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The paper illustrates an adaptive approach based on different topologies of artificial neural networks (ANNs) for the power energy
output forecasting of photovoltaic (PV) modules. The analysis of the PV module’s power output needed detailed local climate
data, which was collected by a dedicated weather monitoring system. The Department of Energy, Information Engineering, and
Mathematical Models of the University of Palermo (Italy) has built up a weather monitoring system that worked together with a
data acquisition system. The power output forecast is obtained using three different types of ANNs: a one hidden layer Multilayer
perceptron (MLP), a recursive neural network (RNN), and a gamma memory (GM) trained with the back propagation. In order
to investigate the influence of climate variability on the electricity production, the ANNs were trained using weather data (air
temperature, solar irradiance, and wind speed) along with historical power output data available for the two test modules. The
model validation was performed by comparing model predictions with power output data that were not used for the network’s
training. The results obtained bear out the suitability of the adopted methodology for the short-term power output forecasting
problem and identified the best topology.

1. Introduction

Among renewable energy sources (RES), solar energy has the
greatest energy potential and PV arrays permit to produce
electric power directly from sunlight; furthermore, during
the operational phase, the energy production occurs without
fossil-fuel consumption or noise, and not posing health and
environmental hazards. These features will make the PV
devices one of the most important among the technologies
based on the exploitation of RES [1–5]. Nevertheless, the tech-
nological and environmental benefits of PV technology are
hindered by economic and technical factors. The high cost of
production and installation make the PV technology feasible
to the customer only if there are public funding opportunities.
Furthermore, there are various concerns associated with PV
modules, such as the impact of their interconnection to
the grid [6]. Some studies have been carried out on this,
for example, [7], but, in general, there is little information
on the topic. The most severe disturbance caused by the
connection of a large amount of PV generation to the grid

would be encountered when a band of cloud sweeps over
an area with a large concentration of PV generators. This
could result in a fairly large and sudden variation in the PV
output. The condition would be aggravated if this change
in irradiance occurred during a rapid increase in load [8].
For these reasons, it is clear that the availability of reliable
predictive tools is very important for the dissemination of PV
technologies, to optimize the performance of PV systems in
the planning and operational phase and finally to correctly
assess the economic return. In order to evaluate the real
performance of PV panels is very important the correct
prediction of power output; an increase of even a few degrees
of the PV panel together with a lower solar irradiance can
considerably reduce the conversion efficiency of the system
thus reducing the power output [9]. Indeed, an important
consideration in achieving the efficiency of a PV panel is
to evaluate the performance for any weather conditions and
to match the maximum power point. Many methods based
on the MPPT (maximum power point technique) have been
reported in the literature, many others applied empirical
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Figure 1: One diode simplified equivalent circuit for a solar cell
closed on a resistive load 𝑅

𝐿
.

correlations to evaluate the thermoelectrical performance of
a PV system. However, these approaches require detailed
knowledge of physical parameters of the PV system andman-
ufacturing specifications. Another approach is represented
by adaptive systems. An adaptive system is a system that
is able to adapt its behaviour according to changes in its
environment or in parts of the system itself. An adaptive
system, such as artificial neural networks (ANN), does not
require any physical definitions for a PV array but should
allow predicting, in a fast and reliable procedure, the power
output of the PVmodule varying theweather conditions.This
paper presents a comparison of different types of ANNs that
better forecasts the PV power output.The authors have tested
the use of ANN to predict the power output of a PV panel
using the data monitored in a test facility.

2. The Power Output of a PV Module

To design and assess the performances of a PV system, an
accurate PV model should predict a reliable current-voltage
(I-V) and power-voltage (P-V) curves under real operating
conditions.

The “five-parameters model” represents the most com-
mon equivalent circuit that better describes the electrical
behaviour of a PV system.The equivalent circuit is composed
of a photocurrent source 𝐼

𝐿
, a diode in parallel with a shunt

resistance 𝑅sh, and a series resistance 𝑅𝑠 as shown in Figure 1.
Based on this simplified circuit, the mathematical model

of a photovoltaic cell can be defined in accordance with the
following expression that permits to retrieve the I-V curve:

𝐼 = 𝐼
𝐿
− 𝐼
0
(𝑒
(𝑉+𝐼⋅𝑅

𝑠
)/𝑛𝑇
𝑐 − 1) −

𝑉 + 𝐼 ⋅ 𝑅
𝑠

𝑅sh
, (1)

in which 𝐼
𝐿
depends on the solar irradiance, 𝐼

0
is the diode

reverse saturation current and is affected by the silicon
temperature, n is the ideality factor, and 𝑇

𝑐
is the cell absolute

temperature.
As it is known, the performance of a photovoltaic panel

is defined according to the “peak power,” which identifies
the maximum electric power supplied by the panel when it
receives a solar irradiance 𝐺 of 1 kW/m2 at a cell temperature
of 25∘C. For given values of G, 𝑇

𝑐
and 𝑅

𝐿
, the operating point

can be identified by drawing lines of the different loads 𝑅
𝐿
on

the I-V characteristic (Figure 2); the maximum power points
are indicated by red circles.
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Figure 2: Working point of a generic PV panel at constant
temperature (25∘C), varying solar irradiance (1000–200W/m2), and
electric load (a) and at constant irradiance (1000W/m2), varying
temperature (25–75∘C), and electric load (b).

In actual conditions, it is essential to evaluate the oper-
ating condition under all possible circumstances of G, 𝑇

𝑐
,

wind speed W, air temperature 𝑇air, and electric load 𝑅
𝐿
.

The 𝑇
𝑐
temperature thus is a key parameter that affects the

energy conversion efficiency of a PV panel: increasing the
temperature decreases the delivered power.

Furthermore, in the literature, it is possible to find
different algorithms for seeking the maximum power point
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[10–12]. In detail, the indirect methods have the particular
feature that the MPP is estimated from the measures of the
PV generator’s voltage and current PV, the irradiance, or
using empiric data, bymathematical expressions of numerical
approximations. In the most of the maximum power point
tracking (MPPT) methods, described in the literature, the
optimal operation point of a generic PV system is estimated
by linear approximations [13, 14] as

𝑉mpp = 𝑘V ⋅ 𝑉OC or 𝐼mpp = 𝑘𝑖 ⋅ 𝐼sc, (2)

where 𝑉mpp and 𝐼mpp are the maximum voltage and current,
respectively, 𝑘V and 𝑘𝑖 are two constants of proportionality
(voltage and current factors) dependents on the characteris-
tics of the PV array used, 𝑉oc is the open circuit voltage, and
𝐼sc is the short circuit current.

Nevertheless, the direct methods can also be used; they
offer the advantage that they obtain the actual maximum
power from the measures of the PV generator’s voltage and
current PV. In that case, they are suitable for any irradiance
and temperature [15]. All algorithms, direct and indirect, can
be included in some of the DC/DC converters, maximum
power point tracking (MPPTs), for the stand-alone systems
[10].

Recently, the fuzzy logic controllers (FLCs) and artificial
neural network (ANN) methods have received attention and
increased their use very successfully in the implementation
for MPP searching [16–26]. The fuzzy controllers improve
control robustness and have advantages over conventional
ones. They can be summarized in the following way [27]:
they do not need exact mathematical models, they can work
with vague inputs and, in addition, can handle nonlinearities,
and are adaptive, in nature; likewise, their control gives them
robust performance, under parameter variation, load and
supply voltage disturbances. Based on their heuristic nature
and fuzzy rule tables, these methods use different parameters
to predict the maximum power output: the output circuit
voltage and short circuit current [17]; the instantaneous
array voltage and current [18–20]; instantaneous array voltage
and reference voltage (obtained by an offline trained neural
network) [16]; instantaneous array voltage and current of
the array and short circuit current and open circuit voltage
of a monitoring cell [21, 22] and solar irradiance, ambient
temperature, wind velocity and instantaneous array voltage
and current, used in [23, 25, 26].

Next, three different ANNs are proposed with the aim to
forecast power output of PV modules.

3. Generalities on Adaptive and ANN Systems

Adaptive systems and ANNs are nonlinear elaboration infor-
mation systems whose operation function draws its inspira-
tion by biological nervous system. When there is no clear
relationship between the inputs and outputs, it is not easy to
formulate the mathematical model for such as system; on the
contrary, the ANN canmodel this system using samples [27].

Their ability to learn from experimental data makes
ANN very flexible and powerful than any other parametric
approaches. Therefore, neural networks have become very
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Figure 3: Adaptive or neural system’s design.

popular for solving regression and classification problems
in many fields [28]. Because the neural network does not
require any detailed information about the system or process,
it operates like a black box [29].

4. The Artificial Neuron

An ANN consists of many interconnected processing nodes
known as neurons that act as microprocessors (Figure 3).

Each artificial neuron (Figure 4) receives a weighted set
of inputs and produces an output.

The activation potential 𝐴
𝑖
of an AN is equal to

𝐴
𝑖
=

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
𝑥
𝑗
− 𝑏
𝑗
, (3)

where 𝑁 is the number of elements in the input vector 𝑥
𝑖
,

𝜔
𝑖𝑗
are the interconnection weights, and 𝑏

𝑖
is the “bias” for

the neuron [30]; the bias is a coefficient that controls the
activation of the signal handled by theAN.Theneuron output
depends only on information that is locally available at the
neuron, either stored internally or arrived via the weighted
coefficients.

5. The Activation Function

The neuron output 𝑦
𝑖
is calculated by the summation of

weighted inputs with a bias through an “activate on function”
as follows:

𝑦
𝑖
= Φ (𝐴

𝑖
) = Φ[

𝑁

∑

𝑖=1

𝜔
𝑖𝑗
𝑥
𝑖
− 𝑏
𝑖
] . (4)

The activation function is intended to limit the output
of the neuron, usually between the values [0, 1] or [–1, +1].
Typically it is used the same activation function for all
neurons in the network, even if it is not necessary [31]. The
most commons activate functions are the step function, the
linear combination, and the sigmoid function as shown in
Figure 5.

In the step function, the output Φ(𝐴
𝑖
) of this transfer

function is binary, depending on whether the input meets
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Figure 4: Schema of artificial neuron.
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Figure 5: The most common activation functions: (a) step function; (b) linear function; (c) sigmoid function.

a specified threshold. The “signal” is sent; that is, the output
is set to one, if the activation meets the threshold:

𝑦
𝑖
= Φ (𝐴

𝑖
) = {

1 if 𝐴 ≥ threshold
0 if 𝐴 < threshold.

(5)

The step activation function is especially useful in the last
layer of an ANN to perform a binary classification of the
inputs.

A linear combination, usually more useful in the first
layers of an ANN, where the weighted sum input of the
neuron plus a linearly dependent bias becomes the system
output. A number of such linear neurons perform a linear
transformation of the input vector as

𝑦
𝑖
= Φ (𝐴

𝑖
) = 𝑘𝐴

𝑖
, (6)

in which 𝑘 is a scale parameter.
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A sigmoid activation function produces an output value
between 0 and 1. Furthermore, the sigmoid function is
continuous and differentiable. Due to these reasons, this acti-
vation function is used in ANNmodels in which the learning
algorithm requires derivatives. Often, sigmoid function refers
to the special case of the logistic function defined by the
formula

Φ(𝐴
𝑖
) =

1

1 + 𝑒−𝑘𝐴
, (7)

where 𝑘 is a constant that control the shape of the curve.
The sigmoid function such as the logistic function also has
an easily calculated derivative, which can be important when
calculating the weight updates in the network. It thus makes
the network more easily mathematically manipulable and
was attractive to early computer scientists who needed to
minimize the computational load of their simulations.

6. Architecture or Topology of an ANN

Generally, an ANN is usually divided into three parts: the
input layer that collects the inputs 𝑥

𝑖
, the hidden layer ℎ

𝑖
, and

the output layer that issues the outputs 𝑦
𝑖
. If a neural network

is composed by a single layer of unidirectional connections
from the input nodes to output nodes is called Perceptron.

This configuration is the simplest and is not able to solve
not linearly separable problems. For these kind of complex
problems ismore useful to use amultilayer perceptron (MLP)
ANN that is a feed forward ANN model that maps sets of
input data onto a set of appropriate outputs.The feed forward
was the first and arguably simplest type of ANN developed.
In a feed forward ANN the connections between the units do
not form a directed cycle; the information moves in only one
direction, forward, from the input nodes, through the hidden
nodes (if any) and to the output nodes. By this way, there are
no cycles or loops in the network.

According to the above definitions, a feed forward MLP
consists of multiple layers of nodes in a directed graph, with
each layer fully connected to the next one. Except for the
input nodes, each node is a neuron (or processing element)
with a nonlinear activation function.

On the contrary, a radial neural network (RNN) is a class
of neural network where connections between units form a
directed cycle. This creates an internal state of the network
that allows the ANN to exhibit a dynamic behaviour. Unlike
feed forward ANN, RNNs can use their internal memory
to process arbitrary sequences of inputs. This makes them
applicable to tasks such as the recognition of time series,
where they have achieved the best known results.

7. Training Algorithm

Before the neural network can be used to a specific problem,
its weights have to be tuned. This task is accomplished by
the learning process in which the network is trained. This
algorithm iteratively modifies the weights until a specific
condition is verified. In most applications, the learning algo-
rithm stops when the error between desired output and the

calculated output produced by the ANN reach a predefined
value. The error is updated by optimizing the weights and
biases. After the training process, the ANN can be used to
predict the output parameters as a function of the input
parameters that have not been presented before. An epoch is
a collection of all available samples; it is also the term used for
a training iteration of the system: when one epoch has passed,
the adaptive system has been presented with the available
data once. As adaptive systems are for the most part trained
iteratively, many epochs are usually required to fully train a
system.

Concerning the learning algorithm, there are generally
two typologies of ANN learning algorithm [32]:

(i) supervised learning;
(ii) unsupervised learning.

Supervised learning is characterised by a training set
composed of pairs of inputs and corresponding desired
outputs. The error produced by the ANN is then used to
update the weights (back propagation).

In unsupervised learning algorithms, the network is only
provided with a set of inputs and without desired output.
The algorithm guides the ANN to self-organize and to adapt
its weights. This kind of learning is used for tasks such as
datamining and clustering, where some regularities in a large
amount of data have to be found.

The information in the previous layers obtained by
updating the weighting coefficients is supplied to the next
layers through the intermediate hidden layers. More hidden
layers can be added to obtain a quite powerful multilayer net-
work. The MLP architecture has been successfully employed
as a universal function approximation in many modelling
situations [28].

8. Generalities on the PV Panel Behaviour

The electrical power produced by PV devices is linked to the
solar irradiance on the panel and the operating temperature,
but also depends on the connected electrical load𝑅

𝐿
as shown

in Figure 2; indeed, the load defines the operating point
on the P-V characteristic. For given values of irradiance,
temperature, and electrical load, the operating point can be
identified by drawing on the P-V characteristic the lines
of the different 𝑅

𝐿
. Therefore, in correspondence with a

generic constant load connected to a photovoltaic panel, the
working point will move along the load curve under the
effect of temperature variations and solar irradiance during
the day. The maximum power point (MPP) is identified
by a red circle and its coordinates in the P-V plane are
(𝑃max(𝐺, 𝑇), 𝑉mpp(𝐺, 𝑇)); in the I-V plane, the coordinates of
MPP are (𝐼mpp(𝐺, 𝑇), 𝑉mpp(𝐺, 𝑇)). A careful analysis of P-
V curves permits to immediately recognize as the electrical
behaviour of a generic PV panel can be represented in three
modes or regimens:

(i) when the ratio between the working voltage𝑉 and the
voltage ofmaximumpower𝑉mpp at given temperature
is less than 0.95, the characteristic P-V is practically
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linear and the power is strongly correlated to the inci-
dent solar irradiance; for constant solar irradiance,
there is no temperature influence in the power output;

(ii) when the ratio𝑉/𝑉mpp for a given solar irradiance and
temperature is greater than 1.05, the P-V characteris-
tics of the panel decreases muchmore rapidly and the
influence of solar irradiance becomes less significant
(saturation conditions); for constant solar irradiance
there is a linear correlation between temperature and
the power output;

(iii) the regimen identified by a ratio 0.95 < 𝑉/𝑉mpp <

1.05 characterizes the state of a PV panel connected
to a maximum power point tracking system (MPPT)
in which the load dynamically adapts to generate the
maximum power (red circle).

9. Data Acquisition System: Input Data Vector

To employ and train an ANN, a large database of specific
data that represent the analysed physical system is required.
To this aim, a test facility was built up on the roof of the
Department of Energy, Information Engineering, and Math-
ematical Models (DEIM) at the University of Palermo. The
monitoring system consists of two photovoltaic modules and
a pyranometer tilted at 38∘ facing south, a precision resistance
set used as calibrated load and a multimeter. Concerning the
data acquisition of climate parameters, a network of weather
stations was built up [33]. The thermal regimen of the PV
modules has been measured with thermocouples (type T,
copper-constantan) installed at the rear film of the module.
All data were collected every 30 minutes and stored for the
further calculations and comparisons.The physical data used
for the training of the ANN were as follows:

(i) air temperature 𝑇air [
∘C];

(ii) cell temperature 𝑇
𝑐
[∘C];

(iii) solar irradiance 𝐺 [W/m2];
(iv) wind speed𝑊 [m/s];
(v) open circuit voltage 𝑉OC [V];
(vi) short circuit current 𝐼SC [A].

These last two parameters are important to improve the
evaluation the PV panel power output. Their values are
evaluated by using the following expressions [34]:

𝐼SC = 𝐼sc,ref
𝐺

𝐺ref
+ 𝜇
𝐼SC
(𝑇
𝑐
− 𝑇ref) ,

𝑉OC = 𝑉OC,ref + 𝑛𝑇 ln( 𝐺

𝐺ref
) + 𝜇
𝑉OC

(𝑇
𝑐
− 𝑇ref) ,

(8)

where the subscript ref identifies the reference conditions
(𝐺 = 1000W/m2; 𝑇 = 25

∘C) and 𝜇
𝐼SC

and 𝜇
𝑉OC

are the
short circuit current and open circuit voltage temperature
coefficients, respectively [35].

The dataset used for the following analyses consists in
more than 6000 data points. The 15% of data will be used as a
test dataset (not used for the ANN training phase).

Table 1: Data sheet of Kyocera KC175GH-2.

Maximum power 𝑃max [W] 175
Maximum voltage 𝑉mpp [V] 23.6
Maximum current 𝐼mpp [A] 7.42
Open circuit voltage 𝑉OC [V] 29.2
Short circuit current 𝐼SC [A] 8.09
𝑉OC thermal coefficient 𝜇

𝑉OC
[V/∘C] −0.109

𝐼SC thermal coefficient 𝜇
𝐼SC

[mA/∘C] 3.18

Table 2: Data sheet of Sanyo HIT240HDE4.

Maximum power 𝑃max [W] 240
Maximum voltage 𝑉mpp [V] 35.5
Maximum current 𝐼mpp [A] 6.77
Open circuit voltage 𝑉OC [V] 43.6
Short circuit current 𝐼SC [A] 7.37
𝑉OC thermal coefficient 𝜇

𝑉OC
[V/∘C] −0.109

𝐼SC thermal coefficient 𝜇
𝐼SC

[mA/∘C] 2.21

The monitoring campaign involved the measurement
of the performances of two different photovoltaic panels:
a Kyocera KC175-GH-2 polycrystalline panel and a Sanyo
HIT240 HDE4 monocrystalline panel. The principal charac-
teristic of the two panels are showed in Tables 1 and 2.

The measurement campaign about the power output of
the PV modules took several months and was characterized
by a frequent change of the resistive loads to the aim of
acquiring data relating to the entire P-V curve. All data are
subject to a preprocessing step that consists in a preliminary
analysis that permits to identify possible outliers, to remove
uncorrected values, to carry out a statistical analysis, and to
perform a correlation analysis.

To simulate the presence of a MPPT device, individual
records characterized by a 0.95 < 𝑉/𝑉mpp < 1.05 were
extracted from the original database.

After the preprocessing step, the database was validated
and the correlation analysis has permitted a first evaluation
of the mutual relationships among the considered variables.

Figures 6 and 7 show the linear correlation between
the power output 𝑃 and all the other features. The higher
the bar goes, the more the features are correlated. In both
cases the preliminary correlation analysis identified a strong
correlation between 𝑃 and the solar irradiance; a moderate
correlation with air temperature 𝑇air and wind speed was
found.

A statistical analysis permitted to assess the maximum
(Max), mean (Mean) and minimum (Min) values and the
standard deviation (StDev) of all considered features (Tables
3 and 4).

In our study, for the topology of the tested ANN, we
decided to use an input vector with six components: 𝑇air,
G, 𝑇cell, W, 𝑉oc(𝐺, 𝑇cell), and 𝐼sc(𝐺, 𝑇cell); the output vector
has only one component: the power output P, as shown in
Figure 8.
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Table 3: Preliminary statistics evaluation of weather, thermal, and electric data pertaining Kyocera panel.

𝑇air [
∘C] 𝑇cell [

∘C] 𝐺 [W/m2] 𝑊 [m/s] 𝐼SC [A] 𝑉OC [V]
Max 27.2 51.1 1078.2 7.2 8.7 30.2
Min 9.9 15.7 126.4 0 1.0 26.5
Mean 19.5 36.0 729.3 2.31 5.9 28.1
StDev 2.3 7.3 293.2 1.23 2.3 0.7

Table 4: Preliminary statistics evaluation of weather, thermal, and electric data pertaining Sanyo panel.

𝑇air [
∘C] 𝑇cell [

∘C] 𝐺 [W/m2] 𝑊 [m/s] 𝐼SC [A] 𝑉OC [V]
Max 30.9 51.8 1044.3 5.23 3.8 64.4
Min 17.8 22.9 129.8 0 0.4 62.1
Mean 25.8 42 725.4 2.5 2.7 63.7
StDev 1.8 6.0 259.6 1.1 0.9 0.4
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Figure 6: Correlation analysis between the power output and all
input data of the Kyocera panel.
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Figure 7: Correlation analysis between the power output and all
input data of the Sanyo panel.

10. ANN Topologies

After the preprocessing phase, the authors explored different
topologies of ANN. In the following part, will be described
only the best ANN solutions:

Input vector 

Output vector 

ANN 
system P

Ta

G

W

Tc

Isc

Voc

Figure 8: Definition of input and output vectors of the tested ANNs.

(i) one hidden layer MLP;
(ii) RNNMLP;
(iii) gamma memory ANN.

For each topology are analysed the design and the
algorithm, eachneural networkwas trained andwas validated
with a post processing phase.

11. Description of the Implemented
ANN Topology

11.1. One Hidden Layer MLP. The one hidden layer MLP is a
kind of ANN consisting of three layers of ANs in a directed
graph, with each layer fully connected to the next one. In
this work, except for the input ANs, each node is a neuron
with a sigmoid activation function and a common supervised
learning technique for training the network was used. The
tested topology is one of the simplest available for ANNs and
is composed by two input sources, two function blocks, two
weight layers, one hiddenweight layer, and one error criterion
block.
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Figure 9: Schema of one hidden layer MLP topology for the power output evaluation.
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Figure 10: Schema of RNNMLP topology for the power output evaluation.

Figure 9 schematizes the tested one hidden layer MLP
topology to evaluate power output of a PV panel.

11.2. RNN MLP. The RNN MLP is a simple ANN topology
that employs a recursive flow of the signal to preserve and to
use the temporal sequence of events as a useful information.
This topology is composed of two input sources, two weight
layer, one hidden weight layer, two recursive function blocks,
and one error criterion.

Figure 10 shows the RNN MLP topology for the power
output evaluation. The recursivity is iconized by a feedback
connectionwhere 𝜇 is the weight of the feedback used to scale
the input. In our test, each signal flowing into the recursive
function block is linked to a different value of 𝜇.

11.3. GammaMemory ANN. The gammamemory (Figure 11)
processing element (PE) is used in dynamic systems to
remember past signals [36]. It enables the usage of past
information to predict current and future states. The gamma
neuron is ideal for neural networks since the time axis is
scaled by the parameter 𝜇, which can be treated as any weight
and adapted using back propagation.

The application of gamma memory permitted to employ
an ANN to emulate the 𝑃 trends. In this work was proposed
an ANN constituted by two input sources, three gamma
memory blocks, threeweight layer, three function blocks, and
one error criterion block (Figure 12).

12. Postprocessing Phase: Performance
Assessment of ANNs

After the training, for each ANN, the postprocessing phase
evaluate the difference between the calculated and the mea-
sured output vector. The data used for this phase are not
used for the training process. The performance assessment is
carried out by means of three indexes:

(i) the mean error (ME) is

ME = 1

𝑁

𝑁

∑

𝑖=1

(𝑃measured,𝑖 − 𝑃ANN calculated,𝑖) , (9)

where𝑁 is the number of samples,

(ii) the mean absolute error (MAE) represents the quan-
tity used to measure how close forecasts or predic-
tions are to the eventual outcome:

MAE = 1

𝑁

𝑁

∑

𝑖=1

𝑃measured,𝑖 − 𝑃ANN calculated,𝑖
 ;

(10)

(iii) the standard deviation 𝜎 shows how much variation
or “dispersion” exists from the average (mean or
expected value). A low standard deviation indicates
that the sample data tend to be very close to themean;
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high standard deviation indicates that data are spread
out over a large range of values:

𝜎 = √
1

𝑁 − 1

𝑁

∑

𝑖=1

(𝑃measured,𝑖 − 𝑃ANN calculated,𝑖)
2

. (11)

13. Results and Discussions

As previously described, each ANN was characterized by a
training phase, a postprocessing phase evaluates the error,
and the absolute error between the measured and the cal-
culated operating temperature data. To better analyse the
validity of the ANN, different simulations were carried out
changing the time of the training phase and/or the epochs.
In all cases, the training phase has been suspended in order
to avoid the over-fitting. Furthermore, for each topology was
identified the confidence plot that contains the 95% of the
outputs.

To better understand how ANNs performance can be
evaluated, Figure 13 shows the calculated power output versus
measured power output (data points not used for training
phase).

In Tables 5 and 6, the results of several ANNs tested
topologies are reported.

The result coming from the ANNs designed to predict
the power output produced by a PV panel shows that this
kind of approach is very promising. Mean errors appear to
be generally very low (1W). ANN topologies based on MLP

Output
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250
240
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220
210
200
190
180
170
160
150
140
130

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Confidence plot: output + −24.65466 is within desired with
95% confidence

Figure 13: Calculated power output versus measured power output
for the Sanyo module (MlP 1 topology).

for both panels were very good in terms of prediction error
even if they required a longer time for the training phase.
The results of the RNNs and gamma memory ANNs are
characterized by good performances with shorter training
time for the Kyocera module. The Sanyo panel has generally
required longer training time but with excellent results in
termofmean error especially with the gammamemoryANN.
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Table 5: ANNs results for the Kyocera panel; bold identifies the ANNs with the best performance.

Topology Error distribution [W] Absolute error distribution [W] Epochs Time [s]
Mean Median Stdev Mean Median Stdev

Mlp 1 0.05 −0.5 8.1 5.3 3.0 6.2 15417 31
Mlp 2 −0.1 0.5 7.3 4.3 2.3 5.9 2854 5
Mlp 3 −1.9 −1.1 8.1 5.3 3.0 6.4 6354 12
Mlp 4 −0.9 −0.3 7.6 4.6 2.8 6.1 993 1
RNN 1 −0.6 −0.6 4.8 3.3 2.1 3.6 4976 102
RNN 2 9.8 7.1 11.2 11.2 8.2 9.8 533 10
RNN 3 0.7 1.4 8.6 5.7 3.2 6.5 555 11
Gamma 1 −1.0 0.4 8.9 5.8 3.2 6.8 126 2
Gamma 2 −3.0 −1.5 8.3 5.7 3.4 6.7 346 6

Table 6: ANNs results for the Sanyo panel; bold identifies the ANNs with the best performance.

Topology Error distribution [W] Absolute error distribution [W] Epochs Time [s]
Mean Median Stdev Mean Median Stdev

Mlp 1 −0.1 −0.8 9.1 4.9 3.0 7.8 3162 3
Mlp 2 −3.8 −3.1 5.3 4.6 3.4 4.7 16176 16
RNN 1 −1.3 −0.1 10.1 5.7 3.8 8.4 3361 29
RNN 2 −1.7 0.04 10.3 5.9 4.0 8.6 305 3
Gamma 1 0.02 0.4 9.4 6.01 4.5 7.3 182 9
Gamma 2 0.2 0.7 5.9 4.5 4.0 3.8 3134 27

14. Conclusions

In the paper, different network architectures have been
tested in order to forecast the electric power generated by
a PV module in real conditions. Data used to train the
networks were acquired using two different types of PV
modules connected to calibrated electrical loads. Climatic
variables were acquired by means of a weather station. The
performances evaluation of the ANNs was performed by
comparing the prediction with the real power output and the
errors were generally contained within the 0.05–1% of the
module peak power output. ANNs with simpler architecture
generally required longer training time while more complex
ANNshave requested shorter training time. Results show that
adaptive techniques are able to predict the power output of a
PV panel with great accuracy and short computational time.
These algorithms canplay a dominant role concerning remote
management of PV in a probable future when this technology
will be extremely widespread in the territory.

Nomenclature

𝐴
𝑖
: Activation potential

AN: Artificial neuron
ANN: Artificial neural network
𝑏
𝑖
: Bias coefficient

FLCs: Fuzzy logic controllers
𝐺: Solar irradiance [W/m2]
𝐼: Current [A]
𝐼
0
: Diode reverse saturation current [A]

𝐼mpp: Maximum current [A]
𝐼
𝐿
: Photocurrent [A]

𝐼sc: Short circuit current [A]
𝑘: Scale parameter
𝑘
𝑖
: Constants of current proportionality

𝑘V: Constants of voltage proportionality
MPP: Maximum Power Point
MPPT: Maximum Power Point technique
𝑛: Ideality factor
𝑁: Number of elements in the input vector
𝑃: Power output [W]
PV: Photovoltaic
𝑅
𝐿
: Electric load [Ω]

RNN: Radial neural network
𝑅sh: Shunt resistance [Ω]
𝑅
𝑠
: Series resistance [Ω]

𝑇air: Air temperature [∘C]
𝑇
𝑐
: Cell absolute temperature [∘C]

𝑉: Voltage [V]
𝑉mpp: Maximum voltage [V]
𝑉oc: Open circuit voltage [V]
𝜔
𝑖𝑗
: Weights

𝑊: Wind speed [m/s]
𝑥
𝑖
: Interconnection

𝑦
𝑖
: Neuron output

𝜇
𝐼SC
: Short circuit current temperature coefficients

[mA/∘C]
𝜇
𝑉OC

: Open circuit voltage temperature coefficients
[V/∘C].
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[10] V. Salas, E. Oĺıas, A. Barrado, and A. Lázaro, “Review of the
maximum power point tracking algorithms for stand-alone
photovoltaic systems,” Solar Energy Materials and Solar Cells,
vol. 90, no. 11, pp. 1555–1578, 2006.

[11] T. Esram andP. L. Chapman, “Comparison of photovoltaic array
maximum power point tracking techniques,” IEEE Transactions
on Energy Conversion, vol. 22, no. 2, pp. 439–449, 2007.

[12] J. Surya Kumari and C. Sai Babu, “Comparison of maximum
power point tracking algorithms for photovoltaic system,” Inter-
national Journal of Advances in Engineering and Technology, vol.
1, no. 5, pp. 133–148, 1963.

[13] M. A. S. Masoum, H. Dehbonei, and E. F. Fuchs, “Theoret-
ical and experimental analyses of photovoltaic systems with
voltage- and current-based maximum power-point tracking,”
IEEE Transactions on Energy Conversion, vol. 17, no. 4, pp. 514–
522, 2002.

[14] J. Ahmad and H.-J. Kim, “A voltage based maximum power
point tracker for low power and low cost photovoltaic applica-
tions,” World Academy of Science, Engineering and Technology,
vol. 60, pp. 714–717, 2009.

[15] V. Lo Brano and G. Ciulla, “An efficient analytical approach
for obtaining a five parameters model of photovoltaic modules

using only reference data,”Applied Energy, vol. 111, pp. 894–903,
2013.

[16] M. Veerachary, T. Senjyu, and K. Uezato, “Neural-network-
based maximum-power-point tracking of coupled-inductor
interleaved-boost-converter-supplied PV system using fuzzy
controller,” IEEE Transactions on Industrial Electronics, vol. 50,
no. 4, pp. 749–758, 2003.

[17] B. M. Wilamowski and J. Binfet, “Microprocessor implementa-
tion of fuzzy systems and neural networks,” in Proceedings of the
International Joint Conference on Neural Networks (IJCNN ’01),
vol. 1, pp. 234–239, Washington, DC, USA, July 2001.

[18] C.-Y. Won, D.-H. Kim, S.-C. Kim, W.-S. Kim, and H.-S. Kim,
“New maximum power point tracker of photovoltaic arrays
using fuzzy controller,” in Proceedings of th 25th Annual IEEE
Power Electronics Specialists Conference (PESC ’94), vol. 1, pp.
396–403, June 1994.

[19] A. E.-S. A. Nafeh, F. H. Fahmy, and E. M. Abou El-Zahab,
“Evaluation of a proper controller performance for maximum-
power point tracking of a stand-alone PV system,” Solar Energy
Materials and Solar Cells, vol. 75, no. 3-4, pp. 723–728, 2003.

[20] N. Patcharaprakiti, S. Premrudeepreechacharn, and Y. Sri-
uthaisiriwong, “Maximum power point tracking using adaptive
fuzzy logic control for grid-connected photovoltaic system,”
Renewable Energy, vol. 30, no. 11, pp. 1771–1788, 2005.

[21] T.Hiyama, S. Kouzuma, andT. Imakubo, “Identification of opti-
mal operating point of PV modules using neural network for
real time maximum power tracking control,” IEEE Transactions
on Energy Conversion, vol. 10, no. 2, pp. 360–367, 1995.

[22] T. Hiyama, S. Kouzuma, T. Imakubo, and T. H. Ortmeyer,
“Evaluation of neural network based real timemaximumpower
tracking controller for PV system,” IEEE Transactions on Energy
Conversion, vol. 10, no. 3, pp. 543–548, 1995.

[23] T. Hiyama and K. Kitabayashi, “Neural network based estima-
tion of maximum power generation from PV module using
environmental information,” IEEE Transactions on Energy Con-
version, vol. 12, no. 3, pp. 241–246, 1997.

[24] A. Cocconi and W. Rippel, “Lectures from GM sunracer case
history, lecture 3-1: the Sunracer power systems,” Number M-
101, Society of Automotive Engineers, Warderendale, Pa, USA,
1990.

[25] G. Ciulla, V. Lo Brano, and E.Moreci, “Forecasting the cell tem-
perature of PVmodules with an adaptive system,” International
Journal of Photoenergy, vol. 2013, Article ID 192854, 10 pages,
2013.

[26] V. Lo Brano, G. Ciulla, and M. Beccali, “Application of adaptive
models for the determination of the thermal behaviour of a pho-
tovoltaic panel,” in Proceedings of the International Conferences
on Computational Science and Its Applications (ICCSA ’13), pp.
344–358, Springer, Ho Chi Minh City, Vietnam, 2013.

[27] K. S. Yigit and H. M. Ertunc, “Prediction of the air temperature
and humidity at the outlet of a cooling coil using neural
networks,” International Communications in Heat and Mass
Transfer, vol. 33, no. 7, pp. 898–907, 2006.

[28] M. T. Hagan, H. B. Demuth, and M. Beale, Neural Network
Design, PWS Publishing Company, Boston, Mass, USA, 1995.

[29] S. Danaher, S. Datta, I. Waddle, and P. Hackney, “Erosion
modelling using Bayesian regulated artificial neural networks,”
Wear, vol. 256, no. 9-10, pp. 879–888, 2004.

[30] S. Haykin, Neural Networks: A Comprehensive Foundation,
MacMillan, New York, NY, USA, 1994.



12 International Journal of Photoenergy

[31] V. Pacelli and M. Azzollini, “An artificial neural network
approach for credit risk management,” Journal of Intelligent
Learning Systems andApplications, vol. 3, no. 2, pp. 103–112, 2011.

[32] E. Angelini, G. di Tollo, andA. Roli, “Aneural network approach
for credit risk evaluation,” Quarterly Review of Economics and
Finance, vol. 48, no. 4, pp. 733–755, 2008.

[33] V. Lo Brano, A. Orioli, G. Ciulla, and S. Culotta, “Quality of
wind speed fitting distributions for the urban area of Palermo,
Italy,” Renewable Energy, vol. 36, no. 3, pp. 1026–1039, 2011.

[34] V. Lo Brano, A. Orioli, and G. Ciulla, “On the experimental
validation of an improved five-parameter model for silicon
photovoltaic modules,” Solar Energy Materials and Solar Cells,
vol. 105, pp. 27–39, 2012.

[35] V. Lo Brano, A. Orioli, G. Ciulla, and A. di Gangi, “An improved
five-parameter model for photovoltaic modules,” Solar Energy
Materials and Solar Cells, vol. 94, no. 8, pp. 1358–1370, 2010.

[36] J. C. Principe, N. R. Euliano, and W. C. Lefebvre, Neural
and Adaptive Systems: FundamentalsThrough Simulations, John
Wiley & Sons, New York, NY, USA, 1999.



Impact Factor 1.730
28 Days Fast Track Peer Review
All Subject Areas of Science
Submit at http://www.tswj.com

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013

The Scientific 
World Journal


