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Abstract

This thesis focuses on understanding how environmental factors influence
elephant movement and in investigating the spatio-temporal patterns.

The thesis analyses movement data of some African elephants (Loxodonta
Africana) living in the Kruger National Park and its associated private re-
serves of South Africa. Due to heterogeneity among elephants, and nonlin-
ear relationships between elephant movement and environmental variables,
Generalized Additive Mixed Models (GAMMs) were employed. Results
showed delayed effects of rainfall and temperature and particular trends in

time and space.
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Chapter 1

Introduction

1.1 Motivation

In movement ecology and other applied research fields, studying the envi-
ronmental factors influencing animal movement is important to understand
drivers of animal movement. Studies relating fine-scale movement paths to
spatio-temporally structured landscape data, such as vegetation productiv-
ity or human activity, are particularly lacking despite the obvious impor-
tance of such information. In part, this may be due to the fact that few
approaches have the ability to characterize the complexity of movement
behavior and relate it to diverse, varying environmental stimuli. A large
amount of statistical literature is devoted to animal movement data anal-
yses. These techniques, which are mainly based on random walks and
diffusion processes, such as Correlated Random walks, Hidden Markov
Models, Ornstein-Uhlenbeck processes, and Levy Walks, provide knowl-
edge on ecological systems and they are instrumental in understanding how

populations might respond spatially to threatened or fragmented landscapes
1



2 Chapter 1. Introduction

(Kareiva and Wennergren, [1995)), but they do not give information on how
landscape features actually influence the movement process. Nowdays, un-
derstanding how organisms explore and exploit their environment, and as-
sessing the rule of environmental factors is a central topic in Ecology. Re-
cent advances in global positioning system (GPS) radio telemetry provide
data on individual movements for many species. Such information is in-

creasing the ability to better understand patterns in animal movement data.

1.2 Literature review

Many different approaches have used time-series methods to model animal
movement data. We briefly review them discussing relevant advantages
and disadvantages. These methods include models based on random walks
and diffusion processes, such as Correlated Random walks, Hidden Markov
Models, Ornstein-Uhlenbeck processes, Levy Walks; there are also recent
progresses in Hierarchical Bayesian State Space models and Stochastic Dif-
ferential Equations. Although these are not necessarily modern statisti-
cal tools, their application to animal tracking is very recent, and research
is ongoing with respect to their suitability and applicability for animal
movement data analyses. A common general model of animal movement
is the Correlated Random Walk (CRWs) (Kareiva and Shigesadal [1983];
Bovet and Benhamou, |1988), which hypothesizes some distribution of step-
lengths and turning angles (angles between successive steps in the tracks).
The location of an animal at any time is dependent upon its position in pre-
vious time periods. |Bovet and Benhamou| (1988) developed a first order
correlated random walk where the directions of successive moves are cor-

related and this introduces a persistence to move forward. However, several
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important features of movement data complicate the straightforward appli-
cation of CRWs. The first one is the error in the measurement process. A
fruitful body of research, that addresses measurement error with the use of
state-space models (Jonsen et al.,|2006; Patterson et al., [2008)), has emerged
recently. A second important and commonly encountered feature of move-
ment data that confounds the application of CRWs is the irregular timing of
measurements. One of the advantages of this method is that it is possible to
compare different animals within the same environment or the same species
across different environments. A disadvantage is that the model does not
include landascape features that might influence the animal movement.
Dunn and Gipson| (1977) and Dunn and Brisbin|(1985) employed Ornstein-
Uhlenbeck process (O-U). This process is effective in modelling animal
movements where animals are attracted towards a central point (Preisler
et al.,12004). The O-U process is Markovian in continuous time, with states
given by the locations of the animal. While this approach allows to account
for dependence between observations (Blackwell, [1997}; [Beichelt and Fatti,
2002), a disadvantage of O-U process is that the stationary distribution is
always Gaussian, which limits its flexibility (Blackwell, [1997) and there is
no way to incorporate any behavioural information. However, the Ornstein-
Uhlenbeck process can be generalised to describe different movements for
different behavioural states and can have a number of different “centres of
attraction” (Blackwell, [1997). Blackwell (2003) used bivariate Ornstein-
Uhlenbeck process to model movement using radio tracking data from a
single mouse, while |Preisler et al.|(2004) used telemetry data for elks.
Another form of a random walk is Lévy walk, where the successive steps
are distributed according to a power-law (or long-tailed) distribution of the

turning angles (Bartumeus et al., |2005). Lévy walks are Markov processes
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and they are similar to classical random walks as they are uncorrelated,
but they have an infinite step-length variance (Benhamou, |2007). As for
correlated random walks, the Lévy walk incorporates animal tendency to
continue to move in a specific direction between successive steps. This di-
rectional persistence is introduced into the model through the power-law
distribution of move lengths (Bartumeus et al., 2005). Viswanathan et al.
(1999) tested the theory of Lévy walk by analysing experimental forag-
ing data from selected insects, mammals and bird species and found that
the movement was consistent with the power-law distribution. A difficult
and challenging issue is to identify how the pattern was actually gener-
ated (Benhamou, [2007)): in fact not all seemingly Lévy walk patterns are
necessarily produced by Lévy walk processes. |Benhamou| (2007) further
discussed that a disadvantage of applying this method to animal tracking
data captured at equal time intervals is that the step length corresponds to
speed travelled in a pre-determined time rather than to distances between
ecologically meaningful events.

Franke et al.|(2004) used multiple-observation Hidden Markov models as
an individual-based predictive modelling to explain the use of space, move-
ment and behavior of caribou (Rangifer tarandus) in central Alberta, Canada.
They defined the “hidden” states as the animal bedding, feeding and re-
locating and they assumed that distance-between-location and turn-angle
were suitable “observations” for encapsulating movement behaviour and
use of space. This model allowed them to estimate inferred behavioural
states, their relative bout length and transitions as well as the most likely
behavioural state. The authors described an advantage of hidden Markov
models over other modelling techniques being that, assuming the states are

known, hidden Markov models are able to provide the optimal state se-
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quence from the observed data through optimal inference of a casual model
(Franke et al., 2004). A disadvantage is that the movement model has to be
defined a priori as a correlated random walk with a hidden discrete variable
(behavioural state).

Hierarchical Bayesian State-Space Models (HBSSMs) represent an advance
in animal movement modelling (Jonsen et al., |2006). These models com-
bine a statistical model of the observation method with a model of the
movement dynamics, which can include effects due to the environment and
other variable factors (Patterson et al.,2008). By employing a hierarchi-
cal structure, inference on movement processes is carried out straightfor-
wardly. Without such a structure, it is difficult to make inference on the
movement process underlying the inherently messy movement data. Jon-
sen et al.| (2006) used robust hierarchical Bayes state-space models to test
the hypothesis according to which leatherback turtles (Dermochelys cori-
acea) off the coast of Canada travel faster during the day, when the turtles
are closer to the water surface, than at night, when they dive to greater de-
phts. A secondary analysis was to determine whether differences could be
seen in travel rates between males and females, and between those who
were breeding and those who were not. The authors used a fully Bayesian
state-space approach which enabled them to combine individual results in
order to analyse ‘among individual’ variation in movements rates.

Yet another approach in recent literature is based on the use of Stochastic
Differential Equations. Preisler et al.| (2001)) used Stochastic Differential
Equations (SDEs) to characterize the direction and speed of animal move-
ments and to study the effects of explanatory variables (e.g., habitat char-
acteristics) on movement patterns. Analyses of animal movements demand

the use of complex models and computationally intense techniques. A uni-
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variate stochastic differential equation (SDE) is defined by
dY(t) = WY, t,0)dt + o(¥, t,0)dB(z) (1.1)

where Y(¢) is a random variable, {B(f), t = 0} is a random process, and 6 is

a set of known and unknown parameters. The term
u(Y,t,0) = E{dY(0)IY(s), s < t}/dt

is interpreted as the instantaneous velocity of the individual (drift coeffi-
cient), and o(Y, t,0) = se{dY(¢)|Y(s), s < t}/dt is interpreted as the speed or
the diffusion coefficient.

The simplest model for the SDE in (I.1) is a pure diffusion model where
u(Y,t,6) = 0 and B(¢) is a Brownian process, i.e., each individual’s move-
ment is a random walk independent of others. Another special case of (I.1])
is the mean-reverting Ornstein-Uhlenbeck (O-U) process where u(Y ¢, 0) =
a[T(t) — a] and o(Y,1,6)dt = o>. The O-U process was used to estimate
home ranges of animals where a is the center of the home range (Turchinl
1998} IDunn and Brisbin, [1985)). More complicated animal movement be-
havior may be studied by modelling the drift and diffusion coefficients as
functions of explanatory variables. [Bengtsson et al.| (2002) modelled the
drift term as a function of the distance between individuals in their attempt
to characterize dispersal patterns of soil-living invertebrates. In the bark
beetle example presented below, Preisler and Akers| (1995) modelled the
drift term as a function of the heading angle between the direction along
the path of female beetles and a point source emitting male pheromones.
Preisler et al.| (2001)) used bivariate SDEs to study trajectories of radio-
collared elks and deers as they forage in Oregon. [Preisler et al.|(2004) used

bivariate stochastic differential equations (SDEs) to model movements of
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216 radiocollared female Rocky Mountain elk at the Starkey Experimental
Forest and Range in Northeastern Oregon. Using the concept of a potential
function, they succeeded in studying the influence of roads and grassland
foraging areas on elk movements. They identified broad spatial patterns of
elk movements and showed the time dependent effects of habitat features
within the habitat mosaic at Starkey.

Each approach reviewed above allows to deal with different and important
aspects of animal movement data. For example, the random walk/diffusion
framework provides a great deal about the spatial dynamics of populations.
However, ecologists have an increasing interest in spatial processes at the
individual level and in animal environment interactions, and none of these
approaches has the ability to test how landscape features actually influence

the movement process.

1.3 Biological and Ecological Background

African elephants are regarded as a high-impact megaherbivore species of
the savanna. They are believed to have a significant effect on local habi-
tat conditions because they can consume large amounts of woody vegeta-
tion (Ben-Shahar, 1998; Bowland and Yeaton, |1997). African elephants
range widely and can exhibit multiple movement strategies within the same
ecosystem (Wittemyer et al., 2007).

Elephant movement behaviour is mainly driven by changes in water avail-
ability and vegetation, but generally several factors influence their spatial
movement, such as rainfall, temperature and primary productivity.

African savannas are characterised by dry and wet seasons (Sankaran ef al.}

2005). Winter (April-September) is known as ‘dry season’, and during this
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period the quality of food resources deteriorates, and seasonal water sources
dry up. Therefore, elephants appear to concentrate their movements closer
to water sources (in particular riparian zones), where they feed on a wide
variety of trees (Young ef al., 2009b). Summer (January-March/October-
December) is known as ‘wet season’, because rain falls during this period
and temperatures are high, allowing the grass to flush so elephants feed
more on grass during the post-rainfall period (Young et al.,2009b)) and they
switch to browse when the grass becomes unpalatable. During the wet sea-
son, food resources are more abundant and of higher quality (Owen-Smith,
1988)). Water is distributed widely during the wet season (summer) and may
not therefore limit elephants (Leuthold, [1977; /Western and Lindsay, 1984}
De Beer et al., 2006). Elephants need to drink regularly and their water
requirements are central to understand patterns of their spatial use. For in-
stance, in Kruger National Park elephants drink on average every two days
during the dry season (Young ef al.,|2009b). In drier environments, bull ele-
phants probably drink every 3-5 days and breeding herds drink every 2-4
days (Leggett, 2006). Elephants, especially breeding herds, therefore, sel-
dom roam far away from drinking water. However, elephants move greater
distances during the dry season to obtain food (Harris et al., [2008)).
Certainly, the distribution and availability of food are related to rainfall.
Food availability may be greater in wet than in dry savannas, where the an-
nual precipitation is relatively low. In wet savannas a longer duration and
greater volume of rainfall may render seasonal differences in food availabil-
ity less pronounced than in dry savannas. These differences may influence
elephant returns to previously utilized areas within seasons, between sea-
sons and between years.

Temperature also does affect elephant movement, particularly higher tem-
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peratures in summer (Kinahan et al., 2007). Elephants usually respond to
high midday summer temperatures by moving into shady areas, resting un-
der trees or cooling themselves in pools. They resume their search for food
once temperatures drop a little. Elephants have distinct home ranges which
may shift from summer to winter.

Understanding the relationship between environmental dynamics and move-
ment is particularly important to wide-ranging species whose mobility can
be critical for persistence of high temporal variability of local food re-
sources (Fryxell et al.,[2008)). Environmental drivers known to affect timing
of migration may, therefore, provide a useful basis to understand seasonal-

ity movement of this species.

1.4 The thesis contribution

The main aim of this thesis is to propose a statistical framework to analyse
animal movement data taking into account the influence of environmental
variables on movements and the effect of the spatial area where animals
live. More specifically, the sample of study is represented by African ele-
phants (Loxodonta Africana) which live in the Kruger National Park and
its associated private reserves in South Africa. The goal is to assess and to
quantify environmental factors affecting changes in movements, which is
crucial to evaluate how movement patterns could change due to variation
in climate, and to estimate the overall trend of elephant movements in the
study area.

Furthermore, since seasonality and long term spatial trends affect both wa-
ter availability and vegetation phenology (Scholes et al., [2003)), it is clear

that changes in elephant movements would be affected by rainfall and tem-
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perature patterns (Loarie et al. 2009; Birkett et al., 2012).
In studying environmental factors affecting elephant movements, at least
three important features have to be taken into account in the data modelling

process:

o the typically nonlinear relationships between movement and environ-

mental variables;
o the possible delayed effects of environmental factors;
o heterogeneity among elephants which leads to random effects.

We propose an approach that attempts to meet these requirements. More
specifically, we assume a Generalized Additive Mixed Model (GAMM)
(Wood| 2006a; [Pinheiro and Bates, 2000) using penalized splines (Eilers
and Marx, 1996). GAMMs provide a suitable framework to model an-
imal movement data because explanatory variables, including seasonal-
ity, spatio-temporal effects and environmental factors, can be fitted via
parametric or nonparametric terms and random effects can be incorporated
straightforwardly. Moreover, any residual dependence among observations
can be modelled using proper correlation structures (Pinheiro and Bates|
2000; [Wood, [2006a)).

The present thesis is structured in the following way. Chapter 2 deals with a
detailed description of data under study and shows some exploratory anal-
yses to better understand features inside data, while Chapter 3 provides
some aspects of penalized spline smoothing. In Chapter 4 first we deal
with smoothing in presence of random effects, where we show that the
mixed model representation of penalized splines results in smoothing pa-
rameter estimation. Then, we discuss the generalized additive mixed mod-
els (GAMMs) (Lin and Zhang] {1999; Wood, 2006a). In Chapter 5, we
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show the results of spatio-temporal elephant movement data modelling. In
Chapter 6 we show some possible improvements of the proposed model dis-
cussed in Chapter 5, and finally in Chapter 7 we discuss the results obtained

from our analyses.






Chapter 2

Data and some exploratory

analyses

2.1 Study Area and Elephant Collaring

The study area is the Kruger National Park (KNP), situated in north-eastern
South Africa, and its associated private reserves along the western bound-
ary (Sabie Sand, Klaserie, Timbavati, Umbabat and Manyaleti). The overall
KNP covers an area of 18,992 km?, forming part of the “lowveld” savanna
(approximately 300 m above sea level) in the North-East (Codron et al.|
2006). A map of South Africa, where it is possible to identify the KNP,
is shown in Figure KNP is characterised by very heterogeneous sys-
tems which experience different seasons. Climate and geological substrate
varies throughout KNP, and the resulting vegetational differences allow ele-
phants to use a variety of plant foods and to adjust their diets according to
season and food availability. KNP lies within two climatic zones. The

Southern and Central portions, that is, the Southern area of the centrally
13
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located Olifants River (Southern KNP), lie in the lowveld bushveld zone
with an average annual rainfall of 500 — 700 mm (Venter et al, 2003). In
the Northern area of the Olifants River (Northern KNP), which is in the arid
bushveld, the mean annual rainfall is 300 — 500 mm (Venter et al., 2003).

BOTSWANA Kruger
National

Limpopo  Park

NAMIBIA

Orange RiveY

Northern Cape

SOUTH
AFRICA

Atlantic p
Ocean - Shamwari
Addo RGame
Elephant g8V
Park

Western C
estern Cape Knysna

Figure 2.1: Kruger National Park situated in north-eastern South Africa.
The Kruger is represented by the dark green area in the north-eastern

boundaries of South Africa adjoining at East with the Monzambique.

Rainfall occurs in the austral summer between November and March (i.e.,
the wet season), with a peak in January and February (Venter er al,2003).

Surface water is a complex phenomenon in KNP, because there are numer-

ous water sources including rivers (seasonal, annual, perennial), boreholes,
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dams, wetlands, pans, distributed throughout Kruger. Kruger management
has, over the years, shut down some of the man-made water-points be-
cause a year-round overabundance of water allows certain water-dependent
species (such as elephant) to access many areas of Kruger that they perhaps
would not use if the water was not present. The elephant population in
KNP is estimated to be ~14,000 individuals during 2010 (SANParks, un-
published data).

African elephant (Loxodonta africana) movements were tracked using global
positioning system (GPS) collars and the capture occured in strict accor-
dance with ethical standards. Specific approval for this particular research
project was obtained through the University of KwaZulu-Natal Animal
Ethics sub-committee (Ref. 009/10/Animal).

The collaring operation was carried out by an experienced team which iden-
tified the elephant and shot a dart with a sedative at it. After about ten
minutes, the elephant went down and the team fixed the radio collar and
activated it, soon the veterinarians injected a drug to revive the elephant
which, within three minutes, was fully up. The entire operation took about
50 minutes. During this operation, also a GPS-sensor, which measures the
ambient temperature, was attached to the elephant. 14 female elephants, the
matriarchs, from different herds, were collared in different areas of KNP
(Orpen-Shukuza, Satara-Nhlanguleni-Muzanduzi, Lower Sabie, Satara and
Shuzuka) from January 1, 2006 to January 17, 2010. The matriarch of
a herd is the old female elephant which guides each member of its herd.
The movements of these collared females are thus assumed to represent
the movement behaviour of the breeding herd they belong to (Vanak et al.|
2010; Polansky and Wittemyer, 2011). A summary of the studied elephants
by collarization areas is shown in Table Hereafter the abbreviation
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KNP will also include its private associated reserves, where elephants also

move.
Table 2.1: Collared elephants by area in KNP.

Location Elephant ID
Lower Sabie AMI105, AM108
Orpen-Skukuza AM306, AM307,AM308
Satara AM110,AM91,AM93,AM99
Satara-Nhlanguleni-Muzandzeni AM?239, AM253,AM254
Skukuza AM106, AM107

2.2 Elephant Data

Data on elephant movements were collected by researchers of the Univer-
sity of Kwazulu-Natal, Durban, South Africa. They consist of daily move-
ment observations of 14 female African elephants from different herds to
ensure the indipendence of sampling. Data relative to three of 14 GPS-
collars had erroneous points (AM106, AM108, and AM239), thus, in total
11 elephants were used for the analyses.

The object of interest is the daily movement of elephants, measured as mean
daily speed in km/h (speed) obtained averaging the “hourly” speed (actu-
ally every 30 minutes) within a day for each elephant series, for a total
of 11216 observations. The hourly speed was calculated by the following

equation
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A /Axt2 + Ayt2
speed; = T/IOOO, 2.1)

where Ax; = x,.1 —x; is the distance between two consecutive hourly obser-

vations in x direction in meter, also known as Northing, and Ay, = y;+1 — ¥,
is the distance between two consecutive hourly observations in y direction
in meter, also known as Easting. At is the time during # + 1 and ¢ (30
minutes). The x, and y points were measured according to the Universal
Transverse Mercator (UTM) projected coordinate system, which uses a 2-
dimensional Cartesian coordinate system to give locations on the surface
of the Earth in x-direction (XUTM) and y-direction (YUTM). Also the ge-
ographic hourly coordinates of elephant locations, longitude and latitude,
were obtained from the XUTM and YUTM projections. Specifically, daily
coordinates of elephant locations were obtained averaging the hourly longi-
tude and latitude of elephant locations within a day for each elephant series.
The distribution of elephants in Kruger is shown in Figure [2.2] where the
small grey dots represent the mean daily elephant locations in the period un-
der study, and the black points with associated labels represent the rainfall
stations distributed in the Kruger as it will be discussed in the next Section.
Figure shows trajectories of the 11 considered elephants which move
in KNP in the period under study, where the initial and final locations are
indicated with a blue and red triangle, respectively. The initial and the final
locations are very close to each other when they are observed in the same
season, but if the initial and final locations are far from each other when
they are not observed in the same season. It is interesting to notice that
elephants remain in well-established home ranges which correspond with
the collarization area. This is probably a result of a combination of factors.

First of all it is due, most likely, to the fact that within their home ranges ele-
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phants have adequate resources (forage and water), and they would waste
energy to move further, especially in presence of young babies that cannot
travel very far. Another motivation is that Kruger has a large number of
elephants which live in herd guided from the dominant female matriarchs,
and this can cause competition between more dominant female matriarchs
and other subordinate ones (Wittemyer and Getz, [2007). However, this is
not always the case, and herds may actually come together often to social-
ize and feed together forming close clans (Archie et al.,[2006).

Table shows the number of observations for each elephant during each

year under study.

Table 2.2: Number of observations for each elephant by year.

Elephant ID Year
2006 2007 2008 2009 2010

1 AMI05 231 363 364 300 0
2 AMI107 281 365 360 249 0
3 AMI110 276 365 358 318 0
4  AM253 0 173 344 0 0
5 AM254 0 224 363 318 0
6 AM306 0 297 349 12
7 AM307 0 300 340 0
8  AM308 0 300 360 16
9 AM91 357 359 359 299

10 AM93 283 356 359 313
11 AM99 280 365 358 306
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Figure 2.2: Elephant distribution in the KNP from January 1, 2006 to Jan-
uary 17, 2010. Each small grey dot represents the daily average elephant
location and each black dot represents the rainfall station distributed in the

Kruger.
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Figure 2.3: Trajectories of the 11 studied elephants in the KNP from Jan-
uary 1, 2006 to January 17, 2010. The initial and final locations are indi-

cated with a blue and a red triangle, respectively.
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It is important to notice that observations are not balanced and for 2010
(January, 17") there are a lot of missing values, and only for two elephants
(AM306 and AM307) there are some observations in this year (2010).
Missing data are ruled out, it means that no type of imputation is done
to data.

The observations of the response, mean daily speed, are within (0.007,1.845),
and the average of mean daily speed is about 0.416 km/h.

Figure [2.4] shows the density plots of the mean daily speed by each ele-
phant: we observe quite similar values in the range 0.007 — 1.845 km/h,
with elephants AM107, AM307 and AM254 having lower variability.
Individual elephant movement profiles versus the days from 2006 to 2010,
are shown in Figure Here the patterns indicate that a strong seasonality
effect is present in the data. To emphasise the seasonal patterns of indi-
vidual elephant movements, Figure represents the monthly averages of
movements for each elephant. While the seasonal pattern is substantially
the same, we observe some heterogeneity in the ‘intercepts‘, i.e. in the

general mean level.
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Figure 2.6: Individual elephant movement profiles versus month. Each

elephant is represented by a different color.

2.3 Environmental data

As discussed in Chapter [T] the main goal of the thesis is to investigate the
effects of some environmental variables on elephant movements. Environ-
mental variables employed in this study are rainfall and temperature.

Rainfall values were averaged between two and three stations (Fig. 2.2}
Tab. [2.3) located within the spatial range of individual elephants. These
values represent ‘local’ rainfall for each elephant over the considered time.

The rainfall stations and their used abbreviations are summarized in Table

23
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Table 2.3: Names of rainfall stations distributed in KNP.

Station ID Abbreviation

1 HOUTBOSCHRAND HOU
2 KINGFISHERSPRUIT KFI

3 LOWER-SABIE OSA
4 NHLANGULENI NHL
5 NWANETSI NWA
6 PRETORIUSKOP PRE
7 SATARA SAT
8 SKUKUZA SKZ
9 TALAMATI TAL
10 TSHOKWANE TSH

A measure of temperature was obtained from GPS-sensors attached to ele-
phants which measured ambient temperature hourly data. The used aver-
age daily temperature for the analysis purposes is obatined as mean of the
hourly temperature data, and hereafter we will refer to it as ‘temperature’.
Local rainfall and temperature time series for each elephant, in the period

under study, are shown respectively in Figure[2.7)and 2.§]
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Figure 2.7: Observed local rainfall time series for each elephant across

years. The dashed red lines represent the years from 2006 to 2010.
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Table 2.4: List of explanatory variables and their used abbreviations.

Variable Abbreviation
Date Date
Elephant identification ID
Years from 2006 to 2010 year
Average temperature (°C) avgTemp
Local rainfall (mm) locRaif
Day of year from 1 to 365 day.year

Average daily elephant location (longitude  long, lat
and latitude)

A list with all available explanatory variables and their used abbreviations
is given in Table [2.4]

Expolorative analysis was carried out also to investigate relationship be-
tween environmental variables, rainfall and temperature, and mean daily
speed. Figures [2.9] and [2.10] show scatterplot of mean daily speed with
rainfall and temperature, respectively, for each elephant under study. Look-
ing at these two Figures we see that most likely the relationship with mean
daily speed is not linear for both local rainfall (Fig. [2.9) and temperature
(Fig. [2.10). Also a scatter plot between rainfall and temperature has been
reported to investigate relationship between them. Plot is shown in Figure
where it is simple to see that no collinearity is present between local
rainfall and temperature.

Exploratory analysis showed that there are some relevant features that need

to be taken into account in the modelling process.
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These are a strong seasonality effect, heterogeneity among elephants, and

non-linear relationship between daily speed and environmental variables.
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Figure 2.9: Scatterplot of mean daily speed and local rainfall for each ele-

phant, from January 1, 2006 to January 17, 2010.
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Chapter 3
Penalized Spline Smoothing

Smoothing methodology offers an extremely useful tool to handle non-
linear relationships without the restrictions of parametric functional forms.
It has become a widely used framework for data analysis and inference. Its
integration into complex models and its use in applications are also becom-
ing more and more pervasive. Smoothing is the basic “concept” underlying
the GAMM employed in this thesis to modelling. We will give some con-
cepts on smoothing and discuss GAMM in the next Chapter.

3.1 Idea of penalized smoothing

When interest lies in modelling how the covariate x affects the means of Y,

it is usually assumed

yi=fx)+€ 3.1

where y; is a response variable, x; a covariate, and f a smooth function of

x; and ¢ are i.i.d. N(0, o) random variables.
33
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The idea is to build f out of a sum of J known functions Bjs, scaled by

coefficients §;, namely

J
fx) =) Bj(x)B; (3.2)
=1

and then estimate these coefficients accordingly. Since the equation in (3.1))
is in the form of a linear model, the problem is now to minimize the ordinary

least squares (OLS) objective function,

ly - XBII* (3.3)

where X = [Bj,...,By]. Estimation of 8 is carried out by imposing a

“wiggliness” penalty to prevent under smoothing,

ly = XBIP + f L ()Pdx (3.4)

where the integrated square of second derivative penalizes models that are
too “wiggly”, and A is the smoothing parameter which controls the trade-
off between model fit and smoothness, leading to a too wiggly fitted curve
when 4 = 0.

The expression for the penalty given in looks like it might require a
rather large amount of integration and as such it would require a long time
to compute, however it can be shown (see [Wood| (2006a), p. 126) that the
integral of the penalty can always be written as a quadratic form in B, since

f s linear in the parameters 3;:

f [f”(x)1dx = BT SB, 3.5)
where S is the penalty matrix of known coefficients. The penalized least

squares estimator of B is given by

B=XTXx+28)"'XTy (3.6)
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and the hat matrix, H, for the model can be written as
H=XX"Xx+19"'X7, (3.7)

where i = Hy. Generalizing also the definition of degrees of freedom from
linear models as the trace of the hat matrix, we can define with df= tr(H)
the degrees of the smoother, corresponding to the smoothing parameter A.
It means the model complexity can be interpreted as the equivalent number
of fitted parameters.

Giving a model with two explanatory variables x; and x,

yi = filx1) + fa(x2) + €, (3.8)

the model contains more than one function, f1(x;) and f>(x,), this intro-
duces an identifiability problem: f; and f, are both only estimable within
an additive constant. To see this, it is to notice that any constant could be
simultaneously added to f; and subtracted from f>, without changing the
model predictions. Hence, identifiability constraints have to be imposed on
the model in (3.8). Provided the identifiability issue, the additive model
can be represented using penalized regression splines, estimated by penal-
ized least squares, in the same way as the simple univariate model, and the
degree of smoothing can be estimated by cross validation.

Each smooth function in (3.8) can be represented using a penalized regres-

sion spline basis as follows

Ji
filxy) = Z By, (x1)P1, (3.9)

J1=1

J2
Fla) = ). By (xa)Bajy- (3.10)

=1
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The identifiability problem with the additive model means that §; and S,
are confounded. The simplest way to deal with this is to constrain one of
them to zero, say 81 = 0. Having done this, it is easy to see that the additive

model can be written in the linear model form
y=XB+Ee, (3.11)

where X = [By,...,By|B1,...,B;]. As in the unidimensional case, the

wiggliness of the functions can also be defined as

f LGP = BTS 1B (3.12)
f L () Pz = BLSapo. (3.13)

where S| and S are the penalty matrix, and assuming that § = ;5| + 15>,
the parameters 8 of the model (3.11)), where B8 = (8], B1)”, are obtained by

minimizing the penalized least squares objective
lly — XBI* + 48" SB. (3.14)

As discussed above, f can be decomposed into a series of basis functions.
Among the several options, four important bases are: truncated power ba-
sis functions, thin plate regression splines, cubic splines, and cyclic cubic
splines.

Since, in the next Chapter, we will use the truncated power basis functions
(TPF) in order to explain the relationship between smooth terms and ran-
dom effects, here we introduce this type of basis spline.

If we define K knots ki, ..., kg, it is possible to define a TPF basis in the

form
[Lx,...,(x=k)ss oo s (x — kg)4]
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where (x — k1) = (x — k))I(x > ky).

Thus f(-) can be expressed as

K
FO) = o+ Prxi+ ) belxi = xi)s (3.15)
k=1

Now, we will give an introduction of thin plate splines (TPS) proposed by
Duchon|(1977), which offers a very elegant approach to estimate a smooth
function of multiple predictor variables. Supposing that the problem of
estimating the smooth function f(x), from n observations (y;, x;) is such

that

yi = f(xi)+ &, (3.16)

where f is an unknown function on a fixed domain D C Ry, ¢ is a random
error term, and x is a d-vector (d < n). Thin-plate spline smoothing esti-
mates f by finding the function g which minimizes the penalized sum of

squares

ly - gl* + Anale)s (3.17)

where y is the vector of y; data, and g = (g(x1), g(x2), ..., 8(xn)), Jma(g) is
the penalty function measuring the wiggliness of g, and 4 is the smoothing
parameter, which controls the trade-off between data fitting and smoothness

of g.|Duchon| (1977) in his work introduced the following penalty:

m! g ’
Jna = dx;...d 3.18
. f Ld Z il vy (0x¥‘ ...é)x;") o a (3.18)

Vi+etvg=m

where m is the derivative order which can be any integer satisfying 2m > d,

d is the the number of covariates (in a spatial setting d = 2 for longitude

and latitude coordinate data) and the vy,..., v, terms simply ensure that
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derivatives are taken with respect to all the parameters in all of the necessary
combinations. [Duchon| (1977) showed that the minimizing function g in
has the following form:
n M
80) = > Sittmalllx = xil) + ) ajeyj(x) (3.19)
i=1 j=1
where 0 and @ are unknown parameters vectors to be estimated, subjected to
the linear constraints that 776 = 0, where 7; i=¢i(x). M = (m+j_1) are ¢;
functions, which are linearly independent polynomials of degree less than m
which span the space of polynomials in R¢. All of the ¢ ;8 are unpenalized
as they lie in the nullspace of the penalty. It is also important to notice
that, to maintain continuity in f, 2m > d; this means that the dimension of
the nullspace increases rapidly with d. As in (3.2), f is decomposed into
a sum of basis functions, however, for a thin plate spline this summation
is split into two parts: M polynomials that act over the whole of the data
(the ¢js) and a set of radial basis functions, one centred at each datum (the
Nm.4)- One can think of this as a global trend (in the 2-dimensional case,
linear functions of the two coordinates) with extra flexibility provided by
the radial basis functions. The remaining basis functions 1, 4(r) in

are defined as:

L@/2=m) _ om-d d odd (3.20)

(_])/rx+]+d/2 Ym—d

n d(r) _ 22m=17d]2(1y—1)\(m—d/2)! r log(r) d even

m, =
22mpd/2 (1))

Defining now a matrix FE, the thin plate spline fitting problem becomes
minimize ||y — ES§ — Ta||> + 16T ES (3.21)

with respect to 6 and a, and subject to T7 6 = 0.
These TPS introduced by |Duchon! (1977) suffer from some limits. In TPS it
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is necessary to choose knot locations, in order to use each basis, introduc-
ing an extra degree of subjectivity into the model fits; furthermore the bases
are only useful for representing smooths of one predictor variable and it is
not clear to what extent the bases are better or worse than any other basis
that might be used.

Wood| (2003) proposed the use of iterative weighted fitting of reduced rank
thin-plate splines for computational efficiency, named as thin plate regres-
sion splines (TPRS), which are knot free bases, and can be used for smooths
of any number of predictors.

The idea is to truncate the space of the wiggly components of the thin
plate spline (the components with parameters §), while leaving the com-
ponents of ‘zero wiggliness’ unchanged (the @ components). One way to
reduce the size of E is by performing an eigen-decomposition, E = UDU7,
where D is a diagonal matrix of eigenvalues decreasing in absolute value
(ID; ;| = |Dj-1,i-11), and the columns of U are the corresponding orthogonal
eigenvectors.

Now we define U and Dy, where the former denotes the matrix consisting
of the first £ columns of U and the latter denotes the top right k X k subma-
trix of D, and restrict 6 to the columns space of Uy, by writing § = Ud.
In this way we have E; = Uy D U’ , and becomes

minimize |ly — U D;6; — Ta|l* + A(S,{Dkék (3.22)

with respect to 6; and @, where § and a are vectors of coefficients to be
estimated, and ¢ is subject to T U = 0. It can be shown that the reduced
rank matrix Ej gives the best approximation to E (see Wood (2003)) for de-
tails). In practice, k is set to be large enough and a further reduction in basis

complexity is performed by penalization. So k indicates the “maximum ba-
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sis size”. TPRSs are particularly useful because they have the important
property of the isotropy of the wiggliness penalty: wiggliness in all direc-
tions is treated equally, with the fitted spline entirely invariant to rotation of
the co-ordinate system for the predictor variables, hence all directions have
a common smoothing parameter so wigglyness in the x; direction has the
same weight in the penalty as in the x; direction and so on through higher
dimensions. This property is usually appropriate in a spatial setting, since
there is nothing special about one geographical coordinate over another one
when it comes to the smoothness of the function to be fitted. When two or
more predictors, which are both arguments of the same smooth, are mea-
sured in a different scale, the TPRS is not appropriate to be use. In these
situations a more satisfactory approach is to use tensor product smooths,
that will be discussed later, in this Section.

Another low rank and efficient spline basis is the Cubic spline. CSs are
univariate bases, which require the specification of knots. CS are made
up of sections of cubic polynomials which are continuous (up to second
derivatives) at the join points. The CS is the function which minimizes the
objective function in (3.14).

A cubic regression spline basis (CRS) has many possible parametrizations.
Here we present the parametrisation, which parameterizes the spline in
terms of its values at the knots.

Considering a cubic spline function, f(x), with k knots, x, ..., x, the con-
ditions are that the spline has to be continuous to second derivative, at the
xj, and should have zero second derivative at x1, and x;. Letting 8; = f(x;)

and 6; = f”(x;), the parametrization gives the following form for f:
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Xiy] — X X—X;
f=L—"p;+ LB
Xprl = Xj T Xjel X,
(Xje1 — %) 0;
{ = (Xj1 — X)(Xjr1 — X) 5 (3.23)
3
X—X; 0;
+ {u = (Xjp1 — x)(x = xj)} i+ if x; < x < xjpp.
Xjel = Xj

This setup leads to the spline having directly interpretable parameters, and
this basis does not require any re-scaling of the predictor variables before it
can be used to construct a GAM.

It is often appropriate for a model smooth function to be ‘cyclic’, for ex-
ample when we have a smooth function of days of year that do not change
discontinuously at the end of the year. In this case, the function would have
the same value and first few derivatives at its upper and lower boundaries.
The penalized cubic regression spline can be modified to produce such a
smooth, by imposing the constraint that the spline must be continuous to
second derivative at each knot, and that f (x1) = f (x¢) up to second deriva-
tive. This specifies that the spline must “join up” at each end. The form of
f is the same as in , but there is one less coefficient to estimate, since
the first and last ones are the same.

Frequently, there is the need to consider smooths of any number of predic-
tors, and usually these predictors are expressed in different scale, hence, it
is necessary to scale all predictors into the unit square, this is done thanks
to tensor product smooths. This is made possible by thinking of each 1-
dimensional basis as a marginal smooth, and then these marginal smooths
are combined in a higher dimensional smooth of several variables by a ten-

sor product construction. \Wood| (2006b) proposed a general method to use
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low rank tensor product smooths to represent smooth functions of several
variables in GAMs and GAMMs, in which the smooth terms are repre-
sented using any relatively low rank basis, with an associated quadratic
penalty, which measures the wiggliness of the smooth, and estimation is
via penalized likelihood maximization. He shows how to form smooths of
several variables from tensor products of any set of bases with quadratic
penalties in a way that allows the smooth to be decomposed into fixed and
random components suitable for the incorporation into a generalized lin-
ear mixed model, which produces smooths that are invariant to rescaling
of their arguments and which produces smooths that are computationally
efficient to work with, due to their relatively low rank. The tensor product
smooth is here introduced starting from the construction of a smooth func-
tion of 3 covariates, x, z and v, the generalization is then trivial. The process
starts by assuming that we have low rank bases available, for representing
smooth functions f;, f; and f, of each of the covariates. The basis functions

for the marginal smooths of x, z and v are

1
f) = ) (), (3.24)
i=1
L
£ =) aDi(), (3.25)
=1
and
K
AO) =D BB, (3.26)
k=1

where «;, 6; and By are unknown coefficients, A;(x), D;(z) and Bi(v) are
known basis functions of the covariates x, z and v respectively, and they

might be B-splines, thin plate regression splines, cubic regression splines,
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etc... To convert f, into a smooth function of x and z, it is required for
[ to vary with z, and it is possible by allowing its parameters, a;, to vary

smoothly with z. The simplest way to do this would be defining:

L
ai(2) = ) 6uDi(2), (327)

=1

then f, . would be defined as:

!

L
fer() = D0 6uDDAKX). (3.28)
=1

i=1
Continuing in the same way, we could now create a smooth function of
x, z and v by allowing fy; to vary smoothly with v, and again, letting the
parameters of f, . vary smoothly with v, we get the following
I L K
> BuBi)DY(D)A(x). (3.29)
=1

fx,z,v(xa V) =
j =1 k=1

i
For the set of observations of x, z and v, there is a simple relationship be-
tween the model matrix X, evaluating the tensor product smooth at these
observations, and the model matrices X, X, and X,, that would evaluate
the marginal smooths at the same observations. It is simple to show, given

appropriate ordering of the S; into a vector of 3, that the i row of X is

Xi=X;® Xzi ® X, (330)

where ® is the usual Kronecker product. Having derived a tensor product
basis in to represent smooth function of (x, z, v) component, it is also
necessary to determine a way to measure the wiggliness. To do this, it

is possible to start from wiggliness measures associated with the marginal
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smooth functions. Let J,, J; and J, be measures of the wiggliness of the

functions f;, f; and f,, respectively, given by

L(fo) = a’' Sya, J(f) =6"S.6, Ju.(f,) =B"S.B (3.31)

where S, S; and §, are the matrices containing the known coefficients of
the marginal smooth @, d and . Given that f;,,(x,z,v) can be expressed
also as fy,(x), i.e. as a function of x only, held z and v constant, and we
similarly define f;),,(z) and f,;(v), the penalty for such a smooth can be
written as the sum of the three penalties weighted by the corresponding
smoothness parameters Ay, 4, and A,, which control the tradeoff between
wiggliness in different directions, and allowing the penalty to be invariant to
the relative scaling of the covariates. Hence the wiggliness of f ;,(x, z, V),

can be written as follows:

J(fxzv) = /le Jx(fxlzv(x))dzdv + /lzf Jz(fz\xv(x))dXdV + /lvf Jv(fv\xz(x))dXdz- (332)

For further details see Wood| (2006a). Although only a three-dimensional
example is given here, tensor product splines provide an extremely useful
tool, allowing for extra dimensions to be added to models using different
bases. The use of a different smoothing parameter for each direction allows
for anisotropic smoothing, so that covariates that are measured on different
scales (for example temperature and rainfall) may be combined into one
tensor product smooth, avoiding the assumption that the degree of smooth-
ing required is the same in both directions. In particular this can be useful
when constructing a spatio-temporal smooth: for example using a thin plate
spline for the spatial part of the smooth (so the spatial part of the model is

isotropic) then taking a tensor product of that with a cubic spline basis for



3.1. Idea of penalized smoothing 45

the temporal part (so a different amount of smoothing can be used for each
direction). This is the setup that will be used in Chapter 5] for the elephant
movement data.

We have discussed the penalized likelihood maximization of 8 given A, and
we have presented some basis functions. Now we discuss how to estimate
A. Figure [3.1]shows how different values of A affect the fitted smooth func-
tion. Hence, changing the smoothness parameter a variety of models of
fitted regression functions of different smoothness can be obtained, but the
question is how to select the optimal A; some approaches, based on the
empirical measure of the mean square error (MSE), can be adopted. In
particular, when scale parameter is known, the Mallow’s C,, or UnBiased
Risk Estimator (UBRE) (Craven and Wahba, [1978)), is used, instead when
the scale parameter is unknown, generalized cross validation (GCV) or its
related criteria, such as Aikake Information Criteria (AIC) or generalized
AIC, can be used.

A=0.01 A=05 A=15

Figure 3.1: Penalized regression spline fits to simulated data using three

different values for the smoothing parameter.
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A simple and effective way to find A is to assess how well the model per-
forms on data which were not in the sample, assessing the prediction error
of the model using the generalized cross validation (GCV) score

nlly - fal?

Ve = T HP

(3.33)

where tr(H) indicates the trace of H, the hat (or influence) matrix for the
smoother seen in (3.7), fi is the vector of fitted values for the model. Numer-
ical minimization of V, with respect to A (which enters V, via H) gives the
optimal smoothing parameter (); further details are given in|Wood| (2006al)
(p. 134-137). The hat matrix H is the matrix such that i = Hy. This ma-
trix has the useful property which consists in the fact that its trace (tr(H))
gives the effective degrees of freedom (edf) of the model. The edf gives a
measure of the complexity of the fitted model. The higher the edf is, the
more complex the model is. Clearly, if the smoothing parameters are all
set to zero then the degrees of freedom of the model are simply the length
of B (minus the number of identifiability constraints) which is the case of
the linear model. It has been shown that the maximum of tr(H) is just the
number of parameters less the number of constraints, and similarly that the
minimum value is the rank of S less than this. As the smoothing parameters
vary, from zero to infinity, the effective degrees of freedom move smoothly
between these limits.

In the next Chapter we will discuss details of how smoothing parameter se-

lection and estimation of B are combined into a fitting procedure (Section

).



Chapter 4

Generalized Additive (Mixed)
Models

Generalized additive mixed models (GAMM) (Laird and Ware, |1982)) com-
bine the flexible modelling of the relationship between a response and pre-
dictors embodied in generalized additive models (GAM), with the inclusion
of random effects provided by generalized linear mixed models (GLMM)
(Breslow and Clayton, [1993).

In this Chapter, firstly, we will present the connection between penalized
smooth terms and random effects, then we will discuss GAMMs and finally

we will focus on parameter estimation.

4.1 Penalized smooth term as Mixed model repre-
sentation

Mixed models are an extension of regression models that allow inclusion of

random effects. They also turn out to be closely related to smoothing, since
47
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smoothing parameters can be viewed as quantities related to the random
effect variances in a mixed model framework. This makes it possible to use
mixed model methodology and software for penalized spline regression.

The linear mixed model can be defined as

y=XB+Zb+e, 4.1)

with
ylb~NXB+Zb,R), b~ N©O,G) 4.2)
Thereby y is a response vector, S is the vector of fixed effects, and b is the

vector of the random effects. X and Z are the model matrices of the fixed

and random effects respectively, and € is the error term. It is assumed

b 0
El | =
€ 0
and
b G 0
Cov = ,
€ 0 R

where G and R are positive definite covariance matrices of b and €, respec-
tively. Tipically it is assumed that the random effects and the error terms
are indipendent.

Estimation of the fixed effects B can be carried out via the marginal linear

model corresponding to (@.T), namely
y=XB+¢€,

where €* = Zb + € with Cov(e*) = ZGZ" + R = V, for a given covariance
matrix V depending on some variance parameters 6. Then the fixed effect

estimates are (Ruppert et al., 2003)
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B=XTvIx)'xTvly. (4.3)
The estimate B is referred to generalized least squares (GLS) and it is the
best linear unbiased estimator (BLUE) of B.

Given the fixed effect estimate in (4.3), random effects b can now be pre-

dicted resulting in the best linear predictor (BLP) (Ruppert et al., [2003)

b=GZ"v(y - Xp). (4.4)

In Section 3.1 we considered the ordinary nonparametric regression model
and showed how f could be estimated by penalized splines in (3.4). The
same penalized estimate can be obtained from a mixed model. For the sake
of simplicity, we treat the linear case and suppose that the errors satisfy

Cov(€) = R = o2I. Using the truncated polynomial basis functions with K

knots (kq, ..., kg), the linear spline model for f is
K
£ = Bo+Brxi+ ) bu(xi = x4, (4.5)
k=1

where (x; — x)+ are the truncated basis functions introduced in Section[3.1}
Now, if we denote X as the model matrix with ith row [1, x;], Z as the
model matrix with ith row [(x; — x)4, ..., (xi — xg)+1, B = [Bo.B117, and
b =[by,...,bx]", itis possible to rewrite in a mixed framework as
in assuming b ~ N(O, a'i). It was demonstrated that the ratio of vari-

2
ances % in the mixed model framework plays the role of the smoothing
b
2
parameter A, thatis A = % . In this sense penalized spline smoothing is
b

equivalent to the parameter estimation in a linear mixed model, thus esti-
mation can be carried out by means of standard mixed model software.

It should be noted that the inverse of the penalty matrix imposed on spline
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coeflicients has to be a proper covariance matrix that is symmetric and
positive definite. While this is unproblematic for truncated polynomials
as shown above (covariance matrix is just the identity matrix), other basis
functions with corresponding penalties need to be adjusted in order to be

represented by a linear mixed model.

4.2 Generalized Additive Mixed Models

A generalized additive mixed model (GAMM) is just a generalized linear
mixed model (GLMM), in which part of the linear predictor is specified in

terms of smooth functions of covariates

(EMilb)) = xI B+ fi(xi)) + fo(xai, x30) + -+ 20 b (4.6)

where y; is a univariate response which has some exponential family distri-
T

bution, B is a vector of fixed parameters, x; is a row of a fixed effects model
matrix, fjs are smooth functions of covariates, zl.T is a row of a random ef-
fects model matrix, b ~ N(0, G) is a vector of random effects coefficients
with unknown positive definite covariance matrix.

These models provide a unified likelihood framework for modelling re-
sponse data as a function of linear and smooth terms with inclusion of
random effects. The major difficulty in making inference is that a full like-
lihood analysis is burden by often intractable numerical integration. Due to
the connection between penalized splines and random effects illustrated in
the previous Sectiond.1] it is possible to estimate GAMM via GLMM or via

GAM. The following Section [d.3]discusses these alternative approaches.
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4.3 Parameter Estimation

If the primary interest is in estimating the smooth relationships and if the
random effects structure is simple and low dimensional, estimation via
GAM (i.e penalized likelihood) has to be preferred. Alternatively, if the
random effects structure is complex and high dimensional, estimation via

GLMM represents a better choice.

4.3.1 GAMM estimation based on GLMMs settings

When we consider GAMM in a GLMM setting, we are treating smooth
functions as random effects.

The likelihood for a GLMM is obtained by considering the joint distribution
of the response conditional on the random effects. The model parameters
in the model are the fixed effects § and the variance parameters 6, and the

corresponding marginal likelihood is

L(B.,0) = f(y;:B.6)
= fIb)f(b)db 4.7)
= 21) |Gy * exp{1Tc()}J (B, 6),

where

J(B.0) = f explyl (XB + Zb) — 1T a(XB + Zb) - %bTGglb}db. (4.8)
R4

Maximum likelihood estimation of J(B, 6) is complicated by the presence
of this g-dimensional integral, where ¢, in the penalized fitting, is the num-

ber of knots. There has been a great deal of research, accelerating in the
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1990s, on remedies to these computational problems. Usually, this complex
integral is solved via Laplace approximation of PQL (Breslow and Clayton,
1993). PQL iteration is very time consuming and suffers from convergence
problems. Furthermore, it is based on a quasi-likelihood method, and BIC
or AIC cannot be calculated. The development of theory for BIC or AIC
for these models is still an open research topic, and criteria based on full

likelihood models are often preferred.

4.3.2 GAMM estimation based on GAMs settings

As alternative to GLMM-based estimation it is possible to treat the random
effects as penalized regression terms (Wood, 2008, 2011b)), i.e. via GAMs.
In Chapter[3] it was shown how the problem of estimating an additive model
becomes the problem of estimating model coefficients and smoothing pa-
rameters for a penalized likelihood maximization problem, once a basis for
the smooth function has been chosen, together with associated measure of
function wiggliness. In a generalized case, the penalized likelihood maxi-
mization problem is solved by penalized iteratively weighted least squares
(P-IWLS), while the smoothing parameters, as for the linear case, can be
estimated using cross validation (Wood, 2008)) or likelihood criteria (Wood,
2011b). In a GAM setting, a GAMM can be expressed as

) =x;"B + > f; 4.9)
J

where g(-) is a specific link function, y; = E(Y;) and Y; is the response
variable, which follows some exponential family distribution. ij is the ith
row of the model matrix for any strictly parametric model components, 8*

are the corresponding coefficients, some of which may be random, and f;s
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are smooth functions of some covariates. fjs are represented via regression
spline bases (Section [3.1)), with associated measures of function roughness
which can be expressed as quadratic forms in the basis coefficients. By
expressing f;s via basis functions and relevant coefficients, (4.9) can be
re-written as a generalized linear model (GLM) (MacCullagh and Nelder,
1989)

g(u) = x] B, (4.10)

where 8 now includes 8* (fixed and random coefficients) and also the basis
coefficients relevant to f;s, and x; is the ith row of the model matrix, which
includes the columns of X* and columns representing the basis functions
evaluated at the covariate values. If the spline bases dimensions are suffi-
ciently large to ensure reasonably low bias, then maximum likelihood esti-
mation of model (.10) will almost certainly lead to overfitting. To avoid
that, the model is estimated by penalized likelihood maximization via P-

IWLS, where the penalties control overfit. The penalized likelihood for

(4.10) is

1

LB =1B)~ 5 ) AiB'SB. 4.11)
j

where S ; are positive semidefinite matrices and may also be components of
more general random-effects precision matrices, and A; are positive smooth-
ing parameters. Usually 87 S B measure the wiggliness of f;, and A; control
smoothness of f;.

To select the most appropriate values for A, it is possible to use either
methods that minimize model prediction error (Akaike’s information crite-

rion (AIC), cross-validation or generalized cross-validation (GCV) (Wahbal
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1975;|Wood, 2004, [2008))), or maximum likelihood methods (Wood,|2011b).
‘Wood| (2011b)) showed that the maximum likelihood methods (REML or
ML) for A selection perfom better than methods based on minimization of
model prediction error. In this Section we briefly will present the REML
method introduced by Wood| (2011b) for A estimation. The key for un-
derstanding REML or ML methods is that model (4.6) can be viewed as
a generalized linear mixed model in the form shown in (4.10), and at this
step smooth functions are viewed as random effects (Kimeldorf and Wahba,
1971), so that A, are treated as variance parameters which can be estimated
by maximum (marginal) likelihood (Anderssen and Bloomfield, [1974), or
restricted maximum likelihood. From a Bayesian perspective, it is well
known that the penalized likelihood estimates of the coefficients B are the
posterior modes of the distribution of Bly if 8 ~ N(0,S™¢) (Wahba, 1983),
where § = };4;S; and S” is the generalized inverse matrix of § and ¢ is
the scale parameter. Given that in this way the elements of 8 are viewed as
random effects, it is natural to try to estimate A; via ML or REML, where
A;j now control the dispersion of the priors, and hence the smoothness of f;.
To do this, Wood (2011b) takes the Laird and Ware’s (1982) approach to
REML, in which fixed effects are viewed as random effects with improper
uniform priors and they are integrated out, and he uses the penalties to de-
fine (independent) improper priors on the wiggliness of each f;, so that the

improper prior density for 8 can be assumed

NS
\Q2m)=Mp
where n, is the dimension of g and M, is the dimension of the null space of

S. Integrating B out of f(y,B) = f,(yIB)fs(B), the marginal restricted like-

f3(B) = exp{—B' SB/(24)}, (4.12)

lihood depending only on A is obtained from Laplace approximate REML
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criterion

VER
|H + /¢

In practice, estimation of the coefficients # and the smoothing parameters

Lg(A,¢) = L(B) f5(B) (4.13)

A1is carried out iteratively, where at each iteration, having fixed the A value,
the optimal B is found via P-IWLS. More specifically, an outer iteration
updates the smoothness parameters by (.13), and at each iteration step an
inner P-IWLS iteration is carried out to find f3.

The REML smoothness selection criteria of Wood! (201 1b)) overcomes con-
vergence problems of proposed single-iteration methods for REML or ML
estimation of semiparametric GLMs (Wood, 2004; Breslow and Clayton|
1993).

Relative to PQL parameter estimation, the P-IWLS estimation using REML
method for A estimation offers two substantial advantages for GAMM es-
timation and smoothing parameter selection. The first advantage is that P-
IWLS is computationally more reliable and much quicker than PQL. Since
the smoothing parameters are based on optimizing a properly defined func-
tion, fitting does not suffer from the convergence problems of PQL. The
second motivation is that it is possible to calculate the value of the op-
timized BIC or AIC useful for model comparisons, since we have a full
likelihood.

Confidence intervals with GAMs

Various authors have proposed approximate Bayesian interval estimates for
such models, based on extensions of the work of [Wahbal (1983) and |Silver-
man| (1985) on smoothing spline models of Gaussian data, but testing of

such intervals has been rather limited and there is little supporting theory
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for the approximations used in the generalized case. [Wood| (2006c) in his
work improved this situation by providing simulation tests and obtaining
asymptotic results supporting the approximations employed for the gener-
alized case. The simulation results suggested that while across-the-model
performance was good, component-wise coverage probabilities were not so
reliable. Since this was likely to result from the neglect of smoothing pa-
rameter variability, a simple and efficient simulation method was proposed
to account for smoothing parameter uncertainty: this demonstrated a sub-
stantial improvement of the performance of component-wise intervals.
Bayesian approach (Wahbal,[1983};Silverman,|1985)) is preferred to frequen-
tist approach (Wahba, [1980; |[Eilers and Marx! |1996) because generally, in
a frequentist approach, inference with these models is complicated by the
fact that, while the quadratic penalty term acts to limit estimator variance,
it also biases the parameter estimators 3, because of E(8) # 8, giving poor
results in terms of realized coverage probabilities.

In a Bayesian approach it is necessary to specify a prior distribution on the

parameters . Specifically let the improper prior for 8 be

£3(B)  exp {—%BT (> siit) ,3}, (4.14)

where the 7; parameters control the dispersion of the prior. Here, the prior
is equivalent to assuming that each of the components of model wiggliness,
BT SPB.is an independent exponentially distributed random variable with ex-
pected value 7;. The independence assumption is quite natural in situations
in which the penalties are ‘non-overlapping’, for example when ) S; is
block-diagonal, as in the case of GAMs constructed from penalized regres-
sion splines. The prior is appropriate since it makes explicit the fact that

it is believed that smooth models are more likely than wiggly ones, but it
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gives equal probability density to all models of equal smoothness; the latter

feature makes the prior improper. Considering the model specification

Y=XB+¢€, €~NOW'o?), (4.15)

it is possible to write the conditional distribution of y given g as

roB) <o {-30- X Wy - Xpjet) @io)

Using Bayes rule we have

fBly) < exp {—%@TWy/az 28 X" Wy/o? + BT XWX/ + ) 5.//T.f)ﬂ)}
@.17
o exp {—%(—ZﬁTXTWy/(rz +B X"WX/o? + S ,/r,)ﬁ)} .
If now we consider an @ ~ N(X*WX + 3 4,;8) ' X" Wy, XTWX + 3 1,S)"'c?), the

probability density function for e is

1 _ _
fn(ar):xexp{—i(a—(XTWXJrZ/I,-S/) ]XTWy)T(XTWX+ZA/S,-)(LU—(XTWXJrlesj) ‘XTWy)/az} s
(4.18)
o exp {—%(—ZQTXTWy/(rz +al XTWX/o? + Z ,1;5,-/0—2)@} .

Comparing equation in and in (4.17) it is clear that if we choose

T :crz//lj, then

A -1

Bly ~ N(B, (x"wx+ > 4;8)) 0'2), 4.19)
where 3 is the penalized least squares estimate. This result (4.19) yields a
self consistent basis for constructing Bayesian confidence intervals for any
quantity derived from 8. Such intervals should not suffer from the effects

of estimator bias in the way that a more naive frequentist approach does.

In the generalized case |Wood| (2006c) discusses that assuming the prior
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in for B, it can now be shown that, in the large sample limit, the
posterior distribution for B is that in li where now S is the maximizer
of the penalized maximum likelihood for a penalized GLM estimated by

the minimization of

|
~1B)+ 5 ; B7S B, (4.20)

and the diagonal matrix W now has entries W;; = (g’(,ui)zV(y;))‘l, where
V is the variance function, such that V(y,-)o'2 is the variance of Y; and o2
is the scale parameter. For many exponential family distributions the scale
parameter o> is known, but if an estimate is needed the Pearson estimator

can be used.

P-values for the smooth components

Another important issue concerns the testing of smooth components of a
GAM, namely whether some subset B of B is equal to zero. Wood| (2013)
proposed a Wald-type test for f = 0, where f is the vector of evaluated
values for the smooth component of interest. It was shown that confidence
intervals for smooth components exhibit good across-the-function coverage

probabilities if based on the approximate result

FiD) ~ N fi(0), Vi, i), (4.21)

where Vi, is the covariance matrix for f according to the Bayesian view
of the smoothing process, in which, as shown in the previous Section, the
smoothing penalty is induced by an improper Gaussian prior on 8. The
key idea is to base the test statistics on the same distributional result that
yields well-calibrated confidence intervals for f in , and defining X;
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the matrix such that fj =X jB, then Vy, = X jVﬂXjT. The Wald statistics
corresponding to (4.21) is

AT A
T, =Ji' vy} (4.22)

where V]’C/‘ is a rank-r pseudo-inverse of V. The main problem is then to
choose r appropriately. Naive choices lead to poor power or even to an
incorrect null distribution for p-values, but investigation of the structure of
T, suggests a relatively simple choice of r (see (Wood, 2013)). (4.22)) has
null distribution y2, when r is integer. For noninteger r the distribution
still has E(T,) = r and var(T,) = 2r under the null hypothesis, but 7, ~
Xﬁ—z + vlchi% + Vzc/’ll'%. For technical details on this case of the noninteger
r see 'Wood| (2013)).






Chapter 5

Modelling spatio-temporal

elephant movement data

5.1 Introduction

As discussed previously the aim of this thesis is to model the daily elephant
speed as a function of environmental variables, rainfall and temperature,
accounting for spatio-temporal trends in the study area over time. As seen
in Chapter [2| the relationship between the response daily speed and envi-
ronmental covariates cannot be assumed linear, and it is necessary to take
into account heterogeneity among elephants. For this aim, we employed
the generalized additive mixed model (GAMM) framework which provides
a powerful tool to fulfil the model requirements as described in Section
This Chapter presents the first application of this approach to spatio-
temporal smoothing in a complicated ecological system. All the analyses
were performed by means of the mgcv (Wood, 2011a) package in R (R Core

'Team, |2013). The package gives a simple, extensible collection of fitting
61
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routines, basis functions and diagnostics.

5.2 The proposed model framework

The response daily speed (km/h) was modelled using a GAMM framework.
More specifically, since the response has a positive asymmetric distribution
(Figure @), a Tweedie distribution (Candyl, 2004) was assumed

speed;, ~ Tweedie{ E(speed;,), pE(speed;)”}. 5.1)

The Tweedie distribution is an exponential family dispersion model with
variance function given by the power function ¢u” with 1 < p < 2. The
class of Tweedie models includes most of the important distributions com-
monly associated with GLMs. When 1 < p < 2 the distribution of Y is
intermediate between a Poisson and a Gamma distribution with mass at
zero but otherwise continuous on the positive reals and it is a Gamma when
p = 2 (Jorgensen, [1987). To select the appropriate value for the index p a
grid search over 100 values for p from 1.1 to 2 was performed. For each
fixed value of p, the model was fitted and the best value of p was the
one minimizing the BIC.

We used the BIC rather than the penalized log-likelihood since the degrees
of freedom of the considered models are different because of the penaliza-
tion. The Tweedie index p was set to 1.83 as this led to a lower BIC for all
considered models. The BIC values with respect to different p values are

reported in Figure|S.1
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Bayesian Information Criterion
-12350 -12340 -12330

-12360

-12370

Figure 5.1: Baysian Information Criteria values for the Tweedie distribution
from a grid over 100 values for the p index. The red dashed line represents

the lowest BIC value at the p index for the Tweedie distribution (p = 1.83).

The regression equation of the proposed model is

log{E(speed;)} = By + b; + s(day.year;) + r(lon,, lat,, year;)

3 3 (5.2)
+ > filocRaif;, ) + ) h(avgTemp,,))
1=0 10
for the elephant i = 1,...,m, days of year t = 1,...,n;, where 3.7, n; = n,

and distributed lag (DL) [ = {0,1,2,3}. b; is the random effect associ-
ated to elephant i, assumed i.i.d. b ~ N(O, ai), the function s(-) is a one
dimensional smooth function of the seasonality effect using days of year
represented from a cyclic cubic regression spline basis, r(-) is an invari-

ant 3-dimensional tensor product of two bases: a two-dimensional smooth
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of thin plate spline basis for the space component (longitude and latitude),
and a one-dimensional cubic regression spline basis for the time component
given by years. Finally the f;(-)s, ;(-)s functions are one dimensional DL
smooth functions at lag / = 0, 1,2, 3, respectively of rainfall and tempera-

ture values represented using cubic regression spline bases.

5.2.1 A three-dimensional spatio-temporal smoother

The term r(1lon, lat, year) in accounts for possible interaction effect
of space and time. Similarly to Section[3.1]the model uses a tensor product
between two bases: a two-dimensional isotropic spatial smooth (r;) and a
marginal one-dimensional smooth of time (r;). The tensor product smooth
presented in this Section refers to the general metology of |Wood| (2004,
2006b) for constructing scale invariant tensor product smooths of space-
time dimension.

The spatial smooth (r;) and the temporal smooth (7;) can be written in terms

of their basis decompositions as follows

Y
ry(lon,lat) = )" §,Dy(lon, 1at), (5.3)
g=1
and
P
ri(year) = Z apAp(year). 5.4
p=1

D,(lon,lat) and Ap(year) are thin plate spline and cubic spline basis
functions (respectively), with corresponding parameters ¢, and &, and spline
dimensions Q and P.

In order to construct a three-dimensional tensor product smooth of space
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and time it is necessary for ry(year) to vary smoothly within the spatial
dimensions. This can be achieved by allowing the parameters @, to vary
with longitude (long) and latitude (lat). Using the spline structure for

rs(long,lat) it is possible to write:

Y
a,(long,lat) = Z 5,4Dy(long, 1at). (5.5)
g=1

By putting[5.3]into [5.4] we get

P
rs«(long,lat,year) = ZQ: D 8pDy(long, 1at) (year),  (5.6)

g=1 p=1
which emphasizes between the two marginal bases. To build a wiggliness
measure relevant to[5.6]it is possible to start from wiggliness measures as-
sociated with the marginal smooth functions. Let J; and J; be measures of
the wiggliness of the functions r,; and r, respectively. The wiggliness for r;

is assumed to be the second order cubic spline penalty (Section [3.1))

J () = f (8*r,]dyear?)*dyear. (5.7

An overall penalty for the tensor product smoother can be obtained by ap-
plying the penalties of the spatial smooth to the spatially varying coeffi-

cients of the marginal temporal smooth, @,(long, lat),

P
Z Jia,(long,lat)}, (5.8)
p=1

and equivalently the penalties of the temporal smooth to the temporally

varying coeflicients of the marginal spatial smooth, J,(year), are applied,
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=}

D Jiloy(year)). (5.9)
g=1
It follows that the roughness of ry, can be written as the sum of the two

penalties weighted by smoothing parameters for space A, and time A;:

P Y
J(rsp) = Ay Z Jila,(long,lat)} + 4, Z J{o4(year)}, (5.10)
p=1 g=1

where as usual, A, and A, are the smoothing parameters for space and time

respectively.

5.3 Results

In our model selection strategy we started with a model up to three lags (eq.
(5.2)) and then we checked the possibility of simplifying it. The starting
model was named M, and its simplified versions were named M, M3, and
M,. Among the biologically plausible lag values (< 3), two lags were
selected according to the BIC whose results are shown in Table [5.1} For
model selection and comparison a generalized version of the BIC was used,
that is BIC = -2 log(i) + log(n)edf (Kass and Raftery, (1995). The BIC
is suitable for those situations in which there is a large sample size with
respect to the number of parameters, which is the case of our application.
In practice, due to the smaller penalty term, the AIC tends to keep more
terms in the model than the BIC, hence BIC is preferred to AIC to avoid

overfitting.
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Table 5.1: Comparing models with different lag structures for rainfall and

temperature.

Model  edf BIC lags in locRaif lagsin avg.Temp

M; 175.5 -122734 3 3
M, 1733 -12275.9 3 2
M3 1739 -12281.4 2 3
My 171.7 -12283.9 2 2

The selected model My, was implemented using the basis function shown
in Table[5.2)and the model results are reported in Table[5.3] The last column
refers to the p-value testing for a zero effect of each term according to the
methods described in Chapter 4]

Table 5.2: Type of basis and size per smooth term of the selected model.

Smooth term Type of basis Size of basis
day.year cc 10
space-time tp for space, cr for time (50,5)
locRaif atlag0 cr 10
locRaif atlag 1 cr 10
locRaif atlag 2 cr 10
avg.Temp at lag 0 cr 10
avg.Temp at lag 1 cr 10

avg.Temp at lag 2 cr 10
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Table 5.3: Main results from the fitted model My.

Parametric coefficients

Estimate (SE) t-value p-value

Intercept -0.92 (0.03) -33.71 <0.0001

Approximate significance of smooth terms

Smooth terms edf F p-value
ID 9.09 22.32  <0.0001
day.year 7.23 122.09 <0.0001
space-time 138.67 11.06  <0.0001
locRaif, [ =0 1.81 0.91 0.4060
locRaif, / = 1 2.48 3.89 0.0082
locRaif, [ =2 1.09 4.59 0.0268
avgTemp, /=0 3.14 1270  <0.0001
avgTemp, /=1 3.89 5.09 0.0001
avgTemp, [ = 2 3.25 2.46 0.0410

BIC=-12283.9
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Figure [5.2] shows the estimated seasonality effect from the selected model
My. As expected there is a strong seasonality effect of elephant movements.
The estimated elephant speed has a significant non-linear down trend up to
approximately day 245 (approx. September, 2), after this threshold ele-
phants seem to increase their speed in the wet season until approximately

day 30 (approx. January, 30).

0.4

7| Jan-Mar: wet ' Apr-Sept: dry ! Oct-Dec: wet

0.2
|

Estimated movement

~ i
Cl,' - ! ! p<0.0001

0 100 200 300

Day of year

Figure 5.2: Estimated seasonality effect. The dashed red lines indi-
cate the calendar seasonal thresholds (October-March, wet season; April-

September, dry season).
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Figure 5.3: Estimated rainfall effect at lag 0, 1 and lag 2, with + two stan-

dard errors (grey area).

As regards environmental variables there is a noteworthy effect of the local
rainfall from lag O to lag 2, even if at lag O it is not statistically significant.
Plots of these effects are shown in Figure At lag 0, elephants seem to
move almost constantly until a rainfall value of 20 mm, and after this value
they seem to increase their speed. At lag 1 elephants seem to move less up
to a rainfall value approximately of 15-20 mm, and then they increase their
speed when rainfall increases, instead at lag 2 elephants seem to decrease

their speed.
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Figure 5.4: Estimated rainfall effect at lag 0, 1 and lag 2, with + two stan-

dard errors (grey area).

We observe also a significant temperature effect up to lag 2 (Tab. [5.3). In
Figure [5.4] at lag O it seems that elephants move faster up to a temperature
value approximately of 30 °C, and in the following days, at lag 1 and lag
2, elephants seem to decrease their speed after this threshold of 30 °C. This
suggests that elephants have a thermal limit of tolerance, beyond which

they have to slow their movements.
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Figure 5.5: Estimated elephants movements over different years of study

(2006-2010). Lighter colours represent areas with higher movements.
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The selected model shows a statistically significant spatio-temporal interac-
tion effect (Table[5.3). This means that there is a spatial effect on estimated
elephant speed over years. Specifically, this suggests that in terms of speed
of movement there are changes across the considered years in certain spa-
tial areas. A possible explanation of why these changes in the elephant
movement behaviour exist over years may be linked to changes in abiotic

and biotic factors. Maps of estimated elephant speed over years are shown

in Figure[5.3]

5.3.1 Model diagnostics

Model diagnostics was assessed using the qq-plot and the histogram of
residuals for normality, residuals versus linear predictor for homogeneity,
and response values versus fitted values for model fit.

Graphical diagnostics for the final model is shown in Figure[5.6] The qq-
plot as well as the histogram of the residuals show no relevant anomalies.
The histogram of residuals seems to be approximately symmetrical and qq-
plot shows some outliers, especially in the right side. Plot of residuals
versus linear predictor shows that variance is approximately constant with
no clear violation of homogeneity. This indicates that the selected value of
the index p for the Tweedie distribution is suitable.

Residual spatial and temporal autocorrelation was evaluated by means of

variograms and partial autocorrelation functions for each elephant (see plots

in Figures[5.7|and[5.§).
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Figure 5.6: Model validation plots of the selected model.

The variograms also include envelops obtained by permutation (Ribeiro Jr

and Digglel 2001): values within the envelops suggest that no important

spatial correlation affects the residuals from the final fitr. On the other hand

residual temporal autocorrelation still persists. Especially, some elephants,
AM107, AM253, AM254, AMO91, and AM99 show a higher PACFs than
other elephants, from 0.2 to 0.4 at lag 1, then at larger lags, PACF is very



5.3. Results 75

low, around 0.1.

Furthermore, we investigated the residual temporal correlation, assuming
for the final model an autoregressive correlation structure of order 1 for the
within-group correlation. Findings with respect to covariate effects are un-
changed, and the residual temporal autocorrelation still remains, although
to minor extent. Results are shown in Figure [5.9] where we can see that
the values of the PACFs of standardized residuals are around 0.1, and the

estimated correlation parameter is low (0 = 0.26).
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Figure 5.7: Variograms of standardized residuals for each elephant. The en-

velops represent minimum and maximum values derived by permuting data

points on the spatial locations for each elephant. The variograms indicate

model mis-specification if the empirical points lie outside the envelops.
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Figure 5.9: Partial autocorrelation functions of standardized residuals for
each elephant for the selected model with a specified autoregressive struc-
ture of order 1 for the within-group error. The estimated correlation param-

eter is p = 0.26.



Chapter 6
A possible improvement

In this Chapter we deal with some further advancements on the proposed
model discussed in Chapter [5] Specifically, we discuss about including
a new variable, the “cumulative rainfall”, which can be considered as a

‘wetness’ measure.

6.1 Including cumulative rainfall

Another important goal of our research is to obtain a proxy of the ‘wetness’
to investigate the effect on elephant movements. A measure of ‘cumulative
rainfall’ was obtained for each elephant, by means of a sum of local rainfall
at each seasonal breakpoint obtained in Birkett ef al.|(2012). According to
these ‘seasonal breakpoints’ the time axis of each elephant is into several
intervals and within each interval the cumulative rainfall was computed.
Birkett et al.| (2012) used a piecewise regression model to obtain seasonal
breakpoints separately for each considered elephant within each considered

year. The framework of the model considered in this Section is the same of
79
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that considered for the selected model M, including the new variable

log{E(speed;;)} = Bo + b; + s(day.year;) + r(lon;, lat,, year;)

2 2 (61)
+ Z fi(locRaif;, ;) + Z h(avgTemp;, ;) + c(cumRain,).
1=0 =0

The best value of the p index for the Tweedie distribution according to the
BIC is substantially unchanged (p=1.84). The function c(CumRain) is a
one-dimensional cubic regression spline of the cumulative rainfall effect.
Model estimates and the estimated effects are reported in Table [6.1] and
Figures|[6.1]and respectively.

We focus our discussion only on the cumulative rainfall effect, since all
terms included in the model (eq. (6.1I))) remained approximately the same.
The estimated smooth effect of cumulative rainfall is shown at the bottom
of Figure[6.2] Besides some unexplained seasonality captured by this term,
the plot suggests that elephants increase their speed as cumulative rainfall
increases at low levels, i.e. at the beginning of the wet season. As rainfall
accumulates, namely the wet season goes on, elephants slow down possibly

due to availability of forage in general.
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Table 6.1: Main results from the fitted model in (6.T).

Parametric coefficients

Estimate (SE) t-value p-value

Intercept -0.93 (0.02) -3243 <0.0001

Approximate significance of smooth terms

Smooth terms edf F p-value
ID 9.12 21.68  <0.0001
day.year 7.16 115.71 <0.0001
space-time 137.71 10.90 <0.0001
locRaif, /=0 1.84 1.53 0.2081
locRaif, / =1 2.64 3.73 0.0091
locRaif, [ =2 1.02 3.98 0.0444
avgTemp, /=0 5.27 8.71  <0.0001
avgTemp, /=1 3.89 5.02 0.0001
avgTemp, [ =2 3.39 2.64 0.0283
cum.rain 8.44 8.97  <0.0001

BIC=-12284.67
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Chapter 7

Discussion

We used GAMMs to model spatio-temporal elephant movement data as
a function of environmental variables. GAMMs are a flexible framework
which takes into account random effects for heterogeneity, smooth terms
for non linear effects of single or multiple covariates.

Our proposed model allowed an adequate assessment of environmental fac-
tors affecting elephant movements and of the spatial elephant movement
trend across years. The proposed model included one-dimensional smooth
functions of the seasonality effect (days of year), of distributed lag for rain-
fall and temperature, a three-dimensional smooth term accounting for space
(longitude and latitude) and time (years), and the random effects associated
to elephant i. The response was assumed to have a Tweedie distribution
with a value of the p index equal to 1.83 (selected via BIC).

In terms of their biology, elephants are primarly driven by their needs for
forage and water which are temporally and spatially variable, particularly in
savanna systems. It is widely acknowledged that, within savanna environ-

ments, elephant movements are affected by seasonal changes (Young et al.,
85
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2009a)), and we found a strong seasonality effect of elephant movements.
Precisely, the estimated elephant movement had a significant non-linear
down trend up to approximately day 245 (approx. September, 1), after this
threshold elephants seemed to increase their speed in the wet season until
approximately day 30 (approx. January, 30) (p<0.0001). These seasonal
shifts signal a response by elephants to a seasonal change in resources, e.g.
forage and water. These results agree substantially with those obtained by
Birkett et al.|(2012)).

The estimated spatial-temporal patterns of elephant movements in Figure
[5.5] provided some indications of the broad scales changes across different
years, in terms of speed of movement in certain spatial areas of the Kruger.
These observed changes in spatial pattern support the hypothesis that the
main choice factors in movement behaviour depend on local weather con-
ditions, such as wet or dry season combined with Kruger-specific charac-
teristics such as topography, and cumulative effects of abiotic and biotic
factors.

It is known that African savanna systems typically experience a state of re-
source depletion during the dry season (Shrader et al.,2006) followed by a
release from these constraints when rainfall resumes (Owen-Smith, [1982).
In these systems, species experience seasonal energetic bottlenecks, related
to shifts in climatic variables that induce periods of restricted resources
(Wiens, [1977; [Owen-Smith, [1994). By examining variation in elephant
speed across fine scale local rainfall, we allow the behaviour of elephants
to reveal rainfall shift at a threshold approximately of 20 mm, where in gen-
eral elephants increase their speed (Figure[5.3).

We found that temperature also affects significantly elephant movements up

to lag 2 (Fig. [5.4). Temperature patterns suggested that elephants increase
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their speed when temperature gets higher, but when temperature reaches a
value of approximately 30 °C, elephants decrease their speed. The tem-
perature effect makes biological sense. Since rainfall and temperature both
increase during the wet season, and both of these variables are associated
with increases in biomass of forage production in savannas, elephants also
move more when temperatures increase (Kinahan et al., 2007). The inter-
esting finding is that at a threshold temperature value of approximately 30
°C, elephants reduce their speed. This suggests that elephants have a ther-
mal limit of tolerance, beyond which they have to slow their movements:
this issue deserves major investigation.

Elephant movement data present several challenges in statistical modelling
and data analysis due to heterogeneity, seasonal trends and non-linear ef-
fects of covariates. The proposed GAMM framework appears to provide
a flexible and valuable tool to model this kind of data, making use of non-
parametric uni- and multi-dimensional smooth functions combined with the
Tweedie distribution for highly skewed data. While this GAMM framework
was employed for elephants in Kruger National Park of South Africa, the
present thesis may be applied to other herbivore species, within dynami-

cally variable environments.
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