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Resveratrol—a natural polyphenolic compound—was first discovered in the 1940s. Although initially used
for cancer therapy, it has shown beneficial effects against most cardiovascular and cerebrovascular dis-
eases. A large part of these effects are related to its antioxidant properties. Here we review: (a) the
sources, the metabolism, and the bioavailability of resveratrol; (b) the ability of resveratrol to modulate
redox signalling and to interact with multiple molecular targets of diverse intracellular pathways; (c) its
protective effects against oxidative damage in cardio-cerebro-vascular districts and metabolic disorders
such as diabetes; and (d) the evidence for its efficacy and toxicity in humans. The overall aim of this
review is to discuss the frontiers in the field of resveratrol’s mechanisms, bioactivity, biology, and health-

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Structure and history of resveratrol

Resveratrol—3,4’,5-trihydroxy-trans-stilbene (MW: 228.2)—is a
natural non-flavonoid polyphenol compound containing a stilbene
structure similar to that of estrogen diethylstilbestrol (Fig. 1a). It is
a fat-soluble compound existing in cis, trans-, and piceid isomeric
forms (Fig. 1b). It was first isolated in 1940 from the roots of white
hellebore (Veratum grandiflorum O. Loes) and later, in 1963, from
the roots of Polygonum cupsidatum, a plant used in traditional Chi-
nese and Japanese medicine (Nonomura et al., 1963). Resveratrol
has been in use since ancient times as an Indian herbal preparation
termed ‘Darakchasava’, which is derived from fermented grapes.
Remarkably, the effects described for Darakchasava more than
4500 years ago (Singh et al., 2013) are the same described for
resveratrol today. Today, Darakchasava is produced by several
pharmaceutical companies and contains about 1.3-6.0 mg/L resve-
ratrol (Paul et al., 1999). Despite its ancient discovery, the first real
interest in resveratrol came in 1992 when it was postulated to

* Corresponding author at: Vascular Pathophysiology Unit, IRCCS INM Neuromed,
Pozzilli (IS), Italy. Tel.: +39 0865915229; fax: +39 0865927575.
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explain some of the cardio-protective effects of red wine (Siemann
and Creasy, 1992). It was suggested to be the solution to the
“French Paradox”, a term used to describe the observation that
the French population had a very low incidence of cardiovascular
disease despite a high consumption of wine and saturated fat
(Liu et al., 2007). In 1997, Jang and colleagues reported that resve-
ratrol acts as a chemo-preventive agent, due to its ability to inhibit
carcinogenesis at multiple stages (Jang et al., 1997). More recently,
anti-inflammatory and antioxidant properties have been reported
also (Baur and Sinclair, 2006; Vang et al., 2011), so today it has be-
come a highly important natural active ingredient with potential
therapeutic effects and market prospects.

1.2. Sources of resveratrol

Resveratrol is produced by various plants as a defense against
stress, injury, excessive sunlight, ultraviolet radiation, infection,
and invading fungi (Singh et al., 2013). For example, the roots of
the plant P. cuspidatum, much cultivated in Asia, provides a rich
source of resveratrol from which commercially available trans-res-
veratrol (98% pure) is isolated by high-speed counter-current chro-
matography (Yang et al., 2001). Resveratrol is also considered a
nutraceutical present in grapes, peanuts, pine trees, cassia and
other plants, and many food products (Ramprasath et al., 2010;
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Soleas et al., 1997). In wine, the concentration of resveratrol varies:
red wines contain between 0.2 and 5.8 mg/L, depending upon the
grape variety, whereas white wines contain ~0.68 mg/L (Romero-
Pérez et al., 1999; Sato et al., 1997). This variation derives from
the fact that red wine is extracted with the grape skin intact,
whereas white wine is fermented after removal of the skin. Red
wine contains more trans-resveratrol than white wine, whereas
white has a higher concentration of cis-resveratrol (Feij6o et al.,
2008). Concentrations of resveratrol in some natural foods are
given in Table 1.

1.3. Metabolism of resveratrol

In rats and humans, resveratrol is a molecule involved in the
enterohepatic cycle of metabolism. In particular, after resveratrol
is taken up rapidly by enterocytes, it is metabolized to glucuro-
nide- (3-O-glucuronide and 4’-O-glucuronide) and sulfate-conju-
gates (3-O-sulfate), which are secreted back into the intestine
where they may be deconjugated and reabsorbed or excreted in
the feces (Walle et al., 2004; Marier et al., 2002). The enterohepatic
cycle thus reduces the concentration of the free compound reach-
ing target tissues. So, the low concentration of resveratrol found in
blood is likely explained by this enterohepatic cycle and its rapid
metabolism in the liver. Apart from dihydroresveratrol, the major
metabolites formed are the glucuronide- and sulfate-conjugates,
including disulfates and mixed sulfate-glucuronides (Wang et al.,
2005). Concentrations of these metabolites are reported to be high-
er than resveratrol post-absorption and to have longer half-lives
(Andres-Lacueva et al., 2009; Polycarpou et al., 2013). In fact, the
majority of orally dosed resveratrol is found in urine as sulfate-
or glucuronic acid-conjugates (Singh et al., 2013). In particular,
the proportion of glucuronide- and sulfate-metabolites are re-
ported to change depending on the tissue and species considered
(Juan et al., 2010; Azorin-Ortufio et al., 2011): glucuronide
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Fig. 1. (a) Structure of resveratrol. (b) Structures of trans and cis isomers of
resveratrol and piceid.

Table 1
Resveratrol content in certain natural foods (Prasad, 2012).

Food stuff Concentration range
Grapes 0.16-3.54 ug/g

Dry grape skin ~24.06 nglg

Red grape juice ~0.5 mg/L

White grape juice ~0.05 mg/L

Red wine 0.1-14.5 mg/L
White wine 0.1-2.1 mg/L
Peanuts 0.02-1.92 ng/g
Pistachios 0.09-1.67 pug/g

conjugates are reported to be the main metabolites in rodents,
whereas primarily sulfates are found in humans (Walle, 2011);
moreover, the quantity of glucuronides is higher than sulfates in
rat testes and liver, but not in lung (Juan et al., 2010). As a result,
many authors are beginning to investigate the effects of resveratrol
metabolites on in vitro and in vivo models: for example, resveratrol
3-0-D-sulfate, as well as resveratrol 3-0-D-glucuronide and resve-
ratrol 4-O-D-glucuronide, was found to inhibit cycloxygenase
(COX1 and COX2) (Calamini et al., 2010), whereas 3-O-D-sulfate
and resveratrol 4-O-D-glucuronide were reported to reduce triacyl-
glycerol content in 3T3-L1 adipocytes (Lasa et al., 2012). Recently,
Polycarpou et al. demonstrated that resveratrol glucoronides are
able to arrest the growth of different human colon cancer cells
(Polycarpou et al., 2013). Thus, many of the effects reported for
resveratrol may be due to the action of resveratrol’s metabolites.

1.4. Bioavailability of resveratrol and plasma levels

Many studies have shown that resveratrol, like other polyphe-
nols, has very low bioavailability (Goldberg et al., 2003). The bio-
availability and pharmacokinetics of resveratrol have been
studied in humans and in animal models. In humans, resveratrol
is rapidly taken up after oral consumption of a low dose, with
the plasma resveratrol concentration peaking about 30 min after
consumption (Goldberg et al., 2003); in rats, the plasma half-life
of resveratrol was reported to be 12-15 min after oral administra-
tion (Gescher and Steward, 2003). A study performed by Walle
et al. using '“C-trans-resveratrol (25 mg orally) in humans showed
that 70% of the resveratrol dose was absorbed by the body (Walle
et al., 2004); a similar finding (~50%) was reported for rats (Marier
et al., 2002). The glucuronide- and sulfate-conjugated metabolites
of resveratrol peaked in plasma at 30-60 min post-administration,
with a plasma half-life of 9.2 h. (Walle et al., 2004). In contrast,
only small amounts of unmodified resveratrol (<5 ng/mL) were
detected in plasma in a similar timeframe (Singh et al., 2013). In
another study conducted on mice, rats, and humans, it was shown
that within 24 h after administration of 0.03 mg/kg body weight
(BW) resveratrol, nearly 50% of the resveratrol was excreted in
the urine. However, because <25% of the resveratrol was found in
the urine with a dose of 1 mg/kg BW, these results suggest that res-
veratrol undergoes rapid gastrointestinal absorption in all the
three species studied (Meng et al., 2004).

The amount of resveratrol ingested from dietary sources, such
as red wine and juices, rarely exceeds 5 mg/L and often results in
plasma levels that are either not detectable or several orders of
magnitude below the micromolar concentrations that are
employed in experimentation in vitro, i.e., ~32nM to 100 uM
(Smoliga et al, 2011). For example, administration of about
25 mg resveratrol resulted in plasma concentrations of the free
form that ranged from 1 to 5 ng/mL (Almeida et al., 2009), and
administration of higher doses (up to 5 g) increased the plasma
resveratrol concentration to about 500 ng/mL (Boocock et al.,
2007). The low doses of resveratrol observed in the plasma after
ingestion are very low, as the concentrations used in vitro are not
reached. However, due to its lipophilic character, tissue levels of
resveratrol may be higher than those found in plasma (Timmers
et al., 2012). Nonetheless, some of the biological effects of resvera-
trol are observed at very low concentrations (Waite et al., 2005;
Pearce et al., 2008), bringing forward the idea that resveratrol
exerts its major effects on intestinal tissue, affecting the rest of
the body through secondary effects that are independent of the
plasma levels reached by the compound (Baur et al., 2006). In
rodent models, the doses employed normally range from as low
as 0.1 mg/kg BW to up to 1000 mg/kg BW, with even higher or low-
er doses occasionally being used (Baur et al., 2006). Interestingly,
studies show that the bioavailability of resveratrol can be
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Table 2

Antioxidant activity of resveratrol. The antioxidant molecules and enzymes stimulated by resveratrol are given on the left of the table; enzymes down-regulated by resveratrol are

given on the right.

Antioxidant defense
Sirtuin 1

GTP cyclohydrolase I
Tetrahydrobiopterin

Superoxide dismutase

Catalase

Glutathione peroxidase

Glutathione reductase
Glutathione-S-transferase

Heme oxygenase-1

Nuclear factor (erythroid-derived 2)-like 2

Peroxisome proliferator-activated receptor-y coactivator-1a

Oxidant machinery

NADPH-oxidase
Hypoxanthine/xanthine oxidase
Myeloperoxidase

eNOS uncoupling

enhanced by using more potent resveratrol analogs (i.e. SRT501)
(Howells et al., 2011), by enhancing delivery methods, such as lipo-
somal encapsulation (Narayanan et al., 2009), or by combining it
with piperine, a natural product from black pepper (Piper spp.)
(Johnson et al., 2011).

1.5. Aims of the review

Studies performed in vivo and in vitro have shown that resvera-
trol exerts pleiotropic effects and can prevent or slow the progres-
sion of several pathological conditions, including cardiovascular
and metabolic diseases, ischemic brain injuries, and cancer (Jang
et al,, 1997; Inoue et al., 2003), as well as extend lifespan in differ-
ent organisms and enhance stress resistance (Yang et al., 2013).
The aim of the present review is to highlight the antioxidant effects
of resveratrol, focusing our attention on cardiovascular, cerebral,
and metabolic disorders, such as diabetes, and reporting also the
results of the main clinical trials.

2. Antioxidant properties of resveratrol

A well-documented method for reducing oxidative stress is to
reduce caloric intake by selecting appropriate foods (Nisoli et al.,
2005). It is well known that nutrients, whether water soluble or
lipid soluble, comprise an important aspect of the antioxidant de-
fense system. Beyond their normal occurrence in cells and tissues
of living organisms, free radicals and reactive species are present
in the unhealthy foods that people consume every day, inducing
undesirable reactions like oxidation of lipids, proteins, nucleic
acids, and carbohydrates. An impaired ability to scavenge free rad-
icals and reactive species, as a consequence of decreased levels of
antioxidant cellular defense systems or excessive free-radical pro-
duction, is common in cerebral and cardiovascular diseases in hu-
mans and animals (Alissa and Ferns, 2012).

Resveratrol plays a prominent role among the foods exerting an
antioxidant activity. The main antioxidant activities of resveratrol
are summarized in Table 2 (Rocha et al., 2009; Li et al., 2006; Juan
et al., 2005; Kohnen et al., 2007). The data suggest that resveratrol
exerts its action in different ways: it scavenges reactive oxygen
species (ROS), increasing the activity of enzymes that metabolize
ROS, such as superoxide dismutase (SOD), or decreases the activity
of enzymes that play a role in ROS production.

2.1. Impact of resveratrol on cardiovascular diseases
2.1.1. Effects of resveratrol on lipid peroxidation

Oxidative stress is one of the risks of cardiovascular disease
(CVD), such as atherosclerosis, and is characterized by the

production of free radicals that lead to the oxidation of low density
lipoprotein (LDL) (Kovanen and Pentikainen, 2003; Puca et al,,
2013). It is well known that oxidized LDL accumulates at the site
of atherosclerotic lesions (Ramprasath and Jones, 2010), contribut-
ing to the formation of macrophage foam cells that induce endothe-
lial dysfunction (Mietus-Snyder et al., 2000), a common marker of
CVD. Because it prevents lipid peroxidation, inhibits uptake of oxi-
dized LDL, and inhibits lipoxygenase activity (Maccarrone et al.,
1999; Kovanen and Pentikainen, 2003), resveratrol is a good
candidate for the fight against oxidative stress in atherosclerosis
(Fremont et al., 1999; Leighton et al., 1999; Bhavnani et al., 2001;
Olas and Wachowicz, 2002). Oxidation of LDL cholesterol is strongly
associated with risk of CVD (Holvoet, 2004). In this regard, resvera-
trol was found in rat liver microsomes to inhibit iron-induced, as
well as ultraviolet-irradiated, lipid peroxidation and to prevent
LDL oxidation by copper (Fauconneau et al., 1997; Miura et al,,
2000); moreover, Rocha et al. found a reduction in oxidized LDL
in rats fed on a high fat diet when treated with resveratrol for
45 days at a dose of 1 mg/kg BW/day (Rocha et al., 2009).

Resveratrol also prevents the oxidation of polyunsaturated
fatty acids found in LDL (Miller and Rice-Evans, 1995), inhibits
the oxidized LDL uptake in the vascular wall in a dose-dependent
manner (Fremont, 2000), and prevents damage caused to lipids by
peroxidation (Frankel and Waterhouse, 1993; Leighton et al,,
1999). Its effect was found to be stronger than the well-known
antioxidant o-tocopherol (Frankel and Waterhouse, 1993). The
protective effect of resveratrol against lipid peroxidation was also
found in the heart of rats exposed to low doses of doxorubicin, an
antitumor drug that causes oxidative stress (Dudka et al., 2012),
and in the post-ischemic, re-perfused myocardium of rats (Ray
et al., 1999).

2.1.2. Effects of resveratrol on antioxidant mechanisms protecting
against oxidative cardiovascular pathophysiology

It has been recently demonstrated that resveratrol reduces
endothelial dysfunction in vessel from dyslipidemic patients with
hypertension; this antioxidant action of resveratrol was mediated
by upregulation of manganese superoxide dismutase (Mn-SOD)
via a mechanism dependent upon nuclear factor (erythroid-derived
2)-like 2 (NRF2) (Carrizzo et al., 2013). This finding in humans was
in agreement with experimental models showing that resveratrol
was able to increase Mn-SOD expression in the mouse myoblast
line C2C12 via nuclear translocation and activation of sirtuin 1
(SIRT1), a NAD"-dependent class III histone deacetylase. In obese
rats, Franco et al. found that the activity of both SOD and catalase
(CAT) was increased in plasma by the administration of resveratrol,
preventing oxidative stress and reducing the risk of hypertension
(Franco et al., 2013). Similarly, hepatic expression of SIRT1 and
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Mn-SOD genes was induced in wild-type rats by 0.02% resveratrol
after 4 weeks of treatment (Nakata et al., 2012). The stimulation
of Mn-SOD levels was also reported in cultured cardiomyocytes
and in coronary artery endothelial cells (Movahed et al., 2012; Ung-
vari et al., 2009; Tanno et al., 2010). In human aortic smooth muscle
cells, it increased the expression of heme oxygenase-1 (HO-1),
which degrades pro-oxidant heme to biliverdin/bilirubin, iron,
and carbon monoxide, consequently reducing ROS levels (Juan
et al., 2005). In vascular smooth muscle cell, resveratrol reduced
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
activity induced by angiotensin II, and enhanced SOD activity, pro-
moting a significant decrease in ROS generation (Zhang et al., 2013).
Moreover, resveratrol inhibits the expression of NADPH oxidase in
cardiovascular tissues and reduces O, production from mitochon-
dria (Li et al., 2013). Recently, it has been demonstrated that resve-
ratrol-mediated upregulation of GCH-1 (GTP cyclohydrolase I) and
BH4 (tetrahydrobiopterin) biosynthesis prevents endothelial nitric
oxide synthase (eNOS) uncoupling and reduces ROS production in
the vasculature (Carrizzo et al., 2013).

Xanthine oxidase has been shown to be an important source of
oxidant production in vascular endothelium (Saban et al., 2013)
and also a contributing factor to oxidative stress during strenuous
exercise. On this issue, has been demonstrated that resveratrol
inhibits hypoxanthine/xanthine oxidase in mice, reducing ROS
generation (Ryan et al., 2010). Moreover, it has been reported that
resveratrol treatment decreases ROS levels in high-capacity run-
ner rats especially in endurance racing: in particular, it increased
the aerobic performance and upper-limb strength of these rats.
This beneficial effect is mediated by enhanced mitochondrial bio-
genesis, with activation of the AMPK-SIRT1-PGC-1a pathway
(Hart et al., 2013). Also, resveratrol inhibited oxidative stress
in vivo by scavenging ROS and attenuating peroxyl radicals,
hydrogen peroxide (H0,), and superoxide radical (~'0,) (Liu
et al., 2003; Chen et al., 2004). In rat pheochromocytoma (PC12)
cells, which are characterized by a high level of catecholamines,
1-100 mmol/L resveratrol inhibited production of ROS (Jang and
Surh, 2001).

Resveratrol has also been shown to inhibit ~'0, and H,0, pro-
duced in murine macrophages stimulated by lipopolysaccharides
(LPS) or phorbol esters (Martinez and Moreno, 2000). In embryonic
rat cardiac cells, it prevented mitochondrial damage induced by
H,0, (He et al., 2012). Moreover, resveratrol activates an important
survival signal pathway consisting in A; and As; adenosine recep-
tor-mediated activation of the PI3BK-AKT pathway and the cAMP
response element-binding protein (CREB), promoting upregulation
of Bcl-2 and, hence, protecting cardiac tissue from cell death (Li
et al,, 2012).

In human platelets, resveratrol significantly lowers the levels
of thiol proteins (Olas et al., 2004). It also hampers platelet
aggregation and activation: phytoalexin seems to inhibit the
interaction of platelets with collagen and thrombin in vitro in iso-
lated platelets and in animal models. The mechanism remain un-
clear, but it seems that inhibition of prostaglandin H synthase 1
and cyclooxygenase-1 over COX2 represent possible mechanisms
for the anti-platelet aggregation effect of resveratrol (Borriello
et al,, 2010).

In a wide variety of cells, such as myeloid, lymphoid, and epi-
thelial cells, resveratrol has been shown to prevent the production
of ROS induced by tumor necrosis factor (TNFo) (Manna et al,,
2000). In aortic endothelial cells, resveratrol (100 nM) was found
to prevent TNFa-induced oxidative stress through a reduction in
NADPH oxidase activity and the production of H,0, and -0,
(Vecchione et al., 2009a,b). Recently, Wang et al. demonstrated
that resveratrol decreases apoptosis induced by oxidative stress
in vascular adventitial fibroblasts of rats treated with TNF-a, acting
by activating SIRT1 (Wang et al., 2013).

Other mechanisms through which resveratrol has been sug-
gested to exert CVD-preventing antioxidant effects are:

(a) competition with coenzyme Q, decreasing oxidative chain
complex IIl, and increasing endogenous antioxidants and
phase 2 enzymes in rat cardiomyocytes (Cao and Li, 2004);

(b) antioxidant effects against linoleic acid peroxidation in

sodium dodecyl sulfate and cetyltrimethylammonium bro-

mide micelles (Fang et al., 2002; Fang and Zhou, 2008);

maintenance of glutathione levels in oxidatively stressed

human peripheral blood mononuclear cells, and elevation
of glutathione levels in human lymphocytes activated by

H,0, (Losa, 2003; Olas et al., 2004). A strong dose-depen-

dent induction of antioxidant genes was demonstrated

when rats were supplemented with 0.3, 1, and 3 g/kg BW/

day resveratrol for 28 days (Hebbar et al., 2005);

interaction with AMP-activated protein kinase (AMPK) in

diabetic LDL-receptor-deficient mice (Zang et al., 2006),

and PPARy coactivator (PGC)-1or in mouse cardiac tissue

(Lagouge et al., 2006);

reduction in the rate of cytochrome C oxidation by hydroxyl

radicals (Turrens et al., 1997). Jiian et al. reported that resve-

ratrol significantly reduced cytochrome C protein levels in
the heart tissue of rats subjected to trauma-hemorrhage;
the authors suggest that resveratrol may be important for
mitochondrial membrane integrity, leading to a reduction
of ROS generation (Jian et al., 2012)

(c

~

(d

—

—~
m
~—

2.1.3. Effects of resveratrol on nitric oxide metabolism

Nitric oxide (NO) plays a critical role in maintaining cardiovas-
cular homeostasis (Dudzinski et al., 2006; Dudzinski and Michel,
2007; Puca et al,, 2012). In the vasculature, NO is constitutively
synthesized by eNOS and acts by relaxing vascular smooth muscle
cells and upregulating blood flow, and so prevents thrombogenic
and atherogenic processes. It has been demonstrated both
in vitro and in vivo that resveratrol is involved in NO metabolism.
For example, 30 uM resveratrol inhibited the contractile response
to phenylephrine in isolated rat aorta (Chen and Pace-Asciak,
1996). Similarly, 70 pM resveratrol caused relaxation of isolated
human saphenous vein and internal mammary artery rings (Rakici
et al.,, 2005), and relaxed porcine arterial rings pre-contracted with
KCI (Li et al., 2006). In those studies, the inhibitory effect of resve-
ratrol was reversed by removal of the endothelium or by inhibition
of eNOS. Orallo et al. reported that resveratrol (1-30 nM) relaxed
the contractile response of rat aortic rings to phenylephrine and
KCI in an NO-dependent manner (Orallo et al., 2002); however, it
was suggested that resveratrol does not affect eNOS activity, but
instead inhibits NADH/NADPH oxidase, with a decreased reduction
in superoxide generation, leading to improved NO bioavailability.
Resveratrol rapidly increased NO production in cultured endothe-
lial EA.hy926 cells, although at a high concentration (10 pM)
(Wallerath et al., 2002). In bovine aortic endothelial cells, 100
nM resveratrol for 15 min was found to increase NO production
through phosphorylation of AKT, extracellular signal-regulated Kki-
nase (ERK)1/2, and eNOS (Wang et al., 2011). Klinge et al. proposed
that resveratrol increases NO production through membrane estro-
gen receptors (ERs) in bovine aortic cells, human umbilical vein
cells, and human microvascular endothelial cells (Klinge et al.,
2005, 2008) by rapid activation of Src and ERK1/2, leading to eNOS
activation. However, as demonstrated by studies on isolated por-
cine coronary arteries (Li et al., 2006) and murine endothelial f-2
cells (Takahashi et al., 2009), ER antagonists do not inhibit resvera-
trol-stimulated NO production.

Wallerath et al. reported that the treatment of cultured endo-
thelial cells with resveratrol (10-100 pum) for 24-72 h upregulated
eNOS mRNA and protein expression levels, resulting in increased
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production of NO (Wallerath et al., 2002; Conti et al., 2012). Simi-
larly, other studies confirmed that high concentrations of resvera-
trol significantly enhanced eNOS gene expression and enzyme
activity, and hence NO production, in in vitro assays (Rathel
et al., 2007; Appeldoorn et al., 2009). In contrast, Nicholson et al.
(Nicholson et al., 2010) reported that exposure of HUVECs to nano-
molar concentrations of resveratrol for 24 h increased the eNOS
mRNA level, although eNOS protein and NO production were not
affected. In the same cell line, Takahashi et al. demonstrated that
50 nM resveratrol did not alter the eNOS protein level or NO pro-
duction after 24 h of treatment, whereas daily treatment for 5 days
significantly increased both eNOS protein and NO production with-
out producing any cytotoxic effects (Takahashi and Nakashima,
2011). Resveratrol also increased the synthesis of NO in ischemic
re-perfused rat tissue (Hattori et al.,, 2002) and preserved eNOS
phosphorylation in diabetic type 2 (db/db) mice (Zhang et al.,
2009).

3. Impact of resveratrol on cerebrovascular diseases

Many studies have reported that the central nervous system is
targeted by resveratrol. This compound is in fact able to pass the
blood-brain barrier (Baur et al., 2006). Regarding its radical-scav-
enging activity, structural studies demonstrated that the hydroxyl
group at the 4’ position of resveratrol is much easier to subject to
oxidation than other hydroxyl groups in the antioxidant reaction
(Caruso et al., 2004). Intraperitoneal administration of resveratrol
exerted neuroprotective effects, upregulating several endogenous
antioxidant enzymes, such as SOD and CAT, in the brain of healthy
rats (Mokni et al., 2007). Regarding the various isoforms of SOD,
SOD2 plays a more important role against oxidant-induced mito-
chondrial oxidative stress and cytotoxicity in neuronal cells (Vin-
cent et al., 2007). Fukui et al. demonstrated in HT22 neural cells
that the neuroprotective effect of resveratrol after glutamate-in-
duced cytotoxicity is largely independent of its direct antioxidant
activity; rather, this effect was mediated by induction of SOD2
expression via activation of the PI3K-AKT-GSK-3B-B-catenin sig-
naling pathway (Fukui et al., 2010). In rats, prolonged administra-
tion of resveratrol improved colchicine-induced cognitive
impairment, reduced malondialdehyde—an indicator of lipid per-
oxidation and nitrite levels—and restored depleted glutathione
(GSH), a ROS scavenger (Kumar et al., 2007).

It is interesting that resveratrol might be involved in the atten-
uation of neuroinflammatory responses because it is able to reduce
the concentration of 8-iso-prostaglandin F2«, an indicator of free-
radical generation in rat microglia (Candelario-Jalil et al., 2007). It
has also be shown that resveratrol inhibits COX1, but does not af-
fect the expression of COX2 (Davinelli et al., 2012). Since nuclear
factor-kp (NF-kB) signaling activation also plays an important role
in neurodegeneration, a link between Alzheimer’s Disease (AD) and
the neuroprotective activity of resveratrol is its ability to reduce, in
cultured rat astroglioma C6 cells, the expression of genes modu-
lated by NF-kB, such as inducible nitric oxide synthase (iNOS),
prostaglandin E2 (PGE2), as well as cathepsin and NO (Kim et al.,
2006). Resveratrol also attenuates LPS-stimulated NF-kf activation
in primary murine microglia and astrocytes, suggesting that the
inflammatory responses induced by LPS could be limited by resve-
ratrol (Lu et al., 2010).

In experimental models of stroke, Sinha et al. have shown a sig-
nificant attenuation of malondialdhehyde and reduced GSH in the
rat middle-cerebral-artery occlusion model after 21 days of treat-
ment with 20 mg/kg BW trans-resveratrol (Sinha et al., 2002).
Moreover, resveratrol significantly decreased oxidative stress
markers, including serum glycated albumin and urinary hydrox-
yguanosine, in stroke-prone spontaneously hypertensive rats

(Mizutani et al., 2001). Also, studies performed on ischemia-reper-
fusion models have demonstrated that resveratrol inhibits peroxi-
some proliferator-activated receptors alpha (PPARx) (Inoue et al.,
2003) and reduces NF-kB p65 expression (Wang et al., 2003).

3.1. Resveratrol and SIRT1

Several studies have attributed resveratrol the capacity to stim-
ulate the activity of SIRT1 (Alcain and Villalba, 2009). Conse-
quently, resveratrol administration appears to mimic caloric
restriction (Baur et al., 2006). A calorie-restricted diet has been
demonstrated to attenuate AD pathogenesis through an increase
in SIRT1 activity in a mouse model of AD (Saiko et al., 2008), and
also to reduce p-amyloid (AB) deposition and Ap-associated neuro-
pathology in different animal models (Wang et al., 2005; Patel
et al., 2005; Gentile et al., 2009). Kim et al. showed in a transgenic
AD mouse model that resveratrol reduced neurodegeneration
through a decrease in the acetylation of known SIRT1 substrates,
for example peroxisome-proliferator-activated receptor gamma
coactivator alpha (PGC-1«) and p53 (Kim et al., 2006). Resvera-
trol-activated SIRT1 also reduced amyloid neuropathology in the
brains of Tg2576 mice and protected cells against Ap-induced
ROS production (Kelsey et al., 2010). Taking into account that res-
veratrol can be considered a neuroprotective compound in the con-
text of AD, it can be speculated that the ability to counteract Ap
toxicity is due to its antioxidant properties, but also due to SIRT1
activation.

The anti-amyloidogenic activity of resveratrol has been re-
ported in several studies: for example, Riviere et al. showed that
more than other stilbenes, resveratrol inhibits f-amyloid peptide
polymerization in vitro, even though its anti-amyloidogenic mech-
anism remained unknown (Riviére et al., 2007). As illustrated by
Marambaud and colleagues, resveratrol promotes clearance of
intracellular Ag by activating proteasomal degradation (Maram-
baud et al., 2005). Moreover, SIRT1 overexpression reduces Ap
pathology in APP-expressing neuronal cultures by delaying Ap syn-
thesis (Marambaud et al., 2005; Tang and Chua, 2008). Feng et al.
demonstrated that resveratrol disrupts Ap hydrogen binding, pre-
venting fibril formation by destabilizing preformed fibrils without
affecting oligomerization (Feng et al., 2009). Furthermore, studies
have shown that the protective effects of resveratrol on p-amy-
loid-induced toxicity are related to activation of PKC or AMPK
(Han et al., 2004; Karuppagounder et al., 2009).

3.2. Resveratrol and Nrf2

NRF?2 is a key regulator of cellular antioxidant responses and ap-
pears to be a good candidate for neuroprotection in AD. In fact,
NRF2 regulates the expression of genes encoding antioxidant and
detoxifying proteins, such as glutathione S-transferase (GST), glu-
tathione synthetase (GSS), HO-1, and NAD(P)H-quinone oxidore-
ductase (Scapagnini et al., 2011). Under basal conditions, NRF2 is
sequestered in the cytoplasm by Kelch-like ECH-associating pro-
tein 1 (KEAP1), which facilitates its polyubiquitylation and protea-
some-mediated degradation. KEAP1 functions as a sensor of stress
signals. Exposure to oxidants disrupts the KEAP1-NRF2 complex,
stabilizing NRF2 and allowing it to accumulate in the nucleus.
NRF2 activates the transcription of its target genes via antioxidant
response elements (AREs) in their promoter regions, binding as a
heterodimer with members of the Maf and Jun families (Davinelli
et al., 2012). To date, only few studies have shown that the activa-
tion of NRF2 and of its antioxidant genes by resveratrol treatment
is sufficient to protect against AD. However, Chen et al. reported
that resveratrol is able to increase the expression of HO-1 and
GSH, protecting PC12 cells from oxidative stress via activation of
the NRF2-ARE signaling pathway (Chen et al., 2005), which does
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suggest a potential for the treatment of AD. Similarly, resveratrol
was able to induce HO-1 in primary neuronal cultures, presumably
through the activation of NRF2 (Zhuang et al., 2003). The neuropro-
tective actions of HO-1 are attributable to the formation of biliver-
din and bilirubin during heme degradation, both of which can
serve as ROS scavengers (Otterbein and Choi, 2000; Stocker et al.,
2000). In conclusion, NRF2 is an attractive target for the discovery
of natural neuroprotective agents, such as resveratrol.

4. Impact of resveratrol on diabetes

It has been proposed that oxidative stress caused especially by a
sedentary lifestyle and an unhealthy diet is an important risk factor
for the development of diabetes. Some studies have proposed res-
veratrol as a possible candidate for diabetes prevention.

4.1. Resveratrol and NAD(P)H oxidase

Activation of NAD(P)H oxidase contributes to vascular oxida-
tive stress in experimental diabetes (Vecchione et al., 2006). In
particular, TNFo-mediated activation of NAD(P)H oxidase is
mainly responsible for the generation of the oxidative stress
encountered in the coronary microcirculation in type 2 diabetes
(Gao et al., 2007; Vecchione et al., 2007). The ~'0, derived from
NAD(P)H oxidase can be dismutased to produce H,0O, (Papa and
Skulachev, 1997) or can be the cause of nitrative stress: in fact,
the interaction of O, with NO produces peroxynitrite, which
leads to protein tyrosine nitration generating nitrotyrosine, an
index of reactive nitrogen species; it also reduces NO bioavailabil-
ity, causing endothelial dysfunction (Shah and Channon, 2004).
Increased nitrotyrosine stress and peroxynitrite formation are
associated with diabetes development, as demonstrated in vari-
ous studies (Pacher et al., 2007; Frustaci et al.,, 2000; Pacher
and Szabo, 2006). For example, nitrotyrosine content was found
to be high in microvasculature endothelial cells of diabetic
patients (Ceriello et al., 2002). In the aorta of diabetic mice,
resveratrol was found to downregulate NAD(P)H oxidase expres-
sion, and thus contributed to a reduction in ~'O, production
(Zhang et al., 2009). Aortic nitrotyrosine protein and H,0, levels
also attenuate after treatment with resveratrol (Zhang et al.,
2009). In type 2 diabetic mice, Kitada et al. demonstrated that
resveratrol normalized Mn-SOD activity, through a reduction in
tyrosine-nitrate modifications and decreased urinary 8-hydroxy-
2’-deoxyguanosine (8-OHdG), a marker of oxidative stress, and
0, levels (Kitada et al., 2011).

4.2. Resveratrol and nuclear factor-kB

Hyperglycemia—the hallmark of diabetes—can also induce
oxidative stress via several pathways that converge on NF-kp,
the activation of which in turn contributes to a further enhance-
ment of pro-inflammatory cytokines, oxidative stress, and apop-
tosis (Kern, 2007; Singh et al., 2011). In this context, resveratrol
was demonstrated to produce several anti-diabetic effects, such
as reduction of circulatory pro-inflammatory cytokines, inhibi-
tion of apoptosis, and concomitant enhancement of antioxidant
defenses (Lee et al., 2011; Palsamy and Subramanian, 2010;
Sharma et al., 2009, 2011; Zhang et al., 2010). It has been docu-
mented that short-term treatment of diabetic subjects with
resveratrol inhibited the activation of NF-kB at transcriptional
or post-transcriptional levels (Lee et al., 2009; Zhang et al.,
2010). Resveratrol may attenuate the inflammatory process
through a reduction of oxidative damage and NF-kp activity
(Kubota et al., 2009).

4.3. Resveratrol and oxidative markers

Oxidation of glucose is another mechanism occurring in
diabetes (Maritim et al., 2003). Proteins such as hemoglobin and
antioxidant enzymes can be glycate in the presence of a high con-
centration of oxidated glucose. This leads to a reduction in detox-
ification of ROS, resulting in lipid-, protein-, and DNA-peroxidation,
and, finally, apoptosis (Rains and Jain, 2011). Glycated hemoglobin
(HbA1c) is a good marker for diagnosis and prognosis of complica-
tions in diabetes, such as retinopathy, nephropathy, and neuropa-
thy (Howlett and Ashwell, 2008). For example, it was shown that
reduction of HbA1c by only 1 unit (8-7%) can reduce the risk of ret-
inopathy by over 30% (Kowluru and Chan, 2007). Four months of
resveratrol supplementation was found to reduce HbA1lc levels in
diabetic rats (Soufi et al., 2012).

Another good marker of oxidative and antioxidant homeostasis
is 8-isoprostane (8-iso-prostaglandin F2a), a product of the oxida-
tion of arachidonic acid present in phospholipids (Morrow et al.,
1995). It was reported that plasma levels of 8-isoprostane in-
creased with diabetes-induced lipid peroxidation and oxidative
stress (Ndisang et al., 2010; Salim et al., 2010). Moreover, retinal
8-isoprostane increased during hypoxia-induced retinopathy
(Kimura et al., 2007), and resveratrol reduced 8-isoprostane levels
in blood and retinal tissue of normal and diabetic rats, demonstrat-
ing that resveratrol has a strong antioxidant effect and attenuates
oxidative stress (Soufi et al., 2012).

In diabetes, the attenuation of oxidative stress reduces the level
of activated caspases and, thus, reduces apoptosis. In fact, resvera-
trol was found to modulate embryonic oxidative stress and apop-
tosis in diabetic pregnancy: in particular, it reduced oxidative
stress by restoring the level of reduced glutathione, total thiol, lipid
peroxidation, and 4-hydroxy-2-non-enal (HNE) in diabetic dams
(Singh et al., 2013).

5. Toxicity of resveratrol

Many studies have investigated the toxic effect of resveratrol.
Most of the data available, both in human and in animal models,
suggest that resveratrol does not have a significant toxic effect in
the wide range of concentrations tested (Ramprasath and Jones,
2010). For example, no toxic effects were found in rats after oral
administration of 20 mg/kg BW/day for 28 days, a dose higher than
that produced by one glass of red wine per day (Juan et al., 2002).
Moreover, no toxic effects were observed in rats given a supple-
mentation of 300 mg resveratrol/day for 4 weeks. In humans, Boo-
cock et al. found no toxicity after administration of a single dose of
up to 5 g resveratrol (Boocock et al., 2007). In addition, clinical, bio-
chemical, and hematological indices revealed no serious toxic ef-
fects in 44 healthy volunteers (10-12 per group) administered
resveratrol for 29 days at a daily dose of 0.5, 1.0, 2.5, or 5.0¢g.
(Brown et al., 2010). However, adverse effects found in 28 partici-
pants were considered possibly due to resveratrol: common symp-
toms were gastrointestinal in nature, particularly diarrhea, nausea,
and abdominal pain, at a dose of 1g. Typically, gastrointestinal
symptoms occurred ~1 h after administration, and improved dur-
ing the course of the day. However, all the events were graded as
mild, according to the National Cancer Institute Common Termi-
nology Criteria for Adverse Events (CTCAE) (Ramprasath and Jones,
2010). Based on the these findings, the authors suggested that daily
doses of resveratrol for subsequent clinical evaluation should not
exceed 1 g. (Brown et al., 2010). Chow et al. reinforced those find-
ings and demonstrated that 1 g resveratrol taken once daily for
4 week was generally well tolerated in healthy participants (Chow
et al., 2010): all the reported adverse events were CTC grade 1 or 2,
with many being mild and transient. The frequency of the side
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Table 3

Summary of clinical trials on antioxidant effects of resveratrol. |, downregualtion; 1, upregulation.

References Sample population Resveratrol dose Duration Molecular-level effects
Ghanim et al. (2010) 20 healthy adults 40 mg 6 weeks | ROS 1 TNF-o
| P47(phox)
| NFxB 1 IL-6
1 JNK-1, 17 CRP
| PTP-1B 1 SOCS-3
Ghanim et al. (2011) 4 healthy men and 6 women 100 mg + 75 mg grapeskin 1 week | ROS 1 Nrf-2
| TLR-4 1 NQO-1
polyphenols 1 CD14 1 GST-P1
L IL-1B
| SOCS-3
Brasnyo et al. (2011) 19 diabetic men 5 mg twice daily 4 weeks, | ROS 1 pAk
Timmers et al. (2011) 11 healthy obese men 150 mg twice daily 30 days | glucose 1 AMPK
| insulin 1 SIRT1
| ROS 1 PGCla
Bo et al. (2013) 50 healthy adult smokers 500 mg 30 days | ROS
| CRP
TG
The biological effects of resveratrol
SoD
Heme oxygenease 1
Catalase
. SIRT-1
COX expression -] Nitric oxide
NF-ké % AKT-phosphorylation
NADPH-oxidase a NRF-2
Hypoxanthine/xanthine oxidase = AMPK
Myeloperoxidase GSH-Px
CRP LDL oxidation Glutathione reductase

Platelet adhesion

Glutathione-S-transferase

B8-amyloid polymerization

reduce

Cardiovascular, Neurological and Metabolic disorders

Fig. 2. Representative scheme of the biological effects recruited by resveratrol and their involvement in cardiovascular, metabolic and cerebrovascular diseases.

effects experienced was consistent with that observed in a trial de-
scribed by Brown et al. (Brown et al., 2010) and in shorter-term
studies involving fractionated daily doses (la Porte et al., 2010; Al-
meida et al., 2009; Nunes et al., 2009).

Finally, it is important to underline that resveratrol can exhibit
pro-oxidant activities in the presence of transition metal ions, such
as copper, leading to oxidative breakage of cellular DNA (de la Las-
tra and Villegas, 2007).

6. Clinical trials on the antioxidant effects of resveratrol

To date, only a small number of clinical trials on the antioxidant
effects of resveratrol have been reported. The most significant
clinical trials are summarized in Table 3. Ghanim et al. (2010)
investigated the effects of resveratrol on different markers of
inflammation and oxidative stress in a randomized placebo-
controlled trial: the study was performed on 20 healthy adults

receiving a 200 mg P. cuspidatum extract supplement containing
40 mg of resveratrol, for 6 weeks. Resveratrol did not alter fasting
plasma concentrations of cholesterol (total, LDL, and HDL), triglyc-
erides, or leptin compared with placebo. However, the treatment
reduced ROS levels, TNFa, and IL-6, and suppressed NF-kB in
mononuclear cells. Additionally, C-reactive protein (CRP)—another
important marker of inflammation—was significantly reduced.
Ghanim et al. also conducted a separate crossover placebo-con-
trolled trial on 10 healthy humans fed with a high-fat, high-carbo-
hydrate meal (Ghanim et al, 2011). The 100 mg resveratrol
supplementation used significantly increased NRF2-binding activ-
ity following the meal, and significantly increased mRNA expres-
sion of important antioxidant enzymes, such as the NAD(P)H
dehydrogenase [quinone] 1 (NQO-1) and glutathione S-transferase
p1l (GST-p1). Resveratrol also attenuated the postprandial rise in
cluster of differentiation 14 (CD14), IL-1B mRNA, and toll-like
receptor 4 (TLR4) protein in mononuclear cells, while also
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decreasing plasma endotoxin. These data suggest strong antioxi-
dant and anti-inflammatory effects of resveratrol in response to
the high-fat, high-carbohydrate meal and a potential use in
reducing the risk of atherosclerosis and diabetes.

Interestingly, in a randomized double-blind placebo-controlled
crossover study, 5mg trans-resveratrol supplementation given
twice daily for 4 weeks improved insulin sensitivity and lowered
blood glucose levels, delaying its peak (Brasnyo et al., 2011).
Among the mechanisms suggested to exert these beneficial effects,
the authors indicated decreased oxidative stress and increased AKT
phosphorylation.

The metabolic effects of resveratrol have also been studied in
obese men (Timmers et al., 2011): supplementation with 75 mg
resveratrol for 30 days reduced sleeping- and resting-metabolic
rate in the absence of body weight changes; moreover, resveratrol
increased SIRT1 protein levels in muscle and reduced blood inflam-
mation markers.

Finally, Bo et al. evaluated the effects of resveratrol on healthy
smokers: they found that 500 mg resveratrol for 30 days signifi-
cantly increased total antioxidant status values (Bo et al., 2013).
The authors suggested that resveratrol may reduce the risk of car-
diovascular diseases in smokers.

7. Conclusion and recommendations

In this review, we have focused our attention on the antioxidant
effects of resveratrol and on its molecular mechanisms. The neu-
tralization of free radicals prevents the activation of redox-sensi-
tive molecules involved in the modulation of biological process,
such as cell cycle and mitochondrial biogenesis, and of a wide
range of chronic diseases, including cardiovascular, neurological,
and metabolic disorders (Fig. 2). It is necessary to underline that
all antioxidant substances must be used at the proper dose, since
high concentrations may induce undesirable effects, such as
non-specific reactions with proteins, and decrease antioxidant
properties. Although a beneficial “in vitro” antioxidant effect of
resveratrol on vessels from patients showing vascular dysfunction
is well defined, further clinical trials need to determine resvera-
trol’s mechanism of action, its safety, and its toxicology. In the light
of existing data, it is clear that grapes—and wine—should be con-
sidered an integral component of fruit- and vegetable-enriched
diets that are recommended by health authorities and widely
accepted as beneficial for human health and disease prevention.
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List of abbreviations

-0, Superoxide anion

8- OHdG

8- hydroxy-2’-deoxyguanosine

AMPK 5 adenosine monophosphate-activated protein
kinase

AREs Antioxidant response elements

Ap Beta amyloid

BBB Blood-brain barrier

Bcl-2 B-cell lymphoma 2

BH4 Tetrahydrobiopterin

BW Body weight

CAT Catalase

CD14 Cluster of differentiation 14
COX Cycloxigenase

CREB cAMP response element-binding protein

CRP C-reactive protein

CTCAE Common Terminology Criteria for Adverse Events
CVD Cardiovascular diseases

eNOS Endothelial nitric oxide synthase

ER Estrogen receptors

ERK Extracellular signal-regulated kinase

GCH-1  GTP cyclohydrolase I

GSH Reduced glutathione
GSK-3B  Glycogen kinase 3 beta
GSS Glutathione synthetase
GST Glutathione S-transferase

GST-p1 Glutathione S-transferase p1
H,0, Hydrogen peroxide
HbAlc Glycated hemoglobin

HCR High capacity runner
HDL High density lipoprotein
HNE 4-hydroxy-2-non-enal
HO-1 Heme oxygenase-1

IL-6 Interleukin 6

iNOS Inducible nitric oxide synthase
Keapl Kelch-like ECH-associating protein 1
LDL Low density lipoprotein
LPS Lipopolysaccharides
Mn- Manganese superoxide dismutase
SOD
NADPH Reduced nicotinamide adenine dinucleotide
phosphate
NF-kB  Nuclear factor-kp
NO Nitric oxide
NQO-1 NAD(P)H dehydrogenase [quinone] 1
NRF-2  Nuclear factor (erythroid-derived 2)-like 2
PGC- Peroxisome-proliferator-activated receptor gamma

1a coactivator o

PGE2 Prostaglandin E2
PI3K Phosphatidylinositide 3-kinases
PKC Protein kinase C
PPAR Peroxisome proliferator-activated receptors
ROS Reactive oxygen species
SIRT-1  Sirtuin-1 NAD*-dependent class III histone
deacetylases
SOD Superoxide dismutase
TAS Total antioxidant status
TLR4 Toll-like receptor 4
TNF-oo  Tumor necrosis factor alpha
References

Alcain, FJ., Villalba, ].M., 2009. Sirtuin activators. Expert Opin. Ther. Pat. 19 (4), 403-
414.

Alissa, E.M., Ferns, G.A., 2012. Functional foods and nutraceuticals in the primary
prevention of cardiovascular diseases. ]. Nutr. Metab. 2012, 569486.

Almeida, L., Vaz-da-Silva, M., Falcao, A., Soares, E., Costa, R., Loureiro, Al,
Fernandes-Lopes, C., Rocha, J.F., Nunes, T., Wright, L., Soares-da-Silva, P., 2009.
Pharmacokinetic and safety profile of transresveratrol in a rising multiple-dose
study in healthy volunteers. Mol. Nutr. Food. 53 (1), S7-S15.

Andres-Lacueva, C., Urpi-Sarda, M., Zamora-Ros, R., Lamuela-Raventos, R.M., 2009.
In: Fraga, C.G. (Ed.), Plant Phenolics and Human Health: Biochemistry, Nutrition
and, Pharmacology. pp. 265-299.

Appeldoorn, M.M., Venema, D.P., Peters, T.H., Koenen, M.E., Arts, .C.W., Vincken, J.P.,
Gruppen, H., Keijer, J., Hollman, P.C., 2009. Some phenolic compounds increase
the nitric oxide level in endothelial cells in vitro. J. Agric. Food Chem. 57, 7693-
7699.

Azorin-Ortuiio, M., Yafiez-Gascon, M.]., Vallejo, F., Pallarés, F.J., Larrosa, M., Lucas, R.,
Morales, J.C., Tomds-Barberan, F.A., Garcia-Conesa, M.T., Espin, J.C., 2011.
Metabolites and tissue distribution of resveratrol in the pig. Mol. Nutr. Food
Res. 55 (8), 1154-1168.

Baur, J.A., Sinclair, D.A., 2006. Therapeutic potential of resveratrol: the in vivo
evidence. Nat. Rev. Drug Discov. 5, 493-506.



A. Carrizzo et al./Food and Chemical Toxicology 61 (2013) 215-226 223

Baur, J.A., Pearson, KJ., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., Prabhu, V.V.,
Allard, J.S., Lopez-Lluch, G., Lewis, K., Pistell, P.J., Poosala, S., Becker, K.G., Boss,
0., Gwinn, D., Wang, M., Ramaswamy, S., Fishbein, KW., Spencer, R.G., Lakatta,
E.G., Le Couteur, D., Shaw, R/J., Navas, P., Puigserver, P., Ingram, D.K., de Cabo, R.,
Sinclair, D.A., 2006. Resveratrol improves health and survival of mice on a high-
calorie diet. Nature 444, 337-342.

Bhavnani, B.R., Cecutti, A., Gerulath, A., Woolever, A.C., Berco, M., 2001. Comparison
of the antioxidant effects of equine estrogens, red wine components, vitamin E,
and probucol on low-density lipoprotein oxidation in postmenopausal women.
Menopause 8, 408-419.

Bo, S., Ciccone, G., Castiglione, A., Gambino, R., De Michieli, F., Villois, P., Durazzo, M.,
Cavallo-Perin, P., Cassader, M., 2013. Anti-inflammatory and antioxidant effects
of resveratrol in healthy smokers a randomized, double-blind, placebo-
controlled, cross-over trial. Curr. Med. Chem. 20 (10), 1323-1331.

Boocock, D.J., Patel, KR., Faust, G.E., Normolle, D.P., Marczylo, T.H., Crowell, ].A.,
Brenner, D.E., Booth, T.D., Gescher, A., Steward, W.P., 2007. Quantitation of
trans-resveratrol and detection of its metabolites in human plasma and urine
by high performance liquid chromatography. J. Chromatogr. B Analyt. Technol.
Biomed. Life Sci. 848, 182-187.

Borriello, A., Cucciolla, V., Della Ragione, F., Galletti, P., 2010. Dietary polyphenols:
focus on resveratrol, a promising agent in the prevention of cardiovascular
diseases and control of glucose homeostasis. Nutr. Metab. Cardiovasc. Dis. 20
(8), 618-625.

Brasnyo, P., Molnar, G.A., Mohas, M., Marko, L., Laczy, B., Cseh, J., Mikolas, E., Szijarto,
LA, Merei, A., Halmai, R, Meszaros, L.G., Sumegi, B., Wittmann, [, 2011.
Resveratrol improves insulin sensitivity, reduces oxidative stress and activates
the Akt pathway in type 2 diabetic patients. Br. J. Nutr., 1-7.

Brown, V., Patel, K., Viskaduraki, M., Crowell, ].A., Perloff, M., Booth, T.D., Vasilinin,
G., Sen, A., Schinas, A.M., Piccirilli, G., Brown, K., Steward, W.P., Gescher, AJ].,
Brenner, D.E., 2010. Repeat dose study of the cancer chemopreventive agent
resveratrol in healthy volunteers: safety, pharmacokinetics and effect on the
insulin-like growth factor axis. Cancer Res. 70 (22), 9003-9011.

Calamini, B., Ratia, K., Malkowski, M.G., Cuendet, M., Pezzuto, ].M., Santarsiero, B.D.,
Mesecar, A.D., 2010. Pleiotropic mechanisms facilitated by resveratrol and its
metabolites. Biochem. J. 429, 273-282.

Candelario-Jalil, E., de Oliveira, A.C., Grdf, S., Bhatia, H.S., Hiill, M., Mufioz, E., Fiebich,
B.L., 2007. Resveratrol potently reduces prostaglandin E2 production and free
radical formation in lipopolysaccharide-activated primary rat microglia. J.
Neuroinflammation 4, 25.

Cao, Z., Li, Y., 2004. Potent induction of cellular antioxidants and phase 2 enzymes
by resveratrol in cardiomyocytes: protection against oxidative and electrophilic
injury. Eur. J. Pharmacol. 489, 39-48.

Carrizzo, A., Puca, A., Damato, A., Marino, M., Franco, E., Pompeo, F., Traficante, A.,
Civitillo, F., Santini, L., Trimarco, V., Vecchione, C., 2013. Resveratrol improves
vascular function in patients with hypertension and dyslipidemia by
modulating NO metabolism. Hypertension (Epub ahead of print).

Caruso, F., Tanski, J., Villegas-Estrada, A., Rossi, M., 2004. Structural basis for
antioxidant activity of trans-resveratrol: ab initio calculations and crystal and
molecular structure. ] Agric Food Chem 52, 7279-7285.

Ceriello, A., Taboga, C., Tonutti, L., Quagliaro, L., Piconi, L., Bais, B., Da Ros, R., Motz,
E., 2002. Evidence for an independent and cumulative effect of postprandial
hypertriglyceridemia and hyperglycemia on endothelial dysfunction and
oxidative stress generation: effects of short- and long-term simvastatin
treatment. Circulation 106, 1211-1218.

Chen, C.K., Pace-Asciak, C.R., 1996. Vasorelaxing activity of resveratrol and
quercetin in isolated rat aorta. Gen. Pharmacol. 27, 363-366.

Chen, Z.H., Hurh, Y.J., Na, H.K,, Kim, ].H., Chun, Y.J., Kim, D.H., et al., 2004. Resveratrol
inhibits TCDD induced expression of CYP1A1 and CYP1B1 and catechol
estrogen-mediated oxidative DNA damage in cultured human mammary
epithelial cells. Carcinogenesis 25, 2005-2013.

Chen, CY., Jang, JH. Li, M.H, Surh, Y], 2005. Resveratrol upregulates heme
oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells.
Biochem. Biophys. Res. Commun. 331 (4), 993-1000.

Chow, H.H., Garland, L.L., Hsu, C.H., Vining, D.R., Chew, W.M., Miller, J.A., Perloff, M.,
Crowell, J.A., Alberts, D.S., 2010. Resveratrol modulates drug- and carcinogen-
metabolizing enzymes in a healthy volunteer study. Cancer Prev. Res. 3, 1168-
1175.

Conti, V., Corbi, G., Russomanno, G., Simeon, V., Ferrara, N., Filippelli, W., Limongelli,
F., Canonico, R., Grasso, C., Stiuso, P., Dicitore, A., Filippelli, A., 2012. Oxidative
stress effects on endothelial cells treated with different athletes’ sera. Med. Sci.
Sports Exerc. 44 (1), 39-49.

Davinelli, S., Sapere, N., Zella, D., Bracale, R., Intrieri, M., Scapagnini, G., 2012. Effects
of phytochemicals in Alzheimer’s disease. Oxid. Med. Cell. Longev.. http://
dx.doi.org/10.1155/2012/386527.

de la Lastra, C.A,, Villegas, 1., 2007. Resveratrol as an antioxidant and pro-oxidant
agent: mechanisms and clinical implications. Biochem. Soc. Trans. 35 (5), 1156—
1160.

Dudka, J., Gieroba, R., Korga, A., Burdan, F., Matysiak, W., Jodlowska-Jedrych, B.,
Mandziuk, S., Korobowicz, E., Murias, M., 2012. Different effects of resveratrol
on dose-related doxorubicin-induced heart and liver toxicity. Evid. Based
Complement. Alternat. Med. 2012, 606183.

Dudzinski, D.M., Michel, T., 2007. Life history of eNOS: partners and pathways.
Cardiovasc. Res. 75, 247-260.

Dudzinski, D.M., Igarashi, ]., Greif, D., Michel, T., 2006. The regulation and
pharmacology of endothelial nitric oxide synthase. Annu. Rev. Pharmacol.
Toxicol. 46, 235-276.

Fang, J.G., Zhou, B., 2008. Structure-activity relationship and mechanism of the
tocopherol-regenerating activity of resveratrol and its analogues. J. Agric. Food
Chem. 56, 11458-11463.

Fang, J.G., Lu, M., Chen, ZH., Zhu, HH,, Li, Y., Yang, L., Wu, LM,, Liu, Z.L., 2002.
Antioxidant effects of resveratrol and its analogues against the free-radical-
induced peroxidation of linoleic acid in micelles. Chemistry 8, 4191-4198.

Fauconneau, B., Waffo-Teguo, P., Huguet, F., Barrier, L., Decendit, A., Merillon, J.M.,
1997. Comparative study of radical scavenger and antioxidant properties of
phenolic compounds from Vitis vinifera cell cultures using in vitro tests. Life Sci.
61,2103-2110.

Feijoo, O., Moreno, A., Falqué, E., 2008. Content of trans- and cis-resveratrol in
Galician white and red wines. ]. Food Compost Anal. 21, 608-613.

Feng, Y., Wang, X.P,, Yang, S.G., Wang, Y.J., Zhang, X., Du, X.T., Sun, X.X., Zhao, M.,
Huang, L., Liu, RT., 2009. Resveratrol inhibits beta-amyloid oligomeric
cytotoxicity but does not prevent oligomer formation. Neurotoxicology 30 (6),
986-995.

Franco, ].G., Lisboa, P.C,, Lima, N.S., Amaral, T.A., Peixoto-Silva, N., Resende, A.C.,
Oliveira, E., Passos, M.C., Moura, E.G., 2013. Resveratrol attenuates oxidative
stress and prevents steatosis and hypertension in obese rats programmed by
early weaning. J. Nutr. Biochem. 24 (6), 960-966.

Frankel, E.N., Waterhouse, A.L, 1993. Inhibition of human LDL oxidation by
resveratrol. Lancet 341, 1103-1104.

Fremont, L., 2000. Biological effects of resveratrol. Life Sci. 66, 663-673.

Fremont, L., Belguendouz, L., Delpal, S., 1999. Antioxidant activity of resveratrol and
alcohol-free wine polyphenols related to LDL oxidation and polyunsaturated
fatty acids. Life Sci. 64, 2511-2521.

Frustaci, A., Kajstura, J., Chimenti, C., Jakoniuk, L., Leri, A., Maseri, A., Nadal-Ginard,
B., Anversa, P., 2000. Myocardial cell death in human diabetes. Circ. Res. 87,
1123-1132.

Fukui, M., Choi, H.J., Ting, Z.B., 2010. Mechanism for the protective effect of
resveratrol against oxidative stress-induced neuronal death. Free Radic. Biol.
Med. 49 (5), 800-813.

Gao, X., Belmadani, S., Picchi, A., Xu, X., Potter, B.J., Tewari-Singh, N., Capobianco, S.,
Chilian, W.M., Zhangn, C., 2007. Tumor necrosis factor-alpha induces
endothelial dysfunction in Lepr(db) mice. Circulation 115, 245-254.

Gentile, M.T., Poulet, R., Di Pardo, A, Cifelli, G., Maffei, A., Vecchione, C., Passarelli, F.,
Landolfi, A., Carullo, P., Lembo, G., 2009. Beta-amyloid deposition in brain is
enhanced in mouse models of arterial hypertension. Neurobiol. Aging 30 (2),
222-228.

Gescher, AJ., Steward, W.P, 2003. Relationship between mechanisms,
bioavailibility, and preclinical chemopreventive efficacy of resveratrol: a
conundrum. Cancer Epidemiol. Biomarkers Prev. 12, 953-957.

Ghanim, H., Sia, C.L., Abuaysheh, S., Korzeniewski, K., Patnaik, P., Marumganti, A.,
Chaudhuri, A., Dandona, P., 2010. An antiinflammatory and reactive oxygen
species suppressive effects of an extract of Polygonum cuspidatum containing
resveratrol. J. Clin. Endocrinol. Metab. 95, E1-E8.

Ghanim, H., Sia, C.L., Korzeniewski, K., Lohano, T., Abuaysheh, S., Marumganti, A.,
Chaudhuri, A., Dandona, P., 2011. A resveratrol and polyphenol preparation
suppresses oxidative and inflammatory stress response to a high-fat, high-
carbohydrate meal. J. Clin. Endocrinol. Metab. 96, 1409-1414.

Goldberg, D.M., Yan, ]., Soleas, G.J., 2003. Absorption of three wine-related
polyphenols in three different matrices by healthy subjects. Clin. Biochem. 36,
79-87.

Han, Y.S. Zheng, W.H., Bastianetto, S., Chabot, ].G., Quirion, R., 2004.
Neuroprotective effects of resveratrol against p-amyloid induced
neurotoxicity in rat hippocampal neurons: involvement of protein kinase C.
Br. ]. Pharmacol. 141 (6), 997-1005.

Hart, N., Sarga, L., Csende, Z., Koltai, E., Koch, L.G., Britton, S.L., Davies, K]., Kouretas,
D., Wessner, B. Radak, Z., 2013. Resveratrol enhances exercise training
responses in rats selectively bred for high running performance. Food Chem.
Toxicol. (Epub ahead of print).

Hattori, R., Otani, H., Maulik, N., Das, D.K., 2002. Pharmacological preconditioning
with resveratrol: role of nitric oxide. Am. J. Physiol. Heart Circ. Physiol. 282,
H1988-H1995.

He, Y.G., Sun, Y., Xie, Y.X., Zheng, H., Zhang, Y.D., Guo, ]., Xi, J.K., 2012. Resveratrol
attenuates oxidant-induced mitochondrial damage in embryonic rat
cardiomyocytes via inactivating GSK-3p. Zhonghua. Xin. Xue. Guan. Bing. Za.
Zhi. 40 (10), 858-863.

Hebbar, V., Shen, G., Hu, R,, Kim, B.R., Chen, C., Korytko, P.J., Crowell, ].A., Levine, B.S.,
Kong, A.N., 2005. Toxicogenomics of resveratrol in rat liver. Life Sci. 76, 2299~
2314.

Holvoet, P., 2004. Oxidized LDL and coronary heart disease. Acta Cardiol. 59, 479-
484.

Howells, L.M., Berry, D.P., Elliott, P.J., Jacobson, EW., Hoffmann, E., Hegarty, B.,
Brown, K., Steward, W.P., Gescher, A.J., 2011. Phase I randomized, double-blind
pilot study of micronized resveratrol (SRT501) in patients with hepatic
metastases - safety, pharmacokinetics, and pharmacodynamics. Cancer
Prevention Res. 4, 1419-1425.

Howlett, J., Ashwell, M., 2008. Glycemic response and health: summary of a
workshop. Am. J. Clin. Nutr. 87, 2125-216S.

Inoue, H., Jiang, X.F., Katayama, T., Osada, S., Umesono, K., Namura, S., 2003. Brain
protection by resveratrol and fenofibrate against stroke requires peroxisome
proliferator-activated receptor o in mice. Neurosci. Lett. 352, 203-206.

Jang, J.H., Surh, Y.J., 2001. Protective effects of resveratrol on hydrogen peroxide-
induced apoptosis in rat pheochromocytoma (PC12) cells. Mutat. Res. 496, 181-
190.



224 A. Carrizzo et al./Food and Chemical Toxicology 61 (2013) 215-226

Jang, M., Cai, L., Udeani, G.0., Slowing, K.V., Thomas, C.F., Beecher, CW., Fong, H.H.,
Farnsworth, N.R., Kinghorn, A.D., Mehta, R.G., Moon, R.C., Pezzuto, J.M., 1997.
Cancer chemopreventive activity of resveratrol, a natural product derived from
grapes. Science 275, 218-220.

Jian, B., Yang, S., Chaudry, LH., Raju, R., 2012. Resveratrol improves cardiac
contractility following trauma-hemorrhage by modulating Sirt1l. Mol. Med.
18, 209-214.

Johnson, J.J., Nihal, M., Siddiqui, I.A., Scarlett, C.O., Bailey, H.H., Mukhtar, H., Ahmad,
N., 2011. Enhancing the bioavailability of resveratrol by combining it with
piperine. Mol. Nutr. Food Res. 55, 1169-1176.

Juan, MLE., Vinardell, M.P., Planas, J.M., 2002. The daily oral administration of high
doses of trans-resveratrol to rats for 28 days is not harmful. J. Nutr. 132, 257-
260.

Juan, S.H. Cheng, T.H., Lin, H.C, Chu, Y.L, Lee, W.S., 2005. Mechanism of
concentration-dependent induction of heme oxygenase-1 by resveratrol in
human aortic smooth muscle cells. Biochem. Pharmacol. 69 (1), 41-48.

Juan, M.E., Maijo, M., Planas, J.M., 2010. Quantification of transresveratrol and its
metabolites in rat plasma and tissues by HPLC. J. Pharm. Biomed. Anal. 51, 391-
398.

Karuppagounder, S.S., Pinto, J.T., Xu, H., Chen, H.L., Beal, M.F,, Gibson, G.E., 2009.
Dietary supplementation with resveratrol reduces plaque pathology in a
transgenic model of Alzheimer’s disease. Neurochem. Int. 54 (2), 111-118.

Kelsey, N.A., Wilkins, H.M., Linseman, D.A., 2010. Nutraceutical antioxidants as
novel neuroprotective agents. Molecules 15 (11), 7792-7814.

Kern, T.S., 2007. Contributions of inflammatory processes to the development of the
early stages of diabetic retinopathy. Exp. Diabetes Res. 2007, 95103.

Kim, Y.A., Lim, S.Y., Rhee, S.H., Park, K.Y., Kim, C.H., Choi, B.T., Lee, SJ., Park, Y.M.,
Choi, Y.H., 2006. Resveratrol inhibits inducible nitric oxide synthase and
cyclooxygenase-2 expression in -amyloid-treated C6 glioma cells. Int. J. Mol.
Med. 17 (6), 1069-1075.

Kimura, T., Takagi, H., Suzuma, K., Kita, M., Watanabe, D., Yoshimura, N., 2007.
Comparisons between the beneficial effects of different sulphonylurea
treatments on ischemia induced retinal neovascularization. Free Radic. Biol.
Med. 43, 454-461.

Kitada, M., Kume, S., Imaizumi, N., Koya, D., 2011. Resveratrol improves oxidative
stress and protects against diabetic nephropathy through normalization of Mn-
SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes 60 (2), 634-
643.

Klinge, C.M., Blankenship, K.A. Risinger, KE. Bhatnagar, S., Noisin, E.L.,
Sumanasekera, W.K., Zhao, L., Brey, D.M., Keynton, R.S., 2005. Resveratrol and
estradiol rapidly activate MAPK signaling through estrogen receptors o and f in
endothelial cells. ]. Biol. Chem. 280, 7460-7468.

Klinge, C.M., Wickramasinghe, N.S., Ivanova, M.M., Dougherty, S.M., 2008.
Resveratrol stimulates nitric oxide production by increasing estrogen receptor
o-Src-caveolin-1 interaction and phosphorylation in human umbilical vein
endothelial cells. Faseb J. 22 (7), 2185-2197.

Kohnen, S., Franck, T., Van Antwerpen, P., Boudjeltia, K.Z., Mouithys-Mickalad, A.,
Deby, C., Moguilevsky, N., Deby-Dupont, G., Lamy, M., Serteyn, D., 2007.
Resveratrol inhibits the activity of equine neutrophil myeloperoxidase by a
direct interaction with the enzyme. J. Agric. Food Chem. 55 (20), 8080-8087.

Kovanen, P.T., Pentikainen, M.O., 2003. Circulating lipoproteins as proinflammatory
and anti-inflammatory particles in atherogenesis. Curr. Opin. Lipidol. 14, 411-
419.

Kowluru, R.A., Chan, P.S., 2007. Oxidative stress and diabetic retinopathy. Exp.
Diabetes Res. 2007, 43603.

Kubota, S., Kurihara, T., Mochimaru, H., Satofuka, S., Noda, K., Ozawa, Y., Oike, Y.,
Ishida, S., Tsubota, K., 2009. Prevention of ocular inflammation in endotoxin-
induced uveitis with resveratrol by inhibiting oxidative damage and nuclear
factor-kappaB activation. Invest. Ophthalmol. Vis. Sci. 50, 3512-3519.

Kumar, A., Naidu, P.S., Seghal, N., Padi, S.S.V., 2007. Neuroprotective effects of
resveratrol against intracerebroventricular colchicine-induced cognitive
impairment and oxidative stress in rats. Pharmacology 79 (1), 17-26.

la Porte, C., Voduc, N., Zhang, G., Seguin, 1., Tardiff, D., Singhal, N., Cameron, D.W.,
2010. Steady-State pharmacokinetics and tolerability of trans-resveratrol 2000
mg twice daily with food, quercetin and alcohol (ethanol) in healthy human
subjects. Clin. Pharmacokinet. 49, 449-454.

Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F.,
Messadeq, N., Milne, J., Lambert, P., Elliott, P., Geny, B., Laakso, M., Puigserver, P.,
Auwerx, J., 2006. Resveratrol improves mitochondrial function and protects
against metabolic disease by activating SIRT1 and PGC-1. Cell 127, 1109-1122.

Lasa, A. Churruca, I, Eseberri, I, Andrés-Lacueva, C., Portillo, M.P., 2012.
Delipidating effect of resveratrol metabolites in 3T3-L1 adipocytes. Mol. Nutr.
Food Res. 56 (10), 1559-1568.

Lee, J.H., Song, M.Y., Song, E.K.,, Kim, E.K., Moon, W.S., Han, M.K,, Park, J.W., Kwon,
K.B., Park, B.H., 2009. Overexpression of SIRT1 protects pancreatic beta-cells
against cytokine toxicity by suppressing the nuclear factor-kappaB signaling
pathway. Diabetes 58, 344-351.

Lee, S.M., Yang, H., Tartar, D.M., Gao, B., Luo, X,, Ye, S.Q., Zaghouani, H., Fang, D.,
2011. Prevention and treatment of diabetes with resveratrol in a non-obese
mouse model of type 1 diabetes. Diabetologia 54, 1136-1146.

Leighton, F., Cuevas, A., Guasch, V., Perez, D.D., Strobel, P., San Martin, A., Urzua, U.,
Diez, M.S., Foncea, R, Castillo, O., Mizén, C., Espinoza, M.A., Urquiaga, I.,
Rozowski, J., Maiz, A., Germain, A., 1999. Plasma polyphenols and antioxidants,
oxidative DNA damage and endothelial function in a diet and wine intervention
study in humans. Drug Exp. Clin. Res. 25, 133-141.

Li, Y., Cao, Z., Zhu, H., 2006. Upregulation of endogenous antioxidants and phase 2
enzymes by the red wine polyphenol, resveratrol in cultured aortic smooth
muscle cells leads to cytoprotection against oxidative and electrophilic stress.
Pharmacol. Res. 53 (1), 6-15.

Li, H., Xia, N., Forstermann, U., 2012. Cardiovascular effects and molecular targets of
resveratrol. Nitric Oxide. 2012 Feb 15;26(2):102-10.

Li, H., Horke, S., Férstermann, U., 2013. Oxidative stress in vascular disease and its
pharmacological prevention. Trends Pharmacol. Sci. (Epub ahead of print).

Liu, J.C,, Chen, ].J., Chan, P., Cheng, C.F., Cheng, T.H., 2003. Inhibition of cyclic strain-
induced endothelin-1 gene expression by resveratrol. Hypertension 42, 1198-
1205.

Liu, B.L., Zhang, X., Zhang, W., Zhen, H.N., 2007. New enlightenment of French
Paradox: resveratrol’s potential for cancer chemoprevention and anti-cancer
therapy. Cancer Biol. Ther. 6, 1833-1836.

Losa, G.A., 2003. Resveratrol modulates apoptosis and oxidation in human blood
mononuclear cells. Eur. J. Clin. Invest. 33, 818-823.

Lu, X.L., Ma, L., Ruan, L., Kong, Y., Mou, H., Zhang, Z., Wang, Z., Wang, .M., Le, Y.,
2010. Resveratrol differentially modulates inflammatory responses of microglia
and astrocytes. J. Neuroinflammation 7, 46.

Maccarrone, M., Lorenzon, T., Guerrieri, P., Agro, A.F., 1999. Resveratrol prevents
apoptosis in K562 cells by inhibiting lipoxygenase and cyclooxygenase activity.
Eur. J. Biochem. 265, 27-34.

Manna, S.K., Mukhopadhyay, A., Aggarwal, B.B., 2000. Resveratrol suppresses TNF-
induced activation of nuclear transcription factors NF-kB, activator protein-1,
and apoptosis: potential role of reactive oxygen intermediates and lipid
peroxidation. J. Immunol. 164, 6509-6519.

Marambaud, P., Zhao, H., Davies, P., 2005. Resveratrol promotes clearance of
Alzheimer’s disease amyloid-g peptides. J. Biol. Chem. 280 (45), 37377-37382.

Marier, J.F., Vachon, P., Gritsas, A., Zhang, ]., Moreau, J.P., Ducharme, M.P., 2002.
Metabolism and disposition of resveratrol in rats: extent of absorption,
glucuronidation, and enterohepatic recirculation evidenced by a linked-rat
model. J. Pharmacol. Exp. Ther. 302, 369-373.

Maritim, A.C., Sanders, R.A., Watkins 3rd, ].B., 2003. Diabetes, oxidative stress, and
antioxidants: a review. ]. Biochem. Mol. Toxicol. 17, 24-38.

Meng, X., Maliakal, P., Lu, H., Lee, M.J., Yang, C.S., 2004. Urinary and plasma levels of
resveratrol and quercetin in humans, mice, and rats after ingestion of pure
compounds and grape juice. ] Agric Food Chem. 52, 935-942.

Martinez, J., Moreno, J.J., 2000. Effect of resveratrol, a natural polyphenolic
compound, on reactive oxygen species and prostaglandin production.
Biochem. Pharmacol. 59, 865-870.

Mietus-Snyder, M., Gowri, M.S., Pitas, R.E., 2000. Class A scavenger receptor up-
regulation in smooth muscle cells by oxidized low density lipoprotein.
Enhancement by calcium flux and concurrent cyclooxygenase-2 up-
regulation. J. Biol. Chem. 275, 17661-17670.

Miller, NJ., Rice-Evans, C.A., 1995. Antioxidant activity of resveratrol in red wine.
Clin. Chem. 41, 1789.

Miura, T., Muraoka, S., Ikeda, N., Watanabe, M., Fujimoto, Y., 2000. Antioxidative and
prooxidative action of stilbene derivatives. Pharmacol. Toxicol. 86, 203-208.

Mizutani, K., Ikeda, K., Kawali, Y., Yamori, Y., 2001. Protective effect of resveratrol on
oxidative damage in male and female stroke-prone spontaneously hypertensive
rats. Clin. Exp. Pharmacol. Physiol. 28, 55-59.

Mokni, M., Elkahoui, S., Limam, F., Amri, M., Aouani, E., 2007. Effect of resveratrol on
antioxidant enzyme activities in the brain of healthy rat. Neurochem. Res. 32
(6), 981-987.

Morrow, ].D., Frei, B., Longmire, AW., Gaziano, J.M., Lynch, S.M., Shyr, Y., Strauss,
W.E., Oates, J.A., Roberts 2nd, LJ., 1995. Increase in circulating products of
lipid peroxidation (F2-isoprostane) in smokers. N. Engl. J. Med. 332,
1198-1203.

Movahed, A., Yu, L., Thandapilly, S.J., Louis, X.L., Netticadan, T., 2012. Resveratrol
protects adult cardiomyocytes against oxidative stress mediated cell injury.
Arch. Biochem. Biophys. 527, 74-80.

Nakata, R., Takahashi, S., Inoue, H., 2012. Recent advances in the study on
resveratrol. Biol. Pharm. Bull. 35 (3), 273-279.

Narayanan, N.K, Nargi, D., Randolph, C. Narayanan, B.A. 2009. Liposome
encapsulation of curcumin and resveratrol in combination reduces prostate
cancer incidence in PTEN knockout mice. Int. J. Cancer 125, 1-8.

Ndisang, ].F., Lane, N., Syed, N., Jadhav, A., 2010. Up-regulating the heme oxygenase
system with hemin improves insulin sensitivity and glucose metabolism in
adult spontaneously hypertensive rats. Endocrinology 151, 549-560.

Nicholson, S.K., Tucker, G.A., Brameld, J.M., 2010. Physiological concentrations of
dietary polyphenols regulate vascular endothelial cell expression of genes
important in cardiovascular health. Br. J. Nutr. 103, 1398-1403.

Nisoli, E., Tonello, C., Cardile, A., Cozzi, V., Bracale, R., Tedesco, L., Falcone, S., Valerio,
A., Cantoni, 0., Clementi, E., Moncada, S., Carruba, M.O., 2005. Calorie restriction
promotes mitochondrial biogenesis by inducing the expression of eNOS. Science
310 (5746), 314-317.

Nonomura, S., Kanagawa, H., Makimoto, A., 1963. Chemical constituents of
polygonaceous plants. I. Studies on the components of Ko-jokon (Polygonum
cuspidatum SIEB. et ZUCC.). Yakugaku Zasshi 83, 988-990.

Nunes, T., Almeida, L., Rocha, J.F,, Falcdo, A., Fernandes-Lopes, C., Loureiro, A.L,
Wright, L., Vaz-da-Silva, M., Soares-da-Silva, P., 2009. Pharmacokinetics of
trans-resveratrol following repeated administration in healthy elderly and
young subjects. J. Clin. Pharmacol. 49, 1477-1482.

Olas, B., Wachowicz, B., 2002. Resveratrol and vitamin C as antioxidants in blood
platelets. Thromb. Res. 106, 143-148.



A. Carrizzo et al./Food and Chemical Toxicology 61 (2013) 215-226 225

Olas, B., Wachowicz, B., Bald, E., Glowacki, R, 2004. The protective effects of
resveratrol against changes in blood platelet thiols induced by platinum
compounds. J. Physiol. Pharmacol. 55, 467-476.

Orallo, F., Alvarez, E., Camifia, M., Leiro, J.M., Gémez, E., Fernandez, P., 2002. The
possible implication of trans-Resveratrol in the cardioprotective effects of long-
term moderate wine consumption. Mol. Pharmacol. 61, 294-302.

Otterbein, L.E., Choi, A.M., 2000. Heme oxygenase: colors of defense against cellular
stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, 1029-1037.

Pacher, P., Szabo, C., 2006. Role of peroxynitrite in the pathogenesis of
cardiovascular complications of diabetes. Curr. Opin. Pharmacol. 6, 136-141.

Pacher, P., Beckman, ].S., Liaudet, L., 2007. Nitric oxide and peroxynitrite in health
and disease. Physiol. Rev. 87, 315-424.

Palsamy, P., Subramanian, S., 2010. Ameliorative potential of resveratrol on
proinflammatory cytokines, hyperglycemia mediated oxidative stress, and
pancreatic b-cell dysfunction in streptozotocin-nicotinamide-induced diabetic
rats. J. Cell. Physiol. 224, 423-432.

Papa, S., Skulachev, V.P., 1997. Reactive oxygen species, mitochondria, apoptosis
and aging. Mol. Cell. Biochem. 174, 305-319.

Patel, N.V., Gordon, M.N., Connor, KE., Good, RA. Engelman, RW., Mason, J.,
Morgan, D.G., Morgan, T.E., Finch, C.E., 2005. Caloric restriction attenuates Ap-
deposition in Alzheimer transgenic models. Neurobiol. Aging 26 (7), 995-1000.

Paul, B., Masih, 1., Deopujari, J., Charpentier, C., 1999. Occurrence of resveratrol and
pterostilbene in age-old darakchasava, an ayurvedic medicine from India. J.
Ethnopharmacol. 68, 71-76.

Pearce, V.P., Sherrell, ]J., Lou, Z., Kopelovich, L., Wright, W.E., Shay, J.W., 2008.
Immortalization of epithelial progenitor cells mediated by resveratrol.
Oncogene 27, 2365-2374.

Polycarpou, E., Meira, L.B., Carrington, S., Tyrrell, E., Modjtahedi, H., Carew, M.A,,
2013. Resveratrol 3-O-d-glucuronide and resveratrol 4’-0-d-glucuronide inhibit
colon cancer cell growth: evidence for a role of A3 adenosine receptors, cyclin
D1 depletion, and G1 cell cycle arrest. Mol. Nutr. Food Res.. http://dx.doi.org/
10.1002/mnfr.201200742.

Prasad, K., 2012. Resveratrol, wine, and atherosclerosis. Int. J. Angiol. 21, 7-18.

Puca, A.A., Carrizzo, A., Ferrario, A., Villa, F., Vecchione, C., 2012. Endothelial nitric
oxide synthase, vascular integrity and human exceptional longevity. Immun.
Ageing 9, 26.

Puca, A.A,, Carrizzo, A., Villa, F., Ferrario, A., Casaburo, M., Maciag, A., Vecchione, C.,
2013. Vascular ageing: the role of oxidative stress. Int. J. Biochem. Cell Biol. 45
(3), 556-559.

Rains, J.L., Jain, S.K.,, 2011. Oxidative stress, insulin signaling, and diabetes. Free
Radic. Biol. Med. 50, 567-575.

Rakici, O., Kiziltepe, U., Coskun, B., Aslamaci, S., Akar, F., 2005. Effects of resveratrol
on vascular tone and endothelial function of human saphenous vein and
internal mammary artery. Int. J. Cardiol. 105, 209-215.

Ramprasath, V.R., Jones, P.J.H., 2010. Anti-atherogenic effects of resveratrol. Eur. .
Clin. Nutr. 64 (7), 660-668.

Rdthel, T.R., Samtleben, R, Vollmar, A.M., Dirsch, V.M., 2007. Activation of
endothelial nitric oxide synthase by red wine polyphenols: impact of grape
cultivars, growing area and the vinification process. J. Hypertens. 25, 541-549.

Ray, P.S., Maulik, G., Cordis, G.A., Bertelli, A.A., Bertelli, A., Das, D.K., 1999. The red
wine antioxidant resveratrol protects isolated rat hearts from ischemia
reperfusion injury. Free Rad. Biol. Med. 27, 160-169.

Riviére, C., Richard, T., Quentin, L. Krisa, S., Mérillon, J.M., Monti, J.P., 2007.
Inhibitory activity of stilbenes on Alzheimer’s -amyloid fibrils in vitro. Bioorg.
Med. Chem. 15 (2), 1160-1167.

Rocha, KK.R, Souza, G.A,, Ebaid, G.X,, Seiva, F.R.F., Cataneo, A.C., Novelli, E.L.B., 2009.
Resveratrol toxicity: effects on risk factors for atherosclerosis and hepatic
oxidative stress in standard and high-fat diets. Food Chem. Toxicol. 47 (6),
1362-1367.

Romero-Pérez, AL, Ibern-Gémez, M., Lamuela-Raventds, R.M., de La Torre-Boronat,
M.C., 1999. Piceid, the major resveratrol derivative in grape juices. J. Agric. Food
Chem. 47 (4), 1533-1536.

Ryan, M.J,, Jackson, J.R., Hao, Y., Williamson, C.L., Dabkowski, E.R., Hollander, J.M.,
Alway, S.E., 2010. Suppression of oxidative stress by resveratrol after isometric
contractions in gastrocnemius muscles of aged mice. ]. Gerontol. A Biol. Sci.
Med. Sci. 65 (8), 815-831.

Sabén, RJ., Alonso, A., Fabregate, M., de la Puerta, G.Q.C., 2013. Xanthine oxidase
inhibitor febuxostat as a novel agent postulated to act against vascular
inflammation. Antiinflamm. Antiallergy Agents Med. Chem. 12 (1), 94-99.

Saiko, P., Szakmary, A., Jaeger, W., Szekeres, T., 2008. Resveratrol and its analogs:
defense against cancer, coronary disease and neurodegenerative maladies or
just a fad? Mutat. Res. 658 (1-2), 68-94.

Salim, S., Asghar, M., Chugh, G., Taneja, M., Xia, Z., Saha, K., 2010. Oxidative stress: a
potential recipe for anxiety, hypertension and insulin resistance. Brain Res.
1359, 178-185.

Sato, M., Suzuki, Y., Okuda, T., Yokotsuka, K., 1997. Contents of resveratrol, piceid,
and their isomers in commercially available wines made from grapes cultivated
in Japan. Biosci. Biotechnol. Biochem. 61 (11), 1800-1805.

Scapagnini, G., Vasto, S., Abraham, N.G., Caruso, C., Zella, D., Galvano, F., 2011.
Modulation of nrf2/are pathway by food polyphenols: a nutritional
neuroprotective strategy for cognitive and neurodegenerative disorders. Mol.
Neurobiol. 44 (2), 202.

Shah, AM. Channon, K.M. 2004. Free radicals and redox signalling in
cardiovascular disease. Heart 90, 486-487.

Sharma, S., Kumar, A., Arora, M., Kaundal, RK., 2009. Neuroprotective potential of
combination of resveratrol and 4-amino 1,8 naphthalimide in experimental

diabetic neuropathy: focus on functional, sensorimotor and biochemical
changes. Free Radic. Res. 43, 400-408.

Sharma, S., Misra, C.S., Arumugam, S., Roy, S., Shah, V., Davis, J.A., Shirumalla, RK.,
Ray, A., 2011. Antidiabetic activity of resveratrol, a known SIRT1 activator in a
genetic model for type-2 diabetes. Phytother. Res. 25, 67-73.

Siemann, E.H., Creasy, L.L, 1992. Concentration of the phytoalexin resveratrol in
wine. Am. ]. Enol. Vitic. 43, 49-52.

Singh, C.K., Kumar, A., Hitchcock, D.B., Fan, D., Goodwin, R., LaVoie, H.A., Nagarkatti,
P., DiPette, D.J., Singh, U.S., 2011. Resveratrol prevents embryonic oxidative
stress and apoptosis associated with diabetic embryopathy and improves
glucose and lipid profile of diabetic dam. Mol. Nutr. Food Res. 55, 1186-1196.

Singh, K.C., Kumar, A., LaVoie, A.L, Di Pipette, DJ., Singh, U.S., 2013. Diabetic
complications in pregnancy: is resveratrol a solution? Exp. Biol. Med., 1-9.

Sinha, K., Chaudhary, G., Gupta, Y.K., 2002. Protective effect of resveratrol against
oxidative stress in middle cerebral artery occlusion model of stroke in rats. Life
Sci. 71, 655-665.

Smoliga, ].M., Vang, O., Baur, ].A., 2011. Challenges of translating basic research into
therapeutics: resveratrol as an example. J. Gerontol. A Biol. Sci. Med. Sci. 67,
158-167.

Soleas, G.J., Diamandis, E.P., Goldberg, D.M., 1997. Resveratrol: a molecule whose
time has come? And gone? Clin. Biochem. 30, 91-113.

Soufi, F.G.,, Mohammad-Nejad, D., Ahmadieh, H., 2012. Resveratrol improves
diabetic retinopathy possibly through oxidative stress - nuclear factor kB -
apoptosis pathway. Pharmacol. Rep. 64, 1505-1514.

Stocker, R., Yamamoto, Y., McDonagh, A.F., Glazer, A.N., Ames, B.N., 2000. Bilirubin
is an antioxidant of possible physiological importance. Science 235,
1043-1045.

Takahashi, S., Nakashima, Y., 2011. Repeated and long-term treatment with
physiological concentrations of resveratrol promotes NO production in
vascular endothelial cells. Br. J. Nutr. 104, 1-7.

Takahashi, S., Uchiyama, T., Toda, K., 2009. Differential effect of resveratrol on nitric
oxide production in endothelial f-2 cells. Biol. Pharm. Bull. 32, 1840-1843.
Tang, B.L., Chua, C.E.L,, 2008. SIRT1 and neuronal diseases. Mol. Asp. Med. 29 (3),

187-200.

Tanno, M., Kuno, A, Yano, T., Miura, T., Hisahara, S., Ishikawa, S., Shimamoto, K.,
Horio, Y., 2010. Induction of manganese superoxide dismutase by nuclear
translocation and activation of SIRT1 promotes cell survival in chronic heart
failure. J. Biol. Chem. 285, 8375-8382.

Timmers, S., Konings, E., Bilet, L., Houtkooper, R.H., van de Weijer, T., Goossens, G.H.,
Hoeks, J., van der Krieken, S., Ryu, D., Kersten, S., Moonen-Kornips, E., Hesselink,
M.K., Kunz, L., Schrauwen-Hinderling, V.B., Blaak, E.E., Auwerx, ]., Schrauwen, P.,
2011. Calorie restriction-like effects of 30 days of resveratrol supplementation
on energy metabolism and metabolic profile in obese humans. Cell Metab. 14,
612-622.

Timmers, S., Auwerx, J., Schrauwen, P., 2012. The journey of resveratrol from yeast
to human. Aging. 4, 3.

Turrens, J.F., Lariccia, J., Nair, M.G., 1997. Resveratrol has no effect on lipoprotein
profile and does not prevent peroxidation of serum lipids in normal rats. Free
Radic. Res. 27, 557-562.

Ungvari, Z., Labinskyy, N., Mukhopadhyay, P., Pinto, ].T., Bagi, Z., Ballabh, P., Zhang,
C., Pacher, P., Csiszar, A., 2009. Resveratrol attenuates mitochondrial oxidative
stress in coronary arterial endothelial cells. Am. ]. Physiol. Heart. Circ. Physiol.
297, H1876-H1881.

Vang, O., Ahmad, N., Baile, C.A., Baur, ].A., Brown, K., Csiszar, A., Das, D.K., Delmas, D.,
Gottfried, C., Lin, H.Y., Ma, Q.Y., Mukhopadhyay, P., Nalini, N., Pezzuto, ].M.,
Richard, T., Shukla, Y., Surh, Y.J., Szekeres, T., Szkudelski, T., Walle, T., Wu, ].M.,
2011. What is new for an old molecule? Systematic review and
recommendations on the use of resveratrol. PLoS ONE 6, e19881.

Vecchione, C., Aretini, A., Marino, G., Bettarini, U., Poulet, R., Maffei, A., Sbroggio, M.,
Pastore, L., Gentile, M.T., Notte, A., lorio, L., Hirsch, E., Tarone, G., Lembo, G.,
2006. Selective Rac-1 inhibition protects from diabetes-induced vascular injury.
Circ. Res. 98 (2), 218-225.

Vecchione, C., Gentile, M.T., Aretini, A., Marino, G., Poulet, R., Maffei, A., Passarelli, F.,
Landolfi, A., Vasta, A, Lembo, G., 2007. A novel mechanism of action for
statins against diabetes-induced oxidative stress. Diabetologia 50 (4), 874-
880.

Vecchione, C., Carnevale, D., Di Pardo, A., Gentile, M.T., Damato, A., Cocozza, G.,
Antenucci, G., Mascio, G., Bettarini, U., Landolfi, A., lorio, L., Maffei, A., Lembo, G.,
2009a. Pressure-induced vascular oxidative stress is mediated through
activation of integrin-linked kinase 1/betaPIX/Rac-1 pathway. Hypertension
54 (5), 1028-1034.

Vecchione, C., Frati, A., Di Pardo, A., Cifelli, G., Carnevale, D., Gentile, M.T., Carangi, R.,
Landolfi, A., Carullo, P., Bettarini, U., Antenucci, G., Mascio, G., Busceti, C.L.,
Notte, A., Maffei, A., Cantore, G.P., Lembo, G., 2009b. Tumor necrosis factor-
alpha mediates hemolysis-induced vasoconstriction and the cerebral
vasospasm evoked by subarachnoid hemorrhage. Hypertension 54 (1), 150-
156.

Vincent, A.M., Russell, JW.,, Sullivan, K.A., Backus, C., Hayes, .M., McLean, LL.,
Feldman, E.L., 2007. SOD2 protects neurons from injury in cell culture and
animal models of diabetic neuropathy. Exp. Neurol. 208, 216-227.

Waite, KA., Sinden, M.R,, Eng, C., 2005. Phytoestrogen exposure elevates PTEN
levels. Hum. Mol. Genet. 14, 1457-1463.

Walle, T., 2011. Bioavailability of resveratrol. Ann. NY Acad. Sci. 1215, 9-15.

Walle, T., Hsieh, F., DeLegge, M.H., Oatis Jr., J.E., Walle, U.K., 2004. High absorption
but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos.
32, 1377-1382.



226 A. Carrizzo et al./Food and Chemical Toxicology 61 (2013) 215-226

Wallerath, T., Deckert, G., Ternes, T., Anderson, H., Li, H., Witte, K., Férstermann, U.,
2002. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances
expression and activity of endothelial nitric oxide synthase. Circulation 106,
1652-1658.

Wang, Y.I., He, F, Li, XL, 2003. The neuroprotection of resveratrol in the
experimental cerebral ischemia. Zhonghua Yi Xue Za Zhi. 83 (7), 534-536.
Wang, D., Hang, T., Wu, C,, Liu, W., 2005. Identification of the major metabolites of
resveratrol in rat urine by HPLC-MS/MS. ]. Chromatogr. B Analyt. Technol.

Biomed. Life Sci. 829, 97-106.

Wang, N., Ko, S.H., Chai, W, Li, G, Barrett, EJ., Tao, L., Cao, W., Liu, Z, 2011.
Resveratrol recruits rat muscle microvasculature via a nitric oxidedependent
mechanism that is blocked by TNFx«. Am. ]. Physiol. Endocrinol. Metab. 300,
E195-E201.

Wang, W,, Yan, C, Zhang, J., Lin, R, Lin, Q,, Yang, L., Ren, F,, Zhang, ], Ji, M,, Li, Y.,
2013. SIRT1 inhibits TNF-a-induced apoptosis of vascular adventitial fibroblasts
partly through the deacetylation of FoxO1. Apoptosis 18 (6), 689-701.

Yang, F., Zhang, T., Ito, Y. 2001. Large-scale separation of resveratrol,
anthraglycoside A and anthraglycoside B from Polygonum cuspidatum Sieb. et
Zucc by high-speed counter-current chromatography. J. Chromatogr. A 919,
443-448.

Yang, ]J., Dong, S., Jiang, Q., Kuang, T., Huang, W., Yang, ]., 2013. Changes in
expression of manganese superoxide dismutase, copper and zinc superoxide

dismutase and catalase in Brachionus calyciflorus during the aging process.
PLoS One 8, 57186.

Zang, M., Xu, S., Maitland-Toolan, K.A., Zuccollo, A., Hou, X,, Jiang, B., Wierzbicki, M.,
Verbeuren, T.J., Cohen, R.A., 2006. Polyphenols stimulate AMP-activated protein
kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL
receptor-deficient mice. Diabetes 55, 2180-2191.

Zhang, H., Zhang, ]., Ungvari, Z., Zhang, C., 2009. Resveratrol improves endothelial
function—role of TNFo and vascular oxidative stress. Arterioscler. Thromb. Vasc.
Biol. 29, 1164-1171.

Zhang, H., Morgan, B., Potter, BJ., Ma, L., Dellsperger, K.C., Ungvari, Z., Zhang, C.,
2010. Resveratrol improves left ventricular diastolic relaxation in type 2
diabetes by inhibiting oxidative/nitrative stress: in vivo demonstration with
magnetic resonance imaging. Am. J. Physiol. Heart. Circ. Physiol. 299, H985-
H994.

Zhang, ], Chen, ], Yang, ], Xu, CW., Pu, P, Ding, JW., Jiang, H. 2013.
Resveratrol attenuates oxidative stress induced by balloon injury in
the rat carotid artery through actions on the ERK1/2 and NF-kappa B pathway.
Cell. Physiol. Biochem. 31 (2-3), 230-241.

Zhuang, H., Kim, Y.S., Koehler, R.C,, Doré, S., 2003. Potential mechanism by which
resveratrol, a red wine constituent, protects neurons Ann. N. Y. Acad. Sci. 993,
276-288.



