consistently across the conterminous United States at a spatial resolution of 30 

meters. NLCD2006 is based primarily on the unsupervised classification 

of Landsat Enhanced Thematic Mapper+ (ETM+) circa 2006 satellite data. 

The Figure 5.46b overlays the Google 2005 map and the NLCD 2006 map: in 

the place where there is shrub in the NLCD map, there is bare soil/grass/shrub in 

the Google Map. In order to produce the NLCD map an unsupervised clustering 

algorithm has been used.  

In Figure 5.47 the study area vegetation distribution, using the NLCD 2001 

map overlying the Google map, is shown. 

Summarizing, the most important problem related to the NLCD classification 

map are: 

 some of the TM data sets are not temporally ideal. Leaves-off data 

sets are heavily relied upon for discriminating between hay/pasture 

and row crop, and also for discriminating between forest classes. The 

success of discriminating between these classes using leaves-off data 

sets hinges on the time of data acquisition. When hay/pasture areas 

are non-green, they are not easily distinguishable from other 

agricultural areas using remotely sensed data.  

 The data sets used cover a range of years (2006), and changes that 

have taken place across the landscape over the time period may not 

have been captured.  

 Wetlands classes are extremely difficult to extract from Landsat TM 

spectral information alone.  

 Separation of grass and shrub is problematic. Areas observed on the 

ground to be shrub or grass are not always distinguishable spectrally.  

http://www.mrlc.gov/nlcd06_data.php
http://landsat.usgs.gov/
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In Figure 5.48 the Google Earth maps of 1994 (a), 2001 (b), 2003 (c), 2005 

(d), 2011 (e), respectively, are shown. From these maps we can see the great 

encroachment in this area in 17 years, from 1994 to 2011. For the 1994 and 2001 

only a few part of the site is covered by the Google Earth map (Figures 5.48a, 

b). 

 

 
 

 

Legend

Vegetation Type

Juniper

Grass

Shrub

 

Figure 5.46. (a) Vegetation distribution NLCD 2006, (b) vegetation distribution NLCD 

2006 overlying the Google map. 

a) 

b) 
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Figure 5.47. Vegetation distribution NLCD 2001 overlying the Google map. 

 

 

 

 

Figure 5.48. Google Earth maps of 1994 (a), 2001 (b), 2003 (c), 2005 (d), 2011 (e). 

a) b) 

d) 

e) 

c) 
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5.2.2.2. Precipitation 

In Oregon there is a great spatial variation of the precipitation (Figure 5.49): 

from 130 mm to more than 2000 mm (source: http://www.nationalatlas.gov). 

Climate is characterized by cold nights throughout the year, particularly at 

higher elevations, and hot daytime summer temperatures. 

Average annual precipitation ranges between 200 and 380 mm at lower 

elevations. In the Ochoco Mountains may reach 760 to 1000 mm at higher 

elevations. The highest monthly precipitation totals occur in the winter months, 

with a secondary maximum during the late spring and early summer. High 

intensity thunderstorms can contribute large proportions of local annual rainfall 

in the late spring and summer precipitation events. Summer temperatures are 

warm at lower elevations, but the growing season is relatively short (Nielsen-

Pincus, 2008). 

 

Prineville station (10.1-15 inches equal to 250-380 mm) 

Basin (15.1-20 inches equal to 380-500 mm)  
Figure 5.49. Oregon annual precipitation spatial distribution map (source: 

http://www.nationalatlas.gov). 

In Figure 5.50 the historical precipitation (a) and temperature (b) measured in 

Prineville (OR) (44°30’ N, 120°80’ W, 888.5 m a.s.l.) from 1897 to 2012 are 

shown (source NOAA). Moreover, only the temperature and the precipitation are 

available and there are missing data in forty years. The solar radiation, humidity, 

vapor pressure and wind speed are not measured by the station. The MAP is 

about 246 mm and the mean annual temperature is 8.5° C. There was not climate 

change during the period 1897-2012. The Mann-Kendall test (Mann, 1945; 

Kendall, 1962) has been done with α equal 0.01 for the annual precipitation data, 

for the wet and dry season precipitation data and for the mean annual 

temperature and there is not statistically significant trend in all the cases. 

The study site is located in the area in which the precipitation is between 380-

500 mm. For this reason the data of the Metolius eddy-covariance station 

(AmeriFlux, sitename: Metolius Intermediate Pine/US-Me2; 44°45’ N, 121°55’ 

Prineville station (10.1-15 inches equal to 250-380 mm) 

Study site (15.1-20 inches equal to 380-500 mm) 

http://www.nationalatlas.gov/
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W, 1353 m a.s.l.), for which all the weather variable data are available, have 

been selected (data availability from 01/01/2002 to 12/31/2012). The MAP is 

462 mm (tipping bucket raingauge with 0.254 mm resolution). The original 

weather data time-resolution is half hour and we have aggregated the data at 1 

hour resolution. 
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Figure 5.50. Historical annual precipitation (a), and MAT (b) measured by Prineville 

station. 

5.2.3. Model simulations 

The approach here used is the same assumed for the shrub encroachment 

(section 5.1.3), i.e., two different types of simulations have been carried out: 

a) long time scale: 5,000 years - under this scenario, we setup the model with 

equally distributed species (33%), trying to obtain a stationary behavior coherent 

with the observed pattern. The simulation is run for 5,000 years, forced by 

statistically generated storms using a Poisson process and a cosine function to 

reproduce the annual cycle of the potential evapotranspiration. 

a) 

b) 
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b) short time scale: 140 years (from 1871 to 2010) - encroachment from 

ecotone boundary. This simulation is designed and carried out with the aim to 

reproduce the fast and recent encroachment phenomenon. Using eleven years of 

the Metolius station site data, 140 years of weather data with the AWE-GEN 

model have been obtained and the encroachment simulation has been done using 

hourly precipitation data and calculating the potential evapotranspiration with 

the Penman-Monteith equation.  

5.2.3.1. Model set up  

PFTs are defined at a 5m by 5m grid as described in the two previous case 

studies. 

A spatially uniform soil thickness was assumed, while the soil (one soil type 

modeled as sandy-loam) parameters used in the model are shown in Table 5.14. 

The site morphology has been classified into topographically similar slope-

aspect (S-A) groups, considering a 6 degree increment for local slopes (5-53°) (9 

slope classes) and a 30 degree increment for aspect (0-360°) (13 aspect classes) 

leading to 117 different combinations (S-A groups) in order to get and analyze 

the effect of the Slope-Aspect group on the vegetation distribution. 

Table 5.14. Soil parameters used in the water balance component of the model. Source: 

Laio et al. (2001). 

Soil Texture n [-] sfc [-] Ic-b [mm·d
-1

] Ks [mm·d
-1

] b [-] 

Sandy Loam 0.43 0.56 0.83 1.75 4.9 

5.2.3.2. Weather forcings 

5.2.3.2.1. Long time scale weather forcings 

The model has been forced by daily rainfall and potential evapotranspiration 

(Tmax-X). The precipitation time series has been generated with a simplified 

stochastic Poisson process calibrated with the historical observed precipitation. 

The Tmax-X annual cycle has been obtained from a stationary cosine function 

fitted to mean daily values of Tmax-X calculated from the daily Penman-Monteith 

equation using the Metolius station data. 

 In storm generation, we have used the Poisson Rectangular Pulses (PRP) 

model, with a one-parameter exponential distribution for time between storms 

(Tb) and storm durations (Tr); and a Gamma distribution for rainfall depth h 

conditioned on Tr (e.g., Ivanov et al., 2007). The storm intensity p, is calculated 

as: p=h/Tr. Two rainfall seasons have been considered: wet season and dry 

season with seasonal precipitations denoted by Pw and Pd.  

In Table 5.15, the observed and modeled rainfall parameters for the Poisson 

rectangular pulses method for the Metolius weather station (2002-2012) are 
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shown. Nday is the number of day of each season, f is the fraction of precipitation 

falling in each season, P is the mean annual precipitation for each season, λ is 

the frequency of storm event, Tb is the interstorm period, Tr is the storm 

duration, Nstorm is the number of storm for each season, and α is the mean 

precipitation depth falling in each event. 

Table 5.15. Comparison between observed data and storm generator outputs. 

Observed Data 

Season Nday f P [mm·yr
-1

] λ [d
-1

] Tb [h] Tr [h] 
N 

storm 

α 

[mm] 

wet 273 0.907 419.5 0.227 105.7 6.17 62 6.8 

dry 92 0.093 43.0 0.130 184.0 1.96 12 3.6 

 
Output Model 

Season P [mm·yr
-1

] λ [d
-1

] Tb [h] Tr [h] N storm α [mm] 

wet 420 0.224 107.1 6.07 63 6.7 

dry 44 0.131 182.9 2.01 13 3.4 

 

According with Miller et al. (2005), the wet season is considered as ranging 

from October to June, 273 days, while the dry season ranges from July to 

September, 92 days. 

Daily maximum transpiration is obtained from the cosine function fitting 

(3.40) to calculated Tmax-X for each PFT (3.36). 



Tmax X
F

 (juniper: 3.3 mm·d
-1

; 

grass: 3.2 mm·d
-1

; shrub: 2.4 mm·d
-1

), LT equal to 30 days (peak 



TCosX
H

 occurs 

when DOY is greater than Nd/2, consistent with the climate in the region), and Δ 

(juniper: 6.3 mm·d
-1

; grass: 6 mm·d
-1

; shrub: 4.6 mm·d
-1

) are obtained for each 

vegetation calibrating the cosine function with the Tmax obtained from observed 

data using the Penman-Monteith equation (Figure 5.51). To reduce data 

requirements and keep the model simple, the bare soil Tmax, Eb, is calculated as 

described in section 5.1.3.2.1.  

In order to illustrate the role of topography and incoming solar radiation on 

the potential evapotranspiration distribution, the mean Tmax-X for each vegetation 

type over the study area is plotted in Figure 5.52. Annually, in the S-facing slope 

the Tmax-X is greater than in the N-facing slopes because it receives as much as 

twice the solar radiation received by N-facing slopes.  
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Figure 5.51. Calibration of Tmax-X annual curve: (a) juniper, (b) grass, (c) shrub. 

   

                                                                                                         

Figure 5.52. Mean annual Tmax-X over the study area for: juniper (a), grass (b) and shrub 

(c). 

5.2.3.2.2. Encroachment weather forcings 

For the encroachment analysis, using eleven years of the Metolius station site 

data, 140 years of weather data with the AWE-GEN model have been generated 

(Figure 5.53) and the encroachment simulation has been done using hourly 

precipitation data and calculating the potential evapotranspiration with the 

a) 

c) 

b) 

a) b) 
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Penman-Monteith equation. Since the CATGraSS model works at daily and 

interstorm time scale, the hourly data have been aggregated.  

 

 
Figure 5.53. Annual precipitation for the period 1871-2010 obtained with the AWE-

GEN using Metolius station site data. 

For the encroachment from 1871 to 2010, stationary precipitation and 

temperature have been considered because there was not a statistically 

significant variation of such variables in the past century. 
  

5.2.4. Long time scale: 5,000 years simulation 

5.2.4.1. Model calibration 

The model has been calibrated to reproduce the initial vegetation percentage 

in the study area before encroachment in 1870 with a 5,000 years simulation 

without encroachment causes (fire return period, TF, constant and equal to 10 

years and no grazing effects).  

The initial condition (juniper, shrub and grass percentage before 

encroachment) and the final vegetation percentage (after encroachment) have 

been set using two different data sources: 

 Miller et al. (2000; 2005): there is a qualitative description of vegetation 

percentage dynamics in the Miller’s papers, but it is relative to an area 

(Oregon, California, Idaho, Nevada) wider than our plot and, for this 

reason, the percentages could be misleading (Figure 2.20); 

 NLCD map (2006) of the study area (Figure 5.46); in this map the 

separation of grass and shrub is problematic. Areas observed on the 

ground as shrubs or grasses are not always distinguishable spectrally, as 

previously said in section 5.2.2.1. Moreover, there is not the availability 

of a vegetation map of our study area relative to 1870.  

In Table 5.16, the past and current vegetation percentages obtained from the 

two sources are shown. In particular, the final juniper percentage is 46% in 

Miller et al. (2005) (Figure 2.20) and 86.5% in the NLCD map (Figure 5.46).  
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Table 5.16. Vegetation percentage in Miller et al. (2000; 2005) and NLCD map. 

Vegetation percentage [%] 

Vegetation 
Miller et al. (2000) Miller et al. (2005) 

NLCD Map 

(2006) 

1870 Current 1870 Current 1870 Current 

Juniper 0-10 40-50 0 46 - 86.5 

Shrub 20-30 4-5 28.5 0.5 - 13 

Grass - 
 

- - - 0.5 
 

 

Since the different data sources lead to apparently contradictory 

classification, one hypothesis has been assumed for this work: NLCD map is 

related to our study area at 2006, therefore we assumed it as the true current 

vegetation distribution map in 2010 while we assumed that the vegetation 

dynamics followed Miller et al. (2005) (even if valid for a larger area). 

Estimating the percentage increase from Figure 2.20 (juniper increase from 5% 

to 46% corresponds to a relative increase of 820%; shrub decrease from 28.5% 

to 4.5% corresponds to a relative decrease of 84%) and applying this value to 

obtain the initial condition which leads to 86.5% for juniper and 13.5% for 

shrub-grass (NLCD vegetation percentage), the initial vegetation percentage in 

1870 is equal to 11% for juniper and 76% for shrub-grass. 

Vegetation parameters used for simulating local water balance and plant 

dynamics (e.g., biomass production and loss) are listed in Table 5.17. The 

parameters in Table 5.17 are obtained from literature and from calibration in the 

long time scale simulation and compared with the literature for given plant types 

in the field. Table 5.18 reports parameters used for simulating plant 

establishment and mortality, mostly obtained from literature and calibration in 

the long time scale simulation as described in the Zafferia study case (see section 

4.3.1). Parameters reported in Table 5.17 are obtained from calibration of the 

model LAI to reproduce the observed vegetation patterns in the study area.  

We used the time series of MODIS LAI to calibrate the model simulated LAI. 

Since three different PFTs cover the study area, we identified MODIS cells that 

have a relatively uniform cover of a given plant type (juniper and shrub). As 

shown in Figure 5.54 the MODIS pixel selected to represent the LAI of juniper is 

uniformly covered by junipers only and it is inside the study site, the MODIS 

pixel selected to represent shrub is located in the eastern part of the study site 

and it is covered uniformly by shrubs. The identification of MODIS pixels 

representative of the grass cover was not possible given the fact that grass is 

mixed with the other two plant types and therefore it would have been 

impossible to separate the LAI from the different plants.  

As previously made for the other case studies, the MODIS data for 10 years, 

from 2003 to 2012, are compared with simulations of LAI provided by 

CATGraSS (Figures 5.55, 5.56). In the calibration procedure the decay 

coefficients for green biomass (ksg), structural biomass (kss), dead biomass (kdd), 

the maximum drought induced foliage loss (ksf), the water use efficiency (WUE), 
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the specific leaf are for green (cg) and dead biomass (cd), and the LAImax have 

been manually adjusted to match the MODIS LAI data for juniper and shrub 

controlling, at the same time, that such parameters were within literature 

parameter ranges (Montaldo et al., 2005, 2008).  

The comparison between MODIS LAI and modeled LAI is shown in Figures 

5.55 and 5.56 for juniper and shrub, respectively. The model shows consistency 

in estimating the onset of the growing and dormant seasons, and the LAI peak is 

estimated correctly in each years. For the grass, the same parameters of Zhou et 

al. (2013) has been used (Table 5.17). The Nash-Sutciffe efficiency (NSE) (Nash 

and Sutciffe, 1970) and the coefficient of determination (R
2
) (for juniper 

NSE=0.63, R
2
=0.87, and for shrub NSE=0.45, R

2
=0.69) show an agreement 

between model predictions and remote sensing estimation, ranging from 

acceptable to good. 

Table 5.17. Plant parameters used to simulate soil moisture and vegetation dynamics. 

Parameters Description Grass 
Western 

juniper 

Creosot

e bush 

Imax Full canopy interception [mm] 1.0
1
 2.0

1
 1.5

1
 

  Zr Root depth [m] 0.3
2
 1.3

3
 0.5

3
 

Zveg Vegetation height [m] 0.3
4
 7.0

9
 1.0

3
 

  rl Stomatal resistance [s·m
-1

] 130
4
 270

1
 210

4
 

  s* Saturation degree at stomata closure  0.33
1
 0.22

1
 0.24

1
 

  sw Saturation degree at wilting point [-] 0.13
1
 0.15

1
 0.13

1
 

  sh Saturation degree at soil hygroscopic  0.10
5
 0.10

5
 0.10

5
 

LAImax Maximum LAI [m
2
·m

-2
] 2.0

4
 4.0

14
 2.9

3
 

  Rin 
Ratio of canopy-interspace 

infiltration capacity [-] 
1.2

6
 2.0

3
 2.0

10
 

WUE Water Use Efficiency [kgCO2kg
-1

H2O] 0.01
7
 0.006

11
 0.004

11
 

  ksg Decay coef. green biomass [d
-1

] 0.012
7
 0.01

11
 0.007

11
 

  kss 
Decay coefficient of structural 

biomass [d
-1

] 
0.01

7
 0.009

11
 0.001

11
 

  kdd Decay coef. of dead biomass [d
-1

] 0.013
7
 0.05

11
 0.08

11
 

  ksf 
Maximum drought induced foliage 

loss rates [d
-1

] 
0.02

8
 0.001

11
 0.02

11
 

  cg 
Specific leaf area for green 

biomass [m
2
 leaf ·g

-1
DM] 

0.0047
7
 0.015

11
 0.019

11
 

  cd 
Specific leaf area for dead biomass 

[m
2
 leaf ·g

-1
DM] 

0.009
7
 0.03

11
 0.025

11
 

  αs
 

Shortwave albedo [-] 0.12
1
 0.1

1
 0.15

1
 

GT, DT 
Growth and dormancy thresholds 

[mm·d
-1

] 
3, 4

11
 N/A N/A 

Tdmax 
Constant for dead biomass loss 

adjustment [mm·d
-1

] 
10

7
 10

7
 10

7
 

Source: (1) Caylor et al. (2005); (2) Kurc and Small (2004); (3) Gutierrez-Jurado et al., (2006); (4) 

Guan and Wilson (2009); (5) Laio et al. (2001); (6) Bhark and Small (2003); (7) Istanbulluoglu et 

al. (2012); (8) Ivanov et al. (2008a); (9) Miller et al. (2005); (10) Paul and Litvak (2009); (11) 

Calibration. 
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Allelopathy is incorporated in CATGraSS by using the inhibitory factor, ING. 

The ING was obtained from calibration: we have done different simulations 

considering first the absence of the inhibition factor (ING=1), and then increasing 

it to 2 (maximum inhibition), for a total of ten simulations. We obtained ING 

equal to 1.92 (Table 5.18). 

For the fire event we have assumed a probability of fire, PF, (i.e., the reverse 

of return period, TF) like to 0.1 (return period, TF: 10 years; Casagrandi and 

Rinaldi, 1999) while the vulnerability to fire of each vegetation, VF-X, is shown 

in Table 5.19.  

Table 5.18. Model parameters for modeling plant mortality and establishment. 

Parameters Description Grass 
Creosote 

bush 

Shrub 

Seedling 

Western 

juniper 

Juniper 

Seedling 

θX 

Drought 

resistant 

threshold [-] 

0.57
5
 0.9

5
 0.8

5
 0.72

5
 0.57

5
 

PMb-X 

Background 

mortality 

probability [-] 

0.01
5
 0.01

5
 0.01

5
 0.01

5
 0.01

5
 

PE-X-max 

Maximal 

establishment 

probability [-] 

0.4
5
 0.3

5
 N/A 0.2

5
 N/A 

INX 
Inhibitory 

factor [-] 
1.92

5
 N/A N/A N/A N/A 

tmax 
Maximum age 

[yr] 
N/A 600

1
 18

2
 1000

3
 20

4
 

Source: (1) Bowers et al. (1995); (2) Chew and Chew (1965); (3) Miller et al. (2005); (4) Schott 

and Pieper (1986); (5) Calibration. 
 

 
 

 

Figure 5.54. Vegetation map and MODIS LAI pixels used to evaluate the juniper and 

shrub LAI. 

Western juniper LAI 

Shrub LAI 
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Figure 5.55. Comparison between western juniper MODIS LAI and modeled LAI, period 

2003-2012. 

    
Figure 5.56. Comparison between shrub MODIS LAI and modeled LAI, period 2003-

2012. 

Table 5.19. Fire parameters. 

Parameters Juniper 
Juniper  

seedling 
Shrub 

Shrub 

seedling 
Grass 

Probability of fire PF [yr
-1

] 0.1 
1
 

Fire return period TF [yr] 10 
1
 

Vulnerability to fire VF-X [-] 0.08 
2,3

 0.2 
2,3

 0.1 
2,3

 0.2 
2,3

 0.8 
2,3

 

Source: (1) Miller et al. (2006), Le Houèrou (1974), Thomas (1991), (2) Accatino et al. (2010), (3) 

Calibration. 
 

In Figure 5.57, the actual evapotranspiration (ETa) measured by the Metolius 

eddy covariance station has been compared with the ETa obtained by the model. 

The mean ETa is 296 mm, while the modeled mean ETa is 290 mm. The 

calibrated model is able to reproduce the ETa. 
 

 
Figure 5.57. Real evapotranspiration: Metolius eddy covariance station.  
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5.2.4.2. Model simulation and results 

The model has been calibrated to reproduce the initial vegetation percentage 

in the study area before encroachment in 1870 using a 5,000 years simulation 

without encroachment causes. The model was initially run with a random 

vegetation distribution, characterized by the same probability of assignments for 

all PFTs and bare soil (33.3%) as in the previous case studies.  

The vegetation percentage in 1870, obtained at the end of the 5,000
th
 year, is 

composed by juniper 11%, shrub 28%, grass 48% (shrub-grass 76%), bare soil 

18.5% (Figure 5.58). These values are in accordance with Miller et al. (2005; 

2007), Table 5.16 and Figure 2.20, for which in 1870 shrub percentage was 

between 20 and 30, juniper percentage between 0 and 10 and grass-bare soil 

percentage between 60 and 70. The final vegetation distribution after 5,000 years 

of simulation and the time series of percent coverage of PFTs in the study site 

are shown in Figures 5.58a and 5.58b, respectively.  

 

 

 

Figure 5.58. (a) Final vegetation distribution after 5,000 years of simulation, (b) time 

series of percent coverage of PFTs in the study site.  

After 5,000 years the shrubs are distributed following cluster, but the 

vegetation composition is not influenced by the topography. While the shrub 

a) 

b) 



CHAPTER 5    Modeling the shrub and juniper encroachment in the american grasslands     

 

________________________________________________________________ 
Domenico Caracciolo                                                                                                     229 

  

time series in Figure 5.58b is mainly stationary, the juniper time series decrease 

mainly from 0 to 1,000 years and it is mainly constant from 1,000 to 5,000 years. 

The grass time series increase mainly from 0 to 1,000 years. The highly variable 

nature of grass percentage is typically driven by the inter-annual fluctuations in 

precipitation. Because grasses have an overall higher water stress and lower 

drought resistance, they die rapidly during dry years, but also grow back quickly 

in the following wetter years, as their seeds are assumed to be available 

everywhere in space. In addition, the establishment and mortality of grass 

depend on the rainfall of a given year and therefore subjected to the same inter-

annual variability of rainfall. The lag-1 autocorrelation is 0.801 for grass, 0.997 

for juniper and 0.979 for shrub. 

5.2.5. Short time scale: encroachment  

After that the initial vegetation percentage in the study area in 1870 (i.e., 

before encroachment) has been reproduced, the CATGraSS has been run to 

reproduce the juniper encroachment occurred in the last 140 years (from 1871 to 

2010). 

5.2.5.1. Encroachment factors parameters used in the CATGraSS 

The causes that have been considered for the juniper encroachment in this 

case study are (Figure 5.23): the fire, the grazing, the seed dispersal caused by 

animals, the shrub-grass inhibition effect (i.e., allelopathy) and the plant type 

competition. 

In CATGraSS we modeled the fire effect by considering a TF linear 

increasing from 10 years (in 1871) to 100 years (in 2010) according to Figure 

5.59 (Miller et al., 2007). In Figure 5.59 the relationship between fire return 

period and the percent composition of grasses, shrubs and junipers in this area is 

shown. Setting the initial (1871) and final (2010) shrub percentage (22% and 

4.5%, respectively), using the curve related to the shrub in Figure 5.59, the 

initial and final fire return period have been obtained: 10 and 100 years, 

respectively. The vulnerability to fire, VF-X, has been setted equal to 0.8 for 

grass, 0.08 for juniper (0.2 for young juniper) and 0.10 for shrub (0.2 for young 

shrub, Burkhardt and Tisdale, 1976) after a sensitivity analysis carried out using 

Accatino et al. (2010) value ranges. This parameter varies from 0.02 if junipers 

(or shrubs) are very fire resistant, to 0.6 if junipers are easily killed by fire 

according to Casagrandi and Rinaldi (1999). 
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Figure 5.59. Relationship of time since fire and the percent composition of grasses, 

shrubs and junipers (Miller et al., 2007).    

A previously said in section 5.1.5.1, while in literature the fire model, that we 

used in the CATGraSS, has been previously studied and applied and values of its 

parameters are presented in different works, for grazing and seed dispersal there 

is not enough scientific literature useful to allow to us their choice. For this 

reason, for each single factor, different values have been first fixed trying to 

understand the effect of the choice of the single factor on the encroachment; then 

these factors have been combined, and among all the combinations, the one that 

provide the more acceptable reproduction of the current vegetation percentage 

has been selected. First, the base simulation, BS, i.e., the base simulation of 140 

years (1871-2010) without encroachment factors has been done.    

The grazing effect is for grass and shrub and not for juniper. Grazing effect 

has been obtained following the approach of previous case studies. The 

parameter PMb has been obtained increasing it in the years to simulate the 

increase of the grazing effect (Van Auken, 2000; 2009). Eight different grazing 

cases, that provide a linear increase of PMb from 1871 to 2010, have been 

assumed. In Table 5.20 the final shrub (SH), grass (G) and juniper (T) 

percentages for each PMb case are shown (e.g.,  case “0.01-0.05” means PMb 

equal to 0.01 in 1871 and PMb equal to 0.05 in 2010). In Figure 5.60 the final 

vegetation percentages in function of the PMb are shown. In the PMb axis, for each 

case the PMb value in 2010 is shown. Only the grazing could not cause the total 

juniper encroachment, i.e., current juniper coverage equal to 86.5%. But, with 

the 40% of PM related to the grazing in 2010, the juniper increases from 12.80 to 

69.04%, which means a consistent increase. 

 

10 

4.5 
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Table 5.20. Final vegetation percentages in function of the grazing factor (PMb).  

Grazing 

Encroachment Factor 
Final Vegetation 

Percentage [%] 

PMb (-) SH G T 

BS 30.60 46.50 12.80 

0.01-0.05 24.06 27.99 34.62 

0.02-0.10 4.39 21.48 50.60 

0.03-0.15 0.80 25.13 57.92 

0.04-0.20 0.08 19.25 61.00 

0.05-0.25 0.01 16.08 64.11 

0.06-0.30 0.00 9.08 66.09 

0.07-0.35 0.00 9.75 68.25 

0.08-0.40 0.00 6.50 69.04 
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Figure 5.60. Final vegetation percentages in function of the grazing factor (PMb). 

As previously made in section 5.1.5.1, the grass decay coefficient of green 

biomass, Ksg-G has been increased from 1871 to 2010 to simulate the grass 

biomass reduction caused by cattle (i.e., LAI reduction). This coefficient has 

been assumed linearly increasing from 0.004 d
-1

 in 1870 to 0.012 d
-1

 in 2010, 

using the range of Montaldo et al. (2005) and the actual value used by Zhou et 

al. (2013).  

Dispersal of seeds of woody plants by domestic animals had increased the 

encroachment (Van Auken, 2000; 2009). The spread of seed probability for the 

juniper, SSP, has been introduced in the model and its value has been ranged 

from 0.001 to 0.02 for a total of seven values. In Table 5.21 the final vegetation 

percentages for different values of SSP factor are shown. In Figure 5.61 the final 

vegetation percentages in function of the SSP are shown. Also in this case, only 

the seed dispersal caused by animals could not cause the total juniper 
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encroachment. In fact, with SSP equal to 0.2, the juniper increases from 12.80 to 

31.82% with a relative growth of more than 120%. 

Table 5.21. Final vegetation percentages in function of the SSP.  

Seed Dispersal 

Encroachment Factor 
Final Vegetation 

Percentage [%] 

SSP (-) SH G T 

BS 30.60 46.50 12.80 

0.01 45.45 27.59 22.22 

0.02 45.23 27.11 22.53 

0.04 44.05 28.73 22.68 

0.05 44.36 21.90 28.42 

0.08 44.35 20.77 29.68 

0.1 44.44 15.93 30.30 

0.2 42.45 21.64 31.82 
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Figure 5.61. Final vegetation percentages in function of the SSP. 

As mentioned in section 5.1.5.1, in order to take into account the wind 

direction influence on the shrub encroachment direction and on the vegetation 

pattern direction, the wind direction factors WD’ and WD’’ have been 

introduced. They are not encroachment factors. In fact, the wind may cause a 

directionality of the seed dispersal. In the study area the wind speed direction 

predominant is from southeast to northwest (Figure 5.14). We assumed WD’ 

ranging from 1.5 to 5 and WD’’ from 1 to 4. Six different WD’-WD’’ 

combinations have been obtained. In Table 5.22 the final vegetation percentages 

for each WD’-WD’’ combination are shown (e.g., case “1.5-1” means WD’ and 

WD’’ equal to 1.5 and 1, respectively), while Figure 5.62 shows the final 
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vegetation percentages in function of the WD. In the WD axis, for each case the 

WD’ value is shown. Increasing the WD’ to 5 (i.e., the greatest effect of the wind 

direction) the juniper increases from 12.80 to 42.66%, which means a great 

effect of the wind direction. If one compares the effect of the wind direction on 

the juniper encroachment with that related to the shrub encroachment (Figure 

5.27), it can be observed a greater increase of the juniper percentage and then a 

greater effect of the wind direction. In fact, the juniper plant live index, φT, is, in 

average, smaller than the φSH because its water stress is greater than the shrub 

water stress, then when it is multiplied for the WD, the probability of 

establishment has a greater increase leading to a faster encroachment. 

Table 5.22. Final vegetation percentages in function of the WD factor.  

Wind 

Encroachment 

Factor 

Final Vegetation 

Percentage [%] 

WD (-) SH G T 

BS 30.60 46.50 12.80 

1.5-1 44.96 21.87 22.18 

2-1.5 43.56 18.70 25.11 

2.5-2 42.60 15.14 37.54 

3-2.5 41.46 13.62 40.26 

4-3 38.93 10.57 41.93 

5-4 37.54 13.03 42.66 
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Figure 5.62. Final vegetation percentages in function of the WD factor. 
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Climate change has not been considered as encroachment cause in 

accordance with Bahre and Shelton (1993) and Van Auken (2000; 2009) and 

because in the past there was not a statistically significant trend of temperature 

and precipitation.  

As made for the shrub encroachment case in Sevilleta, in order to define the 

combination of the above mentioned parameters which provides the actual 

vegetations percentages at 2010, a total of 1008 simulations have been carried 

out. This number derives from the combination of all the cases of each factor, 

considering also the BS simulation: 2 fire cases, 9 grazing cases, 8 seed dispersal 

cases, 7 wind cases. Among the 1008 combinations, the one selected by us that 

causes the increase of the juniper to 86.5% (i.e., current percentage) is 

summarized in Table 5.23, even if it is important to point out that other 

simulations provided similar “acceptable” reproduction of the actual vegetation 

percentage.  

Table 5.23. Encroachment factor parameters used for each period. 

Years TF [yr] PMb [-] Ksg-G [d
-1

] SSP [-] WD [-] 

1871-1898 10 0.02 0.004 

0.04 1.5-2 

1898-1926 32.5 0.04 0.006 

1926-1954 55 0.06 0.008 

1954-1982 77.5 0.08 0.010 

1982-2010 100 0.10 0.012 

 

In Figure 5.63 the final vegetation distribution after the juniper encroachment 

(a), using all the factors parameterized as shown in Table 5.23, and the time 

series of percent coverage of PFTs in the study area (b) are shown. The juniper 

time series shows a constant increase during the 140 years, only from 1900 to 

1910 it shows a decrease. The shrub percentage is mainly constant until 1920, 

and it decreases from 1920 to 2010. The grass time series shows a high 

variability as in the long time scale simulation. The lag-1 autocorrelation is 

0.842 for grass, 0.981 for juniper and 0.985 for shrub. 

The western juniper settles all the study area and the shrub disappears in the 

study area (according to Figure 2.20, Miller et al., 2005). There is not vegetation 

pattern because all the area is established by juniper. The final vegetation 

percentage is: juniper 86.5 %, grass 8.7% and shrub 2.3% and it is in accordance 

with the real vegetation percentage in Figure 5.46, with Miller et al. (2000; 

2005) and Tausch and West (1995). These results are also in accordance with 

Figure 5.64 (Johnson and Miller, 2006) that shows a conceptual model with 

estimated time periods from initial juniper establishment to minimum stocking 

adequate for phase III, and estimated maximum potential for relative abundance 

and cover for stands developing on sites from high to low productivity. In 140 

years, the western juniper percentage increase from 5% to 46% with a relative 

increase of 820% like our simulation. 
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Figure 5.63. (a) Final vegetation distribution after 140 years of encroachment 

simulation, (b) time series of percent coverage of PFTs in the study site. 

 

 

Figure 5.64. Conceptual model with estimated time periods from initial juniper 

establishment to minimum stocking adequate for phase III, and estimated maximum 

potential for relative abundance and cover for stands developing on sites from high to 

low productivity (Johnson and Miller, 2006). 

140 years 

5 

46 

a) 

b) 
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5.2.5.2. Results and discussion: analysis of the influence of the single 

factors on the encroachment in the past 140 years 

In order to understand the effect of each single factor on the encroachment 

phenomenon, a series of different simulations have been carried out assuming 

the presence of each factor separately and then different combination of such 

factors. These simulations have been compared with the BS, previously 

introduced. A multi-step strategy has been then used to explore what we learn 

with the model with respect to the contribution of different parameters that 

contribute to the observed vegetation change. We have combined fire return 

period (F), grazing (GR), wind direction (W) and seed dispersal caused by 

animals (SD): first using a single cause then combining the causes in pairs, three 

by three, and all the causes together for a total of 16 factors combinations. In 

Table 5.24 the final vegetation percentages for each factors combination are 

shown. For a fixed number of factors, the combinations that provide the greatest 

juniper percentage increase are highlighted in italic. 

Table 5.24. Final vegetation percentage for each factors combination.  

Final Vegetation Percentage [%] 

Factors SH G T Factors SH G T 

BS 30.60 46.50 12.80 GR-W 3.90 27.00 55.53 

F 40.17 9.71 35.33 GR-SD 4.36 28.69 53.59 

GR 4.39 21.48 50.60 W-SD 42.24 27.35 26.02 

W 43.56 18.70 25.11 F-GR-W 2.59 11.66 79.61 

SD 44.05 28.73 22.68 F-GR-SD 2.67 11.03 81.33 

F-GR 2.95 10.89 77.45 F-W-SD 36.80 19.31 40.73 

F-W 38.92 14.22 39.55 GR-W-SD 3.91 26.93 56.94 

F-SD 37.56 19.79 39.29 F-GR-W-SD 2.32 8.71 86.50 

 

The fire frequency reduction and the increased grazing intensity have the 

greatest influence on the encroachment. In fact, the grazing causes the greatest 

increase of the juniper, from 12.80 to 50.60%, and the fire causes an increase of 

the juniper from 12.80 to 35.33%. Using only a cause, GR has provided the 

greatest influence. Combining two factors, F and GR showed the greatest 

influence (juniper increases from 12.80 to 77.45%, almost the target percentage) 

while combining three factors, the greatest influence is provided by F, GR and 

SD (juniper increases from 12.80 to 81.33%).  

The time series of percent coverage of PFTs in the study site over 140 years 

for each factors combination are shown in Figure 5.65. In the BS simulation 

there is not the increase of the juniper, and the shrub and juniper percentages are 

almost stationary. Using all the encroachment factors, the juniper time series 

increase faster increasing the number of factors.  
 

8 
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Figure 5.65.The time series of percent coverage of PFTs in the study site over 140 years 

for each factor combinations. 

The latest report on the future climate change of the IPCC (IPCC, 2013) 

shows, in the study area, a reduction of precipitation of 120 mm and an increase 

of the temperature of 3° C. Considering the results obtained in Sevilleta (i.e., the 

climate change, precipitation decrease and temperature increase, accelerates the 

encroachment), for the future encroachment, as the juniper has already invaded 

the whole study site in 2010, it could persist in this area and also increase from 

86.5% to 100%. Therefore, we consider not necessary to analyze what could 

happen in the future doing future encroachment simulation as done for the shrub 

encroachment in Sevilleta.    
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Conclusions 

Natural ecosystems are complex structures whose peculiarities and properties 

depend on three fundamental factors, interacting in space and time with each 

other: climate, soil and vegetation. Predicting how ecosystems could respond to 

forecasted environmental and climatic changes and evaluating the consequences 

of this response are the major challenges in ecohydrology today.  

Vegetation pattern and dynamics are inseparably linked to initial conditions 

of site characteristics (i.e., topography) and species availability. In fact, 

vegetation has been observed to exhibit a degree of spatial organization in a 

number of ecosystems in space and time. The emergence of these organization 

patterns is attributable to a range of spatial process such as local interactions 

between species, localized dispersal abilities and disturbance regime. Moreover, 

space and time dynamics of ecosystems are tightly related to fluctuations in the 

climate and to the competition strategies of individual plants for different 

resources. The climatic regime influence species’ distributions, often through 

species-specific physiological thresholds of temperature and soil water potential 

tolerance. Divergent responses or susceptibilities of individual species to climate 

change may modify their interactions with others species at the same or adjacent 

trophic levels as long-term data on both terrestrial and marine organisms 

indicate.  

However, understanding the impact of climatic disturbances, topography and 

soil variability on vegetation in space and time requires dynamic vegetation 

modeling across the landscapes. In this context, in thesis we have modeled the 

past and future dynamic of the vegetation patterns using and improving an 

existent ecohydrological Cellular Automata Model. We have studied three case 

studies: the variation of the vegetation pattern in a Mediterranean basin 

subsequent to likely climate change, and the shrub and juniper encroachment in 

the western north America grasslands.  

Despite the potential important role of topography on water, nutrient, and 

energy distribution, few studies have related topographic controls on the 

dynamics and patterns of plant co-existence. Especially in semiarid systems, 

topography mediates patterns of soil moisture that affects plant productivity, and 

could lead to specific vegetation patterns in certain hillslopes with specific 

aspects and morphologies. The first case study can be considered as the first 

application of a CA model with future climate scenarios to examine ecotone 

boundaries, composition of vegetation within each ecotone and their dynamics. 
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The Cellular Automata Tree-Grass-Shrub Simulator (CATGraSS) has been here 

further developed and used for modeling the long-term spatial dynamics of oaks, 

grass, and Indian fig species typical of mediterranean ecotone in the current and 

future climates. In the model, the incoming shortwave radiation and maximum 

evapotranspiration were treated spatially-explicitly on the terrain using a DEM. 

A fine-scale gridded domain is used to represent vegetation type. Each cell can 

hold a single plant type or remain empty. Plant competition is modeled explicitly 

by keeping track of mortality and establishment of plants, both calculated 

probabilistically based on soil moisture stress. Forced by a stochastic 

representation of the current climate, the calibrated model run on catchment in 

Sicily, Italy, where north-facing slopes are characterized by oaks, and south-

facing slopes exhibit plant coexistence, composed of Indian figs and grasses. 

Spatially explicit treatment of solar radiation, and a lower limit to soil moisture 

storage imposed by bedrock depth lead to spatial organization in 

evapotranspiration and soil moisture that control the current vegetation pattern 

which has been predicted by the model reasonably well. CATGraSS results 

underscore the importance of topography and soil thickness in determining 

vegetation composition over complex terrain in semiarid Mediterranean 

climates.  

Climate change scenarios for the analyzed catchment in Sicily showed that 

the median projected climate change in this region could be characterized by an 

increase of the mean annual air temperature, equal to about 2.8° C in 100 years, 

and a reduction of the annual precipitation, equal to 30% in 100 years.  

A considerable sensitivity of the vegetation spatial distribution to variation of 

rainfall and temperature was simulated. In particular, the numerical results 

suggest that the observed vegetation pattern is tightly link to the current climate. 

The changes in the future precipitation could lead to a reorganization of the plant 

composition based mainly on the topography, characterized by loss of oaks and 

expansion of grass. Reduction of precipitation will increase the water stress of 

all the vegetation types. While grass dies rapidly, it also grows back quickly, as 

its seeds are assumed to be available everywhere in space, therefore grass cover 

fraction tends to increase quickly with time in a drier climate. This study 

highlights, arguably for one of the first times at this scale,  the importance of 

simulating  local plant competition and interactions and the role of climate 

variability in determining impacts on vegetation diversity. Simulations including 

or not the effects on stomatal closure induced by elevated CO2 concentration are 

rather similar suggesting that CO2  effects  are unlikely to counteract the climate 

change effects in meteorological variables in this specific catchment and 

scenario (-30% in mean precipitation) because reduction in water availability has 

the greatest influence on actual evapotranspiration and plant performance. 

Spatio-temporal vegetation dynamics can be also discussed for studying the 

shrub and tree encroachment phenomenon that is one of the most prevalent 

contemporary shrubs and trees cover increase and land-cover changes into 
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grasslands. Causes of increased woody plant abundance may vary in different 

grasslands, and some likely factors include increased grazing intensity, the fire 

return period increase, alterations in local land management practices, and rising 

atmospheric CO2 concentrations. Because grassland and savanna ecosystems 

account for 30-35% of global terrestrial net primary production, any change in 

patterns or controls of carbon inputs and storage due to increase woody 

vegetation in grasslands will have important implications for regional and global 

nutrient cycles. In addition, woody plant expansion often decreases herbaceous 

species diversity. The fire plays the major role in determining the coexistence 

and balance of grasses and woody plant species in grasslands. Frequent fires 

(every year or two) are sufficient to limit the cover and spread and woody plants, 

while fire exclusion can lead to shrub dominance or complete conversion to 

woodlands in as little as a few decades.  

Therefore, in order to reproduce this phenomenon, creosote bush and western 

juniper encroachments in the Sevilleta National Wildlife Refuge (SNWR), New 

Mexico, and in the Ochoco National Forest, Oregon, have been simulated with 

the CATGraSS, respectively, in the second and third case study.  

A fire cellular automata component has been introduced in the CATGraSS in 

order to simulate the fire effect. For each plant type, the probability of be ignited 

and killed by fire is a function of the fuel availability and of the vulnerability to 

fire. CATGraSS is also improved with a grazing and seed dispersal function, and 

its plant establishment algorithm is modified. The causes, here considered for the 

encroachment in these case studies, are: the fire return period increase, the 

grazing increase, the seed dispersal caused by animals and the plant type 

competition.  

In the SNWR, the model is able to simulate the encroachment, simulating an 

increasing of the shrub from 2% to 42% (i.e., current vegetation percentage) 

highlighting among the most influent factors the reduced fire frequency that 

causes the greatest increase of shrub, and the increased grazing intensity that 

causes the greatest reduction of grass, in accordance with Van Auken (2000; 

2009). The model is sensitive to the initial conditions. When a South to North 

gradient is considered in the initial distribution of shrubs, shrub expanded in the 

domain faster. 

Simulating the future vegetation distribution in 2100 with climate change, the 

shrub increases from 42% to 95.9%. The future climate change, characterized by 

a reduction of precipitation and an increase of temperature, will accelerate the 

encroachment and the shrub will settle in all the study area. Therefore, it can be 

also considered an important cause of the shrub encroachment increase. 

In the Ochoco National Forest, the western juniper could encroach all the 

study area and the shrub and grass could disappear. The most influent factors are 

the reduced fire frequency and the increased grazing intensity. The model could 

be used for the assessment of the encroachment in the future decades in the 

study area.  
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While in Sevilleta the shrub encroached the study site grassland, in Oregon 

the juniper (i.e., tree) encroached the shrubland-grassland area. Therefore, in the 

first case the shrub is the species that encroaches the area, in the second case it is 

the species invaded and dominated by the juniper. It can be obviously related to 

environmental and climatic conditions that favor the invasion of a species 

respect to another. Comparing the encroachment in Sevilleta and in Oregon the 

most important differences are the more complexity of the Oregon juniper 

encroachment linked to the presence of other two vegetation types (grass and 

shrub) and the effect of the grazing obtained by the model greater in the Oregon 

juniper encroachment than in the shrub encroachment. 

For the future management and encroachment control, the reduction of the 

fire return period and the grazing removal or limitation could be the best actions 

in order to reduce and control the encroachment.  

Overally the CATGraSS has reproduced reasonably well the influence of the 

topography on the vegetation pattern distributions, and the encroachment 

phenomena. Therefore, the research here presented, thus, has given an important 

contribution in the field of vegetation pattern evaluation, providing a starting 

point for further improvements, developments and applications.  

In conclusion, the CATGraSS can be considered a good ecohydrological CA 

model able to reproduce the spatio-temporal vegetation dynamics, even if the 

difficulties to calibrate it because of the high number of parameters. The 

encroachment phenomenon has been very difficult to reproduce and simulate; in 

fact, it is the first time in literature that an ecohydrological model is used to 

reproduce this phenomenon and there was not enough scientific literature useful 

to allow us the encroachment factors parameters choice.  

Moreover, it is important to underline that there are large uncertainties in the 

future climate estimation related to the GCMs. The GCMs outputs exhibit a 

large spread, underlining inherent uncertainties in climate model predictions. In 

fact, GCMs have two important drawbacks: the spatial resolution, that is too 

coarse to be used directly in local studies, and the temporal resolution (GCMs 

realizations are only available at the daily or larger aggregation intervals). But 

the GCMs are the only tools available which allow us to estimate the future 

climate.  

Further efforts could be made in the future, in order to improve the model. A 

future research development could interest the study of the effect of the 

morphology on the Oregon juniper encroachment. The fire return period change 

and the grazing have been implemented in the model separately. But, following 

the literature works they are strongly linked: the fire return period increases 

because the grazing increases reducing the fine fuel available for the fire. 

Therefore, a future improvement of the CATGraSS model could be connect 

these two variables, and determine the change in the fire return period as 

function of the grazing variation. Another improvement of the work could be 

study the effect of the vegetation distribution and pattern change on the soil 
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erosion. In fact, the rapid vegetation change could lead to an increase in the soil 

erosion rates and subsequent changes in the biogeochemical processes. The 

model could be improved with a geomorphic component to analyze the effect of 

the vegetation pattern and of the vegetation dynamics on the erosion at 

catchment scale. Hillslope and channel erosion processes can coupled with 

vegetation-hydrology dynamics, making it possible to study the impact of 

vegetation on hydrologic and geomorphic processes and how the latter processes 

affect vegetation.  
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