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Introduction 
 

 

Autoimmune diseases are a family of more than 80 chronic, and often disabling, 

illnesses that develop when underlying defects in the immune system lead the body to 

attack its own organs, tissues, and cells. 

Diagnosing autoimmune diseases can be particularly difficult because these 

disorders can affect any organ or tissue in the body, and produce highly diverse 

clinical manifestations, depending on the site of autoimmune attack. Moreover, disease 

symptoms are often not apparent until the disease has reached a relatively advanced 

stage. 

Laboratory’s techniques able to point out and confirm diagnosis of autoimmune 

pathologies are based on research and identification of autoantibodies, revealed by the 

presence of specific antigen- antibody complexes. Particularly, identification of 

antinuclear antibodies (ANA) through indirect immunofluorescence (IIF) method is an 

important part of clinical medicine and clinical immunology. The classification is 

based on fluorescence intensity and pattern recognition. Although the IIF techniques 

have increased progressively since immunofluorescence techniques were first used to 

demonstrate antinuclear antibodies in 1957, there are still various disadvantages in 

these techniques, among them the lack of an automatic procedures which could make 

easier, faster and more reliable the tests execution and lower costs. 

These observation suggested to develop an automated method to support the IIF 

diagnosis, expecting advantages also in the reduction of false negative and false 

positive results. 
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Developing an automated procedure for diagnosis of autoimmune diseases, 

generally authors focus their attention on cells detection, fluorescence intensity 

determination or staining pattern classification. Since the presence of antibodies 

against antigens in different location determines different patterns of fluorescence, we 

chosen to deal with the IIF pattern recognition because different patterns correspond to 

different diseases, so it is really important to be able to distinguish among different 

pattern. In the literature, the principal staining patterns are classified into one of the 

following groups: 

� homogeneous: diffuse staining of the interphase nuclei and staining of the 

chromatin of mitotic cells; 

� speckled: a fine or coarse granular nuclear staining of the interphase cell 

nuclei; 

� nucleolar: large coarse speckled staining within the nucleus, less than six in 

number per cell; 

� cytoplasmic: fine fluorescent fibres running the length of the cell; it is 

frequently associated with other autoantibodies to give a mixed pattern; 

� centromere: several discrete speckles distributed throughout the interphase 

nuclei and characteristically found in the condensed nuclear chromatin during 

mitosis as a bar of closely associated speckles. 

 

Among this pattern, the centromere pattern has been only partially investigated 

because, according to the literature, it does not show well-defined cell edges and the 

high variability of fluorescence intensity inside the centromere cells makes a difficult 

task the application of segmentation procedures. Nevertheless, it is known that a 

centromere cell contains small bright dots inside a weakly fluorescent nucleus, so an 

expertise may recognize a centromere pattern by only counting the fluorescent 

centromeres. 

For these reasons, since a CAD systems should reproduce the human eye response, 

we propose here a method to automatically classify the centromere pattern based on 

the grouping of centromeres present on the cells through a clustering algorithm. 
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In this respect, the first chapter is dedicated to the description of automatic 

systems for supporting in early diagnosis, to the description of the autoimmune 

diseases and to the state of the art regarding the method of classifications. 

In the second chapter it is described the project A.I.D.A. inside which this thesis is 

inserted and the database used to test the algorithm; the characteristics of the algorithm 

are described too, with a paragraph dedicated to clustering algorithm. In the second 

chapter there is also a paragraph dedicated to the description of the figures of merit 

used to verify the properties of the algorithm and a paragraph dedicated to the 

description of a public database also used for testing the proposed method. 

The third chapter is dedicated to the description of the various phases of 

developing of the algorithm and to the presentation and discussion of the experimental 

results. 
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Chapter 1 
 

 

1.1 The expert systems  
 

Studies indicate that, in medical imaging, the radiologists often do not detect all 

abnormalities on images that are visible on retrospective review, and they do not 

always correctly characterize abnormalities that are found. 

Techniques developed in computer vision and automated pattern recognition can 

be applied to assist radiologists in reading images: the computer manipulates a digital 

image bringing the suspicious regions to the attention of radiologists. So, radiologists 

can use the computer as a second opinion, or as a pointer to suspicious regions. This 

may increase the accuracy of screening programs, and it may avoid the need of double 

reading [1]. 

Although early attempts at computerized analysis of medical images were made in 

the 1960s, serious and systematic investigation on Computer – Aided Device or 

Computer- Aided Detection (CAD) systems began in the 1980s with a fundamental 

change in the concept for utilization of the computer output, from automated computer 

diagnosis to computer-aided diagnosis.  

A CAD system allows to reduce the noise in the image, to improve the contrast 

among a region of interest (ROI) and background and to extract and select the 

characteristics of the ROI and progress to a correct classification. To determine if an 

area on an image looks suspicious, a CAD system divides the problem into various 

components [2]: a general scheme of a CAD system is shown in Figure 1.1.
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Figure 1.1: Example of CAD system 

 

The goal of preprocessing is removing differences between data from different 

sources or obtained with different protocols. Scanned images need to be calibrated, 

data may have to be resampled to a fixed resolution, and many techniques can be 

applied to enhance the image [2] ─ [6]. Removing blurring and noise, increasing 

contrast, and revealing details are examples of enhancement operations. The 

enhancement techniques differ from one field to another according to their objective. 

The existing techniques of image enhancement can be classified into two categories: 

Spatial Domain and Frequency Domain enhancement. In Spatial Domain techniques, 

like the logarithmic transforms, power law transforms, histogram equalization, pixel 

values are manipulated to achieve desired enhancement. In Frequency Domain 

methods, the Fourier Transform of the image is first computed. All the enhancement 

operations are performed on the Fourier transform of the image and then the Inverse 

Fourier transform is performed to get the resultant image [7]-[9]. 

The second step of a CAD system is segmentation, i.e. the division of an image I 

in SI not-overlapped regions, each of them being homogeneous and uniform compared 

to some features. An incomplete segmentation can make CAD systems lost 

information in the unsegmented areas. Segmentation of nontrivial images is one of the 

most difficult tasks in image processing and segmentation accuracy determines the 

eventual success or failure of the overall computerized analysis procedures [2]. 

Segmentation techniques developed during this years are numerous and very 

different among them. Basically, the segmentation is divided in two categories: 

region-based segmentation and edge-based segmentation [10]-[13]. 

The region-based techniques produce coherent regions. All pixels in a coherent 

region are supposed similar with respect to some characteristic or computed property, 

such as colour, intensity, or texture. Adjacent regions are supposed significantly 

different with respect to the same characteristics. For grey-level images, the most basic 
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attribute used is the luminance amplitude (grey level), so it is possible to separate 

luminous regions from background performing a thresholding operation. In this way, 

any pixel (x, y) is selected as a part of foreground if its intensity is higher than or equal 

to a threshold value, i.e. f(x, y) ≥T, else pixels points to background.  

The problems in thresholding are the correct determination of a threshold (usually, 

a method used to select T is by observing histograms of particular image considered 

for segmentation) and that pixels with analogous grey level may not be adjacent.  

Another region-based method is region growing [14]: suppose that we start with a 

single pixel p and we wish to expand from that seed pixel to fill a coherent region. We 

can define a similarity measure S(i, j) such that it produces a high result if pixels i and 

j are similar and a low one otherwise. First, consider a pixel q adjacent to the pixel p. 

We can add pixel q to pixel p’s region if S(p, q) > T for some threshold T. We can then 

proceed to the other neighbours of p and do likewise. Suppose that S(p, q) > T and we 

added pixel q to pixel p’s region. We can now similarly consider the neighbours of q 

and add them likewise if they are similar enough.  

The edge-based segmentation techniques are based on searching pixels that 

constitute the contour of the objects, individualized in correspondence of discontinuity 

in grey level; pixels of contour are joined to form a closed line delimiting a region. 

Pixels not included will be considered belonging to background. 

Other segmentation techniques use fractal models [15] ─ [17], or wavelet 

transforms [18], [19]. 

After the segmentation, a number of regions of interest (ROI) are identified that 

merit further attention by radiologists. For every ROI it is possible to define a set of 

characteristics, called features, used to classify the regions. 

The features extraction is a crucial step in a CAD system because now each ROI 

is represented by a vector, a row of numbers, one for each feature. The feature vector 

can be represented geometrically by a point in a feature space. This feature space has a 

dimension that is identical to the number of features [2].  

Features are extracted from the first-order grey-level histogram, defined as the 

distribution of the probability of occurrence of a grey-level in the image, and from the 

second-order histogram, H(yq, yr, d), which represents the distribution of probability of 



Chapter 1                1.1 The expert systems 

 8 

occurrence of a pair of grey level values separated by a given displacement vector d 

[3], [4]. 

If P(b) is the probability of occurrence of a certain grey level b, it is possible to 

define the following list of features: 

 

Mean     ∑
b=0

L−1

bP (b)  

Standard Deviation  √∑
b=0

L−1

(b−b)2 P (b)  

Skewness   
∑
b=0

L−1

(b−b)3 P (b )

σ
3

 

Kurtosis   
∑
b=0

L−1

(b−b)4 P (b)

σ
4

 

Energy   ∑
b=0

L−1

P (b)2  

Entropy   −∑
b=0

L−1

P (b ) log2 P (b )  

 

If P(a, b) is the joint probability of occurrence of a pixel a near a pixel b it is 

possible to define the following list of features: 

 

Autocorrelation  ∑
a=0

L−1

∑
b=0

L−1

abP (a,b)  

Covariance   ∑
a=0

L−1

∑
b=0

L−1

(a−a )(b−b)P (a,b )  

Inertia    ∑
a=0

L−1

∑
b=0

L−1

(a−b )2 P( a,b)  

Absolute value  ∑
a=0

L−1

∑
b=0

L−1

∣a−b∣P( a,b)  

Inverse Difference  ∑
a=0

L−1

∑
b=0

L−1
P (a,b )

1+( a−b )2
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Co-Energy   ∑
a=0

L−1

∑
b=0

L−1

P( a,b)2  

Co-Entropy   −∑
a=0

L−1

∑
b=0

L−1

P (a,b ) log2 P (a,b )  

 

After the segmentation and the features extraction phases, the problem of 

identifying regions in feature space is solved by classification phase. There is no 

single best technique for classification: neural networks, support vector machines and 

Bayesian techniques are all mathematical models that may or may not work well 

depending on the task at hand. CAD researchers therefore always experiment with 

several classifiers [2], [20]. 

Neural networks ([21] ─ [26]), for example, reproduce biological neurons (Figure 

1.2) which represent the elementary unity of a nervous biological system. Neurons are 

organized in structures in which they can cooperate for resolving complex problems. 

 

 

Figure 1.2: Schematic of biological neuron 
 

The dendrites receive the electric impulses from the others neurons through 

biochemists processes. According to the chemical nature of the synapses, every 

junction can amplify or reduce the transmitted signal. If the sum of all the electric 

signals in input overcomes a threshold, the neuron transmits the signal to the other 

connected neurons through the going out (axon) fibre. After the activation, the neuron 

has a dead time during which it doesn't receive and it doesn't transmit signals. 

First mathematic definition of artificial neuron was made in 1943 by McCulloch e 

Pitt [27]. Input signals at time t, x1(t), x2(t),…xn(t), coming from other neurons are 
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supposed to be binary and transmitted through synapses to the cell body. Biological 

effect of synapses is mathematically realized by different weights given to input 

signals. Neuron input a(t) is the sum of all input signals conveniently weighted: 

 

a ( t )=w1 x1( t )+w 2 x 2( t )+.. . ..wn x n( t )    (1.1.1) 
 

A step function f(a) set the output o(t+1) at 0 (inactive neuron) or at 1 (active 

neuron), if a(t) overcomes or not the threshold (Figure 1.3). 

 

Figure 1.3: Schematic of artificial neuron 
 

 

The output signal, according to McCulloch e Pitt, is: 

o( t+1)=f (∑i=1

n

wi x i( t ))     (1.1.2) 

 

The simplest neural network has a unidirectional connection forward and only one 

layer of artificial neuron, and the outputs are the same number of the inputs.  

In solving more complex problems it is possible to increase the neurons layers, so 

the first layer pre-process the input and the following layers, called hidden layers, are 

capable of extracting higher order statistics, discriminating the signal (Figure 1.4): 
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Figure 1.4: Example of neural network with single (left) and multiple (right) layer  
 

The procedure that consists in estimating the parameters of neurons so that the 

whole network can perform a specific task is called learning: in supervised learning, 

the neural network output is compared with the “truth” and by a feedback process the 

network modifies the parameters to better approximate the desired outputs; instead, in 

unsupervised learning there isn’t a feedback and the network finds itself the 

correlations between the data. 

Extensive investigations of computerized image analysis for detection or diagnosis 

of abnormalities in a variety of 2D and 3D medical images have been conducted: most 

publications on CAD have been concerned with 3 organs, chest, breast, and colon, but 

other organs, such as brain, liver, and skeletal and vascular systems also have been 

subjected to CAD research [1],[28]-[36]. 

Chest radiography is the most commonly performed procedure in medical 

imaging; however, interpretation of chest radiographs is a difficult task because of the 

overlapping ribs and its low contrast sensitivity for subtle abnormalities, so the 

detection accuracy for lung nodules in chest radiographs could be significantly 

improved with the use of CAD [37]-[39]. 

The recommended annual screening mammography for women over 40 years of 

age results in a large volume of mammograms to be read by radiologists. Studies 

indicate that the false negative rate of mammography ranges from 10% to 30% 

because mammographic signs of breast cancer such as microcalcifications and masses 

can be very subtle and often obscured by dense breast tissue [28], [33]. This is the 

reason why computerized analysis systems for mammography usually are focused on 

the detection of either clustered microcalcifications or mass lesions [40]-[42].  



Chapter 1                1.1 The expert systems 

 12 

Computed Tomography Colonography (CTC) is another important area of 

application of CAD. Colon cancer is the third leading cause of cancer deaths for men 

and women in the United States. Colon cancer screening involves detection of polyps, 

which can be the precursor of colon cancer, and cancerous growths on the walls of the 

large intestine. Interpretation of CTC is time consuming and difficult because the 

radiologist’s sensitivity of polyp detection in CTC varies over a wide range, which was 

attributed to many factors such as the variability in CT scanning techniques, colon 

preparation methods, size of the polyps in the studied patient cohort, and the 

radiologists’ experience with CTC. CAD may be a useful adjunct to CTC to reduce 

false negatives and reader variability. The current CTC CAD systems have sensitivity 

ranging from 80% to 100% at an FP rate of 2 to 15 per scan [43]-[45]. 

Recently, a new application of CAD systems is the diagnosis of autoimmune 

diseases based on research and identification of antinuclear autoantibodies (ANAs) 

through indirect immunofluorescence (IIF). However, it is a labor-intensive assay and 

highly dependent on the skills of the reader. Indeed IIF needs to be upgraded in order 

to overcome the following current major limitations of the method: the lack of 

resources and adequately trained personnel, the low level of standardization, the 

interobserver variability, the photobleaching effect.  

The consequence of current debate on automation in ANAs test is that the ability 

to automatically determine the presence of autoantibodies in IIF would enable easier, 

faster and more reliable tests execution, faster result reporting, increase test 

repeatability, and lower costs [46]-[48]. For the standardization of a methodic as valid 

support in the diagnosis of the autoimmune diseases [49]-[51], computerized methods 

and software have been proposed for the support to the diagnosis. 

 

1.2 Autoimmune Diseases 
 

 Autoimmune diseases are a family of more than 80 chronic, and often disabling, 

illnesses that develop when underlying defects in the immune system lead the body to 

attack its own organs, tissues, and cells. These disorders are fall into two general
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 groups: systemic autoimmune diseases (e.g. multiple sclerosis) and organ specific 

autoimmune diseases (e.g. diabetes) (Figure 1.5).  

 

Figure 1.5: A short list of autoimmune diseases 

 

While many of these diseases are rare, collectively they affect 14.7 to 23.5 million 

people only in USA [52], and – for reasons unknown – their prevalence is rising. Since 

cures are not yet available for most autoimmune diseases, patients face a lifetime of 

illness and treatment. They often endure debilitating symptoms, loss of organ function, 

reduce productivity at work, and high medical expenses. And, because most of these 

diseases disproportionately afflict women and are among the leading causes of death 

for young and middle-aged women, they impose a heavy burden on patients’ families 

and on society. 

The burden of a human disease should be counted not only in terms of money 

spent on health care for people directly affected, but as the total cost to society. It must 

take into account the number of individuals who are ill and the direct and indirect 

effects of the illness on patients, their families, their associates, and the public. Patient 

and family burden may include economic losses, altered or abandoned career or 

educational goals, and stress, suffering, and uncertainty. The first step in managing 

patients with any disorder is proper diagnosis.  

Diagnosing autoimmune diseases can be particularly difficult, however, because 

these disorders can affect any organ or tissue in the body, and produce highly diverse 

clinical manifestations, depending on the site of autoimmune attack. Moreover, disease 

symptoms are often not apparent until the disease has reached a relatively advanced 

stage.  
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Diagnosis of an autoimmune disease typically begins with a careful health history, 

including assessment of possible occupational and environmental exposures. Many of 

the early symptoms of these disorders, such as fatigue, joint and muscle pain, fever, or 

weight change, are nonspecific. While these symptoms alone may not point to a 

particular autoimmune disease, when considered in retrospect they can help to pinpoint 

when the disease process began. Added diagnostic clues may be revealed through 

family history, as the presence of autoimmune disease in a patient’s family further 

suggests that an autoimmune disease should be considered among the diagnostic 

possibilities. Similarly, a social and occupational history may identify exposures 

associated with a particular autoimmune disorder [52].  

Laboratory’s techniques able to point out and confirm diagnosis of autoimmune 

pathologies are based on research and identification of auto antibodies, revealed by the 

presence of specific antigen- antibody complexes. Particularly, identification of 

antinuclear antibodies (ANA) is an important part of clinical medicine and clinical 

immunology. ANA testing for the assessment of systemic and organ-specific 

autoimmune diseases has increased progressively since immunofluorescence 

techniques were first used to demonstrate antinuclear antibodies in 1957. ANA tests 

are amongst the most commonly performed antibody tests world-wide and the most 

frequently performed test in many clinical immunology laboratories [53].  

Antinuclear antibody tests have their origin in the lupus erythematosus cell 

(L.E.cell) phenomenon. This was first demonstrated in patients with systemic lupus 

erythematosus (SLE) in 1948 by Hargraves, Richmond and Morton whilst working at 

the Mayo Clinic. The L.E. cell test became widely used but was rather insensitive and 

difficult to standardise. In 1950, Coons and Kaplan working in Boston, described the 

use of fluorescein-labelled antibodies for identifying tissue antigens. At that time Lee, 

Michael and Vural (1951) showed that the L.E. cell phenomenon was caused by a 

gamma globulin protein which was probably an antibody. 

In 1957 Holborow, Weir and Johnson (Canadian Red Cross Memorial Hospital, 

Taplow, UK) used the fluorescent labelled antibody technique to demonstrate that the 

sera of L.E. cell positive patients contained antibodies that produced homogeneous 

nuclear fluorescence on human tissues. It was soon clear that different patterns 
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occurred and in 1961 Beck (National Institute for Medical Research, London) used rat 

liver sections to demonstrate homogeneous, speckled and nucleolar staining of nuclei 

in sera from patients with a variety of different rheumatic diseases [53]. 

In the early days of ANA testing, rodent tissue (stomach, liver and/or kidney) was 

commonly used as the substrate. Rodent tissue however had several drawbacks such as 

small cell size, a lack of dividing cells (mitotics) and poor antigen expression that 

made interpretation of ANA patterns difficult. In the 1980s, cultured cell lines were 

examined for utility as an ANA substrate and the human epithelial- like cell line HEp-

2 gained popularity. HEp-2 cells are a highly sensitive substrate that provide 

qualitative information which can be used as the initial step for more specific 

identification and quantification of autoantibodies. HEp-2's advantages over rodent 

tissue are: 

 

1. A more sensitive substrate that allows identification of many patterns. 

2. Human origin ensures better specificity than animal tissues. 

3. The nuclei are much larger so complex nuclear details can be seen. 

4. The cell monolayer ensures that all nuclei are visible. 

5. Cell division rates are higher so that antigens produced only in cell division are 

easily located e.g. centromere and mitotic spindle patterns. 

6. Antigen distribution is uniform.  

  

The diagnosis of autoimmune pathologies is based on research and identification 

of antinuclear autoantibodies (ANAs) through immunofluorescence. 

Immunofluorescence is a technique allowing the visualization of a specific protein or 

antigen in cells or tissue sections by binding a specific antibody chemically conjugated 

with a fluorescent dye such as fluorescein isothiocyanate (FITC). There are two major 

types of immunofluorescence staining methods: 1) direct immunofluorescence staining 

in which the primary antibody is labeled with fluorescence dye, and 2) indirect 

immunofluorescence staining in which a secondary antibody labeled with 

fluorochrome is used to recognize a primary antibody (Figure 1.6). 
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Immunofluorescence staining can be performed on cells fixed on slides and tissue 

sections.  

 

Figure 1.6: Direct and indirect immunofluorescence 
     

Immunofluorescence stained samples are examined under a fluorescence 

microscope which emit infrared light (<750 nm): fluorescent marker absorbs the light 

and it re-emits with wavelength equal to ~ 700 nm (red light) or 530nm (green light) 

(Figure 1.7). 

 

 

Figure 1.7: Fluorescence microscopy 
 

The diagnosis is based on two parameters: the fluorescence intensity and the 

fluorescence pattern.  

The fluorescence intensity is scored semi-quantitatively from 1+ to 4+ relative to 

the intensity of a negative and a positive control (4+), by following the guidelines 

established by the Centers for Disease Control and Prevention in Atlanta, Georgia 

(CDC) [54]: 
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�  4+ brilliant green (maximal fluorescence); 

�  3+ less brilliant green fluorescence; 

�  2+ defined pattern but dim fluorescence; 

�  1+ very subdued fluorescence. 

 

The pattern depends on the distribution of the antigen inside the nucleus: 

antibodies against antigens in different location give different patterns of fluorescence 

and therefore they allow the identification of the different diseases. 

In the literature, staining patterns are classified into one of the following groups: 

� homogeneous: diffuse staining of the interphase nuclei and staining of the 

chromatin of mitotic cells; 

� speckled: a fine or coarse granular nuclear staining of the interphase cell 

nuclei; 

� nucleolar: large coarse speckled staining within the nucleus, less than six in 

number per cell; 

� cytoplasmic: fine fluorescent fibres running the length of the cell; it is 

frequently associated with other autoantibodies to give a mixed pattern; 

� centromere: several discrete speckles distributed throughout the interphase 

nuclei and characteristically found in the condensed nuclear chromatin during 

mitosis as a bar of closely associated speckles. 

Examples of the above defined patterns are shown in the Figure 1.8. 

 

 

 

Figure 1.8: Examples of fluorescent patterns 
 

 

 Following the recent statement made by the American College of 

Rheumatology that the IIF technique should be considered as the standard screening 

method for the detection of ANA, the biomedical industry has proposed technological 
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solutions which significantly improve the automation of the procedure, not only in the 

preparation of substrates and slides, but also in microscope reading. This innovation is 

based on the principles of digitalization of fluoroscopic images and on the 

classification of patterns using standardized approaches (automated positive–negative 

screening and pattern interpretation). These systems are based on the use of automated 

microscopes, robotized slide trays, high-sensitivity video cameras, and software 

dedicated to acquisition and analysis of digital images [55]. The expected advantages 

of an automated IIF method are (a) the reduction in frequency of false negative and 

false positive results due to the standardization of measurement of fluorescence 

intensity; (b) the reduction of intra- and inter-laboratory variability; (c) improvement 

in the correlation of staining patterns with corresponding autoantibody reactivity; and 

(d) higher throughput in the laboratory workflow [55]. 

 

 

1.3 State of the art 
 

Developing an automated procedure for diagnosis of autoimmune diseases, 

authors focus their attention on HEp-2 cell detection, on fluorescence intensity 

determination or on staining pattern classification. In the following paragraphs the 

state of the art related to these main topics will be presented. 

 

1.3.1 State of the art on HEp-2 cell detection 
 

With reference to HEp-2 cell detection, Chiang et al. [56] in 2010 proposed an 

efficient segmentation method for automatically detecting cells with fluorescence 

pattern in IIF imaging. The proposed method utilized the circle Hough transformation 

to separate connected cell in IIF images. The method evaluated 7614 cells with six 

distinct fluorescence patterns (including 620 diffuse patterns, 1077 peripheral patterns, 

2251 coarse speckled patterns, 1509 fine speckled patterns, 852 discrete speckled 

patterns and 1305 nucleolar patterns) from 113 IIF images. Accuracy and sensitivity 

were used to estimate the performance of the proposed method. The results of 
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computer simulations revealed that the proposed method always identified cell outlines 

as were obtained by manual sketched with an accuracy of 88.77% and a sensitivity of 

93.43%.  

Huang et al. [57]-[57], proposed two method for automatically detecting outlines 

of fluorescence cells in IIF patterns: an adaptive edged-based segmentation method 

and a watershed segmentation method.  

In the adaptive edged-based segmentation method [57], authors evaluated 2573 

cells with six distinct fluorescence patterns (including 519 diffuse patterns, 482 

peripheral patterns, 788 coarse speckled patterns, 634 fine speckled patterns, 64 

discrete speckled patterns and 86 nucleolar patterns) from 45 images. In order to 

extract precise cells in an image, the proposed method comprised a simple 

classification procedure for IIF images to avoid over-segmentation. Firstly, the 

automatic thresholding algorithm was performed to convert an IIF image to binary 

version. Then the proposed method counted the number of connected region in the 

binary image. The information of the connected region was used as the input of the IIF 

image classifier. The proposed adaptive segmentation system obtained a stable and 

high accuracy; the proposed system clearly yielded cell outlines that are similarly to 

those manually sketched.  

In watershed segmentation method [58], a two staged watershed transform 

automatically extracts outlines of cells in IIF images. In the first stage segmentation, 

the green channel from the original RGB image was utilized as input intensity to 

segment cells. After preprocessing, the proposed method employed the watershed 

transform to segment cell region. For reducing over-segmentation, the region merging 

procedure was utilized to merge the small connected regions. The region elimination 

procedure removed the segmented region with an unreasonable size. In the second 

stage segmentation, the method based on the concept of markers was utilized for 

controlling over-segmentation. The second stage module utilized the cyan component 

as input to avoid over-segmentation. The original RGB image was transformed to 

CMY (Cyan, Magenta, and Yellow channels) color space, the Otsu’s algorithm was 

first performed to generate the marker for watershed segmentation. The similarity 

based watershed algorithm is performed herein to control over-segmentation in the 
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images. The paper evaluated 2305 autoantibody fluorescence patterns with manual 

sketched outlines (including 456 diffuse patterns, 417 peripheral patterns, 719 coarse 

speckled patterns, 55 fine speckled patterns, 517 discrete speckled patterns and 141 

nucleolar patterns) from 44 IIF images. The performance measures, i.e. true-positive 

(TP), false-negative (FN), false-positive (FP) and sensitivity, were used to estimate the 

performance of the proposed system. The sensitivity was of 94.7%.  

Percannella et al. [59] in 2012 proposed a new method for cells segmentation in 

HEp-2 images which adopts image reconstruction for a preliminary image 

segmentation and, then, employs a sort of classifier-controlled dilation for better 

determining the structure of the cells, where the classifier is trained using data of the 

image at hand. The authors used a public dataset of HEp-2 images, available at 

http://mivia.unisa.it/databases/db_database/biomedical/, which consists of 28 

annotated IIF images. Images belong to two classes of fluorescence intensity, namely 

borderline and positive, and exhibit one of the main six staining patterns (homogenous, 

fine speckled, coarse speckled, centromere, nucleolare, cytoplasmic). The use of 

images with different fluorescence intensity and the low contrast of borderline samples 

as well as the staining pattern variability make the segmentation task more complex. 

To evaluate the performance of the proposed segmentation method, authors computed 

precision (Prec = TP/TP+FP ), recall (Recall =TP/TP+FN ) and f-index (f - index = 

2·Prec·Recall/Prec+Recall) obtaining the values of 60%, 43.8%, 50%, respectively.  

 

1.3.2 State of the art on fluorescence intensity classification 
 

With reference on fluorescence intensity classification, Soda and Iannello in 2006 

and in 2009 proposed an ANN-based classifier [60] and a Multiple Expert System [61] 

classifier. In the first method, authors populated a database of 540 annotated IIF 

images; in order to label the data set samples and getting the ground truth for this 

specific application, they made use of two different physicians which independently 

diagnosed each sample. Each image of the data set was pre-elaborated in order to 

improve the contrast; then morphological filters, such as erosion and dilation have 

been applied to remove noise. Using Otsu’s algorithm, automatic thresholding was 
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performed to locate the cells. From these segmented images, they extracted a set of 

features, related to measures of fluorescent intensity, which are chosen considering the 

physician expertise. Also features of positive and negative controls have been 

considered. Authors investigated several classifiers, varying both the number of hidden 

layers and the number of neurons for layer, belonging to the family of Artificial Neural 

Network (ANNs) architectures: the Multi-Layer Perceptrons (MLPs) and the Radial 

Basis Network (RBF). All classifiers exhibited FP and FN rate approximately less than 

1%; MLPs expert showed an overall error rate (FP plus FN) of 0.8%, whereas for the 

RBF such a percentage is 1.9%; RBF network exhibited a hit rate higher than MLPs 

expert (52.7% vs. 43.7%). 

In the second paper, the recognition system is based on a multiple expert system 

(MES) paradigm and employs a classifier selection approach. Authors populated a 

database of 600 IIF images, revised by two physicians, which indicated three classes, 

named negative, intermediate and positive. The multiple expert system aggregates 

three different experts, each one specialized in recognizing one of three input classes 

(i.e., positive, negative, intermediate). Each expert is a nearest neighbour (NN) 

classifier. To combine the outputs of the classifiers, authors proposed two selection 

rules: a binary rule and a zero-reject selection rule. The former one is based on the 

binary combination of the output of single classifiers, whereas the latter rule is based 

on the evaluation of the reliability of each recognition act of the classifiers. These rules 

have been experimentally evaluated, exhibiting an error rate (FP plus FN)  less than 

0.9%. 

 

1.3.3 State of the art on pattern recognition 
 

With reference on pattern recognition, Soda in 2007 proposed a method based on a 

Multiple Expert System (MES) [62] in which the whole well staining pattern is 

computed on the strength of the recognition of its cells, testing two aggregation rules. 

To classify the well staining pattern into one of the basic groups (Homogeneous, 

Peripheral nuclear or Rim, Speckled, Nucleolar, No pattern) authors first segment the 

image to locate the cells; next, they classify the staining pattern of cells and, finally, 
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they classify the staining pattern of the whole well on the strength of the classification 

of its cells. They randomly select 28 images of fluorescent positive wells from a 

private database of IIF images. According to the classification approach, it is required 

to know not only the staining pattern of the whole well, but also the class of each cell 

inside them. In this respect, to locate the cells they use some morphological filters and 

global thresholding techniques. 

The data set consists of 465 cells and the a priori probability of homogeneous, rim, 

speckled, nucleolar and artefact class (i.e. cell corrupted during the slide preparation 

process,) is 29.9%, 21.5%, 32.7%, 7.1% and 8.8%, respectively. To analyze the 

staining pattern they compute a set of features related to texture components, adopting 

both statistical and spectral features. The former measures are associated to properties 

of the first and the second order histogram, respectively (e.g. the moments up to the 

fourth order, the energy around the peak, the entropy). The spectral features are 

calculated by partitioning the spectrum of the Fourier Transform into angular and 

radial bins. The proposed MES aggregates five Nearest Neighbour (NN) classifiers, 

each devised to recognize one of the staining pattern classes. Every NN expert labels 

the input sample as belonging or not to its class, i.e. it has a binary output. 

Furthermore, each one uses a different features set. A selection module consisting of 

two selection rules computes the final output of the MES. With reference to staining 

pattern recognition of the whole well, by using the first selection rule correctly 

classifies the 70.5% of samples, misclassifies the 12.9% of wells and rejects the 16.6% 

of wells. Adopting the second rule, the hit rate is 62.2% , the miss rate is 8,3% and the 

reject rate is 29.5%. 

Soda and Iannello proposed a Hybrid Multiple Expert System [63] in 2007 and a 

Multiple Expert System [64] in 2009.  

In hybrid Multi-Expert Systems (MES), the MES is made up of L blocks with a 

binary output (i.e. 1 or 0) that indicates if the input sample belongs or not to the class 

on which it is specialized. Then, a  selection module selects which block is most likely 

to be correct for any given input sample on the basis of two different selection rules: a 

Binary Selection rule and Reliability-based Selection rule. In order to populate a 

referring data set of fluorescent cells, authors randomly select 37 images of positive 
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wells from a private database. Two IIF specialists independently classify the pattern of 

each cell at a workstation monitor. Data set consists of 573 labelled cells. To analyze 

the staining pattern they compute a set of features related to texture components, 

adopting both statistical and spectral features. The former measures are associated to 

properties of the first and the second order histogram, respectively (e.g. the moments 

up to the fourth order, the energy around the peak, the entropy). The spectral features 

are calculated by partitioning the spectrum of the Fourier Transform into angular and 

radial bins. Furthermore features related to Wavelet Transform and Zernike Moments 

have been computed. The absolute performances of the Hybrid systems showed an hit 

rate of 60.8% for the Binary Selection rule and an hit rate of 75.9% for the Reliability-

based Selection rule. 

With the MES method, authors first segment the image to locate the cells and 

extract the features; second, they label the staining pattern of individual cells, and 

third, they classify the staining pattern of the whole well on the strength of the 

classification of its cells. The MES is based on the one-per-class paradigm, which 

assumes that the multiclass learning problem is reduced to several binary classification 

tasks. Given the number L of classes among which the input samples are distributed, 

the MES is composed of L modules, each one being an expert in the separation of one 

input class from the others. Their predictions are aggregated to a final decision on the 

basis of a certain rule (the aggregation module) that identifies the module that is the 

most likely to be correct for any input sample. Each module can be constituted either 

by a single classifier or by employing again a multiple experts scheme. In the latter 

case, the classifiers combination technique can be based on fusion, selection, or a 

mixture of them. In particular, to improve the recognition performance attainable by 

the L modules, we implement them with multiple binary classifiers combined by 

fusion rule, namely the weighted voting (WV). The data set consists of 573 labelled 

cells, from images of 37 IIF wells. Two specialists of IIF independently and blindly 

classify about 15 cells per well, one at a time, which have been chosen at random from 

those segmented. The system attained a hit rate equal to 97.3%. 

Perner et al. [49] in 2002 presented results on the analysis and classification of 

cells using image analysis and data mining techniques. Starting from a knowledge-
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acquisition process with a human operator, authors developed an automatic image 

analysis and a feature extraction algorithm for the objective measurement of image 

features. They used a dataset containing 53 images for each of the six class 

(homogeneous, homogeneous fine speckled, nuclear, fine speckled, fine speckled 

nuclear, centromere).  A dataset containing 132 features was set up and given to data 

mining tool to find out the best set of features and to construct the structure of the 

classifier. The classifier is a decision tree induction program which allows one to learn 

a set of rules and basic features necessary for decision making in a diagnostic task. The 

classifier was evaluated by cross validation: the error rate of the decision tree based on 

calculated image features is 25%.  

Sack et al. in 2003 proposed a computer assisted system for classification of 

interphase HEp-2 immunofluorescence patterns in autoimmune diagnostics [51]. They 

utilized a software package developed by P. Perner based on a novel image analysis 

and feature extraction algorithm. The samples are 1041, with six pattern 

(Homogeneous, Nucleolar, Speckled, Peripheral nuclear, Nuclear dot, Mitosis 

asssociated). The image as imported from the camera module was transformed into a 

grey level image by intensity without consideration of colours. Pictures were 

normalized and processed by automatic thresholding as well as morphological filters 

like dilation and erosion. Finally, cells were cut out from the image. Data describing 

various of these singular cells were calculated and stored in a data base. The generated 

data set was then subject to machine learning techniques to find out relevant features 

for a correct classification of autoantibodies. Finally, a learning algorithm selected 

from the data set the most promising features and constructed the structure of a 

classifier. The classifier was evaluated by crossvalidation method. Beside taking the 

patterns for the assisting computer system, human operators contributed to the 

knowledge acquisition process by teaching the system by their knowledge. Two 

essential procedures can be performed: discrimination between positive and negative 

sera, and pre-classification of main patterns. The evaluation of the system revealed that 

a multiparameteric mixture of different image information is necessary for a correct 

classification of the pre-defined groups of fluorescence patterns. The system reaches 

more than 83% of correct classification. 
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Recently, Iannello et al. [65] presented a method extending the panel of detectable 

HEp-2 staining patterns, introducing the centromere and cytoplasmic patterns, which 

do not show well-defined cell edges, and where a segmentation-based classification 

may fail. They applied a local approach which extracts SIFT descriptors and then 

classifies an image through the bag of visual words approach (BOVW). BOVW is 

inspired by the bag of words approach originally introduced in text classification, 

where a document is categorized by counting the most recurring words. While in text 

documents a vocabulary is already determined, in the visual domain it must be 

defined. For this purpose the set of ROIs extracted from multiple training images can 

be clustered in k groups in the feature space. Treating each cluster as a visual word, 

authors get a visual word vocabulary encoding the information contained in all local 

patterns. Then, a test image is represented by a feature vector counting each visual 

word contained in that image. This permitted to represent complex image contents 

without applying the segmentation procedure. They tested their approach on a dataset 

of  176 HEp-2 images with large variability in both fluorescence intensity and staining 

patterns. Their system correctly recognizes the 98.3% of samples, with a F-measure 

equal to 92.3%, 95.2% and 99.0%, for each class. 

In 2009, Hsieh et al. [66] proposed a classification method utilizing learning 

vector quantization (LVQ) with eight textural features (Standard deviation, 

Uniformity/Entropy, Block variation of local correlation (BVLC) coefficients, Spatial 

grey-level dependence matrices, Grey-level difference matrix, Neighbourhood grey-

tone difference matrix, Fractal dimension, Image coarse degrees) to identify the 

fluorescence pattern. Learning vector quantization (LVQ) is a prototype-based 

supervised classification algorithm and can be understood as a special case of an 

artificial neural network, more precisely, it applies a winner-take-all Hebbian learning-

based approach. LVQ was invented by Kohonen. The network has two layers: a layer 

of input neurons, and a layer of output neurons. The network is given by prototypes W 

= (w(i),...,w(n)). It changes the weights of the network in order to classify the data 

correctly. For each data point, the prototype (neuron) that is closest to it is determined 

(called the winner neuron). The weights of the connections to this neuron are then 

adapted, i.e. made closer if it correctly classifies the data point or made less similar if 
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it incorrectly classifies it. An advantage of LVQ is that it creates prototypes that are 

easy to interpret for experts in classification applications. The study evaluated 1036 

autoantibody fluorescence patterns from 44 IIF images that were divided into six 

pattern categories (including diffuse, peripheral, coarse speckled, fine speckled, 

discrete speckled and nucleolar patterns). The simulations showed that the proposed 

system has an average accuracy of 80.3%.  

Rigon et al. [46] in 2011 presented a comprehensive system that supports the two 

sides of IIF tests classification. It is based on two systems: the first labels the 

fluorescence intensity, whereas the second recognizes the staining pattern of positive 

wells. For the fluorescence intensity classification they used the “multi 

expert/modulesystem”. To asses fluorescence intensity each expert is specialized on 

one of the following classes respectively: positive, negative or intermediate (weak 

positive). For achieving the final decision on the image all the expert decision need to 

be combined. To this purpose they proposed two different rules that provide the final 

classification on the basis of dichotomizers outputs. The first consists of a binary 

combination of the expert/module's outputs, referred to as Binary Selection (BS) 

(conservative selection rule). This rule rejects sample when none module indicates that 

the sample belongs to its class or when there is no agreement between modules. This 

approach does not require any reliability estimation. Alternatively, they proposed a 

strategy based on reliability estimation that chooses an output in any of the possible 

combinations of modules' output may be introduced, referred to as Reliability-based 

Selection (RbS). For the staining pattern classification they first segment the image to 

locate the cells; second, they classify the staining pattern of several  cells and, third, 

they classify the staining pattern of the whole well on the strength of the classification 

of its cells. To test the system dedicated to classify the fluorescence intensity, they 

populated a dataset of 600 images obtained from sera screened for ANA by IIF on 

Hep-2 cells. To carry out the recognition of staining pattern, the cells data set consists 

of 573 labelled cells. The error rate has been evaluated according to eight-fold cross 

validation method: with reference to fluorescence intensity classification, using binary 

selection rule (BS) the hit rate is 87.4%, using the RbS rule the hit rate increases from 
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87% up to more than 94%. With reference to cells pattern classification, using BS the 

hit rate was 60.8%, using RbS rule the hit rate was 75.9%. 

Bossuyt in 2013 [67] evaluated detection of antinuclear antibodies by G-Sight 

(Menarini), an automated system for image acquisition and  interpretation of indirect 

immunofluorescence based tests. They evaluated the ability of the system to estimate 

the fluorescence intensity and to correctly classify fluorescence patterns. The 

positive/negative discrimination is evaluated while the system is focusing over cells. 

The sensitivity of the camera is regulated over the entire image in order to reach a cell 

target density. The system was trained over a collection of sera in order to discriminate 

a positive or negative sample by evaluation of the parameters that regulate the 

sensitivity of the camera acquisition. A probability measure of positivity (probability 

index) is calculated based on statistics of a  set of training samples. This probability 

index is used to classify the sample in positive, negative or uncertain. The system 

performs intelligent pattern recognition (five patterns can be assigned: homogeneous, 

nucleolar, speckled, centromere and mitochondrial). The first step in the image 

processing algorithm is the use of morphological operators and threshold techniques to 

separate background from foreground. The segmentation of foreground is performed 

in order to evaluate single cells. In a second step, texture features are calculated that 

evaluate the intensity surface of the cells. Finally, a supervised learning classifier is 

used to classify patterns by using the descriptors. Automated antinuclear antibody 

analysis by G-Sight was performed on 268 consecutive samples submitted to the 

laboratory. G-Sight allows assigning 5 basic fluorescence patterns and G-Sight 

correctly assigned a homogeneous, speckled, and centromere pattern in 28 (68%), 24 

(71%), and 5 (83%) of these samples, respectively. 

Elbischger et al. [68] focused on the development and evaluation of image 

processing and classification  algorithms for HEp-2 cell segmentation and cell type 

classification in order to better detect a suspicion diagnosis for autoimmune diseases. 

A medical doctor has manually classified a set of images in 17 different cell type 

classes coming from five nucleus patterns ( Homogeneous (H), Speckled (S), 

Centromere (C), Nucleolar PmScl (P) and Scl-70 (Sc) ) and from the distinction 

between cells in interphase (icells) and mitosis phase (m-cells) with their four sub-
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phases (Prophase, Metaphase, Anaphase, Telophase). Nine features are calculated 

from the segmentation results and are used in the classification task: Area ratio, 

Variance, Perimeter ratio, 30th and 60th normalized percentiles and percentile range, 

Dent number, Auto-covariance percentage, Roundness. A Mahalanobis distance 

classifier is used for classification. The system is capable of distinguishing the 17 

classes with 90.25% accuracy. 

Foggia et al. [69] focused on mitotic cells presenting an heterogeneous set of 

features used to describe the peculiarities of this type of cells and then tested five 

classifiers, belonging to different classification paradigms. The approach has been 

evaluated on an annotated dataset consisting of 126 cells, 63 mitotic cells and 63 no 

mitotic cells. To represent the peculiarities of mitotic cells authors used morphological 

descriptors inspired by the peculiarities of cells at hand and texture measures, e.g. first 

and second order histograms, rectangle features and local binary pattern (LBPs). The 

first set of features is composed by morphological descriptors, which are based on the 

observation that mitotic cells may be fluorescent inside or outside the chromosomes 

mass We compute features that, on the one side, look for elliptic shape and, on the 

other side, analyse the fluorescence intensity inside the cells. The second set of 

features consists of texture measures related to statistical and spectral measures. The 

former have been extracted both from intensity histogram and from grey level co-

occurrence matrix by means of computing their statistical moments, e.g. skewness, 

kurtosis, energy, entropy, to name a few. The latter have been computed from Fourier 

transform (FT), Wavelet transform and Zernike moments. LBPs assign to each pixel of 

the image a label obtained comparing it with its neighbourhood matrix. Authors tested 

popular classifiers: a Multi-Layer Perceptron, a Naïve Bayes, a kNN, a Support Vector 

Machine, and an AdaBoost, obtaining an accuracy of 82.37%, 80.16%, 86.51%, 

81.09%, 85%, respectively.  

Ersoy et al. [70] presented a feature extraction and classification scheme to 

classify the fluorescence staining patterns of HEp-2 cells in IIF images. They proposed 

a set of features that are sensitive to staining pattern variations among classes: Edge-

based features which capture both gradient magnitude and orientation information, 

Local shape-based features incorporated through three measures obtained from the 
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Hessian matrix (Hessian matrix H describes the second order structure of local 

intensity variations around each point of the image), Texture information incorporated 

through LBP Local binary pattern (LBP) defined as a grey-scale invariant texture 

measure. They applied a multi-view ShareBoost algorithm to this set using each 

feature descriptor as a separate view. ShareBoost utilizes a single re-sampling 

distribution for all views that helps the classifier to exploit the interplay between 

subspaces and is robust to noisy labels. They used the data set reported in [69] and 

made available with the ground truth for the ICPR 2012 HEp-2 cell classification 

contest (http://mivia.unisa.it/hep2contest/index.shtml). The experimental results show an 

average of over 90 percent accuracy in classification of six HEp-2 cell types 

(centromere, coarse speckled, cytoplasmatic, fine speckled, homogeneous, nucleolar). 

Petter Strandmark et al. [71] introduced a classification method for mitotic cells in 

IIF images. Each mitotic cell is classified into one out of six categories (centromere, 

coarse speckled, cytoplasmatic, fine speckled, homogeneous, nucleolar). They used the 

data set from the HEp-2 Cells Classification contest 

(http://mivia.unisa.it/hep2contest/index.shtml) of the ICPR 2012. The method is based on 

random forests that classifies an HEp-2 cell image into one of six classes. A random 

forest computes averages over several hundreds of small decision trees, each of which 

is trained on a subset of the features and the training examples. The set of features 

include Number of objects, Area, Area of the convex hull, Eccentricity, Euler number, 

Perimeter etc. They obtained an accuracy of 97.4%.  

Kuan Li et al. [72] presented four image descriptors for HEp-2 cell staining 

patterns classification, including LBP, Gabor, DCT, and a global appearance statistical 

descriptor. Staining patterns are classified into one of the following six groups: 

homogeneous, fine speckled, coarse speckled, nucleolar, cytoplasmic and centromere. 

A multiclass boosting SVM algorithm is proposed to integrate these descriptors 

together: (1) within each boosting round, four multiclass posterior probability SVMs 

are trained corresponding to four descriptors, and then combined to an integrated 

classifier; (2) AdaBoost.M1 is modified to enhance the performance of the integrated 

classifiers. Experimental results over 721 images obtained from ICPR2012 contest 

(http://mivia.unisa.it/hep2contest). The results are 98.62% ±1.24% in positive samples, 
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95.85% ± 1.64% in intermediate samples, and 96.83% ± 1.46% in the total 721 

images. It shows that proposed method achieves better performance than other SVM 

using single descriptor. 

V. Snell et al. [73] introduced a combination of spectral analysis and multiscale 

digital filtering to extract the most discriminative variables from the cell images. They 

also applied multistage classification techniques to make optimal use of the limited 

labelled data set. The contest training data consists of 721 images of individual cell IIF 

patterns, each having an associated binary mask, and intensity label (positive or 

intermediate), and a ground-truth class label from one of 6 classes (homogeneous, fine 

speckled, coarse speckled, nucleolar, cytoplasmic and centromere). Overall error rate 

of 1.6% is achieved in recognition of 6 different cell patterns, which drops to 0.5% if 

only positive samples are considered. 

Ilias Theodorakopoulos et al. [74] proposed a system for automatic classification 

of staining patterns on single-cell fluorescence images. Their method utilized 

morphological features extracted from a set of binary images derived via multi-level 

thresholding of fluorescence images. Furthermore, a modified version of Uniform 

Local Binary Patterns descriptor was incorporated in order to capture local textural 

information. The classification was performed using a non-linear SVM Classifier. The 

proposed method was evaluated using a publicly available dataset, released for the 

purposes of HEP-2 Cells classification competition at ICPR 2012, achieving up to 

95.9% overall classification accuracy. 

Di Cataldo et al. [75] proposed a technique that performs automated classification 

of the staining pattern. Their method combined textural feature extraction and a two-

step feature selection scheme to select a limited number of image attributes that are 

best suited to the classification purpose and then recognizes the staining pattern by 

means of a Support Vector Machine module. Experiments on IIF images of HEP-2 

Cells classification competition at ICPR 2012 showed that their method is able to 

identify staining patterns with average accuracy of about 87%. 

Wafa Bel haj ali et al. [76] tested a learning algorithm on cellular images acquired 

for the analysis of pathologies. In order to evaluate the automatic classification 

performances, they tested their algorithm on the HEp- 2 Cells dataset of Foggia et al. 
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(CBMS 2010). Results showed classification precision larger than 96% on average. 

The same authors et al. [77] proposed a novel automated approach for the 

categorization of cells in fluorescence microscopy images. Their supervised 

classification method aimed at recognizing patterns of unlabeled cells based on an 

annotated dataset. First, the cell images needed to be indexed by encoding them in a 

feature space. For this purpose, they proposed tailored bio-inspired features relying on 

the distribution of contrast information. Then, a supervised learning algorithm was 

proposed for classifying the cells. They carried out experiments on cellular images 

related to the diagnosis of autoimmune diseases, testing the classification method on 

the HEp-2 Cells dataset of Foggia et al (CBMS 2010). Results showed classification 

precision larger than 96% on average. 

Ghosh et al. [78] proposed feature extraction methods for automatic recognition of 

staining patterns of HEp-2 images (provided as a part of the ICPR 2012 HEp-2 Cells 

Classification Contest) to develop a Computer-Aided Diagnosis system and support 

the specialists’ decision . They compared the performances of various individual and 

combined features and show that a combination of HOG(Histogram of Oriented 

Gradients), Texture and ROI(Region of Interest) features are best suited for our task 

achieving an overall accuracy of 91.13% using a Support Vector Machine as classifier. 
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Chapter 2 
 

 

2. 1 The project A.I.D.A. 
 

The increasing complexity in the management and analysis of biomedical data has 

created the urgency and the necessity of using information technologies which support 

the doctors in diagnosis. Information and Communication Technologies (ICTs) were 

successfully applied in medical imaging and, recently, to improve the diagnosis of the 

Autoimmune Disease. The introduction of modern approaches based on computer 

systems represents an economic and effective support for the diagnosis of autoimmune 

diseases. In this context is inserted the project A.I.D.A . (Auto-Immunité: Diagnostic 

Assisté par ordinateur), an international strategic project financed by EU in the ENPI 

cooperation program Italy-Tunis. The project will concern particularly the application 

of ICTs for the diagnosis of autoimmune diseases, reading by computer the images of 

test IIF. 

The basic idea come up from the research group of Department of Physic and 

Chemistry of University of Palermo, which since many years develops activity in the 

field.  

This project, with its strong character of cooperation Sicily-Tunisia in the 

scientific, cultural and sanitary context, joins well within the framework of the 

European politics of neighbourhood, with the objective of strengthen the integration 

between both banks of the Mediterranean Sea. The project answers the objective of the 

promotion of research and innovation, within the framework of a cooperation between 
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science parks, the support for the innovation in the processes of production and the 

distribution of information technologies. 

Autoimmune diseases, as explained in paragraph 1.2, are multifactorial diseases, 

whose risk factors are genetic and environmental. From a population to another one 

the combinations of risk factors can vary, generating different epidemiological 

profiles. The interest in working with populations close on genetic plan and climatic 

conditions but different from the point of view of customs, food habits, cultural 

conditions, environmental factors, is obvious as far as we can envisage comparative 

analyses. So, the study of autoimmune diseases, in frontier regions as Sicily and 

Tunisia can certainly improve the knowledge of their pathogenesis and the spreading 

of involved genetic and environmental risks. 

The project plans the installation, in hospitals of Sicily and Tunisia, of stations of 

reports for test IIF, with a innovative software developed at the University of Palermo. 

The project involves researchers recruited among the best young people coming 

from the Universities in Palermo and Tunisi, placed side by side by an international 

team composed by physicists, computer engineers, physicians and biologists. The 

main actors directly concerned by this project are the scientists of the hospitals and 

university centers, the structures of management of the health as well as the 

technological poles. The contribution of this project in terms of improvement of the 

capacities of these actors concerns the acquisition of information and new methods as 

well as the help to the diagnostic decision. 

The italian partners of the project are: 

� University of Palermo  

� Assessorato alla Sanità of Sicilian Region 

� Provincia Regionale di Agrigento 

� ASP-TP, U.O.C. of Clinical Pathology Hospital of Trapani 

The tunisinian partners of the project are: 

� Lab. of Genetic, Immunology of Human Pathologies, University of Tunis El 

Manar 

� Institut Pasteur, Tunis 

� Hospital Charles Nicolle, Tunis 
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� Ministry of Health, Tunis 

Other hospital collaborate to the project (Hospital Buccheri La Ferla and Civic 

Hospital in Palermo, ASP in Agrigento and Hospital Ariana of Tunisi); to the project 

the Sidi Thabet Technological Pole of Tunisi and the Department of the Productive 

Activities of Sicilian Region also participate. 

The project has as objective the improvement of the diagnosis of autoimmune 

diseases by IIF, thanks to the use of a computer system, developed by the spinoff 

CyclopusCAD of the University of Palermo, for acquisition of images, implementation 

of a digital database and processing of data by the installation, in the hospitals of Sicily 

and Tunis, of stations of report for the tests IIF. The computer-aided acquisition of the 

images of IIF interpreted by the clinicians will allow to generate a quantity of data 

accompanied with a collection of additional information through questionnaires. The 

Italian team, with its experience in medical imaging, will take care of the technical 

support for the acquisition and the management of this database. 

The development and the validation of a software of reading of images of IIF 

adapted to the diagnosis of autoimmune diseases using the systems of artificial 

intelligence and a wide library of images acquired in a digital format, constitute a 

rather innovative approach, because there is no available exhaustive digital IIF 

database for the scientific community and the computer systems for the help to the 

tests IIF, at present available, are rare and in phase of development. While, the need in 

this type of software is real because the interpretation of the IIF is subjective and 

requires a double reader. Furthermore, this type of software is adaptable to the distance 

teaching and to the auto-learning.  

 

 

2.2 Database of A.I.D.A. project 
 

The database inherent to the project includes any cards of the patients (data and 

images) collected from the various tests of laboratory (ANA, AMA, ASMA, ANCA, 

APCA, EMA, etc.) with the consequent use of the various types of substrata (HEp-2 
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and tissues). For the purposes of this thesis only the data concerning the determination 

of the ANA tests have been used, by using as substratum the epithelial cells of human 

laryngeal carcinoma (HEp-2, American Type Culture Collection CCL 23), in which 

the expression and the integrity of the clinically significant antigens will be guaranteed 

(see Appendix A). 

Fluoroscopic images have been acquired for all the persons included in the survey 

to whom it is suspected the presence of an autoimmune disease and for all the persons 

in the centers associated to the project. The database will contain all clinical 

informations about the patient. 

To prepare the sample the following procedure has been applied: 

1. In every session (in the first blade) a positive control and a negative control have 

been inserted; 

2. Dilution of the sample 1:80 in PBS 0,01M, pH 7,2; 

3. Incubation of sample diluted (25-30 µL) and the controls (25-30 µL) with the 

substrate of HEp-2 cells for 30’ at room temperature in a wet room;  

4. Three washes of 5' with PBS; 

5. Incubation with the conjugated anti-IgG FITC (25-30 µL) for 30’ at room 

temperature in a wet room; 

6. Three washes of 5' with PBS; 

7. Assembly of blades in the glycerol in 10 % in PBS with a small strip. 

The reading of fluorescence microscope has been made with a magnification of 

40X. The regions of interest of every fluorescent pattern have been acquired by a CCD 

camera with a 1280x960 pixels resolution in TIFF or JPEG format. During the 

acquisition of images, areas full of HEp-2 cells occupied the central region of the 

image. For every well (except CN and CP) three different images to the purpose of a 

“double reading” have been acquired. 

The fluorescence intensity, as already indicated in paragraph 1.2, is scored semi-

quantitatively from 0 to 4+ according to the intensity of a negative (0) and a positive 

control (4+), following the guidelines established by the Centers for Disease Control 

and Prevention in Atlanta, Georgia (CDC) [54]: 

4+: brilliant green (maximal fluorescence); 
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3+: less brilliant green fluorescence; 

2+: defined pattern but dim fluorescence; 

1+: very subdued fluorescence. 

0: negative 

At this moment, the identified patterns have been classified according to the Table 

2.1: 
 

Table 2.1: List of images and patterns of AIDA database 

PATTERN NUMBER OF IMAGES  

Centromere 51 

Coarse Speckled 74 

Fine Speckled: 111 

Nuclear Homogeneous 308 

Few Nuclear Dots 19 

Nucleolar Clumpy 32 

Nucleolar Homogeneous 40 

Nucleolar Speckled 3 
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2.3 The MIVIA public database 
 

The http://mivia.unisa.it website offers a database of Indirect ImmunoFluorescence 

(IIF) images. It is the outcome of a research project jointly conducted by the Mivia 

Lab of the University of Salerno and the University Campus Biomedico of Rome, with 

the financial support of “Regione Campania” within the project “Classification of 

Immunofluorescence Images for the Diagnosis of Autoimmune Diseases”. In this 

website there is an annotated database of IIF images, acquired using slides of HEp-2 

substrate at the fixed dilution of 1:80, as recommended by the guidelines. 

IIF slides are examined at the fluorescence microscope, and their diagnosis 

requires both the estimation of fluorescence intensity and the description of staining 

pattern. The former is scored semi-quantitatively with respect to both positive and 

negative controls contained in each slide and the sample fluorescence intensity is 

divided into three classes, named negative, intermediate and positive. The latter 

suggests the localization of reactive nuclear antigens and may help clinicians in 

differential diagnosis of six pattern (homogeneous, fine speckled, coarse speckled, 

nucleolar, cytoplasmatic, centromere). 

Specialists took HEp-2 images with an acquisition unit consisting of the 

fluorescence microscope (40-fold magnification) coupled with a 50W mercury vapour 

lamp and with a digital camera. The camera has a CCD with squared pixel of equal 

side to 6.45 µm. The images have a resolution of 1388×1038 pixels, a colour depth of 

24 bits and they are stored in bitmap format. Specialists manually segment and 

annotate each cell at a workstation monitor since at the fluorescence microscope is not 

possible to observe one cell at a time, and report data on fluorescence intensity 

(according to the three classes reported above), pattern (according to the six classes 

reported above) and mitosis phase. Firstly, a biomedical engineer segmented the cells 

by the use of a tablet PC. Subsequently, each image was reviewed and annotated by a 

medical doctors specialized in immunology. 

For each image the database provided a description file containing: 

� Image’s pattern and intensity; 
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� Objects seed points; 

� Objects class: cell, mitotic cell, artefact (due to slides preparation process); 

� Objects pattern (if is a cell): homogeneous, fine speckled, coarse speckled, 

nucleolar, cytoplasmatic and centromere. 

The composition of the database is described in Table 2.2. 

 
Table 2.2: List of images of public database MIVIA 

PATTERN NUMBER OF IMAGES  

Centromere 6 

Homogeneous 5 

Fine Speckled 4 

Coarse Speckled 5 

Nucleolar 4 

Cytoplasmatic 4 

 

 

 

2.4 Characteristics of proposed method 
  

The purpose of the proposed method is to allow the recognition of centromere 

patterns. The method is based on the grouping of centromeres present in the cells 

through the application of the K-means clustering algorithm. 

The first step of the method is the reading of the image: images coming from the 

fluorescence microscope and acquired by a CCD camera in TIFF or JPEG format are 

RGB images with a preponderance of Red or Green component in accordance with the 

wavelength of the light re-emitted by the fluorescent marker. The images present in 

AIDA database and in MIVIA database have a preponderance of Green component. 

An advantage of the proposed method is its application both to images with a low 

fluorescence intensity and to images with high fluorescence intensity. It is interesting 

to show the difference in spatial distribution of coloured components for an image 
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with low fluorescence intensity and an image with an high fluorescence intensity, both 

belonging to the AIDA database. An example of an image with low fluorescence 

intensity is showed in Figure 2.1. 

 

 

 
Figure 2.1: Example of an image with low fluorescence intensity 

 

The Figure 2.2 shows the spatial distribution of the three component for the image 

in Figure 2.1.  
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A 

 

B 

 

C 
Figure 2.2: Spatial distribution of coloured components for a low fluorescence image: A) Red; B) Green; C) Blue 
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An example of an image with high fluorescence intensity is showed, instead, in 

Figure 2.3, and the Figure 2.4 shows the spatial distribution of the three coloured 

components. 

 

 
Figure 2.3: Example of an image with high fluorescence intensity 
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A 

 

B 

 

C 
Figure 2.4: Spatial distribution of coloured component for an high fluorescence image: A) Red; B) Green; C) Blue 
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The observation of the spatial distribution of the three components of the RGB 

images confirmed us that the information about the fluorescence intensity is mainly 

contained in the Green component, so we focalize ourselves on this component only 

by converting the RGB images in grey images without loss of information. 

The second step of the method is the preprocessing of the image which allows to 

automatically obtain the number of the cells and the coordinates of their centroids; as 

will be explain in Chapter 3, this operation is necessary to obtain the seeds for the K-

means algorithm. 

The first operation executed in the preprocessing phase is the contrast adjustment 

of images: starting from an image like that in Figure 2.5a) which is converted in a grey 

image, a method which implements a technique called contrast-limited adaptive 

histogram equalization (CLAHE) is used. CLAHE operates on small regions in the 

image, called tiles, rather than on the entire image. Each tile's contrast is enhanced, the 

neighbouring tiles are then combined using bilinear interpolation to eliminate 

artificially induced boundaries. The contrast, especially in homogeneous areas, can be 

limited to avoid amplifying any noise that might be present in the image. 

After this operation, assuming the bright objects are the centromeres, it is possible 

to identify groups of pixels that are significantly higher than their immediate 

surrounding (Figure 2.5b). 

 

 
a) 

 
b) 

 

Figure 2.5: a)Example of a centromere image; b) Image after contrast adjustment with CLAHE 
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To find the centroids of cells, morphological operations (see Appendix B) like 

dilate and holes filling are applied allowing objects to expand, connecting disjoint 

objects and filling in small holes and then, according to the literature, cells on board of 

slides are removed, because they can be artefacts or damaged. Finally, regions smaller 

than an Area threshold (fixed during the tuning phase which will be described in 

Chapter 3) are removed also, to obtain an image like that shown in Figure 2.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

After this phase of preprocessing, it is possible to determine the coordinates of the 

centromeres belonging to the useful cells of the image and apply on them the K- 

means algorithm, which will be described in the next paragraph. 

The application of the K-means has as result the number of elements belonging to 

the clusters and their relative centers: among all the clusters, only those containing the 

correct number of centromeres will be selected. 

To avoid clusters too large compared to a real cell, another selection on clusters 

will be made based on the dimension of a cell, valued as the length of the Major Axis 

of an equivalent ellipse, which is another parameter determined during the tuning 

phase of the algorithm. 

 
Figure 2.6: Centromere image after dilation and holes filling operation, with centroids 
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The final step of the method is the counting of the remaining clusters: if the 

number of clusters, i.e. the cells, is equal or great than a threshold called CUT, the 

image is classified as centromere. 

As already explained, the tuning phase of the algorithm for the parameter Area, 

Major Axis and CUT will be described in details in Chapter 3. 

The steps of the algorithm just described are shown briefly in the flow-chart in 

Figure 2.7. 
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Figure 2.7: Flow-chart of proposed method 

 
 
 
 
 
 
 

 

Input = Image 

Reading and 
preprocessing phases 

Number and Position of cells 
 

Objects segmentation 
K-means 

Finding cluster with a number of objects n: 
23 ≤ n ≤ 46 

Size valuation → Residual clusters 

Number of residual cluster ≥ CUT? 

Y 

N 

 
 

Output  

“Centromere cells not found” 

End 
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2.5 Clustering algorithms 
 

Since an important part of the proposed method is based on a clustering algorithm, 

in this paragraph will be presented the general characteristics of these algorithms and 

of K- means in particular. 

Generally, clustering is a classification imposed to a set of objects based on their 

characteristics [79]. There are many field of application of cluster analysis: biology, 

psychology, archaeology, marketing. In computer science and engineering, cluster 

analysis is used in pattern recognition and image processing, in unsupervised learning, 

vocal recognition, images segmentation. 

As example, suppose we want to cluster four stars (Figure 2.8): 

 

 
Figure 2.8 Example of objects to cluster 

 

Stars A, B, C have same size, stars A, C, D have same colour, stars A and C have 

same size and colour. Size and colour are two characteristic (features) of objects “star” 

which can be measured and depicted as coordinates in a feature space. The relationship 

between objects or their features may be represented by similarity, which has values in 

the interval [-1,1] or, if it is normalize, in the interval [0,1]. Similarity sij between 

feature i and feature j can be measured in many ways, depending from measure scales 

or data. Complementary to similarity is dissimilarity dij which measures the 

differences between objects based on their features. The relationship between 

similarity and dissimilarity is: 

  

sij=1−d ij      (2.5.1) 
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Thinking to the objects as points in a d-dimensional metric space in which every 

dimension is a feature, it is possible to depict the relationship between objects as a 

pattern matrix (n objects with p features) or a proximity matrix, which contains the 

information on similarity or dissimilarity (Figure 2.9). 

 

 
Figure 2.9 a) Pattern matrix (n objects with p features); b) Proximity matrix (similarity or dissimila rity)  

 

Measuring similarity or dissimilarity of objects depends from the variables that 

characterize the objects: there are objects characterized by binary variables (Yes and 

No, True and False, Positive and Negative, etc…), nominal variables (Male and 

Female), ordinal variables (first, second, third, etc…), quantitative variables (cost, 

time, weight, etc...). Usually, dissimilarity is easier to measure than similarity because 

we can think to dissimilarity as “distance” in the multidimensional features space, so it 

is possible to calculate dissimilarity as Euclidean distance: 

d ij=√∑
k=1

n

( x ik−x jk )
2

     (2.5.2) 

 

Clustering methods belong to two great groups: hierarchical and partitional 

methods. Hierarchical clustering uses only proximity matrix (Figure 2.9a), instead 

partitional clustering uses pattern matrix (Figure 2.9b). These classes will be described 

briefly in the next paragraphs. 

 

 

2.5.1 Hierarchical clustering 
 

A hierarchical clustering is a sequence of partition in which each partition is 

nested into the next partition in the sequence. The result of a hierarchical cluster is 
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depicted by a dendrogram, which allows to visualize how many objects were joined or 

separated during the process (Figure 2.10) 

 

 

 
 

Figure 2.10 Example of a dendrogram 
 

Partition with r clusters can be used to create a partition with r-1 clusters 

(agglomerative clustering) or with r+1 clusters (divisive clustering). Union or 

separation between clusters is made considering the distance, in features space, 

between clusters. The process stops when it is found the desired number of clusters or 

a limit on clusters diameter. 

 

 

2.5.2 Partitional clustering 
 

The non-hierarchical clustering methods are called partitional clustering. They 

generate a single partition of the data trying to reproduce the natural groups present in 

the data. The problem of this kind of clustering algorithm is to find the correct 

partition of the data so that objects belonging to the same cluster are more similar 

between them than to object belonging to other clusters. 

Partitional algorithms are applied in ROI extraction process [80] ─ [83] or in 

image segmentation [84]. 

K-means algorithm is an example of partitional clustering [85]: starting with a set 

of n object xj, to cluster in c groups Gi, the algorithm selects randomly c objects as 
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initial seeds and assigns the objects xj to the cluster i if it is closer to the cluster 

centroid ci than to other centroids; then, new centers of clusters are calculated 

according the equation 2.5.3  

∑
n

j=
j

i
i x

G
=c

1

1
     (2.5.3) 

 

The objects are assigned again and the process is repeated iteratively until a 

minimum of an objective function based on Euclidean distance between the object and 

the cluster centroids is reached (Figure 2.11). 

Performances of K-means algorithm depend on initial choice of centroids, and the 

algorithm requires to know a priori the number of partition to find. Indeed, the K-

means algorithm has good performances with sferical clusters, for this reason we 

chosen it to use in our application. 

 

 

Figure 2.11: Example of evolution of K-means algorithm 

 
 

 

 

2.6 Figures of merit 
 

Suspecting a disease, a doctor generally can make one or more hypotheses based 

on the anamnesis and the objective examination. Such hypotheses are submitted to 
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verification through investigation-test, but such verifications are hindered by an 

intrinsic percentage of error in every test used; in fact, patients submitted to test A for 

the suspect of disease X can be a posteriori: 

� true positive (TP): the test is positive and there is illness; 

� true negative (TN): the test is negative and there isn’t illness; 

� false positive (FP): the test is positive but there isn’t illness; 

� false negative (FN): the test is negative but there is illness;  

 

It is possible to define the Sensibility as the ability of the test to identify the 

presence of the illness: 

 

Sensibility =
TP

TP+FN    (2.6.1) 

 

Sensibility and FP define the reliability of the test, quantifying the tendency to 

result positive in the sick subjects and negative in the healthy subjects respectively 

[86]. 

In our case, to test the proposed algorithm we defined the following figures of 

merit: 

 

Sensibility_images ε = 
images centromere of total

centromere recognized images ofnumber 
 

Sensibility_cells η = 
cells of total

centromere recognized cells ofnumber 
 

FPimages = number of images recognized centromeres (when the image is not 

centromere) 

FPcells = number of cells recognized centromeres (when the image is not 

centromere) 

Accuracy = 
FN FP  TN  TP

TN  TP 

+++
+
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Chapter 3 
 

 

3.1 Preliminary tests  
 

The first step of the research activity was a preliminary testing of the proposed 

method on images coming from IIF tests on HEp-2 cells used to research and 

identification of antinuclear autoantibodies (ANA), and its validation based on the 

figures of merit defined in the paragraph 2.6. 

The method was applied on centromere pattern, characterized by several discrete 

speckles (between 23 and 46) distributed throughout the interphase nuclei and 

characteristically found in the condensed nuclear chromatin during mitosis as a bar of 

closely associated speckles. 

The database used for the preliminary testing was composed of the following 

patterns:  

 
Table 3. 1 Database used for preliminary testing 

Pattern Nr. of images 

Centromere 10 

Nucleolar 18 

Other 5 

 

Because of the limited number of images used for the preliminary test, the error 

bars were really elevated (~ 3/10), so they have not been represented in the following 

graphics.
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The algorithm classifies an image as centromere if it find almost n centromere 

cells, with n major than a threshold defined CUT The value of the CUT was variable 

in the interval [2, 10]. 

To test the performance of the proposed algorithm, the first figure of merit valued 

was the Sensibility_images, defined as: 

 

 

Sensibility_images ε = 
images centromere of total

centromere recognized images ofnumber 
 

 

The Figure 3.1 shows the Sensibility_images ε versus the CUT: as showed in the 

graphic, the algorithm had a constant value of Sensibility of 10/10 until the CUT = 6 

and a constant value of Sensibility of 9/10 from CUT = 7 until the CUT = 10. 

 

 

 

 

Another figure of merit valued was the Sensibility_cells defined as: 

 

Sensibility_cells η = 
cells of total

centromere recognized cells ofnumber 
 

 

 
Figure 3.1: Graphic of Sensibility_images vs Cut 
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The Sensibility_cells η was evaluated by repeatedly applying the algorithm on 

each centromere image: in Figure 3.2 is showed as example the graphic of η obtained 

for one of the centromere images.  

 

 

 

 

 

 

 

 

 

 

 

The graphic in Figure 3.2 has underlined a randomness in clustering process, 

which has represented one of the problems faced in the subsequent phases of algorithm 

upgrading. 

Even the FPcells ( number of cells recognized centromeres when the image is not 

centromere) has been drawn: the result is showed in Figure 3.3. 

 

 

 
 

Figure 3.2: Graphic of Sensibility_cells η 

 
 

Figure 3.3: Graphic of FPcells for not centromere images 
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The expected result was FPcells = 0, but the graphic showed that the number of 

centromere cells found in not centromere images was too high: observing one of the 

images used to obtain this graphic (Figure 3.4 a), it’s possible to note that the first 

version of the algorithm was really influenced by the noise present in the image 

(Figure 3.4 b), as a consequence of an over segmentation. 

 

 
a) 

 
b) 

Figure 3.4. a) Original nucleolar image; b) Segmented image 
 

 

FPimages (the number of images recognized centromeres when the image is not 

centromere) was evaluated for every pattern different from centromere. As example is 

showed in Figure 3.5 the FPimages for nucleolar pattern which was dependent from 

CUT. 
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Finally, to test the segmentation properties of the algorithm, it was depicted for 

centromere images the number of segmented objects (representing the centromeres) 

versus the number of cells in the images (Figure 3.6). Since a centromere cell contains 

from 23 to 46 centromeres, starting with N cells in an image it is expected to visualize 

from N*23 to N*46 segmented objects. Graphics in Figure 3.6 show the 

proportionality region. 

 

 

The graphic in Figure 3.6 a) showed a bad proportionality between the number of 

cells presented in an image and the number of segmented objects and a different 

correlation from that expected; a first explanation probably comes from the presence in 

the images of mitotic cells, labelled by the algorithm as a single object (like a 

centromere) (Figure 3.7 a and b). In fact, as a confirmation of this hypothesis, Figure 

3.6 b) showed the graphic of Figure 3.6 a) obtained without mitotic cells. 

 
Figure 3.5: Graphic of FPimages for nucleolar pattern vs. Cut 

 
           a) 

 

b)  
  

Figure 3.6: Graphic of  nr. of segmented objects vs. nr. cells: a) with mitotic cells; b) without mitotic cells 
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Anyway, mitotic cells cannot be removed from an image because their presence is 

characteristic of centromere patterns. 

Considering this preliminary results, the subsequent modifications to the algorithm 

have concerned the elimination of the randomness from clustering process, the 

upgrade of the properties of segmentation and the noise reduction. 

 

3.1.1 Algorithm revisions 
 

The first problem to deal with was the randomness. As explained in paragraph 2.5, 

the K-means algorithm is an iterative algorithm which starts with a random partition 

selecting c points as initial seeds and assigning the objects to the closest center; then, 

new centers of clusters are calculated according to the equation 2.5.3 and the objects 

are assigned again until a minimum of the objective function is reached. So, 

performances of K-means algorithm depend on initial choice of centroids.  

To overcome this problem a preprocessing phase was implemented. 

The preprocessing phase, constituted, as already explained in paragraph 2.4, by a 

contrast adjustment algorithm followed by morphological operation, allowed to 

automatically underline and count the cells: the centroid of every cell was found and 

used as seed to K-means clustering. 

 
a)  

b) 
 

Figure 3.7: A mitotic cell underlined in: a) Original centromere image; b) The same image after segmentation process 
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To verify if the randomness has been removed, the Sensibility_cells η for 

centromere images was evaluated again, as in Figure 3.2, and the result is shown in 

Figure 3.8: 

 

 
Figure 3.8: Graphic of Sensibility_cells η for a centromere image 

 

 

It is possible to note that the number of centromere cells found on the image is 

constant, so using the position of cells as seeds for the K-means allowed to remove the 

randomness. 

The preprocessing method, with the contrast-limited adaptive histogram 

equalization and the following operations, allowed also to remove the noise in the 

images. In fact, the originally threshold operation on images based on Otsu’s method, 

which chooses the threshold to minimize the intraclass variance of the black and white 

pixels [90], wasn’t able to segment correctly the cells and their centromeres. 
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a) 

 
b) 

  

Figure 3.9: a) Image segmented with Otsu's method; b) Image segmented with CLAHE method 
 

Comparing Figure 3.9a and Figure 3.9b as example of the segmentation with 

Otsu’s method and with CLAHE method respectively, it is possible to note that 

applying CLAHE on an image allows to enhance centromeres and to distinguish better 

mitotic cells. 

It is possible to underline the advantages coming from the revised version of the 

algorithm also by showing the graphic of FPcells obtained for not centromere images: 

representing on the same graph in Figure 3.10 the results obtained with the first 

version of the algorithm and the results obtained with the revised version of the 

algorithm it is possible to note that in the last case the FPcells is near zero as expected. 

 

 
Figure 3.10: Comparison between the FPcells obtained wih the old and the modified algorithm 
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Regarding the segmentation properties of the algorithm, we remember that the 

graphic in Figure 3.6a had showed a bad proportionality between the number of cells 

presented in an image and the number of segmented objects and a correlation different 

from that expected. In the upgrade version of the algorithm, the segmentation method 

was modified: as already explained, the application of the contrast-limited adaptive 

histogram equalization (CLAHE) with the morphological operations (dilation and 

holes filling), allowed to segment correctly the cells and their centromeres. Valuing 

again the number of segmented objects versus the number of cells in an image, we 

obtain the result shown in Figure 3.11. 

 

 
Figure 3.11: Graphic of nr. of segmented objects vs. nr. of cells 

 

The Figure 3.11 shows the expected proportionality between the number of 

segmented objects (the centromeres) and the number of cells in an image. 

  

3.1.2 Tuning phase 
 

The selected database of Table 3. 1 has been also used to extract and tune all useful 

parameters of the algorithm. 

As described in paragraph 2.4, after the contrast adjustment of images and the 

morphological operations, on images objects smaller than a cells are present (Figure 

3.12) coming form segmentation process. 

 

 



Chapter 3                                                                                                    3.1 Preliminary tests 

  61  

 

 
Figure 3.12: Example of image after preprocessing phase: small objects are visible 

 

 

These objects may create many problems in the following phase of the process, 

because they can be erroneously considered like centromeres, so they have to be 

removed. To this purpose, the area (i.e. the number of pixels) of all objects in all 

images was evaluated, obtaining the following plot (Figure 3.13): 

 

 

 
Figure 3.13: Plot of Area of all objects in the images 
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Observing the plot of the values of Area, an Area = 500 px is chosen as threshold: 

regions smaller than this threshold are removed obtaining the image shown in Figure 

3.14 

 
Figure 3.14: Image after the remotion of small objects 

 

 

After the elimination of small objects, from the cells remained in images (see 

Figure 3.14) the eccentricity has been extracted: this parameter is the ratio of the 

distance between the foci of the ellipse having the same second-moments as the region 

and its major axis length. The value is between 0 and 1: an ellipse whose eccentricity 

is 0 is actually a circle, while an ellipse whose eccentricity is 1 is a line segment. The 

eccentricities distribution is shown in Figure 3.15. 
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Figure 3.15: Histogram of eccentricities 

 

 

The mean value of eccentricities with its standard deviation is: 

 

eccentricitymean= (0.74 ± 0.14) 

 

The results suggested that the cells have an ellipsoidal form, so a scalar specifying 

the length (in pixel) of the Major Axis of the ellipse has been extracted from all 

regions. This parameter is used as control parameter for the clustering process: in fact, 

even if a cluster contains the correct number centromeres, its dimension cannot 

overcome that of a centromere cells. 

The distribution of the major axis lengths is showed in Figure 3.16. The mean 

value of major axis lengths, chosen as control parameter, with its standard deviation is: 

 

Major axis lengthmean = (65 ± 30) px 
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Figure 3.16: Histogram of major axis lengths 

 

 

Finally, observing the graph of Sensibility_images ε versus the parameter CUT 

(Figure 3.1), we fixed for the testing phase the parameter CUT = 5. because for highest 

values the Sensibility starts to decrease. 
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3.2 Results and Discussion 
 

After the revision and the tuning processes, it has been possible to test the 

algorithm on the entire dataset acquired thanks to the A.I.D.A. project. Indeed, the 

algorithm has been tested also on the public database present on the 

http://mivia.unisa.it website. 

 

3.2.1 Results of test on A.I.D.A. database 
 

To test the proposed algorithm we used the figures of merit defined in paragraph 

2.6:  

 

Sensibility_images ε = 
images centromere of total

centromere recognized images ofnumber 
 

Sensibility_cells η = 
cells of total

centromere recognized cells ofnumber 
 

FPimages =number of images recognized centromeres (when the image is not 

centromere) 

FPcells = number of cells recognized centromeres (when the image is not 

centromere) 

Accuracy = 
FN FP  TN  TP

TN  TP 

+++
+

 

 

The database for the testing phase contains the following images (Table 3.2): 

 
Table 3.2: List of  images used for the test set 

PATTERN NUMBER OF IMAGES  

Centromere 41 

Coarse Speckled 74 

Fine Speckled 111 

Nuclear Homogeneous 308 
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Few Nuclear Dots 19 

Nucleolar Clumpy 32 

Nucleolar Homogeneous 40 

Nucleolar Speckled 3 

Other  65 

 

 

The recognition of n centromere images over N real centromere images is 

referable to a binomial distribution characterised by a probability p defined as: 

 

N
p

n=  

 

In our case, the probability p is the Sensibility, less than 1, and n is the number of 

centromere images (or cells) correctly selected by the doctor. So, the associated error 

to the expected value n is  

 

)1( pNpn −=σ  
 

 
And then to the Sensibility is associated the error 
 

N

pp
p

)1( −=σ  

 

The value of Sensibility_images, i.e. the number of centromere images correctly 

recognized, is 

 

Sensibility_images ε = 37/41 = (90 ± 5) % 

 

The Sensibility_cells η was evaluated for each centromere image and the result is 

depicted in Figure 3.17. 
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Figure 3.17: Graph of Sensibility_cells for centromere images 

 

 

It is possible to note in Figure 3.17 that the Sensibility_cells values range over an 

interval starting from about 5% to 70%. 

To understand how a different choice of parameter CUT may determine a 

variation in the Sensibility, we show in Figure 3.18 the graph of Sensibility_cells with 

a polygonal going through the value relative to a fixed number (equal to the value of 

CUT) of 5 recognized centromere cells in each image. 

This polygonal allows to separate two regions: the region A, above the polygonal, 

to which belong all the centromere images correctly classified, and the region B, 

below the polygonal, to which belong all the centromere images lost. 

 

 
Figure 3.18: The Sensibility_cells for centromere images with the polygonal relative to 5 recognized centromere cells in each image 
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Then, a variation in the value of parameter CUT may increase or decrease the 

number of centromere images correctly classified and as a consequence the Sensibility 

of the method, as it is possible to understand even thanks to the Figure 3.19 in which it 

is shown directly the number of centromere cells found in each image with the straight 

line correspondent to a CUT = 5, which is the value chosen as threshold for classify an 

image as centromere. 

 

 

 
Figure 3.19: Graphic of the number of recognized centromere cells in each image with the straight line relative to CUT = 5 

 

The values of FPcells for not centromere images are indicated in the Table 3.3. 

 
Table 3.3: Values of FPcells 

PATTERN  FPcells 

Coarse Speckled 69 (on 2095 cells) 

Fine Speckled 38 (on 2012) 

Nuclear Homogeneous 74 (on 8773) 

Few Nuclear Dots 0 (on310) 

Nucleolar Clumpy 0 (on 494) 

Nucleolar Homogeneous 0 (on 909) 

Nucleolar Speckled 0 (on 56) 

Other 157 (2159)  

All 338 (on 16808) 
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The FPimages are evaluated for every pattern different from centromere and for all 

patterns. The results are reported in the Table 3.4: 

 
Table 3.4: Values of FPimages 

PATTERN  FPimages 

Coarse Speckled 3 (on 74 images) 

Fine Speckled 1 (on 111) 

Nuclear Homogeneous 1 (on 308) 

Few Nuclear Dots 0 (on 19) 

Nucleolar Clumpy 0 (on 32) 

Nucleolar Homogeneous 0 (on 40) 

Nucleolar Speckled 0 (on 3) 

Other 6 (on 65) 

All 11 (on 588) 

 

 

The last figure of merit evaluated is the Accuracy for images, whose value is: 

 

Accuracy = (98.0 ± 0.5) %  

 

In which the error is calculated with the formula  

 

N

pp
p

)1( −=σ  

 

 

3.2.1 Results of test on MIVIA public database 
 

The method was tested also on the MIVIA public database, present on the 

http://mivia.unisa.it website, an annotated database of IIF images, acquired using 

slides of HEp-2 substrate at the fixed dilution of 1:80, as explained in Paragraph 2.3. 
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The results of application of the method have been compared with the results of the 

first edition of the HEp-2 Cells Classification Contest held at the International 

Conference on Pattern Recognition in 2012, which focused on Indirect 

Immunofluorescence (IIF) image analysis: 28 different recognition systems able to 

automatically recognize the pattern of cells within IIF images were tested on the same 

undisclosed dataset [93]. In this occasion, the MIVIA database was divided in training 

set and test set according to the Table 3.5, and our proposed method was tested on the 

images belonging to the test set only. 

 

 
Table 3.5: Number of images (cells) for the training set and the test set 

 Training set Test set 

Centromere 3 3 (149) 

Coarse Speckled 2 3 (101) 

Fine Speckled 2 2 (114) 

Homogeneous 3 2 (180) 

Nucleolar 2 2 (139) 

Cytoplasmatic 2 2 (51) 

 

 

The participants to the Contest received the training set with the original images of 

the cells already segmented by specialists. Then, the participants used the training set 

to tune their HEp-2 cells classification system and then they released the executable 

for the independent evaluation on the test set. Finally, they ran all the submitted 

executables on the test set collecting the results. 

Our method instead automatically segments the cells in all images, obtaining the 

same number of cells almost in the same location of that segmented manually by the 

specialists of the Contests, as it is possible to observe in the Figure 3.20. 
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Figure 3.20: Comparison between the position of the cells found by the proposed method and by the specialists 

 

 

Since our method allows to recognize the centromere pattern, only the results of 

the Contest regarding the centromere pattern will be considered in the following. 

To verify the properties of the proposed algorithm the figures of merit 

Sensibility_cells has been evaluated. The figure of merit Sensibility_images has not 

been considered here because the algorithms of the Contest are algorithm of cells 

recognition. Anyway, according to our parameter, our algorithm allows to recognize 

all the centromere images of the test set. 

Moreover, according to the HEp-2 Contest, even the figure of merit Accuracy, 

defined as 

 

Accuracy = 
FN FP  TN  TP

TN  TP 

+++
+

 

 

has been evaluated. 

The value of Sensibility_cells η for centromere images of the test set for our 

algorithm is: 

 

Sensibility_cells η (centromere images) = (66 ± 4) % 
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The Figure 3.21 shows the Centromere cells Sensibility achieved by all the 

considered methods.  

 

 

 

The values of FPcells e FPimages for our algorithm are indicated in the Table 3.6. 

 
Table 3.6: Values of FPcells and FPimages 

 FPcells FPimages 

Coarse Speckled 0 (on 101 cells) 0 (on 3 images) 

Fine Speckled 0 (on 114) 0 (on 2) 

Homogeneous 0 (on 180) 0 (on 2) 

Nucleolar 0 (on 139) 0 (on 2) 

Cytoplasmatic 8 (on 51)  1 (on 2) 

All 8 (on 585) 1 (on 11) 

 

 

The value of Accuracy is: 

Accuracy = (92 ± 1) % 

The Figure 3.22 shows the centromere cells recognition accuracy achieved by all 

the considered methods. 

Sensibility_cells for centromere images
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Figure 3.21: The Centromere cells Sensibility on the test set for all the methods 
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Centromere cells recognition accuracy on the test set
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Figure 3.22: The Centromere cells recognition accuracy on the test set obtained by all the methods 

 

 

It is possible to note that the value of Accuracy obtained by our method is 

comparable with the best results of the contest. It is important underline, however, that 

our method automatically segment and count the cells present in the images, while the 

participants to the contest received the training set with the cells already segmented. 
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Conclusions and perspectives 
 

 

The aim of this study was to develop an automated method of centromere pattern 

recognition to support the IIF diagnosis of autoimmune diseases. The proposed method 

is based on the grouping, through a clustering algorithm, of the fluorescent 

centromeres present on the cells. 

After a phase of preliminary testing useful to show some initial problems, the 

corrected and improved version of the method was tested on the database of IIF 

images collected thanks to the project A.I.D.A. and on a public database present on the 

http://mivia.unisa.it website. 

The performances of our method was evaluated through the following figures of 

merit: 

 

Sensibility_images ε = 
images centromere of total

centromere recognized images ofnumber 
 

Sensibility_cells η = 
cells of total

centromere recognized cells ofnumber 
 

FPimages =number of images recognized centromeres (when the image is not 

centromere) 

FPcells = number of cells recognized centromeres (when the image is not 

centromere) 

Accuracy = 
FN FP  TN  TP

TN  TP 

+++
+
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The results of the test on the A.I.D.A. database showed a Sensibility_images of 

(90 ± 5)%, a Sensibility_cells variable in the interval [5%, 70%], a FPcells of 338/16808 

and a FPimages of 11/588; the value of Accuracy was (98.0 ± 0.5)%. 

The results of the test on the MIVIA database showed a Sensibility_cells of (66 ± 

4) % for all centromere images, a FPcells of 8/585 and a FPimages of 1/11. The value of 

Accuracy was (92 ± 1) %. 

Comparing these results with the results obtained on the same database by the 

participants to the HEp-2 Contest it is possible to note that our method has a 

centromere cells recognition Accuracy comparable with the three best values obtained 

by participants. Indeed, it is important underline that our method allows an automatic 

segmentation and counting of the cells present in the images, while the participants to 

the contest received the training set with the original images of the cells already 

segmented by specialists. 

Moreover, it is important to underline that the proposed method achieved 

encouraging results on AIDA database and on MIVIA database considering only the 

centromeres position as feature for the K-means, i.e., making clusters only in the 

Euclidean space. 

Being based on these considerations, one of the aim of future works will be to 

increase the number of features to further improve the results. 

To make the proposed method suitable for application in a CAD system, it will be 

necessary to test and apply it on pattern different from centromere. One of the next 

application will concern the nucleolar pattern, characterised by large coarse speckled 

staining within the nucleus, from four to six in number per cell. 

Moreover, other classification methods will be tested and compared, like neural 

networks or support vector machines, trying to use them even in parallel to make faster 

the process of pattern recognition. 

 

 



 

  77  

 

 

 

Appendix A: Structure of HEp-2 cells 
 

 

Immunofluorescence patterns seen on individual HEp-2 cells are related to the 

cell cycle. For instance, patterns that are unique to cells in mitosis will be restricted to 

cells in that phase of the cycle. Since most patterns are seen with cells in interphase, 

HEp-2 cells should be largely at this stage. In interphase, the chromosomes form a 

fibrillar network of chromatin, more or less uniformly distributed throughout the 

nucleoplasm and delimited by the nuclear membrane. Only the nucleoli are well 

differentiated. Cytoplasmic organelles and fibrous structures are most visible at this 

stage and tend to largely disappear or change their appearance during mitosis (Figure 

A.1). 

 

 
Figure A.1: The cell during the interphase 
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The nuclear envelope is the membrane that maintains the integrity of the 

nucleoplasm during interphase. The endoplasmic reticulum is an extension of this 

envelope, which projects into the cytoplasm. There are three distinct layers: the 

nuclear lamina, the inner and the outer nuclear membranes. Linked to these are nuclear 

pore complexes and the ribosomes are attached to the rough endoplasmic reticulum. 

Mitosis occurs during 10% - 15% of the cell cycle and is divided into five 

successive phases: prophase, prometaphase, metaphase, anaphase and telophase.  

During prophase, DNA condensation gives rise to the appearance of individual 

chromosomes whilst the nucleolar contents are distributed throughout the 

nucleoplasm. Meanwhile, the mitotic spindle forms around the nucleus and terminates 

at the polar centrioles (or centrosomes). The mitotic spindle is composed of 

microtubules and associated proteins.  

During prometaphase, the nuclear membrane disrupts and then disappears. The 

chromosomes attach to the mitotic spindle via the kinetochores which have formed on 

the chromosome centromeres. 

 

 
Figure A.2: Diagram showing the location of the centromere proteins 

 

Metaphase is characterised by the localisation of condensed chromosomes at the 

equatorial plane of the spindle apparatus through the action of microtubules. 



 

  79  

In anaphase, each pair of chromatids splits at the centromere and the chromatids 

migrate separately to each pole of the spindle. Microtubules disappear at the end of 

anaphase as the chromatids reach opposite poles of the mitotic spindle. 

In telophase the nuclear membrane re-forms around each of the two daughter 

nuclei. The nucleoli reappear and the chromosomes become decondensed in the newly 

re-formed nuclei. 

The centromere pattern is characterised by several discrete speckles distributed 

throughout the interphase nuclei and characteristically found in the condensed nuclear 

chromatin during mitosis as a bar of closely associated speckles. The pattern is 

primarily found in CREST syndrome (Calcinosis, Raynaud's phenomenon, Esophageal 

dysmotility, Sclerodactyly and Telangiectasias), a mild variant of progressive systemic 

sclerosis of which approximately 55% are anti-centromere antibody (ACA) positive. 

The centromere proteins are located at the inner and outer kinetochore plates (Figure 

A.2), which interact with the mitotic spindle apparatus during mitosis. 
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Appendix B: Morphological operations 
 

 

Mathematical morphology is a tool for extracting image components useful in 

representation and description of region shape. The language of mathematical 

morphology is set theory: sets in mathematical morphology are objects of an image. In 

fact, some basic concepts of morphological operation are based on operation coming 

from the set theory. 

The two principal morphological operations are dilation  and erosion. These 

operations are fundamental to morphological processing since many of the 

morphological algorithm are based on these two primitive operations [3]. Dilation 

allows objects to expand, thus potentially filling in small holes and connecting disjoint 

objects (Figure B.1). 

 

 
a)                                                                            b) 

Figure B.1: Example of dilation operation: a) Input image containing broken text; b) Dilated image 

 

Erosion shrinks objects by etching away (eroding) their boundaries (Figure B. 2). 
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a)                                                                   b) 

Figure B. 2: Example of erosion operation: a) original image; b) eroded image 

 

 

These operations can be customized for an application by the proper selection of 

the structuring element, which determines exactly how the objects will be dilated or 

eroded.  

These two basic operations, dilation and erosion, can be combined into more 

complex sequences. The most useful of these for morphological filtering are called 

opening and closing [92]. Opening consists of an erosion followed by a dilation and 

can be used to eliminate all pixels in regions that are too small to contain the 

structuring element, closing consists of a dilation followed by erosion and can be used 

to fill in holes and small gaps (Figure B.3). 

 

 
a)                                                                  b)                                                                          c) 

 
Figure B.3: a) Original image; b) Opening of a; c) Closing of a 

 

The order of operation is important. Closing and opening will generate different 

results even though both consist of erosion and dilation. 

When dealing with binary images, the principal application of morphology is 

extracting image components that are useful in the representation and description of 
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shape. In particular, it is possible to consider morphological algorithm for extracting 

boundaries or for region filling. 

For example, the boundary of a set A can be obtained by first eroding A by a 

suitable structuring element and then performing the set difference between A and its 

erosion. 

An operation of region filling is based on set dilation, complementation and 

intersection. 

The majority of application of morphological concepts involve binary images; 

anyway, it is possible to extend the basic operations of dilation, erosion, opening and 

closing to grey-scale images too. 
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