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Experimental recovery of quantum correlations in
absence of system-environment back-action
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Revivals of quantum correlations in composite open quantum systems are a useful dynamical

feature against detrimental effects of the environment. Their occurrence is attributed to flows

of quantum information back and forth from systems to quantum environments. However,

revivals also show up in models where the environment is classical, thus unable to store

quantum correlations, and forbids system-environment back-action. This phenomenon opens

basic issues about its interpretation involving the role of classical environments, memory

effects, collective effects and system-environment correlations. Moreover, an experimental

realization of back-action-free quantum revivals has applicative relevance as it leads to

recover quantum resources without resorting to more demanding structured environments

and correction procedures. Here we introduce a simple two-qubit model suitable to address

these issues. We then report an all-optical experiment which simulates the model and per-

mits us to recover and control, against decoherence, quantum correlations without back-

action. We finally give an interpretation of the phenomenon by establishing the roles of the

involved parties.
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I
n a multipartite quantum system one can identify different
kinds of quantum correlations (such as entanglement and
genuine quantum correlations), each with characteristics

useful as resources for quantum information processing1,2. The
exploitation of these quantum correlation resources is however
jeopardized by the detrimental effects of the environment
surrounding the quantum system. Quantum correlations
between noninteracting qubits in independent environments
have been shown to decay asymptotically2,3 or even to disappear
at a finite time4,5 under the action of Markovian noise. Non-
Markovian noise, like that arising from structured environments
or from strong couplings, has instead been shown to lead, during
the evolution, to revivals of quantum correlations4,6,7, permitting
their partial recovery and thus an extension of their exploitation.

Revivals of quantum correlations, initially present in a
quantum system, have been explained in terms of repeated
correlation exchanges between the qubits and their non-
Markovian quantum environments because of the back-action
from the environments to the qubits4,6,8–11. Recently, it has been
shown that revivals of quantum correlations may also occur when
the environment is classical2,12–16 and it does not back react on
the quantum system. Moreover, in such a case, the environment
cannot either store or share the quantum correlations initially
present in the quantum system. It thus appears that for revivals to
occur it is not essential to have a non-Markovian quantum
environment with back-action. This fact however leads to basic
issues about the interpretation of back-action-free quantum
revivals. In particular, it is essential to establish: (1) the role of the
classical environment in reviving both entanglement and purely
quantum correlations, for instance if it may act as a control
system for what operation is applied to the qubits; (2) the role
of collective effects of the environment on the qubits; (3) the role
of the memory effects; (4) the role of possible system–environment
correlations.

In order to address these issues and explain the mechanisms
underlying the revivals without back-action, we consider a simple
model that excludes the presence of collective effects of the
environment on the qubits and also takes into account
decoherence on the qubit evolution, so to be in a realistic
scenario. We also require that the model present a system
dynamics where the correlations are analytically measurable by
known quantifiers, and moreover, it is realizable by a neat

experimental setup that avoids any side effects that can affect the
expected system dynamics and complicate the interpretation.
Here we introduce a model of two noninteracting qubits, initially
entangled, where only one qubit is subject to a random external
classical field with inhomogeneous broadening in its amplitude.
This model satisfies the above requirements. We then report the
results of an all-optical experiment that simulates this model, with
a random classical field mimicked by quantum degrees of
freedom, and allows us to observe and control revivals of two-
qubit quantum correlations without system-environment back-
action. Moreover, we show a direct connection between the
occurrence of the revivals and the intrinsic non-Markovianity
(not due to a quantum environment) of the system evolution.
Finally, we give an interpretation of the phenomenon showing the
role of the classical environment in reviving quantum
correlations.

Results
Theoretical model. We consider a system of two noninteracting
initially entangled qubits, namely a and b, where the qubit a is
isolated while the qubit b resonantly interacts with a random
external classical field, whose phase is either jþ ¼ þp/2 or
j� ¼ �p/2 with equal probability 1/2 and whose amplitude has
a Gaussian distribution. This model is illustrated in Fig. 1a. The
interaction Hamiltonian between the qubit b and a classical field
E with phase j, in the rotating frame at the qubit-field frequency,
is H¼ i:(O/2)(sþ e� ij�s� eij) where the coupling constant
(Rabi frequency) O is proportional to the field amplitude and s±

are the raising and lowering operators in the basis {|0S,|1S}. The
time evolution operator U(t)¼ e� iHt/: has the matrix form15

UjðtÞ ¼
cosðOt=2Þ e� ij sinðOt=2Þ
� eij sinðOt=2Þ cosðOt=2Þ

� �
: ð1Þ

Due to the randomness of the field phase acting on the qubit b
and being the qubit a isolated, the global dynamical map
of the model of Fig. 1a is Ltrin

ab ¼ ð1=2Þ
P

j¼j�

ð1a � UjðtÞÞrin
abð1a � UyjðtÞÞ, where rin

ab is the initial two-
qubit state. A relevant property of this map is that it moves inside
the class of Bell-diagonal states (that is, mixtures of the four Bell
states), for which analytic expressions of the most used quantifiers
of correlations are known2,17,18. Therefore, we shall choose
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Figure 1 | Model and experimental setup. (a) Illustration of the model of a random external classical field acting only on the qubit b, whereas qubit a is

isolated. The random dephaser shifts of p, with probability 1/2, the phase (p/2) of the input field. (b), Experimental setup simulating the physical model of

panel a. The state preparation process is started by separating the ultraviolet pulses into two paths with the Wollaston prism. The relative amplitude

between the two paths can be controlled by a HWP1. HWP2 and HWP3, with angles set to 22.5�, are used to control the polarization of the pump light by

rotating |HS and |VS to ðj Hiþ j ViÞ=
ffiffiffi
2
p

and ðj Hi� j ViÞ=
ffiffiffi
2
p

, respectively. Photon pairs are emitted into modes a and b. The birefringence in the beta-

barium-borate crystals is compensated by the quartz plates (CP). The photon in mode b is then coupled by a single-mode fiber and directed to the

environment part. The Soleil-Babinet compensator (SBC) and quartz plates (QPs) add a relative phase f, proportional to their length, between |HS and

|VS. HWP4 and HWP7, with angles set to 0� introduce a relative p phase between horizontal and vertical polarizations. The angles of HWP5 and HWP6

are set to be 22.5�, which rotates |HS and |VS to 1ffiffi
2
p ðj Hiþ j ViÞ and 1ffiffi

2
p ðj Hi� j ViÞ, respectively. Quantum state tomography is implemented with the

polarizations of the final states analysed by a quarter-wave plate (QWP), a HWP and a polarization beam splitter (PBS) in each arm. The photons are

detected by single photon avalanche detectors (D1 and D2) with 3 nm interference filters (IFs) in front of them.
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special Bell-diagonal states as initial states of the system. At this
stage the evolution is cyclic and does not exhibit decoherence. In
order to introduce decoherence in the system evolution, we
consider the field suffering a noise source due to signal
inhomogeneous broadening whose effect is to induce a
Gaussian distribution in the field amplitude and thus in the
Rabi oscillation frequency O of the qubit evolution, that is
f ðOÞ ¼ ð2=s

ffiffiffi
p
p
Þ exp½ � 4ðO�O0Þ2=s2� where O0 and s are the

central Rabi frequency and the Rabi frequency width, respectively.
The effect of noise is therefore transferred to the intrinsic
evolution of the quantum system. The final evolved state rout

ab is
obtained by tracing out the Rabi frequency degree of freedom
from Ltrin

ab.

Experimental setup. The experimental setup simulating the
model introduced above is displayed in Fig. 1b. The quantum
system is given by two polarized photons, each one being a qubit
with basis states |HS (horizontal polarization) and |VS (vertical
polarization). The preparation part of the setup is able to generate
polarization-entangled photon pairs in a given Bell-diagonal state
rin

ab. The photon in mode a is directly sent to the state tomo-
graphy part whereas the photon in mode b is directed to the
environment part and successively to the state tomography part.

The environment is given both by the two photon paths
separated by a beam-splitter, the reflected path pþ and the
transmitted path p� , and by the measurement process that traces
over the time difference between the two paths themselves,
creating a statistical mixture of them with equal probabilities
(1/2). The effect of the two paths is to make the photon basis
states |HS, |VS undergo, apart from an unimportant global
phase factor, the unitary transformations (see second section of
Methods)

j Hi !
p� cosðf=2Þ j Hi � i sinðf=2Þ j Vi;

j Vi !
p� �i sinðf=2Þ j Hiþ cosðf=2Þ j Vi;

ð2Þ

where f¼ot is the phase difference between |HS and |VS
introduced by the Soleil-Babinet compensator (SBC) and the
quartz plates (QPs). o is the photon frequency and t � LDn/c is
the time difference to cross the optical element (SBC or QP), with
L being the thickness of the optical element, c the vacuum speed
of light, Dn the difference between the indices of refraction of the
horizontal and vertical polarizations. The action of each path in
equation (2) corresponds to a rotation Up±

(f) of the basis states
{|HS,|VS} of b. The two paths p± of equation (2) act on the
photon b exactly as the two time evolution operators Uj� (t) of
equation (1), respectively, with the correspondences |0S 2 |HS,
|1S 2 |VS and f¼ot 2 Ot (which implies O 2 o). The
environment part of the setup simulates the random phase of
the field acting on qubit b (random dephaser) by the action of
the beam-splitter that separates the two photon paths, corresponding
to the effect of the field with either phase, plus the measurement
process that does not distinguish the two paths p±. This mimics
the random external field acting on qubit b, giving the overall

output state Lrin
ab ¼ ð1=2Þ

P
p¼p�
ð1a � UpÞrin

abð1a � Uyp Þ. Up
to now we have considered a photon with frequency o. In fact, in
our experiment the photon has an intrinsic Gaussian frequency
distribution f ðoÞ ¼ ð2=s

ffiffiffi
p
p
Þ exp½ � 4ðo�o0Þ2=s2� (ref. 19),

where o0 is the center frequency and s the frequency width.
This frequency degree of freedom introduces decoherence by a
decoherence parameter k¼

R
f(o)cos[f(o)]do¼ cos(o0t)

exp(�s2t2/16) (ref. 3). This decoherence source is of the same
kind as that due to the Rabi frequency distribution in the
model introduced above. The effective evolved state rout

ab is then

obtained by tracing out the photon frequency degree of freedom
from Lrin

ab.
We prepare initial Bell diagonal states of the form (see first

section of Methods)

rin
ab ¼ lþ j Fþ ihFþ j þl� j F� ihF� j; ð3Þ

where lþ þ l� ¼ 1 and j F� i ¼ ð1=
ffiffiffi
2
p
Þðj HHi� j VViÞ. lþ

is arbitrarily determined by the relative power between the two
pump paths created by the Wollaston prism. As a consequence,
the two-photon output state is the Bell-diagonal state (see second
section of Methods)

rout
ab ¼ð1þ kÞ=2 ðlþ j Fþ ihFþ j þ l� j F� ihF� jÞ

þ ð1� kÞ=2ðlþ j Cþ ihCþ j þ l� j C� ihC� jÞ;
ð4Þ

where j C� i ¼ ð1=
ffiffiffi
2
p
Þðj HVi� j VHiÞ. When L is small so

that st� 1 (exp(� s2t2/16) E1), the decoherence parameter
becomes kE cos(f¼o0t) and we have a cyclic and thus
coherent evolution: this is the case when only the SBC, that allows
us to adjust small lengths, is used. When the QPs are used the
decoherent evolution comes out.

Experimental dynamics of correlations. We investigate the
dynamics of the various kinds of correlations present in the two-
qubit system. We quantify the total correlations by the quantum
mutual information2 Iðrout

ab Þ and the entanglement by
concurrence1 Cðrout

ab Þ ¼ maxf0;Gg, where G is a function of
rout

ab . Quantum correlations are instead quantified by the quantum
discord2 Qðrout

ab Þ ¼ Iðrout
ab Þ� Cðrout

ab Þ, where CðrabÞ indicates the
classical correlations (see third section of Methods).

The results for the coherent evolution, realized by the SBC
device with the QPs removed, are plotted as a function of the
relative phase f¼o0t in Fig. 2a, starting from rin

ab with lþ ¼ 0.9.
Total correlations oscillate with period p. Plateaus and sudden
changes in the dynamics of classical and quantum correlations
occur several times, showing their robustness against variations of
the relative phase. Quantum correlations revive after vanishing at
about p/2 and 3p/2 (in a 2p period). Entanglement exhibits dark
periods around the same points and then revives.

In Fig. 2b, we further show the experimental results for the
decoherent evolution, where both SBC and QPs are used. We plot
the envelope dynamics of correlations as a function of the QP
length L for the same initial state rin

ab with lþ ¼ 0.9, by
measuring the maximum amplitudes of revival of the quantifiers.
A sudden change in behaviour in the dynamics of the maximum
values of classical and quantum correlations is found when
LE82l0 (l0¼ 800 nm is the center photon wavelength). The
maximum of entanglement revivals decreases monotonously and
completely vanishes at LE258l0. The theoretical curves exhibit-
ing these decaying revivals are displayed in the inset of Fig. 2b.
The coherent evolution in Fig. 2a is part of the decoherent
evolution in Fig. 2b, which is denoted by the red box in Fig. 2b.
Although the decay behavior of the maximum values of
correlations is similar to that in ref. 3, the internal noise
mechanism is completely different. There are no revivals of
correlations in the Markovian evolution of ref. 3, whereas here the
correlations exhibit collapses and revivals during the evolution in
absence of system-environment back-action.

Our experimental setup controls lþ and thus the revival
amplitude. Figure 3 shows the results for the coherent evolution
at a relative phase f¼ p/4 (also applicable at f¼ 3p/4 in the
region of first revival). It is seen that all correlations are
symmetric to the point lþ ¼ 0.5, which represents a classical
initial state (zero quantum correlations). Interestingly, there is a
range of values of lþ (0 	 lþt0:14 and 0:86tlþ 	 1) where
quantum correlations remain unchanged at their maximum
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value, implying that at f¼ 3p/4 they cannot take a value larger
than that observed in Fig. 2a, for lþ ¼ 0.9. This is connected to a
peculiar behaviour of the sudden change points of Q. In contrast,
the degree of entanglement revival at f¼ 3p/4 can be increased
with respect to that of Fig. 2a, for example, by increasing lþ .

Connection to non-Markovianity. The observation of the revi-
vals without back-action in our setup can be connected to the
intrinsic non-Markovianity of the system evolution. In our sys-
tem, photon b experiences the noisy environment and photon a

can be treated as an isolated ancilla. Non-Markovianity then
immediately follows from the non-monotonous behaviour of
entanglement evolution obtained starting from the input Bell
state j Fþ i ¼ ð1=

ffiffiffi
2
p
Þðj HHiþ j VViÞ (ref. 20), displayed in

Fig. 4 for the coherent case. This aspect is emphasized if we
consider the non-Markovianity measure based on the trace
distance D(t)8. Any temporary increase of D(t) is a signature of
non-Markovianity that can be identified by the regions where
the rate of change s(t)¼ dD(t)/dt is positive. For our local
map of random external fields, within the coherent case where
f¼o0t is the dimensionless time variable, we have21

s(f)¼ � sgn(cosf)sinf where sgn(x) is the sign function
(see last section of Methods). We find s(f)40 just when
entanglement revivals occur, as displayed in Fig. 4. Interestingly,
we also notice that the larger entangling rates of the system
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correspond to the larger signatures of memory effects (larger
values of s(f)).

The trace-distance measure indicates the presence of non-
Markovianity when the distinguishability of the pair of states
increases with time: this can be simply interpreted as a flow of
information from the environment back to the system which
enhances the possibility of distinguishing the two states. We
however remark that this back-flow of information does not
necessarily imply back-action and correlation exchange. The
presence of system-environment back-action means that
the system affects its dynamics via the environment. When the
environment dynamics is unaffected by the system this back-
action on the system cannot occur. This is the case considered in
our model and in the corresponding experimental setup.

Interpretation. The connection between the revivals and the
intrinsic non-Markovianity of the system evolution does not by
itself provide an explanation of the observed phenomenon but
only gives a necessary condition for it to occur. A possible
interpretation of the phenomenon of quantum correlation
recovery in absence of system-environment back-action can be
provided when one describes the initial global system-environ-
ment state rse 0ð Þ ¼ rs 0ð Þ � re of our setup as a quantum-clas-
sical state15, where the quantum part is the two-photon system
rsð0Þ ¼ rin

ab and the classical part is the environment e acting
locally on the photon b. The environment can only be in a
separable mixture of its basis states that in our setup can be
expressed as re ¼

P
p¼p�
ð1=2Þ j piehp j, where |p±Se are the

basis states corresponding to the two random paths (field phases
in the theoretical model) of equation (2). By this formalism, we
are able to quantify the correlations present in the global
quantum-classical system a-b-e. We also show that the
environment e and the photon b never become correlated
during the evolution and that this aspect however does not
jeopardize the role of the classical environment in reviving the
quantum correlations initially present in the quantum system.

For the sake of simplicity let us consider the case when
decoherence is negligible (analogous argumentations hold even if
decoherence is present). The two-qubit output state rout

ab is
obtained by tracing the overall evolved state rse(f) over the

environment e, where rseðfÞ ¼ ð1a � UbeÞrseð0Þð1a � UybeÞ and
Ube ¼

P
p¼p�

UpðfÞ� j piehp j is the unitary operation acting
on qubit b and its environment e. This way, the same dynamics
observed above for a-b correlations exhibiting the revivals is
retrieved. During the time evolution, due to 1a � Ube, the states
of the classical environment are invariant, the qubit b does not
affect the environment and the back-action by the environment
on the qubit is absent. Moreover, a classical environment cannot
store any quantum correlations on its own. One could then think
that the presence of revivals is due to some correlation established
between b and e. The subsystem b-e evolves under the local
unitary operation Ube so that the correlations between b-e are
invariant. If one traces rse(f) over the isolated qubit a, it is
straightforward to show that the qubit b and its environment e
never become quantum correlated. For example, for an initial
Bell-diagonal state between a–b like that of equation (3), it results
that the reduced state of b–e during the evolution is the
uncorrelated state 1b=2ð Þ � 1e=2ð Þ. Therefore, the qubit–
environment correlations do not have any role in the occurrence
of the phenomenon under investigation.

From the structure of Ube it is clear that the environment only
has the role of a control system for what unitary operation is
applied to the qubit b. By memory effects, the environment e
keeps a classical record of what unitary operation has been

applied to the qubit b and this happens even without back-action.
It is the lack of this classical information that makes quantum
correlations disappear at a given time and it is the recovery of this
information that makes quantum correlations then revive. The
information the environment holds about a system is therefore
due to what action the environment performs on the system. To
better clarify this aspect, let us consider the evolution in Fig. 4.
When quantum correlations are zero, for example at f¼ p/2,
there is a complete lack of classical information about what
unitary operation the environment is applying to the qubit
(statistical mixing of the two different unitary operations Up±

);
successively, when the initial quantum correlations are recovered
at f¼p, this information becomes known because the two
unitaries both act as a sx ‘bit-flip’ operation (they are just the
same operation).

Discussion
In this article we have introduced a simple two-qubit model
particularly suitable to investigate the issue of the occurrence of
revivals of quantum correlations despite the absence of back-
action. In this model only one qubit of the pair locally interacts
with a classical environment, in the form of a random external
field with inhomogeneous broadening. The model forbids any
mechanism both of system-environment back-action and of
quantum correlation storage. Moreover, this model presents an
overall decoherent evolution where any collective effect of
external fields on the two-qubit system is excluded. We have
then reported the results of a novel all-optical experimental setup
that simulates the introduced model and permits us to observe
revivals of quantum correlations (entanglement, quantum
discord), with a decreasing revival amplitude in time. The
amplitude of revivals can be controlled by adjusting the
parameter of the initially prepared state.

We have also experimentally and theoretically shown, as a
necessary condition for revivals of quantum correlations to occur,
the link between the revivals themselves and the intrinsic non-
Markovian feature of the system evolution. We have provided a
possible interpretation of the phenomenon in terms of quantum-
classical system, showing the role had by the classical environ-
ment as a control system for what action it has on the quantum
system and then in reviving quantum correlations. The
introduced model and the corresponding experimental setup
have thus permitted us to identify an interpretation of the
phenomenon and to exclude side effects. Our findings clearly
reveal that the revivals of quantum correlations are a dynamical
feature of composite open systems independent of the nature
(classical or quantum) of the environment.

Finally, our results introduce the possibility to recover and
control, against decoherence, quantum correlation resources even
in absence of back-action, without resorting to quantum
structured environments22–24 or correction procedures4,25–27

and moreover open the way to further studies on the issue of
quantum correlation revivals in classical environments15,28.

Methods
State preparation process. As depicted in Fig. 1b, ultraviolet pulses are frequency
doubled from a mode-locked Ti:sapphire laser centered at 800 nm with 130 fs pulse
width and 76 MHz repetition rate, and pass through a half-wave plate (HWP)1 and
a Wollaston prism to be separated into two optical pump paths. The HWP1 rotates
the polarization of the ultraviolet pulses which are separated by the Wollaston
prism into two paths. The Wollaston prism transmits horizontal polarization |HS
and reflects vertical polarization |VS. Therefore, the relative amplitude between the
two pump paths can be controlled by the HWP1. The HWP2 and HWP3 are used
to control the polarization of the corresponding pump light. The two pump pulses
are then combined by a polarization-independent beam-splitter and pump two
identically cut type-I beta-barium-borate crystals, with their optic axes aligned in
mutually perpendicular planes29, to generate entangled photon pairs. After
compensating the birefringence effect between |HS and |VS in beta-barium-borate
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crystals with quartz plates (CP), maximally entangled photon pairs are generated in
the state j Fþ i ¼ ð1=

ffiffiffi
2
p
Þðj HHiþ j VViÞab by the transmitted pump pulses and

in the state j F� i ¼ ð1=
ffiffiffi
2
p
Þðj HHi� j VViÞab by the reflected pump pulses. In

our experiment, the time difference between the two pump paths is larger than
the coherence length of the pump light so that the path information is traced out at
the end of measurement3. The prepared state is then the Bell-diagonal state rin

ab
of equation (3).

Action of the environment part of the setup and output state. If the photon b is
in the horizontal polarization |HS and enters the environment part of the setup
(see Fig. 1b), it undergoes all the transformations due to each optical component in

the transmitted path (p� ) and reflected part (pþ ) that give, respectively, j Hi !HWP5

ð1=
ffiffiffi
2
p
Þðj Hiþ j ViÞ !SBC or QP ð1=

ffiffiffi
2
p
Þðj Hiþ eif j ViÞ !HWP6

cosðf=2Þ j Hi� i

sinðf=2Þ j Vi and j Hi !HWP4 j Hi !HWP5 ð1=
ffiffiffi
2
p
Þðj Hiþ j ViÞ !SBC or QPð1=

ffiffiffi
2
p
Þ

ðj Hiþ eif j ViÞ !HWP6
cosðf=2Þ j Hi� i sinðf=2Þ j Vi !HWP7

cosðf=2Þ j Hiþ
i sinðf=2Þ j Vi, where we have omitted the unimportant global phase factor eif/2.
These are the two unitary transformations for |HS given in equation (2), with
f¼ot. Analogously, one obtains those for the polarization |VS. In particular, we

find that the transmitted path transformation is j Vi !HWP5ð1=
ffiffiffi
2
p
Þðj Hi� j ViÞ

!SBC or QPð1=
ffiffiffi
2
p
Þðj Hi� eif j ViÞ !HWP6 � i sinðf=2Þ j Hiþ cosðf=2Þ j Vi, whereas

the reflected path transformation is j Vi !HWP4 j Vi !HWP5ð1=
ffiffiffi
2
p
Þ

ðj Hi� j ViÞ !SBC or QPð1=
ffiffiffi
2
p
Þðj Hi� eif j Vi !HWP6 � i sinðf=2Þ j Hiþ

cosðf=2Þ j Vi !HWP7
i sinðf=2Þ j Hiþ cosðf=2Þ j Vi. These are the two unitary

transformations for |VS displayed in equation (2).
We now consider the evolution of the two-photon state j Fþ i ¼ ð1=

ffiffiffi
2
p
Þ

ðj HHiþ j VViÞ with a single frequency o. The state at the end of the transmitted
part and of the reflected part is obtained by applying the transformations of
equation (2) only on the second qubit b and it reads, respectively,

j Fþ i!
p� cosðf=2Þ j Fþ i � sinðf=2Þ j Cþ i; ð5Þ

where j Cþ i ¼ ð1=
ffiffiffi
2
p
Þðj HViþ j VHiÞ. After tracing out the path information

(the detection in our experiment traces over the time difference between the two
paths), the input state |FþS then becomes the output mixed state.

j Fþ ihFþ j !output
cos2ðf=2Þ j Fþ ihFþ j þ sin2ðf=2Þ j Cþ ihCþ j ð6Þ

Similarly, when the input state is |F�S the output state becomes

j F� ihF� j !output
cos2ðf=2Þ j F� ihF� j þ sin2ðf=2Þ j C� ihC� j; ð7Þ

where j C� i ¼ ð1=
ffiffiffi
2
p
Þðj HVi� j VHiÞ. Therefore, starting from the effectively

prepared state rin
ab of equation (3), the two-photon output state is

~rout
ab ¼cos2ðf=2Þ ðlþ j Fþ ihFþ j þl� j F� ihF� jÞ

þ sin2ðf=2Þ ðlþ j Cþ ihCþ j þ l� j C� ihC� jÞ; ð8Þ

The previous output state corresponds to the case of coherent evolution, where
only the SBC is used (f¼o0t). Considering the Gaussian distribution f(o) of the
frequency o, the decoherence parameter k¼

R
f(o)cosf(o)do arises by tracing out

the photon frequency degrees of freedom. As cos2ðf=2Þ ¼ ð1þ cosfÞ=2 and
sin2ðf=2Þ ¼ ð1� cosfÞ=2, the introduction of the decoherence parameter k turns
the previous state ~rout

ab into the output state rout
ab given in equation (4).

Correlation quantifiers. Total correlations are calculated by the quantum mutual
information IðrabÞ ¼ SðraÞþ SðrbÞ� SðrabÞ, where ra and rb are the reduced
density matrices of rab whereas SðrÞ ¼ � trðr log2 rÞ is the von Neumann
entropy2. Classical correlations are defined as the maximal information gained
about rab by a measurement on one of the qubits, that is2

CðrabÞ � max
�b

j

½SðraÞ�
X

j

qjSðrj
aÞ�; ð9Þ

where �b
j is the set of projective measurements performed on qubit b, qj ¼

trabð�b
j rab�b

j Þ and rj
a ¼ trbð�b

j rab�b
j Þ=qj is the post-measurement state of a after

obtaining the outcome j on b. Quantum correlations (quantum discord) are then
given by2 QðrabÞ ¼ IðrabÞ�CðrabÞ. Two-qubit entanglement is quantified by
concurrence1 C(rab)¼max{0,G}, where G ¼ ffiffiffiffiffi

w1
p � ffiffiffiffiffi

w2
p � ffiffiffiffiffi

w3
p � ffiffiffiffiffi

w4
p

, and wj are
the eigenvalues in decreasing order of the matrix rabðsy � syÞr
abðsy � syÞ with
sy denoting the second Pauli matrix and r
ab corresponding to the complex
conjugate of rab in the canonical basis {|HHS,|HVS,|VHS,|VVS}. The theoretical
dynamics of the correlation quantifiers is found by using their known analytical
expressions for Bell-diagonal states2,17. The experimental results are acquired from
the reconstructed output density matrices (by state tomography). Total correlations
and concurrence are directly calculated for the output states. For obtaining classical
and quantum correlations the maximization of equation (9) is required, performed
by scanning the projective operators f�b

j g represented by {cosa|HSþ eiysina|VS,
e� iysina|HS� cosa|VS} on photon b. The scan precision of a and y is set
to p/100.

Quantifier of non-Markovianity. We consider a maximally entangled input state
j Fþ iab ¼ ð1=

ffiffiffi
2
p
Þðj HHiþ j VViÞ, with the photon b subject to the environment

and photon a isolated. The output state, in the coherent evolution case (f¼o0t is
the dimensionless time variable), becomes
rout

ab ¼ 1=2ð1þ cosfÞ j Fþ ihFþ j þ 1=2ð1� cosfÞ j cþ ihcþ j. The entangle-
ment of the final state is quantified by the concurrence C¼ 2 max
[1/2(1þ cosf), 1/2(1� cosf)]� 1, that is C(f)¼ |cosf|.

We quantify the memory effects present in the evolution of a system using the
criterion of non-Markovianity based on the distinguishability of two evolving
quantum states, as measured by the trace distance D(r1(t),r2(t))¼ (1/2)|r1(t)�
r2(t)|, where j Â j¼ Tr

ffiffiffiffiffiffiffiffiffi
ÂyÂ

p
, ri(t)¼Ltri(0) (i¼ 1,2) and Lt is a dynamical map

of the open system8. The rate of change of the trace distance is

s tð Þ ¼ dDðr1 tð Þ; r2 tð ÞÞ=dt; ð10Þ
Given two initial states of the system, any temporary increase of the trace distance
(s(t)40) is a signature of memory effects (non-Markovianity of the dynamical
map of the system). In order to obtain the degree of non-Markovianity one then
takes the maximum of s(t) over the possible initial states r1,2(0) and calculates8

NðLÞ ¼ maxr1;2ð0Þ
R
s40 dtsðtÞ.

Let us now consider the dynamical map of random external fields acting on a
qubit in the coherent case (small lengths of the QPs, SBC compensator)

Ltrð0Þ ¼ ð1=2Þ
P

j¼�p=2 UjðtÞrð0ÞUyj ðtÞ, where Uj is defined in equation (1)
and Ot � o0t¼f. For two arbitrary initial states, rk(0) (k¼ 1,2) in the basis {|0S
� |HS,|1S � |VS}

rkð0Þ ¼
ak bk
b
k 1� ak

� �
; ð11Þ

the trace distance evolves as Dðr1ðfÞ; r2ðfÞÞ ¼ fða1 � a2Þ2cos2fþ j b1 �b2 j2
½cos4ðf=2Þþ sin4ðf=2Þ�þ ½ðb
1 � b
2Þ

2 þðb1 �b2Þ2� cos2ðf=2Þ sin2ðf=2Þg1=2. It
follows that the maximum of the rate of change is found for the initial states having
a1¼ a2¼ 1/2 and b1¼ � b2¼ i/2, that is the pure states j c1;2i ¼ ð1=

ffiffiffi
2
p
Þðj Hi

� i j ViÞ. In this case the trace distance is D(r1(f),r2(f))¼ |cosf|¼C(f) and the
corresponding rate of change is s(f)¼ � sgn(cosf)sinf21.
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