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Abstract

Mobile networks for Internet Access are a fundamental segment of Internet access net-
works, where resource optimization are really critical because of the limited bandwidth
availability. While traditionally resource optimizations have been focused on high effi-
cient modulation and coding schemes, to be dynamically tuned according to the wireless
channel and interference conditions, it has also been shown how medium access schemes
can have a significant impact on the network performance according to the application
and networking scenarios.

This thesis work proposes an architectural solution for supporting Medium Access Con-
trol (MAC) reconfigurations in terms of dynamic programming and code mobility. Since
the MAC protocol is usually implemented in firmware/hardware (being constrained to
very strict reaction times and to the rules of a specific standard), our solution is based
on a different wireless card architecture, called Wireless MAC Processor (WMP), where
standard protocols are replaced by standard programming interfaces.

The control architecture developed in this thesis exploits this novel behavioral model
of wireless cards for extending the network intelligence and enabling each node to be
remotely reprogrammed by means a so called “MAC Program”, i.e. a software element
that defines the description of a MAC protocol. This programmable protocol can be
remotely injected and executed on running network devices allowing on-the-fly MAC
reconfigurations.

This work aim to obtain a formal description of the a software defined wireless network
requirements and define a mechanism for a reliable MAC program code mobility throw
the network elements, transparently to the upper-level and supervised by a global con-
trol logic that optimizes the radio resource usage; it extends a single protocol paradigm
implementation to a programmable protocol abstraction and redefines the overall wire-
less network view with support for cognitive adaptation mechanisms. The envisioned
solutions have been supported by real experiments running on different WMP proto-
types , showing the benefits given by a medium control infrastructure which is dynamic,
message-oriented and reconfigurable.
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Chapter 1

Introduction

In recent years Wireless network for Internet Access has become one of the most impor-
tant infrastructure in communication technologies and IT application. The impressive
growth of features and bandwidth capabilities in 3G/4G cellular networks and the per-
vasive distribution of WiFi access networks for business and home internet access are
the proof that Wireless based access network is today the de facto internet access for
users. However not all network technologies currently in use are able to scale with a
large amount of users and not all medium access schemes can be exploited without a
knowledge of the dynamic environment; for that reason the research community and in-
dustry try to address the problem of medium access limitations defining new standards
and specific solutions pay particular attention to free frequencies wireless local network
technologies.

One of the most famous WLAN standard is IEEE 802.11. It was born just for cable
replacement in local area networks with limited management functionalities and data
rates. The evolution of 802.11 (e.g. 802.11e, 802.11sm 802.11n, 802.11ac, etc.) brought
the definition of new standards with highest performance and spectrum usability. The
definition of current new standards can clearly address a set of weakness and give more
features but very often novel application scenarios or networking topologies require the
introduction of updates. Indeed, wireless network networks suffer of a number of issues
of channel access and reconfigurability of networks elements, that strictly depend on the
operating network conditions and interference. For this reason an interesting research
path can be focused on the designing of a new paradigm for network reconfigurability and
optimization, according to which nodes can change dynamically not only the modulation
and coding schemes, but also their behavior in estabilishing wireless links and accessing
the wireless medium. Obviously, such a reconfigurability requires that that all nodes
can share information about channel state, are updated in a consistent way and follow
some common (global or distributed) optimization algorithms. The programmability of
future Internet is a current interest research topic, where the definition of programmable
interfaces and abstractions do not only involve the wireless access network. For example,
these concepts have been largely debated in the context of switched networks, where
Openflow [52] has obtained a large consensus for trading-off reconfiguration capabilities
of switching network elements and usability of the interfaces.

The main purpose of this work is to design a dynamic network reconfiguration model
and define a cognitive paradigms for Medium access control adaptation. For this scope,
a prototype architecture for flexible and programming of MAC protocol called Wireless

1
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MAC Processor[38] has been used. This framework is a powerful element for designing
a wireless network where nodes can define, modify and run MAC protocol software
based implementations called ”MAC programs”. The final goal is identifying a suitable
programming interface and programming language to code the MAC protocol logic in
a compact program that can be carried in one control message and configure remotely
the MAC layer of the network devices by simply disseminating these special messages.
In this way it is possible designing a smart access network that can solve dynamically
a number of medium access control issues such as channel quality fluctuations, traffic
load, radio spectrum optimizations and cognitive algorithm implementations.

This work starts from the analysis of the most important proposals for software defined
network in switched networks studying research contributions and solutions, analyzing
the benefit that this improvement give to the network flexibility; after that has been con-
ducted an analysis of the design requirements needed to obtain software defined network
paradigm for wireless access network, and finally has been developed a prototype of a
communication system using IEEE 802.11 commodity devices implementing the WMP
API. Finally, we analyzed typical usecases of medium access control reconfigurability in
different scenarios and evaluated the results.

1.1 Programmable wireless platforms

Current GNU/Linux network module system are designed using SoftMAC[4] paradigm,
with this approach part of MAC Layer Management Entity (MLME) is managed in soft-
ware by the Operating System. MLME include Authenticate, Deauthenticate, Associate,
Disassociate, Reassociate, Beacon, Probe, Timing Synchronization Function (TSF). All
the functions that are non time-critical can be developed by software and leave in the
lower levels the implementation of the time-constrained protocol operations, for example
the acknowledge signaling. The project Linux Wireless [3] define an implementation on
Linux Kernel side of the IEEE 802.11 common management entities that interacts with
driver modules of each NIC and implements softMAC paradigm, moreover several low
level MAC/PHY parameters such as congestion windows, frequency, antenna selection,
bandwidth or rate can be configured by software. However, this level of flexibility is not
enough to bring into real world optimization solutions which require a fine parameter
tuning for each frame or for control frames such as beacon or acknowledge frames. To
overcome this limitation the research community has developed custom programmable
wireless platforms, typically revolving around an FPGA or DSP core. Modern platforms,
such as WARP [19] are stand-alone software defined radio boards equipped with fast
and large FPGAs. These solutions allow the implementing of whole wireless protocol
stack, from the level of signals to that of frame payloads, they support full MAC layer
customization and cross-layer designs. More recently, custom MAC programmability
was made possible also on commodity card, thanks to the disclosure of a (simplified)
open source firmware [10] for a brand name card. A complete control of source code of
PHY/MAC entities permits any modification, but the main purpose of a dynamic auto-
configurable network is that the MAC logic can be defined as a finite state machine that
a generic program executor is able to run. The Wireless MAC Processor project [38]
proposed a prototype architecture developed with this specific purpose when has been
implemented a MAC Engine on firmware level that is able to execute a MAC program in
terms of finite state machine. A set of APIs is given to the developer that can compose its
MAC and inject into the card enabling the new features on the fly. In dynamic network
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reconfiguration this approach allow to design a communication architecture that can
move this code throw the network transforming a fixed wireless network into a flexible
environment that choose with cognitive paradigm the best medium access scheme.

1.1.1 Code Mobility

Despite the hype in the midst of the nineties [32], the application of active networking
principles to the wireless domain has lagged behind. In the vision of [67], adaptations,
envisioned in terms of selection of PHY functionalities (spectrum access, modulation,
and coding) were expected to leverage software radio technologies. But proposed wire-
less active networking frameworks [32] have mainly addressed issues at layers higher
than low-MAC/PHY (e.g., QoS, network topology adaptation, mobility, ad hoc network
formation, etc). The interest for code mobility, also embedded in in-band data packets
(capsules, as per [70]), has more recently emerged in the wireless sensor networks arena.
Indeed, in large sensor networks, code mobility may be the only possibility for upgrad-
ing the sensors’ behavior, given that physical access to the nodes may not be viable.
But, again, programmability has been restricted to higher layers, and for tasks such as
changes in the monitoring functionalities or in the application operation [59]. Especially
in the sensor network field, several issues concerning code distribution protocols[42, 45]
and architectures [50] have been considered. Obviously, the programmability require-
ments for wireless local networks have some differences from the sensor network ones.
Sensor nodes deployed in the same network are usually homogeneous, with the same
Tiny OS and hardware. A binary code image can be moved from a node to another
in active messages (natively supported by TinyOS). Albeit not strictly necessary, byte-
code interpreters[44] may significantly improve efficiency of code distribution, i.e. for
giving an high-level virtual code representations which significantly reduces the code
length and/or facilitate incremental updates. All the above referred solutions limit pro-
grammability to network, transport and application proto- cols, and assume that the
lower stack dealing with medium access and single-hop communications is not modifiable
[44].

1.2 Work content description

This work is divided the following chapters: Chapter 2 describes the solutions adopted
in Internet Network for reconfigurability of its elements such as router, switch, firewall;
in chapter 3 a discussion about the motivation of a MAC reconfigurability and a design
analysis for software flexibility requirements; in chapter 4 a description of main features
of WMP prototype used for protocol code reconfigurability and in chapter 5 is presented
MAClet, a solution designed and implemented for a wireless network architecture that
support code mobility; in chapter 6 the study of the MAClet Control Plane design,
in chapter 7 a description of the usecases that adopt WMP/MAClet software defined
network architecture.

1.2.1 Methodology

The design of MAClets and MAClets Controller started from the decoupling of the
requirements of a complex network scenario in terms of physical and network elements,
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the defining of a programmable MAC infrastructure, the analysis of the benefits of a
MAC layer reconfigurability and the definition of a model for each requirement. The
modeling is the most important aspect because it can make the difference between a
solution that can be pervasive and one solution that can live only in particular conditions.
That’s the hard aspect of this work and in general not all the solution seems to be actually
the optimal one, but with a solid background model and with a modular system is easier
find the weak element and replace with a stronger one.
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Network Programming

2.1 Introduction

This chapter is focused on a conceptual and technical analysis on current solutions for
network programmability: we describe the main features of Programmable Networks,
the motivations, and the main concepts envisioned to rethink the traditional telecom-
munication networks and extend its features in a reliable and flexible context.

The timeline of Programmable network evolution has experienced different steps and
contributions. In 1995 OPENSIG [24, 32] was proposed with the purpose of making
ATM networks more flexible; GSMP (General Switch Management Protocol)[16] has
been standardized to establish connections between the switches, manage switch ports
and reserve resources; in 1997 Active Networks[66] have emerged for reconfiguring packet
oriented networks by embedding programs in data packets; in 2004 the project 4D
proposed a separation between routing logic and routing protocol in network elements
[15], while in 2006 was developed Ethane [2], the predecessor of OpenFlow that in
2011 was introduced by ONF foundation[8, 52]. In 2008 With NOX[5], an OpenFlow
controller was finally proposed.

In the following sections, we provide a description of the main research work on these
technologies and on the impact that these solutions can have for defining programmable
mobile access networks.

2.2 Programmable Network

Vendor dependent and hardcoded implementation of control software do not allow a
flexible programming of nodes: this is a limitation for innovation because any novel so-
lution requires to be standardized, implemented by vendors and accepted by final users
(that need to buy novel network nodes) before it can be deployed in real networking ap-
plications. Moreover some implemented features are often proprietary and have a poor
level of reconfigurability on users side. In [32] the problem has been studied defining
a network modeling and a programming model in network environment, examine the
number of solution and aim to define a common way to define a network that is pro-
grammable and able to react quickly in terms of reconfigurability and flexibility. The

5
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first issue to address is to identify a strategy to separate the hardware data forwarding
rules from the control protocol, and define a software-based paradigm for the control
protocols. In this way switch, router or any other network component can be described
as a general purpose network element that change it control protocol by changing of
control protocol software. A new network component can be defined basically writing a
new software program, and by the definition of a common set of APIs is possible describe
a common language to allow all components to be interoperable. At this point is crucial
define a model for this new type of network, a network that is not a fixed environment
for a specified protocol but a dynamic system that can involve it features by software
changing. The envision of a programmable network is that network behavior can quickly
change also in runtime, by the definition of a program distribution logic that allow a
fast network reconfiguration.

2.2.1 Programmable Network Model

The modeling of a network has a number of complex requirement and the way to give
programmability must go throw an intensive analysis of the problem with an important
abstraction modeling. One of the distinctive characteristic of a programmable network
is that, starting from a minimal set of APIs, is possible to compose several services.
A general way to design a programmable network is based on a model that define
data, control and management plane for each layer of internet stack. This general
envision can be applicable in every kind telecommunication networks and the separation
between transport and control are highlighted in network architectures. Give a fine
grained programmability of each plane allows to define a reliable system that is able
to implement quickly new features and applications. The Data Plane/Control Plane
separation is the first step to delegate decision functions to network elements able to
aggregate the network information and takes the right decision for data forwarding.

Data Plane is the part of the network that carries the traffic and refers to the
information that is being transported. In general data plane decide what to do with a
packet, analyze the header and act following a communication protocol.

Control Plane Define the rules used by Data Plane. In a traditional network each
node has made with an implementation of control protocol without basically any neces-
sity of modification. This implies predefined network protocol configuration and there’s
no models for adaptation or dynamic rules redefinition. This paradigm has a weak part:
each evolution must provide a complete per-node network modification, in most case
with hardware replacement or low-level code upgrade. A programmable network node
does not implement a specific control protocol but define a programming language that
allow to implement define in software any kind of protocol starting from a very simple
APIs set.

2.3 Active Network

In 1997 [66] introduced the Active Network paradigm, an architecture approach that
was born with the main purpose to increase the flexibility of internet networks allowing
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a programmability level based on propagation of program code within the packets. This
milestone work envisions a network that is able to overcome the issues of a wide area
network that suffer of problems for integrating new technologies and standards into the
shared network infrastructure, as well as poor performance due to redundant operations
at several protocol layers, and difficulties for accommodating new services. Moreover the
standardization process of the Internet Protocol can take years to define a new common
standard; the new standard must be developed by vendors and after that the entire
network must swap from an old technology to the newer one. Changing the protocols
means changing the network operations. Several strategies, collectively referred to as
active networking, have emerged to address these issues. In the program-based approach,
the networking system is a combination of small program elements that give to the
network nodes the information for a cognitive decision for several optimizations. The
goal is obtaining a network where each new developed feature can be easily downloaded
and installed into endpoint nodes and routers. This approach allow a faster pace of
innovation bringing a hardcoded network architecture to a Virtualized paradigm.

2.3.1 Framework

Active Network is a network designed with nodes that are able to receive configuration
packets and process them using programming directive. Users can send dissecting rules
for control packets that can implement new features for each node giving the advantage to
modify a traditional hard-coded set of switch and router configuration rules to program-
dependent configuration.

2.3.1.1 Programmable switches

A programmable switch is an element that allow dynamic programming of packet dis-
section and routing rules definitions and allow to analyze data frames and take decision
on it. In this approach users can send program messages that inject the routing rules
adapting the behavior of nodes based on the traffic type and the program message sent.
Active Networks can be designed in discrete or integrate approach: the first separate
the programming messaging phase from the data flow, the second aim to integrate pro-
gramming messages and data into each single packet.

Discrete In this approach program and data are separated and it is defined a set
of mechanisms for each type of message. When a program message is sent, the pro-
grammable node receives and injects the message into its configuration interface. It will
dissect the future data packets with the rules included in the program sent previously.
The approach is useful in case of large programs or if is necessary a previous control of
the program.

Integrate - Capsules A Capsule is a packet with data that is also a network program.
In this solution, all the packets exchanged into the network have an embedded program
and all nodes in the network have a common set of capabilities for reading and executing
the programs: each packet contain the program with the dissection rules to be executed
for it. This approach is an example of code mobility concept and shows how a packet
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fine programmable network can define a framework for a generalized subset of usecases
and applications.

2.3.2 Programming Model

In Active networks arise the important aspect of the network programs requirements: a
network program is a communication element that must be a common resource for all
nodes of the network, it must define a set of common instructions that can be interpreted
by each node and it must define a common description of resources handling. The main
requirements of a network program are:

• mobility - the program can be run on different platforms;

• safety - handling program resource access;

• efficency - programs must not compromise the network performance.

The network program is defined as a script that can be executed on-the-fly when the
packet is received, when the internal logic of active switches is able capture the embedded
code and execute it. The important aspect is in term of real time execution with null
or at least small compiling time. The scripts use a small and simplified set primitives
that are the same for all nodes, so a fundamental element of the framework is the APIs
set that define data analysis commands and may include decision rules, condition and
events.

2.4 Software Defined Network - SDN

The Software Defined Network paradigm is based on the definition of a network made of
nodes with an high level of programmability. A general SDN must define an abstraction
model for the programmability requirements arisen from the network analysis. As for
Active Networks, the first element to analyze in SDN is the separation between Data
Plane and Control Plane; the second element is about the centralization of Control
Plane and consequently the abstraction models to be defined. In case of Internet, three
fundamentals programming issues have been defined to be solved for control plane design.
In traditional networks most control operations (e.g. the routing) are implemented by
means of a distributed control protocol and each network element has to implement
the same protocol to obtain network interoperability. The main issue is that when a
node is programmed the only way to modify, update or improve the network features is
reprogram each node from scratch. For these reason it is important to define Control
Plane where is possible to keep the control of network nodes and interact with them. To
this purpose, it is required to define a reliable model so that each programming command
can be forwarded with a standard communication protocol; second the physical network
environment must not be a constrain for the network element control and finally each
device must be configured in transparent way. Summarizing a software defined network
needs the follow control requirements:

1. Operate within a given network-level protocol;
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2. Operate without communication guarantees - a distributed system with arbitrary
delays and drops;

3. Compute the configuration of each physical device - A common way to introduce
the programs in networks elements in this way every physical device is consider an
equivalent element.

The Control Plane for a network system has several complexity aspects that must be
managed, but, if we want to obtain a synergistic implementation we must extract sim-
plicity with the right abstractions. For this three requirements the Control plane must
define the following abstraction models:

1. Forwarding;

2. Distributed State;

3. Detailed configuration.

Forwarding

This abstraction model must give an interface that shields the upper layers from the
embedded low-level implementation of the forwarding mechanisms. Network elements
handled by Controller are developed to be able to interpret the same instructions. Open-
flow, for example, defines a so called Matching Table that contain the Control rules; the
definition of the Forwarding model depends on the type of SDN designed. For switched
networks, adopting a matching table seems to be a good solution but in many other
SDNs a forwarding model based on a flowchart or a state machine can be more effective.
The motivation is inside the programming level that a Controller gives to the network
nodes.

Distributed state

Network must have a global view. The controller gets a global view of the network state
and responds with the configuration of each device. The way to obtain a global view of
the network is the Network Operating Systems (NOS). NOS is a distribute system that
create the network view, communicates with the forwarding element of the network and
communicate the control directive to the network elements. Controller is placed on top
of NOS and views the network as a graph.

Detailed configuration

The abstraction model for network devices configuration consist of a Control Program:
a control program is simply a function that gets inputs from the network view and
distributes the configuration for each node.

An interesting overview of these concepts is provided in OpenFlow v1.0.0[11], which
describes the programmability approach proposed for software-defining switching nodes.
.
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Figure 2.1: Network Operating System Distributed State Abstraction

2.5 OpenFlow

One of the most important well-know SDN-inspired architectures is OpenFlow[52], whose
features are summarized in this section.

Figure 2.2: OpenFlow switch Controller-Switch connection
The architecture decouples Control and Data Planes and define two network primary
elements: the Controller and the Switches. The Controller and the Switches exchange
information using the so called OpenFlow protocol which define:

• Controller-to-Switch messages;

• Flow Table structure;

• Flow Match structure;

• Flow Action structures.

Each Switch loads a flow table that defines a rule, an action and a set of statistics
information; for each packet received it dissects the packet analyzing the flow table and
takes the decision executing the action. In figure 2.3 it is shown the packet matching
algorithm for an OpenFlow switch.
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Figure 2.3: OpenFlow switch macthing flow

2.5.0.1 Programmability

In OpenFlow the programmability level is driven by the Controller that injects to the
Switch the Flow Table. Table inspection logic of OpenFlow is logically assimilable to a
state machine that loops in a single state and checks a single event: a packet reception.
When a Packet is received, OpenFlow checks throw a list of conditions defined into the
flow table and executes one of the actions described. Table 2.1 shows the description of
a single entry of a Flow Table.

Header Fields Counters Actions

Table 2.1: OpenFlow Table Entry

Header Fields is a list that contain the header fields value that the switch must
check for matching.

Counters Contains the statistics information per-table, per-flow,per-port, per-queue.
These information are updated at each packet arrival.

Actions Define how the switch must handle the matching packets. Actions are clas-
sified in ”required” or ”optional”; basically each action defines the forward, enqueue,
drop, modify-field operation executed for each packet matching.

2.5.0.2 Communication between Controller and Switch

The communication between the Controller and Switch is obtained throw an interface
called secure channel. OpenFlow protocol defines three types of messages: controller-
to-switch, asynchronous and symmetric.

Controller-To-Switch These type of messages are initiated by the controller and
may or may not require response from the switch.
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Asynchronous Message sent from the Switch to the Controller without soliciting.
With these types of messages, the Switch updates some information to the Controller.

Symmetric These are bidirectional messages without solicitation.

2.5.1 OpenFlow Components

The OpenFlow compoments are hardware switches and software to assolve OpenFlow
protocol implementation and give maintenance, debugging and monitoring tools.

2.5.1.1 OpenFlow Switches

The impressive OpenFlow growth brought an important commercial contribution. In-
fact there are a number of business devices able to work with OpenFlow; HP ProCurve,
NEC IP8800, Pronto with Indigo or Pica8 firmware are an example of models that im-
plements OpenFlow. There are also Software/Test Switches for OpenFlow: NetFPGA,
OpenWRT, PCEngine WiFi AP and OpenVSwitch.

2.5.1.2 Controller

Also for controller there are several implementation in different language. The first
OpenFlow controller is NOX that supports OpenFlow v1.0.0. It is written in C++ and
define an API. NOX has two separate lines of development:

• NOX-Classic is the well-known line of development that has been available under
the GPL since 2009. It contains support for Python and C++ and a bunch of
applications. However, this line of development is deprecated.

• NOX only contains support for C++, has fewer applications than NOX-Classic,
but it is much faster and has a much cleaner codebase. Today developers are
working in this new codebase. For python prototyping, there is also POX. NOX
defines the classes for OpenFlow protocol objects, network state consistency man-
ager, table sending, table dropping and so on. The main problem of NOX is the
difficult to be deployed and a large number of users have trouble for building and
running NOX in thier environment.

NOX core only provides very low-level methods for interfacing with the network. All
higher-level functions and events are created and provided by network applications (com-
ponents). A component is just an encapsulation of controller functionalities. For exam-
ple, routing is implemented as a component within NOX. Any function which requires
routing must declare it as a dependency to ensure its availability at runtime. Developer
recently move to another implementation called POX. It is implemented in python and
use both interpreter cpython or PyPy. POX give more features and allow an easier
prototyping work. POX also define a list components of stock components that define
the most important switch implementations. This framework provide a set of APIs to
implement customized components. in [14] the wiki page of POX install/setup guide,
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the list of the stock components and a guide for developing custom components. NOX
and POX are not the only Controller available for OpenFlow, many opensource and non-
opensource products have been developed. In table 2.2 a summary of most important
OpenFlow Controllers.

Control-
lers

Lang-
uages

Docs Open-
Source

Institu-
tions

Multi-
thread

Notes

NOX C++/
Python

Good Yes Nicira
Networks

Yes Widely
used

Maestro Java Fair Yes Rice Uni-
versity

Yes No Ref.

Trema C/ Ruby Poor Yes • Yes No Ref.

Beacon Java Good Yes Stanford Yes Very
Used

Helios C ? No NEC • No Ref.

BigSwitch* Java ? No BigSwitch • Production
Netowrk

SNAC** C++/
Python

? No Nicira
Networks

• Production
Netowrk

POX Python Good Yes Nicira
Networks

NO Under
Develop

Table 2.2: OpenFlow Controllers Comparison

2.6 SDN in Wireles Networks

The most critical (and most distinct) aspects of wireless networks are interference/ra-
dio resource management and mobility management, which obviously work on different
complexity scales when we consider cellular or local access networks. While for cellular
networks interference control and mobility are natively provided in standard functions
and configuration interfaces available to operators, they are often add-on functionali-
ties for WLANs like IEEE 802.11 – a technology born as unmanaged wireless access
for small and ad hoc deployments. However, both cellular and WLAN landscapes are
evolving faster than standardization [46]. On one hand, femtocells deployments and
the flexibility of modern WCDMA/OFDMA technologies make cellular networks less
planned. Especially in the content of femtocells, it is impractical – or impossible if the
device is installed by the customer!– for the operator to manually tune the installation
and soft parameters of all its base stations. On the other hand, dense Access Points do
not work well by keeping the network control completely distributed, because it is often
impossible to prevent critical interference problems. In both cases, recent literature has
shown that enabling or introducing a network-wide resource control can result in a per-
formance improvement. Nevertheless, most of these insights have not migrated to real
world deployments because they are not natively supported by existing wireless nodes
and standards.
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2.6.1 Interference management centralization

In LTE an emerging approach for improving the network capacity is centralizing some
resource control operations [39] to overcome the limitations of local decisions, which are
myopic by necessity, and also obtaining some deployment benefits, mostly from hard-
ware resource pooling. Networks based on this architecture are called cloud radio access
networks (C-RAN). C-RANS can be seen as an effective implementation of the idea
of multi-cell processing or network MIMO because the digitalized I/Q radio signals of
different antennas are processed together. On the basis of this processing, the central
controller can decide whether the antennas should be used for boosting signals (combin-
ing diversity to boost signals for delay-sensitive applications) or for spatial multiplexing
(multiple parallel transmissions). The promise of such approach includes energy effi-
ciency, load balancing, and capacity improvement due to the cooperative processing of
the signals received and transmitted by distributed base stations, which in turns require
an efficient data sharing strategy between the base stations and the cloud [62]. In [49]
a hybrid solution is proposed, where centralized and distributed baseband configuration
and processing decisions coexist according to the bandwidth availability between the base
stations and the cloud. Indeed, when the capacities of the backhaul links are infinite
(or sufficiently large), the uplink joint processing problem becomes that of a multiple-
access channel, and the downlink becomes a broadcast channel for which the capacity
regions can be easily computed. However, in practical scenarios, the sampled waveforms
and the interference measurements need to be carefully compressed for dealing with the
finite capacity of the backhauls [60]. Moreover, for scalability reasons, the optimization
can work on a cluster of cells rather than on the whole network [62]. Also for WLANs,
major vendors, e.g., Cisco, Aruba, and Meru, have realized that a centralized network
structure can be exploited for optimizing network performance. For example, DenseAP
[55], and Trantor [56], have proposed to centralize various radio control functions, in-
cluding rate selection across client-AP links, transmit power settings, interference-aware
associations, load balancing, etc., that can significantly improve the utilization of the
radio resources. In these solutions, client nodes have a very limited intelligence: they
collect measurements describing their local view of the network (e.g. the observed air-
time) and act according to the configuration commands sent by a controller to APs and
stations (through the serving AP). Some authors have pushed these principles further
and propose to centralize the link access control, which has been traditionally considered
part of the data plane. For example, [63] shows that the global view of the network can
be exploited for avoiding that APs suffer from hidden or exposed transmissions. The
idea is to opportunistically schedule the forwarding of downlink data frames to the APs
in order to avoid simultaneous transmissions in case of hidden APs, and synchronizing
exposed APs by means of pre-determined backoff values. A centralized architecture for
simplifying and optimizing the management of network infrastructures with multiple
APs has also been standardized by the IETF with the CAPWAP protocol [9], which –in
principle—is technology agnostic and requires specific “bindings” for each considered ac-
cess standard (so far, there is only the binding for 802.11). Services offered by CAPWAP
concern security and registration, but also the centralized control of radio resources and
configuration of Wireless Termination Points (i.e. the APs in the CAPWAP terminol-
ogy) for improving network performance [43], [26]. Radio configuration is expressed in
terms of management information base elements included in the standard, such as the
operating channel, the transmission power, and the channel sensing mode, but also the
beacon interval, the contention parameters and the retry limits used by the medium
access scheme. Device configuration is expressed in terms of hardware (radio interfaces)
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and firmware selection. Configuration decisions are taken by a central controller called
Access Controller (AC).

2.6.2 Self-Organizing networks

An alternative paradigm to centralization, is dealing with the increased scale, com-
plexity and heterogeneity of emerging networks by means of self-configuration. Self-
configuration of wireless points of access within a single technology has been heavily
investigated within the LTE standard for LTE eNodeB [37], [35] focusing on address
and cell identity assignment, and for Wi-Fi APs, focusing, among others, on IP ad-
dress configuration [23], channel assignment and AP selection [40], [25]. State of the art
self-optimization schemes for LTE networks concentrate mainly on handover threshold
optimization [47], the neighbour relation problem [51] and dynamic subcarrier assign-
ment [29]. Automatic configuration and self-optimization for heterogeneous networks
has not been extensively studied, although some initial proposals appeared in the liter-
ature (e.g., VET [65]). Self-organizing networks are already proven to be effective on
theoretical basis (e.g., [61], [68]). However, practical realizations under realistic assump-
tions, especially under imperfect channel state estimation, constrained communication
between base stations, and small cells (which make the distributed solutions complex
and less reliable) are largely lacking.

2.6.3 Session and mobility management

Current solutions for session and mobility management in cellular networks centralize
some critical functions which introduces scalability problems. For example, monitoring,
access control, and quality-of-service functionality are centralized at the packet gateway,
which may be a performance and cost bottleneck for the whole system [46], especially
when a significant amount of traffic is directed to other nodes within the cellular do-
main. Some mechanisms proposed to address this include the possibility to delegate
access and service control to a remote controller (external to the gateway); dynamically
adapting the traffic paths within the cellular core network and introducing a fine-grained
control in the internal routing enables several interesting possibilities for the operators,
such as balancing the traffic between different service gateways, differentiating customer
services, improving resource utilization (and consequently reducing CAPEX costs). The
fine-grained control of per-session resource allocations is especially important for some
applications which are expected to become major contributors of the overall traffic, i.e.,
video streaming [41], or important drivers of the network economics, i.e., Machine Type
Communications (MTC) [69]. Optimization for both categories would require flow-based
routing, billing, and Quality of Service (QoS) configuration, over both the core and the
access network. With the appearance and success of Software Defined Networking [41],
[69], and OpenFlow [52] for controlling the traffic flows within a wired network by means
of a central controller and simple interfaces for programming the network switches, var-
ious research efforts have proposed similar approaches for wireless networks. In this
direction, OpenRoads [71] tries to support experimentation on different mobility man-
agement solutions by using OpenFlow for configuring the data-path within the core
network, SNMP for configuring the network devices (both the switches and the wire-
less access points) and signalling critical network events, and an OpenFlow controller



Chapter 2 16

[5, 13] for building mobility management applications. The approach enlightens the im-
portance of wireless device configuration, because parameters like transmit power can
directly impact on the data-path performance, but it limits such a configuration to a
few PHY-related parameters.
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Medium Access Control
Flexibility

More than 20 years have elapsed since the establishment, in 1990, of the IEEE 802.11
Wireless Local Area Network committee. Initially foreseen as a technology for replacing
Ethernet cables with wireless connectivity, IEEE 802.11 has been severely challenged by
the highly heterogeneous needs emerged in the last two decades. Indeed, the original
802.11 CSMA/CA Medium Access Control (MAC) has shown significant shortcomings
when facing the breakthrough rate improvements made available by the latest PHY
enhancements (802.11n, 802.11ac), as well as when applied to scenarios and contexts
such as ad hoc and mesh networks, vehicular environments, directional antennas, quality
of service support, real time media streaming support, multi-channel operation, dynamic
spectrum access, and many others.

Actually, the WLAN research community has found effective and ingenious solutions
for adapting the 802.11 MAC operation to these new challenges. However, most of the
proposed MAC modifications do not comply with the 802.11 standard MAC operation.
In the best case, i.e., when the required MAC amendments are endorsed by some 802.11
standardization task groups, several years may elapse before they become available in
commercial cards/devices. More frequently, when the promoted MAC amendments are
either deemed out of the standard task groups’ scope, or mandate a “way too significant”
departure from the native CSMA/CA MAC operation, their real world deployment is
very unlikely, especially when they require changes in time-critical operations natively
implemented in the network interface card.[38].

3.1 Programmable WLAN systems

The ability to modify the operation of commodity WLAN systems goes along with
the availability of public-domain open-source 802.11 MAC protocol code. Besides the
significant expertise required to modify existing code, a further deployment barrier for
many appealing MAC extensions consists in the limited extent to which software changes
may affect the device operation. Indeed, early 802.11 devices were designed according
to a full-MAC approach. The MAC layer was almost entirely implemented in the card
hardware/firmware, and programmability of the relevant drivers (when provided as open
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PHYFigure 3.1: WLAN MAC architectures: full-MAC vs soft-MAC.

source) involved a marginal set of functionalities. The flexibility of commodity WLAN
cards has significantly improved since a number of vendors (including Intel, Ralink,
Realtek, Atheros, Broadcom), started to exploit an innovative soft-MAC [20] design,
transferring to the host processor non-time-critical MAC layer functionalities (figure
3.1). Still, even in the soft-MAC case, the “Lower MAC”, comprising crucial sub-
systems such as transmission, reception and protocol control, remains hard-coded in
the card. Although some chipsets (e.g. from Atheros and Broadcom) permit the tuning
of selected MAC parameters (such as contention windows) via registers, more substantial
MAC operation changes require access to the firmware code.

Newest GNU/Linux System implements mac80211, a framework which driver developers
can use to write drivers for SoftMAC wireless devices. SoftMAC devices allow for a
finer control of the hardware, allowing for 802.11 frame management to be done in
software for them, for both parsing and generation of 802.11 wireless frames. Most 802.11
devices today tend to be of this type, FullMAC devices have become scarce. mac80211
[4] implements the cfg80211 callbacks for SoftMAC devices, mac80211 then depends
on cfg80211 for both registration to the networking subsystem and for configuration.
Configuration is handled by cfg80211 both through nl80211 and wireless extensions. In
mac80211 the MLME is done in the kernel for station mode (STA) and in userspace
for AP mode (hostapd). If you have new userspace utilities which support nl80211 you
do not need wireless-extensions to support a mac80211 device. In figure 3.2 the stack
description of a recent network modules stack for GNU/Linux Operating Systems.

Up to now, no vendor has to date released an open source firmware, and the only
available public-domain code is OpenFWWF [10], a recently released simplified DCF
firmware implementation for Broadcom/AirForce chipsets. However, OpenFWWF ex-
tensions require reimplementation of large portions of assembly code, thus making it
usable only by experts.



Chapter 3 19

!
USERSPACE!

mac80211!

driver!

cfg80211!
nl80211!

cfg80211_ops!

ieee80211_ops!

firmware!

hardware!
Registers/memory!

Register/memory!

Figure 3.2: Userspace kernel firmware interaciont in GNU/Linux system

3.2 Overlay Solutions

A significant effort has been spent on the development of overlay software modules.
Solutions such as the Overlay MAC Project [7], MultiMAC [31], FlexMAC [48], Soft-
TDMAC [58], etc, do exploit firmware configuration registers and some driver hacks for
building quite advanced MAC programming interface (for instance, MultiMAC permits
to override the frame format, disable ACKs, RTS/CTS, virtual carrier sense, disable
transmission backoff, etc). Even if notable implementations of custom MAC protocols,
including TDMA-like ones, have been demonstrated, overlay approaches cannot get rid
of some intrinsic limitations. Their scalability may be impaired by the need to overlap
and duplicate similar functionalities at different layers; they remain constrained by the
basic programming interface made available by the driver; and their limited ability to
accurately control the card’s timing prevents to deploy features such as programmable
management of frame replies and handshakes, precise scheduling of medium access times,
fine-grained radio tuning control, etc.

3.3 Dedicated Platforms

The shift from commodity wireless cards to dedicated wireless platforms permits to push
programmability much farther, although the beneficiaries remain mainly confined within
the research community - real world deployment of costly and/or bulky platforms being
unlikely.

Early platforms such as RUNIC [21] and CalRadio [1] re-implemented the 802.11 MAC
protocol stack on, respectively, a Xilinx FPGA and a Texas DSP, interfaced to a com-
mercial PHY-only Intersil 802.11b chip. As such, they permitted arbitrary MAC mod-
ifications, but protocol reconfiguration required a deep knowledge of the platforms and
could only be done offline by recompiling the modified C code.
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Software defined radio (SDR) platforms, such as GNURadio [17] and USRP [18], over-
come the dependency on a specific PHY interface and permit to develop full-custom
MAC/PHY cross-layer protocols. A large amount of work focuses on means to im-
prove the slow SDR performance. On one side, solutions such as SORA [64] achieve a
throughput comparable to commodity 802.11 hardware by distributing computation on
multiple cores and by relying on sophisticated optimizations, as well as on an efficient
radio control board. However, the software complexity makes protocol stack modifica-
tions not easy, as any update implies a redesign of the software block repartitions to
multiple CPU cores. On the other side, platforms such as WARP [19] and AirBlue [57]
improve performance by delegating most processing functions to the FPGA Hardware,
meanwhile retaining the ability to closely control such functions via, e.g., registration of
interrupt handlers, hardware triggers, read/write of hardware registers, etc. In the case
of AirBlue, a modular organization coupled with careful design choices permits relatively
easy modifications, changes in a module not affecting the others.

3.4 MAC programmability with Finite State Machine

Despite the above discussed advances in programmable wireless systems, the belief
that wireless access programmability should go well beyond the ability to just ”hack”
firmware/software code implementing a pre-established MAC protocol stack, and should
rather be designed into the MAC stack architecture.

MAC protocols are well suited to be described in terms of Finite State Machines. Indeed,
they are used in the formal appendices of the 802.11 (and many other) standard. In par-
ticular, eXtended Finite State Machines (XFSM) are a generalization of the finite state
machine model and permit to conveniently control the actions performed by the MAC
protocol as a consequence of the occurrence of events and conditions on configuration reg-
isters. An XFSM is formally specified through an abstract 7-tuple (S, I,O,D, F, U, T ):
the meaning of such symbolic states and the correspondence with the MAC terminology
above introduced is summarized in Table 3.1 (configuration commands being a special
case of actions, devised to update registry status). Thus, a MAC program can be sim-
ply considered as a table listing all possible state transition relations. Note that the
number and meaning of the set of protocol states is specified by the programmer. By
formally describing, per each protocol state, which events and conditions do trigger a
state transition, and by associating actions and configuration commands to each state
transition, the programmer may access the available hardware primitives, and enforce
a desired MAC behavior within the radio hardware. Since the configuration memory is
not explicitly represented in the state space, XFSMs allow to model complex protocols
with relatively simple transitions and limited state space. A generic Architecture able
to interprets this paradigm can execute not one but several MAC protocol starting from
a common set of commands. In figure 3.3 an example of a MAC state machine.

The Wireless MAC Protocol Architecture[38] is a prototype architecture that supports
a set of Medium Access Control “commands” which can be run-time composed (pro-
grammed) through software-defined state machines, thus providing the desired MAC
protocol operation. An architectural description of WMP and a discussion about the
features on code mobility will be explainend in chatper 4.
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XFSM formal notation meaning

S symbolic states MAC protocol states

I input symbols Events

O output symbols MAC actions

D n-dimensional
linear space
D1 × · · · ×Dn

all possible settings of n
configuration registers

F set of enabling func-
tions fi : D →
{0, 1}

Conditions to be veri-
fied on the configuration
registers

U set of update func-
tions ui : D → D

Configuration com-
mands, update regis-
ters’ content

T transition relation
T : S × F × I →
S × U ×O

Target state, actions
and configuration com-
mands associated to
each transition

Table 3.1: MAC programs expressed as Extended Finite State Machines: Wireless
MAC Processor
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Figure 3.3: a MAC program description with FSM
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Wireless MAC Processor

4.1 Introduction

In what follows we briefly review the WMP main concepts [38] and anticipate some
discussion on extensions for supporting code switching. Indeed, a pre-requirement of
any wireless active MAC framework is the ability to support customized MAC operation
on general-purpose wireless devices, and the possibility to switch to a desired MAC
protocol logic described through suitably formal languages and application programming
interfaces.

The Wireless MAC Processor (WMP) is an architecture platform devised to run
a wireless MAC program defined in terms of a Finite State Machine (FSM). It has
been shown, in fact, that MAC protocols can be described in terms of state machines
made of three main elements: actions, events and conditions. In the WMP case, actions
are commands for the radio hardware, such as transmit a frame, set a timer, and switch
to a different frequency channel. Events include hardware interrupts such as channel
up/down signals, indication of reception of specific frame types, expiration of timers and
so on. Conditions are boolean expressions evaluated on internal configuration registers
that can either explicitly updated by actions, or implicitly updated by events. Some
registers are store general MAC layer information (like the current radio channel or the
power level), or more specific MAC variables (like the contention window value and
the backoff parameter). Starting from an initial (default) state, the WMP waits for
events which trigger state transitions. The actual transition can be enabled or disabled
by verifying a boolean condition, while an action on the hardware system (i.e. on the
transreceiver) can be performed before completing the transition to the new state.

For these reasons, the WMP differs from off-the-shelf wireless NICs powered with their
“vanilla” code: while the latter are tied to a specific MAC protocol (i.e., IEEE 802.11),
the WMP architecture can run generic FSM, hence it can implement users’ designed
MAC programs. On the basis of a pre-defined (hardware-dependent) set of actions,
events and conditions which represent the platform API, a MAC programmer can easily
compose different channel operations into a MAC program and execute it on the WMP.

22
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4.2 Architecture

The Wireless MAC Processor architecture somewhat mimics the organization of ordi-
nary computing systems, where programmability is accomplished by specifying i) an
adequate instruction set which permit to perform elementary tasks on a machine; ii) a
programming language which conveys multiple instructions (suitably assembled to im-
plement a desired behavior or algorithm) to the machine, and iii) a Central Processing
Unit (CPU), which executes such program inside the machine, by fetching and invoking
instructions, updating relevant registers, and so on.

The wireless MAC processor has been conceived as a CPU specialized for handling hard-
ware/PHY events and actions by executing Extended Finite State Machines (XFSMs).
State machines are very effective in modeling the behavior of sequential control opera-
tions, and most MAC protocols are formally described in terms of state machines. Figure
4.1 shows the internal architecture of the WMP, which includes five main components:

• an execution engine, running the provided XFSMs;

• a memory block including both data and program memory space;

• an interruption block passing the signals coming from the hardware to the execu-
tion engine;

• a set of operations which can be invoked by the execution engine, which include
logic, arithmetic and flow control operations plus specialized MAC operations;

• a set of registers for saving system state parameters.

����������	
���������

Figure 4.1: Internal architecture of the Wireless MAC processor

4.2.1 MAC Engine

The MAC Engine, analogous to the control unit of a microprocessor, is the core of
the architecture. It performs the tasks of fetching the MAC program, translating it into
logical operations and basic actions and scheduling actions on the hardware.
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The engine is in charge to execute the MAC program, written by the developer as an
FSM, and (dynamically) loaded in the WMP micro-instruction memory from the host
PC. Starting from the current state, the engine waits for events (input signals), then it
verifies whether optional triggering conditions are verified, in which case it executes the
action and the state change.

4.2.1.1 Instruction set: Actions, Events, Conditions

A breakdown analysis of MAC protocols reveals that they are well described in terms
of three types of elementary building blocks: actions, events and conditions.

Actions are commands acting on the radio hardware. In addition to ordinary arithmetic,
logic, and memory related operations, dedicated actions implement atomic MAC func-
tions such as transmit a frame, set a timer, build an header field, switch to a different
frequency channel, etc. Actions are not meant to be programmable. As the instruction
set of an ordinary CPU, they are provided by the hardware vendor. The set of actions
may be extended at will by the device vendor, and complex actions may be consid-
ered, so as actions not necessarily restricting to MAC primitives (e.g. perform a PHY
encoding/decoding).

Events include hardware interrupts such as channel up/down signals, indication of re-
ception of specific frame types, expiration of timers, signals conveyed from the higher
layers such as a queued packet, and so on. As in the case of actions, also the list of
supported events is a-priori provided by the hardware design.

Conditions are boolean expressions evaluated on internal configuration registers. These
registers are either explicitly updated by actions, or implicitly updated by events. Some
registers are dedicated to store general MAC layer information (such as channel used,
power level, queue length), frame related information (source or destination address,
frame size, etc), or more specific MAC parameters (contention window, backoff param-
eters, etc - used to achieve a more compact protocol description in case of specific MAC
designs such as CSMA-based ones).

Actions, events, and registers on which conditions may be set, form the application pro-
gramming interface exposed to third party programmers. This API is implemented (in
principle) once-for-all, meaning that programs may use such building blocks to compose
a desired operation, but have no mean to modify them. However, this API was not
envisioned for supporting code mobility. For instance, we could not enforce conditions
to control the switching between a previously running MAC code and a newly uploaded
one. Thus, we needed to extend the WMP internals to implement an extended API
accounting for new actions, events and registers, tailored to dynamic code management.

4.2.1.2 MAC abstraction layers

MACs defined for the WMP can be considered following two abstraction layers: a textual
one, where everything is described using text expressions, and a graphical one, where
the state machine is described through a practical graph based approach. The former
representation is the Bytecode, a text file that can be either written at hand by users,
or automatically generated by the WMP-Editor, a graphical tool that can be used
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to build the latter representaion. This tool helps users composing new FSM, elements
can be, in fact, connected together thanks to a straightforward drag and grop interface.
At this point a compiler converts it into a binary format, the Binary Bytecode, so
that the resulting file can be executed by the WMP. The Binary Bytecode is ready
to be pushed inside the WMP executing memory area. Bytecode Manager is the
management tool used to interface users to WMP.

4.2.2 MAC Program

Figure 4.2 shows an example WMP bytecode where we can recognize the initial state
descriptor and the transition table. The table is coded by: i) a list of transition lists,
and ii) a list of states represented by the pointer to the relative transition list. When
the length of the transition list of a given state is higher than 8 transitions, an explicit
list delimiter is used (namely, FFFF). Otherwise, the list length is specified by the last
3 bits of the pointer. For example, the state in the second position of the list (whose
symbolic label 01 corresponds to the position index) points to the transition list coded
from the third byte of the table and ends at the occurrence of the first FFFF delimiter.
As evident from the figure, the code is very compact (only 544 bytes). Each Transition
is composed by the follows elements:

• State address: give the physical address of the actual state.

• Event/Condition Parameter, and a Action Parameter, these are parameter useful
for extended functionalities of each Event/Condition/Action.

• Event/condition identificator: is the address of the event that must be verfied.

• Action idetificator: is the address of teh condition that must be verified

• Next state identificator: is the address of the next state

bytecode Injectinion and activation are performed by an application software called
Bytecode Manager. This tool has been developed to obtain an interface between users
and MAC Engine. The main operations of bytecode manager consist of loading/injectin
of bytecode. Bytecode Manager loads loaded a file with a text-based XFSM description
and injects it into the memory of the NIC. The other operation consist of the Bytecode
activation, while the bytecode is loaded it can be activated by a direct communication
to the MAC Engine. In current implementation WMP define two memory areas for
bytecode fetching.

4.3 WMP-Editor

(WMP-Editor) is a graphical tool that represents state machine programs as transition
graphs. Users can edit WMP graphically, adding new states and transitions and cus-
tomizing the WMP behavior working on its atomic elements, namely conditions, actions
and events as introduced in section 4.2.1.1. The same tool can be used as a compiler to
translate the transition graph into a Bytecode.
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0x0BC0:  0100 FFFF 0B00 0014 A5FF 6ADA 0014 A5FF
0x0BD0:  6ADA 6C00 80A4 FF00 FF00 3600 80EE FF00
0x0BE0:  FF00 0000 80BB FF00 FF00 0600 2C01 0600
0x0BF0:  0000 0000 0000 0000 0000 0000 0000 0000

0x0C00:  0100 0100 0100 0401 0108 0508 1C01 010B
0x0C10:  010B 3001 010D 0200 FFFF 5101 010E 030D
0x0C20:  0000 0100 010F C100 0102 0602 E100 0106
0x0C30:  0106 0401 0108 0508 1C01 010B 030B FFFF
0x0C40:  CD00 0104 0E0C 0000 0100 0D00 FFFF 0E01
0x0C50:  0109 0909 1C01 010B 0D0B FFFF C700 0103
0x0C60:  0C03 E100 0106 0106 FFFF 6601 0110 1600
0x0C70:  0000 0100 0100 FFFF 0E01 0109 0109 1C01
0x0C80:  010B 010B FFFF 5F01 010F 0A00 0000 0100
0x0C90:  0D00 FFFF C100 0102 0A02 C700 0103 0B03
0x0CA0:  E100 0106 0D06 FFFF D300 0105 0D05 E100
0x0CB0:  0106 0D06 FFFF D300 0105 0705 E100 0106
0x0CC0:  0106 FFFF 6D01 0111 1800 0000 0100 0100
0x0CD0:  0000 0100 0D10 7401 0112 1512 0000 0100
0x0CE0:  1111 9601 0113 0513 0000 0100 0500 0000
0x0CF0:  0100 0304 E100 0106 1206 0401 0108 0508
0x0D00:  1C01 010B 120B FFFF A901 0115 0100 B401
0x0D10:  0117 1200 0000 0100 0100 0000 0100 1214
0x0D20:  B901 0118 0310 0000 0100 0300 0401 0108
0x0D30:  1708 1501 010A 010A 1C01 010B 010B C501
0x0D40:  0119 0800 0000 0100 0500 3001 010D 0200
0x0D50:  0401 0108 0508 1C01 010B 180B CB01 011A
0x0D60:  0200 0000 0100 0100 0000 0000 0000 0000
0x0D70:  0000 0000 0000 0000 0000 0000 0000 0000
0x0D80:  0000 0000 0000 0000 0000 0000 0000 0000

0x0D90:  00F0 03FE 0DF2 13FE 20FE 27FE 2EFE 35FE
0x0DA0:  3CFE 43FE 4AFE 54FE 5BFE 62F2 68F0 6BF2
0x0DB0:  71F2 77F0 7AFE 84F4 8DF0 90F2 96F4 9FF2
0x0DC0:  A5F4 AEF2 0000 0000 0000 0000 0000 0000
0x0DD0:  0000 0000 0000 0000 0000 0000 0000 0000

Coded state machine

Memory 
address

State 01
03     = transitions offset (9 bits) 

E       = FFFF delimiter

Outgoing transitions 
for state 01
0401 0108 0508 = trans. 1  
1C01 010B 010B = trans. 2 
3001 010D 0200 = trans. 3
FFFF = delimiter 

Transition 1 
0401 = event pointer
01 = event parameter
08 = event index
05 = target state
08 = action
 

Initial State Descriptor

Memory

00      01       02       03

Description

00      01    

Figure 4.2: bytecode binary implementation

The basic Layout of WMP-Editor (see Figure 4.3) is an all-in-one window organized into
three main frames: on left, global parameters of the state machine; the middle frame
where the graphical state machine is composed; and the bottom frame that hosts the
user interface for creating and modifying program states and transitions. In details:

• Parameters Frame It includes all the environment variables of the state ma-
chine. Two types of parameters can be distringuished: General and Enhanced
parameters. General Parameters set the value of the WMP configuration regis-
ters (e.g. the hardware register specifying the operating channel) and the initial
state from which the MAC-Engine starts the execution. The Enhanced Parame-
ters allow to specify other program parameters, not strictly related to the default
configuration registers, such as MAC addresses to be used for filtering purposes,
a channel hopping sequence, a time slot interval, a pre-defined constant backoff
value, and so on.
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Figure 4.3: WMP-Editor Layout

• Machine Building Frame It displays the state blocks and the transitions defined
by the programmer. WMP-Editor uses a simple right-click pop-up to add and edit
state blocks and transitions.

• User API Frame It is the bottom area of WMP-Editor where programmers
modify the properties of state blocks, condition blocks (if explicitly included in the
machine representation), and transition elements, by specifying events, conditions
and actions for each transition from the set of available API.



Chapter 5

MAClet

5.1 Introduction

This chapter introduce MAClets, software programs uploaded and executed on-demand
over wireless cards, and devised to change the card’s real-time medium access control op-
eration. MAClets permit seamless reconfiguration of the MAC stack, so as to adapt it to
mutated context and spectrum conditions and perform tailored performance optimiza-
tion hardly accountable by an once-for-all protocol stack design. Following traditional
active networking principles, MAClets can be directly conveyed within data packets and
executed on hard-coded devices acting as virtual MAC machines. Indeed, rather than
executing a pre-defined protocol, we envision a new architecture for wireless cards based
on a protocol interpreter (enabling code portability) and a powerful API.

5.2 MAClet Control Architecture

In this section we describe how low-level MAC functionalities can be encapsulated in a
MAClet and transferred from a node to another of the network by exploiting the WMP
API and a MAClet distribution protocol.

Figure 5.1 shows the envisioned system: the control architecture is a pure software ar-
chitecture, running at the application level, that interacts with the enriched WMP by
means of an open control API. This approach has several advantages. First, the selec-
tion of the MAC protocol can be based not only on low-level performance parameters
(such as the link quality, the interference conditions, etc.), but also on high-level con-
text estimates, including the application requirements, the network topology, the user
preferences, and so on. Second, the code distribution model (handshaking mechanisms,
peer-to-peer code sharing, server-client uploading, etc.) is completely independent on
the underlying programmable interface, thus allowing full flexibility and a wide range of
applications for the same platform. Moreover, the communication delays between the
host and the card have a minimum impact on the MAClet Control, since the dynamics of
the networks (which require MAC protocol customizations) are reasonably much slower
than the processing delay due to an application-level decision module.

More into details, the architecture is based on four main components: the WMP control
interface, the MAClet manager, the MAClet Controller and the MAClet repository. The

28
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Figure 5.1: Architecture for MAClet support: extended WMP and external MAClet
Control.

WMP Control Interface

load i load a MAC program on memory slot i

run i, e activate MAC program on slot i
(asynch. or at the event e)

verify i recognize trusted code by means of an
hard-coded signature computation

switch i, j, t, a/r add or remove a switching transition t
from the slot i to j

Table 5.1: WMP Commands to be locally or remotely invoked

WMP control interface is the interface to the hard-coded device, through which new
MAC state machines and switching conditions are loaded on the card, as summarized in
table 5.1. The MAClet manager is responsible of receiving/transmitting MAClets and
MAClet protocol messages, enabling the loading on the card, and programming MAC
reconfigurations. The MAClet Controller is the intelligent part of the system, dealing
with the network-level configuration decisions in a centralized way (e.g. at the Access
Point only), or in a distributed way (e.g. by involving multiple cooperating controllers,
sharing both the monitored data and the available MAClet tables).

5.3 MAClets

A key component of our architecture is the code transport unit, i.e. the MAClet. A
MAClet is a coded state machine with an initial state description to be fed on the wireless
device.

Being ns the number of symbolic protocol states and ne the number of events revealed
by the device, a common approach for coding XFSMs is using a ns × ne table, where
at each location (i, j) is stored the state transition when event j is received at state i.
A transition is defined by a triplet (a, c, s), specifying the action label a, the enabling
condition label c and the target state label s. As each state generally reacts to a number
of input events much lower than the total input number, the state machine coding can be
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Figure 5.2: Messages of the MAClet Distribution Protocol: an example.
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activation_eventTYPE CMD PARAMSTYPE=OP MACLET

Figure 5.3: MAClet MO-message format

optimized by skipping null-transitions. The initial state (from which the state machine
has to be run) includes the protocol logic state and the platform configuration registers.
For example, according to the API defined in [38], these registers (of equal size) specify
the settings of the physical channel, the slot size, the contention window values, the
current backoff, the transmission power, the retry limit, generic protocol timers and
MAC addresses to be filtered. Optionally, the initial state descriptor can be extended
with a signed digest of the MAClet code to be used for verifying trusted code sources1.

As detailed in what follows, MAClets are transmitted with a special message of the
MAClet Distribution Protocol, called MAClet action message.

5.3.1 MAClet Distribution Protocol

MAClets can be propagated in the network by means of a physical transport network.
This means that nodes can negotiate the activation of a new MAC protocol only if
they belong to the same network (on a given channel) and employ a compatible MAC
protocol. Standard MAC protocols can assume the role of default common protocols
to be executed (eventually, on a pre-defined common channel) for supporting dynamic
reconfigurations. We assume that the default protocol and configuration parameters are
pre-loaded in each WMP as a bios state machine (e.g. in our implementation, the bios
machine is a legacy DCF working on channel 1).

1Although most of the security issues can be demanded to the MAClet Control, this function can
be used by manufacturers for controlling the MAC program origins and limiting or avoiding third-party
reconfigurations.
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The MAClet Control process runs as a normal distributed application, whose messages
are defined by a protocol called MAClet Distribution Protocol. This protocol is respon-
sible of: i) collecting information for estimating the network context; ii) negotiating
the network reconfiguration decisions; iii) transporting the MAClets and the relative
activation signals; iv) verifying the network consistency after a reconfiguration.

The protocol includes two types of messages: MAClet management messages for associ-
ating each MAClet manager to a MAClet Controller running the distribution logic and
confirming control operations, and MAClet action messages for transporting MAClets
and remotely invoking the desired WMP control functions. When a new station acti-
vates, it tries to associate to an AP (acting as a MAClet Controller) by using the bios
state machine. In case of success, the MAClet manager is activated for enabling the
reception of AP messages. An announcement message is sent to the AP for notifying
the activation of the new MAClet Manager and receiving an identifier. According to its
decision logic, the AP is then able to send a specific MAClet action messages to each
associated station, to a group of stations or to all the network stations (see figure 5.2).

The MAClet action message comprises the following fields: the list of destination ad-
dresses of the relevant MAClet managers, a command to be executed on the addressed
WMPs, the MAClet bytecode, the MAClet configuration parameters, and the MAClet
activation data. Not all fields are always included in the action messages: for example,
it is possible to specify a new set of parameters for a MAClet already loaded on the
station without carrying the relevant bytecode.

5.3.2 MAClet Synchronization

Achieving a network-level reconfiguration is obviously much more complicated than
working on a single node, because it is necessary introducing some forms of coordi-
nation. In particular, the activation of a new MAClet on different nodes could require
a common reference signal for avoiding critical inconsistencies (such a temporary use of
different transmitting channels) leading to disassociations or other network errors.

The MAClet Control Architecture provides the primitives for programming the desired
synchronization and error recovery operations, but the specific solutions are left to the
MAClet Decision Logic (synchronization) and MAC program (management of error con-
ditions) defined by the network operator. The synchronization signals can be based on
the events and conditions available in the WMP and are specified in the MAClet acti-
vation data.

In order to activate a new MAClet on a group of stations, the AP sends a “run” action
message to the stations list. If the command does not include an activation data field,
each station can starts the program asynchronously, i.e. without a common reference
signal. If present, the activation data specifies the triggering event that is usually a
control frame sent by the AP or the expiration of a (relative or absolute) timer. While
the relative timer is in turns expressed as a function of a network synchronization event
(e.g. the next channel busy time), for using an absolute time reference the MAClet
Control Process has to rely on a time synchronization function. In our infrastructure
scenario, such a synchronization is easily provided by the beacon timestamps, while in
general scenarios it has to be explicitly supported by the MAClet Distribution Protocol.
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Different activation solutions based on a 3-way handshake mechanism can also be defined
in the distribution protocol. After the reception of the run message, each station involved
in the network reconfiguration sends a confirmation message. When the AP receives all
the confirmation messages, it sends an enabling message. Only after the reception of
this message, the stations switch to the new MAC program at the occurrence of the next
triggering event. Figure 5.2 shows an example of messages exchanged between the AP
and two stations for loading two different MAClets (a legacy DCF on station 2 and a
TDMA protocol on station 1), whose activation is triggered by the first beacon received
after the enabling message.
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MAClet Control Framework

6.1 Introduction

Cognitive and active wireless networks were already promised at the end of the last cen-
tury [30, 53]. They introduced the idea of dynamically reprogrammed devices in reaction
to unpredictable mutating topology, radio contexts and conditions, user or application
requirements, spectrum availability. Although more than a decade has passed, this fore-
seen flexibility does not involve commercial products that are still based on monolithic
architectures and which are programmed, once in their lifecycle, with fixed and un-
modifiable medium access strategies. The inertia in shifting towards flexible wireless
architectures is mainly due to the wrong belief that flexibility means open implemen-
tation. Flexibility is generally welcomed by the industry because it introduces benefits
both for users and producers, whereas openness is an enemy of the common business
model which protects know-how and investments.

This chapter presents MAClet Control framework. This architecture is based on findings
presented in [27, 38] and its relation to OpenFlow is presented in figure 6.1. OpenFlow
flexibility extends till the LLC layer whereas our MAC-controlled framework covers
also the MAC. MAC Control framework, provides a sharp decoupling between Control!
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Figure 6.1: MAClet Control framework and OpenFlow complementary
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plane (i.e. the card behavior) and the data plane (the card capabilities). Decoupling is
obtained thanks to two orthogonal elements: the Wireless MAC Processor (WMP)[38]
and MAClets [27]. Card capabilities are provided by the manufacturer, they are closed
but made available via a defined interface. The MAC processor uses these capabilities as
events and actions, the WMP which can be composed to create MAClets. By changing
the running MAClets both a single node or a whole wireless network can dynamically
change their behavior, even in a multi-vendor scenario.

Running several different MAClets over the same Wireless MAC Processor permits card
virtualization (with high-level of separation); executing the same MAClet over multi-
ple WMPs (even from different vendors) permits code mobility and dynamic network
reconfigurability.

Let’s imagine wireless stations that enter in the coverage of a network able to work with
MAClet/WMP enabled AP, as depicted in figure 6.2. The AP is a shared infrastructure
among multiple operators, let’s say A,B,C. Each station is identified by an index
from 1 to 4 and by a label indicating its serving virtual wireless operator1. Stations
are furthermore equipped with chipsets from heterogeneous vendors X,Y. Once stations
connect to the AP, they inform it about their operators and the AP (after the AAAs
checks) uses well-defined control commands (APIs) to load different MAC behaviors
(MAClets) on these wireless cards. MAClet 1, e.g. DCF, on the stations operated by A
(sta 2 and 3) and MAClet 2, e.g. pseudo-TDM, on devices operated by B (sta 1).

Figure 6.2: A simple use case of the MAClet distribution system in a multi-vendor
scenario.

The same card loads more (different) MAClets. As for example, cards were running
MAClets i and j before the AP sends new MAClets. Previous MAClets are kept in
memory in order to be resumed or substituted on a further change of the context2.
Each MAClet contains a custom MAC protocol and its parameters, both tailored for
the specific operator and network context. As shown in figure, heterogeneous devices
can run the same MAClet and the same platform can run multiple MAClets.

1In case a station with an account at the operator D, which is not run in the AP, it can work with
standard basic WiFi access

2In the following we will distinguish MAClets stored in the station-level memory storage or in the
instruction memory on board the card
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6.2 MAClet SDN modeling

SDN is transforming network architecture shifting from today’s static networks into
flexible, programmable platforms with the intelligence to allocate resources dynamically.
This approach permits networks operators and administrators to work on an abstraction
of the network rather than of that specific network.

An enabling solution for SDN, in the switching and routing enviroment, is OpenFlow
[52]. OpenFlow signs the shift from open source code to open Application Programming
Interfaces (API). It is a standard interface designed for SDN which decouples the control
plane from the data plane.

This approach comes along with several advantages: simpler and faster programmability,
code portability across different vendors’ platforms, no need for manufacturers to disclose
their internal architecture. Vendors can keep their platform closed continuing protecting
their know-how and investments but exposing Open API. OpenFlow permits to modify
the behavior of network devices through a remote controller by the mean of a pre-defined
forwarding instruction set and despite the innovative flexibility introduced by OpenFlow,
it presents strong limitations because it is restricted to flow forwarding. Despite SDN
concepts are wider than those introduced by OpenFlow, it is going to be the SDN enabler
and is becoming the predominant SDN standard [8].

However, flexibility provided by OpenFlow is not enough. Although OpenFlow makes
network services independent from network interfaces both with wired and wireless net-
works, its benefits are confined to switching; it limits the impact on wireless repro-
grammability. This lack of flexibility emerges also from the analysis of two Open Source
control platforms for Software Defined Networks [5, 13] ( they consider only routing and
switching) and of Pantou [12], an OpenFlow project about wireless networks allows to
add a centralised control for legacy tuning knobs such as modulation, channel, MAC
addess, etc.

Although SDN involves more and more manufacturers of wireless products, it is not clear
which opportunities are offered by SDN in wireless scenarios as reported in [33]. On
the other hand, wireless access flexibility and adaptability was the driving idea for new
wireless access paradigm proposed in [27, 38] with the introduction of the Wireless MAC
Processor and the MAClet. Despite the innovating concepts introduced, at the moment
of their publishing their similarities and complementarity to OpenFlow were neglected
as well as their impact on the SDN paradigm. Surprisingly, although coming from
different fields and they use different tools, OpenFlow and MAClet Control framework
are impressively similar and complementary.

API openness

Legacy switches implement vendor-dependent flow-tables, OpenFlow identified a com-
mon set of functions that runs in many switches and routers.

Although any wireless product manufacturer uses its own implementation of lower
MAC/PHY procedures, MAClet Control framework exploits the common set of func-
tions that we named WMP MAC API. It is composed by events, actions, conditions
[38].
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Device simplification

SDN provides network devices simplification: they do not need to understand anymore
several standards because they have only to accept instructions given by the SDN con-
troller.

Legacy wireless cards run inflexible hard-coded MACs, the MAClet Control framework
wireless card is simplified because it implements a Wireless MAC Processor that unaware
of the MAClet in use, runs it.

Decoupling

Both solutions provide network services decoupled from network interfaces. OpenFlow
detaches the control plane from the data plane by decoupling decision on switching/rout-
ing and the traffic forwarding.

MAClet Control framework divides the control from the data plane, this is done decou-
pling the MAC behavior from the low-level resources, as shown in figure 6.3.

!

MAClets!

WMP!

Control'Plane'

Data'Plane'

be
ha
vio
r'

res
ou
rce
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Figure 6.3: MAClet Control framework architecture and decoupling between control
and data planes

SDN principles make the network as application-customized rather than application-
aware and make applications not network-capability-aware rather than network-aware
[9]. In MAClet Control framework the same principles are applied: the MAC proto-
col (MAClet) is unaware about the platform (which has to implement the WMP), the
platform is unaware about the running MAClet.

Infrastructure as a Service

OpenFlow provides an open protocol to program the flow-table in switches and routers,
MAclet Control framework does the same to program the MAC behavior in wireless
nodes. Both approaches permit to consider the network Infrastructure as a Service
(IaaS).
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Although proposed for the wired scenario, [54] introduced Open Router Proprietary-
Hardware Abstraction Layer (Orphal), which uses switchlets as modules that have their
own address space and thread(s) of control. The switchlets concept remaps in our
MAClets, with deep differences on their working principles but with the same goals of
portability and mobility.

6.3 Architecture

In this section [28] we present our solution for expressing and implementing high-level
network policies in wireless local networks, in contrast to the current solutions based
on low-level configurations and vendor-specific implementations. Indeed, many systems
require to implement policies that are inherently dynamic and depend on temporal con-
ditions and external events, such as interference measurements, network topology, load
conditions, and so on. We present a control architecture for defining these policies and
program wireless interfaces to follow them. Our control architecture has the following
features:

1. it is based on the WMP API for collecting channel signals and statistics,

2. it exploits frame classifiers for managing multiple virtual interfaces,

3. it adopts meta-state machines for implementing reactive decisions.

Specific control messages allow to configure the desired policy on the nodes and to
coordinate the activation of new policies.

6.3.1 Programmable Wireless Nodes and Policies

We assume that our programmable wireless nodes are composed by a WMP enriched
with the possibility of defining frame classifiers linked to different MAC programs. Since
the MAC Engine is able to switch from a MAC program to another, multithreading can
be supported by opportunistically programming the switching events (e.g. at regular
timer expirations) in the meta state machine. This feature allows to run simultaneously
multiple access schemes over the same hardware (as multiple virtual interfaces with
different behaviors). A frame classifier is then required for multiplexing the traffic be-
tween the available access schemes. The classifier can work on several frame parameters,
such as the QoS class, the source and destination MAC addresses, the frame size, the
frame type, the events occurring when processing the frame, etc. On top of the WMP
extended platform, a MAC adaptation policy can be programmed by loading a meta
state machine and the relevant MAC programs, as shown in figure 6.4(a). The meta
state machine can specify a one-time switch from a given program to another, multiple
switching events from two or more programs, or even a periodic switch to a doze state
program for preventing the node from accessing the medium at regular time intervals.
The policy can be transported into MAClets that can (entirely or incrementally) code
elementary state machines and code switching conditions. Moreover, it also includes a
table mapping the traffic flows into the multiple running programs.
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6.3.2 Control System

As in OpenFlow, we envision a system with a clear separation between the data plane
and the control plane. For configuring the data plane, i.e. the MAC programs and the
relevant traffic queues at each node, the control plane is responsible for:

1. collecting low-level information for estimating the network context;

2. distributing and configuring MAC programs;

3. ensuring against network inconsistencies in medium access rules.

Figure 6.4(b) shows how the control plane acts on the programmable nodes: different
MAC programs are loaded on the nodes and linked to different traffic queues according
to the policy programmed by a MAClet Controller. The policy is given by a meta
machine describing the switching conditions from a MAC program to another. A MAClet
manager is responsible of physically transmitting the relevant programs and loading
them on the nodes. MAClet Manager, MAClet Controller and MAClet Repositories
are the main components of the control plane. The MAClet Manager handles MAClets
at node-level and provides the node-level intelligence. The MAClet Manager transmits
and receives MAClet protocol messages to/from MAClet Controllers and Managers.
It upgrades the local repository and loads, runs, configures MAC programs over the
WMP. The MAClet Controller provides the network-level intelligence on the basis of low-
level data received from MAClet Managers; it commits locally computed best response
strategies or those decided by the operator. Different controllers can work simultaneously
on the same physical network. Finally the MAClet repository stores some basic state
machines to be composed into controller policies. A central repository is available for
each controller, while a local repository contains the most recent or used MAC programs
for a prompt availability at the node level.

6.3.3 Control Messages and Procedures

Policies distribution among wireless nodes is performed in three (cooperating) ways:

1. the controller sends the MAClets to the MAClet Manager of each node via dedi-
cated unicast control messages (specifically acknowledged);

2. the controller sends MAClets in broadcast, by requiring that each MAClet Man-
agers floods them into a a whole sub- network;

3. the MAClet Manager of a given node requests the current policy to its neighbors.

In order to avoid policy mismatching among the nodes, it is required to support a
distribution protocol for disseminating the policy and a synchronization protocol for co-
ordinating the policy activation. Standard WLAN protocols assume the role of default
common protocols to be executed (eventually, on a pre-defined common channel) for
supporting a pre-shared communication policy. We assume that the default protocol
and configuration parameters are pre-loaded in each WMP with a bios state machine
(e.g. in our implementation, the bios machine is a legacy DCF working on channel 1).
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Figure 1: Architecture detail about Policy Control (a) and the Control and Data Planes (b).

low-level configurations and vendor-specific implementations. Indeed, many systems
require to implement policies that are inherently dynamic and depend on temporal
conditions and external events, such as interference measurements, network topology,
load conditions, and so on. We present a control architecture for defining these poli-
cies and program wireless interfaces to follow them. Our control architecture has the
following features: i) it is based on the WMP API for collecting channel signals and
statistics, ii) it exploits frame classifiers for managing multiple virtual interfaces, iii) it
adopts meta-state machines for implementing reactive decisions. Specific control mes-
sages allow to configure the desired policy on the nodes and to coordinate the activation
of new policies.

3.1 Programmable Wireless Nodes and Policies
We assume that our programmable wireless nodes are composed by a WMP enriched
with the possibility of defining frame classifiers linked to di↵erent MAC programs.
Since the MAC Engine is able to switch from a MAC program to another, multi-
threading can be supported by opportunistically programming the switching events
(e.g. at regular timer expirations) in the meta state machine. This feature allows to
run simultaneously multiple access schemes over the same hardware (as multiple virtual
interfaces with di↵erent behaviors). A frame classifier is then required for multiplexing
the tra�c between the available access schemes. The classifier can work on several frame
parameters, such as the QoS class, the source and destination MAC addresses, the frame
size, the frame type, the events occurring when processing the frame, etc. On top of the
WMP extended platform, a MAC adaptation policy can be programmed by loading a
meta state machine and the relevant MAC programs, as shown in figure 1-(a). The meta
state machine can specify a one-time switch from a given program to another, multiple
switching events from two or more programs, or even a periodic switch to a doze state
program for preventing the node from accessing the medium at regular time intervals.
The policy can be transported into MAClets that can (entirely or incrementally) code
elementary state machines and code switching conditions. Moreover, it also includes a
table mapping the tra�c flows into the multiple running programs.

3.2 Control System
As in OpenFlow, we envision a system with a clear separation between the data plane
and the control plane. For configuring the data plane, i.e. the MAC programs and
the relevant tra�c queues at each node, the control plane is responsible for: (i) col-
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Figure 1: Architecture detail about Policy Control (a) and the Control and Data Planes (b).

low-level configurations and vendor-specific implementations. Indeed, many systems
require to implement policies that are inherently dynamic and depend on temporal
conditions and external events, such as interference measurements, network topology,
load conditions, and so on. We present a control architecture for defining these poli-
cies and program wireless interfaces to follow them. Our control architecture has the
following features: i) it is based on the WMP API for collecting channel signals and
statistics, ii) it exploits frame classifiers for managing multiple virtual interfaces, iii) it
adopts meta-state machines for implementing reactive decisions. Specific control mes-
sages allow to configure the desired policy on the nodes and to coordinate the activation
of new policies.

3.1 Programmable Wireless Nodes and Policies
We assume that our programmable wireless nodes are composed by a WMP enriched
with the possibility of defining frame classifiers linked to di↵erent MAC programs.
Since the MAC Engine is able to switch from a MAC program to another, multi-
threading can be supported by opportunistically programming the switching events
(e.g. at regular timer expirations) in the meta state machine. This feature allows to
run simultaneously multiple access schemes over the same hardware (as multiple virtual
interfaces with di↵erent behaviors). A frame classifier is then required for multiplexing
the tra�c between the available access schemes. The classifier can work on several frame
parameters, such as the QoS class, the source and destination MAC addresses, the frame
size, the frame type, the events occurring when processing the frame, etc. On top of the
WMP extended platform, a MAC adaptation policy can be programmed by loading a
meta state machine and the relevant MAC programs, as shown in figure 1-(a). The meta
state machine can specify a one-time switch from a given program to another, multiple
switching events from two or more programs, or even a periodic switch to a doze state
program for preventing the node from accessing the medium at regular time intervals.
The policy can be transported into MAClets that can (entirely or incrementally) code
elementary state machines and code switching conditions. Moreover, it also includes a
table mapping the tra�c flows into the multiple running programs.

3.2 Control System
As in OpenFlow, we envision a system with a clear separation between the data plane
and the control plane. For configuring the data plane, i.e. the MAC programs and
the relevant tra�c queues at each node, the control plane is responsible for: (i) col-

Copyright c� The authors www.FutureNetworkSummit.eu/2013 4 of 10

(b)

Figure 6.4: Architecture detail about Policy Control (a) and the Control and Data
Planes (b)

MAClet Management Messages
handle control channels Managers / Controllers

register (MM to MC). Registration involves one virtual
interface

poll sent by the MC to check if MM are still alive
ack message acknowledgment

MAClet Action Message Fields

MAClet request / send MAClet code
m params get / set of MAClet parameters
policy flow control policy
p params used to connect queues to MAClets
cmd send, load, run, dump, set timer
activation param triggering event, scheduled time
deactivation param triggering event (scheduled time, expiration)

MAClet Information Message Fields
collect low-level measures

type request: (MC to MM), reply: (MM to MC)
param freq, collisions, sent frames, ...

Flow Control Messages
associate queue to one or more MAClets

queue cmd create, delete, associate
MACletID identifies the configuring scheduler
sched param discriminating parameters

Table 6.1: MAClet Controller messages
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Figure 2: MAClet Distribution Protocol: mes-
sage exchange and MAClet synchronization

MAClet Management Messages
handle control channels Managers / Controllers

register (MM!MC). Registration involves
one virtual interface

poll sent by the MC to check if MM are
still alive

ack message acknowledgment
MAClet Action Message Fields

MAClet request / send MAClet code
m params get / set of MAClet parameters
policy flow control policy
p params used to connect queues to MAClets
cmd send, load, run, dump, set timer
activation
param

triggering event, scheduled time

deactivation
param

triggering event (scheduled time,
expiration)

MAClet Information Message Fields
collect low-level measures

type request (MC ! MM), reply
(MC MC)

param freq, collisions, sent frames, ...
Flow Control Messages

associate queue to one or more MAClets
queue cmd create, delete, associate
MACletID identifies the configuring scheduler
sched param discriminating parameters

Table 1: MAClet control messages

Controller. The access policies for the newly created virtual interface are then provided
and started by the MAClet Controller by means of the loading and activation com-
mands. The Control Plane also provides the primitives for programming the desired
synchronization and error recovery operations. Network-level policies require coordina-
tion among nodes. For example, the activation of a new program may require a common
reference signal for avoiding critical inconsistencies (such a temporary use of di↵erent
transmitting channels, mismatch in slot assignment, etc.) leading to disassociations or
other network errors. A new policy can be executed upon reception (if the command
does not specify an activation data), or at the occurrence of a the triggering event (such
as a control frame sent by the AP or the expiration of a (relative or absolute) timer.
While the relative timer is expressed as a function of a network synchronization event
(e.g. the next channel busy time), for using an absolute time reference the controller
has to rely on a time synchronization function. Di↵erent activation solutions based on
a 3-way handshake mechanism can also be defined in the distribution protocol.

4. Implementation
We implemented MAClet Manager and MAClet Controller as user-space applications,
in agreement with the hardware-agnostic nature of MAClet code. The two applications
build the control plane of a given network by embedding into UDP datagrams the
protocol messages reported in Table 1. Control messages are transported into UDP
packets, and can be unicast or broadcast. For example, MAClet action messages are
broadcasted to all stations and filtered by receiving MAClet Managers accordingly to

Copyright c� The authors www.FutureNetworkSummit.eu/2013 6 of 10

Figure 6.5: MAClet Distribution Protocol: message exchange and MAClet synchro-
nization

Control messages are divided in Management, Action, Information, and Flow Control
Messages, as summarized in table 6.1. Management Messages allow registration of the
MAClet Managers to a given controller. Action Messages are used to send, load, acti-
vate, configure MAClets and their parameters, Information Messages carry on low-level
statistics from managers to controllers, whereas flow control messages are used by the
Controller to create, remove, and configure queues. MAClet Manager registers at one
or more MAClet Controllers when switched on; then they periodically refresh their reg-
istration. The Manager informs to the Controller about the platform capabilities (e.g.
how many MAC programs can be run in parallel, being a platform-dependent param-
eter). Control procedures are organized into three phases: registration, loading, and
activation, as shown in figure 6.5. These phases can partially overlap each other (sta-
tions asynchronously register) or be merged (a single message can carry the loading and
the activation commands). The registration phase creates or refreshes a virtual inter-
face on the card and delegates its control to a MAClet Controller. The access policies
for the newly created virtual interface are then provided and started by the MAClet
Controller by means of the loading and activation commands. The Control Plane also
provides the primitives for programming the desired synchronization and error recovery
operations. Network-level policies require coordination among nodes. For example, the
activation of a new program may require a common reference signal for avoiding critical
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inconsistencies (such a temporary use of different transmitting channels, mismatch in
slot assignment, etc.) leading to disassociations or other network errors. A new policy
can be executed upon reception (if the command does not specify an activation data),
or at the occurrence of a the triggering event (such as a control frame sent by the AP
or the expiration of a (relative or absolute) timer. While the relative timer is expressed
as a function of a network synchronization event (e.g. the next channel busy time), for
using an absolute time reference the controller has to rely on a time synchronization
function. Different activation solutions based on a 3-way handshake mechanism can also
be defined in the distribution protocol.

6.3.4 MAClet Manager

This is the local software executed into programmable nodes and interacts between
the MAClet received and the WMP. MAClet Manager extract the bytecode from the
MAClet message and define a set of load/inject/execute commands. bytecode injection
can be executed locally by the host where user is able arbitrary to inject a bytecode
without using MAClet but it main functions is to receive and handle MAClet message.
The current version is currently an extension of “bytecode-manager” v2.47 and it can
be obtained on WMP git repository 3. MAClet Manager is written in C and it is
compatible with x86 and OpenWRT system, it use a C library called wmplib.h that
give a framework for extend internal communication between Userspace and NIC driver.
The Userspace/NIC interaction is made with debugfs interface of b43 driver used to
establish interaction between userspace and driver. The current version of MAClet
Manager is able to communicate with a specific broadcom vendor card, BCM43xx, in
B a brief technical description of the chipset. Moreover wmplib is designed to extend
compatibility with other kind of driver interfaces, such as nl802114. In figure 6.6 a stack
description of wmplib for a generic customized application.

Figure 6.6: wmplib for MAClet/WMP interaction

MAClet Manager has been developed as a client/server application. The server stations
listen for MAClet packets and run the command or load the bytecode. This tool is to

3https://github.com/ict-flavia/Wireless-MAC-Processor
4http://wireless.kernel.org/en/developers/Documentation/nl80211

https://github.com/ict-flavia/Wireless-MAC-Processor
http://wireless.kernel.org/en/developers/Documentation/nl80211
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be considered as a daemon that run continuously, take sensing information from the
Node status, receive the MAClet messages and interact with WMP. MAClet Manager
command description is Appendix A. Sensing information can be collected and sent to
the MAClet Controller which analyze the network status and reacts sending an action
MAClet message with a new MAClet, or an activation message or a parameter list
update message.

6.3.5 MAClet Manager as a Controller

In very simple scenarios, when a node must send MAC programs to other stations,
MAClet Manager has been used as controller. MAClet Manager operating in client
mode defines a set commands to execute in remote run/load/switch of bytecode. A
control script written in some language (i.e. bash, python or perl) governs distributed
commands based on the controller station, for example in Access Point.

6.4 OMF for MAClet Controller

OMF[6] (ORBIT Measurement Framework) is a control, measurement and management
framework for experimental platforms. From an experimenter’s perspective OMF pro-
vides:

• a domain-specific language, named OEDL, which allows the user to:

– describe the resources needed for an experiment, and their required configu-
ration

– describe the applications to use in an experiment, and the measurements to
collect from them

– describe the different tasks to perform during an experiment, and the time
or event that trigger them

• a set of software tools, which:

– accept as an input the previously described experiment

– initialize and configure the needed resources with the required configuration
and applications

– send commands to the resources to effectively execute the described experi-
ment tasks at the appropriate time/events

– collect measurement data from the applications and/or the resources

– access and analyze the resulting experimental data

OMF5 has an instrument tool called OML (ORBIT measurement library) that allows
application writers to define a set of measurement points. While an experiment run
and executes an OML-ized application, OMF framework can access to the measurement
points and store it on database. OML is quite flexible and it can be used to collect
data from any sources, this feature is very interesting for dynamic adaptation usecases

5https://mytestbed.net/projects/omf/wiki/An_Introduction_to_OMF

https://mytestbed.net/projects/omf/wiki/An_Introduction_to_OMF
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and for the Sensing requirement of MAC Control Plane. OML consists of two main
components:

• OML Client library: is a C API to collect the applications measurement. The
library includes a dynamically configurable filtering mechanism that can perform
some processing on each measurement stream before it is forwarded to the OML
Server.

• OML Server is responsible for collecting and storing measurements inside a database.

Figure 6.7: OMF System Architeture

The Architecture of OMF is shown in fig. 6.7. Experiment Controller (EC) is the node
that interprets the Experiment Description (ED). EC send the configurations and the
resources request to the Aggregate Manager (AM); AM also store the Measurements.
When the experiment nodes are configured EC send the command to the Resource
Controllers (RC) which run on each node; At this stage the experiment is running and
Application may collect measurement and send it to Aggregate Manager.
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Experiments and Evaluations

7.1 Introduction

In the following sections have been described the usecases of interest as a proof of con-
cept of the WMP/MAClet SDN architecture; These experiments shows network exam-
ple usecases for exploit reconfigurable and reprogrammable MAC. Virtualization, MAC
program opportunistic injection and physical sensing optimization are three typical sce-
narios addressed in our usecases. The main purpose is to describe how the existence
of a centralized control node is a programmable network solution in mobile dynamic
environment.

7.2 Virtualization

7.2.1 Scenario Description

[34] In this use case we assume that the same Access Point (belonging to a public
network) is shared between two different WiFi operators. The scenario is obviously not
new, and indeed it has been specifically addressed by many manufacturers that allow
to define Virtual APs, each advertising a distinct SSID and capability set. Virtual APs
allow operators to share the same physical infrastructure, while offering access to distinct
networks, but they typically suffer of a scarce level of isolation, since the resources
allocated to each one cannot be really partitioned when stations employ random access
schemes and suffer of unpredictable interference. Suppose that the two operators want to
implement a different service model: the first operator (operator A) advertises “FIXED”
SSID, offering access to the Internet with a fixed (guaranteed) bandwidth, while the
second one (operator B) advertises ”BEST” SSID, offering a traditional best effort access.
Although the standard includes PCF and HCCA for managing the medium access by
means of polling, the lack of support in commercial products prevents an easy solution.
Using MAClets, the resource repartition between the two operators can be addressed
in a very effective and flexible manner. If all the stations employ a MAClet Control
architecture, each operator can send a MAClet to the associated stations for enabling the
medium access at regular time intervals (for example, in a fraction of the beacon interval
reserved to the specific operator) and preventing it in the rest of the time. Moreover,
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Figure 7.1: two operators share the same physical Access Point by providing two
different access services to their clients (fixed-rate and best-effort).

the time reserved to each operator can be dynamically tuned (by updating the MAClet
configuration parameters) according to the traffic conditions and to the agreements
between operators. Multi-Operator MAClet are stored on MAClet Controller. Each
node start with a default MAC program that implements a DCF standard. After a
legacy 802.11 Association, AP send an information message to Controller with the new
node attached informations, typical MAC address is used for idenfity the node. At this
point the MAC controller component designed for MultiOperator check the node in an
operator list and decide the MAClet to send. In this scenario Controller communicate
to AP and sends the MAClet for the new node. At this point AP send the MAClet and
inject the bytecode for selected operator that will work on the selected Operator MAC.

7.2.2 MAC Virtualization and Synchronization
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Figure 7.2: An experimental trace of network virtualization: operator A and operator
B use the channel in different time intervals with independent access schemes (TDM

and DCF).
Different solutions are possible for addressing the beaconing and the MAC pausing
in the above scenario. We chose to transmit two SSID Information Elements within
each beacon, thus leaving the beacon interval unchanged. The MAC pausing has been
programmed in a meta machine between the operator-dependent MAC program and a
simple state machine with a waiting state only. At the expiration of the pausing time,
each station enters the waiting state until a new activation event is revealed. In the
waiting state, the stations continue to receive beacons from the AP for keeping the
synchronization to the time interval of their operator.
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According to the SSID specified in the association request, each station receives a dif-
ferent MAClet: a legacy DCF program for the stations associated “BEST” SSID, and a
TDMA program for the stations associated to the “FIXED” SSID. The DCF MAClet
is a legacy DCF protocol that is suspended at the reception of a new beacon. The
reactivation is triggered at the expiration of a parametric timer set before the suspen-
sion. The opposite activation and deactivation actions are performed for the TDMA
MAClet. This mechanism guarantees a perfect coexistence and isolation between the
two networks, since stations accessing the medium during the same time interval employ
uniform channel rules, and no station associated to a given operator can interfere with
the other operator network. Isolation is not obviously guaranteed with other external
interfering networks.

The configuration parameters of the DCF MAClet are the DCF contention parameters
that are uniformly set to all the stations (although some forms of user prioritization
could be easily supported by differentiating these parameters in the MAClet directed to
each station). Conversely, the MAClet transmitted to a new station associated to the
“FIXED” SSID specifies a different program parameter indicating the slot numbers allo-
cated to the station (multiple slots can be allocated to the same station). In each TDMA
slot, frame transmissions still follow a 2-way handshake mechanism. When the MAClets
are loaded on a new arriving station, the reception of the first beacon frame activates
the execution of the program. Subsequent beacons are used as synchronization events
for pausing the DCF programs and resuming the TDMA ones, as well as for activating
the DCF suspension timer and computing the beginning of the TDMA slots. Although
beacon frames are scheduled at regular time intervals, they can be delayed because of
ongoing frame transmissions. These transmissions can be due to external interference,
but also to stations associated to the “BEST” SSID starting a frame transmission right
before the expiration of the operator time (no control is indeed implemented on the
residual time before starting a transmission). In case of delay, to guarantee the fixed
rate of TDMA stations, the time allocated to the “BEST” SSID operator can be reduced
in the subsequent beacon interval. The possibility to dynamically tune the DCF acti-
vation time can also be exploited for performing a dynamic repartition of the resources
allocated to each operator.

Figure 7.2 shows an example of resource repartitions between operators A and B in two
consecutive beacon intervals. The figure plots the channel activity trace captured by the
USRP: for better distinguishing the two virtual networks, the TDMA stations transmit
at 11 Mbps while the best effort stations transmit at lower data rates (5.5 Mbps and
2 Mbps). Note that in the first TDMA slot the channel is busy (i.e. a transmission
has been originated in that slot), but no acknowledgment is received because of channel
errors.

7.2.3 Performance Evaluation

We setup a testbed with a fixed number of stations associated to the “FIXED” SSID and
a time-varying number of stations associated to the “BEST” SSID. Specifically, three
stations access the channel by using TDMA, while five stations join sequentially the
best-effort network at regular intervals of one minute. The TDMA frame is organized in
nine allocated slots, uniformly assigned to all the stations (three slots each). The beacon
interval is set to 50ms, while the slot size is set to 1.7ms (enough to accommodate the
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Figure 7.3: Resource repartition between two different operators using different access
rules (TDM and DCF).

transmission of a payload equal to 1470 byte at 11 Mbps). All the stations transmit at
11 Mbps.

We repeated two different virtualization tests: in the first one, each operator receives an
equal share of the available bandwidth (i.e. the activation time is one half of the beacon
interval), while in the second one, the TDMA operator agrees to release the available
bandwidth to the other operator. TDMA stations have a traffic rate of 630 kbps (smaller
than the maximum guaranteed bandwidth, namely 3 · 1470 · 8/50ms = 705.6kbps), in
order to have a non-null probability to have some slots empty. DCF stations work with
a traffic rate of 1 Mbps.

Figure 7.3 shows the per-operator throughput results obtained in both the experiments.
In case of equal share of the bandwidth, after the third station joins the network the
throughput of the best-effort operator (blue curve) saturates to about 3 Mbps (i.e. one
half of the total network capacity at 11 Mbps). TDMA network is obviously under
utilized because it consumes only 1.89 Mbps (being 3 Mbps the available capacity).
By adjusting the time allocated to the best-effort operator, the third station can join
the network without causing any throughput degradation. The aggregated network
throughput (green line) for the best-effort network is now about 4 Mbps, while TDMA
stations performance are not affected by increased DCF traffic.

7.3 Cognitive Network MAClet switching

In this testbed we exploit WMP, MAClets and the control architecture envisioned in [36].
Here the WMP is a MAC-agnostic wireless engine that executes MAClets, namely state
machines that, together with an initial state and an activation event, encode the actual
MAC programs. The MAClet Controller provides the network-level intelligence, i.e., it
makes decisions according to medium access parameters and spectral usages perceived
by nodes, and sends MAClets and MAC/PHY configuration data to MAClet Managers
running on every network node, so that the channel access strategy can be dynamically
adapted to network conditions. The cognitive paradigm is implemented in this testbed
thanks to multiple levels of MAC adaptability. MAC policies can be dynamically changed
by the MAClet Controller through total or incremental updates. The adaptation policy
is a dynamic switch between MAClets and results in high-speed node-level cognition
based on node-local awareness. The meta-machine that defines the adaptation policy
is a hierarchical XFSM composed by two or more XFSMs and is (again) a MAClet.
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As decisions depend on local awareness and measurements, events and conditions, this
meta-machine implements the node-local MAC adaptation policy. The cognitive global
loop provides low-level info to the MAClet Controller which makes decisions for network-
level adaptability following a network-wide awareness approach. As reactions driven by
the MAClet Controller are slowed down by communication delays, network latencies,
MAClet injection and activation, the duration of a cognitive global loop can sum up
to several seconds. In figure 7.4 The summary description of the loop logic. Three
elements compose the cognitive paradigm: measurement, decision, enforcement. MAClet
controller keeps the state of the network with measurement of physical statistics, and
take a decision based on the results of the values of the measurement set. At this
point MAClet are sent to the stations of the network to enable a specific state machine
and execute the cognitive enforcement phase. In figure 7.5 a performance evaluation









































Figure 7.4: Cognitive Loop DirectLink
of the Cognitive loop implementation. The measurement is taken counting the number
of collision on AP, when the number of collision rise above a given threshold MAClet
Controller send a MAClet to WMP stations. To obtain a performance improvement
MAClet controller send a Direct Link Setup (DLS) MAClet. DLS MAClet contain
a MAC program with the implementation of a Direct Communication MAC protocol
between two assigned stations. This Mechanism is not nearly new, and indeed was
specifically addressed by the 802.11e task group with the introduction of the Direct
Link Setup (DLS), further extended in the 802.11z-2010 amendment. However, a direct
link setup is not automatic (i.e. the kids should take care of changing the settings of
the TVset during the streaming!). Moreover, the direct link uses the same wireless
channel, thus, although to a lower extent, the station connected to the Internet still
suffers of a bandwidth reduction. Another enhanced implementation of DLS is the so
called DLS++, a version of DLS where the Direct link stations assign a specific channel
different from the BSS channel. with DLS++ is possible to isolate the directlink stream
acting offloading for the legacy network. DLS and DLS++ XFSM implementation acts
a per-frame direct-link forwarding reforging the of MAC source/destination address in
MAC layer using WMP action specified for MAC header modification. Furthermore
in DLS++ MAC program the Channel selection is provided introducing a periodically
jump to the main channel to allow nodes to maintain the association to AP, in this way
both Directlink and non-Directlink flow can be managed.

In the experiment, DLS activation causes the immediate improvement of the DirectLink
stations performance. Another decision step can be taken if the number of collisions
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still increases. MAClet Controller send a new MAClet with a DLS++ an it is injected
into WMP node giving a complete offload of the primary channel.
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Figure 7.5: MAClet Activations

7.4 Cognitive Channel Selection

Another interesting experiment of a cognitive usecase is the automatic channel selection.
The logic of this Cognitive Channel selection implementation is to define a sensing
period where nodes collect busy time informations and a period where all nodes use
the optimal channel chosen by MAClet Controller. In Ad-hoc Network nodes provide
a periodical busy/idle estimation on channels and send sensing information to MAClet
Controller, at this point on MAClet controller a decision component choose the best
channel and send a MAClet Parameter message to configure network nodes. A way
to address communication between wireless nod and MAClet Controller is to introduce
a wireless interface on it in this way MAClet Controller is albe to send and receive
MAClet messages; other solution could be to use a wireless gateway node. For this
use case has been used a gateway node wired connected to MAClet Controller. WMP
MAC program implements a DCF standard with enhanced internal policies: a automatic
channel switching during busy channel estimation period and a special frame dissection
analysis. During channel busy estimation phase, sender deliver frames with enhanced
information header and store the busy channel information, repeating this operation
for a defined number of channels, 3 in this experiment. Enhanced channel information
allows receiver to change dynamically its channel during the busy estimation avoiding
bandwidth waste.

When the channel busy estimation phase is concluded nodes send to gateway node
the sensing measurements, MAClet Controller analyze the sensing measurement for
each node and choose the channel with the lower average busy time. At this point
MAClet Controller sends a MAClet to the gateway node containing the channel param-
eter. MAClet is shared throw the wireless nodes and new parameter channel is injected,
this complete the enforcement MAClet distribution.



Chapter 7 50

 
	  
	  

MACLET	  CONTROLLER	  

Sensing	  
DB	  

Monitor	  node	  
CH	  {1,	  6,	  11}	  

IPERF	  

SENDER	  /	  GW	   RECEIVER	  INTERF	  	  
CH	  1	  

INTERF	  	  
CH	  11	  

Figure 7.6: Channel hopping experiment setup

7.4.1 Experiment setup and evaluation

As described in figure 7.6, in this experiment two WMP nodes associated in ad-hoc mode
run an iperf session, modulation capacity is 6Mbps and the traffic is in saturation. A
monitor node captures the traffic on the channels to intercept the channel traffic. As a
proof of the effective channel selection the experiments have been conducted using two
channels with intensive channel usage and one channel without co-channel interference.
Figure 7.7 shows the Throughput fluctuation during the channel busy estimation and
the channel choosing at the end of estimation. The experiment proof has been designed
with 3second per each channel estimation repeated each 20 second. Channel estimation
and repeat estimation period can be tuned defining the time parameters of internal
policies of MAC program.
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! channel busy estimation 

Figure 7.7: Channel hopping evaluation
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Experimental Contribution for
vehicular environment networks

8.1 Introduction

In this thesis we discussed about the impact of applications and networking scenarios on
the performance of WLAN networks, and on the potential benefits of simple adaptations
(especially at the MAC layer) for dealing with scenario peculiarities. Indeed, we have
shown that MAC layer flexibility can significantly improve the network performance if
a few extensions or parameters tunings are introduced as a function of the so called
network context.

A special application scenario considered in this work (whose relevance is becoming
more and more important for future cities) is represented by vehicular networks, i.e.
networks made of of cars and infrastructure units disseminated along the roads (called
roadside units) that can be primarily used for safety applications (but also for dissem-
inating different type of information data). These networks (also called VANETs) are
characterized by very short contact times between the network nodes (either in the case
of vehicle to vehicle V2V communications, or in the case of vehicle to infrastructure
V2I communications) and by potential inefficiencies of the physical layer. To cope with
this specific scenario, different 802.11 standard extensions have been proposed, mainly
for shortening the time required for creating the wireless links and for allocating special
non-interfered bands for safety applications. However, the same adaptations could have
been performed to programmable wireless interfaces (if commercially available).

In this chapter, we describe some experimental results carried out at the University
of California Los Angeles (UCLA) for comparing the performance of these emerging
standards with the performance of old standards (namely, 802.11a and 802.11g), whose
operating conditions have been configured for emulating the novel standard functional-
ities. Results show that the most discriminating factor is represented by the different
interference conditions experienced in the ISM bands. Overall, 802.11a performance can
be comparable with 802.11p performance, being the 802.11a bands much less interfered.
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8.2 VANET standards

The protocol stack for VANETs based on IEEE standards is defined by the IEEE 802.11p
and IEEE 1609.x (WAVE) family of standards. IEEE 802.11p is an amendment of the
IEEE standard 802.11, specifying extensions to 802.11a, adapting it to DSRC commu-
nications in the 5.9 GHz band. A description of the modulation techniques allowed for
those communications, the operations that must be performed by each layer, interfaces
and primitives used to ensure communication between different layers, and other impor-
tant information are described by the IEEE 802.11 standard. IEEE 802.11p provides
the extensions to fit the VANET requirements, that result from the high mobility and
the need to exchange messages between nodes without association (communicating out-
side the context of a Basic Service Set (BSS)). WAVE does not use authentication and
association to decrease communication latency. Some parameters specific of the IEEE
802.11p standard are the transmit power limits, channel spacing and frequencies. As a
normative standard, the main role of the IEEE 802.11p amendment is to define the min-
imum set of specifications required to ensure interoperability between wireless devices,
produced by different manufacturers. The specifications include:

• Functions and services required by stations to operate correctly and to exchange
messages without joining a BSS;

• Signaling techniques and interface functions used by stations to communicate out-
side the context of a BSS.

[22] On the other hand, the IEEE 1609.x family of standards for WAVE addresses the
homogeneous communications interfaces between different manufacturers and provides
a foundation for the organization of management functions and modes of operation
of system devices. The WAVE standards define the architecture (complementary to
802.11p), a standardized set of services and the interfaces that collectively enable secure
V2V and V2I/I2V wireless communications. Together, they provide the foundation for
a variety of applications such as those mentioned in Section I. The IEEE 1609.x consists
of the following five standards (see figure 8.2):

• IEEE P1609.0 - Architecture - describes the WAVE architecture and services for
multi-channel DSRC/WAVE devices to communicate in a mobile vehicular envi-
ronment (still a draft standard).

• IEEE 1609.1 - Resource Manager - specifies the services and interfaces of the WAVE
Resource Manager Application. It describes the data and management services of-
fered within the WAVE architecture, while also defining command message formats
and the appropriate responses to those messages, data storage formats that must
be used by applications to communicate between architecture components, and
status and request message formats.

• IEEE 1609.2 - Security Services for Applications and Management Messages -
defines secure message formats and processing. This standard also establishes the
circumstances for using secure message exchanges and how those messages should
be processed based upon the purpose of the exchange.
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• IEEE 1609.3 - Networking Services - defines network and transport layer services,
including addressing and routing, to support secure WAVE data exchange. It
also defines Wave Short Messages (WSM), providing an efficient WAVE-specific
alternative to Internet Protocol version 6 (IPv6) that can be directly supported
by applications.

• IEEE 1609.4 - Multi-Channel Operations - provides enhancements to IEEE 802.11
MAC to support WAVE operations, namely number and type of channels, channel
routing and coordination, QoS mechanisms and node synchronization.

8.2.1 802.11p/WAVE

In Figure 8.2 an overview description of DSRC stack. IEEE 802.11p WAVE is only a
part of a group of standards related to all layers of protocols for DSRC- based operations.
The IEEE 802.11p standard is limited by the scope of IEEE 802.11, which is strictly a
MAC and PHY level standard that is meant to work within a single logical channel. All
knowledge and complexities related to the DSRC channel plan and operational concept
are taken care of by the upper layer IEEE 1609 standards. In particular, the IEEE
1609.3 standard covers the WAVE connection setup and management. The IEEE 1609.4
standard sits right on top of the IEEE 802.11p and enables operation of upper layers
across multiple channels, without requiring knowledge of PHY parameters.

8.2.1.1 802.11p - Physical Level

The principal Physical characteristic of 802.11p is to divide the spectrum in 7 channels
of 10MHz as shown in figure 8.1. Channel 178 is defined as Control Channel (CCH),
restricted for safety communications, channel 172 is defined as High Availability and
Low Latency (HALL), others are service channels (SCH).

! 172! 174! 176! 178! 180! 182! 184!

5.850GHz! 5.925GHz!

Figure 8.1: 802.11p channels

8.2.1.2 802.11p - MAC Layer

The fundamental access method of the IEEE 802.11 MAC is a DCF known as car-
rier sense multiple access with collision avoidance (CSMA/CA). The DCF shall be im-
plemented in all STAs. The IEEE 802.11p MAC layer is equal to the IEEE 802.11e
Enhanced Distributed Channel Access (EDCA) Quality of Service (QoS) extension [12].
This scheme is similar to the standard IEEE 802.11 CSMA/CA scheme called distributed
coordination function (DCF), but EDCA can differentiate between 4 different applica-
tion categories (AC): background traffic (BK), best effort traffic (BE), voice traffic (VO)
and video traffic (VI). Different Contention Window (CW) and Arbitration Inter Frame
Space (AIFS) values are chosen for the different application categories, where VI has the
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1.2 WAVE Standardization History 
In the U.S., the initial effort at standardizing DSRC radio 
technology took place in the ASTM 2313 working group [5]. In 
particular, the FCC rule and order specifically referenced this 
document for DSRC spectrum usage rules. 
In 2004, this effort migrated to the IEEE 802.11 standard group 
as DSRC radio technology is essentially IEEE 802.11a adjusted 
for low overhead operations in the DSRC spectrum. Within 
IEEE 802.11, DSRC is known as IEEE 802.11p WAVE, which 
stands for Wireless Access in Vehicular Environments [4]. IEEE 
802.11p is not a standalone standard. It is intended to amend the 
overall IEEE 802.11 standard [3]. 
One particular implication of moving the DSRC radio 
technology standard into the IEEE 802.11 space is that now 
WAVE is fully intended to serve as an international standard 
applicable in other parts of the world as well as in the U.S. 
The IEEE 802.11p standard is meant to: 

• Describe the functions and services required by 
WAVE-conformant stations to operate in a rapidly 
varying environment and exchange messages without 
having to join a Basic Service Set (BSS), as in the 
traditional IEEE 802.11 use case. 

• Define the WAVE signaling technique and interface 
functions that are controlled by the IEEE 802.11 
MAC. 

 
Figure 3, DSRC standards and communication stack 

As shown in Figure 3, IEEE 802.11p WAVE is only a part of a 
group of standards related to all layers of protocols for DSRC-
based operations. The IEEE 802.11p standard is limited by the 
scope of IEEE 802.11, which is strictly a MAC and PHY level 
standard that is meant to work within a single logical channel. 
All knowledge and complexities related to the DSRC channel 
plan and operational concept are taken care of by the upper layer 
IEEE 1609 standards. In particular, the IEEE 1609.3 standard 
covers the WAVE connection setup and management [6]. The 
IEEE 1609.4 standard sits right on top of the IEEE 802.11p and 
enables operation of upper layers across multiple channels, 
without requiring knowledge of PHY parameters [7]. 
At the time of writing, the IEEE 802.11p draft version 3.0 had 
already gone through its third letter ballot in the IEEE 802.11 
working group. It failed to reach the critical approval rate of 
75% by just 2 votes. The task group is currently resolving the 
comments received through the letter ballot and updating the 
draft standard document accordingly. This paper provides an 
overview of the general direction and technical approach in this 
draft standard but its content should not be viewed as binding or 
final.  

2. MAC AMENDMENT DETAILS 
In an overly simplified manner, the IEEE 802.11 MAC is about 
how to arrange for a set of radios in order to establish and 
maintain a cooperating group. Radios can freely communicate 
among themselves within the group but all transmissions from 
outside are filtered out. Such a group is a Basic Service Set 
(BSS) and there are many protocol mechanisms designed to 
provide secure and robust communications within a BSS. 
The key purpose of the IEEE 802.11p amendment at the MAC 
level is to enable very efficient communication group setup 
without much of the overhead typically needed in the current 
IEEE 802.11 MAC. In other words, the focus is on simplifying 
the BSS operations in a truly ad hoc manner for vehicular usage. 
In this section, we first provide an overview of the core 
mechanism in setting up the IEEE 802.11 connectivity. Then the 
approach introduced by the IEEE 802.11p amendment is 
described. 

2.1 IEEE 802.11 Operations Overview 
2.1.1 Basic Service Set 
An Infrastructural Basic Service Set is a group of IEEE 802.11 
stations anchored by an Access Point (AP) and configured to 
communicate with each other over the air-link. It is usually just 
referred to as a BSS. The BSS mechanism controls access to an 
AP’s resources and services, and also allows for a radio to filter 
out the transmissions from other unrelated radios nearby. A 
radio first listens for beacons from an AP and then joins the BSS 
through a number of interactive steps, including authentication 
and association. 

 
Figure 4, Independent and extended service set concepts 

As shown in Figure 4, the IEEE 802.11 standard further allows 
administrators to logically combine a set of one or more 
interconnected BSSs into one ESS (Extended Service Set) using 
DS (Distribution Service). An ESS appears as a single BSS to 
the LLC (Logical Link Control) layer at any station associated 
with one of those BSSs. 
The ad-hoc operating mode defined for IEEE 802.11 also 
follows the similar interactive establishment process of a 
Infrastructure BSS and is called IBSS (Independent BSS). While 
the name is “ad hoc”, IBSS still carries too much complexity 
and overhead to be suitable for vehicular communications in the 
DSRC use cases.  
A BSS is known to the users through the Service Set 
Identification (SSID). This corresponds to the names of WiFi 
hotspots that people can observe and connect to at home or 
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Figure 8.2: DSRC STACK

highest priority and BK the lowest. The values used by IEEE 802.11p where specifically
chosen for vehicular communication scenarios. Other specific parameter values also dis-
tinguish the MAC layer of the IEEE 802.11e and IEEE 802.11p standard: in the latter
the SIFS interval is 32 us and the slot time is 13 us.

8.2.2 Motivation

The first motivation about the comparison between 802.11p and legacy 802.11a/g stan-
dards is to understand if current standards can provide the performance promised in
802.11p. Obviously a dedicated frequency bandwidth is an important reason to pre-
fer 802.11p, but in case of high density vehicle scenario when CCH is often busy, we
can expect that a legacy technology can provide similar performance. Moreover, the
newest commodity cards support by default 10MHz bandwidth, in particular 802.11a
allows, as a standard, the use of 10MHz bandwidth. Regards the low-latency associ-
ation time, this requirement can be easily addressed with a smart designing of attach
techniques or by defining a communication system able to work neglecting association.
Current mac80211 [4] implementation in GNU/Linux Systems, for example, provide the
so called “packet injection” funcionalities where stations, configured in monitor mode,
can transmit custom frames by-passing the association rules implemented by mac80211
modules and injecting the frame directly in the driver queues.

This measurement campaign wants to discover the performance differences between the
emerging 802.11p standard and legacy IEEE 802.11.

8.2.3 Metodologies

To obtain a fair comparison between IEEE 802.11p and IEEE 802.11a/g has been decided
to define an experiment without an association functionalities, in this way we can design
experiment focused only on MAC and physical characterization.

experiment setup

The experiment is designed as follow: two cars are equipped with 3 embedded stations;
each node is equipped with specific standard IEEE 802.11 NIC. On car roof are installed
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three omnidirectional antennas and a software control tool is used to launch simultaneous
experiments. To ensure a fair comparison between cards, a wired bench comparison test
has also been conducted to proof that all the nodes transmit with the same power level
and receive with the same sensitivity.

The transmitter generates broadcast raw traffic in saturation with fixed frame size of
200B, fixed transmission power and fixed modulation scheme at 6Mbps. To ensure a
fair comparison between 802.11p and other standards all nodes transmit using a band-
width of 10MHz. Experiments have been conducted in two main urban environment:
downtown, residential. We analyzed three different experiments in downtown environ-
ment and three different experiments in residential environment. While in residential
environment is not expected high interference and multipath, in downtown environment,
co-channel interference and multipath highlight an hostile environment that can com-
promise the traffic performance. During the tests, receiver car is stationary transmitter
instead moves following predefined road path, while inside three nodes do simultaneous
transmissions. The frequencies adopted for the experiment are: 11g at 2.412GHz, 11a
at 5.745GHz and 11p at 5.890GHz.

We compare the distribution of inter-arrival time for each technology and measure the
amount of coverage for 99% 70% 50% of average packet delivery ratio. The interar-
rival time shows the maximum transmission delays and coverage threshold comparison
is interesting to understand the safety application requirement that a technology can
satisfy.

8.2.4 results evaluation

In figure 8.3(a) 8.3(b) interarrival time CDF comparison between three technologies for
three experiments. In both downtown and residential environments, 802.11g suffers of
transmission delay due to co-channel interference while 802.11a and 802.11p have the
same behavior, considering that 802.11a uses the legacy IFS and 11p uses its standard
specific IFS. Also for coverage analysis, 802.11g cannot satisfy a coverage requirements
for safety applications. Instead, 11a and 11p have a comparable behavior. Moreover
the coverage experiment shows better results in residential areas for 11a, despite the
downtown experiments where 11p has the best behavior. These results have also been
compared with channel utilization measurement during the experiment. The results in
figure 8.5 show the channel busy time during the test. In absence of transmissions the
busy time for 802.11a is null, while for 802.11g it is not null. This is the proof of diffuse
co-channel interference in 2.4GHz.

In conclusion this experiment campaign proofs that current legacy 802.11a standard can
provides the same medium access behavior of 802.11p and that the environment plays
a very important role for MAC behavior characterization. Moreover, the differences of
IFS do not show significant improvements.
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Figure 8.3: Interarrival time - 6Mbps - 10MHz
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Figure 8.5: Busy Channel Monitoring
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Conclusion and future work

This thesis proposes a control architecture to handle MAClets over programmable wire-
less nodes in order to implement dynamic adaptation policies in WLANs. Our frame-
work extends the Wireless MAC Processor abstractions with frame classifiers, meta state
machines and control messages, for effectively specifying and disseminating high-level
hardware-independent policies. According to our vision, the proposed solution is an
example of wireless software-defined network, where end users, network administrators
and service providers can manage traffic flows over virtual and physical interfaces with
customized access rules for mitigating the interference, reducing channel wastes and
improving the overall network performance. Differently from the solutions currently
explored in the wired domain, the introduction of state-dependent programs allow to
natively implement reactive mechanisms, able to reprogram the node behaviors at the
occurrence of pre-defined critical events. Besides the specific technical contributions, we
believe that a further significance of our proposed approach is that protocol reconfigu-
ration is accomplished via application programming interfaces, rather than via binary
images or access to open source devices, thus perhaps permitting its possible future
endorsement also in the real commercial world.
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Appendix A

MAClet Manager

MAClet Manager is the software tool that define the Node interface between WMP and
MAClet Controller MAClet Manager is able to receive, send, dissect a MAClet Message,
execute local WMP activation and injection bytecode commands. MAClet Manager
conserve Bytecode Manager features and introduce MAClet format interpretation in
client/server mode. MAClet Manager is written in C for GNU/Linux Systems and use
wmplib.h library functions for broadcom B43 chipset interaction. The only working issue
is to check that driver module has enabled debugfs, because wmplib currently works only
with debugfs.

In this chapter a description of main commands and the features provided by MAClet
Manager.

A.1 maclet-manager options list

root@alix3:~# ./maclet-manager

--------------------------------------------

MAClet Manager V 0.1 - 2012

--------------------------------------------

WMP maclet-manager byte-code injection

Usage: maclet-manager [OPTIONS]
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-h Print this help text

-l # LOAD Bytecode in # memory area (1 or 2)

-m name-file LOAD Bytecode state-machine bytecode file

-n name-file LOAD Bytecode Only Parameter bytecode file

-a # Activate specified bytecode (1 or 2)

-t time-value Timed Bytecode Activation [value in sec]

-d Delayed Bytecode Activation in microsecond

-f time-value Return the absolute time for precise equal activation

[value in sec]

-r reset activation and deactivion condition Bytecode

-v view dump information of bytecode variables

-c ip-addr IP address to server station Start in client mode

-g name-file bytecode to send

-s SERVER MODE

-p In server mode or client mode select specific port,

default 9898

-w Template Ram Frame forging; frame can be ’date’ or

’ack’ with different rate to the transmission, and

string contained in the frame

A.2 Stand-alone Operation Mode

This section describes the following stand-alone functions:

• Bytecode injection and activation

• timed activation, delayed activation

A.2.1 Bytecode injection and activation

The main feature of the maclet-manager is Bytecode injection. A Bytecode can be
injected into one of two different Bytecode areas: though area 1 is filled at startup with
a default Bytecode, it can be replaced with a new one.

This command injects the Bytecode stored in file mycode.txt into area 2:

root@sta01# maclet-manager -l 2 -m mycode.txt

and this one activates it:

root@sta01# maclet-manager -a 2

To activate back the Bytecode in area 1:

root@sta01# maclet-manager -a 1
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This command change the parameter Bytecode stored in file myparameter.txt into
Bytecode located at the area 2:

root@sta01# maclet-manager -l 2 -n myparameter.txt

the option -u if used with the previous option force the load and activation in any case
of lock.

A.2.2 Delayed Bytecode switching

Bytecode switching can be scheduled at a given time in the future, by either defining a
delay or an absolute time: in both cases the event is handled by the WMP by periodically
checking the internal clock. Since all stations in a given BSS synchronize their internal
clock with that of the Access Point, the second mechanism allows to switch the Bytecode
on several station at the same time.

This command schedules a Bytecode switch after twenty seconds:

root@sta01# maclet-manager -t 20

This command schedules a Bytecode switch at a given time:

root@sta01# maclet-manager -d <value-time-us>

where ¡value-time-us¿ is an accurate clock reference expressed in microsecond. When the
internal clock reaches ¡value-time-us¿, the WMP deactivates the current active Bytecode
and activate the other one.

Again maclet-manager can be used to get the ¡value-time-us¿ corresponding to a given
delay:

root@sta01# maclet-manager -f <delay-in-second>

The output value is expressed in microseconds and is computed by summing the input
¡delay-in-second¿ to the internal clock. For example, if we want to switch the Bytecode
on all stations in 12 seconds we should first get the reference time on one station, i.e.,

root@sta01# maclet-manager -f 12

--------------------------------------------

MAClet Manager V 0.1 - 2012

--------------------------------------------

Selected find absolute time

Current work mode : "local"

-------------------------------------

Calculation value of activation delay

time stamp : 3076057456

-------------------------------------
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Then we must run option -d on all stations using the time stamp value that was returned
(3076057456).

To cancel timers, run:

root@sta01# maclet-manager -r

To display information about timers run, bytecode activated and register value:

root@alix2:~# ./maclet-manager -v

--------------------------------------------

MAClet Manager V 0.1 - 2012

--------------------------------------------

Current work mode : "local"

Selected view

--------------------------------------

WMP INFORMATION

CURRENT BYTECODE = 1

Control Value = 0x4000

Timer Not Active

Delay Not Active

--------------------------------------

--------------------------------------

REGISTER AND MEMORY INFORMATION

Current contention windows = 0x001F

Max contention windows = 0x01FF

Min contention windows = 0x001F

Register 1 = 0x0000

Register 2 = 0x0000

Memory 1 = 0x0000

Memory 2 = 0x0000

Memory 3 = 0x0000

--------------------------------------

A.3 Client-Server Operation Mode

This section describes how to setup a Client-Server WMP configuration service using
the MAClet Manager tool. First, the server should be started on a WMP station (e.g.,
sta01):

root@sta01# maclet-manager -s

--------------------------------------------
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MAClet Manager V 0.1 - 2012

--------------------------------------------

Current work mode : "server"

Starting MAClet Manager in SERVER mode, listen on port 9898

By default TCP port 9898 is used but can be optionally changed with option -p. Once
the server is running on sta01, all commands described in section A.2 can be run from
another machine (e.g. sta02:

root@sta02# maclet-manager -c sta01 -v

--------------------------------------------

MAClet Manager V 0.1 - 2012

--------------------------------------------

Current work mode : "client"

recvBuffer = |v=OK

--------------------------------------

CURRENT BYTECODE = 1

Control Value = 0x0000

Timer Not Active

Delay Not Active

--------------------------------------

Also Bytecode images can be transferred using the client-server model: to send a Byte-
code file table to a remote machine use this command:

root@sta02# maclet-manager -c sta01 -g /path/to/mybytecode.txt

--------------------------------------------

MAClet Manager V 0.1 - 2012

--------------------------------------------

file /path/to/mybytecode.txt found

Current work mode : "client"

filename sent=dcf_fix_bk.txt

recvBuffer = OK-FIN

Once the Bytecode is transferred it can be remotely loaded and activated: e.g.,

root@sta02# maclet-manager -c sta01 -l 2 -m mybytecode.txt

--------------------------------------------

MAClet Manager V 0.1 - 2012

--------------------------------------------

Current work mode : "client"

recvBuffer = |l=OK|m=OK

The MAC-Engine implements blocking techniques during Bytecode loading but, in some
case, is necessary to force Bytecode injection without any safety procedure. MAClet
Manager provides an option that allows hard injection of the Bytecode, useful when a
Bytecode doesn’t work correctly and, for example, loops in dead events. The option is
-u
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root@sta02# maclet-manager -c sta01 -l 2 -m mybytecode.txt -u

Finally, there are a few options to debug the WMP, by getting a dump of the MAC-
Engine registers:

root@sta02# maclet-manager -x 1

--------------------------------------------

MAClet Manager V 0.1 - 2012

--------------------------------------------

Current work mode : "local"

Link registers:

lr0: 0AD1 lr1: 0B11 lr2: 0149 lr3: 0261

Offset registers:

off0: 0180 off1: 0204 off2: 039F off3: 039F

off4: 0130 off5: 045F off6: 3010

General purpose registers:

r00: 0001 r01: 0000 r02: 0001 r03: 000F

r04: 0000 r05: 0020 r06: 0007 r07: 0004

r08: 001F r09: 0000 r10: 0001 r11: 053E

[...cut...]

r52: 0001 r53: 000F r54: 01FF r55: 0000

r56: 0441 r57: 0418 r58: 0000 r59: 0708

r60: 0000 r61: 0000 r62: 0000 r63: 0000

and of the MAC-Engine memory:

root@sta02# maclet-manager -x 2

maclet-manager -x 2

--------------------------------------------

MAClet Manager V 0.1 - 2012

--------------------------------------------

Current work mode : "local"

SHM dump 2

Shared memory:

0x0000: 9A01 7008 FFFF 0A7C 0000 0000 C000 0A00

0x0010: 1400 0000 8000 0900 4700 4700 8301 6400

0x0020: 3009 C0FC 0000 0000 0000 0000 0000 0000

[...cut...]

To get a snapshot of the evolution of the state trace, first activate it:

root@sta02# maclet-manager -e on

--------------------------------------------

MAClet Manager V 0.1 - 2012

--------------------------------------------

Current work mode : "local"

Selected state-debug
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Then dump the MAC-Engine memory and check memory in range [0x0E00 -0x0F60].

0x0E00: 0000 0000 0000 0000 0000 0000 0000 0000

0x0E10: 0000 FF00 0D00 FF00 FF08 0500 FF09 0900

0x0E20: FF00 0D00 FF00 0100 FF08 0500 FF09 0900

[...cut...]

0x0F30: 0100 FF08 0500 FF09 0900 FF00 0D00 FF00

0x0F40: 0100 FF08 0500 FF09 0900 FF00 0D00 FF00

0x0F50: 0100 FFFF 0000 0000 0000 0000 0000 0000

A.3.1 Forge template frame operation

This section describes the option used for forge a template frame that is possible send
with specific action from WMP.

root@alix2:~# ./maclet-manager -w

--------------------------------------------

MAClet Manager V 0.1 - 2012

--------------------------------------------

Current work mode : "local"

Write frame into template ram

insert length frame : 200

[1] - 1Mbps

[6] - 6Mbps

[12] - 12Mbps

[18] - 18Mbps

[24] - 24Mbps

[36] - 36Mbps

[48] - 48Mbps

[54] - 54Mbps

insert rate : 24

insert destination address[12:34:56:78:9a:bc] = 12:34:56:78:9a:bd

insert frame string text : do

Write template frame success

There are specifics actions and events in to api WMP that are used for send a frame
that is stored in the template ram of the device, is possible change many field of this
template frame with the option -w, the field that is possible modify are:

• length frame

• rate

• destination address

• frame string text
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A.3.2 Collect data

This section describes the option used to set and reset a specific number of registers and
locations of memory used from WMP for collecting data.

There are specifics actions and events in to api WMP that are used for set and reset 2
registers and 3 memory locations, is possible change the value of this registers also by
maclet-manager with the usage of option -o, the option follow the user step by step such
showed below.

root@alix2:~# ./maclet-manager -o

--------------------------------------------

MAClet Manager V 0.1 - 2012

--------------------------------------------

Current work mode : "local"

Managed other option

SET or RESET value for register and memory

[1] - REGISTER_1

[2] - REGISTER_2

[3] - MEMORY_1

[4] - MEMORY_2

[5] - MEMORY_3

insert option for set or reset : 1

[1] - RESET

[2] - SET

insert operation : 2

insert value to set : 43

shmWrite16 --- value = 2B

Write register succes
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Hardware Equipment

B.1 Introduction

In this chapter a description of hardware equipment adopted for development, testing
and experiment setup. All Experiment have been conducted using ISM 802.11 Channel
spectrum adopting a commodity broadcom b43xx WLAN card. Node devices equipped
with b43xx are able to work with WMP and exploit MAC program loading/execution,
MAClet communication and MAClet Controller interactions.

B.2 WLAN 802.11 NIC - Broadcom BCM4311 - BCM4318

AirForceTM 54g R© 802.11b/g PCI Express R© Transceiver

Designed for client devices based on the PCI Express architecture, the Broadcom BCM4311
is a 802.11b/g baseband processor with an integrated media access controller (MAC).1

In figure B.2 a block diagram description. The Broadcom Processor for BCM4311 or
BCM4318 works with the same firmware version at system sight we have no differences.
In most usecase has been used BCM4318 because it has a miniPCI port interface com-
patibile with Alix 2D2.

This Chip is equipped with a 4K SPROM memory that can be used for customer designed
parameters. WMP prototype use a part of this memory for MAC program and WMP
parameter injecting.

1http://www.broadcom.com/products/Wireless-LAN/802.11-Wireless-LAN-Solutions/BCM4311
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BCM94311

®

AIRFORCE 54G® 802.11A/B/G PCI EXPRESS® CLIENT REFERENCE DESIGN

BCM94311 Reference Design

• IEEE 802.11a/g CMOS MAC/Baseband client solution with

BroadRange™ for PCI Express® conections. Flexible design provides an
802.11b/g or 802.11a/g solution when paired with an appropriate radio.

• Supports Wireless Form Factor (WFF) PCI Express cards for desktop
PCs, Wireless on Motherboard (WOMBO) notebook modules, and

embedded Wi-Fi® applications for 54g® to PCI Express connections.

• High-speed serial bus supports x1 lane running at 2.5 Gbps in each
direction for improved Quality of Service (QoS), Error Detection, Power
Management, Hot Plug/Hot Swap capability, and simplified board layout.

• Includes BroadRange signal processing for industry-leading receive
sensitivity and extended range.

• Highly integrated chipset provides low cost, low power, and small
footprint for integration in a broad range of devices.

• WHQL-certified drivers for Windows® XP, Windows® Me, Windows®

2000, Windows® 98SE, and Windows® 98  operating systems, portable to

Linux® and Windows® CE.

• USB 1.1 host for expanded Bluetooth® connectivity and coexistence.

• 4-KB one-time programmable (OTP) memory for customer-defined
parameters.

• Industry-standard UART and JTAG interfaces to manage other serial
devices for in-system testing.

• On-chip 1.8V/2.5V regulators reduce component cost and power
dissipation and simplify PCB design.

• DSP architecture reduces the power required to transmit data by 30%.

• Low-power consumption improves battery life of Wi-Fi devices,
including handheld devices and consumer electronics.

• Meets PCI Power Management Interface version 1.1 (ACPI).

• Designed for low CPU usage to ensure these CPU resources are
available for handheld applications.

• Dynamic power management under driver control.

• SmartRadio™: Continuous calibration reduces test time and improves
manufacturability.

• Xpress™ Technology: Standards-based frame bursting improves
overall network efficiency.

• 125 High Speed Mode™: Standards-plus performance enhancement
delivers best real-world performance when both client and AP support
high speed mode.

• BroadRange Technology: Standards-compliant feature increases
receive sensitivity to improve range at the higher data rates.

• Security:
- WPA- and WPA2-CERTIFIED™ for powerful encryption and

authentication.
- AES in hardware for faster data encryption and 802.11i compatibility
- Cisco® Compatible Extensions (CCX, CCX 2.0) certified
- SecureEasySetup™ for simple Wi-Fi setup and WPA security

configuration

• Worldwide support: Global products supported with worldwide
homologated design.

F E A T U R E S

A I R F O R C E  F E A T U R E  S E T

P O W E R  M A N A G E M E N T

802.11a/g PCI Express Reference Design802.11b/g PCI Express Reference Design
(a) Broadcom BCM 4311 PCIe

BCM94318

®

AIRFORCE ONE™ CHIP 802.11 REFERENCE DESIGN

BCM94318 MP Reference Design 

• Industry's smallest IEEE 802.11b/g solution makes wireless 
LAN connectivity practical for pocket-sized electronic devices.

• Extreme integration includes radio, baseband, MAC, and all 
other radio frequency (RF) components found on a typical 
wireless LAN board—making small mobile devices easier, less 
expensive and faster to manufacture.

• Innovative power management reduces power consumption by 
up to 97% in standby mode, providing greatly extended battery 
life for mobile devices.

• Cost-effective architecture with single-sided, all-CMOS design 
eliminates over 100 components, providing more affordable 
wireless connectivity for consumer electronics.

• High-performance features standard across the AirForce 
product line: 
• OneDriver™
• SmartRadio™ 
• WPA, WPA2
• Cisco® Compatible Extensions (CCX)
• AES in hardware
• WMM for advanced Quality of Service
• Xpress™ technology
• 125 High Speed Mode™

• Reference designs include Secure Digital I/O, MiniPCI, 
CardBus, and Compact Flash.

• Innovative power management techniques improve battery 
life by creating deep sleep state when device is in stand-by 
mode.

• Designed for low CPU utilization to ensure CPU resources are 
available for handheld applications.

• SmartRadio: Continuous calibration reduces test time and 
improves manufacturability.

• Xpress Technology: Standards-based frame bursting 
improves overall network efficiency.

• 125 High Speed Mode: Standards-plus performance 
enhancement delivers best real-world performance when both 
client and AP support High Speed Mode.

• Security:
• WPA- and WPA2-CERTIFIED for powerful encryption and

authentication
• AES in hardware for faster data encryption and 802.11i

compatibility
• Cisco Compatible Extensions (CCX, CCX 2.0) certified
• SecureEZSetup™ for simple Wi-Fi setup and WPA security

configuration
• Worldwide support: Global products supported with 

worldwide homologated design.
• OneDriver: Single driver across all platforms—802.11a/b/g—

simplifies driver update process and improves customer 
satisfaction.

K E Y  F E A T U R E S P O W E R  M A N A G E M E N T

A I R F O R C E  F E A T U R E  S E T

(b) Broadcom BCM 4318 PCI

Figure B.1: BCM43xx NICs

Interface USB 1.1 Host interface, PCIeTM, GPIO, UART, JTAG

System bus sup-
port Standard

PCIe

Standard IEEE 802.11g with external radio BCM2050, 802.11a with external
radio BCM2060

Data rate 802.11g: 54, 48, 36, 24, 18, 12, 9, 6 Mbps; 802.11b, 11, 5.5, 2, 1
Mbps

Modulation OFDM, CCK, DQPSK, DBPSK

Network architec-
tures

Infrastructure and ad hoc

Operating fre-
quencies

2.4 GHz—2.497 GHz

Operating chan-
nels

11 for North America; 13 for Europe, and 14 for Japan

RF output power 20 dBm maximum

Antenna connec-
tors

Hardware diversity support—Transmit and Receive

Power require-
ments

3.3V for reference designs

Security 802.1x; WEP; WEP2; WPA, WPA2; TKIP; WEP128; Weak-key
avoidance; CCX, CCX 2.0; 128-bit OCB mode AES, 802.11i

Certifications IEEE 802.11 compliant; WI-FI CERTIFIEDTM; ACPI power
management

Table B.1: Broadcom BCM4311 Specifcation
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BCM94311 Functional Block Diagram

BCM94311 Specifications

Item Description

Interface USB 1.1 Host interface, PCIe™, GPIO, UART, JTAG

System bus support PCIe

Standard IEEE 802.11g with external radio BCM2050, 802.11a with external radio BCM2060

Data rate 802.11g: 54, 48, 36, 24, 18, 12, 9, 6 Mbps; 802.11b, 11, 5.5, 2, 1 Mbps

Modulation OFDM, CCK, DQPSK, DBPSK

Network architectures Infrastructure and ad hoc

Operating frequencies 2.4 GHz—2.497 GHz, 4.9 GHz —5.85 GHz with 2060 option

Operating channels 11 for North America; 13 for Europe, and 14 for Japan

RF output power 20 dBm maximum

Antenna connectors Hardware diversity support—Transmit and Receive

Power requirements 3.3V for reference designs

Security 802.1x; WEP; WEP2; WPA, WPA2; TKIP; WEP128; Weak-key avoidance; CCX, CCX 2.0; 128-bit OCB mode AES, 802.11i

Software support Microsoft® WHQL certified for Windows XP, Windows 2000, Windows Me, WindowsSE, and Linux operating systems.

Certifications IEEE 802.11 compliant; WI-FI CERTIFIED™; ACPI power management

TxBalun

RxBalun

FEM

SPROM

Threshold
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& Switch

Switching
Regulator
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Filtering
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VAUX

RF Connector
Main Antenna

RF Connector
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ORDERING INFORMATION
• BCM4311: 196-pin package
• BCM94311: Reference design

(a) Broadcom BCM 4311 Block Diagram
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Ordering Information:

BCM94318 Integration

Ref Xtal

Power
Amp

Diversity
Switch

T/R
Switch

Balun

Balun

802.11a/g
BB MAC

Buffers

Host  I/F:
CF,

SDIO, SPI
PCMCIA 2.4 GHz CMOS 

Direct Conversion 
Radio

BCM4318 WEP/AES Encryption

SPROM
Optional

Host I/F

GPIO

1.8V

2.7V

BCM2060
and FE

(Optional .11a)

OTP

RF PAM

BCM94318 Specifications

Interface PCI, SDIO/SPI

System Bus Support PCI, CardBus, Compact Flash, EBI

Standard IEEE 802.11g, 802.11a with external radio BCM2060

Data Rate, Mbps 54, 48, 36, 24, 18, 12, 9, 6/11, 5.5, 2, 1

Modulation PSK/CCK, DQPSK, DBPSK, OFDM

Network Architectures Infrastructure and ad hoc

Operating Frequencies 2.4 GHz—2.497 GHz, 4.9 GHz —5.85 GHz with 2060 option

Operating Channels 11 for North America; 13 for Europe, and 14 for Japan

RF Output Power 20 dBm maximum

Antenna Connectors Hardware diversity support - Transmit and Receive

Power Requirements 1.8V (3.3V for ref designs)

Power Consumption Average Standby < 20 mW

Security 802.1x; WEP; WEP2; WPA, WPA2; TKIP; Weak-key avoidance; CCX, CCX 2.0; 128-bit OCB mode AES, 802.11i

Dimensions 12mm x 12mm 196-pin pkg., 10mm x 10mm 144-pin pkg

Software Support Microsoft WHQL certified for Windows XP, Windows 2000, Windows Me, and WindowsSE operating systems. Embedded drivers for Linux and 
VxWorks operating systems

Certifications IEEE 802.11 compliant; Wi-Fi CERTIFIED; ACPI power management

• BCM94318 SD (2.4 GHz 802.11b/g Secure Digital Client Production Design), 144-pin BGA package
• BCM94318 MPG 802.11b/g MiniPCI
• BCM94318 MPAG 802.11a/g MiniPCI

(b) Broadcom BCM 4318 Block Diagram

Figure B.2: Broadcom BCM 43xx Block Diagram
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B.3 Wireless Nodes, PC Engines Alix Board

Alix Board Specifications

alix2d2 System board

Part numbers 2 LAN 2 miniPCI LX800 256 MB USB

Spec

• CPU: 500 MHz AMD Geode LX800

• DRAM: 256 MB DDR DRAM

• Storage: CompactFlash socket, 44 pin IDE header

• Power: DC jack or passive POE, min. 7V to max. 20V

• Three front panel LEDs, pushbutton

• Expansion: 2 miniPCI slots, LPC bus

• Connectivity: 2 Ethernet channels (Via VT6105M 10/100)

• IO: DB9 serial port, dual USB port

• Board size: 6 x 6” (152.4 x 152.4 mm) - same as WRAP.1E

• Firmware: tinyBIOS

Manufacturer PC Engines

Figure B.3: Alix 2D2

System Settings

OS GNU/Linux Ubuntu 11.10, kernel 3.0.17

WMP ucode5.fw installed in /lib/firmware/b43/ directory

MAClet Manager Installed

B.4 USRP

for a physical channel occupancy evaluation have been used Ettus USRP and USRP2 2

The primary driver for all Ettus Research products - including the USRP2 - is the UHD
(USRP Hardware Driver) software. UHD software is considered stable and is actively
maintained by Ettus Research. The UHD driver is recommended for all users.

2http://gnuradio.org/redmine/projects/gnuradio/wiki/USRP2
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The original driver exists for the USRP2 that uses a raw Ethernet implementation is
still available within GNU Radio. The older driver is no longer maintained and not
recommended for use. Legacy driver users should upgrade firmware and drivers to UHD
software.

(a) USRP (b) USRP2

(c) USRP2 Block Diagram

Figure B.4: USRP1 USRP2 frontend and USRP2 block diagram

The USRP2 builds on the success of the original USRP device, and adds these new
features:

• Gigabit Ethernet interface

• 25 MHz of instantaneous RF bandwidth

• Xilinx Spartan 3-2000 FPGA

• Dual 100 MHz 14-bit ADCs

• Dual 400 MHz 16-bit DACs

• 1 MByte of high-speed SRAM

• Locking to an external 10 MHz reference

• 1 PPS (pulse per second) input

• Configuration stored on standard SD cards

• Standalone operation

• The ability to lock multiple systems together for MIMO

• Compatibility with all the same daughterboards as the original USRP

B.4.1 ADC/DAC section

The received signal is sampled by the ADC and converted to digital values depending
on the ADCs dynamic range.

In the USRP1, there are 4 high-speed 12-bit AD converters. The sampling rate is 64M
samples per second. In principle, it could digitize a band as wide as 32MHz. The AD
converters can bandpass-sample signals of up to about 200MHz. If several decibels of
loss is tolerable, then, IF frequency as high as 500 MHz can be digitized. However,
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if we sample a signal with the IF larger than 32MHz, we will introduce aliasing and
actually the band of the signal of interest is mapped to some places between -32MHz
and 32MHz. Sometimes this can be useful, for example, we could listen to the FM
stations without any RF front end. The higher the frequency of the sampled signal,
the more the SNR will be degraded by jitter. 100MHz is the recommended upper limit.
The USB connection sustains 32 MB/s in half duplex, so transmission and reception of
samples isn’t possible synchronously The full range of the ADCs is 2V peak to peak, and
the input is 50 ohms differential. This is 40mW, or 16dBm. There is a programmable
gain amplifier (PGA) before the ADCs to amplify the input signal to utilize the entire
input range of the ADCs, in case the signal is weak. The PGA is up to 20dB. With gain
set to zero, full scale inputs are 2 Volts peak-to-peak differential. When set to 20 dB,
only .2 V p-p differential input signal is needed to reach full scale. This PGA is software
programmable. If signals are AC-coupled, there is no need to provide DC bias as long as
the internal buffer is turned on. It will provide an approximately 2V bias. If signals are
DC-couple, a DC bias of VCC/2 (1.65V) should be provided to both the positive and
negative inputs, and the internal buffer should be turned off. The ADC VREF provides
a clean 1 V reference.

At the transmitting path, there are also 4 high-speed 14-bit DA converters. The DAC
clock frequency is 128 MS/s, so Nyquist frequency is 64MHz. However, we will probably
want to stay below it to make filtering easier. A useful output frequency range is
from DC to about 44MHz. The DACs can supply 1V peak to a 50 ohm differential
load, or 10mW (10dBm). There is also PGA used after the DAC, providing up to 20dB
gain. This PGA is software programmable. The DAC signals (IOUTP A/IOUTN A and
IOUTP B/IOUTN B) are current-output, each varying between 0 and 20 mA. They can
be converted into differential voltages with a resistor.

The USRP2 use a Dual 14-bit LTC2284 at 100MS/s as its main ADC. There is an
auxiliary 2 channels, 12-bit ADC (the AD7922) for each daughterboard connector. The
main DAC is the Dual 16-bit AD9777 fed with 100 Ms/s and produces 400 Ms/s based
analog output. The auxiliary DACs are the dual 12-bit AD5623. As we can see, the Gb-
Ethernet allow a significant higher troughput for the USRP2 compared to USRP1 with
USB 2.0 and the theoretically data rate of 125 MB/s allows for a theoretical (complex)
RF bandwidth of about 31,25 MHz.

B.4.2 The FPGA

FPGA “plays a key role in the GNU Radio system” (according to GnuRadio documen-
tation). The FPGA is like a small, massively parallel computer that performs high
bandwidth math to reduce the data rates to something we can manageably transfer over
the USB2.0 link (USRP1) or Gb-Ethernet (USRP2). With the USRP1, it can only be
reprogrammed other the USB2 bus, and with the USRP2 the FPGA has to be loaded
as well as the firmware on the SD Card.

The FPGA includes a Digital Down-Converter (DDC) implemented with Cascaded
Integrator-Comb (CIC) filters, which are very high-performance filters that use only
adds and delays. The purpose of DDCs is to mixe the signal the signal to a lower
frequency and reduce the sample rate while retaining all the information. 3

3http://invihertz.handgrep.se/doc/Introduction_to_USRP

http://invihertz.handgrep.se/doc/Introduction_to_USRP
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B.4.3 Usage Example

Transmission Traces are acquired using uhd rx cfile command. The follow script snip-
pet provide an example of acqisition USRP command parameters.

CHANNEL=6

GAIN=28

MILLISECONDS=30000

DECIM=8

FREQ=$((2412+5*(${CHANNEL}-1)))

RATE=25

uhd_rx_cfile --samp-rate ${RATE}M -f ${FREQ}M -g $GAIN -s \

-N $(($RATE*1000*${MILLISECONDS})) output_file.raw

USRP2 has been used for evaluation experiments as a physical traffic analyzer able to
measure the interarrival time between frames and Time Division Access Scheme debug-
ging. In figure B.5 an output example of a multiple node transmissions in IEEE 802.11
DCF.

Figure B.5: USRP Tracker interactive tool
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