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Osteosarcoma is a highly metastatic tumor affecting adolescents, for which there is no second-line chemothera-
py. As suggested for most tumors, its capability to overgrow is probably driven by cancer stem cells (CSCs), and
finding new targets to kill CSCsmay be critical for improving patient survival. TP53 is themost frequentlymutat-
ed tumor suppressor gene in cancers and mutant p53 protein (mutp53) can acquire gain of function (GOF)
strongly contributing tomalignancy. Studies thus far have not shown p53-GOF in osteosarcoma. Here, we inves-
tigated TP53 gene status/role in 3AB-OS cells—a highly aggressive CSC line previously selected from human oste-
osarcoma MG63 cells—to evaluate its involvement in promoting proliferation, invasiveness, resistance to
apoptosis and stemness. By RT-PCR, methylation-specific PCR, fluorescent in situ hybridization, DNA sequence,
western blot and immunofluorescence analyses, we have shown that—in comparison with parental MG63 cells
where TP53 gene is hypermethylated, rearranged and in single copy—in 3AB-OS cells, TP53 is unmethylated,
rearranged and inmultiple copies, andmutp53 (p53-R248W/P72R) is post-translationallymodified andwith nu-
clear localization. p53-R248W/P72R-knockdown by short-interfering RNA reduced the growth and replication
rate of 3AB-OS cells, markedly increasing cell cycle inhibitor levels and sensitized 3AB-OS cells to TRAIL-
induced apoptosis byDR5 up-regulation;moreover, it strongly decreased the levels of stemness and invasiveness
genes.Wehave also found that the ectopic expression of p53-R248W/P72R inMG63 cells promoted cancer stem-
like features, as high proliferation rate, sphere formation, clonogenic growth, highmigration and invasive ability;
furthermore, it strongly increased the levels of stemness proteins. Overall, the findings suggest the involvement
of p53-R248W/P72R at the origin of the aberrant characters of the 3AB-OS cells with the hypothesis that its GOF
can be at the root of the dedifferentiation of MG63 cells into CSCs.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Osteosarcoma (OS), the most common malignant bone tumor in
adolescents and young adults, is a highly aggressive tumor exhibiting
clinical, histologic and molecular heterogeneity [1]. The current stan-
dard chemotherapy regimen, which includes cisplatin, doxorubicin
andmethotrexate, provides only 65–70% long-term disease-free surviv-
al for OS patients without metastasis [2], and there is no established
second-line chemotherapy for relapsed OS; thus, the identification of
t in situ hybridization; GOF, Gain
tant p53; OS, Osteosarcoma.
linic, via del Vespro 129, 90127

ghts reserved.
new therapeutic strategies to improve the clinical outcome of these
patients is urgent.

It is well known that most solid tumors contain a distinct subpopu-
lation of cancer stem cells (CSCs), which represent the source for tissue
renewal, hold malignant potential and can be responsible for therapy
resistance [3–6], and it has been suggested that a successful cure of
cancer should requires eradication of CSCs [7–9].

Previously, we have demonstrated that the short-term treatment of
human OS MG63 cells with 3-aminobenzamide (3AB), a potent inhibi-
tor of the chromatin remodelling enzymepoly(ADP-ribose)polymerase,
inducedmorphological and biochemical features of osteocyte differenti-
ation, accompanied by the down-regulation of gene products required
for proliferation and the up-regulation of those implicated in osteoblast
differentiation [10]. However, prolonged treatment (about 100 days) of
MG63cellswith3AB inducedosteocyte death accompaniedbyprogressive
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enrichment of a new heterogeneous and stable cell population termed
3AB-OS [11], which have properties (self-renewal and pluripotency
in vitro, tumorigenicity in vivo) that indicated them as CSCs [12,13] and
allowed their patenting. 3AB-OS cells have been characterized at genetic
and molecular level: compared to parental MG63 cells, which have a
hypotriploid karyotype with chromosome number ranging from 61 to
66, they are hypertriploid with chromosome number ranging from
71 to 82; they also exhibit 49 copy number variations (gains/losses)
spanning almost all the chromosomes, 3,512 dysregulated genes and
189 differentially expressed miRNAs. Moreover, bioinformatic analyses
selected 196 genes and 46 anticorrelated miRNAs involved in carcino-
genesis and stemness [14]. Remarkably, the abnormalities evidenced
in 3AB-OS cells appear to be strongly congruent with abnormalities
described in a large number of pediatric and adult OS patients, where
karyotype ranging from haploid to near hexaploid with chromosome
number ranging from 15 to 120 were described; in addition, a great
number of chromosomal regions with structural abnormalities among
which 17p11.2–13 that contains TP53 gene were found [15–17].

It is known that TP53mutations occur in almost every type of cancer
and often mutant p53 proteins (mutp53) express gain of function
(GOF), which can enhance the ability of cancer cells to invade and me-
tastasize, confer resistance to chemotherapies, promote genomic insta-
bility and drivemultinucleation [18–27]. Recently, evidence linking p53
loss to stem-like phenotype in cancer has been reported [28]; however,
how p53 contributes to acquisition of “stemness” at themolecular level
andwhether stem-like cells confer survival advantages to propagate the
tumor remains to be resolved. Here, we investigated TP53 gene status
and role in 3AB-OS cells. We demonstrated that in 3AB-OS cells, p53 is
mutated (p53-R248W/P72R) and displays GOF activity. Furthermore,
we showed that the ectopic expression of p53-R248W/P72R promoted
cancer stem-like properties in osteosarcoma MG63 parental cells. The
results suggest p53-R248W/P72R as a key regulator at the origin of
the aggressiveness, chemoresistance and stemness of human 3AB-OS
CSCs.

Materials and methods

Cell cultures

Human osteosarcoma MG63 cells were acquired from Interlab Cell
Line Collection (ICLC, Genova, Italy). The human 3AB-OS cancer stem
cells have beenproduced in our laboratory [11] and patented (Pluripotent
cancer stem cells: their preparation and use. Renza Vento and Riccardo
Di Fiore, Patent Appln. No. FI2008A000238, December 11, 2008). Cell
lines were cultured as monolayers in T-75 flask in Dulbecco's modified
Eagle medium (DMEM), supplemented with 10% (v/v) heat-inactivated
fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/ml penicillin and
50 μg/ml streptomycin (Euroclone, Pero, Italy) in a humidified atmo-
sphere of 5% CO2 in air at 37 °C. When cells grew to approximately 80%
confluence, they were subcultured or harvested using 0.025% trypsin–
EDTA (Life Technologies Ltd, Monza, Italy).

Morphological observation

Cell morphology was evaluated using a Leica DM IRB invertedmicro-
scope (LeicaMicrosystems Srl,Milano, Italy). Imageswere photographed
and captured by a computer-imaging system (Leica DC300F camera and
Adobe Photoshop for image analysis).

RT-PCR analysis for p53

RNA was isolated using RNeasy mini kit (Qiagen, Milano, Italy).
cDNA was amplified from 1 μg of RNA as previously reported [29]
followed by polymerase chain reaction (PCR). The reactions omitting
reverse transcriptase enzyme served as negative control. GAPDH was
used as a housekeeping gene to demonstrate equal loading of RNA.
The amplified products were resolved by agarose gel electrophoresis
(1% agarose, 0.5 μg/ml ethidium bromide; Sigma-Aldrich), and the
bands were visualized and photographed with Chemi Doc XRS (Bio-
Rad Laboratories Srl, Segrate (MI), Italy). The primer sequences (Proligo
USA, Milan, Italy) are as follows: TP53 (432 bp), forward 5′-GGGACAGC
CAAGTCTGTG-3′ and reverse 5′-GGAGTCTTCCAGTGTGAT-3′; GAPDH
(200 bp), forward 5′-TGACATCAAGAAGGTGA-3′ and reverse 5′-TCCA
CCACCCTGTTGCTGTA-3′. For PCR analysis, the following protocol was
performed: 95 °C for 5 min, 30 cycles at 95 °C for 1 min, 54 °C for
1 min, 72 °C for 1 min and a final extension at 72 °C for 10 min.

Cell genomic DNA extraction, sodium bisulfite genomic treatment and TP53
methylation-specific PCR (MS-PCR)

Genomic DNA was extracted from cultured cells using QIAamp
DNAMini Kit (Qiagen) following themanufacturer's instructions. Geno-
mic DNA was bisulfite treated using an EpiTect Bisulfite Kit (Qiagen).
The treatment of genomic DNA with sodium bisulfite converts
unmethylated, but not methylated cytosines, into uracil, producing
sequence differences between methylated and unmethylated DNA.
Two micrograms of DNA were modified in 40 μl of water with sodium
bisulfite following the manufacturer's instructions. After bisulfite
modification, PCR on the CpG island of the TP53 promoter was per-
formed with the unmethylation-specific primers (U): 5′-TTAGTATTTA
TGGTATTAGGTTGGT-3′ and 5′-AACAAATAATCCACCTACCAA-3′, and
methylation-specific primers (M): 5′-GTATTTACGGTATTAGGTCGGC-3′
and 5′-AAATAATCCGCCTACCGA-3′, using 5U of AmpliTaq polymerase
(Applied Biosystems, Foster City, CA) and the following PCR conditions:
95 °C for 5 min, 35 cycles of 95 °C for 30 s, 51 °C for 45 s and 72 °C for
60 s and a final 8 min at 72 °C. A methylated and bisulfite converted
human control DNA (EpiTect PCR control DNA; Qiagen) was used as a
positive control. Each PCR product was analyzed by electrophoresis on
2% agarose gel. Gel images were visualized and photographed with
Chemi Doc XRS (Bio-Rad Laboratories Srl, Segrate (MI), Italy).

TP53 fluorescent in situ hybridization (FISH) analysis

FISH analyses were performed on MG63 and 3AB-OS cells by
Toma Advanced Biomedical Assays S.p.A. (Busto Arsizio (VA), Italy)
with p53 (17p13)/SE 17 probe (Kreatech Diagnostics, Amsterdam,
The Netherlands), containing the p53 tumor suppressor gene-specific
region and the chromosome 17 Satellite control probe. These analyses
were performed following the manufacturer's protocol and analyzing
50 nuclei and 10 metaphases (1000× magnification).

DNA sequence analysis of p53 exons 1–11

DNA sequence analyses were performed on MG63 and 3AB-OS cells
by BioRep S.r.l. (Milano, Italy). Genomic DNA was extracted from cul-
tured cells using QIAamp DNA Mini Kit (Qiagen) following the
manufacturer's instructions. PCR reactions were carried out under stan-
dard conditions with primer sets specific for the coding exons 1–11 of
the TP53 gene reported in Supplementary Table 1. PCR products were
purified using ExoSAP (Amersham Biosciences Italia, Milano, Italy)
treatment and sequenced with the DYE-namic ET Dye Terminator
Cycle Sequencing Kit (Amersham Biosciences Italia). Sequencing reac-
tions were purified using the Montage SEQ96 Cleanup Kit (Millipore
S.p.a., Milano, Italy), and sequencing runs were performed on the
MegaBACE 500 DNA Analysis System (Amersham Biosciences Italia).

Immunofluorescence Staining for p53

The cells were fixed with 3.7% formaldehyde for 10 min at room
temperature and permeabilized with 0.1% Triton® X-100 (all from
Sigma) in phosphate-buffered saline (PBS) for 5 min. After washing
with PBS, cells were incubated with anti-p53 primary antibody (diluted
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1:100 in PBS + 1% BSA + 0.05% NaN3; Santa Cruz Biotechnology,
Santa Cruz, CA, USA) at 4 °C, overnight. Cells were washed three times
with PBS and incubated for 1 h at room temperature with Cy3-
or Cy2-conjugated secondary antibody (diluted 1:100 in PBS + 1%
BSA + 0.05% NaN3; Jackson ImmunoResearch Laboratories, West
Grove, PA, USA). Nuclei were counterstained with 2.5 μg/ml Hoechst
33342 (Sigma-Aldrich) for 10 min. After threewashes, cellswere exam-
ined on a Leica DM IRB invertedmicroscope equippedwith fluorescence
optics and suitable filters for DAPI, FITC and rhodamine detection;
images were photographed and captured by a computer-imaging sys-
tem (Leica DC300F camera and Adobe Photoshop for image analysis).

Transient down-regulation of p53 by short interfering RNA (siRNA)

Cells were plated in a six-well plate format and cultured in DMEM
medium, supplemented with 10% FBS, for 24 h to reach approximately
60–80% confluence. Specific siRNAs directed against p53, obtained by
St Cruz Biotechnology as a pool of double-stranded RNA oligonucleo-
tides, were transfected for 5 h into the cells at a final concentration of
50 nM, in the presence of 5 μl Metafectene Pro (Biontex, Martinsried/
Planegg, GmBH, Munich, Germany) in a final volume of 1 ml serum-
free DMEM. At the end, the reaction was stopped replacing the culture
medium with DMEM + 10% FBS. Cells were examined for p53 down-
regulation and other properties 24–72 h after transfection. siRNA,
consisting in a scramble sequence, was used as a negative control.

Growth curve and cell viability assays

Total cell number and viabilitywere evaluated by Trypan blue exclu-
sion counting. Briefly, cells were harvested every 24 h and resuspended
in PBS. Aliquots of cell suspensions were diluted with 0.4% trypan blue
(Sigma-Aldrich Srl, Milano, Italy), pipetted onto a hemocytometer and
counted under a microscope at 100× magnification. Live cells excluded
the dye, whereas dead cells admitted the dye intensely staining with
trypan blue. The number of viable cells for each experimental condition
was counted and represented on a linear graph. Doubling time (DT)was
estimated by the following equation: DT = (t2 − t1) ln2 / lnX2 / X1,
where X2 and X1 are the number of cells at t2 and t1.

EdU in corporation assay

For EdU (5-ethynyl-2′-deoxyuridine) incorporation experiments,
cells were incubated with 10 μM EdU (Click-iT™ EdU Alexa Fluor
High-Throughput Imaging Assay, Invitrogen, Life Technologies Ltd,
Monza, Italy) for 2 h. Cells were then washed with PBS, fixed with
3.7% formaldehyde for 15 min at room temperature and permeabilized
with 0.5% Triton X-100 (all from Sigma) in PBS for 20 min. After exten-
sive washingwith 3% bovine serum albumin (BSA) in PBS, incorporated
EdU was detected by fluorescent-azide coupling reaction (Click-iT,
Invitrogen). Briefly, cells were incubated for 30 min with azide-
conjugated Alexa Fluor 488 dye in TBS supplemented with 4 mM
CuSO4. Cells were then washed three times with 3% BSA in PBS. Nuclei
were counterstained with 2.5 μg/ml Hoechst 33342 (Sigma-Aldrich),
for 10 min. After threewashes, cellswere examined by fluorescencemi-
croscopy using filters for DAPI and FITC. The percentage of EdU-positive
nuclei was determined by counting five random high-powered fields
(400×).

Cell death assays

Apoptotic morphology was studied in cells stained with Hoechst
33342 (Sigma-Aldrich). In particular, cells were stained with Hoechst
33342 (2.5 μg/ml medium) for 30 min at 37 °C, visualized by fluores-
cence microscopy using an appropriate filter for DAPI; images were
photographed and captured. Cells were evaluated on the basis of their
nuclear morphology, noting the presence of homogeneous chromatin,
condensed chromatin, and fragmented nuclei.

Apoptosis was also studied by flow cytometry of either DNA content
or annexin V labelling. For DNA staining, trypsinized cell suspensions
were centrifuged, washed 3 times with PBS and resuspended at 1 ×
106 cells/ml in PBS. Cells were mixed with cold absolute ethanol and
stored for 1 h at 4 °C. After centrifugation, cells were rinsed 3 times in
PBS, and the pellet was suspended in 1 ml of propidium iodide (PI)
staining solution (3.8 mM sodium citrate, 25 μg/ml PI, 10 μg/ml RNase
A; Sigma-Aldrich Srl, Milano, Italy) and kept in the dark at 4 °C for 3 h
prior to flow cytometry analysis. The proportion of cells giving fluores-
cence in the sub-G0/G1 peak of cell cycle was taken as a measure of
apoptosis.

For annexinV labelling, trypsinized cell suspensionswere centrifuged,
washed 3 times with PBS and resuspended in 1× annexin V binding
buffer (BD Biosciences Pharmingen, San Diego, CA) at a concentration
of 1 × 106 cells/ml. One hundred microliters of cell suspension was
then incubated with 5 μL of annexin V-FITC (BD Biosciences) and 5 μL
of PI for 15 min at a room temperature in the dark. Double labeled
with annexin V and PI allows a distinction of early apoptotic (annexin
V+/PI−) and late apoptotic/necrotic (annexin V+/PI+) cells. Flow cytom-
etry analyses were performed by a COULTER EPICS XL flow cytometer
(Beckman Coulter Srl, Cassina De Pecchi (MI), Italy) equipped with a
single Argon ion laser (emission wavelength of 488 nm) and Expo 32
software. The green fluorescence was measured in the FL1 channel
using a 515-nm BP filter, and the red fluorescence was measured in the
FL3 channel using a 620-nm BP filter. At least 1 × 104 cells per sample
were analyzed and data were stored in list mode files.

Measurement of mitochondrial transmembrane potential (Δψm)

Mitochondrial membrane potential was measured by the cationic
lipophilic fluorochrome 3,3-dihexyloxacarbocyanine (DiOC6 Molecular
Probes, Eugene, OR), which exclusively emits within the spectrum of
green light. Loss in DiOC6 staining indicates disruption of themitochon-
drial inner transmembrane potential (ΔΨm). Cells were incubatedwith
40 nM DiOC6 for 20 min at 37˚C, washed twice with PBS and analysed
by flow cytometry. The green fluorescence was measured as above
described.

In vitro matrigel invasion assay

Invasion assays were performed using 6-well invasion chamber sys-
tem (BD Biosciences, Discovery Labware, Becton Dickinson, Buccinasco,
Italy). Cells were trypsinized and counted with a hemocytometer using
trypan blue, and viable cells were seeded in the upper chamber at 1 ×
105 cells/well in serum-free DMEM. DMEM supplemented with 10%
FBS (used as a chemoattractant) was placed in the bottomwell. Incuba-
tion was carried out for 48 h at 37 °C in humidified air with 5% CO2.
Nonmigratory cells in the upper chamber were then removed with a
cotton-tip applicator. Migrated cells on the lower surface were stained
with Hoechst 33342 (2.5 μg/ml; Sigma-Aldrich) for 10 min and then
visualized under an inverted microscope. The number of migrating
cells was determined by counting five high-powered fields (200×) on
each membrane. Four independent experiments were performed in
triplicate.

Construction of expression vector expressing p53 mutation
(p53-R248W/P72R) and stable transfection

RNA from 3AB-OS cell line was isolated using TRI Reagent (Sigma-
Aldrich), according to manufacturer's instructions. cDNAwas amplified
from 2 μg of RNA using M-MuLV reverse transcriptase (New England
Biolabs, Euroclone, Pero, Italy). The following protocol was performed:
RNA was incubated with dNTPs (Amersham Biosciences) and Random
Examers (Promega Italia Srl, Milano, Italy) at 70 °C for 10 min and in
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ice for 1 min; then, after the addition ofM-MuLV and the specific buffer,
the incubation was performed at 42 °C for 1 h and at 90 °C for 10 min.
The following primerswere used to amplified TP53 (≈1.2 kb): forward
(BamHI restriction site-containing) 5′-CGTAGGATCCAGCCATGGAGGA
GCCGCAG-3′ and reverse (XhoI restriction site-containig) 5′-CGGATC
TCGAGCAATTCAGTCTGAGTCAGGCC-3′. For PCR amplification with
Phusion Taq polymerase (New England Biolabs), the following protocol
was performed: 98 °C for 2 min; 12 cycles at 98 °C for 10 s, 63 °C for
20 s and 72 °C for 30 s; 18 cycles at 98 °C for 10 s and 72 °C for 30 s;
a final extension at 72 °C for 7 min. The amplified product was resolved
by agarose gel electrophoresis (1% agarose and 0.5 μg/ml ethidium bro-
mide; Sigma-Aldrich) and the band was extracted usingWizard SV Gel
and PCR Clean-up system (Promega Italia Srl). PCR product and pcDNA
3.1 vector (Invitrogen) were digested for 2 h at 37 °C with BamHI-HF
and XhoI (New England Biolabs), resolved by agarose gel electrophore-
sis and extracted. Vector dephosphorylation and ligation reactionswere
performed using the Rapid Dephosphorylation and Ligation kit (Roche,
Milano, Italy) according to manufacturer's instructions. The ligation
mixture was transformed into calcium chloride-competent DH5α cells
(Invitrogen). Plasmids after BamHI–XhoI digestion that showed the
presence of a 1.2-kb insert were validated by sequencing (Ceinge
Sequencing Service, Ceinge, Napoli, Italy).

MG63 cells were plated in 6-well dishes until they reached 90%
confluence and then transfected with p53-R248W/P72R-pcDNA 3.1 or
empty vector, as a control, using Lipofectamine 2000 (Invitrogen)
according to manufacturer's instructions. Two days after transfections,
the cells were transferred in 100 mm dishes in selective medium con-
taining 300 μg/ml G418 (Gibco, Life Technologies Ltd, Monza, Italy);
the medium was replaced every 3–4 days. A plate of untrasfected cells
was used as a control for the selection.

Sarcosphere formation assay

MG63 cells transfected with pcDNA3.1-p53-R248W/P72R or empty
pcDNA3.1 vector were seeded in 6-well ultra-low attachment plates
(Corning Costar, Euroclone) at a density of 500 cells/well with 3 ml
stem cell medium consisting of DMEM/F12 (Gibco), B27 (1× Gibco),
recombinant human epidermal growth factor (rhEGF, 20 ng/ml; Sigma-
Aldrich) and basic fibroblast growth factor (bFGF, 20 ng/ml; Sigma-
Aldrich). The stem cell medium was changed every 3 days, and cells
were observed every day by microscopy. After the primary spheres
reached approximately ≥50 μm in diameter (determined using
the ImageJ software), they were collected by gentle centrifugation
(800 rpm), enzymatically dissociated (10 min at 37 °C in 0.05%
trypsin–EDTA; Life Technologies Ltd) to single cells and replanted
into 6-well ultra-low attachment plates with 500 cells/well and cultured
with stem cell medium to generate spheres of the next generation.

Colony formation assay

MG63 cells transfected with pcDNA3.1-p53-R248W/P72R or empty
pcDNA3.1 vector were seeded in 6-well plates at a density of 100
cells/well with 3 ml culture medium and incubated for 10 days. The
medium was changed every 3 days, and cells were observed every
day by microscopy. On the tenth day, media was removed from the
wells and washed once with ice-cold PBS. The colonies were fixed
with 50% EtOH and stained with 1% methylene blue (Sigma-Aldrich)
for 10 min. After three washes with PBS, the colonies consisting of
N50 cells were counted using microscopy. Colony size was determined
by measuring the area with the ImageJ software.

Scratch/wound-healing assay

To analyze cell migration by wound healing, confluent monolayers
of MG63 cells transfected with pcDNA3.1-p53-R248W/P72R or empty
pcDNA3.1 vector and cultured in 6-well plates were scratched with a
200-μl pipette tip to generate the wound. One hour before scratching,
the medium was replaced with medium containing 0.1% FBS to mini-
mize the cell proliferation. Phase-contrast photographs of the same
region were taken with the same magnification (100×) at 0, 8 and
24 h post-wounding. The extent of wound closure was determined by
measuring with the ImageJ software the area of cells that migrated
into the wound and then dividing by the total area of wound.

Flow cytometry analysis of CD133, ABCG2 and p53 expression

Cells were detached using 0.025% trypsin–EDTA in PBS, counted and
washed in 0.1% BSA in PBS at 4 °C. At least 500,000 cells (in 100 μl PBS/
0.5% BSA) were incubated with fluorescent-labelled monoclonal anti-
bodies or respective isotype controls (1/10 diluted 4 °C for 30 min
in the dark). After washing steps, the labelled cells were analyzed
by flow cytometry using COULTER EPICS XL (Beckman-Coulter Srl)
and Expo 32 software. The antibodies used were mouse anti-human
CD133/2 PE conjugated (Miltenyi Biotec S.r.l., Bologna, Italy), mouse
anti-human ABCG2 nonconjugated (Santa Cruz Biotechnology) and
mouse anti-human p53 nonconjugated (Santa Cruz Biotechnology).
For indirect labelling, cells were incubated with a compatible secondary
antibody FITC conjugated (Santa Cruz Biotechnology, Inc.). For intracel-
lular staining of CD133, ABCG2 and p53, cells were processed using the
Caltag Fix & Perm Kit (Invitrogen) following the manufacturer's guide-
lines. The green fluorescence was measured as described in the Cell
death assays section, and the phycoerythrin fluorescencewasmeasured
in the FL2 channel using a 575-nm BP filter. At least 1 × 104 cells per
sample were analyzed, and data were stored in list mode files. The ex-
pression of cell markers was determined by comparison with isotype
control.

Cell cycle and proliferation analyses

Cell cycle phase distribution was studied by flow cytometry of DNA
content. This method was described in the Cell death assays section.
The proliferation index was calculated as the sum of cells in S and
G2/M phases of cell cycle [30].

RNA extraction and real-time RT-PCR

RNA was extracted by Trizol reagent (Life Technologies Ltd, Monza,
Italy); a DNase I treatment step was included. One microgram of total
RNAwas reverse transcribed in afinal volume of 20 μl reverse transcrip-
tion (RT) by using a Super-Script First-Strand Synthesis kit for RT-PCR
(Life Technologies Ltd) according to the manufacturer's instructions.
The resulting cDNAs were used for quantitative analysis by real-time
PCR (qPCR) using the primers (Proligo, Milan, Italy) reported in Supple-
mentary Table 2 and the Power SYBR Green PCR Master Mix (Applied
Biosystem,Warrington, UK). Reactionswere performed in 48-well plates
according to manufacturer's instructions, using Applied Biosystems
StepOneTM instrument. Each reaction mixture contained 2 μl of tem-
plate cDNA, 12.5 μl of SYBR Green PCRMaster Mix 2X, a final concentra-
tion of 300 nMof forward and reverse primers and RNase-free dH2O to a
final volume of 25 μl. qPCRs were performed in triplicate and repeated
for confirmation. PCR cycling was performed as follows: 95 °C for
10 min, 95 °C for 30 s, 60 °C for 60 s, 72 °C for 30 s for 40 cycles and a
final extension at 72 °C for 5 min. To determine primer specificity,
three stages (95 °C for 15 s, 60 °C for 20 s and 95 °C for 15 s, with a
ramping time of 20 min) were added at the end of the PCR to obtain
dissociation curves for each gene. To verify that the RT-PCR signals
derived from RNA rather than genomic DNA, for each gene tested a
control identical to the test assay but omitting the RT reaction (no RT
control) was included. qPCR data were analyzed by SDS 2.1 software.
Relative transcript levels were determined using the 2−ΔΔCt method
and normalized to endogenous β-actin control.
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Western blot analysis

Cells were washed in PBS and incubated on ice-cold lysis buffer
(RIPA buffer 50 μl/106 cells) containing protease inhibitor cocktail
(Sigma-Aldrich) for 30 min and sonicated three times for 10 s.
Equivalent amounts of proteins (40 μg) were separated by SDS–
polyacrylamide gel electrophoresis and transferred to a nitrocellu-
lose membrane (Bio-Rad) for detection with primary antibodies
and the appropriate horseradish peroxidase–conjugated secondary
antibodies. Immunoreactive signals were detected using enhanced
chemiluminescence (ECL) reagents (Bio-Rad). The correct protein
loading was confirmed by stripping the immunoblot and reprobing
with primary antibody for actin (diluted 1:500; Sigma). Bands were
visualized and photographed with Chemi Doc XRS (Bio-Rad). Quan-
tification was performed using Quantity One software, and the data
(relative density normalized to actin) were expressed as mean ± SD
of four experiments. The primary antibodies are provided in Supple-
mentary Table 3.
Statistical Analysis

Data, represented as mean ± SD, were analyzed using the 2-tailed
Student t-test usingMicrosoft Excel. Differenceswere considered signif-
icant when P b 0.05.
Fig. 1. Analysis of p53 gene and protein in MG63 and 3AB-OS cells. (A) Expression of TP53 m
amplified to confirm the quality and quantity of mRNA from each cell line. (B) Methylation-sp
andmethylated (M). A sample containing DNA-freewater andmastermix solutionwas used as
as +C, was used as a positive control. (C) FISH analyses of the TP53 gene (17p13) performed u
chromosome 17-centromeric probe (green fluorescent signals). Analyses were performed on
sequence analysis of the TP53 exons 4 and 7 in 3AB-OS cells. (E) Western blot analysis of both
control. Images are representative of four independent experiments. (F) Immunofluorescence a
left panel) to localize thenucleus, and anti-p53 antibody and Cy3-conjugated secondary antibod
The scale bar represents 25 μm. Images are representative of four independent experiments.
Results

p53 gene and protein status in MG63 and 3AB-OS cells

At first, we examined by RT-PCR analysis the expression of TP53
mRNA in both 3AB-OS and MG63 parental cells. We detected mRNA
transcript for TP53 in 3AB-OS cells but not in MG63 cells (Fig. 1A).
Because a low or unmeasurable level of TP53 gene expression may be
correlated with promoter hypermethylation [31–34], we also evaluated
the methylation status of the TP53 promoter by MSP in both cell lines.
As it can be seen in Fig. 1B, in 3AB-OS cells, the promoter was found
unmethylated, while MG63 cells showed an aberrant TP53 promoter
methylation status.

To determine the chromosome 17 (chr17) and TP53 copy numbers,
MG63 and 3AB-OS cells were hybridized using a dual-color direct
labelled probe specific for chr17 α-satellite and for TP53 gene region.
We have analyzed interphase (INT) andmetaphase (MET) nuclei show-
ing (Fig. 1C) that both cell lines exhibit alterations of chr17 and TP53
gene; MG63 cells show chr17 trisomy and one TP53 signal which did
not colocalize with chr17, whereas 3AB-OS cells show chr17 tetrasomy
with three and four TP53 signals, someofwhich colocalizingwith chr17.

We also sequenced the coding exons 1–11 of TP53 gene in both 3AB-
OS and MG63 cells. As shown in Fig. 1D, 3AB-OS cells evidenced alter-
ations in the exons 4 and 7. More precisely, codon 72 CCC was altered
into CGC in the sequence orientation (p53Ex4s), and from GGG into
RNA detected by reverse transcriptase polymerase chain reaction (RT-PCR). GAPDH was
ecific PCR of TP53. Primer sets used for amplification are designated as unmethylated (U)
negative control (NC); a methylated and bisulfite converted human control DNA, designed
sing a p53-specific DNA probe (red fluorescent signals), simultaneously hybridized with a
interphase (INT) and metaphase (MET) nuclei. The scale bar represents 5 μm (D) DNA
p53 and its phosphorylated (p) and acetylated (ac) forms. Actin was used as the internal
nalysis of p53 in 3AB-OS cells, by double staining cells with both Hoechst 33342 dye (blue,
y (red,middle panel) to localize p53. In the right panel, themerge of the two dyes is shown.



203R. Di Fiore et al. / Bone 60 (2014) 198–212
GCG on the reverse strand (p53Ex4r). This transversion produced an
amino acid substitution of arginine for proline (P72R), a common poly-
morphism of TP53 gene. Fig. 1D also shows that codon 248 CGG was
altered into TGG in the sequence orientation (p53Ex7s), and from GCC
into ACC on the reverse strand (p53Ex7r). This transition produced an
amino acid substitution of tryptophan for arginine (R248W) that affects
p53 DNA binding ability. Since sequencing reactions of both strands
confirmed the presence of only the altered nucleotide, we noticed that
the mutations were indeed homozygously present in 3AB-OS cells.
No alterations were detectable in the exons of MG63 cells (data not
shown).

Given the results obtained above, we have examined the expression
of mutp53 (p53-R248W/P72R) by western blot analysis. As shown in
Fig. 1E, the protein was detected in 3AB-OS cells while it was not
found inMG63 cells.Wehave also analyzed the post-translational phos-
phorylation and acetylation status of the protein. As shown in Fig. 1E,
the p53-R248W/P72R protein resulted phosphorylated at Ser15 and
acetylated at Lys320 and Lys373-382; furthermore, immunofluores-
cence analysis (Fig. 1F) evidenced that in 3AB-OS cells, it exhibited a nu-
clear localization. Overall, these results demonstrated that in 3AB-OS
cells, TP53 gene is mutated and that p53-R248W/P72R is stabilized
and has nuclear localization.

Study of gain of function of p53-R248W/P72R in 3AB-OS cells

Aimed at evaluating whether, in 3AB-OS cells, p53-R248W/P72R
has acquired GOF activities (enhanced cell proliferation, invasiveness
and resistance to apoptosis), we have depleted the protein by small-
interfering RNA (siRNA). To this purpose, 3AB-OS cells were transfected
with p53-siRNA or a scrambled siRNA (Scr-siRNA). Then, first, we
checked the effects of the p53-targeting siRNA on the level of endoge-
nous protein. At 24–72 h after transfection, the content of the protein
was assessed by western blot (Fig. 2A) and immunofluorescence
(Fig. 2B) analyses. Both the analyses showed that after 24–72 h of
p53-siRNA transfection, p53-R248W/P72R level potently lowered. The
effects were observed at 24 h after transfection and peaked at 48 h
when more than 70% reduction in the content of the protein was ob-
served. Thereafter, p53-R248W/P72R levels markedly went up, so that
at 72 h after transfection, we only observed a 22% reduction in its
level. This suggested that, at that time, the transient silencing was in
rapid recovery. Overall, the results suggested that the optimal silencing
efficiency was reached at 48 h after transfection. The knockdown of
the protein was specific as no protein reduction was observed in cells
transfected with Scr-siRNA.

p53-R248W/P72R-knockdown inhibits 3AB-OS cell proliferation

To evaluate whether p53-R248W/P72R-knockdown modified the
growth of 3AB-OS cells, untransfected cells and cells transfected with
Scr-siRNA or with p53 siRNA were microscopically observed and
analysed (0–72 h) for cell number, percentage of cells in the S-phase
of cell cycle (EdU incorporation) and percentage of viability. In Fig. 3A,
the image obtained by phase contrast microscopy shows that upon
knockdown of p53-R248W/P72R, in comparison to untransfected or
Scr-siRNA-transfected cells, cell number lowered. The results were
in accordance with the trend of the p53-R248W/P72R protein level ob-
served after p53siRNA transfection. Fig. 3B also shows that p53-R248W/
P72R depletion reduced the growth rate and the replication rate of 3AB-
OS cells, whereas it did not induce loss of cell viability. Also, the speed of
cell growth and replication reflected the trend of p53-R248W/P72R-
knockdown. There was no statistically significant difference between
untransfected cells and cells transfected with Scr-siRNA. These results
well agreed with microscopy analysis. Next, we examined the expres-
sion of a number of cell cycle-related proteins and genes at 48 h post-
transfection. In Fig. 3C, western blot and real-time PCR analyses showed
that the p53-R248W/P72R-knockdownmarkedly increased the levels of
pRb, p130, p107, E2F1, E2F4, GADD45, p21 and p27, whereas it potently
decreased CDK4 levels. No alteration in the expression of cyclins and
other CDKs was observed (data not shown).

p53-R248W/P72R-knockdown reduces resistance to TRAIL-induced
apoptosis and regulates Bcl-2 family members and mitochondrial
membrane potential

We have previously demonstrated that 3AB-OS cells express low
levels of the death receptors FAS and DR4 [14] and show strong resis-
tance to TRAIL (TNF-related apoptosis inducing ligand) (effects evaluat-
ed using TRAIL concentrations up to 100 ng/ml, unpublished data).
Here, we evaluated whether the p53-R248W/P72R-knockdown mod-
ifies the expression levels of DR4 (TRAIL-R1), KILLER/DR5 (TRAIL-R2)
and FAS/CD95 at 48 h post-transfection. In Fig. 4A, western blot analy-
ses show that p53-R248W/P72R depletion significantly increased
protein expression levels of DR4 and DR5, whereas it did not change
FAS level. Thus, to evaluate TRAIL sensitivity, untransfected cells and
cells transfected for 24 h with Scr-siRNA or p53-siRNA were treated
with TRAIL (40 ng/ml) for 36 h. In Fig. 4B, phase contrast microscopy
shows that TRAIL markedly reduced cell number also inducing apopto-
sis in p53-silenced cells, as suggested by the presence of round-shaped
cells floating in the medium, membrane blebbing and apoptotic body
formation. As chromatin condensation and nuclear fragmentation re-
main the hallmarks of apoptotic cells, apoptosis was assessed by stain-
ing nucleic acid with Hoechst 33342. As shown Fig. 4B, in p53-siRNA-
transfected cells, TRAIL induced typical apoptotic nuclei, exhibiting
highly fluorescent condensed and fragmented chromatin. Apoptosis
was also studied by flow cytometry of either DNA content or annexin
V labelling. Fig. 4C shows that treatment with TRAIL resulted in 29% of
cells accumulation in sub-G0–G1 phase with a 20% of early apoptotic
cells (annexin V+/PI−) in p53-siRNA-transfected cells. The effects
of TRAIL were also evidenced in both untransfected and Scr-siRNA-
transfected cells, but these effects were much less pronounced than in
p53-siRNA-transfected cells. Collectively, these results demonstrate
that p53-R248W/P72R-knockdown sensitizes 3AB-OS cells to TRAIL-
induced apoptosis. We also investigated by cytofluorimetric analysis
if p53-R248W/P72R can attenuate mitochondrial apoptosis signal-
ling pathways. DiOC6 staining revealed that the p53-R248W/P72R-
knockdown induced a significant decrease in fluorochrome uptake,
indicating a loss of Δψm (Fig. 4D). To further dissect the molecules in-
volved in the mechanism, we investigated whether the p53-R248W/
P72R-knockdown modifies the expression levels of both anti-apoptotic
(Bcl-2 and Bcl-XL) and pro-apoptotic (Bax and Puma) factors. In
Figs. 4E and 4F, real-time PCR and western blot analyses showed that
the p53-R248W/P72R-knockdown significantly decreased Bcl-2 and
Bcl-XL levels while it increased Bax and Puma levels. These results well
agreed with those obtained by cytofluorimetric analysis.

p53-R248W/P72R shows the gain-of-function properties involved in
promotion of cell invasiveness

To evaluatewhether p53-R248W/P72R-knockdown influences 3AB-
OS cells invasiveness, we performedMatrigel invasion transwell assays.
As shown in Fig. 5A, p53-siRNA transfection potently decreased (−80%)
the invasive capability of 3AB-OS cells, whereas no statistically sig-
nificant difference was observed in untransfected and Scr-siRNA-
transfected cells. We also examined the expression of a number of
cell invasion-related genes and proteins at 48 h post-transfection. In
Figs. 5B and 5C, real-time PCR and western blot analyses showed that
p53-R248W/P72R-knockdown significantly decreased the levels of
the invasive proteins matrix metalloproteinases 2 and 9 (MMP2 and
MMP9), integrin alfa5 (ITGα5) and integrin alfaV (ITGαV) while it
increased the levels of the cell adhesion protein E-Cadherin, without
altering the expression of proteins involved inmesenchymal phenotype
(N-cadherin, β-catenin and vimentin).



Fig. 2.Evaluation of knockdown efficiency of p53-R248W/P72R. 3AB-OS cellswere transfectedwith scrambled siRNA (Scr-siRNA) or p53-siRNAand analyzed at 24–72 h after transfection.
(A) Western blot analysis of p53-R248W/P72R and densitometric analysis of protein bands. Data (relative density normalized to actin) represent the mean with standard deviation
(n = 4); *P b 0.05 and **P b 0.01 as compared to Scr-siRNA-transfected cells. (B) Immunofluorescence analysis by double staining cells with both Hoechst33342 dye (blue) to localize
the nucleus and anti-p53 antibody and Cy3-conjugated secondary antibody (red) to localize p53. The scale bar represents 25 μm. Images are representative of four independent
experiments.
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Fig. 3. Effect of p53-R248W/P72R-knockdown on growth advantage of 3AB-OS cells. (A) Inverted phase contrast microscopy at 0–72 h after transfection. The scale bar represents 100 μm.
Images are representative of four independent experiments. (B) Analysis of total cell number (a), percentage of cells in the S-phase of cell cycle (b) by EdU incorporation and percentage of
cell viability (c). The data represent themeanwith standard deviation (n = 4); *P b 0.05 and **P b 0.01 as compared to Scr-siRNA-transfected cells. (C) Analyses of cell-cycle regulators at
48 h after silencing.Western blot analysis (a) and quantification of protein bands by densitometric analysis (b) and real-time PCR (c). Data (relative density normalized to actin) represent
the mean with standard deviation (n = 4); *P b 0.05 as compared to Scr-siRNA-transfected cells. Data represent the mean with standard deviation (n = 4); *P b 0.05 and #P b 0.005 as
compared to Scr-siRNA-transfected cells.
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p53-R248W/P72R-knockdown affects the expression of stem-cell markers

Previously, we have shown that 3AB-OS cells express a large number
of genes required for maintaining stemness [11] and that theymorpho-
logically and functionally transdifferentiate in vitro into cells of all
three primary germ layers (ectoderm, endoderm and mesoderm) [12].
We also demonstrated that stemness markers were profoundly down-
regulated in differentiated cells. Here we have shown (Fig. 6A) that
undifferentiated 3AB-OS cells strongly expressed p53-R248W/P72R
while it profoundly lowered in derived cell lineages.We also investigated
whether p53-R248W/P72R-knockdown affected the expression of the
most important stemness markers (Oct3/4, Nanog, Sox2, nucleostemin
(NS) and CD133) that exhibited very high levels in untransfected 3AB-
OS cells. In Figs. 6B and 6C, western blot and real-time PCR analyses
showed that p53-R248W/P72R-knockdown potently decreased the
levels of all the analysed pluripotency markers.



Fig. 4. Effect of p53-R248W/P72R-knockdown on: DR4, DR5 and FAS receptors, TRAIL-induced apoptosis, mitochondrial membrane potential and Bcl-2 family members. (A)Western blot
analysis of DR4, DR5 and FAS receptors at 48 h after transfection and quantification of protein bands by densitometric analysis. Data (relative density normalized to actin) represent the
mean with standard deviation (n = 4); #P b 0.005 as compared to Scr-siRNA-transfected cells. (B) Analysis of TRAIL-induced apoptosis by inverted phase contrast microscopy (upper
panels) and fluorescence microscopy (Hoechst 33342 staining, bottom panels). The scale bar represents 25 μm. Images are representative of four independent experiments. (C) Percent-
ages of cells in sub-G0–G1 phase (a) evaluated by flow cytometric analysis of propidium iodide DNA staining, and percentages of early apoptotic cells (b) measured by flow cytometric
analysis of annexin V labelling after TRAIL treatment (1, untransfected cells; 2, cells transfected with Scr-siRNA; 3, cells transfected with p53-siRNA). The data represent the mean with
standard deviation (n = 4). *P b 0.05 and **P b 0.01 as compared to untreated cells. (D) Citofluorimetric analysis by DiOC6 staining of mitochondrial membrane potential (Δψm). The
decrease of fluorescence intensity indicates loss of Δψm. (E) Real-time PCR analysis of Bcl-2 family mRNAs at 48 h after transfection. Data represent the mean with standard deviation
(n = 4); #P b 0.005 as compared to Scr-siRNA-transfected cells. (F) Western blot analysis of Bcl-2 family proteins at 48 h after transfection and quantification of protein bands by
densitometric analysis. Data (relative density normalized to actin) represent the mean with standard deviation (n = 4); *P b 0.05 as compared to Scr-siRNA-transfected cells.
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Ectopic expression of p53-R248W/P72R promotes cancer stem-like
properties in osteosarcoma MG63 cells

The above-described findings suggest that the GOF property of
p53-R248W/P72R could be at the root of 3AB-OS stemness. To evaluate
such a hypothesis, first—as reported in materials and methods—we
produced a pcDNA3.1-vector containing p53-R248W/P72R; then, we
stably transfected MG63 cells with either empty pcDNA3.1 vector or
pcDNA3.1-p53-R248W/P72R. MG63 cells transfected with pcDNA3.1-
p53-R248W/P72R were designated R248W/P72R cells, while MG63
cells transfected with empty pcDNA3.1 vector were designated vector
cells. Selected cells were then used to evaluate p53-R248W/P72R pro-
tein expression and localization. Western blot analysis (Fig. 7A) shows
that, as expected, p53 protein was not detectable in vector cells, while
it was expressed in R248W/P72R cells; in addition, flow cytometry anal-
ysis (Fig. 7B) shows a strong positivity for p53 (N75%) in R248W/P72R
cells. Immunofluorescence analysis shows the nuclear localization of
p53 protein in R248W/P72R cells (Fig. 7C).

Thereafter, we evaluated in vitrowhether p53-R248W/P72R expres-
sion in MG63 cells promotes cancer stem-like features, as high prolifer-
ation rate, sphere formation, clonogenic growth, high migration and
invasive ability [35]. Initially, we compared the growth curves of
R248W/P72R cells and vector cells. As shown in Fig. 7D, with respect
to vector cells, R248W/P72R cells possess a higher proliferative output,
exhibiting a doubling time of approximately 25 h, whereas vector
cells show a doubling time of 33 h. This was confirmed by DNA content
profiles—revealed byflowcytometry analysis of propidium iodide stained
cells—showing that R248W/P72R cells weremostly in the S-G2\M phase,
while vector cells were predominantly in G0\G1 (Fig. 7E).

It has been reported that cancer stem-like cells can be cultured in
suspension to generate floating spheroid-like bodies under serum-free
medium with bFGF and EGF [36]. Thus, we tested sarcosphere-
forming ability of R248W/P72R cells compared to vector cells. Fig. 7F
shows that both vector and R248W/P72R cells were capable of forming
sarcospheres. In particular, after 5 days in culture, vector cells formed
sarcospheres having a mean diameter of 60.2 ± 5.7 μm, at a frequency
of approximately 1/54 (9.3 ± 1.5 spheres/500 cells),while R248W/P72R
cells formed larger sarcospheres (mean diameter of 68.7 ± 7.6 μm) at a
frequency of approximately 1/42 (12 ± 2.0 spheres/500 cells). After
10 days, R248W/P72R sarcospheres increased in size and number,
having a mean diameter of 110 ± 23 μm and containing about 576
cells/sphere. Even vector sarcospheres increased in size and number,



Fig. 5. Effect of p53-R248W/P72R-knockdown on invasive properties of 3AB-OS cells. (A) In vitro invasive capacity of untransfected cells and cells transfectedwith Scr-siRNA or p53-siRNA
through the Matrigel-transwell membranes after 48 h of incubation. Data represent the mean of the percentage of the number of cells relative to untransfected cells with standard devi-
ation (n = 4; *P b 0.05). (B) Real-time PCR analysis of both cell invasion and epithelial-mesenchymal-transition-related genes at 48 h after transfection. Data are themeanwith standard
deviation (n = 4); *P b 0.05 and #P b 0.005 as compared to Scr-siRNA-transfected cells. (C) Western blot analysis of both cell invasion and epithelial-mesenchymal-transition-related
proteins at 48 h after transfection; quantification of protein bands by densitometric analysis. Data (relative density normalized to actin) represent the mean with standard deviation
(n = 4); *P b 0.05 and #P b 0.005 as compared to Scr-siRNA-transfected cells.
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but they were fewer in number and much smaller (mean diameter of
74.9 ± 18.2 μm, containing about 214 cells/sphere). On analyzing
sarcosphere-forming ability through subsequent passages (2° and 3°
spheres), we found (Fig. 7G) that the number of sarcospheres generated
from vector and R248W/P72R cells in each passage remained consistent;
however, R248W/P72R cells formed ~2-fold sarcospheres than vector
cells, demonstrating their higher in vitro self-renewing potential. In addi-
tion, in a colony-forming assay that correlates with self renewal [37],
R248W/P72R cells formedmore numerous and larger colonies than vec-
tor cells (Fig. 7H).

We also examined the motility and invasivity of the cells in scratch/
wound healing and in Matrigel transwell invasion assays, respectively.
Comparedwith vector cells, R248W/P72R cells showed highermigratory
(Figs. 8A and 8B) and invasive (Figs. 8C and 8D) activity. These data
suggest that p53-R248W/P72R expression can significantly promote
the migratory and invasive function of MG63 cells.

To further determine whether R248W/P72R cells could express
putative cancer stem cell markers, we chose to analyze by flow cytom-
etry the expression profile of two representative stem cell surface
markers of OS, CD133 and ABCG2 [11,35]. As shown in Fig. 8E, the cell
surface expression of CD133 and ABCG2 was very low in both vector
(0.7% and 1.5%, respectively) and R248W/P72R (0.9% and 4.3%, respec-
tively) cells. However, when we analyzed the CD133 and ABCG2 intra-
cellular staining, we found a much higher intracellular positivity in
both vector and R248W/P72R cells. In particular, as shown in Fig. 8F,
R248W/P72R cells express a much higher percentage of CD133-
ABCG2-positivity (24.5% and 88.3%, respectively) than vector cells
(8.3% and 63.1%, respectively). In addition, western blot analyses for
CD133 and ABCG2 show an up-regulation of both markers in R248W/
P72R cells, with an increase of 1.38-fold for CD133 and of 1.25-fold for
ABCG2 with respect to vector cells (Fig. 8G). Furthermore, we investi-
gated, bywestern blot analyses, the proteins regulating andmaintaining
the stem cell phenotype, as Nanog, OCT3/4, nucleostemin (NS) and
Sox2. Interestingly, with respect to vector cells, Nanog, OCT3/4 and NS
were found to significantly increase in R248W/P72R cells, with an
increase of 1.56-fold, 1.22-fold and 1.37-fold for Nanog, OCT3/4 and
NS, respectively (Fig. 8G). No significant change was observed in Sox2
level.

In the reported experiments, statistically significant difference was
not observed in untransfected and vector cells.

Discussion

TP53 mutations occur in almost every type of cancer at rates varying
between 10% in hematopoietic malignancies [38] and 98% in high-grade
serous carcinomaof the ovary [39]. Unlike themajority of tumor suppres-
sor genes, which are inactivated by deletions or truncated mutations,
TP53 mostly undergoes missense mutations [40]. These alterations
produce a full-length mutp53 with a single amino acid substitution that
loses its ability to bind DNA [41], induce apoptosis, inhibit growth and
suppress transformation [42]. Mutp53 is stable, its accumulation is
regarded as a hallmark of cancer [43], and in most cases it not only
loses its tumor-suppressive activities but also gains oncogenic functions
[44]. In OS patients, alterations of TP53 occurs in 50%–60% of cases and
consist of point mutations (20%–30%, mostly missense mutations),
gross gene rearrangements (10%–20%) and allelic loss (75%–80%) [1],
with its mutation status serving as a valuable indicator for predicting
chemoresistance [45]. Accordingly, patients with Li-Fraumeni syndrome,
a disorder characterized by a germline mutation at the p53 locus, have a
significantly higher risk of developing OS [46].

In this study, we investigated the TP53 gene status/role of human
3AB-OS CSCs compared with parental MG63 cells. We demonstrated
that in MG63 cells, where TP53 is not expressed and in single copy
[47], the gene does not colocalize on chromosome 17 and is endowed
with a methylated promoter. Instead, 3AB-OS cells strongly express a
p53 protein (p53-R248W/P72R) whose TP53 gene is rearranged and
in multiple copies characterized by P72R polymorphism and hot spot
mutation R248W. It has been reported that TP53 mutations strongly
predominate in exons 4–9 most of which fall within 6 “hotspot” resi-
dues (R175, G245, R248, R249, R273 and R282) in almost all types of



Fig. 6.Effect of p53-R248W/P72R-knockdownonvarious stem-cellmarkers in 3AB-OS cells.
(A) Western blot analysis of p53-R248W/P72R in undifferentiated (U) and differentiated
3AB-OS cells (see below the abbreviations for derived cell lineages) and quantification of
protein bands by densitometric analysis. Data (relative density normalized to actin) repre-
sent themeanwith standard deviation (n = 4); **P b 0.01 as compared to undifferentiated
cells. Abbreviations: OD, osteogenic differentiation; AD, adipogenic differentiation; HD,
hepatogenic differentiation; ND, neurogenic differentiation. (B) Western blot analysis of
stemness proteins at 48 h after transfection and quantification of protein bands by densito-
metric analysis. The data (relative density normalized to actin) represent the mean with
standard deviation (n = 4); *P b 0.05 and **P b 0.01 as compared to Scr-siRNA-transfected
cells. (C) Real-time PCR analysis of stemness genes at 48 h after transfection.Data represent
the mean with standard deviation (n = 4); *P b 0.05 and #P b 0.005 as compared to Scr-
siRNA-transfected cells.
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cancer [48]. Intriguingly, OS patients carrying TP53 hot spot mutations
(most regarding codon 248) were found to have a significantly in-
creased death risk [49].

It iswell known thatwild-typep53 is regulated by post-translational
modifications as phosphorylation at Ser15 (required for its stabilization
[50] and interaction with transcriptional co-activators) and acetylation
at Lys320, 373 and 382 (required for both its transcriptional activity
and its transcription-independent proapoptotic function [51,52]).
Although it has been observed that in UV-induced mouse skin tumors
mutp53 is phosphorylated at Ser15 and accumulated exclusively to
the nucleus [53], up to now little is known about post-translational
modifications of mutp53 in human OS cell lines or patients. Herein,
we show that in 3AB-OS cells p53-R248W/P72R is constitutively modi-
fied by both phosphorylation at Ser15 and acetylation at Lys320, 373
and 382, and it is localized to the nucleus.

Our results also demonstrated that p53-R248W/P72R-knockdown
strongly reduces the growth and replication rate of 3AB-OS cells and
concomitantly increases the expression of genes, inhibiting cell cycle
progression (pRb, p130, p107, E2F4, GADD45, p21 and p27) while low-
ering CDK4, the activator of the cell cycle progression through G1/S
phase. The findings are in accordance with alteration of genes involved
in cell cycle seen in up to 80% of pediatric/adult OS patients [54–56],
which demonstrate that genetic lesions deregulating G1/S cell cycle
checkpoint may be a constant feature in the pathogenesis of OS.

Another distinctive feature of mutp53 is its ability to confer on cells
an elevated resistance to a variety of apoptotic signals [44]. Studies
designed to investigate the prognostic significance of bax and bcl-2
expression in surgically treated OS patients demonstrate that a
high bax(+)/bcl-2(−) protein expression ratio is associated with
an unfavourable outcome in patients with primary OS, with this
coexpression pattern probably counterbalancing the accelerated prolif-
eration status of themalignant cells and indirectly characterizing amore
aggressive tumor [57]. Moreover, analyses of death receptors in OS
samples and in OS cell lines—among which MG63 cells—demonstrated
alterations only within the DR4 gene, suggesting that these genetic
alterationsmay be implicated in OS formation [58]. We have previously
shown that 3AB-OS cells highly express a great number of genes
required for inhibiting apoptosis [11] and much lower levels of FAS
and DR4 receptors than parental MG63 cells [14]. Here we show that
in 3AB-OS cells p53-R248W/P72R-knockdown potently increases the
expression of DR4 and DR5 receptors and sensitivity to TRAIL-induced
apoptosis. Since, as above reported, DR4 receptor is mutated in parental
MG63 cells, wemaintain that 3AB-OS cells can carry such amutation and
suggest that sensitivity to TRAIL-induced apoptosis in p53-R248W/
P72R-knockdown cells could arise from DR5 receptor up-regulation.
Overall, this finding, together with the observation that p53-R248W/
P72R-knockdown markedly increased the levels of the proapoptotic
factors Bax and Puma while decreased those of the antiapoptotic factors
Bcl-2 and Bcl-XL, suggests that in 3AB-OS cells p53-R248W/P72R could
hinder cell response to TRAIL-treatment.

Stemness acquisition is a key event in cancer development as it may
induce progression, invasion, dissemination and metastasis. OS is a
highly metastatic tumor with metastases being the major cause of
death, and in patients with high-grade OS, increased MMP expression
was identified as prognostic marker for poor outcome [59,60]. Herein,
we show that p53-R248W/P72R-knockdown causes a striking reduc-
tion of in vitro invasive capacity of 3AB-OS cells with a decrease of the
invasion-related gene and protein (MMP2, MMP9, ITGα5 and ITGαV)
levels and a concomitant marked increase in E-cadherin. This suggests
that the oncogenic properties of p53-R248W/P72R could also enable
3AB-OS cells to promote invasion.

Recently Sarig et al. [61] reported a novel GOF property for mutp53,
which markedly enhanced the efficiency of the reprogramming pro-
cess compared with p53 deficiency. This novel activity of mutp53 in-
duced alterations in the characteristics of the reprogrammed cells.
Indeed, although p53-knockout cells reprogrammed with Oct4 and
Sox2 maintained their pluripotent capacity in vivo, reprogrammed
cells expressing mutp53 lost this capacity and gave rise to malignant
tumors.

Since osteosarcomas contain highly proliferative malignant cells
that are largely arrested in their differentiation, OS is proposed to be a
“differentiation-flawed disease,” resulting from genetic and epigenetic
disruption of the osteoblast differentiation pathway [1]. Moreover, the
presence of OS stem-like cells has been reported in patient tumors
[62] aswell as in established humanOS cell lines [63].Wehave previous-
ly shown [11,13,14] that 3AB-OS cells highly express a large panel of
stemness-related genes/proteins and that efficiently transdifferentiate
in vitro into cells of all the three primary germ layers [12], whereas
when 3AB-OS cells were engrafted in nude mice, they potently induced
malignant tumors, although preserving multilineage commitment [13].
Here, we show that, after in vitro 3AB-OS differentiation, in each derived
cell lineage, p53-R248W/P72Rwas profoundly down-regulated and after
p53-R248W/P72R-knockdown the expression of pluripotent markers
(Oct3/4, Nanog, Sox2, nucleostemin and CD133)markedly lowered, sug-
gesting that p53-R248W/P72R might be responsible for 3AB-OS cells
pluripotency and self-renewal.



Fig. 7. Ectopic expression of p53-R248W/P72R in osteosarcomaMG63 cells and its effect on cell proliferation and sarcosphere- and colony-forming ability. (A)Western blot analysis of p53
inMG63 cells transfectedwith either pcDNA3.1-p53-R248W/P72R (R248W/P72R) or empty pcDNA3.1 vector (vector). Actinwas used as the internal control. Images are representative of
four independent experiments. (B) Cytometric analysis for p53 inR248W/P72R cells. The open histogram indicates isotype control,filled histogram, indicates the expression of p53. Images
are representative of four independent experiments. (C) Immunofluorescence analysis of p53 in R248W/P72R cells, by double staining cellswith both Hoechst 33342 dye (blue, left panel)
to localize the nucleus and anti-p53 antibody andCy2-conjugated secondary antibody (green,middle panel) to localize p53. In the right panel themerge of the twodyes is shown. The scale
bar represents 25 μm. Images are representative of four independent experiments. (D) Growth curves of vector and R248W/P72R cells. The data represent themean with standard devi-
ation (n = 4); *P b 0.05 and **P b 0.01 as compared to vector cells. (E) Cell cycle distributions in vector and R248W/P72R cells determined using flow cytometry. Results are indicated as
relative percentage of total cell cycle (*P b 0.05, as compared to vector cells). (F) Phase contrast images of primary sarcospheres formed from vector and R248W/P72R cells after 5 and
10 days of culturing. The scale bar represents 50 μm. Graphs summarizing size and number of sarcospheres from 500 cells (on days 5 and 10) and number of cells/sphere on day 10.
The data represent the mean with standard deviation (n = 4); *P b 0.05, **P b 0.01 and #P b 0.005 as compared to vector cells. (G) Graph summarizing numbers of 1°, 2° (generated
from dissociated 1° spheres) and 3° (generated from dissociated 2° spheres) sarcospheres on day 10 from 500 cells. The data represent the mean with standard deviation (n = 4);
*P b 0.05 as compared to vector cells. (H) Clonogenic growth of vector and R248W/P72R cells after 10 days of culturing. Phase contrast images (top; the scale bar represents 200 μm)
and a photograph (bottom) of 6-well plate after staining with methylene blue are shown. Graphs summarizing plate efficiency (colonies/100 cells) and relative colony size (mean area
relative to vector cells). The data represent the mean with standard deviation (n = 4); **P b 0.01 and #P b 0.005 as compared to vector cells.
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Here, we also show that the ectopic expression of p53-R248W/P72R
promotes cancer stem-like properties in osteosarcoma MG63 parental
cells. Indeed, when MG63 cells were transfected with pcDNA3.1-p53-
R248W/P72R, R248W/P72R cells showed strong positivity for p53 and
its nuclear localization. Moreover, R248W/P72R cells, with respect
to vector cells, showed a higher proliferative output, were capable of
forming 2-fold sarcospheres, formedmore numerous and larger colonies
and showed higher migratory and invasive activity. In addition, R248W/
P72R cells showed significant increase in the expression of stemness
markers.

In conclusion, the findings that in 3AB-OS cells p53-R248W/P72R-
knockdown profoundly changed the expression of genes/proteins
correlated to stemness, proliferation, apoptosis and invasiveness, and
that in MG63 parental cells, the ectopic expression of p53-R248W/



Fig. 8. Effects of ectopic expression of p53-R248W/P72R on cellmigration, invasion and expression of stemnessmarkers inMG63 cells. (A) Representative images from the scratchwound-
healing assay in MG63 cells transfected with either pcDNA3.1-p53-R248W/P72R (R248W/P72R) or empty pcDNA3.1 vector (Vector). Cells were scratched and wound margins were
imaged 0, 8 and 24 h later. The scale bar represents 100 μm. (B) Quantification of the scratch wound-healing assay is shown. The extent of wound closure was quantified by measuring
thewound area compared to the initial wound area. The data represent themeanwith standard deviation (n = 4); *P b 0.05 as compared to vector cells. (C) Representative images from
the transwell invasion assays in vector and R248W/P72R cells. After 48 h of incubation, cells migrated to the underside of the insert were stained with Hoechst 33342. The scale bar
represents 50 μm. (D) Data are the mean of the percentage of the number of cells relative to vector cells with standard deviation (n = 4; *P b 0.05). (E) Cytometric analyses showing
cell surface expression of CD133 (left panels) and ABCG2 (right panels) in vector and R248W/P72R cells. The open histograms indicate isotype control; filled histograms indicate the
expression of CD133 and ABCG2. (F) Cytometric analyses showing intracellular expression of CD133 (left panels) and ABCG2 (right panels) in vector and R248W/P72R cells. The open
histograms indicate isotype control; filled histograms indicate the expression of CD133 and ABCG2. (G) Western blot analysis of stemness proteins and quantification of protein bands
by densitometric analysis. The data (relative density normalized to actin) represent the mean with standard deviation (n = 4); *P b 0.05 and **P b 0.01 as compared to vector cells.
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P72R promoted cancer stem-like properties, suggest that the GOF prop-
erty of p53-R248W/P72R can be at the root of the dedifferentiation
of MG63 cells into 3AB-OS CSCs. We believe that 3AB-OS cells could
provide a best-fit to understand p53-R248W/P72R properties and its
potential involvement in osteosarcomagenesis.
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