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Abstract 

 

Synthesis of H1˚ and H3.3 histone proteins, in the developing rat brain, seems to be regulated 

mainly at the post-transcriptional level. Since regulation of RNA metabolism depends on a 

series of RNA-binding proteins (RBPs), we have been searching for RBPs involved in the 

post-transcriptional regulation of the H1˚ and H3.3 genes. Previously, we reported isolation, 

from a cDNA expression library, of an insert encoding a novel protein, the C-terminal half of 

which is identical to that of PEP-19, a brain-specific protein involved in calcium metabolism. 

The novel protein was called long PEP-19 isoform (LPI). We showed that LPI, as well as 

PEP-19, can bind H1˚ RNA. Since PEP19 and LPI contain a calmodulin binding domain, we 

also investigated whether their ability to bind RNA is affected by calmodulin. Our results 

show that calmodulin interferes with binding of H1˚ RNA to both PEP-19 and LPI, while it is 

not able to bind RNA on its own. Pep-19/calmodulin high affinity binding has been 

demonstrated by Biolayer interferometry (BLI). This finding suggests that 

calcium/calmodulin may have a role in controlling H1˚ mRNA metabolism in the developing 

brain. Moreover, in order to improve production of functional LPI/PEP-19, we modified the 

protocol normally adopted for preparing histidine tagged-proteins from bacteria, by adding an 

additional purification step. 

Furthermore, we found that both LPI and PEP-19 can compete for H1˚ RNA binding with 

PIPPin (also known as CSD-C2), another RBP previously discovered in our laboratory. 

PIPPin/CSD-C2 binds with high specificity to the mRNAs encoding H1° and H3.3 histone 

variants, undergoes thyroid hormone-dependent SUMOylation, and has been recently 

demonstrated to interact with other RBPs. PIPPin belongs to the CSD-containing class 

of RBPs, also called Y-box proteins, that play a key role in controlling the recruitment of 

mRNAs to the translational machinery, in response to environmental cues, both in 

development and in differentiated cells. 

Another aspect of this study was to confirm histone mRNAs-PIPPin interactions and to 

describe binding properties through streptavidin-biotin conjugation method, by BLI. 

We report the data obtained in the case of H3.3 and H1° mRNA-PIPPin interactions, and the 

specific affinity constant for these bindings. In order to identify RNA portions involved in 

binding, we used different RNA probes for H3.3 and H1°. In summary, we were able to 

confirm that PIPPin binds H3.3 and H1° mRNA with very high affinity. 
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Searching for other RBPs, we used in vitro transcribed, biotinylated H1° RNA as bait to 

isolate, by a chromatographic approach, proteins which interact with this mRNA, in the nuclei 

of brain cells. Abundant RBPs, such as heterogeneous nuclear ribonucleoprotein (hnRNP) K 

and hnRNP A1, and molecular chaperones (heat shock cognate 70, Hsc70) were identified by 

mass spectrometry. Western blot analysis also revealed the presence of CSD-C2. Co-

immunoprecipitation assays were performed to investigate the possibility that identified 

proteins interact with each other and with other nuclear proteins. We found that hnRNP K 

interacts with both hnRNP A1 and Hsc70, whereas there is no interaction between hnRNP A1 

and Hsc70. Moreover, CSD-C2 interacts with hnRNP A1, Y box-binding protein 1 (YB-1), 

and hnRNP K. We also have indications that CSD-C2 interacts with Hsc70.  
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Aims of the research 

 

• To confirm that LPI is capable of binding RNA and preferentially histone mRNAs, and also 

to check whether PEP-19 is a RNA binding protein. 

• To identify the level of action of the already cloned PIPPin/CSD-C2, LPI, and PEP-19 as 

well as of p40, p70 and p110 proteins;  

• To identify the extracellular signals that modulate the activity of these factors, regulating the 

synthesis of histone proteins. In the case of PIPPin/CSD-C2, for example, it has been already 

shown that a fraction of it is bound to chromatin and is stably sumoylated in response to 

treatment with thyroid hormones (Bono, et al., 2007). 

• To highlight post-translational modifications of the studied proteins associated with the 

extracellular signal transduction events. 

• To identify other proteins that interact with the RNA-binding factors under focus in the 

current study, starting from the assumption that RNA metabolism is regulated in complex 

structures, containing several different regulatory proteins and RNAs. 

• To shed more light on the specific function of these proteins. 
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Introduction 

1. Nucleosomes remodelling 

The mammalian brain depends on numerous complex and highly regulated mechanisms to 

appropriately activate or silence gene programs in response to environmental input and 

developmental cues. At the molecular level, these events are controlled by signaling pathways 

that mediate gene expression by modifying the activity, localization, and/or expression of 

enzymes which regulate transcription, in combination with alterations in chromatin structure 

in the nucleus (McClung, et al., 2008) . 

An epigenetic program is crucial during development, and its stability is essential to maintain 

all functions of each specific cell type during the organism’s life (Li, 2002). Gene expression 

can be epigenetically regulated at several levels, including the position of the gene in the 

nuclear matrix and the conformation of chromatin at the genetic locus. The first level of 

chromatin organization is represented by a basic unit called nucleosome. The core is 

composed by an octamer of H2A, H2B, H3 and H4 core histones present each in two copies. 

145-147 base pairs of DNA are wrapped around the histone octamer that constrains DNA in 

1.65 superhelical left-handed turns around its perimeter copies (Luger, et al., 1997). In 

dividing metazoan cells, transcription and translation of core histones is mainly 

replication/cell cycle-dependent. Replication-dependent histones are encoded by multi-copy, 

intronless gene clusters and their inclusion in chromatin is coupled to replication to allow for 

appropriate packaging of genomic DNA (Albig, et al., 1997).  

Chromatin conformation can be modulated in several ways. One way is the addition of methyl 

groups to DNA, mostly at CpG sites, to convert cytosine to 5-methylcytosine. Some areas of 

the genome are methylated heavier than others and highly methylated areas tend to be 

transcriptionally less active. A second way is to post-translationally modify the histones by 

acetylation, methylation, phosphorylation or ubiquitination (Bhaumik, et al., 2007) (Strah, et 

al., 2000). Since epigenetic modifications can be correlated with several transcriptional 

conditions, a “histone code” has been proposed. Following this hypothesis, each combination 

of histone modifications leads to a specific identity of each nucleosome which can be read as 

a “molecular bar code” (Henikoff, et al., 2005) (De la Cruz, et al., 2005). 

In addition to nucleosomal remodelling and covalent histone modifications, eukaryotic cells 

can generate variation in chromatin structure through the introduction of variant histone 

proteins. All core histone proteins in mammals, with the exception of H4, have several 

sequence variants. Histone variants (Allis, et al., 1980) provide a means for introducing 
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primary sequence differences that might function, at least in part, by altering the covalent 

modification status of these variants independently of canonical histones to expand the 

regulatory repertoire of chromatin (Rando, et al., 2007) (Henikoff, 2008). Histone variants 

often contain minor sequence variations (eg, H3.1 vs H3.2 vs H3.3) or exhibit significantly 

dissimilar structures (eg, macroH2A, CENP-A) from their canonical counterparts (Rogakou, 

et al., 1999). Furthermore, histone variants have been suggested to exhibit cell type-specific 

expression patterns, which, given the heterogeneous nature of the brain, may prove to be 

important for their respective functions in the nervous system. 

In mammals, major histone variants inclusion in chromatin is replication-independent, taking 

place during times in which newly synthesized canonical histones are not available. For 

example, in terminally differentiated post-mitotic neurons, which are no longer undergoing 

DNA replication, it can be assumed that these cells continue to have access to replication-

independent histone variants, often encoded by one or two genes that are synthesized 

throughout the cell cycle. This process not only provides pools of histones for nucleosome 

replacement outside of the S phase, but also allows the generation of biochemically distinct 

nucleosomes that promote different patterns of chromatin regulation in cell type-specific and 

temporally precise modes. 

 

.1.1 Histone variants (H1°-H3.3) 

As mentioned, in most eukaryotes, histone genes are divided into two major classes: 

i. Replication-dependent, whose expression is restricted to the S phase of the cell cycle; 

ii. Replication-independent, which encode the so called “replacement variants”, 

expressed at low but constant levels throughout the cell cycle; 

Genes in the first class are repeated tens of times in the genome, do not contain introns, and 

encode short transcripts that are not modified by polyadenylation. In contrast, genes in the 

other classes are mainly single genes that can contain introns and encode longer and 

polyadenylated transcripts (Castiglia, et al., 1994). Among post-transcriptionally regulated 

genes, those encoding histone variants, such as H1˚ (Gjerset, et al., 1982), (Ponte, et al., 1994) 

and H3.3 (Pina, et al., 1987), (Castiglia, et al., 1994) are of particular interest for the possible 

involvement of histone variants in the replication-independent chromatin remodelling induced 

by extracellular stimuli. 

Mammalian cells express multiple distinct genetically encoded variants of histone H3 proteins 

(H3.1, H3.2, and H3.3/primate-specific H3.X and H3.Y) (Wiedemann, et al., 2010). H3.3 is 

constitutively expressed in non-dividing cells, it is encoded by two isolated genes (H3F3A, 
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H3F3B), and its mRNA is polyadenylated (Wellman, et al., 1987). H3.3 differs from 

canonical H3 species at one amino-acid residue in the histone tail (serine 31) and at a cluster 

of three residues in the core histone fold (alanine 87, isoleucine 89, and glycine 90). The three 

amino-acid variations in the histone fold have been shown to be necessary for H3.3 

replication-independent incorporation in chromatin (Ahmad, et al., 2002). H3.3 is specifically 

enriched at transcriptionally active genes, within gene promoters, at specific genomic repeats, 

such as telomeres, and at regulatory elements in mammalian embryonic stem cells and in 

neuronal precursors (Goldberg, et al., 2010). 

Inclusion of canonical H3 in chromatin by the CAF 1 complex is a replication-dependent 

mechanism, whereas positioning of H3.3 histones by the HIRA complex is a replication-

independent mechanism (Tagami, et al., 2004). Histone variants differ from each other not 

only in their chromatin location, but also in their post-translational modifications (Loyola, et 

al., 2007). For example, compared with the canonical H3, H3.3 histones are enriched in post-

translational modifications that correlate with gene expression (Yuan, et al., 2012). 

H1˚ is a linker histone subtype whose expression has been mostly correlated with terminal 

differentiation (Zlatanova, et al., 1994) (Gabrilovich, et al., 2002). 

In developing rat brain, the concentration of H1˚ and H3.3 mRNAs decreases between the 

embryonic day 18 and the postnatal day 10, with inverse correlation to protein accumulation 

(Castiglia, et al., 1994). The levels of both H1° and H3.3 mRNAs decrease in isolated neurons 

between the 2
nd

 and 5
th

 day of culture to the same extent as in vivo. At the same time, an 

active synthesis of the corresponding proteins is evidenced, suggesting that H1° and H3.3 

expression is regulated mainly at the post-transcriptional level (Scaturro, et al., 1995). 

Since post-transcriptional control processes are mediated by several classes of RNA-binding 

proteins (Burd, et al., 1994) (Hentze, 1995) (Siomi, et al., 1997) (Derrigo, et al., 2000), it was 

likely that developing rat brain contained mRNA-binding factors involved in H1˚ and H3.3 

mRNAs regulation. In the past, various researches led indeed to the identification of RBPs 

able to bind H1° and/or H3.3 mRNAs, and probably involved in their metabolism. In 

particular, were identified three H1° mRNA RBPs (p40, p70 and p110; (Scaturro, et al., 2003) 

and two proteins called PIPPin (Nastasi, et al., 1999), currently also known as Cold-Shock-

Domain-C2 (CSD-C2), and Long-Pep19-Isoform (LPI) (Sala, et al., 2007). 

 

2. mRNA metabolism and localization 

Transcription transfers the genetic information from a gene to a primary transcript, a 

precursor-mRNA (pre-mRNA), which undergoes a series of post-transcriptional modifications 
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in the nucleus. These processing steps include capping at the 5' end, removal of introns by 

splicing, endonucleolytical cleavage and polyadenylation of the 3' end, and editing. At the end 

of the processing, mRNAs are constituted by a central coding region, which is translated to 

the corresponding polypeptide, and by untranslated regions (UTRs) at 5' and 3' ends.  

During the last decade, UTRs were shown to harbour different sequence motifs (cis-acting 

elements, cis-elements) that, in cooperation with specific binding proteins or RNAs (trans-

acting factors, trans-factors), regulate post-transcriptional modifications of the messenger and, 

in turn, its translation, stability and localization. Any alteration in the processing steps can 

influence the final structure and functional properties of the mRNA 3' end, for instance, and 

these modifications can lead to a variety of disorders in humans, including cancer (Michalova, 

et al., 2013). 

 

.2.1 Maturation of pre-mRNA 

During all processing steps, RNA is assembled into ribonucleoprotein (RNP) complexes. The 

RNA-associated proteins in these complexes ensure that each RNA transcript is properly 

spliced, processed, transported from the nucleus to the cytoplasm and translated by the protein 

synthesis machinery. The stages of this intricate process are complex and incompletely 

understood, although much has been learned over the past decade about the major pathways 

involved. 

RNA processing begins while RNA polymerase II is still transcribing a gene. The first step is 

the addition of a guanosine to the 5’ end, by an unusual 5′ to 5′ triphosphate linkage, and its 

methylation to create a ‘cap’ that marks the beginning of the mRNA. Proteins binding to the 

cap structure coordinate subsequent steps in pre-mRNA processing, export, translation, and 

decay. In pre-mRNA, the protein-coding sequences (exons) are interrupted by numerous non-

coding sequences (introns) that are removed in the nucleus by pre-mRNA splicing. More than 

a hundred proteins and some non coding RNAs participate in the overall splicing reaction. 

Moreover, the inclusion or exclusion of selected exonic sequences in specific cells at specific 

developmental stages and in response to specific extracellular stimuli generates multiple 

mRNA transcripts from the same pre-mRNA sequence via alternative splicing pathways. 

Perhaps, nowhere is this more prevalent than in neurons, and this accounts for much of the 

remarkable variability in gene expression seen in the nervous system (Gallo, et al., 2005) 

(Licatalosi, et al., 2006). The pre-mRNA splicing process is essential for eukaryotic gene 

expression and is carried out by the spliceosome. The major components of the spliceosome 

are the U1, U2, U5, and U4/U6 small nuclear ribonucleoproteins (snRNPs), each of which is 

http://en.wikipedia.org/wiki/Triphosphate
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composed of one small nuclear RNA (snRNA) molecule, a set of seven common proteins, and 

several proteins that are specific to individual snRNAs (Luhrmann, et al., 1990) (Will, et al., 

2001). snRNP biogenesis is highly regulated and requires ATP hydrolysis (Pellizzoni, et al., 

2002) (Meister, et al., 2001). With the exception of U6, which never leaves the nucleus, the 

newly transcribed U snRNAs are initially exported to the cytoplasm, where the major 

assembly process of the snRNPs occurs. The common proteins, called Sm proteins, B/B’, D1, 

D2, D3, E, F, and G are arranged into a stable heptameric ring, the Sm core, on a highly 

conserved, uridine-rich sequence motif, the Sm site, of the snRNAs (Kambach, et al., 1999) 

(Achsel, et al., 2001) (Stark, et al., 2001). The 5’ ends of snRNAs begin with the same 7-

methyl guanosine cap which characterizes mRNA structure; however, once assembled, it 

undergoes additional methylation to a 2,2,7-trimethyl guanosine cap, which signals the re-

import of the properly assembled and modified snRNPs into the nucleus, where additional 

snRNP-specific proteins associate to form fully functional snRNPs (Mattaj, 1986) (Fischer, et 

al., 1990) (Hamm et al., 1990) (Fischer, et al., 1993) (Mattaj, et al., 1993). 

Mature snRNPs then carry out the process of pre-mRNA splicing. Spliceosomal U snRNPs 

biogenesis occurs in the cytoplasm and is mediated by the SMN (survival motor neuron) 

complex. The SMN complex directly recognizes and binds to both proteins and RNA of the 

RNP and facilitates their interaction, thereby ensuring specificity of the snRNP assembly 

process (Yong, et al., 2004) (Kolb, et al., 2007). 

Transcribing RNA polymerase continues past the end of the gene, and downstream sequences 

are removed by a precise processing event that involves assembly of a large protein complex 

guided by the conserved AAUAAA sequence and GU-rich sequences downstream of the 

processing site. This multiprotein complex contains an endonuclease that cleaves the pre-

mRNA to create the 3’ end and poly(A) polymerase, which adds the poly(A) tail, a 

homopolymer of ~250 adenosine residues. These latter steps are coordinated by interaction 

between a splicing factor bound to the last intron of the pre-mRNA and poly (A) polymerase. 

Afterward, the capped, spliced and polyadenylated mRNA is assembled into an mRNP 

complex that is competent for export from the nucleus to the cytoplasm. As with snRNP 

assembly, the export process is a highly coordinated event involving the formation and 

disruption of specific RNA-protein complexes and intermediaries. The mRNPs move to the 

cytoplasm through nuclear pore complexes (NPCs), large protein assemblies forming 

channels that offer the only way to leave the nucleus (Moore, 2005) (Cole, et al., 2006) 

(Stewart, 2007). The export requires another protein complex, the Mex67:Mtr2 heterodimer, 

which binds to the mRNP prior to transport. When the mRNP reaches the cytoplasmic side of 
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the NPC, Mex67:Mtr2 complex is removed by the DEAD-box RNA helicase Dbp5, avoiding 

retrograde transport back into the nucleus. Dbp5 shuttles between nucleus and cytoplasm, but 

it binds to, and is activated by, Gle1 on the cytoplasmic side of the NPC. The concurrent loss 

of Mex67:Mtr2 from the mRNP allows the mRNP to complete transit through the NPC. 

DEAD-box helicases use the energy of ATP to unwind RNP complexes, and maximum 

ATPase activity of Dbp5 is achieved when it associates with InsP6, a molecule which 

facilitates and regulates the interaction between Gle1 and Dbp5 (York, et al., 1999).  

Asymmetric subcellular distribution of RNA is critical for proper embryo development, for 

establishing differences in cell fate, and for neuronal function. mRNA localization is 

commonly employed to target protein products to specific regions within a cell. Some 

mRNAs are localized to appropriate sub-cellular structures at the same time they are being 

translated, and it is the emerging nascent peptide that directs the localization of both the 

ribosome and the transcript. For example, transcripts encoding secreted proteins are localized 

to the endoplasmic reticulum (ER) by recruitment of the nascent signal peptide (Nicchitta, 

2002). In other cases, such as the localization of some transcripts to mitochondria in yeast, 

transport is driven by sequences in the RNA itself (Corral-Debrinski, et al., 2000). 

mRNA faces different fates after it arrives in the cytoplasm. It is currently thought that 

coincident with export, the mRNP undergoes a surveillance process where it is scanned by a 

‘pioneer round’ of translation that determines whether the transcript will encode a full-length 

protein. This is an important, evolutionarily conserved process that protects the cell from the 

accumulation of C-terminally truncated proteins with potential dominant negative function 

that may arise from alternative splicing, processing errors or certain inherited mutations, all of 

which generate mRNAs with a termination codon upstream of the correct position. Splicing 

deposits a complex of proteins at each exon junction (the exon junction complex, EJC) that 

accompany the newly processed mRNP into the cytoplasm, and these provide positional 

information for the location of a stop codon. On a correct mRNA, ribosomes will scan 

through these. The ribosomes remove each of the complexes in the process until they reach 

the normal stop codon and are released. However, if the mRNA carries a termination codon 

that is upstream of an EJC, the ribosome will pause at that position, and this activates the 

degradation of that mRNA through a process termed ‘nonsense-mediated mRNA decay’ or 

NMD. NMD is ultimately responsible for the loss of protein product in many genetic 

disorders that result from the inheritance of one or more genes that carry a premature 

termination codon. 
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After the surveillance process, the mRNA can be bound by initiation factors and translated, 

silenced (for example by binding of microRNAs), stored or degraded. Each of these processes 

in itself is highly regulated, and the fate of each mRNA is determined by cis-acting sequence 

elements within the mRNA and by proteins (and non coding RNAs) that bind to these 

elements. A case in point is the large family of mRNAs that carry adenosine plus uridine-rich 

sequence elements (AU-rich elements, or AREs) in their 3’ untranslated regions. There are 

over 3000 mRNAs with AREs, and their differential binding by a number of ARE-binding 

proteins (including HSPB1) determine their overall accumulation, translation and decay 

(Kolb, et al., 2010). The role of mRNA stability in neurons is increasingly recognized and 

seems to be especially important in neuronal development and regeneration (Bolognani, et al., 

2008). 

Translation of an mRNA is mediated by the ribosome and is conventionally divided into the 

initiation, elongation and termination stages. During initiation, the ribosome and the tRNA for 

the first amino acid residue, methionine, recognize and bind to the first codon, AUG, of the 

mRNA transcript. The polypeptide encoded by the mRNA is assembled during the elongation 

phase, and termination occurs when the ribosome encounters a ‘stop’ codon that results in the 

release of the polypeptide and dissociation of the ribosomal subunits. The entire process is, 

once again, mediated by the complex association of a host of specific RNP complexes, non-

coding RNAs, and proteins. 

If one considers the ribosome as a protein-synthesizing machine, the raw materials are the 

mRNA template and the individual aminoacyl-tRNAs. Aminoacyl-tRNAs are covalently 

linked RNA-protein complexes that are produced by a number of aminoacyl-tRNA 

synthetases (ARSs) that catalyze the esterification of specific amino acids to their respective 

tRNAs. A number of additional functions for particular ARSs have come to light, including 

roles in transcription, splicing, apoptosis, inflammation and angiogenesis (Ko, et al., 2002) 

(Park, et al., 2008). 

Finally, all mRNAs are degraded and their rate of decay is a controlling factor in the timing, 

quantity and perhaps even location of their encoded proteins. In general, mRNA decay begins 

with shortening of the poly (A) tail, followed by removal of the 5’ cap and degradation by 

exonucleases from both the 5’ and 3’ ends of the mRNA. This is a highly regulated process 

that involves the interplay between cis-acting sequences and the proteins that bind to them. 

Both translation and decay are targets of numerous signal transduction pathways, and we are 

just beginning to understand how they are controlled. 
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.2.2 mRNA localization in neurons 

Eukaryotic cells need to temporally and spatially regulate gene expression in response to a 

variety of cues. While temporal regulation of gene expression can be achieved through 

transcriptional regulation, the ability of a cell to spatially restrict synthesis of a specific 

protein within the cytoplasm requires post-transcriptional control.   

Eukaryotic organisms ranging from fungi to mammals and also within different cell types of a 

given organism, including neurons (St Johnston, 2005), localize mRNAs to spatially restrict 

synthesis of specific proteins to distinct regions of the cytoplasm. mRNA encoding the protein 

is localized to the site where the protein functions. Once the mRNA reaches the proper 

destination, the mRNA is translated, resulting in the spatial restriction of the corresponding 

protein. There are at least three mechanisms by which an mRNA can be localized: (A) local 

protection from degradation, (B) diffusion and entrapment by a localized anchor and (C) 

direct transport by motor proteins on cytoskeletal filaments (Fig.1). 

 

 

Figure 1 

 Mechanisms by which an mRNA can be localized 

 

In Drosophila, Hsp83 mRNA localizes to the posterior pole plasma of the egg using the 

“protection from degradation” pathway (Ding, et al., 1993). In this RNA localization pathway, 

the RNAs are protected from degradation at the site of localization and are highly susceptible 

to degradation in other areas of the cell. In contrast, the Xcat-2 mRNA in Xenopus utilizes the 

“diffusion and entrapment” mechanism (Chang, et al., 2004). RNA localization substrates that 
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utilize this pathway randomly diffuse throughout the cytoplasm, and, when the RNA reaches 

the site of localization, it is captured and retained. In “direct transport” the RNA contains 

a cis-acting localization element, also referred to as a “zip code”. The cis-acting element 

directs the RNA to the proper intracellular location. RBPs recognize a nucleotide sequence 

and/or structure in the cis-acting localization element. Some RBPs identify the RNA 

localization substrate in the nucleus and escort the RNA to the cytoplasm. Subsequently, the 

RNA-protein complex interfaces with a molecular motor (myosin, kinesin or dynein), which 

directly transports the RNA on cytoskeletal components. During transport of the RNA to the 

site of localization, translation of the RNA is repressed. Once the RNA arrives to its 

destination, it is hypothesized that the RNA is anchored at the site of localization, and 

translational repression is relieved (Gonsalvez, et al., 2012). 

The localization of mRNA critically contributes to many important cellular processes in an 

organism, such as the establishment of polarity, asymmetric division and migration during 

development.  

Moreover, in the central nervous system, the local translation of mRNAs is thought to induce 

plastic changes that occur at synapses triggering learning and memory processes. Neuronal 

function is highly dependent on spatially precise signalling. Increasing evidence indicates that 

the complex morphology of neurons has created biological compartments that subdivide the 

neuron into spatially distinct signalling domains important for neuronal function (Hanus, et 

al., 2013).  

Mature neurons are highly polarized and generally consist of a cell body, a single long axon 

and several shorter branching dendrites. mRNA localization also occurs during development 

in axonal growth cones of immature neurons as well as in dendrites of fully mature and 

polarized neurons. In the brain, mRNA localization is not only restricted to neurons, but also 

occurs in another type of nerve cells, the oligodendrocytes. (Doyle, et al., 2011)  

There are a lot of advantages of mRNA localization as a key regulatory mechanism to fine-

tune gene expression. First, the localization of mRNA rather than its corresponding protein 

serves a dual function: it targets the protein directly to the correct intracellular compartment 

while preventing its expression elsewhere. This is particularly important for those proteins 

that might be harmful to other parts of the cell, for example myelin basic protein (MBP) in 

oligodendrocytes, or Tau and microtubule-associated protein 2 (MAP2) that could bind to all 

microtubules in the cell. Second, it provides a synapse with the unique opportunity to spatially 

restrict gene expression with high temporal resolution. Therefore, an activated synapse could 

initiate local protein synthesis that in turn alters its function and morphology in its own 
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microenvironment that is independent of the distant cell body. Third, it is more economic to 

reuse a given transcript several times for multiple rounds of translation instead of transporting 

each protein or transcript individually to a distinct synapse.  

 

.2.2.1  mRNA localization in dendrites 

Dendritic protein synthesis appears not to produce general housekeeping proteins, but rather 

to produce proteins with specialized synaptic functions, for example Ca
2+

 

/calmodulin-dependent protein kinase II (CaMKIIα), cytoskeletal proteins (Arc, MAP2) and 

neurotransmitter receptors of the AMPA (GluR1 and 2) and NMDA (NR1) families. (Doyle, 

et al., 2011) 

Maturation of neuronal circuits involves remodelling of dendritic trees and refinement of 

synapse number and strength, two processes controlled by local translation of dendritically 

targeted mRNAs. The complexity of dendritic trees is a key parameter underlying neuronal 

activity and connectivity. Strikingly, recent studies have revealed that the transport of specific 

mRNAs to dendrites is crucial for dendritic branching during development. Targeting 

of nanos mRNA to dendrites, for example, is required for proper branching of peripheral 

sensory neurons in Drosophila larvae. In young mouse hippocampal neurons, inactivation of 

the RNA-binding protein Staufen1 impairs the transport of β-actin mRNA to dendrites and 

reduces dendritic length and branching. Similarly, hippocampal neurons lacking the RNA-

binding protein Zbp1/Vg1RBP exhibit reduced accumulation of β-actin mRNA and protein in 

distal dendrites, with a concomitant decrease in dendritic branching. Interestingly, the 

function of Zbp1/Vg1RBP is developmentally regulated, as it is required for intensive 

dendritogenesis in young neurons, but not for dendrite maintenance in mature neurons. In rat 

hippocampal neurons, differential localization of Brain-derived-neurotrophic-factor 

(BDNF) splice variants along dendrites has been shown to lead to spatially restricted effects 

on dendritic architecture. Whereas BDNF transcripts restricted to the cell soma and proximal 

dendrites selectively affect proximal dendritic branching, transcripts with a distal dendritic 

localization affect peripheral dendrites. These results have led to a ‘spatial code hypothesis’, 

in which selective targeting of BDNF to distinct dendritic regions through differential mRNA 

localization allows both a precise shaping of dendritic compartments during development and 

spatially restricted control of dendritic plasticity in mature neurons (Medioni, et al., 2012). 
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.2.2.2 Synapse formation and plasticity  

Formation of new synapses is crucial during early development of the nervous system, and is 

a multistep process involving initial assembly, maturation and stabilization. As shown in 

cultured Aplysia neurons, recruitment of the neuropeptide-encoding sensorin mRNA to 

nascent synapses is induced upon recognition of pre- and postsynaptic partners, and is 

required for further synaptic development and maturation (Lyles, et al., 2006). These results 

illustrate that synaptogenesis not only involves recruitment of proteins or organelles, such as 

synaptic vesicles, but also requires mRNA targeting.  

In more mature neurons, local translation of dendritically localized mRNAs encoding proteins 

such as neurotransmitter receptors, ion channels and signal transduction enzymes is essential 

for the regulation of synaptic activity. Interestingly, specific populations of mRNAs are 

recruited to dendrites upon synaptic activity, and their translation can be regulated in a 

synapse- and stimulus-specific manner, providing a means of individually tagging activated 

synapses (Fig. 2) (Medioni, et al., 2012). 

 

 

Figure 2  

Upper left box: representation of the somatodendritic compartment of a mammalian neuron. Lower panel: 

schematic of the proximal part of a dendrite that roughly corresponds to the region boxed in the upper panel (red 

rectangle). Proteins synthesized locally in dendritic spines are represented in green. 

 

Translation of dendritically targeted mRNAs is activated in response to synaptic activity and 

is essential for modulation of synaptic activity and dendritic spine morphogenesis. Strikingly, 

translation can be regulated at the synapse level, and thus represents an efficient way to 

individually tag activated synapses. Mutations in genes involved in dendritic mRNA targeting 

or translation have been linked to several human neurological disorders, including the most 
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common cause of inherited mental retardation Fragile X syndrome, consistent with a role for 

dendritically localized protein synthesis in the regulation of synaptic morphogenesis and 

plasticity (Liu-Yesucevitz1, et al., 2011). 

 

.2.2.3 mRNA localization in axons 

The first evidence for protein synthesis in axons was reported more than 40 years ago using 

metabolic labeling techniques (Koenig, 1967) (Giuditta, et al., 1968). These initial findings 

were criticized at the time because the small amount of axonal labeling (only a small 

percentage of the cellular total) was thought to be due to low-level contamination by cell body 

material. Ultrastructural studies in the 1970s, however, reported the presence of ribosomes in 

cultured growth cones and young axons (Tennyson, 1970) (Zelená, 1970) (Bunge, 1973) and, 

in the last 15 years, biochemical and immunocytochemical approaches have confirmed the 

presence of axonal ribosomes (Bassell, et al., 1998) along with other components of the 

translation machinery, including translation initiation factors, mRNA, tRNA, aminoacyl-

tRNA synthetases, elongation factors, Golgi, and endoplasmic reticulum proteins (Merianda, 

et al., 2009) (Shigeoka, et al., 2013) 

As revealed by studies performed on cultured Xenopus retinal neurons, axonal growth cone 

steering decisions require local translation of mRNAs targeted to growing axon tips 

(Campbell, et al., 2001). Strikingly, two recent microarray analyses have shown that hundreds 

of mRNAs (6-10% of the transcriptome) are present in the axons of cultured vertebrate 

sensory neurons, suggesting that a large panoply of proteins might be locally translated 

(Zivraj, et al., 2010) (Gumy, et al., 2011). Consistent with this, axonal translation of proteins 

as diverse as polarity proteins involved in axon outgrowth, actin cytoskeleton regulators 

involved in axon guidance and transcription factors signalling back to the nucleus has been 

demonstrated to be important for polarized axon growth, maintenance or regeneration 

(Medioni, et al., 2012). A strong link between axonal mRNA localization, local translation, 

and axon steering has been provided through studies performed in growing Xenopus and 

murine axons. Asymmetric gradients of attractive cues trigger an asymmetric recruitment of 

β-actin mRNA and a polarized increase in β-actin translation on the near side of the axon 

growth cone, both being essential for the turning response (Leung, et al., 2006) (Yao, et al., 

2006) (Welshhans, et al., 2011). Interestingly, the nature of locally translated proteins depends 

on the type of applied stimuli, and the repertoire of axonally localized mRNAs is regulated in 

response to external signals and developmental cues (Medioni, et al., 2012). In rat sensory 
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neurons, for instance, mRNAs encoding cytoskeletal regulators and transport-related proteins 

are found in embryonic, but not adult axons (Gumy, et al., 2011). 

In addition to the ex vivo results described above, in vivo studies have shown that mRNA 

translation in axons is regulated during nervous system development. For example, translation 

of EphA2 guidance receptor mRNA reporter constructs is activated in chick spinal cord axons 

only once commissural growth cones have crossed the midline (Brittis, et al., 2002). Also 

consistent with developmental regulation of axonal protein synthesis in vivo, local translation 

of mouse odorant receptor mRNAs is higher in immature than in adult olfactory bulbs 

(Dubacq, et al., 2009).  

The best-studied RNA-binding protein involved in axon guidance is zip-code binding protein 

1 (ZBP1; Vg1RBP in Xenopus, IMP1 in human), which binds the “zip-code”, a cis element in 

the 3′ UTR of β-actin mRNA. When the β-actin mRNA–ZBP1 interaction is disrupted either 

by an antisense oligonucleotide targeting the zip-code sequence (Yao, et al., 2006) or by the 

knock-out of the ZBP1 gene (Welshhans, et al., 2011), the cue-induced localization of β-actin 

mRNA in growth cones is significantly reduced, and the translation-dependent growth cone 

turning response is in turn abolished. These results suggest that ZBP1 interacts with the zip-

code element to transport β-actin mRNA, and the interaction is important for growth cone 

turning.  In vivo studies of Vg1RBP (ZBP1 homologue) and another RBP, Hermes (RBPMS), 

in Xenopus and zebrafish retinal ganglion cells, respectively, show that loss of function of 

these genes causes severe defects in axon terminal arborization without affecting the long-

range guidance from the eye to the tectum. These studies indicate that the translational 

regulation mediated by these RBPs has a key role in the axon–target guided cell-specific 

interactions that lead to axon branching and selective synapse formation (Hörnberg, et al., 

2013) (Kalous, et al., 2013). 

Tau, a neuronal cytoskeletal protein, is a MT-associated protein (MAP) that stabilizes MTs 

and promotes their assembly. In neuronal cells, tau is found primarily in the cell body and 

axon. Axonal localization of tau mRNA to the proximal segment of the axon is dependent on 

3′ UTR cis-acting signals, neuronal proteins and assembled MTs. The minimal tau axonal 

localization signal (ALS) sufficient for axonal localization includes the stabilization sequence 

of tau mRNA, which binds to the HuD stabilization protein. 

Tau mRNA was non-randomly distributed in the cells; instead it was localized as discrete 

granules along the axon and in the growth cone and it co-localized on the MTs with ribosomal 

proteins, which indicated the presence of protein synthesis machinery in the axon. RNA 

granules have been observed in fibroblasts, oligodendrocytes and primary neuronal cell 
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cultures, suggesting that they may consist of RNA-protein complexes that contribute to the 

formation of cellular microdomains (Aronov, et al., 2002). 

 

3. Post-transcriptional regulation of mRNA metabolism  

In eukaryotes, the majority of genes are regulated both at the transcriptional and post-

transcriptional level. Post-transcriptional control of gene expression is essential for cell 

differentiation and cell function and, in complex organisms, is provided by a highly 

sophisticated regulatory network where the steps of mRNA metabolism (mRNA capping, 

poly-adenylation, splicing, degradation, etc.) and mRNA localisation are coordinated to 

modulate local protein concentration. 

The coordination between the different processes relies on the assembly of large mRNA-

protein complexes that migrate between the sites of processing, storage and translation. Post-

transcriptional regulation is also important for expression of mitochondrial proteins (Lithgow, 

et al., 1997). 

RNP particles have been grouped in classes reflecting their protein composition and their 

association with specific cellular states, and a general regulatory model has been proposed 

where functionally related genes are co-regulated based on the association of the 

corresponding mRNAs within the same RNP particles (Keene, et al., 2002) (Mansfield, et al., 

2009). In this so-called ‘ribonome’ model, RNP particles represent the functional equivalent 

of bacterial operons.  

The composition of each RNP particle varies depending on its functional status, and the 

multi-functional multi-domain protein components can associate with different RNA 

molecules in a timely and localised fashion. These protein-RNA interactions control the 

efficiency of mRNA synthesis, processing, nuclear export and degradation as well as the 

mRNA translation rate and cellular localisation (Keene, et al., 2002) (Mansfield, et al., 2009). 

Post-transcriptional regulation critically contributes to the ability of cells to adjust gene 

expression in the face of a changing external or internal environment (Glisovic, et al., 2008). 

A combination of biochemical and cell biological research, recently complemented by 

genome-wide studies, has led to the current notion that each mRNA is bound by multiple 

RBPs and that individual RBPs have hundreds to thousands of mRNA targets. Furthermore, 

RBPs are often components of multi-protein complexes and bring additional proteins into 

mRNPs through protein-protein interactions. It is generally accepted that, during their journey 

from transcription in the nucleus to translation in the cytoplasm, mRNPs continuously change 

their composition (Muller-McNicoll, et al., 2013). RBPs assemble on nascent and processed 
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mRNAs, governing gene regulation at post-transcriptional level in health and disease (Willers, 

et al., 2011). Indeed, mutations affecting the function of RBPs cause several diseases (Cooper, 

et al., 2009). RBPs are the primary regulatory factors of the various post-transcriptional 

stages, including alternative splicing, polyadenylation, mRNA localization, translation and 

degradation (Fig. 3) (Salas, et al., 2013). 

 

 

Figure 3  

Gene expression control in eukaryotic cells. Each step of gene expression is controlled by RNA-binding 

proteins (yellow), such that altering one step affects the rest (blue ring), impacting on translation efficiency of mRNAs. 

 

 

These steps in the RNA lifespan are closely connected to each other, such that altering one of 

them will affect the others. RBPs interacting with certain UTR structural elements or specific 

primary sequences play a pivotal role in the response of the cell to different environmental 

stresses, such as virus infections, heat or osmotic stress, nutrient deprivation and other stimuli 

that trigger apoptosis, inflammatory response, antiviral response, etc. (Fig. 4) (Walsh, et al., 

2011) (Spriggs, et al., 2010) (Liwak, et al., 2012). 
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Figure 4 

 RNA-binding proteins control translation efficiency of mRNAs initiating protein synthesis by the 

conventional cap-dependent, or the alternative internal ribosome entry site (IRES)-dependent, mechanisms (orange 

box), impacting on cellular processes in cells undergoing normal growth as well as in response to environmental 

stresses (pink box). 

 

On the other hand, processes such as cell proliferation, cell death or cell differentiation 

occurring in healthy organisms also depends on RNA-protein interactions (Komar, et al., 

2011). 

In response to distinct stresses, cells trigger a differential response that can displace the 

equilibrium towards cell survival or cell death. Key factors mediating this response are post-

translational modification, relocalization, proteolysis or degradation of RBPs. 

 

.3.1 ‘‘Zipcodes’’ are cis-acting motifs  

‘‘Zipcodes’’ are cis-acting motifs that direct mRNAs for transport to appropriate locations 

within a cell or organism (Kislauskis, et al., 1992). Zipcodes range in length from a few 

nucleotides to over 1 kb; however, it is possible that some of the longer zipcodes have not 

been reduced to their minimally sufficient lengths, making it difficult to identify key RNA 

determinants of transport. It is believed that zipcodes serve as binding sites for proteins that 

form complexes with molecular motors, thereby linking the RNA to the cellular transport 

machinery (Mowry, 1996). Additional RNA sequences may be required to promote the 

assembly of a localization-competent RNP (Czaplinski, et al., 2006).  

An essential feature of zipcodes is that they can direct localization independently of the 

adjacent RNA sequence: fusing a zipcode to a reporter RNA results in a subcellular 

distribution of the reporter similar to that observed for the native mRNA. Although zipcodes 

are usually located in 3’-UTR of transported messages, in some instances they can mediate 

localization when placed at the 5’ end or even in the middle of a reporter RNA (Jambhekar, et 

al., 2007). An attractive model for zipcode recognition is that trans-acting factors recognize a 
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specific secondary structure in the RNA, often a hairpin stem-loop structure, along with a 

small number of specific nucleotides (Chartrand, et al., 1999). This model has largely proven 

to be correct in the case of the stem-loop RNA sequence element (TLS) (Cohen, et al., 2005), 

a zipcode present in both the orb and K10 transcripts of Drosophila (Serano, et al., 1995). The 

native zipcode is predicted to fold in a stem-loop consisting of a 17 base pair stem interrupted 

by two single-base bulges and an 8 base loop. Fine-mapping studies showed that increasing 

loop size or decreasing the length of the stem interfered with transport/localization. (Cohen, et 

al., 2005). 

 

.3.2 Trans-acting factors  

 

.3.2.1 RNA-Binding-Domains (RBDs) 

RBDs are evolutionarily conserved protein domains that recognize specific sequence or 

structural elements in their target RNAs. More than 40 annotated RBDs exist in the databases, 

but only some of the most frequently occurring, such as the RNA recognition motif (RRM), 

have been characterized in detail (Fig. 5). 

 

 

Figure 5 

 RNA-binding domains of RBPs. Often, several RNA-binding domains are found within one RBP. Different 

RNA-binding domains include the RNA-binding domain (RBD), K-homology (KH) domain, RGG (Arg-Gly-Gly) box, 

double stranded RNA-binding domain (dsRBD), Piwi/Argonaute/Zwille (PAZ) domain, RNA helicase DEAD/DEAH 

box, RNA-binding zinc finger (ZnF) and Puf RNA-binding repeats (PUF). All are presented as colored boxes. 
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They often bind to short, degenerate 4-6 nucleotide (nt) segments with a weak affinity in a 

sequence- and/or structure-specific manner (Muller-McNicoll, et al., 2013). 

However, many RBPs require multiple RBDs for their in vivo functions, and the interplay 

between these domains is poorly understood. RBPs with multiple RBDs can recognize longer 

stretches of RNA, can combine multiple weak interactions to achieve high affinity and 

specificity or can create new or extended binding surfaces for RNAs. 

Several non-canonical RBDs were discovered, some of the RBPs contained globular and/or 

disordered regions enriched in short repetitive amino acid motifs with unusual RBDs. One 

example is the K patch, which is an unstructured lysine-rich region. This novel RBD occurs in 

the abundant endoplasmic-reticulum-membrane-bound protein p180, which was recently 

shown to act as an mRNA receptor that promotes the association of mRNA with the 

endoplasmic reticulum surface. The K patch in p180 was confirmed to bind RNA directly 

in vitro and in vivo, probably through non specific interactions with the RNA backbone and 

was required for the efficient anchoring of certain transcripts to the endoplasmic reticulum 

membrane (Muller-McNicoll, et al., 2013). 

The ribonucleoprotein (RNP) domain is one of the most common eukaryotic protein folds. 

Proteins containing RNP domains function in important steps of post-transcriptional 

regulation of gene expression by directing the assembly of multiprotein complexes on primary 

transcripts, mature mRNAs, and stable ribonucleoprotein components of the RNA processing 

machinery. The diverse functions performed by these proteins depend on their dual ability to 

recognize RNA and to interact with other proteins, often utilizing specialized auxiliary 

domains (Varani et al., 1998). 

Proteins present in Heterogeneous nuclear ribonucleoproteins (hnRNPs) can also contain a 

variable number of the RGG (Arg-Gly-Gly) box and heterogeneous nuclear ribonucleoprotein 

K-homology domains (KH). 

Cold shock proteins (CSPs) are among the most conserved proteins in evolution, sharing a 

cold shock domain (CSD) from prokaryotes to eukaryotes (Wolffe, 1994). Numerous 

functions have been unravelled for members of this protein family. In bacteria, CSPs are co-

ordinately up-regulated following a decrease in temperature to rescue bacterial growth (Jones, 

et al., 1987). In eukaryotic cells, CSPs are involved in the transcriptional regulation of genes 

related to cell proliferation [e.g. DNA polymerase-α (En-Nia, et al., 2005), cyclins A and B1 

(Jurchott, et al., 2003), FAS receptor (Homer, et al., 2005)]. Other target genes coordinate 

matrix synthesis and degradation (Higashi, et al., 2003), inflammatory responses [e.g. IL-2; 

(Chen, et al., 2000)], granulocyte macrophage-colony stimulating factor (GM-CSF) 
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(Diamond, et al., 2001), and antigen presentation [major human leukocyte antigen (Didier, et 

al., 1988)], ABC transporters (Bargou, et al., 1997). 

Y-box protein (YB)-1 is the prototypic member of the cold shock protein family in humans. 

YB-1 acts in a cell-context specific fashion on gene transcription, for example, of the matrix-

metalloproteinase (MMP)-2 and GM-CSF genes. Furthermore, YB-1 has been isolated as a 

major component of messenger ribonucleoprotein particles (mRNPs) that guide mRNA 

storage, for instance GM-CSF and renin mRNAs, and is involved in translation processes. 

The specific association of YB-1 with mRNA evidenced its regulatory role in mRNA 

processing in concert with splicing factors, such as SRp30c (Roeyen, et al., 2013). 

Zinc-finger (ZNF)-containing proteins can be classified into evolutionary and functionally 

divergent protein families that share one or more domains in which a zinc ion is tetrahedrally 

coordinated by cysteines and histidines. The ZNF domain defines one of the largest protein 

superfamilies in mammalian genomes. ZNF-containing proteins can bind to DNA, RNA, 

other proteins, or lipids as a modular domain in combination with other conserved structures. 

Owing to this combinatorial diversity, different members of ZNF superfamilies contribute to 

many distinct cellular processes, including transcriptional regulation, mRNA stability and 

processing, and protein turnover. The first ZNF domain to be identified in Xenopus laevis, 

basal transcription factor TFIIIA, is the archetype for the most common form of ZNF domain, 

the C2H2 domain (Ravasi, et al., 2003). 

A set of proteins that bind to structured RNA contain double-stranded RNA-binding domains 

(dsRBD). This ~70-amino-acid sequence motif forms a tertiary structure that interacts with 

dsRNA, with partially duplexed RNA and, in some cases, with RNA-DNA hybrids, generally 

without obvious RNA sequence specificity. Among the first to be recognized were Staufen, 

responsible for mRNA localization in Drosophila, and PKR, a dsRNA-activated protein 

kinase in mammals (Fierro-Monti, et al., 2000). 

Other well known RNA-binding domains are Piwi/Argonaute/Zwile (PAZ) domain, 

DEAD/DEAH box, Sm domain and Pumilio/FBF (PUF or Pum-HD) domain (Glisovic, et al., 

2008). 

 

.3.2.1.1 Combinatorial protein-RNA interactions 

The use of a modular domain-based approach to RNA recognition allows regulatory proteins 

to establish reversible interactions with the RNA targets within large RNA-protein particles. 

This modularity is observed in the bimolecular recognition of an RNA molecule by a multi-

domain protein (Fig. 6), or when several RNA molecules or proteins are involved. Protein-
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protein interactions can also bring together different parts of the RNA or different RNAs 

(Fig. 6).  

 

 

Figure 6 

 Modular recognition of the RNA. A: Two RNA-binding domains can interact with adjacent RNA sequences 

(top) or distantly located sequences within one RNA molecule (middle) or two different RNA molecules (bottom), 

creating an array of possible structural combinations. B: The different RNA-binding affinities of the four KH 

domains of KSRP for RNA (best binding sequence) underscore their different role and the potential to create a high-

affinity interaction in multiple domains recognition. 

 

.3.2.2 RBPs 

Among the best characterized RBPs are hnRNPs, a large family of nuclear proteins (hnRNP 

A1 to hnRNP U) with RNA-binding domains and protein-protein binding motifs, that shuttle 

with the RNA from the nucleus to the cytoplasm and regulate transcription, splicing, RNA 

turnover and translation (Lunde, et al., 2007). 

HnRNP K, PCBP1 (hnRNP E1) and PCBP2 (hnRNP E2) recognize poly(C) regions and share 

the KH RNA-binding domain (Makeyev, et al., 2002). 

Multi-functional proteins may be crucial for the building of the highly complex networks that 

maintain the function and structure in the eukaryotic cell possessing a relatively low number 

of protein-encoding genes. One facet of this phenomenon is the interaction of metabolic 

enzymes with RNA. The list of such enzymes known to be associated with RNA is constantly 

expanding (Table 1) (Cieśla, 2006). 
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Enzyme Catalyzed reaction Binds 

Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) 

3-phosphoglyceraldehyde + NAD+ + 

Pi       1,3-diphosphoglycerate + NADH 

+ H+ 

tRNA 

IFN-α, c-myc, GM-CSF and IL-2 

mRNA 3’UTR (ARE) 

GLUT1  mRNA 3’UTR (ARE) 

ribosomal RNA 

TNF-α hammerhead ribozyme 

HAV  RNA 5’UTR (IRES) 

HAV RNA 3’UTR (ARE) and 

3’coding HCV  RNA 3’UTR 

HBV 

HPIV RNA 3’UTR (U-rich) 

HDV antigenomic RNA 

MyHC mRNA 3’UTR 

Aldolase fructose-1,6-bisphosphate 

glyceraldehyde-3-phosphate + 

dihydroxyacetone phosphate 

MyHC mRNA 3’UTR 

Lactate dehydrogenase (LDH) lactate + NAD+               pyruvate + 

NADH + H+ 

GM-CSF mRNA 3’UTR (ARE)  

Glucose 6-phosphate dehydrogenase 

(G6PDH) 

glucose-6- phosphate+NADP+                         

 6-phosphogluconolacton  + NADPH 

GLUT1  mRNA 3’UTR (ARE) 

Glutamate dehydrogenase (GDH) 

 

l-glutamate + NAD(P)+ + H2O        2-

oxoglutarate + NH4+ + NAD(P)H 

cytochrome c oxidase mRNA gRNA 

3’oligo(U) 

Thymidylate synthase (TS) 

 

Deoxyuridine monophosphate + N5,10-

methylene- tetrahydrofolate       

deoxythymidine monophosphate + 

dihydrofolate 

TS mRNA p53 mRNA c-myc mRNA 

various RNAs 

Creatine kinase brain form B 

(CKBB) 

 

creatine + ATP             phosphocreatine 

+ ADP 

αMyHC mRNA 3’UTR 

Table 1 

List of enzymes known to be associated with RNA 

 

Given the many layers of post-transcriptional control operating in the cell, the number of 

factors involved in various steps of RNA metabolism is much larger than anticipated. Indeed, 

the recent development of methodologies aimed at searching for new RBPs has produced a 
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catalogue of factors with RNA binding capacity (Castello, et al., 2012), such as enzymes of 

intermediary metabolism among others. In the near future, in depth characterization will 

indicate whether these factors are passengers of RNP complexes or will provide evidences for 

the functional role of these factors in RNA-dependent pathways.  

A great variety of post-translational modifications affecting RBPs have been discovered, such 

as serine/threonine phosphorylation, proline hydroxylation, arginine/lysine methylation, 

lysine ubiquitination or SUMOylation, lipidation and so on. All of these chemical 

modifications can influence affinity and/or specificity of protein-protein and/or RNA-protein 

interactions, and are consequently critical for rapid remodelling of ribonucleoprotein 

complexes and for stability and localization of mRNAs (Thapar, et al., 2013) (Lee, et al., 

2013).  

 

.3.2.3 miRNAs  

Beside RBPs, regulation of mRNA metabolism also involves non coding RNAs (ncRNAs). A 

very high proportion of complex genomes give indeed rise to ncRNAs, among which the most 

widely studied class is that of miRNAs. MiRNAs are a novel class of small (21-25 

nucleotides), non-coding RNA molecules predicted to post-transcriptionally regulate at least 

half of the human transcriptome (Friedman, et al., 2009). The discovery, and subsequent 

characterization, of miRNAs has revealed an intriguing additional level of gene regulation 

that is fundamental in a diverse range of pathways including development, differentiation and 

pathological processes. Each miRNA is estimated to regulate around 200 targets, and mRNA 

transcripts may be regulated by multiple miRNAs.  

miRNA genes are transcribed by RNA polymerase II (pol II) to generate long primary 

transcripts (pri-miRNAs), which can be several kilobases long. The pri-miRNAs are capped, 

spliced and polyadenylated. Drosha digests pri-miRNAs to release hairpin structures called 

precursor miRNAs (pre-miRNAs), which are 60-70 nucleotides in length. Exportin-5 interacts 

directly with the pre-miRNAs to mediate their export into the cytoplasm, where a second 

RNase III enzyme named Dicer cleaves the pre-miRNA to generate a double-stranded 

miRNA duplex of ∼22 nucleotides. Following Dicer processing, the miRNA duplex is rapidly 

unwound as it associates with Argonaute (Ago) proteins, and one strand is retained to become 

the mature miRNA and is loaded into RNA-induced silencing complexes (RISCs) to 

participate in mRNA regulation. The complementary strand, which is found at lower 

concentrations within the cell, is believed to be non-functional and it is rapidly degraded. 

Altered expression of miRNAs is increasingly recognized as a feature of many diseases, 
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including neurodegeneration like Alzheimer’s disease, Parkinson’s disease, amyotrophic 

lateral sclerosis (ALS) and Huntington’s disease (Goodall, et al., 2013). 

 

.3.3 Local control of mRNA translation modulates neuronal 

development, synaptic plasticity, and memory formation  

The complex interplay of post-transcriptional regulatory mechanisms mediated by RBPs at 

different steps of RNA metabolism is pivotal for the development of the nervous system and 

the maintenance of adult brain activities.  

For example, Hu proteins are human homologues of Drosophila ELAV, an RBP whose 

deletion results in an embryonic lethal abnormal vision phenotype in flies. There are four 

mammalian ELAV/Hu proteins, HuA, HuB, HuC, and HuD. These proteins are encoded by 

separate genes and are present in the cell in multiple splice variants. In mammals, birds, 

and Xenopus, three of the members (HuB, HuC, and HuD) are neuronal-specific, while the 

fourth member, HuA, is expressed in other tissues. Hu proteins are thought to be one of the 

earliest markers of neuronal differentiation (Marusich, et al., 1994). In the evolution 

from Drosophila to man, ELAV proteins seem to have changed their biological functions in 

relation to their different subcellular localization. While in Drosophila they are localized in 

the nuclear compartment of neuronal cells and regulate splicing and polyadenylation, in 

mammals, the neuronal ELAV proteins are mainly present in the cytoplasm where they 

participate in regulating mRNA target stability, translation and transport into neurites. 

However, recent data indicate that the mammalian ELAV RBPs also have nuclear activities, 

similarly to their fly counterpart, being them able to continuously shuttle between the 

cytoplasm and the nucleus (Colombrita, et al., 2013). 

They enhance gene expression increasing mRNA half-life and promoting protein synthesis by 

a still-unknown molecular mechanism. Developmentally, nELAV proteins have been shown 

to act as inducers of the transition between neural stem/progenitor cells and differentiation-

committed cells, also assisting these neuroblasts in the completion of their maturation 

program. In brain physiology, they are also the first RBPs demonstrated to have a pivotal role 

in memory, where they probably control mRNA availability for translation in subcellular 

domains, thereby providing a biochemical means for selective increase in synaptic strength 

(Pascale, et al., 2008). 

Neural ELAV proteins are key inducers of neuronal differentiation through the stabilization 

and/or translational enhancement of target transcripts bearing the AU-rich elements (AREs), 
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whereas Musashi-1 maintains the stem cell proliferation state by acting as a translational 

repressor. Colocalization of nELAV proteins with Musashi-1 clearly shows that ELAV 

proteins are expressed at early stages of neural commitment, whereas interaction studies 

demonstrate that neural ELAV proteins exert an ARE-dependent binding activity on 

the Msi1 mRNA. This binding activity has functional effects, since the ELAV protein family 

member HuD is able to stabilize the Msi1 ARE-containing mRNA in a sequence-dependent 

way in a deadenylation/degradation assay (Ratti, et al., 2006). 

One target of ELAV-like proteins is the mRNA of the GAP-43 gene, known to be a 

determinant of neural development, regeneration of neural connections, and synaptic 

plasticity in mature synapses. Whereas GAP-43 neuron-specific expression is controlled by 

elements in the promoter of this gene, its induction during neuritogenesis has been ascribed 

essentially to post-transcriptional events involving mRNA stabilization. Experimental data 

suggested that activation of ELAV-like proteins by spatial learning could result in a 

downstream up-regulation of GAP-43 expression (Quattrone, et al., 2001). 

Interestingly, among the target mRNAs regulated by nELAV proteins some encode, in turn, 

proteins involved in mRNA metabolism; among these, mRNA encoding the neuro-

oncological ventral antigen 1 (Nova1), a neuron-specific splicing factor that controls by 

alternative maturation several mRNAs important for synaptic function. Nova1 mRNA 

stability and translation are positively controlled by nELAV proteins. Moreover, PKC-

dependent nELAV phosphorylation induces recruitment of Nova1 mRNA to polysomes 

(Ratti, et al., 2008). These findings suggest that, as in the case of transcription factors, a 

hierarchy of RNA-binding proteins exists whose members are expressed as part of a 

regulatory cascade. 

 

.3.4 RBPs involved in the study 

.3.4.1 PIPPin 

PIPPin cDNA was cloned using an experimental approach based on the screening of an 

expression library, via a binding assay with an in vitro transcribed and labeled RNA encoding 

H1°. PIPPin is highly enriched in the rat brain, it binds specifically both H1° and H3.3 histone 

mRNAs at the very end of their 3’-UTR, around the putative polyadenylation signals, and 

contains two putative double-stranded RNA-binding motifs (PIP1 and PIP2), each on one side 

of a central CSD (Fig. 7A) (Nastasi, et al., 1999). The presence of additional RNA-binding 

domains, besides the CSD, is not unusual in Y-box proteins, where they enhance RNA-
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specific binding mediated by CSD (Graumann, et al., 1998). Only the entire PIPPin is able to 

bind RNA (Raimondi, et al., 2003). 

PIPPin is specifically enriched in some pyramidal neurons of the cerebral cortex and in the 

Purkinje cells of the cerebellum (Castiglia, et al., 1996), it is present in both the cytoplasm 

and the nucleus of nerve cells and inhibits translation of H1° and H3.3 mRNA in a cell-free 

system.  

 

 

Figure 7  

 A: Schematic representation of PIPPin protein; B: Tridimensional PIPPin protein. 

 

To better understand which RNA sequence bind to PIPPin, different fragments of the H1° and 

H3.3 inserts were amplified and cloned (Fig. 8A) and these new plasmids were used as 

templates to synthesize a set of unlabeled competitor RNAs. As shown in Fig.8 B, all the 

unlabeled RNAs that contain the very end of the 3’-UTR of both H1° (Fig. 8B, lane H1°, d) 

and H3.3 RNAs (Fig. 8B, all the lanes marked as H3.3) are able to abolish binding (Nastasi, et 

al., 1999). 
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Figura 8  

A: Schematic maps of the rat H3.3 and H1° cDNAs; B: subclones corresponding to the four different 

portions (a to d) of H1° RNA and to the three H3.3 sequences of decreasing sizes (full-length, f.l., R4, and M4), shown 

in A, and the plasmid pA1.3K were used as templates for the synthesis of unlabeled H1°, H3.3, and erbA transcripts, 

respectively. The unlabeled RNAs were included, as competitors. The covalent complexes obtained, in the absence of 

competitors, after incubation of the same amount of radioactive RNA with MBP (lane 1) or MBP/PIPPin fusion 

protein (lane 2) are shown as internal controls. (Nastasi, et al., 1999) 

 

PIPPin is found both in the nucleus and in the cytoplasm, but immunoprecipitation assays 

identified RNA-PIPPin complex mainly in nuclear extracts, suggesting that the nuclear form 

is modified to become able to bind RNA. In fact, in the amino acid sequence several potential 

phosphorylation sites are present. Moreover, two-dimensional electrophoretic analysis 

showed that nuclear PIPPin is present in two forms, one more acidic (sparsely present in the 

cytoplasm) and one more basic (identical to that present in the cytoplasm). It was therefore 

hypothesized that the nuclear acidic form is phosphorylated and that phosphorylation can 

promote binding of H1° and H3.3 mRNAs to PIPPin and that, in turn, this interaction could 

have an effect on their transport to the cytoplasm. 

 

.3.4.2 PEP-19/LPI 

LPI (long PEP-19 isoform) was also cloned previously in the laboratory where I carried on 

my project. LPI is a rat-specific protein of 94 amino acids, with a molecular mass of 10.7 

kDa. It is derived from alternative splicing of the gene PCP4, which encodes PEP19, a small 

brain-specific and calmodulin-binding protein probably involved in the homeostasis of 

calcium in the brain. PEP-19 is mainly expressed in the central nervous system (in Purkinje 
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cells of the cerebellum and in the olfactory bulbs), but is present also in the peripheral nervous 

system. LPI cDNA contains an internal sequence of 127 nucleotides (nt 111-237, indicated as 

ΔLPI in figure 9) that is not present in the PEP19 cDNA. (Fig.9) (Sala, et al., 2007) 

 

 

Figure 9  

Schematic representation of LPI cDNA. 

 

.3.4.3 hsc70 

The Heat shock cognate RNA-binding protein 70 is a constitutively expressed member of the 

family of 70 kDa chaperones and it is regulated by cycles of ATP/ADP binding. Thanks to its 

ability to bind AU-rich sequences, hsc 70 is important for the stabilization of mRNAs 

(Matsui, et al., 2007). 

 

.3.4.4 YB -1 

The Y-box binding protein-1 (YB-1) belongs to a large family of proteins that harbor a 

conserved nucleic acids binding domain, known as CSD. This protein regulates gene 

expression both at the level of transcription and translation, and it is also implicated in the 

stabilization of cytoplasmic mRNAs. YB-1 is widely expressed during development and its 

expression level is closely correlated with cell proliferation. High levels of YB-1 were 

detected in vivo in actively proliferating adult tissues (Lu, et al., 2005). 

 

.3.4.5 hnRNP A1 

The Heterogeneous nuclear RNP (hnRNP) A1 is one of the most important pre-mRNA 

binding proteins. It belongs to the A/B subfamily of hnRNPs, expressed ubiquitously and 

present both in the nucleus and in the cytoplasm. A1 sequence has been determined and it 

contains two RNA-binding domains near the amino-terminal end, and a glycine-rich domain 

near the carboxy-terminal (Good, et al., 1993). hnRNP A1 participates in the maturation of 

pre-mRNAs and in other aspects of mRNA metabolism, and it has been demonstrated to be 

involved in the transport of mRNA from nucleus to cytoplasm. 
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.3.5 RBPs dysfunction in neurological disease 

Alterations in neuronal RNA processing are characteristic of many if not all 

neurodegenerative disease conditions. In many cases, the contribution of RNA alterations to 

disease is not clear; however, it is increasingly recognized that RNA metabolic abnormalities 

are capable of directly initiating the neurodegenerative disease process and/or accelerating its 

progression. In these diseases, inherited mutations lead to disrupted function of RBPs and 

subsequent deleterious changes in RNA metabolism. 

Inherited mutations leading to neurodegenerative disease can be in genes coding for RBPs and 

directly affect RBP function; alternatively, expansion of trinucleotide repeats in non-RBP 

genes leads to the production of abnormal RNA that can then affect RBP function. Loss-of-

function of RBPs is found in both types of disease, and the resulting global changes in RNA 

processing are thought to underlie disease pathogenesis. 

 

.3.5.1 Spinal Muscular Atrophy 

Spinal Muscular Atrophy (SMA) is an autosomal recessive disease characterized by the 

degeneration of motor neurons in the spinal cord, leading to weakness, muscle atrophy and, in 

severe cases, death. SMA is caused by deletion or mutation of the survival of motor neuron 

(SMN1) gene, which encodes a protein that is critical for the assembly of snRNP particles. In 

combination with other factors, snRNPs form the core of the spliceosome complex that 

processes immature mRNA. SMN1 binds to both snRNAs and heptameric Sm proteins and 

mediates their assembly into snRNPs. SMN1 also facilitates transport of the complex into the 

nucleus where the mature spliceosome operates (Gubitz, et al., 2004) (Yong, et al., 2004). 

Human genome contains a second SMN gene, SMN2, that harbors a single nucleotide 

mutation that leads to skipping of exon 7 and production of only small quantities of functional 

SMN2 protein (Hastings, et al., 2009). Copy number variations in the SMN2 gene modulate 

the severity of SMA in SMN1 mutant individuals, and enhancing SMN2 expression is being 

explored as a therapeutic option in SMA (Hanson, et al., 2012). 

 

.3.5.2 Mutations in FMR1 

Repeat expansions in the gene FMR1 can lead to disrupted RBP function by two distinct 

mechanisms, leading to different conditions. 
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.3.5.2.1 Fragile X Syndrome 

Fragile X Syndrome (FXS) is an X-linked disease caused by CGG repeat expansions in the 5′-

UTR of the FMR1 gene (Heulens, et al., 2011). FXS is the most common genetic cause of 

mental retardation, with an incidence of ~1:2500. Unlike other repeat-expansions diseases, in 

which the expanded RNA or protein is pathogenic, expanded CGG repeats in the 5′ region of 

FMR1 lead to its transcriptional silencing and loss of the FMRP protein.  

FMRP is an RBP that associates with RNA in polyribosomes found in dendrites, and is 

thought to regulate the local translation required for synaptic plasticity. In support of this idea, 

one primary feature of patients with FXS is the presence of immature dendritic spines 

(Lukong, et al., 2008) (Bassell, et al., 2008). FMRP also localizes to RNPs on microtubules 

and may play a role in the transport of RNA to the synapse (Antar, et al., 2005). 

 

.3.5.2.2 Fragile X Tremor Ataxia Syndrome 

In normal individuals, the FMR1 gene contains 5-50 CGG repeats, whereas those with the full 

disease have >200. Interestingly, individuals with an intermediate number of repeats, termed 

an FMR1 premutation, do not develop FXS. Males with an FMR1 premutation, however, 

develop FXTAS, a late-onset disorder characterized by dementia, gait abnormality, and 

tremor (Li, et al., 2010).  In contrast to FXS, in which the FMR1 gene is silenced, individuals 

with FXTAS do produce FMRP protein (Tassone, et al., 2000). However, the expanded RNA 

forms nuclear foci similar to those observed in myotonic dystrophy; these foci also contain 

RBPs, specifically Pur-α and hnRNPA2/B1 (Jin, et al., 2007) (Sofola, et al., 2007). 

Sequestration and loss of function of these RBPs seems to be important for disease 

pathogenesis, as overexpression of either protein rescues disease phenotypes in FXTAS 

animal models. Similarly, another study found that CGG-expanded RNA can sequentially 

recruit distinct RBPs, including MBNL, to nuclear foci, leading to changes in alternative 

splicing in FXTAS patients (Sellier, et al., 2010). 

 

.3.5.3 ALS 

ALS is a neurodegenerative disease that targets the spinal motor neurons controlling 

voluntary movement, and is characterized by rapidly progressive weakness and paralysis. 

ALS carries a cumulative lifetime risk of 1 in 1,000 and is fatal, leading to respiratory failure 

within 3-5 years. Approximately 90% of ALS cases are sporadic (sALS) and of unknown 

etiology, whereas ~10% of cases are classified as familial (fALS) and have a clear genetic 

cause. Dominant mutations in superoxide dismutase 1 (SOD1) account for up to 20% of  
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fALS cases, which are pathologically and clinically similar to sALS (Rosen, et al., 1993). 

Mutation in SOD1 is thought to cause an abnormal gain-of-function that is toxic to neurons 

(Boillée, et al., 2006). 

Recently, Neumann and colleagues sought to identify novel disease-related proteins in 

patients with ALS and ubiquitin-positive frontotemporal lobar degeneration (FTLD-U), a 

pathologically similar disease affecting the cortex. They identified the 43-kDa TAR DNA-

binding protein (TDP-43) as a common constituent of cytoplasmic inclusions in both ALS 

and FTLD-U patients. Predominantly nuclear in normal tissues, in disease TDP-43 is 

mislocalized to the cytoplasm, ubiquitinated, and hyperphosphorylated. Additionally, 

inherited mutations in TDP-43 and a related RBP, FUS/TLS (fused in sarcoma/translated in 

liposarcoma, referred to as FUS), were found to cause familial ALS (Hanson, et al., 2012). 

Since these discoveries, it has been hypothesized that alterations in RNA processing due to 

TDP-43 and FUS proteinopathy may underlie disease pathogenesis.  
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4. Techniques for studying RNA-protein interactions 

 

.4.1 Analysis of RNA-PIPPin (and -Pep-19) interactions by T1 

assay 

In vitro transcribed, radiolabeled RNA is incubated with the lysate or with purified 

recombinant protein to allow the formation of RNA-protein complexes, and the mixture is 

exposed to ultraviolet radiation to convert non-covalent interactions in covalent bonds. 

Samples are then treated with RNase T1, which digest the RNA with the exception of the 

sequences protected by bound proteins (Fig.10) and analyzed by SDS-PAGE. After exposure 

to autoradiographic film, only RNA-protein complexes will be visible as dark bands (Fig.8). 

 

 

Figure 10  

T1 RNase protection assay 
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.4.2 Analysis of RNA-proteins interactions by BLI 

Label-free biosensor methods provide information on binding, kinetics, concentration, and 

affinity of an interaction. These techniques provide real-time monitoring of interactions 

between an immobilized ligand (such as a receptor) to an analyte in solution without the use 

of labels. Advances in biosensor design and detection using BioLayer Interferometry (BLI) 

provide a simple platform that enables label-free monitoring of biomolecular interactions 

without the use of flow cells. 

Specific RNA-PIPPin binding was demonstrated using a biotinylated RNA via the 

streptavidin-biotin conjugation method, which makes possible a simple analysis of RNA-

protein interactions. The design of the sensor used for detection of RNA-PIPPin interactions 

by the streptavidin-biotin conjugation method is illustrated in Fig. 11. 

 

Figure 11  

A representative scheme for detection of RNA-PIPPin interaction using streptavidin-biotin conjugation 

method on the Octet platform. 

 

.4.2.1 Principles of the Octet Platform  

BioLayer Interferometry (BLI) technology was invented by Lotze (Lotze, 2009), and it is a 

label-free, fluidics-free, real-time detection method based on an optically-coated streptavidin 

biosensor (Farkas, et al., 2007). Interferometry is a technique based on the measurement of 

light intensity produced by the interference of two or more light beams. This technique can be 

used for detecting optical properties, such as a refraction index, and physical properties, such 

as the thickness of a thin film when a difference between the light beams is due to the light 

passing through it. The principle of BLI method applied to the Octet optical biosensor is 

illustrated in Fig. 12. 
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Figure 12  

A layer of molecules attached to the tip of an optic fiber creates an interference pattern at the detector with 

optically coated streptavidin biosensor in solution. Any change in the number of bound molecules causes a measured 

shift in the pattern. Relationship of distance between reflecting surfaces and reflected intensity would be investigated. 

As molecules bind, the spectrum of signal changes as a function of the layer increasing on the sensor. 

 

In Figure 11, the biotinylated RNA is attached to a tip coated with a streptavidin optical layer. 

The tip is dipped into a sample containing the target molecule. The target molecule binds to 

the captured molecule and the two forms a molecular layer. A white light is directed into the 

fiber. Two beams will be reflected to the back end. The first beam comes from the tip as a 

reference. The second light comes from the molecular layer. The difference in the two beams 

will cause a spectrum pattern as shown in figure 12. The phase is a function of the molecular 

layer thickness and corresponds to the number of molecules on the tip surface. When the 

molecules bind to the sensor, the reflections on the internal reference layer will remain 

constant, while those on the interface between the molecular layer on the fiber and the 

solution will change with the addition of bound molecules. Bio-layer interferometry within 

the sensor will monitor this change. For a thin film based on an optically-coated streptavidin 

biosensor placed on a molecule, that is, the biotinylated RNA, the two interfering beams in 

reflection mode can be as follows: a beam passing through the thin film and reflected from the 

interface between the substrate and the film or, alternatively, a beam reflecting from the 

interface between the thin film and the air. If the biotinylated RNA is optically transparent, 

interference can also be measured in transmission mode. Interferometry can be used for 

detecting a change in thickness of an organic film, comprised of an RNA-protein molecules 

binding, consequent to exposure to a biological sample, and thereby determining the amount 

of RNA-protein conjugates in the sample by detecting change in thickness. As RNA binds to 
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PIPPin, the spectrum of the signal will change as a function of the signal increasing on the 

sensor. The Octet will monitor changes in wavelength over time.  

The protein-ligand interaction is generally governed by the following chemical equilibrium: 

P + L↔ PL that can be quantitatively described by the equations 

Ka = [PL] / [P] [L] association constant 

and 

Kd = [P] [L] / [PL] dissociation constant 

The affinity constant KD is the ratio between Kd and Ka, so that a low value of Kd 

corresponds to a high affinity of the protein for the ligand, and vice versa. 
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Results and discussion 

1 RNA-binding activity of the rat calmodulin-binding 

PEP-19 protein and of the long PEP-19 isoform 

 

.1.1 RNA-binding activity of PEP-19 and LPI and specificity of 

RNA-binding 

Post-transcriptional regulation of RNA fate depends on the association with different sets of 

RBPs, which often contain different RNA-binding domains as well as additional domains 

involved in protein-protein interactions (Burd, et al., 1994). 

The RNA-RBP association can be modulated by environmental cues, both during 

development and in differentiated cells (Derrigo, et al., 2000) (Hall, 2002). During 

mammalian brain maturation, several classes of neurons accumulate both H3.3, a core histone 

(Cestelli, et al., 1992), and H1˚, a linker histone (Castiglia, et al., 1994). The concentration of 

the corresponding mRNAs decreases between embryonic day 18 (E18) and postnatal day 10 

(P10), with an inverse correlation to the accumulation of the corresponding proteins. The 

observed differences are not due to modifications of gene transcription (Scaturro, et al., 1995), 

and should depend on post-transcriptional regulation. The search of RBPs able to bind H1˚- 

and/or H3.3-mRNA, and possibly involved in their metabolism, led in the past to the 

identification of three H1˚ RNA-binding proteins (p40, p70 and p110) (Scaturro, et al., 1998) 

and to cloning of an H3.3/H1˚ RNA-binding protein (PIPPin/CSD-C2), which contains a 

cold-shock domain (Nastasi, et al., 1999). More recently, a second protein has been cloned: 

the experimental approach used was based on the screening of an expression cDNA library 

with a labeled, in vitro transcribed histone RNA (Sala, et al., 2007). The novel cDNA 

corresponds to a splicing variant of the mRNA encoding PEP-19, an already known peptide 

which contains, in its C-terminal half, IQ motifs, able to bind calmodulin. The new protein, 

that has been called LPI, shares with PEP-19 the calmodulin-binding C-terminal half. The 

first aim of the present study was therefore to investigate whether PEP-19 and/or LPI interact 

with H1˚ RNA. The analysis required preparation of recombinant PEP-19 and LPI, but, when 

produced in bacteria in the form of 6 histidine-tagged recombinant proteins, most of these 

were found in the inclusion bodies. It was therefore necessary to set an experimental 

procedure that, moving from the standard denaturation/refold protocols, could allow a high 
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yield of functional protein. In particular, according to standard protocols, proteins are finally 

dialyzed. During this step, however, most of the protein aggregated and precipitated. We 

found that replacement of the final dialysis with a filtration through an equal volume of G-100 

Sephadex could restore solubility of the proteins. Moreover, solubility is maintained even 

after repeated freeze-thaw cycles (Patent N˚ PA2009A000029). 

To confirm that LPI can bind H1˚ RNA, as suggested by the approach used to identify it, and 

to investigate PEP-19 binding properties, T1 RNase assays were performed, using in vitro 

transcribed H1˚ RNA and 50 ng of each protein. Both LPI (Fig. 13A) and PEP-19 (Fig. 13B) 

were able to bind rat H1˚ RNA, each forming a major complex which migrates with an 

apparent molecular weight of 14 and 12 kDa, respectively. 

 

 

Figure 13  

LPI and PEP-19 bind H1˚ RNA. (A) 6His-tagged LPI or (B) PEP-19 (50 ng each) were incubated with 

0.5x106 cpm of radiolabeled H1˚RNA. Competition experiments were performed in the presence of excess 

unlabeled H1˚ RNA (2:1), H3.3 RNA (2:1) or Cox IV RNA (5:1). At the end of the T1 RNase protection assay, 

RNA-protein covalent complexes were analyzed by SDS-PAGE and the gels were exposed to X-ray films for 16 h. 

Representative films showing the RNA-protein complexes obtained in the absence (-) or in the presence of 

competing RNA are shown in the upper part of A and B. The lower parts of A and B are graphical representations 

of the statistical analysis of at least three independent experiments. Grey bars indicate mean values for each 

condition. SDs are also indicated (black bars) (Saladino, et al., 2012). 

 

In addition, to ascertain that the binding of LPI and PEP-19 to H1˚ RNA was specific, T1 

RNase protection assays were performed in the presence of excess unlabeled RNAs. 

Unlabeled H1˚ RNA competed with his labeled counterpart in the binding reactions with both 
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LPI (Fig. 13A) and PEP-19 (Fig. 13B). Unlabeled H3.3 RNA (Fig. 13) also competed with 

H1˚ RNA binding, suggesting an interaction of both proteins with both RNAs. In contrast, the 

3'UTR of Cox IV RNA (Fig. 13) was unable to compete. Fig. 13 also shows a graphical 

representation of the statistical analysis of at least three independent experiments, for both 

proteins. The ability of LPI and PEP-19 to bind H3.3 RNA was confirmed by direct T1 RNase 

protection assay (Fig. 14). 

 

 

Figure 14 

LPI and PEP-19 bind H3.3 RNA. LPI (lane 1), PEP-19 (lane 2) or PIPPin/CSD-C2 (lane 3, PIP) (50 ng each) was 

incubated with 0.5x106 cpm radiolabeled H3.3 RNA. At the end of the T1 RNase protection assay, the RNA-protein 

covalent complexes were analyzed as described in Materials and Methods and in Fig. 11 legend (Saladino, et al., 2012). 

 

Both LPI (Fig.14 lane 1) and PEP-19 (Fig.14 lane 2) strongly bound H3.3 RNA, suggesting 

an interaction of these proteins with both H1˚ and H3.3 RNAs. Fig. 14 also shows H3.3 RNA 

binding to PIPPin/CSD-C2, the RNA-binding activity of which has been previously reported 

(Castiglia, et al., 1996) (Nastasi, et al., 1999).  

 

.1.2 PEP-19 and LPI compete with PIPPin/CSD-C2 for H1˚ 

RNA-binding.  

Since both LPI and PEP-19 are able to bind the H1˚ RNA, we assessed their ability to 

compete with PIPPin/CSD-C2 for binding. Fig. 15 shows the results of these analyses: when 

used in equimolar amounts, LPI and PIPPin/CSD-C2 form roughly similar amounts of 

complexes.  
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Figure 15  

PEP-19 and LPI compete with PIPPin/CSD-C2 for H1˚ RNA binding. PIPPin/CSD-C2 (PIP) (50 ng) were incubated 

with 0.5x10
6
 cpm of radiolabeled H1˚RNA. Competition experiments were performed in the presence of a 1:1 or 1:4 

excess of LPI or PEP-19 (PEP) (Saladino, et al., 2012). 

 

On the other hand, PEP-19 seems to bind H1˚ RNA more strongly than PIPPin/CSD-C2.  

.1.3 Effect of calmodulin on PEP-19 and LPI binding to H1˚ 

RNA 
Since both LPI and PEP are able to bind H1˚ RNA, we reasoned that the site involved in RNA 

binding might be in their common C-terminal half. This part of both molecules also contains 

the calmodulin-binding site. We, therefore, asked whether calmodulin can interfere with RNA 

binding. And, indeed, calmodulin was able to reduce the binding of both proteins to RNA 

(Fig.16). 

 

Figure 16 

 Calmodulin interferes with RNA binding to PEP-19 and LPI but does not bind RNA. (A) LPI or (B) PEP-19 (50 ng 

each) were incubated with radiolabeled H1˚RNA. Competition experiments were performed in the presence of 1:1 or 

4:1 excess of calmodulin (CaM), or 4:1 excess of bovine serum albumin (BSA). At the end of the T1 RNase protection 

assay, RNA-protein covalent complexes were analyzed as described in the legend to Fig. 13. Representative films are 

shown in the upper part of A and B. The lower parts of A and B are graphical representations of the statistical 

analysis of at least three independent experiments. Grey bars indicate mean values for each condition. SDs are also 

indicated (black bars) (Saladino, et al., 2012). 
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The interfering effect of calmodulin is specific, since the same amount of BSA did not 

compete. Graphical representations of the statistical analysis of at least three independent 

experiments are shown in Fig. 16, for both proteins. The effect of calmodulin is not due to its 

putative ability to bind RNA: this protein, like BSA, was unable to form complexes with H1˚ 

RNA on its own (Fig.16)  

The specific interaction between calmodulin and Pep-19 protein was also confirmed by the 

ForteBio’s Octet platform, which uses disposable nickel-charged tris-nitriloacetic acid (Tris-

NTA) biosensor, and biolayer interferometry to detect and quantify molecular interactions.  

In order to calculate the affinity constant of PEP-19-Cam binding, different concentrations of 

calmodulin were used, from 5ng/µl to 40 ng/µl, while a sample without calmodulin (yellow 

line) was used as a negative control. The results obtained in this kind of analysis are shown in 

Fig.17 (See also section 9 in Mat and Met). 

 

 

Figure 17  

Pep-19/Calmodulin interaction 

 

The binding data obtained were processed to calculate the affinity constants. 

The processing procedure includes: 

Subtraction Phase: Subtraction of the binding values from reference (Fig.18) 

Align Y-Axis: alignment of the curves with Association phase (Fig.18) 
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Subtraction phase  

In the specific experiment shown in Fig. 18, the yellow sensor was used as a reference, i.e. in 

the absence of calmodulin, to evaluate the signal given by the nonspecific PEP-19 binding to 

the sensor. Subtracting the values of the yellow sensor (Reference Wells) from the values 

obtained from the other wells, we obtained the real values for Pep-19/calmodulin interaction. 

 

 

Figure 18  

Pep-19/Calmodulin processing 

 

Once completed the processing procedure described above, the kinetic data obtained were 

analyzed by the Data Analysis 7 Software. 

For the analysis, data resulting from the association as well as those from dissociation phase 

were taken. The chosen “mathematical model of interaction” was the "1:1 model", according 

to which an analyte in solution binds a single site in the ligand bound to the sensor.  

Data analysis made possible the calculation of the affinity constant for the binding between 

Pep-19 and calmodulin, for each sample. 

Graphical representation of the statistical analysis of at least three independent experiments 

are shown in Fig. 19 
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Figure 19 

 Graphical representation of the statistical analysis of at least three independent experiments. 

Blue bars indicate mean values for each condition. SDs are also indicated (Red bars). 

 

Here we show that PEP-19 binds calmodulin (in a calcium-independent manner), with an 

apparent Kd close to 3,70E-
07

M, which is fairly similar to the value reported by Slemmon and 

colleagues (Slemmon, et al., 1996). 

In conclusion, LPI and PEP-19, like the previously identified PIPPin/CSD-C2 protein, are 

able to bind both H1˚ and H3.3 RNAs. The fact that all three proteins, which are also able to 

compete for binding to RNA, recognize both histone variant RNAs suggest the existence of a 

common regulation of the synthesis of replacement histones. Once we had demonstrated that 

both LPI and PEP-19 are able to bind H1˚ and H3.3 RNAs, we assessed the possible 

interfering effect of calmodulin on RNA-binding. The finding that calmodulin actually 

reduces binding of H1° RNA to both proteins sheds light on the putative signals which could 

regulate expression of histone variants in the brain. Calcium-dependent signals are indeed of 

particular importance in the nervous system, and deregulated increases in intracellular ionized 

calcium can result in neuronal damage and death. Many of the effects of calcium are mediated 

by calmodulin, and the brain contains tissue-specific peptides (such as PEP-19, neurogranin 

and neuromodulin) which seem to act as calmodulin antagonists (Slemmon, et al., 1996). 

Moreover, it has been recently suggested that PEP-19 is a critical determinant of synaptic 

plasticity (Wei, et al., 2011). Our discovery that PEP-19 and LPI bind H1˚ histone mRNA and 

that this binding is affected by calmodulin suggests that, in the brain, post-transcriptional 

regulation of H1˚ histone synthesis may be regulated by calcium signals, and perhaps by 

neuronal activity.  
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2. Identification in the rat brain of a set of nuclear 

proteins interacting with H1° mRNA 

 

.2.1  Chromatographic purification and identification of H1° 

RNA-interacting proteins 

As previously mentioned, the expression of H1° histone is regulated at the post- 

transcriptional level and is clear that in this regulation numerous RNA binding proteins are 

involved, some of which are specific for H1° mRNA, while others are universal factors. 

It is known that both specific and general RBPs form complexes with RNA, and that, within 

these complexes, some proteins bind directly to RNA while others may interact in an indirect 

manner. 

Starting from the assumption that RNA metabolism is regulated within complex structures, 

containing different RNAs and several regulatory proteins, in order to identify other proteins 

involved in the packaging of H1° mRNA in the nucleus, chromatographic analyses were 

conducted. We used as bait biotinylated H1° mRNA and, as preys, proteins present in total 

nuclear cell lysates (Nex) prepared from rat brains at the twentieth day of life. With this 

approach it is possible to highlight both proteins that interact directly with the H1° mRNA 

and proteins involved in indirect interactions. 

As shown in Fig.20A, affinity chromatography on biotinylated H1° RNA (R) allowed 

enrichment of nuclear proteins which could not be evidenced in the mock procedure, i.e. in 

the absence of RNA (C).  

 

Figure 20 

Chromatographic enrichment of H1° mRNA-binding proteins from nuclear extracts of 20 days old rat brains. 

A: coomassie blue staining of the proteins bound to the streptavidin-conjugated beads in the presence (R) or in the 

absence (C) of biotinylated H1° mRNA. B: Western blot of proteins shown in A, with anti-PIPPin/CSD-C2 antibodies. 

Molecular marker sizes are shown on the left (Di Liegro, et al., 2013). 
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Isolated proteins were analyzed by mass spectrometry. Proteins for which at least 7 peptides 

were identified are listed in Tab.2.  

Protein Peptide Principal  localization Note Access code   

kDa 

Tubulin beta-2A  18 cytoplasm Identified in mRNP 

granule complex 

P85108 50 

Glutamate dehydrogenase  16 mitochondrial  P10860.2 61 

hnRNP A2/B1 15 nucleus Identified in the 

spliceosome C complex 

A7VJC2 36 

hnRNP K * 15 nucleus Identified in the 

spliceosome C complex 

P61980 60 

hnRNP A1 * 10 nucleus, cytoplasm   Identified in the 

spliceosome C complex 

P04256 34 

aldolase a 10 cytoplasm  P05065 39 

Tubulin beta-3 chain  9 cytoplasm 

 

Neuron-specific Q4QRB4 50 

aldolase c  9 cytoplasm brain-specific P09117 39 

glyceraldehyde-3-phosphate 

dehydrogenase  

8 cytoplasm  P04797  

35 

Heat shock * cognate 71 

kDa protein  

8 cytoplasm, nucleolus, nucleus Identified in a mRNP 

granule complex 

P63018 70 

Y-box-binding * protein 1  7 cytoplasm, nucleus Identified in histone 

pre-mRNA complex 

and cytoplasmic mRNP 

P62961 50 

Table 2  

List of proteins enriched by chromatography on biotinylated H1° RNA and identified by mass spectrometry. 

Only proteins for which at least seven peptides were identified were included. Proteins indicated by an asterisk were 

taken into account in the co-immunoprecipitation analyses. Examples from the literature which describe the 

identification of listed proteins in RNP complexes as well as their main known localization and molecular mass are 

reported 
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Most of these proteins were already known to be involved in RNA metabolism. For example, 

hnRNP K, originally identified as part of hnRNP particles, has been reported to play a crucial 

role in axon development (Liu, et al., 2011) and, in general, in development of both central 

and peripheral nervous systems (Blanchette, et al., 2006), because of its implication in 

multiple aspects of post-transcriptional gene regulation. Most of hnRNP K roles depend on its 

ability to interact with a number of partners, some of which were found in unexpected 

compartments, such as the plasma membrane. Such interactions are also modified by 

extracellular signals (Mikula, et al., 2006). Other proteins are instead known components of 

the cytoskeleton and their chromatographic isolation is probably due to indirect interactions 

with the RBPs.  

Interestingly, it has been recently reported that, in embryonic rat brain, Hsc70, YB1 and alfa-

/beta-tubulins are present, together with other proteins, in a complex which also contains 

Staufen-2 (Maher-Laporte, et al., 2010). 

By western analysis (Fig.20B), we also found that the RNA-bound fraction (R) of proteins 

also contains PIPPin/CSD-C2. 

 

.2.2 Co-immunoprecipitation assays 

The above results demonstrated that a group of proteins could be isolated through 

chromatography on biotinylated H1° RNA. To investigate the ability of identified proteins to 

interact with one another, we then used paired co-immunoprecipitation assays (Fig.21). 

 

 

Figure 21 

hRNP K, hRNP A1, and Hsc70 co-immunoprecipitation assay. 

Proteins were immunoprecipitated from nuclear extracts of 20 days old rat brains with anti-hRNP K (K), anti-hRNP 

A1 (A1), or anti-Hsc70 (70), and analyzed by western blot. Ub, unbound fraction; Ip, immunoprecipitated proteins. 

Molecular mass of the proteins is indicated (KDa) (Di Liegro, et al., 2013). 
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As shown in Fig.21, hnRNP K and Hsc70 were co-immunoprecipitated by both anti-hnRNP 

K and anti-Hsc70 antibodies. Similarly, hnRNP K and hnRNP A1 were co-

immunoprecipitated by both anti-hnRNP K and anti-hnRNP A1 antibodies.  

On the other hand, anti-hnRNP A1 antibodies could not immunoprecipitate Hsc70 and vice 

versa. Similarly, anti-A2B1 antibodies used were not able to co-immunoprecipitate other 

proteins (data not shown). 

HnRNP A1 can also interact with PIPPin/CSD-C2 (Fig. 22), which also interacts with YB1, 

another CSD-containing protein and a 5’ cap-dependent mRNA stabilizer (Evdokimova, et 

al., 2006). 

 

Figure 22 

PIPPin/CSD-C2, hRNP A1, YB1, and Hsc70 co-immunoprecipitation assay. Proteins were immunoprecipitated from 

nuclear extracts of 20-day-old rat brains with anti-hRNP A1 (A1), anti-Hsc70 (70), anti-PIPPin/CSD-C2, or anti-Y-

box 1 (YB1), as indicated over each box, and analyzed by Western blot. Ub, unbound fraction; Ip, 
immunoprecipitated proteins; pc, pre-cleared nuclear extract. Molecular mass of the proteins is indicated (kDa) (Di 

Liegro, et al., 2013). 

 

YB1 is able to shuttle between the nucleus and cytoplasm, probably contributing to regulation 

of synthesis, splicing, packaging, and transport of several mRNAs. Like PIPPin/CSD-C2, this 

protein can be post-translationally modified and the modifications have an effect on its RNA-

binding activity (Evdokimova, et al., 2006) (Stratford, et al., 2008). In addition, anti-Hsc70 

antibodies were able to co-immunoprecipitate PIPPin/CSD-C2 (Fig.22). However, we were 

not able to evidence co-immunoprecipitation of Hsc70 and PIPPin/CSD-C2 when anti-

PIPPin/CSD-C2 antibodies were used (not shown). Monoclonal PIPPin/CSD-C2 antibodies 

were also able to co-immunoprecipitate hnRNP K (Fig.23). 
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Figure 23 

PIPPin/CSD-C2 and hnRNP K co-immunoprecipitation assay. Proteins were immunoprecipitated from nuclear 

extracts of 20-day-old rat brains with anti-PIPPin/CSD-C2 and analyzed by Western blot with anti-hRNP K (K), in 
the presence (+) or not (−) of RNase A. Molecular mass is indicated (kDa) (Di Liegro, et al., 2013). 

 

In order to be sure that the observed interactions were not mediated by endogeneous RNA 

molecules, one half of the extract was incubated with RNase A before each co-immuno-

precipitation experiment. We did not find any difference between treated or not treated 

samples. The results of one of these control experiments are shown in Fig.23. 

 

.2.3 Immunofluorescence 

Possible colocalization of Hsc70 and PIPPin/CSD-C2 was further studied by 

immunofluorescence in cultured astrocytes. As shown in Fig.24 a, yellow spots, indicated by 

arrows, are clearly visible in the nucleus, thus suggesting the existence of complexes which 

contain both proteins. 
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Figure 24 

Fluorescence microscopy. Immunofluorescence performed with anti-Hsc70 (b, green fluorescence), and with anti-

PIPPin/CSD-C2 (c, red fluorescence) on astrocytes cultured for 5 days in Maat Medium. The overlap of the two 

fluorescence is shown in (a) 

 

A fluorescent microscopy image, which shows immunostained astrocytes with their peculiar 

morphology, is shown in fig.25  
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Figure 25 

Fluorescence microscopy. Immunofluorescence performed with anti-Hsc70 (green fluorescence), and with anti-

PIPPin/CSD-C2 (red fluorescence) on astrocytes cultured for 5 days in Maat Medium. The overlap of the two 

fluorescences is shown in bottom panel (merged). 

 

 

Figure 26 

Confocal microscopy of primary astrocytes with anti-Hsc70 and anti-PIPPin/CSD-C2 antibodies. Astrocytes cultured 

for 5 days in Maat Medium were immunostained with anti-Hsc70 antibodies (b and b∗, green fluorescence) or with 

anti-PIPPin/CSD-C2 antibodies (a and a∗, red fluorescence). Merge of the two fluorescences is shown in c and c∗. A 

single optical section is shown in A, while a whole merged view is shown in B. Sites of colocalization, which appear as 
yellow bodies, are indicated by arrows. Bar = 10 μm (Di Liegro, et al., 2013). 
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We repeated the experiments by using confocal microscopy (Fig. 26), which allowed us to 

confirm co-localization of the two proteins. 

In conclusion, our data suggest the existence of ribonucleoprotein particles, including 

PIPPin/CSD-C2 and YB1, as well as hnRNP K and A1, and the molecular chaperone Hsc70. 

Adding up specific regulatory proteins to general packaging factors can be a key element for 

the regulation of export and translation of H1° mRNA in response to differentiation cues.  

Experiments are currently underway to draw a detailed model of the RNA-protein interactions 

and protein-protein involved in the regulation of H1° mRNA metabolism. 
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3. Analysis of interaction between messenger RNAs 

encoding H3.3 and H1° histone variants and 

PIPPin/CSD-C2 protein by biolayer interferometry  

 

The aim of the final part of our study was to confirm, by an independent technique, histone 

mRNA-PIPPin/CSD-C2 interaction and to describe its binding properties through the 

streptavidin-biotin conjugation method. This method is based on the RNA aptamer sensor 

system that uses a biotinylated RNA oligonucleotide bound to an Octet optical biosensor. 

Biolayer interferometry (BLI) measures changes in an interference pattern, generated from 

visible light when reflected by an optical layer (control sensor), and a biolayer containing the 

proteins of interest. BLI uses disposable sensors immersed in 96-well plates. The technique 

has been validated for small molecule detection and for fragment screening with model 

systems and well-characterized targets, where affinity constants and binding profiles are 

generally similar to those obtained with surface plasmon resonance (SPR). 

Here we report the data obtained in the case of H3.3/H1° mRNA-PIPPin/CSD-C2 

interactions, and the specific affinity constant for these bindings.  

The following experiments were carried out in the laboratory of prof. Daniel Gygax 

(University of Applied Sciences and Arts Northwestern Switzerland FHNW), under the 

supervision of Mr. Peter Spies. 

 

.3.1 Calculation through BLI of the binding affinity for the 

interaction between PIPPin/CSD-C2 and H3.3 RNA  

In order to identify H3.3 RNA portions involved in binding, we used two RNA probes 

(Fig.27):  

R4: which corresponds to the whole 3’-untranslated region (3’-UTR) of the H3.3 mRNA 

(R4RNA 2 x 10
5
 Daltons); 

M4: which corresponds to the last 198 nucleotides of the 3’-UTR of the same mRNA 

(M4RNA 0.6 x 10
5
 Daltons); 
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Figure 27 

Schematic map of the rat H3.3 cDNA. R4RNA, complete 3’-UTR; M4RNA, 3’-UTR, from nt 909 to nt 1107 

From: Nastasi, et al., 1999 

 

As shown in Fig. 28, the biotinylated RNA clearly binds to the streptavidin (SA) biosensor 

(loading). Moreover, R4RNA-PIPPin/CSD-C2 binding is protein concentration-dependent 

(signal intensity was found to increase gradually from 5 μg to at least 40 μg mL
−1

 of protein). 

It was observed that the signal intensity of the conjugated R4RNA could be detected even at 

the lowest RNA concentration (0,00001pm/l). These results confirm that this RNA 

specifically drives PIPPin/CSD-C2 binding to the Octet platform. 

 

 

Figure 28  

R4RNA-PIPPin/CSD-C2 

A1 R4RNA/pip 5 ng/ul; B1 R4RNA/pip10 ng/ul; C1 R4RNA/pip 20 ng/ul; D1 R4RNA/pip 40 ng/ul; E1 reference: 

buffer/pip. 

 

The binding data obtained were then processed to calculate the affinity constants. 

The processing includes: 

Subtraction-Phase: Subtraction of the values from the wells used as reference (E1) (Fig. 29 

A*). To confirm specific binding, we used as a reference the sensor E1, in which we did not 
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add RNA, to evaluate the signal given by unspecific binding of the protein to the sensor. By 

subtracting from the samples the values obtained for the controls (E1 reference in fig. 28), the 

real binding values of R4RNA-PIPPin/CSD-C2 were obtained (Figure 29 A*). 

Y-Axis Align: alignment of the curves with association phases (Fig.29 B*). 

To compare the different curves obtained for RNA-protein interaction at different 

PIPPin/CSD-C2 concentrations, they were aligned to the association phase, in order to obtain 

the same starting point for all the curves (Fig.29B*). 

 

 

Figure 29 

 R4-RNA/PIPPin/CSD-C2 processing. 

A1°= A1(Fig.28)-E1; B1°= B1(Fig.28)-E1; C1°= C1(Fig.28)-E1; D1°= D1(Fig.28)-E1. 

 

The real-time binding data shown in Fig. 29 for R4RNA-PIPPin/CSD-C2 interaction suggest 

that both the association and dissociation phases are biphasic processes: an initial short and 

steep increase in signal intensity is followed by a long flat increase in signal intensity. At the 

highest analyte concentrations, steady-state was reached. Binding curve fitting was done using 

the 2:1 heterogeneous ligand (hl) equations; these equations assume that biphasic association 

arises from: i) two populations of immobilized ligands, that differ in their ability to bind the 

analyte and/or ii) heterogeneity of the ligand itself, and/or iii) the existence of two 
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independent ligand-binding sites. As a consequence, the binding curves are described by two 

reactions with different rates, KD and KD2 (Fig.30). 

 

Figure 30  

KD of R4RNA-PIPPin/CSD-C2 interaction 

Graphical representation of the statistical analysis of at least three independent experiments. Blue bar indicates the 

mean of the values obtained for each condition. SD is also indicated (red bar). 
 

Factors that can cause deviations from pseudo-first order approximation of binding data 

include: mass transfer effects, immobilized ligand density, lack of homogeneity of 

immobilized ligand or soluble analyte, immobilization chemistry, and rebinding of dissociated 

analyte. Residual plots derived from comparison of real curves and the mathematical model 

(curve fitting: Fig 31B) show very small (less than 10%) and random residuals, supporting the 

use of the 2:1 hl-fitting model for the data. The values of the coefficient of determination R
2
 

(i.e. an estimate of the goodness of the curve fit) were above 0.9 (note that values close to 1.0 

indicate a good curve fit). Moreover, χ2 values were close to 0.2 for all the fits (χ
2
 is a 

measure of the goodness of the curve fitting: values close to zero indicate a good curve fit.) 
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Figura 31 

Blue: real curves given by the analysis of interaction data, Red: curves generated by the program based on 

the mathematical model 2:1 Heterogeneous Ligand. 

 

The above analysis was also carried out for M4RNA. Figure 32 shows the interaction with the 

protein PIPPin/CSD-C2; also in this case the interaction is concentration-dependent. 

 

 

Figure 32  

M4RNA-PIPPin/CSD-C2 

A1 M4 RNA/pip 5 ng/ul; B1 M4 RNA/pip10 ng/ul; C1 M4 RNA/pip 20 ng/ul; D1 M4 RNA/pip 40 ng/ul; E1 reference: 

buffer/pip. 

 

 

As shown in figure 32, it is clear that the interaction is reproducible and concentration-

dependent. 
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Processing: in the subtraction phase (Fig.33A*), sensor E1 (Fig. 32) was used as reference; 

fitting with mathematical model 2:1, and residual view are shown in figure 33B* and 33C*, 

respectively. 

 

 

Figure 33 

 M4RNA-PIPPin/CSD-C2 processing 
 

The binding curves are described by two reactions with different rates, KD and KD2 (Fig.34) 

 

 

Figure 34  

KD of the M4RNA-PIPPin/CSD-C2 interaction 

Graphical representation of the statistical analysis of at least three independent experiments. Blue bar indicates the  

mean of the values obtained for each condition. SD is also indicated (red bar). 
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These results confirmed the specific interaction between biotinylated R4 and M4 RNAs and 

PIPPin/CSD-C2 by biolayer interferometry. 

 

.3.2 Calculation through BLI of the binding affinity for the 

interaction between PIPPin/CSD-C2 and H1° RNA  

In order to identify H1° RNA portions involved in binding, we used four RNA probes 

(Fig.35): 

 a: H1° RNA coding region: nt 1–496 (aRNA:1.7 x 10
5
 Daltons) 

 b: H1° RNA 3’-UTR, from nt 497 to nt 900 (bRNA:1.4 x 10
5
 Daltons)  

 c: H1° RNA 3’-UTR of H1°, from nt 1015 to nt 1230 (cRNA: 0.7 x 10
5
 Daltons) 

 d: H1° RNA 3’-UTR, from nt 1301 to nt 1611 (dRNA: 2.4 x 10
5
 Daltons)  

 

 

Figure 35 

 (From: Nastasi, et al., 1999) Schematic map of the rat H1° cDNA. 

a, nt 1–496, coding region; b, 3’-UTR from nt 497 to nt 900; c, 3’-UTR, from nt 1015 to nt 1230; d 3’-UTR of H1° 

insert, from nt 1301 to nt 1611. 
 

In the first analysis, we used all four probes and two negative controls (E1 and F1), to 

determine which of them had the greatest affinity for PIPPin/CSD-C2. 

E1: the experiment was done with control RNA (Pierce Biotechnology, see Mat & Met); 

F1: the experiment was done in the absence of RNA, to calculate the signal given by 

unspecific binding of the protein to the sensor. 

As shown in figure 36, probe d shows the highest affinity.  
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Figura 36 

A1-aRNA-PIPPin/CSD-C2 30 ng/ul; B1- bRNA-PIPPin/CSD-C2 30 ng/ul; C1-cRNA-PIPPin/CSD-C2 30 ng/ul; 

D1- dRNA-PIPPin/CSD-C2 30 ng/ul; E1- control RNA-PIPPin/CSD-C2 30 ng/ul; 

F1- Negative control (buffer-PIPPin/CSD-C2); 

 

 

Next, the affinity constant for all the fragments was calculated, and the experiments relative to 

the calculation of the affinity constant of probe d are described in detail below. 

As shown in Fig. 37, dRNA-PIPPin/CSD-C2 binding is protein concentration-dependent 

(signal intensity was found to increase gradually from 5 μg to at least 30 μg mL
−1

 of protein). 

It was observed that the signal intensity of the conjugated dRNA could be detected even at the 

lowest RNA concentration (0,00001pm/l). These results confirm that dRNA specifically 

drives PIPPin/CSD-C2 binding to the Octet platform. 

 

 

Figure 37 

A1- dRNA-PIPPin/CSD-C2 5 ng/ul; B1- dRNA-PIPPin/CSD-C2 10 ng/ul; C1- dRNA-PIPPin/CSD-C2 20 ng/ul; D1- 

dRNA-PIPPin/CSD-C2 30 ng/ul; E1- control RNA-PIPPin/CSD-C2 30 ng/ul; 

F1- Negative control (buffer- PIPPin/CSD-C2 30 ng/ul); 
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The binding data obtained were then processed: 

Subtraction-Phase (Fig. 38 A*): 

E1: the experiment was done with control RNA (Pierce Biotechnology, see Mat & Met); 

F1: the experiment was done in the absence of RNA, to evaluate the signal due to unspecific 

binding of the protein to the sensor. 

The values obtained for the controls (E1, F1) were then subtracted from the sample values, in 

order to obtain the actual binding values for the dRNA-PIPPin/CSD-C2 complexes (Figure 38 

A*).  

 

 

Figura 38  

dRNA-PIPPin/CSD-C2 processing. 

A1°= A1(Fig.37)-[(E1+F1)/2]; B1°= B1(Fig.37)-[(E1+F1)/2]; C1°= C1(Fig.37)-[(E1+F1)/2]. 

 

Binding data, shown in Fig 38 (A*- B*), for dRNA-PIPPin/CSD-C2 interaction suggested 

that, also in this case, both the association and dissociation phases are biphasic processes. At 

the highest analyte concentrations, steady-state was reached. Binding curve fitting was done 

using the 2:1 hl equations. As a consequence, the binding curves are described by two 

reactions with different rates, KD and KD2 (Fig.39). 
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Figure 39  

KD of the dRNA/PIPPin/CSD-C2 interaction 

Graphical representation of the statistical analysis of at least three independent experiments. Blue bar indicates the 

mean of the values obtained for each condition. SD is also indicated (red bar). 

 

 

We can conclude that as long as RNA H1° is concerned, data already published (Nastasi, et 

al., 1999), and based on biochemical analyses, were confirmed; in addition, we could 

calculate the KD for dRNA-PIPPin/CSD-C2 complex: approximately 3.4E
-08

M. 

The affinity constant was calculated for all the fragments, as shown in figure 40. 

 

 

Figure 40  

KD of the H1° 3’UTR fragments-PIPPin/CSD-C2 interactions 

Graphical representation of the statistical analysis of at least three independent experiments. Blue bars indicate 

mean values for each RNA. SDs are also indicated (red bars). 

  

.3.2.1 dRNA mutants (dRNA*) 

The alignment of H1° and H3.3 cDNAs revealed the presence, downstream to the coding 

regions of the two inserts, of a number of sites with moderate to high sequence homology. 

One region, in particular, shows high similarity (Fig. 41); interestingly, this sequence of 

about 40 nucleotides covers in both messages the terminal portion of the 3’-UTR, 
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encompassing the polyadenylation signal (underlined in the figure). Moreover, the same 

region is part of a sequence that was previously suggested to be potentially able to form a 

stem-loop structure, highly conserved in vertebrate H3.3 mRNAs [Fig. 41 and (Nastasi, et 

al., 1999)].  

 

 

Figure 41 

 Alignment of the last 41 nt of the H3.3 cDNA with the last 40 nucleotides of the H1° cDNA, done by the 

Complign Module of the MacMolly Tetra Program (Gene Soft). The corresponding H3.3 RNA sequence has 

been previously suggested to form the stem-loop structure shown on the left. Nucleotides conserved between 

H3.3 and H1° inserts are in black. Putative polyadenylation signals are underlined (Nastasi, et al., 1999) 

 

 

We used two H1° RNA 3’-UTR mutants (both mutated in the region between nucleotides 

1572 and 1611 by PCR mutagenesis), a kind gift from Dr. René Prétot (University of 

Applied Sciences and Arts Northwestern Switzerland FHNW). 

The first mutant, clone 37, was created deleting 40 nucleotides which constitute the putative 

stem-loop structure (fig.42). 
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The second clone, 4b1, was made substituting a stretch of four nucleotides (UGUG with 

CAAC), and deleting three nucleotides (UGU), in the putative loop-forming region (fig.43). 

 

 
Figura 43 

 Clone 4b1 

Three nucleotides of H1° mRNA 3’UTR were deleted (black circles) and four were substituted  

(black rectangle) 

 

The PCR products were purified by “Nucleospin Extract II PCR clean-up Gel extraction” 

(Macherey-Nagel) and directly used as template for in vitro transcription and 3’-end 

biotinylation.  

To determine the affinity for PIPPin/CSD-C2, we used the three H1° 3’UTR probes (d, 4b1 

and 37) and two negative controls (G1 and H1) (Fig.44). In particular, G1 refers to the 

 

Figure 42 

Clone 37  

Last 40 nucleotides of H1° 3’UTR were deleted obtaining a construct of 319 bp 
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experiment done with control RNA, and H1 to the experiment done in the absence of RNA, 

to calculate the values of the signals due to unspecific binding.  

As shown in figure 44, probe 37 shows the highest affinity. 

 

 

Figura 44 

 A1-dRNA -PIPPin 20ng/ul; B1- 4b1RNA-PIPPin 20 ng/ul;  

C1- 37RNA-PIPPin 20 ng/ul; G1- control RNA-PIPPin  20ng/ul; H1- Negative control (buffer-PIPPin 20ng/ul);  

 

 

 
 

The affinity constant was calculated for all the mutants, as shown in figure 45 

 

 
Figura 45  

Graphical representation of the statistical analysis of at least three independent experiments. Blue bars 

indicate mean values for each fragment. SDs are also indicated (orange bars). 

 

One hypothesis is that PIPPin normally binds RNA at two sites and that the elimination of the 

loop, approaching these two sites, provides a stronger binding site for PIPPin (Fig.46). 
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Figura 46 

 

.3.2.2 Mapping of the d region 

In order to identify dRNA portions involved in binding, we used three RNA probes, obtained 

by in vitro transcription and 3’end biotinylation of three regions of the d fragment, 

constructed and kindly provided by Dr. René Prétôt, namely SH1 (nt.1400-1712), SH2 

(nt.1515-1712) and SH3 (nt.1566-1712) (Fig.47). 

 

 

Figura 47 

Different portions of d-region 

 

These RNA probes, and two negative controls (E1 and F1), were used to determine the 

affinity for PIPPin/CSD-C2 (Fig.48). 

E1: the experiment was done with control RNA (Pierce Technology, see Mat & Met); 

F1: the experiment was done in the absence of RNA, to evaluate the signal given by 

unspecific binding of the protein to the sensor. 
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As shown in figure 48, probe SH1 has the highest affinity. 

 

 
Figura 48 

A1-dRNA-PIPPin/CSD 30 ng/ul; B1- SH1RNA-PIPPin/CSD30 ng/ul; C1- SH2RNA-PIPPin/CSD 30 ng/ul; D1- 

SH3RNA-PIPPin/CSD30 ng/ul; E1- control RNA / PIPPin/CSD 30 ng/ul; F1- Negative control (PIPPin/CSD-buffer); 

 

The affinity constant was calculated for all the fragments, as shown in figure 49. 

 

 

Figura 49 

 Graphical representation of the statistical analysis of at least three independent experiments. Blue bars 

indicate mean values for each fragment. SDs are also indicated (red bars). 

 

In order to more precisely identify SH1RNA portions involved in binding with PIPPin, we 

made by PCR three fragments named SH1-S1 (nt.1400-1536), SH1-S2 (nt.1434-1574) and 

SH1-S3 (nt.1468-1598) (Fig.50), and we used them to prepare three new 3’end biotinylated 

RNA probes. 
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Figure 50  

Different portions of SH1 

Again, we used these probes (Fig.51) to determine the affinity for PIPPin/CSD-C2, together with two 

negative controls (E1 and F1): 

E1: the experiment was done with control RNA (Pierce Technology, see Mat & Met); 

F1: the experiment was done in the absence of RNA, to evaluate the signal due to unspecific binding 

of the protein to the sensor. 

 

 
Figure 51  

A1-xRNA -PIPPin/CSD 20 ng/ul; B1- RNA SH1-S1-PIPPin/CSD 20 ng/ul; C1- RNA  SH1-S2 -

PIPPin/CSD 20 ng/ul; D1- RNA SH1-S3 -PIPPin/CSD 20 ng/ul; E1- RNA control -PIPPin/CSD 20 ng/ul; F1- 

Negative control (PIPPin/CSD-buffer); 

 
 

 

As shown in figure 51, the difference between the values obtained from the specific probes 

and from negative controls is too low.  

In conclusion, these results confirmed the specific interaction between H1° RNA and 

PIPPin/CSD-C2 by biolayer interferometry, indicating that the SH1 region of the d fragment 

of the 3’UTR of H1° mRNA possess the highest affinity (KD 4,3E
-08

) for this protein. To 

establish which nucleotides actually participate to the binding, further analyses are needed.  
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Conclusions 

 

In this work, we confirmed the ability of the PIPPin/CSD-C2 protein to bind both M4 and R4 

regions of the H3.3 mRNA, as well as d (and in particular SH1) region of H1° mRNA. 

Thanks to BLI, we were also able to calculate the corresponding KD, all in the range of high 

affinity: 

M4 RNA: KD 6,67E
-09

  

R4 RNA: KD 2,03E
-08

  

dRNA: KD 3,79E
-08

 (SH1 KD 4,3E
-08

). 

In according with the assumption that RNA metabolism is regulated in the context of complex 

ribonucleoprotein particle, we evidenced by immunoprecipitation a set of proteins that are 

able to interact with each other. These proteins were isolated from brain cell nuclei by a 

chromatographic approach and identified by mass spectrometry; as demonstrated also by 

western analysis, PIPPin/CSD-C2 is present among them. 

The results presented are in agreement with the idea that post-transcriptional regulation of  

H1° and H3.3 histone expression depends on a group of proteins which are probably part of a 

specific ribonucleoprotein particle that contain also PIPPin. Such particle should contain, 

together with specific proteins, also proteins which are known to bind other mRNAs.  

Finally, our discovery that PEP-19 and LPI bind H1˚ histone mRNA and that this binding is 

affected by calmodulin suggests that, in the brain, post-transcriptional regulation of H1˚ 

histone synthesis may be regulated by calcium signals, and perhaps by neuronal activity.  
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Materials and methods 

1 Preparation of recombinant LPI and PEP-19 proteins, 

containing N-terminal tags of 6 histidines  
In order to synthesize recombinant PEP19, LPI and PIPPin, the entire coding regions of all 

cDNAs were amplified, by polymerase chain reaction. In all cases, the 5'- and 3'-primers 

included attB1 and attB2 recombination sequences for cloning the amplification products 

sequentially into the pDONR201 plasmid vector and into the pDEST™-17 plasmid 

expression vector (Gateway™ Technology, Invitrogen), according to Gateway Technology 

(Invitrogen), that is based on the site- specific recombination reactions of bacteriophage λ in 

E. coli. The expression clones pDEST-17 was finally transferred into E. coli BL21-AI 

competent cells to obtain expression of the N-terminal histidine fusions with PEP19, LPI and 

PIPPin respectively.  

 

.1.1 Induction of the protein containing the presequence of six 

histidines 
A single colony is inoculated in 15 ml of LB, in the presence of ampicillin (50µg/ml) and are 

allowed to grow overnight at 37°C in shaker. The cells were then diluted (1:20) and let grow 

to a concentration corresponding to 0.4 OD600. After putting aside 1ml of not induced culture 

for further analysis, L-arabinose is added to the culture to a final concentration of 0.2%, 

leaving the cells grow for another 2-3 hours at 37°C. 

1ml of the induced cultures was saved, and the remaining culture is centrifuged for 20 min at 

4000xg at 4°C. The pellet is maintained overnight at -20°C. Aliquots of not induced and 

induced bacteria are analyzed by Sodium Dodecyl Sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE), to confirm protein expression. 

 

.1.2 Protein Purification with 'tags' of 6 histidines 
Induced bacteria are thawed and resuspended in Lysis Buffer (50 mM NaH2PO4, 50 mM 

NaCl, 10 mM imidazole, pH 8), and, after the addition of lysozyme (1mg/ml), is incubated on 

ice for 30 min and sonicated (Vibracell VR6000 for 2min, 60W). After sonication, the sample 

is centrifuged for 20 min at 12.000xg, at 4°C, to remove cellular debris. 
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.1.3 Purification of the insoluble fraction of the protein 
The pellet, containing also the inclusion bodies, is resuspended in a buffer containing 50 mM 

Tris -HCl, pH7.2, 50 mM NaCl, 8 M urea, and heated 5 min at 80°C. The insoluble material is 

removed by centrifugation at 18.000xg for 1min (this step is very important to remove 

remaining aggregates which could act as nuclei for further aggregation). Meanwhile, nickel-

nitrile-triacetic acid agarose (Ni-NTA agarose, Invitrogen) chromatographic column is 

prepared. The column is washed and equilibrated with 10 volumes of the same buffer in 

which the pellet was resuspended. The protein suspension is gently layered on the column and 

proteins are purified by affinity chromatography, based on the fact that histidines bind nickel-

NTA by imidazole ring. The renaturation is carried out on the column using urea solutions of 

decreasing concentrations (up to 0 M). After washing with a solution without urea, the protein 

is eluted with a solution of 50 mM NaCl, 50 mM Tris HCl pH 7.2, 350 mM imidazole, pH 6. 

Protein concentration is measured by spectrophotometer and fractions with higher 

concentration are pooled and used in the following purification. Specific activity of the 

recombinant protein was highly improved by gel filtration of the imidazole-eluted protein 

through G-100 Sephadex in 50 mM Tris-HCl (pH 7.2) (patent N˚ PA2009A000029).  

 

2. Plasmids 
pMH1° (EMBL accession number X70685) contains an insert of 1711 nucleotides (nt). To 

obtain smaller H1° transcripts, we used the subclones described previously (Nastasi et al., 

1999). a, nt 1–496, coding region of H1° RNA; b, 3′-UTR of H1° insert, from nt 497 to nt 

900; c, 3′-UTR of H1° insert, from nt 1015 to nt 1230; d, 3′-UTR of H1° insert, from nt 1301 

to nt 1611. 

In order to obtain different portions of the SH1-region, three different pairs of primers were 

used in the PCR reactions:  

SH1-S1 (1400-1536) 137nt  

F: 5’AATTAACCCTCACTAAAGGGAAGCGGGATTGTGTGCATG 3’  

R: 5’AGGGTACCCGAGTTTCCTAC3’  

SH1-S2 (1434-1574) 141nt  

F: 5’AATTAACCCTCACTAAAGGGATCCATATCTAAGACTAGTAC 3’  

R: 5’TTTCCCGGCACTAGTTACAC3’  

SH1-S3 (1468-1598) 131nt  

F: 5’AATTAACCCTCACTAAAGGGGCGGGAGCTGGGAGAAAAACTC 3’  

R: 5’TAAAATTACAACCACAGTAA3’  

http://www.jbc.org/external-ref?link_type=GEN&access_num=X70685
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pDH3 (EMBL accession number X73683). To obtain smaller transcripts, corresponding to 

different portions of the 3′-UTR of the H3.3 mRNA, we used the subclones R4, complete 3′-

UTR of H3.3 RNA, and M4, 3′-UTR of H3.3 RNA, from nt 909 to nt 1107, previously 

described (Nastasi et al., 1999). 

 

3. In Vitro Transcription 
 

.3.1 33P-radiolabeled transcripts 
The plasmids were linearized by restriction with BamH1 (pMH1

0
) or Hind III (pDH3, pR4, 

pM4, pH1°a, pH1°b, pH1°c and BS-CoxIV-3UTR) and used as templates for in 

vitro transcription. Cold H1
0
, H3.3, pR4, pM4, pH1°a, pH1°b, pH1°c and CoxIV transcripts 

and 
33

P-radiolabeled H1
0 

RNA
 
were generated by Riboprobe system (Promega). RNA was 

extracted once with phenol and twice with chloroform and precipitated with ethanol and 

sodium acetate (0.3 M final concentration). The transcripts were collected by centrifugation at 

10,000 × g for 15 min, washed in 75% ethanol, and resuspended in distilled water. Small 

aliquots were used for analysis on denaturing gels.  

 

.3.2 Biotinylated transcripts 
The plasmid pMH1° was used as a template for in vitro transcription of biotinylated H1° 

RNA in the presence of biotin-21-UTP (Ambion-Life Technologies, Paisley, UK).  

 

.3.2.1 3 ' end RNA Biotinylation  

The RNAs (a,b,c,d,R4 and M4) produced by in vitro transcription were biotinylated using the 

"RNA 3' end biotinylation kit" (Pierce Biotechnology), following the manufacturer's 

instructions (Fig.52). 

 

http://www.jbc.org/external-ref?link_type=GEN&access_num=X73683
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Figure 52 3’ end biotinylation of the RNA 

 

4. T1 Nuclease Protection Assay 
Recombinant proteins (50 ng) were incubated for 10 min, at room temperature, with 0.5–

1.0×10
6
 cpm (specific activity: 0.5–2.0×10

7
 cpm/pmol of RNA) of radiolabeled, in vitro 

transcribed H1° RNA. The samples were exposed to a Spectroline UV (254 nm) lamp 

(Aldrich Chemical Co., Inc.) for 40 min, in ice bath, to cross-link RNA to proteins. Samples 

were then incubated for 45 min at 37 °C, with 100 units of T1 RNase (EC3.1.27.3) to degrade 

the whole of the RNA except the portions protected by bound proteins; RNA-protein 

complexes were analyzed by denaturing electrophoresis on SDS-PAGE. At the end of the run, 

the gel was dried and exposed to X-ray film for autoradiography. The gels were also stained 

with Coomassie Brilliant Blue R-250 (Sigma), to confirm loading of equal amounts of 

proteins per lane.  

 

.4.1 Competition experiments 
Experiments aimed at analyzing RNA-binding specificity were performed in the presence of 

2:1 or 5:1 excess of unlabeled RNA.  

Experiments aimed at analyzing interference effects of LPI or PEP-19 on PIPPin (CSD-C2) 

binding to H1˚ RNA were performed in the presence of 1:1 or 4:1 excess of the competing 

protein.  

Experiments aimed at analyzing interference effects of calmodulin on LPI and PEP19 binding 

to H1˚ RNA were performed in the presence of 1:1 or 4:1 excess of calmodulin. In these 

experiments bovine serum albumin at the same concentration as calmodulin was used as a 

control.  

 

http://www.jbc.org/external-ref?link_type=EC&access_num=3.1.27.3
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5. Animals and research ethics.  
Wistar rats (Harlan, Udine, Italy) were housed in the animal care facility of the STEBICEF 

Department, University of Palermo, Palermo, Italy. Procedures involving animals were 

conducted according to the European Community Council Directive 2010/63/EU, reducing to 

a minimum the use and suffering of animals. All experiments were performed under the 

direction of the licensed veterinary of the University who approved of the protocols. 

 

.5.1 Preparation of nuclear extracts from rat brain 
Fresh brains from 20-day-old rats were homogenized in nuclei buffer (NB: 0.32 M sucrose; 

50 mM sodium phosphate buffer, pH 6.5; 50 mM KCl, 0.15 mM spermine; 0.15 mM 

spermidine; 2 mM EDTA and 0.15 mM EGTA), containing protease inhibitors (2 µg/ml 

aprotinin, 2 µg/ml antipain, 2 µg/ml leupeptin, 2 µg/ml pepstatin A, 1.0 mM benzamidine, 

and 1.0 mM phenylmethylsulfonyl fluoride, Sigma). 

Once homogenized, the samples are centrifuged at 1000 xg for 10 min at 4°C. The obtained 

fractions are treated as described below: 

a) The supernatant can be used as such (post-nuclear fraction, PN) or further centrifuged at 

12000 xg for 20 min at 4°C, to obtain a post-mitochondrial fraction and a mitochondrial 

pellet, which is resuspended in RSB (10 mM NaCl, 10 mM TrisHCl pH 7.4, 1.5 mM MgCl2). 

All fractions were immediately aliquoted and frozen at -80°C. 

b) The pellet (nuclei) is washed in RSB, centrifuged at 1000 xg for 10 min at 4°C, and 

resuspended in RSB; an equal volume of RSB with high salt concentration (RSB HS: Tris-

HCl, pH 7.5, 10 mM MgCl2, 1.5 mM, 1.6 M KCl, 0.5 mM PMSF) was added to solubilize 

nuclear proteins not strongly bound to DNA: the nuclear suspension was incubated for 30 min 

on ice and centrifuged for 20 min at 17000 x g. The supernatant (nuclear extracts: NEX) is 

aliquoted and frozen at -80°C. The pellet (containing DNA and proteins strongly associated to 

it) is resuspended in RSB and 0.4 M HCl, and maintained at 4°C for at least 4 hours. The 

suspension is then centrifuged at 10,000 xg for 15 min at 4°C; histones and acid-soluble 

proteins, present in the supernatant, are recovered by precipitation with 10 volumes of acetone 

at -20°C and centrifugation at 10000 xg for 20min at 4°C.  
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.5.2 Chromatographic purification of H1° RNA-binding factors 

from rat brain nuclear extracts. 
Streptavidin-conjugated paramagnetic beads (Magnesphere™, Promega, Madison, WI), 

treated according to the manufacturer’s instructions, were mixed with 300 μg of nuclear salt-

extract from the rat brain, in 500 μl (final volume) of binding buffer (BB: 75 mM Tris–HCl, 

pH 7.5; 50 mM KCl; 5 mM dithiothreitol; (Scaturro et al., 2003), containing protease and 

phosphatase inhibitors (Sigma–Aldrich, St. Louis, MO). Samples were incubated with an 

aliquot of beads for 1 h, at 25 °C, under shaking, to absorb to the paramagnetic particles all 

the proteins which bind them directly (pre-clearing step). After centrifuging for 5 min at 

12,000 rpm in an eppendorf microfuge, the pre-cleared extracts were saved for binding 

experiments with RNA, while the beads were washed three times in BB and then incubated in 

BB containing 2 M NaCl, for 15 min, at 25 °C. After incubation, samples were centrifuged for 

10 min, 12,000 rpm in an eppendorf microfuge, and the supernatants were frozen (control 

sample: proteins isolated by binding to the magnespheres in the absence of RNA). Pre-cleared 

extracts were incubated with 5 μg of H1° RNA in BB, for 30 min, at 25°C. After the binding 

reaction, a fresh aliquot of beads was added further incubating for 1 h, at 25°C, under shaking. 

Then, the tubes were placed in a magnetic device (Magnesphere™, Promega) and the 

recovered supernatants, containing unbound proteins, were frozen and saved. Paramagnetic 

beads were washed four times in BB and then resuspended in BB containing 2 M NaCl, for 

15 min, at 25°C. After incubation, samples were centrifuged at 12,000 rpm in an eppendorf 

microfuge. The obtained supernatants, that contain proteins which bind paramagnetic 

streptavidin particles in the presence of biotinylated H1° RNA, were frozen and saved for 

analyses. 

Isolated proteins were analyzed by electrophoresis on denaturing SDS–polyacrylamide gels, 

and identified by mass spectrometry (Taplin mass spectrometry facility, Harvard University, 

Boston, (Aebersold, et al., 2001).  

 

6. Antibodies 
Primary antibodies used in coimmunoprecipitation assays and western analyses were: (i) 

rabbit polyclonal anti-hnRNP K-, anti-Y box-binding protein 1 (YB-1)-, and anti-CSD-C2 

antibodies; (ii) mouse monoclonal anti-hnRNP A1-, anti-heat shock cognate 70 (Hsc70)-, and 

anti-CSD-C2 antibodies. All the primary antibodies, except for anti-YB1 (Sigma–Aldrich) 

and the home-made polyclonal anti-CSD-C2, were purchased from Santa Cruz (Santa Cruz, 
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CA). Goat anti-mouse-, goat anti-rabbit- and bovine anti-goat secondary antibodies were from 

Promega. 

 

7. Co-immunoprecipitation assay 
Co-immunoprecipitation experiments using paramagnetic particles were performed essentially 

following the manufacturer’s instructions (Dynabeads™, Invitrogen, Carlsbad, CA), using a 

magnetic device (DinaMag™, Invitrogen) for the separation of supernatants from beads. Each 

reaction step was performed in a volume of 250 μl under rotation. For each sample, 40 μl of 

beads suspension was used. Nuclear extracts were first incubated with paramagnetic particles, 

in order to clear the extract from proteins which bind to the beads directly. In some 

experiments, one half of the nuclear extract was also incubated with 50 μg/ml of RNase A 

(Promega). Beads coupled with 10 μg of the chosen antibodies were incubated in conjugation 

buffer (0.15 M NaCl, 20 mM sodium phosphate, pH 7.8), containing 5 mM suberic acid [bis 

(3-sulfo-N-hydroxysuccinimide ester)] (Sigma–Aldrich), for 30 min, to link covalently the 

antibodies to protein G, and to minimize contamination with antibodies of the eluted 

fractions. For each immunoprecipitation reaction, 150 μg of pre-cleared extracts was used, 

incubating for 1 h, at 25 °C. At the end of the reaction, the supernatants, which contained 

unbound proteins, were saved, while the beads were washed and resuspended in denaturing 

sample buffer and finally boiled for 5 min to elute bound proteins. 

 

8. Astrocyte primary cultures and confocal microscopy 
Astrocytes were prepared from 2-day-old rats, as previously described (Schiera, et al., 2005), 

and cultured on a coverslip in DME/Hams F-12 (2/1), supplemented with 10% heat-

inactivated fetal calf serum (Sigma–Aldrich), until half confluent. Astrocyte cultures were 

then progressively adapted to Maat Medium (Cestelli, et al., 1985). After 5 days cells were 

fixed in 96% ethanol and immunostained with the same antibodies used for co-

immunoprecipitation. The secondary antibodies were tetramethylrhodamine isothiocyanate-

conjugated anti-rabbit- and fluorescein isothiocyanate-conjugated anti-mouse 

immunoglobulin (both from Sigma). Cells were finally observed by confocal laser scanning 

microscopy (Olympus FV-300 equipped with argon, 488 nm and helium/neon, 543 nm, 

lasers), under a 60× oil immersion lens. 
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9. BLI on Octet Optical Biosensor  
 

.9.1 Scheme for RNA-PIPPin interaction on Octet Optical 

Biosensor  
The binding assays were performed in 96-well plates at 30°C with the system Octet Red 

(Forte Bio). The experiment was performed by placing the SA sensors (conjugated with 

streptavidin) in the wells and measuring the variations in time of the thickness of the layer (in 

nanometers, nm). Serial dilutions of the protein were performed in 200 microliters of PBS-T 

(phosphate buffered saline with 0.01% tween). 

Typical cycles for analysis include: 

Baseline 1: SA sensors are incubated in PBS for 60 s. 

Loading: SA sensors are saturated with 200 microliters of RNA (2 picomoles) in PBS buffer 

for 600 s. 

Quenching: SA sensors are transferred to biocytin 1.8mg/ml for 300s (saturation of non 

specific binding sites on the sensors). 

Baseline 2: SA sensors are transferred in PBST and incubated for another 400 s (removal of 

RNA in excess). 

Association: SA sensors are exposed to protein at different concentrations (1 mg/ml to 40 

mg/ml). The association was monitored for 600 s. 

Dissociation: SA sensors are transferred to PBST for 600 s. 

The data were processed automatically using the software version 7 of the Octet. 

 

.9.2 Scheme for detection of Pep-19/Calmodulin interaction on 

Octet Optical Biosensor  
The binding assays were performed in 96-well plates at 30°C with the system Octet Red 

(Forte Bio).The experiment was performed by placing the NI-NTA sensors in the wells and 

measuring the variations in time of the thickness of the layer (in nanometers, nm).  

 

Baseline: NI-NTA sensors are incubated in buffer A (25mM Tris-HCl, 150mM NaCl, 2mM 

CaCl2, 1mM MgCl2, 0,05% Tween-20, pH 7.4), for 60 s 

Loading: NI-NTA sensors are saturated with 200 microliters of 5ng/µl Pep-19 protein, in 

Buffer A, for 600 s 
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Baseline2: NI-NTA sensors are transferred in buffer B (25mM Tris-HCl, 150mM NaCl, 

50µM EGTA, 1mM MgCl2, 0,05% Tween-20, pH 7.4), to remove unspecific binding, for 400 

s 

Association: NI-NTA sensors are exposed to calmodulin at different concentrations (10 to 40 

mg/ml), in buffer B. The association was monitored for 600 s. 

Dissociation: NI-NTA sensors are transferred to buffer B for 600 s. 
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