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Introduction

This thesis presents and discusses the results I obtained during the three years of my doctoral
studies, which I spent between the Department of Physics at the University of Palermo and
the Institute of Physics at the University of Freiburg. The main area in which these results
are inscribed is the field of research which goes under the name Quantum Thermodynamics.
Although the name is self-explanatory, the conceptual motivations and main ideas behind it are
so broad - and often not yet fully developed - that almost any quantum phenomenon may in
principle be thought as belonging to a quantum thermodynamic framework. Quantum theory is
usually regarded as describing strikingly counter-intuitive e↵ects of the microscopic world while,
in contrast, thermodynamics is a structure strongly built on everyday life experience. One may
then reasonably wonder whether Quantum Thermodynamics is a counter-intuitive microscopic
theory of standard thermodynamics or an everyday-life-based theory of quantum e↵ects. The
answer is that it is neither the former nor the latter and, as it is usually the case, is built on a
subtle interplay between these two extrema. Throughout this thesis I will explore and exploit
this interplay to discuss the state of the art of the research on some selected topics of timely
interest and to introduce in full details my contribution to them.

Why a quantum view on thermodynamics?

Thermodynamics and quantum theory are both theories of incomplete information. The stan-
dard classical thermodynamic description of collective phenomena - such as phase transitions,
thermodynamic transformations, macroscopic state functions, etc... - originates from a capitu-
lation: when the physics of a system becomes so complex that, even in principle, its rigorous
investigation is beyond reach even for the most skilled researcher, one has to surrender to the
impossibility of a detailed microscopic description and introduce the celebrated concept of sub-
jective lack of knowledge, which is the core of macroscopic thermodynamics [1, 2]. It postulates
the existence of well defined physical properties of each microscopic constituent of a macroscopic
sample - properties whose knowledge might be accessible to a perfect observer whose capability
of acquiring information is unbounded - but assumes our incapability to uncover them. Ther-
modynamics is the theory originating from such an incapability, or more precisely is the theory
which exploits such an incapability. Despite the limited amount of information available about
the microscopic state of a system, indeed, the amount of physical knowledge about a com-
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plex many-body sample is astonishingly huge. In this respect thermodynamics represents the
archetypical example of the progress of physics, from few everyday life experience observations
to general theoretical principles whose validity is supported by uncountable experiments. The
lack of knowledge about the microscopic details plays a fundamental role in this process, as it
forces the focus on general properties shared by very many model systems, having even strongly
di↵erent microscopic features but belonging to the same class of macroscopic behaviour. In
this spirit concepts, principles and ideas have been developed such as the three laws of ther-
modynamics, the very concept of ideal gases or the notion of thermal machines, to name but a
few.

The existence of a stochastic derivation of the same set of laws does not weaken the strong
connection between incomplete knowledge and generality of predictions. On the contrary, it
strengthens it. Recurring to a stochastic description of dynamic microscopic processes reflect
mathematically, in the use of a probabilistic formulation, the same concept of subjective lack
of knowledge and directly leads to the cornerstone of stochastic thermodynamics: the theory
of ensembles. The idea of describing what one does not know about a system through what
one knows about a collection of identical noninteracting systems supplies researchers with an
unexpectedly powerful tool to introduce fundamental concepts like temperature (a macroscopic
collective property) linking them to microscopic quantities such as the energy characterising the
ensemble itself.

On the other hand, nearly one century after the complete formulation of classical thermo-
dynamics, another theory of ensembles has been developed and its physical predictions have
been verified over a broad set of di↵erent physical scenarios: the quantum theory. In its first
formulation, significantly known as quantum mechanics in analogy with the classical mechanics
framework, it dealt with the structure and the evolution of isolated systems described by pure
states - somehow the quantum analogue of a microstate of a classical system, in which the max-
imum information about the system is encoded. Shortly after, anyway, in order to account for
many di↵erent e↵ects (some of which are of classical origin, while others are purely quantum
features) mostly connected to the unavoidable interaction of any system with their surroundings
(generally referred to as environment), the need arose for a quantum description of imperfect
information about the state of a system. Only partially surprisingly, the same classical idea
was introduced to account for the lack of knowledge in quantum realm: the ensemble picture.
As much as in the classical case, such a tool turned out to be of fundamental importance to
introduce and characterise physical properties for non-classical systems. Temperature, entropy,
classical and non-classical correlations, heat, work and so on, were defined starting from the
structure and the dynamics of the ensemble state of a quantum system, which goes under the
name density matrix.

A theoretical and experimental framework accounting for open quantum systems [3] has
been developed since then, whose main purpose is to describe static and dynamic e↵ects of
various kind of interactions of a quantum system with a structured environment - which in turn
may be either classical or quantum. A key concept of this framework is to describe ensemble
dynamics by the so-called quantum Master Equation (q-ME or simply ME), which generalises
the unitary time evolution of a closed system introducing dissipative e↵ects and decoherence
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due to the presence of a reservoir. In what follows, and above all in the next chapters, I
will rigorously formulate this concept both mathematically and physically. Now I just want
to follow the formal analogy between classical stochastic thermodynamics and the theory of
open quantum systems, motivated by the fact that both of them fundamentally rely on the
concept of ensemble states [4]. As will be clearer throughout this thesis, the structure itself
of the q-ME incorporates energy and/or information exchanges between the system of interest
and its environment. It therefore describes, often implicitly, the processes which in classical
thermodynamics are governed by the first and by the second law of thermodynamics. Moreover,
a deeper conceptual question arises proceeding through this analogy: are classical and quantum
lack of information structurally and physically equivalent? Or, in other words, where does
the quantum lack of knowledge originates from? The answer to such a question should take
into account two di↵erent yet complementary e↵ects: first of all, due to the very structure
of quantum theory on complex Hilbert spaces, the existence of physical properties which can
not be simultaneously measured - known as non-commuting observables - generates an intrinsic,
unavoidable probabilistic behaviour of measurement outcomes even if full information is available
about a system or, in other words, even if the system is in a pure state.

The other key factor to be taken into account when exploring the fascinating frontier
between thermodynamics and quantum theory is the existence of correlations of non-classical
kind [5]: classically, when an interaction between the system and a reservoir is switched on the
system evolves non trivially due to several fluxes (heat, entropy) flowing from and to the bath
and leading to an additional source of uncertainty about the state of the open system. As an
example one may consider the concept of temperature (which is induced by the interaction with
a thermal bath), fixing the average energy of the system but spreading its occupation probability
in phase space according to a Boltzmann distribution. Such interactions, generally, correlate
the system and its environment so that they become statistically dependent. This is even more
true in quantum realm, due to the striking existence of quantum correlations (entanglement
[5], quantum discord [6]) having no classical analogue and generating a much richer statistical
structure of physical properties of the open system even in the case of perfect knowledge about
the state of the total one (open system plus environment). This generates, in addition to the
previously cited subjective lack of knowledge, an objective lack of knowledge which would be
present even in the case of perfect, unbounded information acquisition.

This subtle interplay between deep analogies and strong di↵erences generates the branch
of physics known as Quantum Thermodynamics [7].

In addition, the ability of having experimental access to mesoscopic and nanoscopic systems
[8, 9, 10], whose description necessitates the application of quantum principles [11], stimulated in
recent years many di↵erent e↵orts to develop a full description of the interaction of these systems
with their surrounding universe, in order to e�ciently manipulate them and to protect them
from unwanted dissipative e↵ects [12]. The more complex these systems and their environments
are, the more interesting and broad becomes the possibility of exploiting their characteristics,
and the more a thermodynamic description is needed.

In particular, quantum theory and thermodynamics have to cooperate in the description of
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systems when, roughly speaking,

• the temperature is very low (how low? This will be specified in details in the following),

• when the spatial dimension of systems is very small (such that the dynamics of these open
systems is a↵ected by quantum e↵ects),

• when in general the quantum features of either systems or environments can not be ne-
glected (imagine, for example, to deal with a quantum field state: it manifests peculiar
quantum e↵ects such as quantisation of energy or vacuum fluctuations).

Paradigmatic examples of the first class of situations are the so-called Quantum Phase
Transitions (QPTs) [13, 14], a collective critical behaviour of many-body systems driven by a
sudden change of the scale of quantum correlations and fluctuations [15, 16], as opposed to
the e↵ect of classical correlations and thermal fluctuations involved in a thermal (i.e., classical)
phase transition. More in general, even when the open system does not obey the thermodynamic
limit, the interplay between internal and external (i.e., with its bath) quantum correlations and
physical, measurable properties of the state of the system attracts a huge deal of attention
[17, 18] due to the fundamental role entanglement plays in the theory of quantum information
and computation [19], as for example in speeding up computations or in generating secure key
distributions in cryptographic protocols. Thermodynamic tools to measure and/or manipulate
entanglement are therefore of broad interest.

The second set of systems allows the investigation of the quantum limits of thermodynamics
[7]. In other words: to which extent the intrinsic stochastic structure of quantum dynamics
can account for the stochasticity of a thermodynamic description of concepts such as heat
flux, entropy production, work exchanges, even when the system of interest is far from its
thermodynamic limit? These questions are far from being only purely conceptual. There exist
indeed classes of laws, valid for classical systems, describing the probabilistic, fluctuating nature
of fluxes in and from the system when its state is not an equilibrium state. These laws (second
law of thermodynamics, fluctuation dissipation relations [20], fluctuation theorems [21]) and the
statistical knowledge they supply are of fundamental importance in characterising what can and
what can not be done with, for example, thermodynamic transformations and thermal machines.
If and how these laws can be extended, modified and exploited to employ quantum systems in
these frameworks is a question of paramount importance.

A partial list of the main lines of research in quantum thermodynamics can be given as
follows:

1. First, second and third law of thermodynamics in open quantum systems [22, 23, 24].

2. Equilibrium and nonequilibrium quantum phenomena and fluctuations [25, 26, 27, 28].

3. Quantum extension and generalisation of ensembles structure, dynamics and microstate
decomposition [3, 29, 30].



ix

4. Statistical mechanics reformulated exploiting the objectivity in the lack of knowledge about
states [4, 31, 32].

5. Quantum critical phenomena and entanglement [13, 14, 15, 16].

This thesis deals mostly with points 2, 4 and 5. It is structured as follows: in Chapter 1
the general physical scenario is introduced and some conceptual and technical tools are given
to be exploited in the rest of the work. Chapter 2 is devoted to the presentation of the state of
the art on some topics in quantum equilibrium thermodynamics, and is intended as a thematic
introduction to part of my results. These results, dealing with the characterisation of a certain
class of critical phenomena and the critical review of a widely employed approximation method
for quantum many-body physics, are presented and discussed in Chapter 3. The thesis moves
then to the state of the art of quantum nonequilibrium thermodynamics, which is presented in
Chapter 4, serving as a thematic introduction to the rest of my results, to which Chapter 5 is
devoted, about fluctuations and entropy production along quantum nonequilibrium processes.
Finally, in Chapter 6 I give some remarks and discuss conclusions and future perspectives of my
work.
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Chapter 1

Physical scenario

In this Chapter I discuss the physical scenario in which most of the research on quantum ther-
modynamics moves. Such a scenario is exemplified in the first part of the Chapter by three
important phenomena attracting a huge deal of attention in the last decade, namely, quantum
critical phenomena, quantum nonequilibirum fluctuations and the quantum origin of equilibrium
ensembles. The discussion in this first part is light, intended mostly to introduce questions and
themes which will be further developed in the next Chapters.
In the second part of this Chapter some concepts and tools are introduced, which will be useful
in the more technical approaches throughout the thesis.

Any theory of thermodynamic phenomena necessitates fundamental ideas to be introduced
before the full scenario can be given. Concepts like heat or work, milestones of classical thermo-
dynamics, have however to be carefully introduced in the quantum framework since, apart from
some particular limiting cases (as, for example, the weak coupling limit or, in the dynamical
case, the so-called rotating wave approximation [3]), there is no clear way to split the internal
energy into a heat and a work contribution. Generally speaking, the first law of thermodynamics
for a thermalised system in the weak coupling limit, whose Hamiltonian HS has discrete energy
levels Ei, becomes [22]

U = hHSi =
X

i

Eipi ! dU =
X

i

⇣

Eidpi + pidEi

⌘

. (1.1)

For adiabatic variations of the energy levels, and under the weak coupling limit, one can identify
the two contributions in (1.1) as, respectively, heat and work exchanges with the environment
due to the fact that the variation of energy levels keeping fixed their occupation probabilities
pi does not produce any change in the knowledge about the state of the system - it does not
change its entropy - so that

�W =
X

i

pidEi, (1.2)

�Q =
X

i

Eidpi. (1.3)
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This is however not true in general, when the internal energy includes also a non-negligible
contribution from the interaction Hamiltonian and when a transformation of the state of a
system generates entropy both due to modifications of occupation probabilities and of levels of
energy. In out-of-equilibrium contexts, the very definition of entropy production is to be taken
carefully, as one may face cases in which a stationary state does not exist and the question arises
then about how to quantify of how far from stationarity a system actually is. All these situations
o↵er a very wide field of research, in which almost any standard thermodynamic concept has to
undergo, in the best case scenario, deep revisions [33, 34, 35, 36, 37, 38].

In this spirit a number of papers have been published about particular features of quantum
processes, leading to somehow surprising results. The second law of thermodynamics still holds
on average [23, 39], although temporary violations are not an exotic phenomenon [40, 41, 42] and
can be actually measured in not too complicated experimental setups [43, 44]. This is not fully
surprising if one refers to the true nature of thermodynamic laws whose validity, also in their
classical formulation, fully relies on the extremely low statistical occurrence of processes violating
them. This is in turn due to the high number of degrees of freedom of a thermodynamical system
and, then, to the statistical occurrence of many microstates resulting in the same macrostate.
In most quantum cases, however, the dimension of the Hilbert space of the open system is not
too high - it may be, for example, the Hilbert space of a few two-level atoms - resulting in a
higher statistical occurrence of violations of thermodynamic laws. The astonishing result of most
(if not all) of these works, therefore, is not that standard thermodynamics may be temporary
violated during a quantum dynamics, but that it is satisfied on the average, even by small
quantum systems. This may not be, a priori, expected since thermodynamic rules have only
a statistical origin, as average macroscopic behaviour over very many microscopic ones, while
there is no point in di↵erentiating the macroscopic behaviour of an atom from its microscopic
one. To a closer look however, as already pointed out before in this thesis, quantum mechanics
has two additional sources of stochastic uncertainty: the statistical distribution of measurement
outcomes, even in a pure state, and the e↵ect of interaction of the system with a reservoir, or
with other parts of the same system, leading to the appearance of non-classical correlations.

It comes clear, then, that a comprehensive study and a full exploitation of quantum ther-
modynamic behaviour necessitates at least two parallel analyses: of entanglement structure and
properties on the one hand, and of the role and e↵ects of measurements of quantities such as
energy or information fluxes and other related properties on the other.

1.1 A few important examples: a light discussion

In this Section I will briefly give a slightly more detailed exposition about the main frontiers and
the present state of the art of quantum thermodynamics research. The following sections are far
from being a comprehensive presentation about subjects of modern research, but are intended
to give some technical structure to the previous discussion. In the next sections and chapters,
when needed, I will enter in full details about some of these phenomena, focusing the attention
on the parts which mostly interested my own research.
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1.1.1 Quantum phase transitions: equilibrium fluctuations

To begin with, I analyse one of the most typical equilibrium quantum thermodynamical be-
haviour, the one associated to a quantum critical point. By equilibrium, in this context, I mean
that no dynamical evolution of the open system is involved in the characterisation of the physical
properties of the process, such that they do not depend explicitly on time.

Consider then a quantum system whose temperature is kept fixed at absolute zero. This
idealisation describes many situations of practical interest in which the system is frozen in its
ground state thanks to the fact that the first energy gap is much wider than the average thermal
energy [45, 46, 47]. This condition indeed specifies the regime of low temperature I mentioned
before in relation to quantum critical behaviour. Under this regime the collective properties of
a many-body system only depend on the structure of its ground state [13]. One may wonder
however how it is possible to speak about phase transitions when the temperature of the system
is e↵ectively vanishing. In particular, the question arises whether it may be possible for a
quantum class of systems to show another kind of large-scale order, di↵erent from the standard
one arising due to thermal fluctuations, which might be responsible for quantum class of phase
transitions.

The timescale of the reaction of any system to an external perturbation can be described
by means of the characteristic time ⌧ the system itself needs to re-equilibrate. Such a time, close
to a thermal critical point, diverges due to the fact that the correlation length becomes infinite.
Loosely speaking, calling ! = 1

⌧ a characteristic frequency of the system at the transition point,
the energy involved in fluctuations at frequency ! of a quantum system is of order of !.

A classical (thermal) phase transition at the critical temperature TC can happen as long
as the energy scale associated to thermal fluctuation dominates the one associated to quantum
fluctuations or, in other words, when

kBTC > ~!. (1.4)

Since ! vanishes at criticality, thermal fluctuations usually dominate quantum ones for any
TC 6= 0K. Incidentally, this is the reason for which thermal phase transitions are said to have a
classical origin also for quantum systems.

At zero Kelvin, however, the situation drastically changes since now thermal fluctuations
do not hide quantum e↵ects anymore, and a new class of collective critical behaviour of many-
body quantum systems is found as a result of zero-point quantum fluctuations [14]. Transitions
belonging to such a new class go under the name of Quantum Phase Transitions (QPTs). They
are characterised by sudden (I-QPT) or continuous (II-QPT) changes in the structure and
properties of the ground state as one or many parameters in the Hamiltonian of the system
are changed adiabatically. In the case of a I-QPT, a level crossing between ground state and
first excited state is met in the parameters space [48, 49, 50] such that the system suddenly
jumps from one state to another one at the quantum critical point (i.e., at the point of the
level crossing). In II-QPTs, on the other hand, an avoided level crossing is met in parameter
space, whose gap vanishes in the thermodynamic limit giving rise to a smooth change in the
properties of the system [51, 52, 53]. In all these cases the collective behaviour responsible for



4 1. Physical scenario

the phase transition is driven by long-range correlations of quantum origin. Indeed it has been
theoretically [54, 55, 56] and experimentally [16, 57] verified that a QPT is always associated to
a functional dependence of entanglement on the distance to the quantum critical point formally
analogous to the functional dependence of classical correlations on the temperature close to a
thermal phase transition: quantum correlations at any scale appear suddenly (I-QPT) or in a
continuous way (II-QPT). The typical and most known example of II-QPT is the transition from
a Mott insulator to a superfluid phase in a gas of ultracold bosons trapped in an optical lattice
[15, 45]. The vast exploitation of these trapped systems is motivated by the precise control one
can experimentally exert on almost any feature of the confining potential, allowing physicists to
manipulate the sample and to trigger these transitions at will.
Chapter 2 is devoted to a detailed discussion about these phenomena.

1.1.2 Quantum entropy production: out-of-equilibrium fluctuations

As known, the strength of thermodynamic formulation at equilibrium - mostly based on the
fact that a many-degrees-of-freedom system is easily described by the use of only a very lim-
ited number of macroscopic state variables such as pressure, energy, volume and temperature
- is not automatically transferred to the case of out-of-equilibrium processes. Indeed, during
a single realisation of a nonequilibrium process the behaviour of a system is fundamentally
unpredictable. The fluxes of quantities such as heat or work, flowing from/into the system,
undergo strong fluctuations due to microscopic features of the nonequilibrium dynamics. This
is true for classical systems, and even more true for quantum systems which have, as discussed
before, additional sources of fluctuations and whose dynamics shows particular, characteristic
features having no classical analogue thanks to the quantum correlations dynamically built with
the bath [3, 58]. However, there exists a class of laws, known as fluctuation theorems (FTs)
[21, 26, 27, 59, 60], allowing for a description of the probability distribution for the production of
some quantities (such as work, or entropy) along nonequilibrium evolutions. Laws of this kind,
linking the stochasticity of microstate evolutions to the stochasticity of macroscopic fluxes, are
very well understood in classical frameworks and are known to hold for any classical system.
In recent years, the extension of these laws to the quantum realm has attracted a great deal of
attention [61, 62, 63, 64, 65] because of the greater and greater importance of nonequilibrium
processes of quantum systems embedded in a complex environment for, e.g., technological appli-
cations and/or quantum computation procedures [66, 67]. Indeed, a huge part of the branch of
physics known as quantum information deals with correlations between quantum systems and
information fluxes therefore generated. Such fluxes, as a matter of fact, are very closely related
to standard entropy fluxes in a thermodynamic framework, provided of course one introduces
when needed some correction terms accounting for the fundamental di↵erence between classical
and quantum microscopic dynamics [68, 69, 70].

Classical fluctuation theorems are, for example, the celebrated Jarzynksi equality [59]

he��W i = e���F , (1.5)

relating the average value of a function of the classical work needed to drive a system out of
equilibrium to the free energy change between initial and final equilibrium states of the process,
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or its generalisation in terms of entropy production [60] of the form

pf (�)

pb(��) = e�, (1.6)

relating the probability that entropy � is produced along a single realisation of the driving
protocol acting forward (i.e., from the initial to the final ensemble state) to the probability that
entropy �� is produced along a single realisation of the driving protocol acting backward (i.e.,
from the final to the initial ensemble state).

The extension of these laws to the general quantum case is tricky for at least two inde-
pendent factors. On the one hand, as already commented shortly before in this Chapter, the
very definition of quantities such as work, heat and entropy production in the quantum case is
troublesome and still undergoing a deep conceptual debate. On the other hand, the concept of
a single trajectory in phase space can not be applied to quantum evolutions and the characteri-
sation of a single quantum nonequilibrium process can not be given without specifying the way
such a process is monitored (or not monitored), the e↵ect and the backaction of measurements
in these cases being of fundamental importance [71].

Taking into account both of these issues leads to a number of di↵erent FTs, not all of
which reproduce the standard result of the classical case. Memory e↵ects in the dynamics,
ultimately due to strong quantum correlations created between an open quantum system and
its bath, modify for instance the probability distribution of entropy production [72], since they
fundamentally a↵ect the information flowing to the environment [41] and the one collected by
an external observer [66]. The additional term resulting from such an analysis can be linked to
the mutual information shared by system and environment which, in the quantum case, is know
to lead to the definition of another measure of non-classical correlations referred to as quantum
discord [6].

Another typical quantum deviation from standard FTs is due to the choice of measurement
strategy [73] which ultimately generates single quantum trajectories somewhat analogous to
phase space classical trajectories [74]. The dependence of quantum evolution on the measuring
scheme (meaning how, when and where the total system composed of open system and environ-
ment is measured) is strong and non trivial, leading as a consequence to additional fluctuations
in physical quantities having purely quantum origins.

A detailed discussion on this class of laws both in classical and quantum systems is given
in Chapters 4 and 5 and I therefore postpone any further comment on them.

1.1.3 Origin and structure of quantum ensembles

Last but not least, to conclude this brief review of some concepts of quantum thermodynamics
I discuss another example of questions attracting the interest of present research in the field:
if and how quantum features can lead to the same stochastic structure of classical ensemble
theory. In other words: is one allowed to extend classical ensemble structure to the quantum
realm? And in which way? This is a vast and, sometimes, very technical subject of research.
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Here, however, I discuss a small part of it which will turn out to be important in understanding
part of the exposition of my results in Chapter 3. The results presented in this subsection have
been obtained in [31, 32].

To fix ideas, let us consider a total system T on an n-dimensional Hilbert space Hn
T (n � 1),

and let us consider a bipartition consisting of a thermal bath B (with Hamiltonian HB) and an
open system S (HamiltonianHS). Such a bipartition might be a structural one, due to particular
features of the total system under scrutiny (as, for example, a set of atoms interacting with a
radiation field), or might also be arbitrarily chosen, provided however that the bath (living in
an r-dimensional Hilbert space Hr

B) and the system (d-dimensional Hilbert space Hd
S , where

clearly n = rd) are only weakly coupled and that r � d. Under these circumstances it is
known that, provided the total system T is prepared in a microcanonical ensemble "E = 1

nE
IE

fixing its energy to the value E (such a microcanonical ensemble corresponds to assigning equal
occupation probability 1

nE
to any state of T having the same total energy, so that its density

operator is proportional to the identity operator IE in the subspace HnE
E of fixed energy) the

state ⇢S of the open system S has, to a very good accuracy, the structure of a Gibbs state [75].
Mathematically

⌦S ⌘ TrB"E ⇡ 1

Z
e��HS , (1.7)

where Z is the normalisation of the state known as partition function and TrB stands for the
trace over the bath degrees of freedom which in turn corresponds to disregarding any detail of
the bath and incorporating them in a few parameters (in this case, only the temperature 1

kB�
)

characterising the reduced state of the open system. This formulation is valid both in classical
and in quantum cases thanks to the already cited analogy between their respective ensemble
theories.

The uncertainty about the state of the total system due to the lack of knowledge about
its microstate (indeed, the state of the total system is mixed) is passed on to the state of the
open system and summed up with the uncertainty due to fact that one neglects bath degrees
of freedom. Classically, if one had full knowledge about the microstate of the total system,
one would automatically have full information about the microstates of open system and bath
making the statistical ensemble approach impossible (and, clearly, useless). In the quantum
case this is not true anymore because of (or thanks to) the existence of entanglement between
open system and environment, because non-classical correlations prevent one to assign a well
defined pure state to an open system alone after tracing out its bath. This is due to the fact that,
loosely speaking, part of the information about the open system is contained, thanks to quantum
correlations, in the environment and discarding the knowledge about such a state forces one to
describe the reduced state of the open system as being mixed. Entanglement generates then a
statistical structure somehow analogous to the classical subjective lack of knowledge.

Such an analogy is actually much more than just formal: Popescu et al. [31] recently showed
that when the total system T is a quantum system, the use of a microcanonical ensemble state
becomes unnecessary to obtain a reduced thermal Gibbs state. Indeed one can imagine to prepare
the system T in a pure state | Ei 2 HnE

E belonging to the standard pure state decomposition
of "E , so that on the one had the total system has a well defined energy and, on the other, one
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has full knowledge about its microscopic state. If one performs the same operation as in Eq.
(1.7) to obtain the open quantum system state, one gets

TrB| Eih E | = ⇢S , (1.8)

which once again describes the way an observer sees (i.e., measures) properties of the open
system only if he has no information about the state of the bath. In the spirit of what has
been said a few lines above, it is not surprising that ⇢S is a mixed state thanks to quantum
correlations between S and B. What is probably unexpected is however that

Prob
n

k⇢S � ⌦Sk > ✏
o

< 2e�CnE✏2 . (1.9)

This equation has to be read as: the probability that, after tracing out the bath degrees of
freedom from a total pure state of fixed energy, one obtains a reduced state ⇢S which is ✏-
di↵erent from the standard thermal Gibbs state ⌦S goes exponentially to zero with the dimension
of the energy subshell HnE

E . C is a positive constant and k⇢
1

� ⇢
2

k is a distance measure of
two matrices ⇢

1

and ⇢
2

in the state space known as Trace Distance [76], which is well known to
measure how di↵erent two quantum states are with respect to the statistical predictions on any
possible measurement outcome on them.

This means that, with a low statistical error, one can associate concepts like temperature
and ensemble thermal equilibrium state to an open quantum system even if one has full knowledge
about the microscopic state of the total system. This, as already commented and as can be shown
in details, is due to the existence of entanglement between open system and bath and is therefore
a purely quantum e↵ect. As a matter of fact, this means that the subjective lack of knowledge
characterising classical thermodynamics and originating from the limitedness of the external
observer is replaced here by an objective lack of knowledge originating from the very structure
of quantum correlations and, as such, being an intrinsic feature of quantum thermodynamics
which can not be eliminated even by a perfect, limitless external observer.

It is however worth stressing that (1.9) is a probabilistic statement, in which an a priori
equal distribution of state vectors is assumed. This postulates an a priori particular knowledge
of the external observer about the open quantum system.

1.2 Magnifying (and localising) the point of view

Quantum thermodynamics consists of a countless set of di↵erent theoretical and experimental
research lines. It represents such a multifaceted scenario that a general view on it can not grasp
its many fascinating details. On the other hand, a localised view such as the one given in this
thesis is far from presenting a full picture of the quantum thermodynamics theory, but magnify
the local view on some selected physical phenomena. This Section is therefore a guideline to
move between the general delocalised point of view given in the previous Section and the localised
point of view which will be found throughout next Chapters.
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The interplay between the lack of knowledge due to the many features of open quantum sys-
tems and quantum correlations and the underlying probabilistic structure of any thermodynamic
theory gives rise to a number of phenomena. In addition to the three examples discussed above,
among the most explored problematics stand: the quantum dynamical approach to thermal
equilibrium [77, 78, 79] and, possibly, the lack of thermalisation in connection to the structure
of the system Hamiltonian and of its dynamics [80, 81]; the extension of macroscopic concepts,
like temperature, to the nanoscale [82, 83]; the theory and applicability of quantum thermal ma-
chines [23, 38] and quantum feedback protocols [84, 85] in the exploitation of quantum systems
to produce certain e↵ects. This still restrictive list shows already how topics of equilibrium and
nonequilibrium physics are widely mixed and attracting a comparably big deal of attention of
large communities.

The work during my PhD studies, which I extensively present in this thesis, dealt with se-
lected topics both in equilibrium and nonequilibrium thermodynamics. In particular, the results
presented in the first part (Chapter 3) belong to the large topic of quantum state characterisa-
tion, connecting physical properties of equilibrium thermal states to measures of non-classical
correlations. I explored, in producing these results, the structure of low-lying energy level
of few-body quantum systems kept at low temperature, moving in the same direction as the
research on quantum phase transitions. Consequently, I move along the border of quantum
thermodynamic (structure of quantum thermal state) and quantum information (entanglement
measures) theories. The second part of the thesis (Chapter 5) presents, on the other hand,
results on nonequilibrium thermodynamics. The extension of fluctuation theorems to purely
quantum processes and the inclusion of memory e↵ects due to non-Markovian interactions with
an environment are the main results of my research in this field. In particular, I managed to
derive and characterise corrections to the standard form of fluctuation theorems due to quantum
fluctuations and correlations. These results therefore fully belong to the research line exploring
how quantum dynamics produce a di↵erent kind of stochasticity in the microscopic properties
of systems and how such di↵erences can be measured and, in principle, exploited for quantum
technology protocols.

1.3 A rigorous quantum view on dynamics, correlations and
model systems

Throughout this thesis I will discuss a number of di↵erent physical situations, each of which
has to be tackled employing a particular set of conceptual and mathematical tools such as,
e.g., entanglement measures, Bose-Hubbard models, quantum master equations, non-Markovian
processes, etc... Clearly it is not possible to give here a full presentation about all these topics.
It is necessary however to supply the reader with some rigorous methods and definitions which
will be of help in understanding the rest of this work. This Section aims then at giving some
pieces of information about standard models and techniques often used in quantum dynamics
and thermodynamics contexts.
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1.3.1 Entanglement and its measures

Entanglement [5, 86] is often regarded as one of the most striking features of quantum theory,
its importance being both conceptual and practical. From the conceptual point of view, in fact,
it discovers one of the main cores of quantum theory, i.e. its underlying non-local structure.
Indeed, as much as in the classical case, quantum systems which are non-interacting can still be
interdependent, but their correlations are of a striking di↵erent nature (they violate, for example,
the famous Bell inequalities [19]). More precisely, if two systems exist in an entangled state, a
measurement on one of them fundamentally a↵ects the structure of the state of the other (i.e.,
the probability distribution of measurement outcomes on it) despite the fact that these systems
may very well be non-interacting (although they must have interacted in the past). Ultimately,
this e↵ect can be traced back to two of the main conceptual features of quantum theory: the
superposition principle and the collapse postulate.

Rigorously speaking, consider a composite system S divided (formally or physically) into
two subsystems S

1

and S
2

, each of which lives in its own Hilbert space H
1

and H
2

of dimensions,
respectively, d

1

and d
2

. A pure separable (non-entangled) state in the composite Hilbert space H
of S has the general form | si = |'

1

i⌦ |�
2

i, where |'
1

i (|�
2

i) is a state of S
1

(S
2

). Such a state
is, in a sense, classical because a measurement on S

1

has no e↵ect on S
2

since it would project
the state | si to |µsi = |a

1

i ⌦ |�
2

i, |a
1

i being the state of S
1

after the outcome a
1

has been
measured, which is what one would expect from a classical system. Such a structure of a pure
state is however not the most general one. It is indeed possible, thanks to the superposition

principle, for the system S to be in a state | ei = c
1

| (1)

s i + c
2

| (2)

s i, where c
1

, c
2

6= 0 and

| (i)
s i = |'(i)

1

i ⌦ |�(i)
2

i (i = 1, 2) are separable states, each of which shows a classical behaviour
as long as correlations between S

1

and S
2

are concerned. However, if the local states of S
1

and

S
2

are such that |h'(1)

1

|'(2)

1

i|2 6= 1 and |h�(1)
1

|�(2)
1

i|2 6= 1, it is not possible to write the state
| ei as a unique separable state. Because of this, it describes a situation in which correlations
between S

1

and S
2

exist in a non-classical and non-local way, since the two subsystems may also

be separated in space. Imagine in particular that h'(1)

1

|'(2)

1

i = 0, and perform a measurement

on subsystem S
1

of the observable |'(1)

1

ih'(1)

1

|. This generates a collapse of the total system
wave function as

| ei = c
1

|'(1)

1

i ⌦ |�(1)
2

i+ c
2

|'(2)

1

i ⌦ |�(2)
2

i ! |'(1)

1

i ⌦ |�(1)
2

i = | (1)

s i. (1.10)

A measurement on S
1

alone has then a↵ected also the statistics of S
2

, which after the mea-

surement is only due to the structure of |�(1)
2

i while before the measurement a contribution

from |�(2)
2

i was clearly also present. As remarked previously, these correlations are fundamen-
tally di↵erent from the classical case. Countless examples of entangled states have been studied
theoretically and produced experimentally [87, 88, 89, 90, 91, 92], and it has been shown that
the presence of entanglement makes pure quantum states a powerful tool for protocols such as
quantum computation, quantum cryptography, quantum state teleportation, much more suited
for these protocols than classical states [19]. In this sense, entanglement is the key quantity of
any quantum information framework and the feature which di↵erentiates classical from quantum
technologies.
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It is important to stress here that two systems being entangled means that some information
about a system is contained in the other one. This implies that, if one only looks at the degrees
of freedom of, say, S

1

choosing to neglect the degrees of freedom of S
2

, one looses a certain
amount of information which is available in the knowledge of the full composite state. This
means that, starting from an entangled pure state density matrix of the total system S given as
�e = | eih e|, one obtains for the subsystem S

1

⇢
1

= Tr
2

�e. (1.11)

The state in Eq. (1.11) is called reduced density matrix of the system S
1

and is obtained through
a partial trace operation over the degrees of freedom of S

2

, which is the mathematical counterpart
of neglecting the knowledge about the state of S

2

. If the total pure state is entangled, ⇢
1

is a
mixed state. This reflects the lack of knowledge about S

1

, as information about its state is lost
by neglecting S

2

. As commented before, indeed, entanglement naturally and easily produces
mixed quantum states and represents then a precious conceptual tool to introduce ensemble
structures in quantum theory. As commented in the previous Section, however, the lack of
knowledge producing a reduced mixed state for S

1

is not due to a practical incapability of
perfectly measuring its microstate (classical subjective lack of knowledge), but originates from
a structural impossibility to access all the information about a system due to its non-classical
correlations with another one. That is why in the previous Section I referred to such a mixedness
as describing an objective lack of knowledge about the state of a system. Moreover, the more
mixed a reduced state is the more information is lost by tracing out part of the total system and
therefore the more entangled the total pure state is. Any quantifier of the purity of a reduced
state ⇢ obtained from a pure state | i, such as the celebrated von Neumann entropy [93]

S
vN

= �Tr⇢ ln ⇢, (1.12)

measures indeed the pure state entanglement along the bipartition identified by the reduced
state itself. A pure reduced state means zero entanglement in the total state, while a maximally
mixed reduced state (i.e., a reduced state proportional to the identity operator), is a signature
of a pure maximally entangled state.

Despite the fact that pure state bipartite entanglement is well understood and easily mea-
sured (for example in terms of the well known Schmidt decomposition of the composite state
[5]), the same does not hold for bipartite entanglement of mixed states [5, 94]. A general mixed
quantum state can be written as a convex sum of pure states such as

⇢ =
X

i

pi| iih i|. (1.13)

The main technical di�culty involved in the few general bipartite entanglement measures avail-
able for a state of the form (1.13), such as e.g. the Entanglement of Formation (related to the
so-called convex roof extension of von Neumann entropies of reduced states of each pure state
in (1.13) [95]), is due to a non-trivial minimisation of a certain functional over any possible pure
state decomposition of the same mixed state whose number is always infinite. Despite this, a
study of the entanglement inside mixed states is of great interest because of the unavoidable
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presence, in any situation of practical interest, of the interaction with noise or with a structured
environment which usually destroys the purity of the state of the system.

In order to avoid time-consuming minimisations when evaluating bipartite mixed state
entanglement, one can resort to two simpler quantities much more easily manageable known as
Concurrence and Negativity.

The Concurrence C [96] is a very simple measure of bipartite entanglement in a mixed total
state ⇢ of 2⇥2 systems, i.e. when both subsystems have a Hilbert space of dimension 2. In these
cases, indeed, the Entanglement of formation is a monotonic function of C. The Concurrence is
defined as

C = Max{0, ⌫}, (1.14)

where ⌫ =
p
µ
1

� p
µ
2

� p
µ
3

� p
µ
4

. Here the µi’s are eigenvalues of the matrix
p
⇢(�y ⌦

�y)⇢⇤(�y ⌦ �y)
p
⇢, where ⇢⇤ is the complex conjugate of ⇢, and µ

1

� µ
2

� µ
3

� µ
4

. Although
not being evident from the previous definition, the Concurrence is related to the overlap between
the mixed state ⇢ and a mixture of maximally entangled pure states.

The other often used quantity, very attractive thanks to its relative simplicity, is the one
called Negativity N [97]. The negativity is an entanglement monotone. Its definition is based on
the fact that, as long as the state of a bipartite system is separable, it remains a quantum state
even after a partial transposition with respect to the degrees of freedom of only one of its two
subsystems. The fact that the spectrum of the matrix obtained after such a partial transposition
contains negative eigenvalues is thus a su�cient condition for the non-separability of the state.
This condition turns out to be necessary too in the cases of bipartition composed of two two-
level systems or by a two- and a three-level system, but in general there exist mixed entangled
states having a positive partial transpose spectrum [98]: for this reason such a criterion is not,
strictly speaking, a measure of entanglement. When a negative eigenvalue is detected, however,
the Negativity quantifies correctly the amount of bipartite mixed state entanglement. It is then
common to define Negativity as

N =
X

⌫

|�⌫ |, (1.15)

where the index ⌫ runs over the whole set of negative eigenvalues of the partial transpose of the
composite system density matrix. It is well known [99] that equation (1.15), for a bipartition in
two subsystems having dimensions d

1

and d
2

, is equivalent to

N =
k⇢T1k � 1

dm � 1
, (1.16)

where dm = min {d
1

, d
2

}, ⇢T1 is the matrix obtained from ⇢ by a partial transposition with
respect to the subsystem S

1

and k · k is the trace norm [76], defined for a generic operator O as
kOk = Tr

p
O†O.

The quantities in Eqs. (1.14) and (1.16) are the ones I will use in Chapter 3 to characterise
the entanglement in thermal states.
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1.3.2 Bose-Hubbard model

One of the most studied and investigated models to explore the vast realm of quantum equilib-
rium (and nonequilibrium) thermodynamics is the so-called Bose-Hubbard model [100], describ-
ing the physics of ultracold atoms, described as bosons, confined in a structure known as optical
lattice [101]. Such a structure, which consists of standing waves created by electromagnetic
fields (usually, laser fields), has in the last decades allowed researches to investigate frontiers of
physics (such as, for example, a class of quantum phase transitions) which represent one first
example of quantum thermodynamic behaviour. In Chapter 3 I will present some results on
similar models, and it is therefore useful to exploit this introduction to discuss in few details the
physics of a Bose-Hubbard Hamiltonian.

Consider then an optical lattice and a gas of bosons confined inside it [102, 103]. Each
atom can be found, when measured, in one of the lattice sites of the crystal. Assume the atom-
atom interaction to be short-ranged enough to assume that atoms can interact only through
collisions within the same lattice site. In addition, they can move from one site to another
one via a tunnelling term. Finally, the energy o↵set of each site can be tuned resulting in a
further single atom Hamiltonian term. Because of the assumption of low temperature, one can
suppose the atomic cloud to occupy only the first energetic band in the lattice and, moreover,
that interatomic interactions happen only in the form of two-body s-wave scatterings with �-like
potentials [45]. This assumption specifies the range of temperature involved. For typical masses
of atoms employed in practice, the l-wave scattering is frozen for temperatures T . mK.

The considered atoms being bosons of spin S, the most general state of two of them during
interaction (and therefore in the same lattice site) is, in their coupled spin basis,

| 
12

i =
even

X

Stot

Stot
X

M=�Stot

�Stot,M |StotMi, (1.17)

where, to respect bosonic symmetrisation, odd values of the total spin Stot are excluded. Fol-
lowing the physical assumption on the form of the interaction, the scattering potential is

V (r
1

� r
2

) = �(r
1

� r
2

)
even

X

Stot

gStotPStot (1.18)

where PStot projects the two interacting atoms into state of total spin Stot and gStot depends on
the s-wave scattering parameter of this channel and can therefore be easily tuned by, for example,
Feshbach resonance [104]. To simplify the exposition, consider now the case of spin 1 bosons,
so that Stot = 0, 2 and each atom will be characterised by a spin-1 operator Si. This is the case
I considered in producing some of the results discussed in Chapter 3. If the scattering channels
become asymmetric (i.e., if not all the gStot are equal), such a two-body scattering will contain
also a term which can be represented as an e↵ective spin-spin interaction. Indeed, introducing
the symmetric and asymmetric scattering amplitudes �s =

1

3

(g
0

+2g
2

) and �a = 1

3

(g
2

� g
0

), Eq.
(1.18) can be recast as

V (r
1

� r
2

) = �(r
1

� r
2

)
�

�sI+ �aS1

· S
2

�

. (1.19)
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To this term, one adds the kinetic term of each atom and a local potential V
loc

(r) char-
acterising the structure of the confinement in the lattice. The N -atom system Hamiltonian is
therefore

H =
N
X

i=1

⇣

� 1

2m
r2

i + V
loc

(ri)
⌘

+
1

2

X

i 6=j

V (ri � rj). (1.20)

One can now employ a second quantisation formalism by introducing the creation and annihila-
tion operators a†i,m, ai,m for an atom in the i-th lattice site in a state with Sz = m. Adding to
the Hamiltonian in Eq. (1.20) a tunnelling term proportional to a parameter J (which depends,
among other things, on the details of the confining potential), accounting for the annihilation
of an atom with z-spin m in site i and the simultaneous creation of an atom with the same spin
state in the site j, Eq. (1.20) becomes

HBH = �J
X

<ij>,m

�

a†i,maj,m + a†j,mai,m
�

+ ✏
X

i

n̂i +
U
0

2

X

i

n̂i(n̂i � 1) +
X

i

U
2

2

⇣

(Si
tot)

2 � 2n̂i

⌘

,

(1.21)

where n̂i =
P

1

m=�1

a†i,mai,m is the number operator of the site i, U
0

/ ��s and U
2

/ �a are

coupling constants accounting for atom-atom interactions, Si
tot is the sum of all spin operators

of atoms in the site i, ✏ is the single atom unperturbed energy at each site and
P

<ij> runs over
each pair of neighbouring sites.

The Hamiltonian (1.21) (possibly with U
2

=0) is the celebrated Bose-Hubbard Hamiltonian.
It has been predicted theoretically and verified experimentally that any system described by such
an Hamiltonian undergoes a quantum phase transition from an insulator phase (known as Mott-
insulator), where each atom is confined in a well defined lattice site because the interatomic
interaction dominates over the tunnelling term, to a superfluid phase in which the atomic cloud
is delocalised over the full lattice and the system acts as a superfluid because the tunnelling
term dominates over scattering interactions [15, 16, 105, 106].

If one is interested only in the physics of the insulator phase, it is possible to obtain an
e↵ective, more manageable Hamiltonian description by performing a second-order perturbative
expansion in the tunnel amplitude J [103]. Skipping tedious calculations, the final form of such
an e↵ective insulator phase Hamiltonian is

H
e↵

= J
0

+ J
1

X

<ij>

Si · Sj + J
2

X

<ij>

�

Si · Sj
�

2

, (1.22)

where J
0

, J
1

and J
2

are functions of J2, U
0

and U
2

and can therefore be externally tuned by
changing both the lattice parameters and the scattering amplitudes.

The physics of ultracold gases in the insulating phase is thus mapped onto the physics of
an interacting spin system. The analysis of physical properties stemming from this e↵ective
description for a few-body system is part of the results presented in Chapter 3.
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1.3.3 Quantum master equations, non-Markovianity and unravelling

An open quantum system evolves in a non-unitary way. This is due to the fact that a unitary
time evolution can not account for dissipation, decoherence, fluxes of information inside the
system etc..., situations which normally characterise the interaction of a quantum system with
a reservoir [107]. Starting from Chapter 4 I will make largely use of a rigorous description of
dissipative dynamics in the framework of nonequilibrium thermodynamics, mainly resorting to
two tools known as Master Equations and stochastic unravelling of the dynamics.

For a closed system, the time evolution of the state ⇢ from t
0

to t is generated by a dynamical
unitary map ⇢(t) = ⇤U (t, t0)⇢(t0) which preserves, for instance, the purity of the state. In the
case of open quantum systems, a (non-unitary) dynamical map ⇤(t

0

, t) can also be defined,
which maps reduced states of the open quantum system at t

0

to reduced states at t. This is
possible, in general, provided the initial total state (system plus environment) at t

0

is factorized
in the form ⇢

tot

= ⇢(t
0

)⌦ ⇢E(t0). Under this assumption, a superoperator can be defined which
maps quantum states to quantum states preserving their trace (which by normalisation has to
be 1) and the positivity of any state under the action of the map ⇤⌦ I in any extended Hilbert
space. This requirement is known as Complete Positivity. Any dynamical map ⇤ satisfying the
conditions of being Trace preserving and Complete Positive is known as CPT map [3].

To fix ideas, consider here an open quantum system whose state ⇢(t) (which is the reduced
density matrix describing only open system’s degrees of freedom, and is generally mixed because
of the interaction with a bath) evolves due to two independent e↵ects: the first one originates
from the internal Hamiltonian evolution, generated by the unperturbed system Hamiltonian HS

plus a renormalisation term accounting for the e↵ect, on the bare energy levels of the open
system, of an interaction with an environment. Such a renormalisation is described by a Lamb-
shift Hamiltonian HLS which commutes with HS . Introducing the operator H = HS +HLS , the
first dynamical e↵ect is described by a unitary evolution term of the form

d⇢(t)

dt

�

�

�

�

�

Unitary

= �i [H(t), ⇢(t)] , (1.23)

where a time dependence in H has been introduced to work in full generality. Eq. (1.23) is the
usual von Neumann equation describing Hamiltonian evolution of a closed quantum system.
In addition to this, the state of an open system evolves also because of dissipative and decoher-
ence processes describing two di↵erent quantities which may flow into the environment: energy
and information. Briefly, dissipation describes the irreversible exchange of energy of an open
system and is a key feature, for instance, of many thermalisation processes and exists also in a
classical equivalent. Decoherence [108], on the other hand, is a purely quantum e↵ect or, more
precisely, is the e↵ect responsive for a loss of ”quantumness” of an open system. Coherence,
indeed, is a purely quantum feature originating from state superposition and, similarly to entan-
glement, describes how two state in a quantum superposition generate a stochastic behaviour
of measurement outcomes which can not be accounted for by a classical description. As infor-
mation flows into the environment, the probabilistic features of the open systems become more
and more classical and the system evolves towards a mixed state. Decoherence is thus one of
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the main obstacles to the full exploitation of quantum e↵ects in, e.g., quantum computation
protocols [109] and a huge deal of e↵orts has been devoted to study ways how to protect an
open system against such an e↵ect [110, 111]. These two phenomena may happen through many
di↵erent physical e↵ects, and may be generated by very di↵erent reservoirs. Despite this, how-
ever, it is possible to show [3, 112] that their e↵ect on the evolution of ⇢(t) can be accounted for
by a very simple formalism. Indeed
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where the non-Hermitian operators Ai(t) are known as Lindblad operators [113] and describe all
the physical processes by which the open quantum system exchanges energy and/or information
with its environment (and, as such, clearly depend on the particular system under scrutiny)
and �i(t) are relaxation rates associated to the i-th physical dissipative or decoherence process
(referred to as channel).

The total evolution of the reduced state is therefore given as the sum of Eqs. (1.23) and
(1.24) as
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. (1.25)

Eq. (1.25) is the master equation for an open quantum system, whose solution represents the
time evolution of the ensemble state. It describes how the knowledge about the state of a system
evolves in the case measurement are neither performed on it nor on its environment. It can be
shown [114, 115] that any CPT map generates a master equation which can be cast in this
local-in-time or time convolutionless (TCL) form, which means that the time derivative of the
state at time t depends on the action of certain class of operators on the state of the system
at the same time instant t. Depending on how the Lindblad operators Ai(t) and the relaxation
rates �i(t) depend on time, one identifies three classes of possible dynamics of an open quantum
system, i.e. Markovian, time-dependent Markovian and non-Markovian processes.

A Markovian, or memoryless, dynamics is characterised by having time independent Lind-
blad operators and rates, and �i > 0 8i. It originates, roughly speaking, from a coarse graining
operation in time and assumes the typical timescale of environment self-correlations to be much
shorter than the timescale characterising the evolution of the open system [3, 113]. This means
that the system, on a coarse grained timescale, does not feel any modification in the state of the
environment which is indeed assumed not to evolve in time. In the dynamics thus generated,
the open system has no memory of his past history and approaches monotonically one of its
possible stationary states. The set of dynamical maps ⇤(t) (one for each time instant t � 0)
associated to a Markovian process forms a semigroup.

In a time-dependent Markovian process [116] both Lindblad operators and relaxation rates
depend on time, but such that �i(t) � 0 8i, t. At each fixed time instant, then, Eq. (1.25) has
a standard Markovian structure and the system keeps having no memory of his past history.
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It therefore evolves, at any fixed time t⇤, approaching the stationary state associated to the
set of fixed operators Ai(t⇤) and rates �i(t⇤). Since such a set, however, depends on time, the
evolution of the system is not simply a monotonic approach to a unique state but, instead,
the system follows the evolution of the instantaneous stationary state determined each time
by the instantaneous Markovian form of the master equation, going instantaneously towards
stationarity. The set of dynamical maps ⇤(t) is, in this case, not anymore a semigroup.

Finally, a non-Markovian dynamics is characterised by memory e↵ects [117]. Both Lindblad
operators and rates depend on time, and in addition there exists at least one channel i� and a
finite time interval [t

1

, t
2

] such that �i�(t) < 0 8t 2 (t
1

, t
2

). According to the way one decides to
characterise non-Markovianity in the quantum case, such a condition may be or not be su�cient.
It is however always necessary. The timescale of environment self-correlations becomes in this
case at least comparable to the timescale of dynamical evolution of the open system, which
then feels at each step the modifications it induces on the environment itself. Memory comes
therefore into play and an instantaneous stationary state (which may even not exist), is in the
best case scenario not monotonically approached, i.e. the state of the open system may increase
its distance from the set of instantaneous stationary states during the time intervals in which
at least one relaxation rate is negative. This is due to information which is given back from
the environment to the system thanks to their strong dynamically built correlations. There
exist many ways to quantify these memory e↵ects [41, 118, 119, 120], each of which exploits
a particular physical consequence of the violation of Markovian structure. The presentation of
the full picture of non-Markovianity measures is beyond the scope of this Section. Here I only
discuss the general features of one of them [41], which is the one most closely related to our
definition of non-Markovian fluctuations given in Chapter 5.

One of the possible deviations from the Markovian behaviour is, as discussed, the fact that
instantaneously the system does not approach stationarity. Since however an (even instanta-
neous) stationary state may not exist for non-Markovian dynamics, one has to find a better way
to quantify the e↵ect of these backflows of information from environment to the system. Consider
then two di↵erent states ⇢

1

(t
0

) and ⇢
2

(t
0

), and let them evolve under the action of the same dy-
namical map ⇤(t, t

0

). If the dynamics was (time-dependent) Markovian, these two states at each
time instant would evolve towards the same instantaneous stationary state and their distance
would decrease monotonically in time. A deviation from this behaviour can therefore be inves-
tigated by analysing the time dependence of their distance, as quantified by means of any valid
metric in state space. In particular, in the standard approach [41] one uses the trace distance
between states [76] defined as DT (⇢1(t), ⇢2(t)) = Tr

�

�⇤(t, t
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)⇢
1
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0

)� ⇤(t, t
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)⇢
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)
�

�: the higher is
this distance, the more di↵erent the two states are with respect to outcomes of measurements per-
formed on them. Clearly a Markovian dynamics is characterised by dDT (⇢1(t),⇢2(t))

dt < 0 8⇢
1

, ⇢
2

.
The non-Markovianity of a certain dynamics has to be a function of the map ⇤ only and not of
the particular pair of initial states chosen. This is achieved by quantifying it as

N = max
{⇢1,⇢2}

Z

>0

dt
dDT (⇢1(t), ⇢2(t))

dt
, (1.26)

where
R

>0

stands for an integral over every time intervals in which dDT (⇢1(t),⇢2(t))
dt > 0 and the

maximisation is performed over any possible pair of initial states of the open quantum system.
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It has moreover been shown [121] that the same result is obtained when such a maximisation is
performed only over one state, keeping the other one fixed.

The onset of non-Markovianity, which can be tuned for example by modifying the system-
environment interaction strength, has been experimentally observed in a number of situations
[43, 44] and, in addition to being a core topic in quantum information science, has been shown
to supply a way to probe features of a complex environment by performing measurements on
open systems only [122, 123].

Finally, I conclude this technical section by providing a very brief sketch of the method
known as unravelling of a dynamics. The mathematical details of this method are given and
discussed in Section 5.2 in order to facilitate the interpretation of the results presented there.
Here I introduce its general ideas and discuss its conceptual sides. One can think about the
procedure of unravelling an ensemble dynamics as being equivalent to going, classically, from a
macroscopic thermodynamic view in terms of evolution of ensemble properties to a stochastic
thermodynamics formalism which describes the dynamics of a system as a mean value of tra-
jectories of microstates in phase space. In the quantum case, the time evolution of a density
matrix (ensemble state) can be obtained by averaging over a high number of stochastic pure
state trajectories (the equivalent of phase space trajectories), which are generated accordingly
to a number of di↵erent methods [71, 124, 125].

Clearly, as measuring the state of a quantum system fundamentally a↵ects its evolution,
one has to carefully comment on the physical realizability of single quantum trajectories. Among
the existing methods, one in particular is employed in Chapter 5 to study features of nonequi-
librum fluctuations and it is therefore worth introducing it here. It goes under the name of
stochastic wave function method [74, 126, 127], and describes the situation in which the dy-
namics of a system is continuously monitored by performing measurements on its environment.
Intuitively, this is the ”less invasive” way of measuring the time evolution of a single system
[128]. Information about its state is extracted from the reservoir by measuring a certain set of
e↵ects of system-bath interaction. Imagine, for instance, the open system to be a two-level atom
interacting with a radiation field acting as reservoir. The atom-field interaction is mediated by
emission or absorption of single photons (which I refer to as transition photons), which can be
experimentally detected in the field by performing almost-continuous measurements (i.e., a dis-
crete set of measurements separated in time by a very small time interval �t) on it. A result of a
single measurement can either be the detection of a transition photon (absorbed or emitted), or
no detection of transition photons. In the first case, one registers the pure state of the atom to
have performed a transition (for example, from its excited state to its ground state in the case
of emission), while in the second case the pure state evolves in a deterministic (although not
unitary) way. Since one has no a priori information about the result of measurements, there is
no way of predicting the behaviour of the system wave function which becomes then a stochastic
variable. The sequence of pure states the system follows conditioned on a set of measurement
records is known as quantum trajectory. I refer the reader to Chapter 5 for further discussions
and a rigorous formalisation of the method.

Here, to conclude, it is worth stressing that by generating an ensemble of (a high number
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of) trajectories of this kind and considering average values of physical quantities characterising
them, one perfectly recovers the full information available in the master equation formalism [71].



Chapter 2

Quantum equilibrium
thermodynamics

Equilibrium thermodynamics encompasses a vast landscape of phenomena, ranging from the
definition of macroscopic equilibrium states and quantities characterising them, to the theory of
reversible transformations and the one of phase transitions and further to certain formulations
of the laws of thermodynamics, not to mention the formalisation of quantum statistics stemming
from the spin-statistics theorem and their consequences on the structure of ensemble states of
identical particles.

Two main conceptual areas can roughly be identified when one tries to sort out all these
di↵erent topics, which may be referred to as stationary phenomena and adiabatic transforma-
tions. The first area deals with the physical characterisation of properties which do not change
in time, neither due to the interaction with an environment nor to the action of an external
force tuning some parameters of a system. To this class belong the theory of equilibrium states,
of stationary fluxes, and of quantum equilibrium statistics. The second area, on the other hand,
deals with those phenomena generated by an adiabatic tuning of some properties of a system. A
typical example is the huge class of so-called reversible transformations, in which the system is,
at each time instant, very close to an equilibrium state and moves therefore along an (ensemble)
equilibrium trajectory. The celebrated Carnot cycle is probably the most famous example of
phenomena of this kind.

But there is also another topic of extremely huge interest belonging to this kind of adiabatic
transformations, i.e. the physics of a system at a phase transition. When one tunes a certain
set of parameters characterising the initial equilibrium state of a system, in such a way that the
evolution thus generated is adiabatic (i.e., analogously to reversible transformations, the system
follows an ensemble path such that, at each time instant, it is found in an equilibrium state
characterised by the instantaneous value of the tuned parameters), a critical point can be met and
the system undergoes a phase transition. In this case, the system shows a collective behaviour
which is surprisingly the same for large collections of microscopically di↵erent models. These sets
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of collective behaviours are known as universality classes [129]. Clearly, everyone is familiar with
the notion of thermal phase transition thanks also to everyday life experiences. There exists,
however, a di↵erent kind of critical phenomena which shares the same set of universality classes
with the thermal transitions but originates from a di↵erent physical e↵ect. Such phenomena for
a system in its thermodynamic limit are known as quantum phase transitions [14].

The first part of my results, presented and discussed in Chapter 3, deals with some special
issues in quantum equilibrium thermodynamics mainly related to the vast topic of quantum
phase transitions and of state entanglement characterisation. Therefore, before proceeding to
them, I will give in this Chapter some pieces of information on the state of the art of these two
interesting research lines.

2.1 Quantum phase transitions

In view of the previous discussion, consider then a system with Hamiltonian H(�) depending on
a parameter � which can be tuned at will [13]. Such a parameter, in the most common cases, is
for example a coupling constant describing some internal or external interaction of the system.
Suppose that one can modify the value of such a parameter adiabatically. This generates a class
of Hamiltonian spectra, each of which is characterised by its ground state with a well-defined
energy. One can then look at this set as a parameter-dependent ground state |g(�)i = | 

1

(�)i
(suppose for simplicity the ground state energy to be non-degenerate), a piecewise continuous
function of �, which describes the ”thermal” state of the system when the parameter is changed
adiabatically at zero temperature. Indeed, along the adiabatic path the system stays always
infinitely close to the instantaneous zero temperature thermal equilibrium state, i.e. follows
adiabatically the modifications of its ground state. The structure of the state | 

1

(�)i may
or may not change with �, but assume here that at least some of its physical properties stay
unchanged: these properties define the quantum phase of the system and are usually referred to
as order parameters.

As a simple example, imagine that at a critical value �c the ground state changes from
| 

1

(�c � ��)i to | 
2

(�c + ��)i because of a level crossing in the ground state energy. What
happens physically is that, calling E

1(2)

(�) the energy associated to | 
1(2)

(�)i, one has

E
1

(�) < E
2

(�) for � < �c,

E
1

(�c) = E
2

(�c), (2.1)

E
1

(�) > E
2

(�) for � > �c,

so that the ground state energy Eg(�) is

Eg(�) = ⇥(�c � �)E
1

(�) +⇥(�� �c)E2

(�), (2.2)

⇥(x) being the Heaviside step function. Eq. (2.2) defines a ground state level crossing. In this
situation, for � = �c � �� the system occupies the ground state | 

1

i. After crossing the critical
point, the system thermalises again to a zero-temperature Gibbs state and is found in the ground
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state | 
2

i. If now | 
1

i and | 
2

i are characterised by di↵erent values of order parameters, the
system undergoes a transition between two well-defined phases. In this example, the transition
is sharp and may happen for finite as well as for infinite systems and one usually refers to
it as a first order quantum phase transition or I-QPT, characterised by a sudden jump in
the value of the order parameter. Another possibility, known as second order quantum phase
transition or II-QPT (and much more common in the thermodynamic limit), happens when the
level crossing discussed above is obtained as a limit of an avoided level crossing whose width
tends to zero with the number of components of the system. In this second case the transition
is smooth, and the order parameter changes continuously growing, after the critical point is
crossed, from zero to a value characterising the new phase. This transition can clearly happen
only in the thermodynamic limit. In both cases, anyway, the critical point in parameter space
is characterised as being a non-analytical point of the ground state energy [55], in which either
its first derivative or one of its higher order derivatives with respect to � does not exist.

There are at least two very famous examples of QPTs. The first one is detected in a chain
of spin 1/2 particles, each of which interacts with its first neighbours and with an external
magnetic field applied along a direction which is orthogonal to the spin-spin coupling direction
[130]. The Hamiltonian of such a system is, for example, of the form

H
Is

= �h
X

i

�zi � 
X

<ij>

�xi �
x
j , (2.3)

where �(z,x)i are Pauli matrices of the spin at chain site i, h > 0 is the coupling of each spin
to the local magnetic field (assumed to be uniform) applied in the z direction and  > 0 is
a spin-spin interaction parameter. The Hamiltonian (2.3) describes the famous Ising model in
a transverse field, widely employed in classical and quantum thermodynamic contexts since it
represents one of the few analytical solvable models of experimental interest [131].

As it comes clear just by looking at the structure of Eq. (2.3), two competing e↵ects
characterise the features of the ground state. On the one hand, when h � , the magnetic e↵ect
dominates and in the ground state all the spins tend to be aligned along the z direction so that
their magnetic energy is minimised. The ground state is therefore of the form |gih =

Q

i |+zii,
where |+zii is the eigenstate of �zi corresponding to the eigenvalue +1. There is no correlation
between the magnetisation at each site and the system behaves as a paramagnet. On the other
hand, in the opposite limit � h the mutual spin-spin interaction tends to align them along the
x direction such that each spin is parallel to its neighbours. The ground state is degenerate, being
|gi± =

Q

i |±xii, having defined |±xii as the eigenstates of �xi corresponding to the eigenvalues
±1. Clearly, for both of the possible ground states in this phase there is a long-range correlation
of the single site magnetisation such that the system as a whole shows a spontaneous macroscopic
magnetisation and behaves as a ferromagnet. This II-QPT between the quantum paramagnetic
and the quantum ferromagnetic phase happens, by tuning h or , at the critical point h = .

The second model of interest, already discussed in the previous Chapter, is the Bose-
Hubbard model [45, 100]. As anticipated when commenting on the physics of cold atoms in
optical lattices, the Hamiltonian (1.21) comprises two opposite e↵ects, i.e. the tunnelling term
and the onsite interaction. These two contributions tend to generate very di↵erent properties in
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the ground state of the system: indeed, when the tunnelling term dominates (J � U
0

, U
2

) the
atomic wave function is delocalised over the full lattice and the system behaves as a superfluid;
on the other hand, if the intra-site interaction is much stronger than the site-site coupling
(U

0

, U
2

� J), the less energetic configuration is the one in which each atomic wave function is
localised in a potential well and the system as a whole behaves as an insulator. Once again, a
quantum transition connects these two phases, at a critical point which depends among other
things also on the atomic chemical potential and on the average occupancy number of atoms in
each lattice site [105, 106].

There exists a strong connection between quantum and thermal critical behaviour: indeed,
a quantum phase transition of a d-dimensional system can be mapped onto a thermal phase
transition of a fictitious (d + z)-dimensional system, where z is the dynamic critical exponent
characteristic of the universality class the particular transition belongs to. Moreover, in many
cases a quantum critical point can be seen as the limit at T ! 0K of a thermal critical line
in the (T,�)-space. In this section I do not want to give a comprehensive treatment of this
fascinating, yet very vast topic. A number of beautiful review works [13, 14] on the field have
been published in recent years and I therefore refer to them for further details.

Strictly speaking, a QPT is a transition between ground states and happens therefore at
zero Kelvin. This is the most striking di↵erence between classical and quantum transitions, as
a classical system has no fluctuations when frozen at absolute zero and therefore can show no
critical behaviour. This is not the case for a quantum system, whose features generate even
strong fluctuations also in pure states. Although then, at a first glance, a quantum critical
point may seem unphysical (after all, phenomena happening only at zero Kelvin are not within
experimental reach), their existence leaves signatures on the behaviour of a system in their
vicinity at low but non-zero temperatures, thanks to the fact that in most cases quantum
features are not immediately suppressed by thermal fluctuations and there is a wide area where
an interplay between them can be witnessed. Since Chapter 3 deals with systems having discrete
energy spectra, I will analyse here this case in slightly more details.

For a system with a discrete spectrum in a Gibbs equilibrium state, thermal fluctuations
originate from the statistical occupancy of all its energy eigenstates according to the usual
Boltzmann distribution. The more excited states are significantly occupied, the less the structure
of the ground state only a↵ects the physics of the system and the less, therefore, one can witness
consequences of a quantum critical point at finite temperatures. Consider indeed equation (1.4)
which specifies the regime where one may expect thermal fluctuations to dominate over quantum
ones. In the case under scrutiny, the characteristic frequency !, at low temperature, is related
to the energy gap � between ground and first excited state roughly as ~! = �. In the vicinity
of a ground state level crossing at � = �c, then, depending on how fast � vanishes approaching
�c, there may exist a range of temperature of experimental interest at which

kBT < �, (2.4)

such that quantum e↵ects still dominate thermal ones in this whole non-zero temperature range.
Physically, this means that the populations of the system’s first excited states are, in this range
of temperatures, negligible compared to the population of the ground state, whose structure
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drives then the behaviour of the Gibbs state. Incidentally, note that the interplay between the
average energy kBT absorbed from a bath and gaps in the Hamiltonian spectrum characterises
the quantity known as heat capacity CV , which might then be expected to be a good probe for
a quantum critical point at non-zero temperature. In Chapter 3 I will show that this is indeed
the case.

As briefly commented in Chapter 1, moreover, a QPT is always associated to a singularity
in some entanglement quantifiers (I-QPT) or in one of their derivatives (II-QPT) [54, 55, 56, 57],
highlighting how the long range correlations responsible for the transition between two quantum
phases are of non-classical origin. All these features motivate part of the research I performed,
which is the subject of Chapter 3 and links critical points in parameter space to a sudden jump in
bipartite internal entanglement and to some general behaviour of measurable thermal quantities
for some simple few-body systems.

2.2 Entanglement and mixedness

In view of the previous discussion, a quantum criticality at finite temperature can be detected
when there is a competition between quantum features inside a system and thermal fluctuations
induced by a coupling with a bath. Exploiting the results of [31], discussed in Chapter 1 and
showing how the structure itself of a thermal equilibrium state can be seen as originating from
the system and its thermal bath being in an entangled total pure state, such a competition can
be traced back to an interplay between internal (i.e., between two subsystems) and external (i.e.,
with an environment) non-classical correlations shown by a quantum system. For this reason,
such an interplay is described here in some details.

In addition to the structure of thermal states and thermal properties, the link between
internal entanglement and the mixedness (i.e., how far the system is from being in a pure state)
of a quantum state, which can always be thought as originating from external entanglement
with an environment, is of paramount importance in the framework of quantum information
and quantum computation, since entanglement is one of - if not the - most important tools to
overcome, e.g., classical computation limits. Studies about the influence of external reservoirs
on internal non-classical correlations, and schemes to protect these correlations from unwanted
e↵ects, such as decoherence, due to the presence of structured environments are of huge concep-
tual and practical interest [108, 109, 110, 132]. The concept here is simple: the more mixed the
state of a system is, the stronger the perturbation exerted by an environment is, and the less
information can be encoded within the system in the form of internal correlations [133, 134].
This feature can be rephrased as: the more system and environment are correlated, the less
two parts of the system can correlate due to the so-called monogamy of entanglement [135]. A
number of analytical and numerical results are available, describing and exemplifying such a
behaviour.

Probably the most famous example of results connecting bipartite entanglement and mixed-
ness is the so-called absolute separability of the Kuś-Życzkowski ball [133]. Consider a quantum
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system S whose state ⇢ lives in a d-dimensional Hilbert space. One can wonder whether it is
always possible to choose appropriately two subsystems of S such that ⇢, with respect to such
a bipartition, is entangled. If this is not possible for any bipartition, the state is said to be
absolutely separable. It can be shown that absolutely separable states always exist: the typi-
cal example of this class of states is the maximally mixed state 1

dI which, being proportional
to the identity, assumes always the same uncorrelated structure in any possible basis in the
Hilbert space and whose purity is 1

d . The result by Kuś and Życzkowski shows that all the
states belonging to the hypersphere centred on the maximally mixed state, and whose surface is
composed of states having purity Pc =

1

d�1

, are absolutely separable. As a consequence, there
is an upper threshold to the mixedness of a state, over which no information in the form of
bipartite entanglement can be encoded in a quantum state.

Since, however, one often can not avoid the system of interest to be correlated with an
environment, it is of great interest to characterise the maximal amount of entanglement a state
can sustain at fixed mixedness. Mixed states having, across an appropriate bipartition, this
maximum entanglement are referred to as Maximally Entangled Mixed States (MEMS) [136]
and their characterisation is one of the most active researches in the field. Although the exact
structure of MEMS is not known in the general case, a number of upper and lower bounds of
entanglement and mixedness are known [134] and widely used in, e.g., experimental entanglement
estimation through purity measurements. As an example, consider the entanglement quantifier
known as Negativity N introduced in Eq. (1.16), and the simplest quantifier of mixedness
PE(⇢) = 1� Tr⇢2. Since partial transposition does not modify the eigenvalues of a matrix, the
mixedness can be evaluated also on the matrix ⇢T1 involved in the definition of N . In terms of
its eigenvalues {µi}, therefore, Negativity and mixedness are given as

N =

P

i |µi|� 1

dm � 1
, (2.5)

PE(⇢) = PE(⇢
T1) = 1�

X

i

|µi|2. (2.6)

It comes clear from the comparison of Eqs. (2.5) and (2.6) that these two quantities are not
independent. Indeed, a simple bound can be obtained by employing the so-called Chebyshev

sum inequality
⇣

Pd
i |ai|

⌘

2  d
P

i |ai|2. One straightforwardly gets

N  1

dm � 1

�

p
d
p

1� PE � 1
�

, (2.7)

bounding the entanglement across any bipartition (at least, the one detectable by the positive
partial transpose criterion) by means of a simple mixedness measure, which incidentally can be
also experimentally accessed.

The connection of entanglement to the purity of a state is of great interest in the context of
quantum equilibrium thermodynamics: in the case of a Gibbs thermal state, the purity measures
how strong thermal fluctuations are with respect to the ones characterising the ground state and
is then related to the structure and behaviour of standard thermal quantities.
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2.3 Gaussian approximation for many-body systems

As a last section of this thematic introduction to equilibrium thermodynamics, I discuss an
approximation which is often used in studying thermodynamic properties of many-body systems.
This is necessary in view of a full understanding of Chapter 3, where some of my results on this
approximation are presented clarifying its limits and highlighting its range of applicability.

The thermodynamics of most everyday-scale phenomena, e.g phase transitions, often reflects
the underlying existence of a complex microscopic many-body dynamics which is approachable,
generally speaking, in statistical terms only. Understanding the collective behaviour of physical
systems comprising a myriad of interacting or not, classical or quantum particles constitute
indeed an endless challenge. Experimental and technological successes in recent years do indeed
open new problems on a variety of many-body systems [11, 131], to be dealt with by making
recourse to the ideas and methods of statistical physics. The correspondent theoretical task is
to contrive simple enough but well addressed microscopic models as well as to develop, within
the Gibbs framework, widely applicable mathematical/numerical tools leading to predictions of
experimental interest.

Recently an interesting approach based on a generalised version of the Central Limit The-
orem (CLT) has been proposed by Hartmann, Mahler and Hess [139] and, at least for some
specific class of problems, it turns out to be a simple yet powerful predictive tool. Such a
method relies on a Gaussian approximation (GA) for the distribution of physical properties of
quantum systems. Here I briefly review this Gaussian method, originally presented in [139] and
based on a mathematical theorem proven in [140]. The method applies to any linear system
whose Hamiltonian can be written as a sum of single site or single block terms, which is often
the case for many models of interest [82, 141].

Consider then a many-body system consisting of an Nb-block quantum linear chain with
Hamiltonian H =

PNb
µ=1

Hµ, where Hµ is an operator composed of the block self-Hamiltonian
and the interaction Iµ,µ+1

between blocks µ and µ+ 1, reading

Hµ = I⌦(µ�1)HµI⌦(Nb�µ) + I⌦(µ�1)Iµ,µ+1

I⌦(Nb�µ�1), (2.8)

I being the identity operator in the single-block Hilbert space. Each block is described by a finite-
dimensional Hilbert space with dimensionality d, the dimension of the total Hilbert space thus
being dNb . It may consist, e.g., of one or several neighbouring spins. Given a total Hamiltonian
H, one may define the partitioning into blocks in many di↵erent ways. It is worth stressing,
however, that the GA applies as long as the dimension of the Hilbert space of each block stays
finite.

Define now two bases of the total Hilbert space of the system. The first one, whose vectors
will be written as |�i, is composed of eigenstates of H such that H|�i = E�|�i. The second
basis is made up of factorized vectors, written as |ai = Q

µ |aµi, where each |aµi is a local basis
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state of block µ. Finally, the two Gaussian parameters are defined as

Ea = ha|H|ai, (2.9)

�2

a = ha|H2|ai � ha|H|ai2. (2.10)

Note that, thanks to the structure (2.8), the evaluation of the mean values in Eqs. (2.9) and
(2.10) does not usually involve technical problems. To calculate the free energy and other
thermodynamic quantities within the Gaussian Approximation, one needs know only these two
parameters and the ground state energy, and for this reason the Gaussian method is more
appealing than other, much more sophisticated methods. From the definitions given above, it is
possible to build the operator

⇣ =
H � Ea

�a
(2.11)

with eigenvalues z�. It was shown in [140] with the use of a Central Limit Theorem, that under
the condition that a constant C > 0 exists such that �2

a � NbC, the following limit strictly
holds:

lim
Nb!1

Pa(z� 2 [z
1

, z
2

]) =

Z z2

z1

e�
z2

2p
2⇡

dz, (2.12)

where Pa(z� 2 [z
1

, z
2

]) ⌘ P

{|�i:z1z�z2} |ha|�i|2.

If one naively applies these results to the calculation of the density of states ⌘G(E) and of
the partition function ZG, one readily obtains the following expressions [139], which constitute
the core of the GA method:

⌘G(E) =
X

{|ai}

e
(E�Ea)2

2�2
a

�a

p
2⇡

, (2.13)

ZG =

Z

+1

Eg

⌘G(E)e��EdE =
X

{|ai}

1

2
e��Ea+

�2�2
a

2 erfc
⇣Eg � Ea + ��2

a

�a

p
2

⌘

, (2.14)

where Eg is the ground state energy of the system, the summation is extended over the whole
factorized basis {|ai} and erfc(x) is the conjugate Gaussian error function. Here � is the inverse
temperature in units of kB. Note that the evaluation of Eqs. (2.13) and (2.14) requires only
the knowledge of the two Gaussian parameters Ea and �2

a (not hard to calculate following Eqs.
(2.9) and (2.10)) and of the ground state energy, which can usually be obtained through, e.g.,
numerical methods.

It should however be emphasized that, rigorously speaking, Eq. (2.12) does not imply Eqs.
(2.13) and (2.14), since the number of terms in the latter equations grows exponentially with the
number of blocks Nb while Pa(z� 2 [z

1

, z
2

]) converges to (2.12) as 1p
Nb

[139]. As indeed stated

in [139], the reason is that the convergence of the distribution Pa(z� 2 [z
1

, z
2

]) is too weak to
justify the summation of a large (infinite, in the limiting case) number of terms appearing in
Eqs. (2.13) and (2.14). Thus these equations must be considered as an approximation motivated
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by a Central Limit Theorem, whose domain of validity should be carefully established. This has
been the subject of part of my research discussed in the next Chapter.
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Chapter 3

Results on quantum equilibrium
thermodynamics

This Chapter deals with the results about quantum equilibrium thermodynamics I obtained
during my PhD studies [142, 143, 144, 145]. It is divided into two sections in order to single out
the main conceptual areas in which these results are inscribed: the first section concerns the
connection between entanglement, thermal quantities and quantum critical points, while in the
second the applicability and the limits of the previously presented Gaussian Approximation to
many-body quantum systems is discussed.

3.1 Entanglement and thermal properties

This Section deals with the influence entanglement has on thermal equilibrium properties and,
in parallel, the way physical quantities characterising a Gibbs state can probe the presence of
low-lying level crossings in the energetic spectrum of quantum systems. The crossings are known
to generate a sudden jump of quantum correlations, characterising what has been referred to
as first order quantum phase transitions. In this section, then, critical phenomena are always
meant to be I-QPTs. These results, published in [142, 143, 144], have been obtained by me
[142], working together with Dr. A. Napoli and Prof. A. Messina [143] and also with Prof. H.
Nakazato [144].

3.1.1 The general picture

I discuss now the general part of my results, which shows a universal connection between the
heat capacity of a system and the existence of a quantum critical point. The heat capacity
will also turn out to be connected with the possibility for the system itself of forming bipartite
quantum correlations. The results discussed in this part have been published in [142].
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In view of what has been said in Chapter 1 about the origin and structure of thermal
equilibrium states [31], consider a d�dimensional system with a discrete (possibly degenerate)
spectrum Hamiltonian

HS |ii = Ei|ii. (3.1)

The Gibbs equilibrium state of such a system has the form

⇢ =
1

Z

d
X

i=1

e��Ei |iihi|, (3.2)

where Z is the partition function of the open system, while the state of the total system (open
system plus bath) can be assumed to be in the pure state ⇢

tot

= | ih |, an eigenstate of
the total Hamiltonian H

tot

. This state being pure, the purity of ⇢ in Eq. (3.2) measures the
entanglement of the open system with its environment. In particular, the already introduced
mixedness parameter PE = 1� Tr⇢2 assumes in this case the form

PE =
Z2 �P

i e
�2�Ei

Z2

=
X

i 6=j

P ij
E , (3.3)

having defined P ij
E = e��(Ei+Ej)

Z2 . One sees then that the mixedness of a thermal state originates
from individual contributions from every couple of (di↵erent) energy eigenvalues. The correla-
tions with a thermal bath, as evident in Eq. (3.3), originate from an exchange of energy whose
main e↵ect is to populate all the Hamiltonian eigenvalues of the open system. This e↵ect, as
commented in the previous Chapter, tends to hide the e↵ect of a quantum critical point in the
Hamiltonian parameters space and this interplay is at the core of the results presented in this
Section. Having this in mind, it is of interest to analyse the way a change in temperature mod-
ifies the statistical occupancy of energy levels and, as a consequence, the system-environment
correlations. This is investigated by the study of the quantity known as heat capacity, defined
as CV = ��2 @U@� = �2

�hH2

Si � hHSi2
�

, U being the internal energy of the system. It is nothing
but the variance of the Hamiltonian operator compared to the mean thermal energy and, in the
formalism used here, reads

CV = �2
X

i 6=j

P ij
E�

2

ij , (3.4)

with �2

ij =
(Ei�Ej)

2

2

.

There is thus a close connection between the expression of the parameter PE and the form
of CV . Indeed, they both are expressed as a sum over i 6= j of terms depending on each possible
couple of energy levels of the open system. A closer look at Eq. (3.4) shows that each of these
contributions to CV =

P

i 6=j C
ij
V has the form

Cij
V = P ij

E

(Ei � Ej)2

2T 2

, (3.5)

highlighting how the heat capacity resembles the mixedness of the state if viewed in terms of its
energy content. In this sense purity and heat capacity are closely related, both measuring how
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mixed a state is: the former from a statistical point of view and the latter from an energetic
point of view. One can identify two di↵erent contributions in the expression for each Cij

V : the

first one, P ij
E , is related to how much the pair of levels Ei, Ej contributes to the mixedness of

the state ⇢ in (3.2). The second one, (Ei�Ej)
2

2T 2 , depends on how distinguishable the energies of
two states are with respect to the mean thermal energy: a couple of degenerate energy levels
gives no contribution to heat capacity.

The key step now is to turn the attention to the meaning of the parameter PE in a quantum
context. Indeed, as already pointed out, this parameter measures the entanglement between the
d-dimensional open thermalised system and its thermal bath. In particular, when PE = P

max

=
d�1

d , the bath and the system are maximally entangled, while when PE = 0 the total state | i
is factorized with respect to such a bipartition. Since by definition P ij

E � 0 8i 6= j, the only way

to obtain a vanishing PE is having P ij
E ⇠ 0 8i 6= j, thus implying also Cij

V ⇠ 0. One concludes
that

PE = 0 ) CV = 0. (3.6)

From a physical point of view this means that when a thermal state of a system is pure, it
necessarily consists of one of the Hamiltonian eigenstates, resulting therefore in no energy un-
certainty and leading to a zero heat capacity. The next step is now to link the mixedness of the
state to the entanglement the open system exhibits with respect to a possible bipartition into
subsystems S

1

and S
2

. It is indeed to be expected such a link to be fairly strong thanks to the
property of entanglement known as monogamy [135] which ensures that, as long as system and
bath are entangled, maximal bipartite entanglement inside the open system can not exist. Vice
versa, when a bipartition of the system is maximally entangled, the system and the bath have
to be in a separable state. Calling e

1,2 any bipartite entanglement measure on the open system,
it follows that

e
1,2 = max ) PE = 0 ) CV = 0, (3.7)

which is then a general feature of any system having discrete energy levels and of any bipartite
entanglement measure on it. Note that the use of heat capacity or internal energy as entangle-
ment witnesses has been put forward, with di↵erent results, already in [17, 18].

Let us now analyse more closely the structure of the heat capacity. Introducing the energy
gaps of each excited level En to the ground state Eg as �n = En �Eg, Eq. (3.4) can be cast as

CV =
�2

2

P

l,n e
��(�l+�n)(�l ��n)2

(
P

n e
���n)2

. (3.8)

Consider now the case, which is of interest in the context of quantum critical phenomena, of a low
temperature thermal state. The leading term in Eq. (3.8) is, in this limit, the one involving only
the fundamental gap �

1

= E
1

�Eg between the ground state and the first excited level. This is
reasonable since, for low enough temperatures, a thermalised system occupies with statistically
relevant probability only these two energetic levels. Therefore

CV ' C(1)

V =
�2�2

1

e���1

(1 + e���1)2
, (3.9)
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where �
1

is the energy gap between ground state and first excited level. In the framework
of quantum phase transitions, since the Hamiltonian is supposed to depend on a parameter �,
this gap itself depends on such a non-thermal parameter whose variation tunes the transition,
which happens when �

1

! 0. Eq. (3.9) in the vicinity of the point �
1

= 0 (being nothing but
the quantum critical point) describes then a characteristic behaviour of a measurable thermal
quantity which can be used to probe, at non-zero temperatures, the existence of a quantum
critical phenomenon. Clearly, as temperature rises, more and more gaps are involved in the
expression for heat capacity and such a behaviour gets hidden. This characteristic feature of CV

as a function of �
1

consists of a structure with two maxima and a central minimum exactly at
the critical point, closely related to the so-called Schottky anomaly1. Such a feature is shown in

Fig. 3.1 where C(1)

V in Eq. (3.9) is plotted against the parameter � on which the fundamental
gap �

1

is assumed to depend, and which crosses a critical value �c.

Figure 3.1: C(1)
V for � = 1 (arbitrary units), versus the parameter � on which �1 depends as �1(�) = 0.2�2���2.

A critical point is met when �1(�c) = 0 and, in the vicinity of this point the heat capacity shows
the two characteristic bumps (maxima) predicted by Eq. (3.9). The critical point corresponds to the
central minimum.

Eq. (3.9) is completely general, only relying on the assumption of discreteness of energy
levels. It describes therefore the general response of any low-temperature thermal state to
quantum criticality in its parameters space.

1A Schottky anomaly (also known as Schottky heat capacity) is the behaviour of heat capacity versus temper-
ature, typical of a two level system, characterised by a maximum followed by an asymptotic decreasing toward
zero [2]; the di↵erence in the case analysed in this thesis is that temperature is fixed and the only parameter being
varied is �.
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3.1.2 Two-atom Bose-Hubbard model

In the rest of this section I discuss two simple yet exemplary models in order to analyse the
consequences of Eqs. (3.7) and (3.9) on their physics: a two-atom Bose-Hubbard model discussed
here and a two-qubit system discussed further on. Both of these models, despite being clearly
away from their thermodynamic limit, show ground state level crossing when some of their
Hamiltonian parameters are tuned and therefore, as commented previously, they obey a universal
behaviour which also characterises transitions in many-body systems. The results presented here
on the two-atom Bose-Hubbard model have been published in [143].

3.1.2.1 Hamiltonian Model

The physics of cold atoms in an optical lattice [45], leading to the Bose-Hubbard Hamiltonian
in Eq. (1.21) [100], has already been discussed in Chapter 1 showing how Eq. (1.21) takes into
account tunnelling between lattice sites and atom-atom interactions within each site. Systems
described by such a Hamiltonian can exist in two di↵erent phases: an insulator phase when
the atom-atom interaction dominates over the tunnelling term, and a superfluid phase in the
opposite limit. These two phases are connected by a II-QPT [105].

Here I am however interested in studying properties of the system in its insulating phase.
I will therefore not discuss the II-QPT characterising the Hamiltonian (1.21), but focus instead
on possible level crossings in the e↵ective Hamiltonian of the insulator phase [102, 103], which
in Chapter 1 was given the form of Eq. (1.22). Here an external magnetic field e! is applied to
the system, so that the insulating phase Hamiltonian reads

He
t = e!Jz +K

0

+K
1

X

<ij>

(Si · Sj) +K
2

X

<ij>

(Si · Sj)
2, (3.10)

where again Si represents the total spin operator in the i -th site and J =
P

i Si. The e↵ec-
tive coupling constants K

0

, K
1

, K
2

are related to the parameters t, U
0

and U
2

entering the
microscopic Hamiltonian (1.21) [102, 103] as

K
0

=
4t2

3(U
0

+ U
2

)
� 4t2

3(U
0

� 2U
2

)
,

K
1

=
2t2

U
0

+ U
2

,

K
2

=
2t2

3(U
0

+ U
2

)
+

4t2

3(U
0

� 2U
2

)
,

(3.11)

and satisfy the simple equation K
0

= K
1

�K
2

. In the deep Mott-insulator phase, where (3.10)
holds, the tunnelling amplitude t is usually of the order of some kHz but can be also made as
small as a few Hz [146]. Measuring the energy in units of t, He

t in the case of two atoms only
can be cast in the following form

He
t

t
⌘ H = !Jz + ⌧(S

1

· S
2

) + �(S
1

· S
2

)2 + rI, (3.12)
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where

⌧ =
K

1

t
, � =

K
2

t
, ! =

e!

t
, r = ⌧ � �, (3.13)

and I is the identity operator in the 9-dimensional Hilbert space of the system. The term
proportional to identity in Eq. (3.12) can not be neglected if one wants to investigate the
system in its full parameters space.

It is worth noting, in connection with the simplicity of the Hamiltonian model, that such
a kind of two-atom models has recently attracted interest in the context, e.g., of the study of
tunnelling phenomena [147], mostly connected to Josephson tunnelling between spin condensates
[148]. It is moreover appropriate to underline that the physical analysis relies on arguments which
are fully general and might thus be useful in the interpretation of analogous physical properties
related to more complex physical scenarios (many-atom Bose-Hubbard models, central spin
systems, spin chains, etc).

3.1.2.2 Thermal entanglement

The Hamiltonian in Eq. (3.12) can be rewritten, introducing the total spin operator J = S
1

+S
2

,
as

H = !Jz +
⌧

2
(J2 � 4I) + �

4
(J2 � 4I)2 + rI, (3.14)

and is therefore diagonal in the coupled basis |jMi of common eigenstates of J2 and Jz with
associated eigenvalues equal to j(j + 1) and M respectively. Its energy eigenvalues are

EjM = !M +
⌧

2

�

j(j + 1)� 4
�

+
�

4

⇥�

j(j + 1)� 4
�

2 � 4
⇤

(3.15)

Let us suppose that the system is in a thermal state at inverse temperature �. The density
matrix describing the two spin-1 atoms in the optical lattice is then

⇢ =
1

Z
e��H , (3.16)

where Z has the expression

Z = e��⌧
h

2 cosh�⌧
�

1 + 2 cosh�!
�

+ e��(3��2⌧) + 2e��⌧ cosh 2�!
i

. (3.17)

In order to quantify the thermal entanglement in the state (3.16) one can use the previously
introduced Negativity N (being aware of its limitations, discussed in Chapter 1) defined as [97]

N =
1

2

⇣

9

X

i=1

|µi|� 1
⌘

, (3.18)

where µi’s are the eigenvalues of the matrix �, the partial transpose of ⇢ with respect to one

of the two spins. Writing ⇢ in the ordered factorized basis
n

| � 11i, |1 � 1i, | � 10i, |01i, |0 �
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1i, |10i, |� 1� 1i, |00i, |11i
o

, and transposing with respect to the spin labeled as 1 leads to

� =

0

B

B

B

B

B

B

B

@

R+ 0 0 0 0 0 0 0 0

0 R+ 0 0 0 0 0 0 0

0 0 P� Q� 0 0 0 0 0

0 0 Q� P+ 0 0 0 0 0

0 0 0 0 P� Q� 0 0 0

0 0 0 0 Q� P+ 0 0 0

0 0 0 0 0 0 L� M� R�
0 0 0 0 0 0 M� Q+ M+

0 0 0 0 0 0 R� M+ L+

1

C

C

C

C

C

C

C

A

(3.19)

with

L± =
1

Z
e�2�(⌧±!),

M± = � 1

Z
e��(⌧±!) sinh (�⌧),

P± =
1

Z
e��(⌧±!) cosh�⌧ ,

R± =
1

6Z
e��⌧

�

e��⌧ ± 3e�⌧ + 2e��(3��2⌧)
�

,

Q± =
1

3Z
e��⌧

⇣3± 1

2
e��⌧ ± e��(3��2⌧)

⌘

.

(3.20)

Six of the nine eigenvalues can be written in the form

µ
1

= µ
2

=
1

2

⇣

P
+

+ P� �
q

�

P
+

� P�
�

2

+ 4Q2

�

⌘

,

µ
3

= µ
4

= R
+

,

µ
5

= µ
6

=
1

2

⇣

P
+

+ P� +
q

�

P
+

� P�
�

2

+ 4Q2

�

⌘

,

(3.21)

while the last three eigenvalues can be obtained solving the secular equation associated to the
3⇥ 3 block

B =

0

@

L� M� R�
M� Q

+

M
+

R� M
+

L
+

1

A . (3.22)

Since the algebraic expression of these last three eigenvalues of � is quite involved and does not
exhibit features deserving special attention, I do not report them explicitly. The knowledge of
the eigenvalues µi, functions of both temperature and the three model parameters, allows one to
investigate, at a given temperature, the behaviour of entanglement in the parameters space. The
e↵ect of the nonlinear e↵ective coupling between the two atoms on the thermal entanglement has
already been qualitatively investigated in the past [149]. It has been found that the quadratic
interaction term favours the existence of thermal entanglement which, however, can survive
only for absolute values of the quadratic parameter � < 0 larger than a critical value �c. In
the presence of an external magnetic field (! 6= 0) the system shows two di↵erent phases, one
corresponding to N = 1 and the other one to N = 0, and the value of �c at which the transition
takes place is dependent on !. These results have anyway been obtained neglecting from the
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very beginning the linear interaction term whose intensity is measured by ⌧ in the Hamiltonian
model (3.12). I investigated the role played by the linear term in competition with the quadratic
and magnetic ones.

3.1.2.3 Results

The negativity N against the linear interaction parameter ⌧ , for ! and � fixed (and equal to t),
is depicted in Fig. 3.2 in correspondence to the three values of average thermal energy T = 0.05,
T = 0.6 and T = 1 (in units of kB and t). The addition of the term proportional to ⌧ to this
model is at the origin of an intermediate phase (plateau of the negativity N = 1

2

), so that N
undergoes two transitions (vertical lines) di↵erently from what happens when ⌧ = 0 where only
one transition is present as shown in Fig. 2 of Ref. [149] and in Fig. 3.3 of this Chapter.

!10 !5 5 10
Τ
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0.6

0.8
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T#1

T#0.6

T#0.05

Figure 3.2: Negativity of the system, plotted against ⌧ when � = ! = 1. Energy is measured in units of t and
kB = 1.

It is easy to interpret the occurrence of the intermediate phase at N = 1

2

as originating
from the magnetic-field-assisted competition between the quadratic term and the linear one
when both � and ⌧ are positive. To appreciate this point it is enough to note that the two-
atom system, due to a positive linear interaction, tends to minimise its total energy assuming
j = 0 (maximally entangled state), whilst it tends to maximise both j and |M | (factorized state)
because of the e↵ect of a positive quadratic interaction in the presence of a magnetic field.

Figure 3.2 shows that the two transitions become sharper for lower temperature T . Investi-
gating the behaviour of the negativity N when the temperature T goes toward zero, it is possible
to demonstrate that the smooth transitions shown in Fig. 3.2 become indeed discontinuities.
In view of what has been said previously about the connection which exists between the entan-
glement, thermal properties and the energy spectrum, one may wonder whether this behaviour
reflects the existence of level crossings in the ground state of the system. This is indeed the
case since, in correspondence to the two transition points of the function N , the ground state
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Figure 3.3: Negativity of the system, plotted against � and ! when ⌧ = 0. Energy is measured in units of t and
kB = 1. Only two phases are present corresponding to N = 0 and N = 1. This plot is analogous to
the one depicted in Fig. 2 of G.-F. Zhang and S.-S. Li, Optics Communications 260, 347 (2006).

energy undergoes two level crossings. One may thus conclude that the results so far obtained
for the negativity N in correspondence to low, but nonzero, values of T stem from the existence
of critical points in the space of the parameters characterising the Hamiltonian of the system.
Indeed, as reported in Fig. 3.4 (where, in order to realise a wider intermediate plateau, � has
been fixed to a value greater than 1 such that the transition to the upper phase occurs at a
higher value of ⌧), the structure of the low-lying energy states of Hamiltonian (3.12) shows two
ground state level crossings in A and B.

A B

ΤA ΤB
"10 10 20 30

Τ

"15

"10

"5

0

5
Energy

Figure 3.4: Low-lying energy levels of H (in units of t) versus ⌧ when � = 7 and ! = 1. Each line corresponds to
an energy level, and the di↵erent colours describe di↵erent groups of Hamiltonian eigenstates split by
Zeeman e↵ect. Two crossing points, A and B in the figure, are clearly visible in correspondence to
the values ⌧A = 1

2 and ⌧B = 22.

The presence of these points, where the derivative of the ground state energy clearly un-
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Figure 3.5: Heat capacity and system negativity plotted against ⌧ when T = 0.6, � = 7 and ! = 1.

dergoes a finite jump, explains why ⌧A and ⌧B play the roles of analogues of quantum critical
points (although, once again, the system is not in the thermodynamic limit), detected by the
behaviour of the negativity. In approaching them, the gaps between low-lying energy levels
exhibit structural changes going to zero and then rapidly increasing again. This behaviour does
not depend on the particular choice for the parameters � and !: it stays qualitatively the same
at whatever these two parameters are kept fixed.

One can now move to the analysis of the heat capacity of the system in the thermal state.
Figure 3.5 reports the dependence of CV on ⌧ , straightforwardly obtained exploiting the knowl-
edge of Z in Eq. (3.17). In the same Figure the negativity is also plotted. The fixed value
of temperature T in these plots is 0.6 and has been chosen taking into account the fact that a
temperature close enough to zero always gives a flat, almost vanishing CV , while a high enough
temperature would destroy thermal entanglement, making unsuccessful any attempt to compare
it to the heat capacity.

Figure 3.5 exemplifies the two general predictions of Eqs. (3.7) and (3.9) and, in general,
of the analysis performed in the previous Section. It demonstrates indeed the existence of a
strong similarity between the behaviours of the heat capacity of the system and the one of neg-
ativity against ⌧ . Alike the negativity function, also the heat capacity is characterised by three
plateaus each of which corresponds to a well defined constant value. Moreover, the higher is
the entanglement the lower is the heat capacity and vice versa and, in the maximally entangled
phase with N = 1 the heat capacity vanishes as predicted by Eq. (3.7). Finally, in correspon-
dence to each transition point the heat capacity shows a peculiar oscillatory behaviour with two
maxima and a central minimum exactly at the critical point, which is perfectly described by Eq.
(3.9) (when taking into account the explicit dependence of �

1

on ⌧ , cf. with Figure 3.1) and
which shows how in the vicinity of level crossings the system behaves e↵ectively as a two-level
one. These characteristic oscillations in the heat capacity are a measurable signature of a first
order quantum critical point (i.e., of a quantum critical point leading to a I-QPT). It is worth
noting that such a result is a general property that is independent on the limited region of the
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parameter space (⌧ , �, !) analysed here for simplicity.

3.1.3 A two-qubit system

The analysis performed on the two-atom Bose-Hubbard model confirms the general predictions
of Eqs. (3.7) and (3.9). It is also possible, for some particular models, to go even beyond these
general links between entanglement and heat capacity, and to use measurements of heat capacity
to e↵ectively quantify the entanglement in, for example, a two-qubit thermal state. This has
been the subject of part of my research, whose results are published in [142, 144].

Since the knowledge of the Hamiltonian spectrum and the partition function is of great
importance for the study of Eqs. (3.7) and (3.9) and, more generally, of any direct or indirect
link between thermal entanglement and thermodynamic quantities, and since the physics at
any first order quantum critical point is, at low temperature, fundamentally a two-level system
physics, I considered a two-qubit quantum Ising model (whose Hamiltonian has been already
given and commented in Eq. (2.3)), thermalised by the presence of a bath. For practical reasons,
I introduce here also a y-y spin-spin interaction with the same coupling constant as the x-x term.
The Hamiltonian reads

H = ��
2
(�x

1

�x
2

+ �y
1

�y
2

)� h

2
�z. (3.23)

It is easy to show that, with respect to the Hamiltonian (3.23) and in the coupled spin basis,
the thermal state of such a system is given by

⇢ =
1

Z

0

B

B

@

e�h 0 0 0
0 e�� 0 0
0 0 e��h 0
0 0 0 e���

1

C

C

A

, (3.24)

where the partition function is Z = 2 cosh(�h)+2 cosh(��). The evaluation of the heat capacity
is thus straightforward. It reads (kB = 1)

CV

�2
=

h2 + �2 + 1

2

(�� h)2 cosh
�

�(�+ h)
�

+ 1

2

(�+ h)2 cosh
�

�(�� h)
�

(cosh(�h) + cosh(��))2
. (3.25)

At the same time one wants to quantify entanglement between the two qubits in the sys-
tem. In order to measure the degree of quantum correlation characterising a two-spin sys-
tem the typical choice is, as previously discussed, the concurrence C. I use here this en-
tanglement quantifier instead of the negativity thanks both to the fact that the concurrence
is a true entanglement measure (without the drawbacks of negativity) and to its particu-
larly simple expression in terms of Hamiltonian parameters. It is defined as C = Max{0, ⌫},
where ⌫ =

p
µ
1

� p
µ
2

� p
µ
3

� p
µ
4

. Remember that the µi’s are eigenvalues of the matrixp
⇢(�y ⌦ �y)⇢⇤(�y ⌦ �y)

p
⇢ and µ

1

� µ
2

� µ
3

� µ
4

. Evaluating such a quantity, after some
trivial calculations, one obtains

C = Max
n

0, ⌫ =
2

Z
(| sinh��|� 1)

o

. (3.26)
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Notice that, strictly speaking, the system in its thermal state is entangled if and only if |�| >
1

� ln (1 +
p
2) = e�. One could be surprised noticing that such a value of � does not depend upon

h since a magnetic field is usually expected to uncorrelate single constituents of a magnetic
system. Nevertheless, the partition function explicitly depends upon h in such a way that, when
h � �, C is almost zero even if � > e�. Only when � & h the concurrence is significantly di↵erent
from zero. From Eq. (6) one then obtains the concurrence as a function of the three quantities
�,� and h. Since, in most cases, the parameter on which one can exert the most detailed control
is the magnetic field h, and since moreover the magnetic field does not a↵ect the sign of ⌫, it is
possible to keep it fixed for each value of temperature and interaction strength � such that the
three-variable function C(�,�, h) can be regarded as a class of two-variable functions Ch(�,�)
depending on the externally tuneable parameter h.

This is particularly convenient as it allows for the possibility to invert C and find an ana-
lytical expression for the functions �h(C,�), valid at least in a range of values of C.

3.1.3.1 Heat Capacity versus Concurrence: analytical results and discussion

Strictly speaking, actually, the best one can do is to find analytical expressions for the functions
�h(⌫,�) each of which, as long as ⌫ � 0, coincides with �h(C,�). To this end, write C as

Ch = Max
n

0, ⌫ =
1

cosh�h+
p

1 + sinh2 ��
(| sinh��|� 1)

o

. (3.27)

As can be seen from (6), entanglement is an even function of �. Setting then x = sinh�� and
a = cosh�h and limiting the analysis to positive values of �, results in ⌫ = x�1

a+
p
1+x2 .

It is then straightforward to obtain

�h(⌫,�) =
1

�
ArcSinh

⇣a⌫ + 1 + ⌫
p

(a⌫ + 1)2 + 1� ⌫2

1� ⌫2

⌘

. (3.28)

For each fixed value of temperature and magnetic field, when ⌫ 2 [0, 1] the function (3.28)
describes the exact dependence of � upon the entanglement quantified by C. Nonetheless, as
anticipated before, there is a range of values of � 2 ⇥

0, 1

� ln (1 +
p
2)
⇤

originating from negative
values of ⌫ or, in other words, resulting in zero entanglement: in this range the concurrence is
a non-invertible function of �. When employing ⌫, however, there is no such an obstacle but
one has to be careful when commenting on the results with ⌫ < 0, having in mind that the only
physically relevant results can be obtained by looking at the restriction of the functions �h(⌫,�)
to the set ⌫ 2 [0, 1], while for negative values of ⌫ there is no link between the interaction
strength and the entanglement.

Since CV is by construction a function of �, by substituting (3.28) into (3.25) one obtains
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the set of functions CVh
(�, ⌫) as

CVh
(�, ⌫)

�2
=

1

(a+ cosh(��h(⌫,�)))2

 

h2 + �2h(⌫,�) +
1

2
(�h(⌫,�)� h)2 cosh

�

�(�h(⌫,�) + h)
�

+

+
1

2
(�h(⌫,�) + h)2 cosh

�

�(�h(⌫,�)� h)
�

!

.

(3.29)

For fixed temperature and magnetic field the domain of ⌫ in the function CVh
(�, ⌫) is given by

D =



� 1

a+ 1
, 1

�

, (3.30)

as can be easily seen from (6) by evaluating the values of ⌫ for � = 0 and for �! 1. Once again,
there is a part of this domain corresponding to negative values of ⌫, where heat capacity and
entanglement are independent quantities. Note that this range depends on temperature through
the �-dependence of a such that, in particular, D tends to the interval [0, 1] when � ! 1. This
means that, when the temperature goes towards zero, all the physics of the system is due to
quantum e↵ects and thus the heat capacity is fully characterised by quantum correlations only.
On the other hand, for any non-zero temperature, there exist situations in which thermal e↵ects
dominate over quantum ones so that the heat capacity is determined by thermal correlations
with the bath.

Eq. (3.29) goes beyond Eq. (3.7). It gives indeed a direct analytical expressions of a thermal
parameter in terms of an entanglement measure and shows how, once the entanglement in the
system is known and di↵erent from zero, heat capacity has a well defined value. Unfortunately,
the converse is not true.

By measuring all energies in units of h, one obtains the function CV1(�, ⌫) whose behaviour
is shown in Fig. 3.6 for 9 di↵erent values of �. First of all, this figure confirms again the
predictions of Eq. (3.7) since the heat capacity always goes to zero for maximally entangled
states, irrespectively of the temperature. Another interesting detail worth noticing is that, as
expected, lowering temperature results in a narrower range of negative values of ⌫. This means
that in the limit of very low temperature the behaviour of heat capacity fully depends on the
entanglement between the two spins in the system. Third, as it is easily seen from Fig. 3.6,
heat capacity is never a monotonic function of the concurrence. This is the reason why it is not
possible, with just a single measurement of heat capacity, to infer the value of entanglement.
Nevertheless, as shown in the next subsection, it is possible to make some precise predictions
about the entanglement value by a set of measurements at di↵erent temperatures.

3.1.3.2 Concurrence from Heat Capacity: an experimental protocol

Consider, to fix ideas, the function in Eq. (3.29) with � = 2 (see Fig. 3.7). Suppose that
one actually measures the heat capacity of a system described by Hamiltonian (3.23) and that
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Figure 3.6: Heat Capacity CV of the system versus Concurrence C (all energies are measured in units of magnetic
field h) for 9 di↵erent values of �: � = 0.5 (blue line), � = 0.8 (brown line), � = 1 (red line), � = 1.5
(gray line), � = 2 (purple line), � = 3 (orange line), � = 4 (black line), � = 6 (green line) and � = 12
(blue dashed line).

one can control values of the temperature (by for instance keeping the system in contact with
a reservoir) and of the external magnetic field. Since the system is fixed, � has a constant
value which, nevertheless, is not known to the experimentalist. It is interesting to wonder
to what extent it might be possible to obtain information about microscopic details of the
system (concurrence, entanglement, values of �) by measuring CV . Suppose then to measure all
energies in units of magnetic field and to fix temperature such that � = 2. Finally, perform a
measurement of heat capacity to get the value Cmeas2 (Cmeas2 = 0.4 in the example shown in
Fig. 3.7). It is easily seen from Fig. 3.6 that such a value of heat capacity can be associated
with up to three di↵erent values of concurrence or, which is the same, up to three values of
� since the knowledge of ⌫ directly yields the value of the coupling parameters through Eq.
(3.28). Although it is possible to conceive this proposal of experimental protocol in terms of
CV and ⌫ only, I make use here of � to simplify the notation and the discussion. By a single
measurement there is no way to infer which is the one value actually characterising the physical
system. These possible values of � compatible with the measure Cmeas2 can easily be obtained
from the function CV (�,� = 2) in Eq. (3.25).
There are thus three possible systems, respectively characterised by values �

1

, �
2

and �
3

, having
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Figure 3.7: Heat Capacity CV of the system versus parameter ⌫ (all energies are measured in units of magnetic
field h) for 2 di↵erent values of �: � = 2 (blue line) and � = 3 (red line). The Figure also shows,
by dashed lines, the changes in heat capacity and concurrence when going from � = 2 to � = 3 for
the three possible values of � associated to Cmeas2 = 0.4. It should be noted that the changes in
heat capacity strongly depend on the starting point on the curve with � = 2. Heat capacity gaps
CV (� = 2)� CV (� = 3) are sensibly di↵erent for the three possible values of � discussed in the text,
enabling one to distinguish between the three possible physical systems associated with them.

the same heat capacity. Looking at the example of Fig. 3.7 with Cmeas2 = 0.4, these three values
are �

1

⇠ 0.76, �
2

⇠ 1.6 and �
3

⇠ 2.7. The question arises whether it is possible or not to identify
which one of these three values is the real one.
Suppose now to measure heat capacity for the same system having a di↵erent temperature, say
� = 3. I assume here that changing the temperature does not a↵ect the coupling strength �
between spins and, since its value belongs to the set Sa =

�

�
1

,�
2

,�
3

 

, one can only measure
one of the three values CV (�1,� = 3), CV (�2,� = 3) or CV (�3,� = 3). Since these values are
in general di↵erent from each other, one immediately identifies the original value of �. Indeed
there is a set Sb =

�

�
4

,�
5

,�
6

 

of values of � associated with the measure Cmeas3, and there
must be at least one common element between Sa and Sb. If this common element is unique,
one immediately identifies the physical value �p of the coupling constant �. If more than one
element in

�

�
1

,�
2

,�
3

 

is associated with the measured heat capacity Cmeas3, one moves forward
by measuring CV for a third temperature, obtaining a new set Sc of possible values of � and
looking for the common element of Sa, Sb and Sc. This procedure can be employed until the
physical value of � is uniquely identified.

Clearly, once � is known the entanglement can be directly inferred. With simple measure-
ments of the heat capacity of a two-qubit system one is thus able to measure the entanglement
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(quantified by the concurrence) and any other microscopic property of the system. It is not
reasonable to expect this direct link to hold universally. For more complex systems there is in
general no easy way to infer entanglement by measurements of simple thermal properties (but
of course these measurements yield a great deal of information about first order entanglement
critical points as shown by Eq. (3.9)). This simple model however exemplifies how strong such
a connection may become in particular cases and that, probably, Eqs. (3.7) and (3.9) are not
the full story.

3.2 On the merit of the Gaussian approximation method

The second part of this Chapter is devoted to the exposition of my work about the applicability
and the limits of the previously discussed Gaussian Approximation (GA) for many-body systems.
This method can be inscribed within the landscape of equilibrium thermodynamics as it allows
for an approximate estimation of the two main quantities characterising thermal equilibrium
physics: the density of states ⌘ and the partition function Z. My work in the field showed
that results based on this method have to be taken carefully since, despite its wide range of
applicability, the method structurally yields unphysical predictions. These results of mine have
been obtained together with Dr. O. Lychkovskiy and with Prof. A. Messina and are published
in [145].

In this work, in particular, I studied the physical predictions of the GA and compared them
to the exact behaviour of thermodynamic quantities. Such a comparison is performed both in
general terms, by investigating the underlying structure of the GA method, and by applying it
to some particular model systems.

3.2.1 General investigation

In Chapter 2 I already singled out a possible source of problems intrinsically characterising the
GA method due to the speed of convergence of the Central Limit Theorem, on which the method
is based, with the number of constituents of the many-body system. To be more specific, Eqs.
(2.13) and (2.14), due to their structural dependence on Gaussian parameters and their scaling
with the number Nb of blocks, are prime suspects for unphysical behaviour. That is why, in my
work, I analysed in detail their physical predictions.

To facilitate the understanding of this Section, I rewrite here Eqs. (2.13) and (2.14) for the
density of states and the partition function under the GA:

⌘G(E) =
X

{|ai}

e
(E�Ea)2

2�2
a

�a

p
2⇡

, (3.31)

ZG =
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+1

Eg

⌘G(E)e��EdE =
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1

2
e(��Ea+

�2�2
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2 )

 

erfc
⇣Eg � Ea + ��2

a

�a

p
2

⌘

!

, (3.32)
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defined making use of the Gaussian parameters

Ea = ha|H|ai, (3.33)

�2

a = ha|H2|ai � ha|H|ai2. (3.34)

3.2.1.1 Error function at large positive and negative arguments

To begin with, a technical issue which is crucial for discussing the GA at large Nb has to be noted.
Focus then on the behaviour of the complementary error function which enters Eq. (3.32). It
has been shown [141] that its argument grows with the number of blocks as

p
Nb. One indeed

expects that
Eg = Nb"g

�

1 +O(N�1

b )
�

,
Ea = Nb"a

�

1 +O(N�1

b )
�

,
�2

a = Nb�2a
�

1 +O(N�1

b )
�

,
(3.35)

where "g, "a and �a are quantities defined per block and, as such, independent on Nb. The above
linear scaling is a generic feature of any modular Hamiltonian like the one in Eq. (2.8) (this
will be exemplified by means of specific models further on in this Section). Also note that the
linear scaling of �2

a is in accordance with �2

a � NbC, which is a necessary condition for the
applicability of the method. Therefore, the argument of the complementary error function in
Eq. (3.32) can be written as

p

Nb
"g � "a + ��2a

�a
p
2

(3.36)

which, at large Nb, is a very large number, either positive or negative depending on the sign of
("g � "a + ��2a). The complementary error function has a well-known asymptotic behaviour at
large arguments:

erfc(x) ⇠
⇢

2, x ! �1,

e�x2
/(
p
⇡x), x ! +1.

(3.37)

One may expect (and I will show later on that such an expectation is met) that this di↵erent
behaviours produce certain discontinuities in thermal quantities when the temperature is such
that ("g � "a + ��2a) changes its sign. In addition to its asymptotic form, the complementary
error function satisfies also an exact inequality [150] which limits erfc(x) at x > 0 as

erfc(x) <
e�x2

p
⇡x

. (3.38)

3.2.1.2 High temperature limit

As a first comparison, consider the high temperature behaviours of both the exact partition
function Z = Tr

�

e��H
�

and the partition function ZG obtained from GA and given in Eq.
(3.32). Formally expanding the exponential function of H in Z up to the second order in � one
straightforwardly gets

Z = Tr
⇣

1� �H +
�2

2
H2

⌘

+O(�3). (3.39)
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Note now that the trace operation is independent on the basis chosen to evaluate it. One can
for example use the factorized basis {|ai} defined in the previous Chapter and composed of
factorized single-block states. In this way, equation (3.39) can be written as

Z =
X

{|ai}

⇣

1� �ha|H|ai+ �2

2
ha|H2|ai

⌘

+O(�3)

=
X

{|ai}

⇣

1� �ha|H|ai+ �2

2
ha|H|ai2 + �2

2

�ha|H2|ai � ha|H|ai2�
⌘

+O(�3).

(3.40)

Equation (3.40) does not of course coincide with (3.32). Nevertheless, in the limit of high
temperatures such that

T > max
{|ai}

�2a
"a � "g

, (3.41)

the arguments of all error functions in (3.32) are negative and one can use the asymptotic form
of erfc(x) when x ! �1 (see Eq. (3.37)) to obtain

ZG '
X

{|ai}

e�
2 �2

a
2 e��Ea

=
X

{|ai}

⇣

1� �ha|H|ai+ �2

2
ha|H|ai2 + �2

2

�ha|H2|ai � ha|H|ai2�
⌘

+O(�3),

(3.42)

which is the same result obtained in (3.40).

This shows that, within the order �2 in the high temperature limit, any physical prediction
stemming from the GA coincides with the exact results since, by exploiting the knowledge of the
partition function, one can obtain expressions for every thermodynamical quantities of interest.

3.2.1.3 Low temperature limit

One may wonder now: what about low temperatures? In order to avoid annoying divergences
when taking the limit T ! 0, in the present subsection (but nowhere else!) I define the Hamil-
tonian (2.8) in such a way that the non-degenerate ground state energy Eg vanishes. The exact
partition function reads

Z = 1 +
dNb
X

i=2

e��Ei > 1. (3.43)

Here, the Ei’s are eigenstates of the total Hamiltonian.

On the other hand, at low enough temperatures such that

T < min
{|ai}

�2a
"a

, (3.44)
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one is able to bound the approximate partition function ZG from above. Indeed at such low
temperatures the arguments of all error functions in Eq. (3.32) are positive, and exploiting
inequality (3.38) one obtains

ZG  dNb max
{|ai}

e�"
2
a/(2�

2
a)

p

⇡Nb/2(��a � "a/�a)
! 0 as T ! 0. (3.45)

One thus sees that the approximate partition function can not reproduce the exact result when
temperature is low enough. This is a consequence of the fact that the Gaussian Approximation
does not hold when the system is very close to being in a single eigenstate of H (in our case,
in the ground state). In [139] such a failure in reproducing exact results at T ⇡ 0 was noted in
connection with the study of an Ising chain, and it was argued that the GA would in general
fail when predicting physical properties at zero temperature.

The analysis performed up to now dealt with limiting forms of GA at high and low temper-
ature regimes revealing that, while at high temperatures this approximation works satisfactory,
at low temperatures something goes wrong in the expression of the partition function. Since
however, the partition function itself is not a measurable quantity, it would be reasonable to ar-
gue that the discrepancies detected between the GA and the exact result may not have physical
consequences. This is not the case: to answer this question, in what follows and under specific
constraints on Gaussian parameters Ea and �2

a, explicit expressions for measurable quantities
obtained from ZG are given in the thermodynamic limit in the whole range of temperatures. This
analysis allows to elucidate that, contrarily to what happens in the high temperature limit, the
GA is unable to reproduce physical results in the range of low and intermediate temperatures.

3.2.2 An analytical expression for the free energy under constant Gaussian
parameters

Consider a model in which the Gaussian parameters �a and Ea in some factorized basis do not
depend on a, such as

Ea = 0,

�a =
p
N� > 0 8 a.

(3.46)

Note that the first equation implies the ground state energy to be negative unless the Hamiltonian
is identically zero. From equations (3.31) and (3.32) it is then possible to obtain the Gaussian
Approximation for the density of states and the partition function in the form

⌘G =
dNb

p
2⇡Nb�

e�E2/(2�2Nb), (3.47)
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2
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T
+
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⌘

�

. (3.48)

These quantities, while representing the starting point of any thermodynamical analysis, have
an elusive physical meaning since they can not be directly measured. The goal is then to check
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the physical predictive power of the GA focusing the analysis on other quantities exhibiting
operationally clear physical meaning. A typical choice is to calculate the free energy per block,
defined as �N�1

b T lnZ. In the GA framework this can easily be obtained from Eq. (3.47) with
the use of asymptotic expressions (3.37) for the error function. In the thermodynamic limit it
results

fG ⌘ lim
Nb!1

(�N�1

b T lnZG) =

(

�T (ln d� "2g
2�2 ) + "g for T < � �2

"g
,

�T ln d� �2

2T for T � � �2

"g
.

(3.49)

One can now compare the low-temperature behaviour of the exact free energy f and the ap-
proximation fG. First of all note that, at T = 0, fG = "g as it should. One can easily verify that
this happens simply thanks to the choice of ground state energy as a lower limit of integration
in Eq. (3.32), which ensures that fG at zero temperature always equals the ground state energy
per spin.

What about the entropy at zero temperature? The GA gives SG ⌘ @fG
@T |T=0

= � ln d+
"2g
2�2 .

However, according to the third law of thermodynamics, the entropy goes to zero as T = 0
[151].2 This disagreement shows that the GA is unable to reproduce the exact thermodynamics
when temperature is low enough.
Note further that

• fG and @fG
@T are continuous at T = � �2

"g
. However @2fG

@T 2 and further derivatives are not.
Thus the GA predicts a fake thermal phase transition which contradicts the general result
that thermal phase transitions do not exist in 1D systems with finite-range interactions
[129]. This shows how, even at intermediate temperature, the agreement with exact results
is very poor.

• fG at T > � �2

"g
coincides with the first two terms of the high-temperature expansion of f ,

as expected from (3.42).

3.2.3 A generalised formula for the free energy under weaker constraints on
Gaussian parameters

It is also possible to relax one of the two constraints (3.46) imposed on Gaussian parameters and
to consider the more general situation in which �a = const but Ea is not. In performing such an
analysis one works in the limit of very high number of blocks, when the number of terms in the
sums in (3.31) and (3.32) becomes very large and tends to infinity in the thermodynamic limit. In
these situations it is reasonable to exchange the summation over |ai by an integration over energy,
introducing a density ⌘free(E) defined as the number of states |ai for which Ea 2 [E,E + dE].
With this definition one can then replace summation with integration as

X

|ai

!
Z

⌘free(E)dE. (3.50)

2The third law can be violated only for systems whose ground state degeneracy grows exponentially with the
number of blocks. Here however no assumption is made on the degeneracy of the ground state.
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With the help of (3.50) one can rewrite Eq. (3.31) in the integral form

⌘G(E) =

Z

⌘free(E)
1p

2⇡Nb�
e�(E�E)

2/(2�2Nb)dE. (3.51)

Here the ”free” density of states ⌘free(E), introduced in (3.50), has itself the form of a sum
P

{|ai} �(E � Ea). It is often useful to approximate it by some more regular and manageable
functions. In what follows the choice to approximate it as a Gaussian function (as often done
when dealing with these kind of densities [152]) is made, exploiting a second time the Central
Limit Theorem (CLT) on which the GA is based and introducing therefore a further source of
error since the Gaussian distribution is unable to exactly reproduce the behaviour of ⌘free(E) at
its tails [152]. The approximation thus obtained may be then referred to as double Gaussian Ap-
proximation (GGA), stressing the fact that the CLT is applied twice in two di↵erent steps of its
derivation. Being aware of the further error thus introduced, one can develop the GGA. Assume
for simplicity that single-block free HamiltoniansHµ have the same structure for all µ (the gener-
alisation to the case of di↵erent Hµ is straightforward). Consider a basis {|alµi}, l = 1, 2, ..., d in

a d-dimensional single-block Hilbert space and, without loss of generality, set
P

lhalµ|Hµ|alµi = 0.

The statistical standard deviation of a single-block self-Hamiltonian relative to a specific
basis {|alµi} can be then defined as �2 ⌘ 1

d

P

lhalµ|Hµ|alµi2. From the Central Limit Theorem
one thus obtains

⌘free(E) ' dNb

p
2⇡Nb�

e�E
2
/(2�2Nb). (3.52)

Note that, as already pointed out, such an approximation does not work properly at the tails of
the distribution. Nonetheless, exploiting it, it is possible to apply the GGA to obtain
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Here E ⌘ Nb" and "1 ⌘ min
{|alµi}

halµ|Hµ|alµi. Note that the case studied in the previous subsection,

with Ea = const, corresponds to the limit � ! 0. In this limit erfc(x) ⇠ 2 and Eq. (3.53)
reduces to the expression given in (3.47), as it should. In the framework of this approximation
and using the asymptotic expressions for erfc(x) one obtains
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where ✓(x) is the Heaviside step function and "m ⌘ max
n

"g, "1
�

1 + �2

�2

�

o

.

The first term corresponds to erfc(x) with positive argument, while the second term corresponds
to erfc(x) with negative argument. There are some cases in which the first term can be neglected
or equals zero (e.g. in the Ising model). The second term alone gives rise to another complemen-
tary error function which closely resembles the one analysed previously in obtaining Eq. (3.49).
Following the same steps one then gets

fGG =

(

�T (ln d� "2m
2(�2+�2

)

) + "m for T < � �2+�2

"m
,

�T ln d� �2+�2

2T for T � � �2+�2

"m
.

(3.55)

Eq. (3.55) shows the same behaviour as (3.49). All comments made for (3.49) are thus
valid also in this case. In particular, it still predicts an unphysical thermal phase transition and
violates the third law of thermodynamics. It is worth stressing that (3.55) is valid as long as
the first term in (3.54) can be neglected or actually equals zero, and within the limits of the
additional approximation used to obtain (3.52).

3.2.4 Application to a specific model

The Gaussian method and its intrinsic limitations are analysed here for a quantum Ising chain
which, as previously commented, describes a system of interacting qubits embedded in an exter-
nal transverse magnetic field. Its Hamiltonian was already given in Eq. (2.3) and it is reported
again here to simplify the reading of this Section. One has

H
Is

= �J
N
X

j=1

�xj �
x
j+1

+ h
N
X

j=1

�zj , (3.56)

where �↵j , ↵ = x, y, z is the ↵-component of the Pauli matrix vector corresponding to site j,
J is the spin-spin interaction parameter and h is the external magnetic field. In what follows
I mainly work in the thermodynamic limit, where di↵erent boundary conditions are known to
yield the same physical results.

Being integrable, this model can be exactly diagonalised via a Jordan-Wigner transfor-
mation [153], obtaining in the thermodynamic limit the following expressions for ground state
energy and for free energy per spin
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(3.57)

It is worth noting that the application of the GA to this model has been discussed in [139], where
the exact partition function for the Ising model has been compared to the one obtained by means
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of Eq. (3.32). However, as previously said, the partition function itself is not measurable and,
to grasp the physics of the GA method, one should turn to measurable quantities.
Consider each block to be made of a single spin, and introduce the following notation for the
eigenstates of �y

�y|yi = |yi, �y|ỹi = �|ỹi, (3.58)

and analogously for x and z.

To apply the GA, one can take the factorised states to be made of eigenstates of �y, e.g.

|ayi = |yyỹỹyyỹyy...yi, (3.59)

thus easily obtaining Ea = 0 and �2 = J2 + h2. The formula (3.49) can be straightforwardly
applied to obtain f Is

G , which reads
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where
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f Is+

G = �T ln 2� J2 + h2

2T
. (3.62)

As expected, this equation predicts a wrong behaviour of the Ising free energy at low tempera-
tures, which is shown in Fig. 3.8.

3.2.4.1 Gaussian Approximation for the Ising model in a di↵erent factorized basis

As stated when discussing the general features of the GA method, the choice of the factorized ba-
sis is arbitrary. To show this, consider now as factorized basis the eigenbasis of H0 = h

PN
j=1

�zj ,
which is the same basis used in [139] to numerically evaluate the partition function from equation
(3.32). With the same notation introduced in the previous subsection one gets

|azi = |zzz̃z̃zzz̃...zi. (3.63)

This gives
"
1

= �h, �z = J, �z = h (3.64)

and
Ea = h(2k �N), (3.65)
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where k is the number of up spins in the factorized state |azi or, which is the same, is the number
of z in the state |azi. Ea, in this case, depends on a implying the use of the GGA. Equation
(3.55) might thus be applied, provided its conditions are met.
One can check numerically that

"
1

(1 + �2z/�
2

z)� "Isg  0 (3.66)

for all values of model parameters J and h. The free energy is then given by Eq. (3.55). However,
as can easily be checked, this result exactly coincides with one obtained in the previous subsection
employing the y-basis. The reason is that in a y-product basis, as done before, one gets

�y =
p

J2 + h2 (3.67)

and, as a consequence,
�2y = �2z + �2z . (3.68)

This relation, here shown for the Ising chain, indeed holds for a certain class of systems as
expressed by the following

Statement: Consider a model with Hamiltonian (2.8) represented as H = H0+ I, I being
an inter-block interaction, and two product bases, {|ai} and {|ãi}, such that

1. �a = const and �ã = const,

2. 8a Ea = 0,

3. 8ã hã|I|ãi = 0 and H0|ãi = E0

ã|ãi.

Then
�̃2 + �̃2 = �2.

The above Statement implies that if conditions 1,2 and 3 are met for a particular system,
then equation (3.49) and equation (3.55) actually give the same result and one is entitled to use
the simplest one.

To compare then how the choice of di↵erent bases a↵ects the results of the method, Fig. 3.8
presents the free energy obtained from the GA in y-basis (identical to the free energy from the
GGA in the z-basis) in the thermodynamic limit, to be compared with the free energy obtained
from the GA in the z-basis numerically evaluated for 1000 spins in the chain with open boundary
conditions. Both of them are further compared to the exact result in the thermodynamic limit,
too.

One can notice a very good agreement between both the approximate free energies and the
exact one as long as temperature is high enough (T � ��2

"g
), as expected from the high tem-

perature expansion in equation (3.42), but such a good agreement breaks down at intermediate
and low temperatures. The GA in y-basis, in particular, gives the worst approximation, while
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Figure 3.8: Free energy per spin plotted against temperature obtained from the exact formula (3.57) (green solid
line), from the GA in the y-basis (obtained both from (3.60) or from the same expression stemming
from (3.55), black dotted line) and from the GA in the z-basis (obtained directly with the use of (3.32)
in the case of Nb = 1000, red dashed line) for an Ising chain when J = 1 and h = 2. It is possible to
notice, as expected, how the high temperature behaviour predicted by the GA closely resembles the
exact one, while at low temperature the GA, in both bases, violates the third law of thermodynamics.
Nevertheless the agreement with the exact result is better for the GA in the z-basis.

the GA in z-basis is closer to the exact free energy despite still showing all the drawbacks high-
lighted previously when discussing the intrinsic limitations of the method. Note that the GA
in y-basis, which as said coincides with the z-basis GGA for this particular model, is a↵ected
by a greater source of error, while GA in z-basis, derived directly from (3.32) (and as such,
not in the thermodynamic limit), is more accurate. The di↵erence between the approximate
and exact results is even more marked if one considers that many measurable quantities are
obtained as derivatives of the free energy with respect to temperature. Note indeed the two
features previously highlighted: when the temperature approaches zero the exact free energy is
flat, corresponding to a vanishing entropy, while the GA free energies have non-zero derivative
(and, thus, entropy) at T = 0. Moreover, it can be noticed that the two GA free energies have
a second-order non-di↵erentiable point around T ⇠ 2.5, which corresponds to the fake thermal
phase transition already commented.

3.2.5 Remarks

One could wonder whether the GA might be more e�ciently exploited to get an insight into the
physics of statistical models when analysed in their non-thermal parameter space: the possibility
of detecting signatures of quantum critical points in the behaviour of thermodynamic functions
might be an alternative field of applicability of this method. It is well known that an Ising chain
described by (3.56) indeed shows the presence of a QPT when h = J , leading to a transition
from a ferromagnetic to a paramagnetic phase. Such a transition is a second order QPT, which
means it leaves signatures in the critical behaviour of the second derivative of free energy with
respect to one of the two Hamiltonian parameters when T ! 0. Such a criticality is due to a
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non-analytical point in the ground state energy (which by definition is the limit of free energy as
T ! 0) and is thus clearly present, as easily checked, also in the GA which strongly depends on
"g. Nevertheless, as shown in the previous section and as can be seen from (3.49), the knowledge
of "g is a necessary condition for the application of the GA to any system. This means that
in order to calculate fG one should know in advance "g and has therefore access to its whole
set of non-analytical points. The GA is then unable to supply further information on QPTs or
to extract them more e�ciently directly from the Hamiltonian operator. Di↵erently from the
argumentation in [139] indeed, the GA could actually be applied to the study of QPTs (when
T = 0, the free energy given by the GA coincides with the physical one even if, as noticed in
[139], the two partition functions strongly di↵er) but requires the same computational e↵ort as
an exact analysis and is thus not useful in simplifying any calculation.

To summarise:

• At high temperature any thermodynamic quantity obtained from the GA coincides with
the high-temperature expansion of the exact functions, within the order �2.

• For systems with �a independent on |ai and for systems with finitely-many blocks, the
GA predicts non-zero entropy at T = 0 in striking contradiction to the third law of
thermodynamics.

• For systems with �a independent on |ai the GA predicts a fake thermal phase transition
at an intermediate temperature, in contradiction to the very general result according to
which 1-D systems can not show any such transition [129].

• As discussed above, the GA is useless when applied to the analysis of quantum criticality
at fixed, vanishing temperature.

In conclusion, any physical prediction obtained from the Gaussian Approximation at low
and intermediate temperatures, like for example the one reported in [82], has to be taken cau-
tiously and deserve further analysis with di↵erent, more sophisticated tools.



Chapter 4

Quantum nonequilibrium
thermodynamics

Nonequilibrium systems are found everywhere in physics. All the theory of transport phenomena
[154, 155], most of biological systems of physical interests [155, 156, 157], the research of deep
conceptual and practical interest on quantum e�ciency [158, 159], classical and quantum ther-
modynamic machines [1, 23], these are just a few examples of situations whose understanding
requires going beyond equilibrium physics.

Despite the paramount importance of nonequilibrium phenomena, a general picture allow-
ing for their analysis is not yet available, since a comprehensive description poses non trivial
conceptual and technical problems already in the classical case. This is testified by the existence
of only a limited number of laws allowing for some statistical predictions on nonequilibrium
properties of complex systems, among which stand the second law of thermodynamics and the
celebrated class of theorems known as fluctuation-dissipation relations [160]. The latter, in par-
ticular, has been for long time the only structured framework in which nonequilibrium processes
could be studied, although under some pretty restrictive assumptions.

A huge step forward has been done, however, in the late nineties when Christopher Jarzynski
[59], and Gavin Crooks right after him [60], formulated a set of laws which in a disappointingly
simple way account for any kind of nonequilibrium processes, characterising their probability
distribution of energy or entropy fluxes. The predictive power of these laws is astonishing,
and they have already been experimentally verified over a satisfactory broad range of physical
situations [8, 61, 161, 162, 163], always proving themselves as the golden tool to tackle complex,
non trivial out-of-equilibrium physics.

Despite the fact that my interest for these laws has been exclusively focused on their
quantum validity, to fully grasp their meaning it is useful - if not necessary - to briefly go through
their classical counterparts [21, 59, 60, 164]. This, apart from respecting the chronological order
at which the theory has been developed, allows ideas to be fixed, concepts to be introduced and
the general framework to be specified in a more familiar and controlled context.
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4.1 A step backward: classical nonequilibrium thermodynamics

Consider then a classical system whose Hamiltonian H(�) depends on a set of parameters �, and
imagine to be able to exert an external control on these parameters, producing a time variation
of their values through a fixed protocol �(t), such that they start from initial values �

0

before
the protocol begins and end up to final values �T after time T . All their values in the time
interval [0, T ] are specified a priori. I refer to such a protocol as driving throughout this thesis.

4.1.1 Classical fluctuation theorems

Consider now, to fix ideas, the system to be in a thermal equilibrium state at time t < 0
before the driving starts. Its ensemble state will then be a Gibbs state at inverse temperature �
characterised by the Hamiltonian H(�

0

). Clearly, the existence itself of a thermal equilibrium
state implies the fact that the system interacts, or has interacted in the past, with a thermal
reservoir. One might suppose such an interaction to be switched o↵ before the driving protocol
begins, or may also consider the case in which the driven system continuously interacts with its
environment also for t � 0. When discussing my results I will always postulate the existence of
an environment, whose features will be accounted for by the structure of the Master Equation
describing the ensemble dynamics of the open system. Nonetheless, in this chapter it will
sometimes be convenient to consider the case in which the system is disconnected from its
environment along the driving time. This will allow for a much simpler derivation of a certain
class of nonequilibrium laws which focuses on the important conceptual steps avoiding some
technicalities arising when considering the e↵ect of an environment: the results are una↵ected
by this assumption. In this chapter I will then explicitly specify whether an interaction with
the environment is present or not during the driving interval.

The modification of Hamiltonian parameters necessitates, as already commented briefly
in Chapter 1, of a certain amount of work W . This work however fundamentally depends
on the particular path followed by the classical system in its phase space since, as will be
properly formalised shortly, it depends on how the time dependence in � is reflected in the
time dependence of position and momentum for each particle of the system [21]. One expects
then that such a work becomes a stochastic variable whose probability distribution has to be
determined.

One may reasonably expect the details of the driving to be of huge importance in specifying
such a probability distribution. Indeed, for example, for reversible transformations one can apply
standard equilibrium thermodynamics tools at each time step having an easy way to access the
statistics of work via the second law of thermodynamics asserting that

W
rev

= �F, (4.1)

where W
rev

is the work performed along a reversible driving protocol and �F is the net variation
of a free energy (which might either be the Gibbs or the Helmholtz potential depending on the
conditions at which the driving is applied). In general, however, the second law can only predict



4.1. A step backward: classical nonequilibrium thermodynamics 57

that
hW i � �F, (4.2)

where the average is taken over very may repetitions of a driving protocol generating generally
non-reversible processes, and the equality sign holds only for reversible transformations.

A better prediction about the statistics of work is achieved by applying the well known
fluctuation-dissipation relations. Their validity relies on the assumption of linear response the-
ory, i.e. on the fact that the system when not too far from equilibrium shows a reaction to an
external force which is proportional to the force itself. This is not generally true, but for not
too fast drivings it gives a good approximation to the true behaviour. Thanks to this, one can
predict that

hW i � ��W
2

= �F. (4.3)

Here �W is the second moment of the work distribution and � corresponds to the initial tem-
perature of the system induced by its bath. The linear response approximation predicts then
a Gaussian distribution of work, whose features are specified once again by the change in free
energy. Although valid only within certain limits and leading to di↵erent forms of stochasticity,
Eqs. (4.1) and (4.3) show an interesting common feature: they link nonequilibrium quantities
(W ) to equilibrium values (�F ), showing how the nonequilibrium behaviour of a system is
subtly ruled by fixing its equilibrium properties.

These two equations, however, are not a complete satisfactory description of far-from-
equilibrium physics. It would not be reasonable to expect, indeed, that for a generic driving
protocol the work distribution stays Gaussian. This is due to the fact that, for fast enough
protocols, the response of the system becomes strongly non-linear. Since the variation of �
with time is in general neither adiabatic nor slow enough for the linear response approximation
to hold, one has to seek for a further generalisation of Eq. (4.3) holding without the need of
any approximation. Despite the fact that, at a first glance, such a task may seem hopeless,
it can actually be performed in a surprisingly easy way. Since a full treatment of classical
nonequilibrium theory goes beyond the scope of this thesis, I present here briefly only the
simplest case of a classical driven closed system. The physics of this system is already clear and
rich enough to introduce all the standard tools needed in these kind of approaches.

Consider then a system with microscopic Hamiltonian H(q, p;�) depending on the micro-
scopic configurations q and the momenta p of all particles, and on the driving parameter �. The
change in H originating from a variation of the value of � is

�H� = d�
@H

@�
. (4.4)

It has been discussed in a number of papers how such a term, being in the form �W = �Fd�, F =
�@H
@� being the force acting on the system, represents the microscopic expression for infinitesimal

work �W . The work needed to generate the full driving process is then

W =

Z T

0

dt
d�

dt

@H(q(t), p(t);�(t))

@�
. (4.5)
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Note at this point that the set {q(t), p(t)} represents the microstate of the system at each time
instant during the nonequilibrium dynamics. This is nothing but the trajectory of the system in
its phase space, and is not a priori predictable within a stochastic thermodynamics framework
since the only fixed properties of the system are its initial and final ensemble states which
correspond to a very high number of compatible microstates. Since the evolution of a classical
system in its phase space clearly depends on its initial condition, and since one has no knowledge
about such an initial state (i.e., the microstate the system starts in at t = 0), trajectories of
the system - and therefore the work needed during the driving - become stochastic variables
themselves. An average over these stochastic variables gives back the ensemble state at each
time instant. This is the very core of any study on nonequilibrium fluctuations, and represents
(as I will discuss in detail in the next section) both one of the main obstacles in and the main
tool for a quantum version of this approach.

Motivated now by the structure of Eqs. (4.1) and (4.3), one may expect to find some laws
connecting the statistics of the work in Eq. (4.5) to the change in free energy �F . Assuming
the initial ensemble state of the system to be a thermal equilibrium state as

⇢
0

=
1

Z(�
0

)
e��H(�0), (4.6)

one exploits the knowledge of the partition function Z(�) to define the free energy as F (�) =
� 1

� lnZ(�). Assume also the final ensemble state of the open system to be a thermal equilibrium
state at the same initial temperature but given with respect to the final Hamiltonian H(�T ).
This can be easily achieved since one can always, by switching on the interaction with a bath,
thermalise a system only through heat exchanges. The statistics of work is then una↵ected by
this last stage of the process.

With these definitions, it is straightforward to evaluate the quantity he��W i, where the
average is taken over any possible trajectory the system may follow in its phase space and
is then, mathematically speaking, an ensemble average. Since, once the driving is fixed, the
stochasticity of trajectories originate only from the initial microstate distribution, such a term
results in

he��W i ⌘
Z

dq
0

dp
0

⇢
0

e��W . (4.7)

Since the system is isolated during the driving, the work performed on it equals the change in its
Hamiltonian, so that one can write W = H(qT , pT ;�T ) �H(q

0

, p
0

;�
0

). Moreover, by Liouville
theorem, transforming the initial final phase space {q

0

, p
0

} into the final one {qT , pT } implies
�

�

�

@qT @pT
@q0@p0

�

�

�

= 1. Thanks to these two conditions, Eq. (4.7) becomes

he��W i = 1

Z
0

Z

dqTdpT e
��H(qT ,pT ;�T ) =

ZT

Z
0

= e���F , (4.8)

where Z
0

= Z(�
0

) and ZT = Z(�T ). This proves the so-called Jarzynski equality [59], which
generalises Eqs. (4.1) and (4.3) to the case of arbitrary nonequilibrium processes. Once again
it relates the stochastic structure of these processes, he��W i, to equilibrium features of the
system. Such a law, despite its simplicity and its straightforward derivation, is an extremely
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powerful tool by which to tackle nonequilibrium physics, and represents together with its further
generalisations which I will briefly present shortly, the highest level of statistical knowledge
about far-from-equilibrium physics presently achievable. This equation remains unchanged if
one introduces an environment along the driving protocol, and even in the case in which the
features of the interaction with such an environment do not allow for a proper characterisation of
a Gibbs state for the system. In this latter case, the temperature in Eq. (4.8) is the temperature
of the environment. Note further that, if one supposes the work distribution to have a Gaussian
shape, the predictions of Fluctuation-Dissipation relations in Eq. (4.3) are recovered.

In the same spirit of the previous discussion, and following analogous technical steps, two
additional set of laws have been derived for classical systems, known as Crooks’ work and entropy
production fluctuation theorems [60]. They are given, respectively, as

pf (W )

pb(�W )
= eW��F , (4.9)

pf (�)

pb(��) = e�, (4.10)

where pf (x) is the probability that a quantity X takes the value x along the forward protocol
from �

0

to �T , while pb(�x) is the analogous probability along the so-called backward process
generated by the time-reversed driving from �T to �

0

and starting from the final ensemble state
of the forward protocol. Finally, � in Eq. (4.10) is the entropy which is produced along the
protocol because of the total system being not in equilibrium. Incidentally, it is interesting to
note that Eq. (4.10) expresses rigorously the meaning of the link between entropy increase and
process direction which is implied by the second law of thermodynamics: the natural direction
of a process is due to the microscopic asymmetry between such a direction and its backward
counterpart, and this asymmetry is measured by the entropy production of the process itself.

All these laws, Eqs. (4.8)-(4.10), go under the name Fluctuation Theorems (FTs). In
particular, a statement about the mean value of some function of stochastic nonequilibrium
quantities, such as the Jarzynski equality (4.8), is usually referred to as Integral Fluctuation
Theorem (IFT), while statements about probability distributions of these quantities are known
as Detailed Fluctuation Theorems (DFTs). IFTs are usually regarded as consequences of DFTs,
meaning that if a DFT holds for a certain quantity then also a IFT for the same quantity holds.
It has been shown [165] however that the converse is also true, so that in the end IFTs and
DFTs are just two di↵erent formulation of the same physical e↵ect. All theorems belonging to
these classes of laws, ultimately, reduce to two conceptual cores:

• They are a statement about the probability distribution of trajectories in phase space, and
the asymmetric behaviour of systems under time reversal.

• They characterise a trajectory by means of one or more related physical quantities such as
work or entropy production, and characterise the ensemble properties as originating from
a collection of individual trajectory properties.
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The quantum extension of these laws has to include both of these features in its formulation.
In a later section I will briefly review two of the most used approaches to achieve such a result.

4.1.2 Classical entropy production

Before proceeding forward, it is useful here to discuss in some details the definition of classical
stochastic entropy production [164, 165, 166, 167]. Apart from its direct connection to more
standard thermodynamic quantities such as heat or work, it is indeed possible to characterise
entropy contributions along single trajectories by means of information-based features linked to
the concept of process direction and of the rate at which information is lost during a dissipative
process [168]. Since now I am interested in characterising fluxes of entropy, connected to fluxes
of energy flowing in/from the system, I start considering here what will be the physical setup
throughout the following chapters: a driven open system continuously interacting with a reser-
voir. In particular, consider here a classical stochastic jump process which well characterises the
single trajectory evolution of a broad class of physical systems. There is therefore a fixed and
discrete set of states, referred to here with latin letters i, j, . . ., between which the system can
perform instantaneous transitions, characterised by the set of transition rates {Ri,j(�)}. These
rates depend on the driving parameter � since they contain all the features of the microscopic
dynamics [164]. Right after a transition to a level i, the time interval needed for the system
to jump again, and the target state j, are not known a priori and are distributed according to
some probability laws. The probability p(i, t) of finding the system in the state i at time t is
given by the solution of a classical master equation of the form

ṗ(i, t) =
X

j

⇣

p(j, t)Ri,j(�)� p(i, t)Rj,i(�)
⌘

. (4.11)

The meaning of this equation is evident. The occupation probability of the state i changes
in time because of two competing e↵ects: a gain term taking into account the contribution of
jumps from any other level to i and a loss term accounting for the probability of jumps from i
to any other level. Although such a class of processes may at a first sight seem quite restrictive,
it is enough to stress here that a continuous dynamics can be formally obtained as the limit of
a jump process when the chosen basis becomes a continuous set (as for example the position of
a particle in a di↵usive process), in which case Eq. (4.11) tends to assume the structure of a
Fokker-Planck equation. Specifying a single trajectory in this framework amounts then to fix a
sequence of states, between which the system instantaneously jumps, and the time instants of
those jumps.

Any time the state of a system becomes a stochastic variable distributed according to a
certain probability p, and calling n = N(t) the time series of microstates building up a trajectory,
the entropy of the ensemble of such trajectories is given by

S
ens

(t) = �
Z

dnp(n, t) ln p(n, t). (4.12)

Note that such a definition of entropy, which reduces to the common Gibbs entropy at equilib-
rium, in information theory contexts goes under the name Shannon entropy [93]. It quantifies
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the information contained in a given decomposition of a mixed state or, in other words, how
the particular set of trajectories available to the microscopic dynamics describes the information
about the ensemble state of the system.

One can then quantify how rare the event ”trajectory n(t)” is - or in other words how much
such a trajectory contributes to the total ensemble entropy - by the quantity

sn(t) = � ln p(n(t), t). (4.13)

It is interesting to note that such a quantity is also referred to as surprise, reflecting its feature
as a measure of the rarity of an event. No surprise, meaning p(n(t), t) / � (n(t)� n

0

(t)), implies
full knowledge about a system and indeed in this case its ensemble entropy goes to zero.

A jump trajectory generates two di↵erent contributions to the time variation of sn(t).
Indeed

ṡn(t) = � 1

p(n(t), t)



@p(n(t), t)

@t
+ ṅ

@p(n(t), t)

@n

�

. (4.14)

The first term describes the change in entropy of the system between jumps, which originates
from the explicit time dependence of p(n(t), t) due, among other things, also to the driving. To
fix notation, suppose that the particular trajectory under scrutiny consists of N jumps ik ! jk
at times tk. The second term in Eq. (4.14) weights the jump contributions, being di↵erent from
zero only at times tk due to the presence of ṅ, and (4.14) becomes

ṡn(t) = � 1

p(n(t), t)

@p(n(t), t)

@t
�

N
X

k=1

�(t� tk) ln
p(jk, tk)

p(ik, tk)
. (4.15)

When the system performs transitions between two states having, for instance, di↵erent energy,
dissipation is involved. The presence of a reservoir allows us to model such a process as an
exchange of energy between the system and its environment, which happens under the standard
form of a heat flux. It is possible to show [164, 167] that the associated entropy term, of the
standard form ṡe =

�Q
T at (or close to) thermal equilibrium, is generalised in the present case as

ṡe(t) = �
N
X

k=1

�(t� tk) ln
Rjk,ik(�(tk))

Rik,jk(�(tk))
, (4.16)

which expresses how much information is lost about the system following a dissipative energy
exchange with the environment leading to the transition ik ! jk, comparing the rate of such
a transition to the rate of the reversed jump jk ! ik. If these two rates are equal, on the
average this particular dissipative process will have no preferential direction, heat fluxes from
and to the system will balance and information about the system will neither get lost nor gained.
One can therefore look at Eq. (4.16) as the entropy flowing from/into the environment due to
the interaction with the system and measures the increase or decrease of the entropy of the
reservoir: for this reason such a term is usually referred to as entropy flux or (reversing its sign)
environment entropy.
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The process being dissipative, the sum of entropy change in the system and in the environ-
ment is not zero and corresponds to the net entropy production along the trajectory, which has
therefore the form

ṡi(t) ⌘ ṡn(t)� ṡe(t) = � 1

p(n(t), t)

@p(n(t), t)

@t
�

N
X

k=1

�(t� tk) ln
p(jk, tk)Rik,jk(�(tk))

p(ik, tk)Rjk,ik(�(tk))
. (4.17)

The total entropy production � along the dissipative driven process, given by the time integral of
Eq. (4.17) along a trajectory as � =

R T
0

dtṡi(t), represent the quantity which obeys the classical
FT in Eq. (4.10). The proof of the fluctuation theorem for such a quantity is formally analogous
to the corresponding proof in the quantum case, and I therefore postpone it to the next Section.

4.2 State of the art: quantum nonequilibrium thermodynamics

Moving to quantum systems and generalising the framework discussed in Section 4.1.1 presents
at least two conceptual problems:

• The idea of trajectories in phase space does not exist. Moreover, the experimental obser-
vation of the evolution of a system fundamentally a↵ects the evolution itself [169]. The
question may arise then whether it makes even sense to speak about single nonequilibium
processes for quantum systems.

• Quantities such as heat, work and entropy have no obvious general quantum analogues,
since it is not possible to characterise these properties by means of observables [7].

Remarkably, these two problems question the cornerstones of classical fluctuation theorems:
even more than by technical problems, a quantum formulation of fluctuation theorem is turned
into a challenging task by conceptual ones. It is not surprising, then, that quantum extensions
of Eqs. (4.8)-(4.10) [26, 27] are much less straightforward and describe a much richer set of
physical behaviour than their classical counterpart.

To provide a full picture of quantum approaches to fluctuation theorems would require
much more than a chapter, and goes far beyond the scope of this thesis. Here instead I aim
at presenting two exemplary ways of tackling the problem, giving thus a glimpse of ideas and
methods widely employed in these frameworks and allowing for the formalisation of quantities
which will be at the core of the exposition of my results in the next Chapter.

Before entering into details, one can roughly separate the known approaches to quantum
FTs into two groups, characterised by two di↵erent ways to tackle the conceptual problems
previously discussed. To the first group belong laws based on the assumption that the single
nonequilibrium dynamics is not experimentally monitored so that the system, in the time inter-
val (0, T ), evolves as a quantum ensemble whose density matrix changes in time according to a
quantum master equation [27]. Information about physical properties of the system is extracted
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by projective measurements on the system at the beginning of the driving process (t = 0), at
the end of the driving process (t = T ) and, possibly, at fixed time instants ti 2 (0, T ). This
approach has the advantage to extract information about the system by standard measurements
on its state (so that all the standard quantities such as mean energy or von Neumann entropy
can easily be defined), but renounces trying to define a quantum analogue to a phase space
trajectory since the dynamics between measurements is an ensemble evolution. The influence of
each measurement is, moreover, strong as it resets the system to a pure state partially hiding the
full quantumness of its evolution as open system. The second class, on the other hand, follows
a complementary idea. Employing a known method to rewrite any local-in-time quantum mas-
ter equation in the form of a rate-like equation for the instantaneous population of the density
matrix, one can exploit the formal analogy between the new form of the quantum ME and the
classical ME to characterise a single quantum nonequilibrium dynamics, in analogy with the
classical definition discussed in the previous Section, as a jump process between instantaneous
eigenstates of the density matrix [26, 62]. The advantage of this second class of approaches
dwells on the fact that the full quantum ensemble dynamics is recovered by averaging over these
”classical”-like trajectories, which can therefore be regarded as a possible analogue to classical
phase space trajectories. However, the experimental characterisation of these trajectories, and
therefore of their physical properties, is not in general fully clear. In particular, it is not straight-
forward to link each jump in these processes to a well defined transition involving a clear role of
the environment. The connection to physical quantities such as heat flux is then controversial.

Later on in this thesis, and in the next Chapter in particular, I will discuss how my work
managed to reconcile these two approaches in producing single, purely quantum trajectories
having a direct and clear physical characterisation in terms of fluxes in/form the environment.
Before moving to this topic, however, it is necessary to rigorously present examples for each of
the two just discussed classes of approaches in order to better appreciate the novelties of my
results.

4.2.1 Characteristic function method from two-point measurement statistics

This method [27, 67] belongs to the first class of approaches, relying on a discrete number (two,
in this case) of projective measurements on an open quantum system whose ensemble state
⇢(t) otherwise evolves from t

0

to t under the action of a CPT map ⇤(t, t
0

;�). The need for
an ensemble description arises here because of the possible interaction of the system with an
environment, which generally brings pure states into mixed states. In addition, the CPT map
also depends on the external driving parameter � which in turn depends on time. The ensemble
dynamics is described by the action of the CPT map as

⇢(t) = ⇤(t, t
0

;�)⇢(t
0

). (4.18)

Such an evolution may either be unitary (in the case of a closed quantum system), or may
describe dissipation and decoherence by means of a dynamical map. Throughout this Section I
will assume such a map to be Markovian (i.e., the dynamics to be memoryless).

Before the process starts a certain observable OA =
P

i,⌫i
ai|a⌫ii iha⌫ii | is measured on the
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state ⇢(t
0

) of the system (involving, in some cases, also a measurement on the environment).
The symbol ⌫i takes here into account possible degeneracies of the eigenvalue ai. Introducing

for the sake of brevity the notation Pai =
Pd(ai)

⌫i=1

|a⌫ii iha⌫ii |, where d(ai) is the degeneracy of the
eigenvalue ai, having measured as projects the state of the system onto

⇢
0

! ⇢s =
1

p(as)
Pas⇢0Pas , (4.19)

where p(as) = Tr (Pas⇢0) is the probability of obtaining the outcome as after a measurement
on ⇢

0

. Let now the system evolve under the action of ⇤ from t = 0 to t = T , so that its state
becomes

⇢s ! ⇢T (�) = ⇤(T, 0;�)⇢s. (4.20)

Finally, perform another measurement on the system of an observable OB =
P

j,µj
bj |bµj

j ihbµj

j |
which needs in general not to be the same as OA. With self-evident notations Pbj and p(bj), the
e↵ect of having measured bf is

⇢T (�) ! ⇢f =
1

p(bf )
Pbf⇢T (�)Pbf . (4.21)

Note that the stochasticity in this approach dwells on the intrinsic probabilistic structure of
quantum theory when predicting a measurement outcome and on the unavoidable e↵ect a pro-
jective measurement has on the state of a system, which is projected onto an eigenspace of the
measured observable. In this respect, such a stochasticity is purely quantum, having no classical
analogue and being conceptually and operationally di↵erent from the stochastic structure of
classical nonequilibrium thermodynamics discussed in Section 4.1.1.

The probability distribution of the di↵erence of measurement outcomes at t = 0 and t = T ,
i.e. of the random variable m, is given by

p(m;�) =
X

s,f

�
�

m� (bf � as)
�

p(bf , as;�), (4.22)

where p(bf , as;�) = pf |s(�)p(as), pf |s(�) =
1

p(as)
Tr

�

Pbf⇢T (�)
�

being the conditional probability
of measuring bf at t = T after having measured as at t = 0. The joint two-point measurement
probability p(bf , as;�) is the crucial quantity on which any characteristic function approach is
based. It is worth stressing here again that such a function describes all the stochasticity of the
process, which is due to the a priori unpredictable states in which the system is initially prepared
by the first projective measurement and finally projected by the second one. This corresponds
to the classical uncertainty in initial and final microstate in phase space. However, along the
driving dynamics the system evolves as an ensemble, and as such this method does not fully
reproduce the underlying physics of a classical FT (although, as I will show shortly, it recovers
the same formal structure) since it is a↵ected by the lack of knowledge about the state of the
system in the interval (0, T ).

Consider now the generating (or characteristic) function of p(m;�) defined as

G(x;�) =

Z

dmeixmp(m;�). (4.23)
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Such a function obeys a set of properties which ultimately lead, in a number of cases, to quantum
fluctuation theorems [170]. Evaluate for example its value for x = i. After some calculation,
introducing the weighted average initial state ⇢avs =

P

s Pas⇢0Pas , one obtains

G(i;�) ⌘ he�mi� = Tr
�

e�OB⇤(T, 0,�)(⇢avs eOA)
�

= �(OA, OB;�), (4.24)

where h·i� stands for an average over many repetitions of the same two-point measurement
scheme under a fixed driving protocol. � in Eq. (4.24) depends in general on the two chosen
observables OA and OB and on the driving protocol. This should not surprise since, to obtain
a standard FT, one has to properly fix the two measured observables. Indeed, suppose one is
interested in obtaining the quantum analogues of the classical Jarzynki equality in Eq. (4.8)
and Crooks’ work theorem in Eq. (4.9). To avoid technical and conceptual issues, let us operate
in the standard approximation of weak coupling and starting from a thermal equilibrium state
at inverse temperature � of the open system: one can therefore easily characterise the work W
performed by the driving on the system. Since the driving is applied on the open system only,
the environment energy change can be interpreted as originating from an heat flux Q, while the
total energy change �E of the open system will be due to such an heat flux plus the driving
work. In other words

W = �E +Q =
�

ES
f (T ;�T )� ES

s (0;�0)
�

+
�

EE
f � EE

s

�

, (4.25)

where ES
i (t;�) is a possible eigenvalue of the open system Hamiltonian HS(t;�) and EE

i is one of
the eigenvalues of the Hamiltonian of the environment HE . One can therefore choose the initial
and final observables to be measured as OA = HS(0;�0) +HE and OB = HS(T ;�T ) +HE .

One has therefore two independent stochastic quantities �E and Q, so that the variable x
in Eq. (4.23) is the two dimensional variable x = {xS , xE}. It has been shown by Talkner et al.
[171] that in the case just described the function G(xS , xE ;�) satisfies the relation

G(xS , xE ;�) =
Tre��HS(T ;�T )

Tre��HS(0;�0)
G(�xS + i�,�xE � i�;�b) (4.26)

�b being the backward driving protocol. Note that, following the classical definition, Tre��HS(t;�)

is the partition function of the open quantum system and one can introduce then its net free

energy change �F through Tre��HS(T ;�T )

Tre��HS(0;�0)
= e���F .

Taking the inverse Fourier transform of Eq. (4.26) and employing the definition of work in
Eq. (4.25) one finally gets

p(W ;�)

p(�W ;�b)
= e�(W��F ), (4.27)

which is the quantum version of Crooks’ theorem and, rearranging Eq. (4.27) and taking the
average according to p(W ;�), the quantum Jarzynski equality he��W i = e���F is recovered.
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4.2.2 Classical-like jump processes from local-in-time quantum master equa-
tions

As a last part of this thematic introduction about the state of the art of quantum nonequilibrium
thermodynamics, I discuss an example of the other class of approaches to quantum FTs, i.e. a
method [62, 172] based on a rigorous definition of single ”classical”-like trajectories. I will spend
a few more words presenting this method since it represents the starting point of part of my
work. It is then useful to carefully fix notations and concepts.

Consider then an open quantum system with free Hamiltonian HS , interacting with an
environment (free Hamiltonian HE) via an interaction term HI . Suppose the free Hamiltonian of
the open system to show a certain time dependence caused by some parameters being externally
modified in time through the driving. Such an external modification drives the system far from
its initial equilibrium (or stationary) state and towards a final state characterised by di↵erent
values of these control variables. During its evolution the system interacts with its environment,
and assume that the interaction and the features of both system and environment are such that
the Markovian approximation holds. The description of the ensemble dynamics can be given
employing a master equation [112] for the open system density matrix ⇢(t), describing a general
quantum dynamics:

d

dt
⇢(t) = �i [H(t), ⇢] +

X

i

�i(t)



Ai(t)⇢A
†
i (t)�

1

2

n

A†
i (t)Ai(t), ⇢

o

�

. (4.28)

The Hamiltonian H(t) in Eq. (4.28) describes the unitary part of the open system evolution,
which is given by its free Hamiltonian HS(t) plus a renormalisation term due to the interaction
with the bath. The nonunitary part of the evolution, describing dissipation and dephasing, is
accounted for by a set of generally time-dependent Lindblad operators Ai(t) and corresponding
relaxation rates �i(t). Equation (4.28) describes the most general Markovian process in terms of
a master equation which is local in time [3]. As discussed in Chapter 1, the Markovian features
of the dynamics are assured by the condition �i � 0 8i [113] and by the fact that both rates and
Lindblad operators are time-independent. In the case of time-dependent operators Ai(t) and/or
rates �i(t), which however satisfy the condition �i(t) � 0 8i, t, the structure of the master
equation is still Markovian at any time instant and for such a reason the process is referred to
as a time-dependent Markovian process [116]. In this latter case, however, it is worth stressing
that the corresponding dynamics is not described by a quantum dynamical semigroup. [117].

The starting point of this approach on nonequilibrium fluctuations is the expression for
thermodynamic ensemble quantities. To complete the quantum outlook of fluctuation theorems,
I discuss here the case of entropy fluctuations described, classically, by Eq. (4.10). In quantum
ensemble theory, the entropy of an open system is well characterised by its von Neumann entropy
�Tr⇢ ln ⇢. One needs therefore to express the time variation of the von Neumann entropy along
a generic nonequilibrium dynamics. To this end, one can write the state of the open quantum
system as [62]

⇢(t) =
X

a

µa(t)|a(t)iha(t)|, (4.29)
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where the set B(t) = {|a(t)i} is a time-dependent orthonormal basis of the open system Hilbert
space instantaneously diagonalising ⇢(t), and

P

a µa(t) = 1. This is always possible since,
by construction, Eq. (4.28) preserves the hermiticity of the state. Using the generator of
the dynamics given in Eq. (4.28) and calculating the mean value of Eq. (4.28) for a state
|b(t)i 2 B(t), one easily obtains a Pauli-type master equation for the evolution of the population
µb(t),

µ̇b(t) =
X

a

⇣

Rba(t)µa(t)�Rab(t)µb(t)
⌘

, (4.30)

where the total instantaneous transition rate Rba(t) between two states |a(t)i and |b(t)i belonging
to B(t) is defined as

Rba(t) =
X

i

�i(t)|hb(t)|Ai(t)|a(t)i|2. (4.31)

These transition rates will turn out to be crucial in the expression for all thermodynamic quan-
tities of interest. Note, in addition, the equivalence of Eq. (4.30) and the classical counterpart
in Eq. (4.11). This equivalence is only formal, since the time evolution of the quantum rates
Rba(t) in Eq. (4.31) is nontrivially non-classical because it depends on the time evolution of the
basis B(t) which, in turn, is generated by a purely quantum master equation. Nevertheless, by
rewriting Eq. (4.28) in the form (4.30) one hides all the dynamical quantum features in the set
{Rba(t)} and can exploit the formal analogy to the classical case.

In the case of a (possibly time-dependent) Markovian dynamics, the rates given by Eq. (4.31)
never become negative. In what follows I will use indices a and b to label vectors in the instan-
taneous eigenbasis of ⇢(t) (recall Eq. (4.29)), and an index i to label the possible decay channels
described by the set of Lindblad operators Ai(t) in (4.28). I will furthermore, for the sake of
brevity, sometimes suppress the time arguments of the instantaneous eigenvectors and eigenval-
ues of ⇢(t).

Having at disposal the instantaneous eigenbasis of ⇢(t), one straightforwardly obtains the
time derivative Ṡ of the system’s von Neumann entropy in the form

Ṡ(t) = �
X

b

µ̇b(t) lnµb(t). (4.32)

Using now Eq. (4.30) one finds

Ṡ(t) = �
X

a,b

µa(t)Rba(t) ln
µb(t)

µa(t)
. (4.33)

Using such an expression for the time derivative of entropy, and (motivated by the formal
analogy of the two master equations) following usual prescriptions of nonequilibrium thermody-
namics [166, 167] discussed in Section 4.1.2, Eq. (4.33) can be written as a sum of the di↵erent



68 4. Quantum nonequilibrium thermodynamics

contributions Ṡ(t) = Ṡe(t) + Ṡi(t), having defined

Ṡe(t) = �
X

a,b

µa(t)Rba(t) ln
Rba(t)

Rab(t)
, (4.34)

Ṡi(t) =
X

a,b

µa(t)Rba(t) ln
µa(t)Rba(t)

µb(t)Rab(t)
(4.35)

as, respectively, the entropy flux between system and environment and the total entropy pro-
duction. Equations (4.33), (4.34) and (4.35) describe the time dependence of entropy due to the
ensemble dynamics described by a TCL master equation. The irreversibility of the process is
characterised by a nonzero rate of entropy production Ṡi(t) which, furthermore, in the case of
a Markovian dynamics never becomes negative. It is worth stressing that the definition (4.35)
for the entropy production coincides with the negative time derivative of the relative entropy
of ⇢(t) and the stationary state ⇢

stat

of the dynamics, provided the latter exists and detailed
balance holds. Eq. (4.35) thus quantifies how far from stationarity the instantaneous state of
the system is.

The above defined quantities characterise the physics of the open quantum system on an
ensemble level. Such a picture, while allowing one to derive suitable expressions for many
quantities of interest, lacks however a characterisation of single nonequilibrium processes as
microscopic trajectories and, in particular, of their intrinsically fluctuating physical quantities.
In order to describe these fluctuations it is possible to employ the master equation (4.30) which
in the Markovian case only involves positive transition rates and can thus be regarded as a
di↵erential Chapman-Kolmogorov equation for a classical, Markovian stochastic jump process
such as Eq. (4.11) with, in general, time-dependent rates Rba(t). Consider a particular, yet
generic realisation of this process,

|a
0

(t
0

)i ! |a
1

(t
1

)i ! · · · ! |aN (tN )i, (4.36)

consisting of N jumps at times t
1

, t
2

, . . . , tN between well defined states belonging to the instan-
taneous eigenbasis of ⇢(t). Performing a classical-like unraveling of the master equation (4.30)
(i.e., writing the ensemble dynamics of the system as a collection of single pure state classical-like
jump trajectories) the probability of the trajectory (4.36) is

pf = µa0(t0)
N�1

Y

j=0

e
�

R tj+1
tj

d⌧
P

b Rbaj
(⌧)

N�1

Y

j=0

Raj+1aj (tj+1

)dtj+1

, (4.37)

where the first factor gives the probability for the system to start its trajectory in the state |a
0

i,
the second factor gives the probability of having no jumps between the times tj and tj+1

, and
the third factor represents the probability of having N jumps within infinitesimal time intervals
dtj around tj between the states of the trajectory (4.36).

It is important to emphasize that the stochastic description given by Eq. (4.37) is based on
the Pauli-type master equation (4.30) and thus correspond to the standard stochastic unraveling
of a classical Markovian master equation [173], in which the probability for a transition from
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state |a(t)i to state |b(t)i during the time interval dt is determined by Rba(t)dt with the rate
given by Eq. (4.31). Thus, I follow here the interpretation proposed in [62] to identify the
fluctuations of single nonequilibrium processes with those described by the evolution equation
(4.30) for the populations of the density matrix. This interpretation and the underlying physical
picture has to be carefully distinguished from the interpretation of the stochastic wave function
methods (see, e.g., Ref. [125] and references therein) for the open system dynamics given by a
quantum master equation of the form of Eq. (4.28) in terms of a continuous measurement of the
environment.

Indeed, analysing the structure of transition rates Rba(t), one easily sees that they are not
associated to a single dissipative process involved in the quantum master equation and described
by a Lindblad operator Ai. On the contrary, they are given as a sum of e↵ects of virtually all
Lindblad operators. Since Lindblad operators describe physical processes involving exchanges
of energy/information with the environment, the characterisation of a rate Rba in terms of a
particular physical flux form/to the environment is not, in general, possible.

The backward process corresponding to (4.36) is described by the trajectory

|aN (tN )i ! |aN�1

(tN�1

)i ! · · · ! |a
0

(t
0

)i. (4.38)

The probability pb for such a backward process is defined analogously to what has been done
for the forward one, taking into account the jumps in the sequence given in Eq. (4.38) such that
the conditional non-jump evolution probability is then the same for forward and for backward
processes, while the jump rates are reversed,

pb = µaN (tN )
N�1

Y

j=0

e
�

R tj+1
tj

d⌧
P

b Rbaj
(⌧)

N�1

Y

j=0

Rajaj+1(tj+1

)dtj+1

. (4.39)

The logarithm of the ratio of these two probabilities takes then the form

ln
pf
pb

= ln
µa0(t0)

µaN (tN )
+

N�1

X

j=0

ln
Raj+1aj (tj+1

)

Rajaj+1(tj+1

)
. (4.40)

Note now that the first term on the r.h.s. of Eq. (4.40),

�s = ln
µa0(t0)

µaN (tN )
, (4.41)

represents the net change of the von Neumann entropy along the single forward trajectory, while

�se = �
N�1

X

j=0

ln
Raj+1aj (tj+1

)

Rajaj+1(tj+1

)
(4.42)

yields the single trajectory contribution to the entropy flux (4.34), integrated along the forward
process. Note that the average of Eqs. (4.41) and (4.42) over all possible trajectories leads to
the expressions (4.33) and (4.34), respectively. Defining

� = �s��se (4.43)
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as the total entropy production along a single trajectory, Eq. (4.40) implies the entropic fluctu-
ation theorem for Markovian dynamics as

pf (�)

pb(��) = e�, (4.44)

which is formally the same as its classical analogue. From Eq. (4.44), and properly linking
the production of entropy to heat and work along a trajectory, the quantum analog of Crooks
theorem [174] and the quantum Jarzynski equality [175] directly follow.



Chapter 5

Results on quantum nonequilibrium
thermodynamics

In this Chapter I present the part of my results dealing with fluctuations in nonequilibrium
quantum processes. These results encompass two di↵erent contributions to the state of the art
on quantum fluctuation theorems discussed in Chapter 4, namely, the introduction of memory
e↵ects into the formulation of classical-like jump processes (the Markovian formulation of which
is given in [34] and discussed in Section 4.2.2), and the characterisation of entropy fluctuations
with the use of true quantum trajectories of open systems, having a clear connection to ther-
modynamics since they are given an experimental meaning in connection to fluxes from/to an
environment. In both these approaches the open system is, clearly, out of equilibrium and a
formalisation of its ensemble dynamics through a master equation (ME) formalism is needed.

The results presented in this Chapter have been obtained by me working together with Dr.
A. Napoli, Prof. A. Messina and Prof. H.-P. Breuer, and are published in [72, 73].

5.1 Fluctuation theorems for non-Markovian quantum processes

This Section is devoted to my results about non-Markovian entropy fluctuation theorems pub-
lished in [72]. Exploiting the previously discussed results on Markovian classical-like jump
processes and fluctuation theorems, I studied consequences of memory e↵ects along single reali-
sations of nonequilibrium processes of an open quantum system and, in particular, in fluctuations
of the associated entropy production. As I will show in this Section, the presence of memory
e↵ects in the dynamics of the system leads to a correction to the standard form of FT. Such
a connection can be interpreted as the interplay between the information extracted from the
system through measurements and the flow of information from the environment to the open
system itself. This flow, due to non-Markovian e↵ects, generates single realisations of a dynamic
process which are no longer independent. Their correlations therefore fundamentally a↵ect the
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behaviour of entropy fluctuations.

5.1.1 The master equation

To fix ideas, consider the same setup described in Section 4.2.2, consisting of an open quantum
system in interaction with a bath. Di↵erently from the case of memoryless processes, however,
no assumption is made here on the strength or on the features of the system-bath interaction.
In general, therefore, the open system considered here undergoes a non-Markovian dynamics
described by the time convolutionless (TCL) master equation in Eq. (4.28), which I report here
again:

d

dt
⇢(t) = �i [H(t), ⇢] +

X

i

�i(t)



Ai(t)⇢A
†
i (t)�

1

2

n

A†
i (t)Ai(t), ⇢

o

�

. (5.1)

Despite being local in time, this equation can describe the most general case of memory e↵ects
through the sign of decay rates �i(t). Indeed, as stated in Section 1.4.3, a necessary condition
for the ME (5.1) to describe a non-Markovian dynamics is that at least one decay rate �k(t)
becomes negative during a finite time interval [117]. Moreover, in addition to the time evolution
due to the interaction with the environment, the free Hamiltonian of the open system is supposed
to show a certain, well defined time dependence because of the driving applied on some of its
parameters. This time dependence is implicitly included in Eq. (5.1) in the form of H(t). It is
worth stressing again here that the nonunitary part of the evolution is accounted for by a set
of generally time-dependent and non-Hermitian Lindblad operators Ai(t) corresponding to the
relaxation rates �i(t), each of which describes a certain physical process leading to dissipation
or dephasing [3].

In the corresponding Markovian case, these operators are used to define the transition rates
Rba(t) between two instantaneous eigenstates |a(t)i and |b(t)i of ⇢(t) as

Rba(t) =
X

i

�i(t)|hb(t)|Ai(t)|a(t)i|2. (5.2)

These are well-defined quantities also in the presence of memory e↵ects because a non-Markovian
ME preserves the hermiticity of ⇢ at each time instant, which is then always diagonalisable
and has therefore at each time instant a set of eigenvalues {µa(t)} and associated eigenvectors
{|a(t)i}. The meaning and the (lack of direct) connection of these rates with physical fluxes
of energy and/or information between system and environment has been discussed in Section
4.2.2. Here note that, because of memory e↵ects, these rates may become negative. In what
follows I define a process and, consequently, its set of pure state jump trajectories as being
non-Markovian if at least one of these transition rates become temporarily negative.

5.1.2 Non-Markovian e↵ects

A first attempt to take into account negative decay rates in the formulation of a fluctuation
theorem was already performed in [172] where, however, a clear formulation of a non-Markovian
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fluctuation theorem was not given. In particular the approach of [172] works well as long as all
the transition rates Rba(t) stay positive. This means that, in the formalism employed here, such
results do not describe memory e↵ects in the fluctuation of entropy production since the transi-
tion rates being negative is exactly the characterisation given here of a non-Markovian process.
Note that this characterisation is not arbitrary since, as shown later on, it implies the open sys-
tem to increase its entropic distance from its instantaneous stationary state, which is related to
one of the most employed definition of quantum non-Markovianity. A study of nonequilibrium
fluctuations was never performed for this class of genuinely non-Markovian processes and has
been the subject of part of my research.

5.1.2.1 Renormalized entropies

Analogously to what is usually done in the Markovian case, one begins by analysing the entropic
ensemble behaviour of the open quantum system. The equation for the time derivative of the von
Neumann entropy for a non-Markovian system is naturally the same as Eq. (4.32), but now the
time evolution of populations is a↵ected by memory e↵ects. To see where exactly these e↵ects
come into play, one must closely analyse the Pauli rate equation for the population of the density
matrix, Eq. (4.30), which is a direct consequence of the TCL structure of any master equation,
either Markovian or not. Such an expression for µ̇b(t) depends on the transition rates Rba(t) in
(5.2). Notice now that each term in the sum on the right-hand side of (5.2) is proportional to
a decay rate �i(t) which, in the non-Markovian case, may cause the whole sum to temporarily
become negative. This means that the Pauli-like rate equation (4.30) is characterised by negative
jump probabilities which, clearly, have to be given a physical meaning. To deal with this, rewrite
the total transition rates as

Rba(t) = RM

ba(t)�RNM

ba (t), (5.3)

where the Markovian contribution RM

ba(t) and the non-Markovian contribution RNM

ba (t) are de-
fined by

RM

ba(t) =
1

2

⇥|Rba(t)|+Rba(t)
⇤

, (5.4)

RNM

ba (t) =
1

2

⇥|Rba(t)|�Rba(t)
⇤

. (5.5)

With these definitions, the time derivative of the von Neumann entropy in Eq. (4.32) can be
rewritten as

Ṡ(t) = �
X

a,b

µa(t)
⇣

RM

ba(t)�RNM

ba (t)
⌘

ln
µb(t)

µa(t)
. (5.6)

The occurrence of memory e↵ects has the consequence of reducing the rate of change of the
entropy of the system during certain intervals of time. This means that, in the evolution of the
entropy of an open system, there exist two separate Markovian and non-Markovian contributions
always counteracting each other.

The next step is now to define entropy flux and entropy production for the analysed pro-
cess. In particular it is interesting to investigate the possibility of singling out non-Markovian
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contributions in these two quantities, as done for the von Neumann entropy itself. In analogy
with the Markovian entropy contributions defined in Eqs. (4.34) and (4.35), one writes

Ṡ(t) = Ṡe(t) + Ṡi(t), (5.7)

where formally both Ṡe(t) and Ṡi(t) are the entropy flux and production for the ensemble
dynamics, and have the same structure of Eqs. (4.34) and (4.35) in terms of transition rates
Rba(t). They describe however a fundamentally di↵erent physics with respect to the Markovian
case because of the new properties of the transition rates Rba(t). Indeed one has

Ṡe(t) = �
X

a,b

µa(t)
⇣

RM

ba(t)�RNM

ba (t)
⌘

ln
RM

ba(t)�RNM

ba (t)

RM

ab(t)�RNM

ab (t)
, (5.8)

Ṡi(t) =
X

a,b

µa(t)
⇣

RM

ba(t)�RNM

ba (t)
⌘

ln
µa(t)

⇣
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ba(t)�RNM

ba (t)
⌘

µb(t)
⇣

RM

ab(t)�RNM

ab (t)
⌘ . (5.9)

In addition, these quantities (as already highlighted in [172]) involve logarithms of possibly neg-
ative terms and may therefore become temporarily ill-defined (although both the von Neumann
entropy and its time derivative are of course always mathematically and physically well-defined).
Moreover, it is not possible to single out Markovian and a non-Markovian contributions to these
quantities since the arguments of both logarithms involve Markovian and non-Markovian e↵ects
in a non-factorizable way. The way memory e↵ects enter entropic terms involving also a role of
the environment is much more obscure than the simple addition of a further term to the time
derivative of von Neumann entropy.

One might then wonder whether it is even possible to speak about ensemble entropy pro-
duction along non-Markovian dynamics. The appearance of negative rates is, by definition, the
characterisation chosen here of non-Markovianity, and it is known that these rates can not all
together be negative at the same time, which means there will always be at least one negative ra-
tio involved in the definition of entropy flux and entropy production. To overcome this problem,
consider again Eq. (5.7) which amounts to writing the time derivative of von Neumann entropy
as a sum of two contributions. Notice however that, apart from the factor µa/µb (which can
be singled out as an additional logarithmic term in the sum), the arguments of each logarithm
in Ṡe(t) and Ṡi(t) are the same. This suggests to replace all negative ratios Rba/Rab under
the logarithms by their moduli |Rba/Rab|. Indeed, after such a replacement the decomposition
of Ṡ(t) into the two contributions still holds as can be easily checked. To grasp the physical
meaning of this replacement, consider the Markovian case in which the entropy production has
the form Ṡi(t) =

P

a,b µa(t)Rba(t) ln
µa(t)Rba(t)
µb(t)Rab(t)

. Assume now that the (instantaneous) stationary

state ⇢SS(t) of the (possibly time dependent) Makovian dynamics satisfies the detailed balance
condition for its populations

µSS
a

µSS
b

=
Rab(t)

Rba(t)
. (5.10)

It is then easy to show that Ṡi(t) = � d

dtS(⇢(t)k⇢SS(t)), where S(⇢(t)k⇢SS(t)) is the relative
entropy [93] of the state ⇢(t) to its stationary state and measures how far the state of the open
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system is from stationarity. The fact that, for a Markovian process, Ṡi(t) � 0 is a consequence
of the fact that along a memoryless dynamics a system monotonically approaches stationarity.
One can thus understand that the entropy production (5.9) for non-Markovian systems becomes
temporarily undefined when an instantaneous state of the form (5.10) does not exist because
Rba/Rab < 0. The lack of an instantaneous stationary state is, as commented in Section 1.4.3,
a typical feature of non-Markovianity.

The dynamical consequences of memory e↵ects can, however, be probed by analysing the rel-
ative evolution of any two states. In particular, the replacement Rba/Rab ! |Rba/Rab| amounts
to the definition of an e↵ective instantaneous stationary condition ⇢SS

e↵

(t) which satisfies

µSSe↵
a

µSSe↵
b

=
|Rab(t)|
|Rba(t)| (5.11)

and with respect to which one can follow the evolution of the state ⇢(t). This choice is motivated
by the fact that, when the dynamics is Markovian, such an e↵ective stationary state reduces
to the actual stationary state. Consider the measure of non-Markovianity [41] in Eq. (1.26),
which is characterised by a maximisation over each pair of states of the open system. Since,
by construction, ⇢SS

e↵

(t) is a physical state at any instant of time, any increase of the (entropic)
distance between ⇢(t) and ⇢SS

e↵

(t) is a su�cient condition for the measure in Eq. (1.26), reformu-
lated using the relative entropy instead of the trace distance as a distance of quantum states, to
be nonzero. This formulation detects therefore a sub-class of non-Markovian processes, namely,
the ones in which non-Markovianity has a direct thermodynamic consequence.

It is thus natural to define entropy flux and production for the non-Markovian ensemble
dynamics as

Ṡe(t) = �
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, (5.12)
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. (5.13)

These definitions coincide with the ones given in Eqs. (5.8) and (5.9) when these latter are
real, and extend them to general non-Markovian ensemble dynamics. Equation (5.13) clearly
shows how memory e↵ects are manifest in backflows of information from the environment to the
system since now Ṡi(t) = � d

dtS(⇢(t)k⇢SSe↵ (t)) can become negative or, in other words, the state
⇢(t) moves away from the e↵ective stationary state ⇢SS

e↵

(t).

One may now turn, as in the Markovian case, to the definition of pure state jump trajectories
from Eq. (4.30). There is however another problem to tackle in doing so, which is closely
related to the very definition of a fluctuation theorem: since the Pauli master equation (4.30)
is now characterised by negative rates, it is not possible to make use of it to define single
pure state trajectories. The reason is that such trajectories would be associated with negative
probabilities being, then, unphysical. Nevertheless, it is possible to proceed along a slightly
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di↵erent path which indeed leads to a theorem for out-of-equilibrium fluctuations. To this end,
consider Eq. (5.6) which is exact and a direct consequence of the TCL master equation describing
ensemble dynamics. Rearranging its terms, it can be formally rewritten as

Ṡ(t) = �
X

a,b

µa(t)
⇣

RM

ba(t) +
µb(t)

µa(t)
RNM

ab (t)
⌘

ln
µb(t)

µa(t)
= �

X

a,b

µa(t)Tba(t) ln
µb(t)

µa(t)
. (5.14)

where the positive renormalized transition rates have been introduced as

Tba(t) = RM

ba(t) +
µb(t)

µa(t)
RNM

ab (t). (5.15)

Note that the expression for Ṡ(t) in terms of the renormalised rates Tba(t) exactly coincides with
Eq. (5.6).

Since positive transition rates characterise Markovian dynamics, one can exploit these renor-
malised rates to define e↵ective Markovian-like flux and production for the open system entropy
by means of

Ṡr
e(t) = �

X

a,b

µaTba ln
Tba

Tab
, (5.16)

Ṡr
i (t) =

X

a,b

µaTba ln
µaTba

µbTab
. (5.17)

These two quantities are always well defined from a mathematical point of view, and their sum
gives back Eq. (5.6). The microscopic motivation for these definitions will be given later on.
For now, just look at Eqs. (5.16) and (5.17) as e↵ective quantities with a Markovian behaviour
and which, as much as Eqs. (5.12) and (5.13), reduce to Eqs. (4.34) and (4.35) in the limit of a
Markovian dynamics. Having in mind the previously stated goal of singling out a Markovian and
a non-Markovian contributions to entropy flux and production, one can consider these quantities
as representing the Markovian part of Eqs. (5.12) and (5.13). The remaining part, which can
not be e↵ectively described as Markovian and which is thus irreducibly non-Markovian, is given
by the di↵erence between the quantities (5.12) and (5.13), obtained pushing forward the analogy
with the Markovian case, and the renormalised quantities (5.16) and (5.17). It reads

ṠX(t) ⌘ Ṡe(t)� Ṡr
e(t) = Ṡr

i (t)� Ṡi(t) =
X

a,b

µaTba ln
Tba|Rab|
|Rba|Tab

. (5.18)

Note that the quantity ṠX(t) is zero when all the renormalised transition rates are equal to the
original ones, i.e. if all transition rates Rba(t) are positive and there are then no signatures of
memory e↵ects.

5.1.3 Non-Markovian fluctuations

In order to formulate non-Markovian fluctuations of entropy production along single trajectories,
note first that the Pauli master equation (4.30) can be recast in terms of the renormalised
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transition rates (5.15) as

µ̇b(t) ⌘
X

a

⇣

Rba(t)µa(t)�Rab(t)µb(t)
⌘

=
X

a

⇣

Tba(t)µa(t)� Tab(t)µb(t)
⌘

. (5.19)

This form of the master equation is strongly suggested by Eq. (5.14) for the time derivative of
the von Neumann entropy and the corresponding decomposition into renormalised entropy flux
and production given by Eqs. (5.16) and (5.17). Eq. (5.19) holds for both Markovian and non-
Markovian processes, and remember that the renormalised rates Tba(t) are always positive by
construction. As discussed in [176], the form (5.19) of the Pauli master equation (either classical
or quantum) emerges when one interprets a negative rate Rba for a transition from the state a
to state b as an e↵ective positive rate for the reversed transition is given by Re↵

ba = µb
µa
|Rab|. The

microscopic motivation of Eqs. (5.14), (5.16), (5.17) and (5.19) has to be given within such an
interpretation: negative classical-like jump rates describe reversed jumps due to backflows from
the environment into the open system. This suggests employing the master equation (5.19) for
the description of fluctuations along single realisations of nonequilibrium processes. It should
be stressed however that, in this non-Markovian case, the transition rates Tba(t) depend on
the occupation probabilities such that di↵erent trajectories are no longer independent. This
can be seen employing the explicit expression (5.15) for the renormalised rates into the Pauli
master equation (5.19), which becomes a non-linear di↵erential equation for the populations.
The classical unraveling of such a non-linear equation generates pure state trajectories depending
on the ensemble populations and therefore correlated to each other. This is the mathematical
counterpart of the existence of memory e↵ects [177, 178].

Considering again a particular forward trajectory as the one given in Eq. (4.36) and em-
ploying the prescriptions of classical-like non-Markovian unraveling, one finds such a trajectory
to be associated to the probability

pf = µa0(t0)
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, (5.20)

analogous to the Markovian probability (4.37) where, however, the original transition rates are
replaced by the renormalised ones. Correspondingly, the probability for the backward trajectory
is given by

pb = µaN (tN )
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. (5.21)

Along such a trajectory, having N jumps from ai�1

to ai at times ti, the time integral of the
renormalised entropic contributions (whose ensemble value is given in (5.16) and (5.17)) is
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, (5.22)
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)
. (5.23)
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With the use of Eqs. (5.20) and (5.21) one obtains

ln
pf
pb

= ln
µa0(t0)

µaN (tN )
+

N�1

X

j=0

ln
Taj+1aj (tj+1

)

Tajaj+1(tj+1

)
. (5.24)

The first term on the right-hand side equals the net change of the von Neumann entropy �s =

ln
µa0 (t0)
µaN

(tN )

along the trajectory (see Eq. (4.41)). Analogously to the Markovian case, the second

term represents the sign-reversed entropy flux integrated along the trajectory. Indeed one has

ln
pf
pb

= �s��sre = �r, (5.25)

where Eq. (5.22) has been used. Note finally that the expression of �sri in Eq. (5.23) is such
that �sri = �r and one immediately obtains from Eq. (5.24) the detailed FT for the renormalised
entropy production as

pf (�r)

pb(��r) = e�r . (5.26)

The fluctuation theorem for non-Markovian processes is thus formally identical to the one ob-
tained for Markovian dynamics given in Eq. (4.44). However, in the non-Markovian case the
fluctuation theorem holds for the renormalised entropy production �r only, which can be written
as

�r = �s��se +�sX = � +�sX , (5.27)

where �sX is the single trajectory contribution to the time integral of ṠX(t) (see Eq. (5.18))
and � is the single trajectory contribution to the non-Markovian ensemble entropy production
(5.13). In the Markovian case �sX vanishes and Eq. (5.26) reduces to Eq. (4.44). As the �r
has been interpreted as the Markovian part of the ensemble non-Markovian entropy production,
only a part of the fluctuations of entropy production can be described in terms of a fluctuation
theorem. The fluctuation theorem for non-Markovian processes is thus fundamentally di↵erent
from its Markovian counterpart, as it describes fluctuations of an entropy production of single
processes which is not the single trajectory contribution to the ensemble entropy production
(5.13).

To interpret the result (5.26) in physical terms note first that, within this approach, fluc-
tuations are described by the stochastic unraveling of the master equation (5.19). However,
as has been already emphasised, due to the presence of memory e↵ects single trajectories are
not independent of each other or, in other words, they are correlated. A single realisation of a
nonequilibrium non-Markovian process, due to this correlations, produces on the average more
entropy than just the one described by its associated ensemble entropy production because,
when following a single process, part of the information about the system stored in the correla-
tions with other trajectories is lost. This is why the measured renormalised entropy production,
obtained in this work as �r in Eq. (5.27), is given by the standard single trajectory entropy
production � plus an additional term which alters the usual Markovian form of the fluctuation
theorem. This term, given by �sX in Eq. (5.27), represents an additional loss of information
about the system because of the correlations between single trajectories. As demonstrated here,
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Figure 5.1: Schematic view of the contributions to the entropy production along single nonequilibrium trajectories
according to Eq. (5.27). The net Markovian information flux �r, which obeys the fluctuation theorem
(5.26), is equal to the sum of the single trajectory entropy production � and the non-Markovian
contribution �sX due to correlations between trajectories.

these contributions combine in such a way that their sum obeys the fluctuation theorem (5.26),
completely analogous to the classical and the quantum Markovian ones (see Fig. 5.1).

This analysis shows that, when taking into account memory e↵ects in a quantum thermo-
dynamics context, there is a close link between fluctuations in entropy production along single
realisations of nonequilibrium processes and the existence of an irreducibly non-Markovian en-
tropic contribution in the ensemble dynamics. Any time the dynamics shows signatures of
memory e↵ects, a quantum fluctuation theorem has to take into account the full information
contribution of the dynamics, which is no longer given only by the ensemble entropy produc-
tion. More precisely, when a single trajectory is taken into account, memory e↵ects produce
an additional term to the entropy production an external observer can reveal by measurements.
Such an additional measured term originates from the existence of correlations between single
trajectories, which in turn is a consequence of memory e↵ects mediated by the reservoir. This,
as said, can be clearly seen from Eq. (5.19) because the di↵erential equations for the time evo-
lution of populations are no longer linear due to the structure of renormalised rates, Eq. (5.15).
Performing a measurement of a single trajectory, then, means loosing information about any
other possible trajectory the single monitored process is correlated with, and it is demonstrated
that this loss of information leads to a net entropy production which e↵ectively behaves as a
Markovian one. This e↵ective Markovian entropy production along single trajectories shows
fluctuations which can be described by means of a fluctuation theorem of the standard form:
quite remarkably, the two contributions to the renormalised entropy production, of di↵erent
physical origin, combine together in such a way that their sum behaves according to a very
simple fluctuation law. This could not be in principle expected since these two terms may seem,
at a first glance, not to depend on each other. They however ultimately originate from the same
microscopic details of the non-Markovian dynamics such that, despite the fact that none of them
obeys alone a FT, their sum behaves according to a standard fluctuation law.
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5.1.4 Trajectory-averaged non-Markovianity

It is clear that the correlations between di↵erent trajectories discussed above are an intrin-
sic feature of non-Markovian dynamics, and that they are simply not present for memoryless
processes. The e↵ect of these correlations is, as shown, to alter the single trajectory entropy
production with respect to what one may expect from the corresponding ensemble quantity with
the addition of the further information-related contribution �sX . It is therefore of interest to
investigate the role such a correlation-related contribution has in the characterisation of non-
Markovianity itself. Indeed, non-Markovian e↵ects along single trajectories have explicit e↵ects
which are evident in the di↵erence between the trajectory-averaged entropy production Ṡr

i (t)
and the ensemble one Ṡi(t). This di↵erence exists only when trajectories are correlated, and is
then ultimately related to memory e↵ects.

In this part I show that ṠX(t), given by Eq. (5.18), is able to measure the non-Markovianity
of the dynamics (remember that a process is defined here to be non-Markovian when at least
one transition rate Rba(t) becomes temporarily negative). In particular I show that

ṠX(t) > 0 , the process is non-Markovian. (5.28)

In what follows, if not strictly necessary, I shall omit any time dependence.

To begin with, one may have a closer look at the definition of Ṡi(t) in Eq. (5.13). It has the

structure of a double sum of terms of the form g(x, y) = x ln |x|
|y| , where x and y are transition

rates. This allows such a sum to be rewritten as a sum of terms f(x, y) = 1

2

(x� y) ln |x|
|y| . This

expression is clearly mathematically well defined. Two di↵erent regimes are however possible:
for positive x and y (Markovian case) each term is positive and the sum can thus never become
negative; on the contrary, for negative x and y (which happens only in the non-Markovian case),
such a term is negative, which in turn may cause the whole sum to become negative. Finally,
when xy < 0 nothing can in principle be said about the sign of f(x, y). The occurrence of
negative f(x, y) can not be achieved in the case of the renormalised entropy production Ṡr

i since
the e↵ective rates Tba are positive by construction.

Suppose then that at a certain time instant one has np positive transition rates Rba, while
the remaining nn are negative. One can thus identify three di↵erent terms in Ṡi: the first one
originates from any two positive transition rates (positive contribution Pi), the second one stems
from any two negative rates (negative contribution Ni) and the third one is due to each pair of
positive-negative rates, which is given in general by a positive term Qi and by a negative term
Mi. As for Ṡr

i , the first positive contribution is the same (Tba ⌘ Rba when Rba � 0), while the
second negative contribution Ni becomes an additional positive term P r

i . Finally, each pair of
positive-negative rates R gives rise to a positively divergent contribution to Ṡr

i because one of
the renormalised rates T vanishes. This means that, any time there exists at least one pair of
positive-negative rates, ṠX ⌘ Ṡr

i � Ṡi is positively divergent. This feature, as discussed later on
in this Section, should not worry since a positively divergent entropy is physically meaningful.
As for all the time intervals in which ṠX(t) is finite, one can write

ṠX = Ṡr
i � Ṡi = Pi + P r

i � (Pi +Ni) = P r
i �Ni � 0. (5.29)
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This proves that ṠX is never negative. Moreover, as comes clear from the structure of Eq.
(5.29), all the terms involved in the double sum in Eq. (5.18) are positive. This means that ṠX

can be zero if and only if each of its terms vanishes or, in other words, either when

µaRba � µbRab = 0 8a, b (5.30)

or when
Tba

�

�Rab

�

�

�

�Rba

�

�Tab
= 1 8a, b. (5.31)

Condition (5.30) can be fulfilled by any possible pair of instantaneous eigenstates either when
the system has reached its stationary state or in isolated time points only (this can be checked
directly by inserting condition (5.30) into (5.19)). It is therefore of interest, when considering
dynamic processes, to investigate condition (5.31) only, for any possible pair of instantaneous
eigenstates |ai and |bi and under the assumption µaRba � µbRab 6= 0.

By construction, the renormalised rates Tba are connected to the original ones by

µaRba � µbRab = µaTba � µbTab. (5.32)

Using now property (5.32) one can rewrite (5.31) as

Tab

✓

µb

µa

�

�Rab

�

�� �

�Rba

�

�

◆

=
�

�Rab

�

�

✓

µb

µa
Rab �Rba

◆

8a, b. (5.33)

Three possibilities are given for each of these terms:

Rab > 0, Rba > 0; (5.34a)

RabRba < 0; (5.34b)

Rab < 0, Rba < 0. (5.34c)

Condition (5.34a) characterises a Markovian process. It is straightforward to see that, if
Eq. (5.34a) holds, then Eq. (5.33) is satisfied thus leading to a vanishing ṠX . On the other
hand, conditions (5.34b) and (5.34c) are fulfilled by non-Markovian processes only. Exploiting
the definition (5.15) of Tba and the fact that the system is not stationary (and thus condi-
tion (5.30) can only be satisfied in isolated time points), with simple calculations one can prove
that neither condition (5.34b) nor condition (5.34c) are compatible with Eq. (5.33).

In this way one proves that

ṠX = 0 , the process isMarkovian (5.35)

and since, as shown, ṠX � 0 (see Eq. (5.29)), Eq. (5.35) is equivalent to Eq. (5.28). In other
words, ṠX is a measure of non-Markovianity.
The meaning of ṠX as a measure of non-Markovianity becomes clearer when one looks at its
single trajectory contribution: as commented previously in this Section, such a contribution ac-
counts for the information stored in correlations among trajectories. This is di↵erent from zero
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only if the rate equation is nonlinear or, which is the same, only if the dynamics is non-Markovian.

All is left to do now is to give a physical meaning to the measure for quantum non-
Markovianity just introduced. As a first step, then, it is necessary to justify from a physical
point of view a divergent ṠX(t). As noted, such a feature is met when at least two instantaneous
eigenstates of ⇢(t) (say, |ai and |bi) are such that the transition from |ai to |bi is Markovian,
thus implying Rba > 0, while the reverse transition is non-Markovian, resulting in Rab < 0. In
this case, the contribution of these two levels to Ṡi is finite while the renormalised rates become

Tba = Rba +
µb

µa
|Rab| ,

Tab = 0,
(5.36)

so that Ṡr
i , involving the logarithm of the ratio of these two quantities, diverges. However, a

divergent entropic term is not uncommon in the quantum realm, and it has been given a clear
interpretation connecting the physical e↵ect of such a term to the exponential function of its
sign-reversed integral, which is linked to the distinguishability of the state ⇢(t) with respect to
the stationary state ⇢SS of the dynamics [93]. In particular, since the generic entropy production
⌃̇(t) (which may either be Ṡi or Ṡr

i in the present case) is the time derivative of the relative
entropy between ⇢(t) and its, possibly e↵ective, stationary state ⇢SS (in the case of Ṡr

i such a
stationary state exists, but it is clearly given in terms of the Tba’s and, as such, is di↵erent from
the previously introduced ⇢SS

eft

), the probability of confusing ⇢(t) and ⇢SS after N measurements
behaves as

Pc = e�N
R t
0

˙

⌃(⌧)d⌧ , (5.37)

so that a divergence of ⌃̇ is given a physical interpretation.

Eq. (5.37), moreover, allows for further characterisation of ṠX . Indeed, consider the ratio

Pc(SR
i )

Pc(Si)
⌘ e�N

R t
0 ( ˙SR

i (⌧)� ˙Si(⌧))d⌧ = e�N
R t
0

˙SX(⌧)d⌧ , (5.38)

so that
R t
0

ṠX(⌧)d⌧ measures how di↵erent the single-measurement distinguishability based on
trajectory entropy is from the same quantity based on ensemble entropy. Consequently, the
parameter

D⇢i(t) = 1� e�
R t
0

˙SX(⌧)d⌧ (5.39)

quantifies the di↵erence between the physical prediction in the ensemble picture and those in the
single trajectory approach for a single measurement performed on the system. Clearly such a
quantity depends on the initial state ⇢i of the ensemble dynamics, as the transition rates Rba(t)
and Tba(t) depend themselves on ⇢i through the time evolution of the eigensystem of ⇢(t).

If one aims at a full characterisation of the non-Markovianity of the dynamics, the whole
time evolution is needed (thus pushing the upper integration limit in Eq. (5.39) to +1) and
one has also to perform a maximisation over any possible initial state ⇢i in the state space S(⇢),
obtaining

NX ⌘ max
⇢i2S(⇢)

�

lim
t!+1

D⇢i(t)
 

(5.40)
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as a measure of the full non-Markovian features of the evolution. In the context of thermody-
namic nonequilibrium processes and fluctuation theorems, however, the initial state and the total
evolution time are both usually fixed a priori. Thus the non-Markovianity of a nonequilibrium
thermodynamic process has to be defined starting from these two fixed parameters as

Pn0(T )

X ⌘ D⇢0(T ). (5.41)

Such a parameter quantifies the non-Markovian features of a nonequilibrium thermodynamic
process n

0

(T ), starting from ⇢i = ⇢
0

and lasting for a time T .

5.1.4.1 Simple examples

To exemplify the above defined measure, I apply here this method to the quantification of
non-Markovianity inside two Jaynes-Cummings models, a resonant model in which a two-level
atom, with levels |gi (ground state) and |ei (excited state), interacts with a reservoir of zero
temperature field modes with Lorentzian spectrum, whose width I call � (Vacuum Jaynes-
Cummings or VJC), and a detuned model with a single-mode field at finite temperature (single
mode Thermal Jaynes-Cummings or s-TJC). These two examples are particularly convenient
since an exact form of the associated TCL master equation is known [3, 179]. It is moreover
known that for the first system, a non-Markovian behaviour is detected only when the atom-field
interaction parameter ⌫ is greater than �

2

[180], while the second model is non-Markovian if and
only if the the atom-field interaction ⌫ is di↵erent from zero. Moreover, when applied to the
s-TJC, all previously defined measures of non-Markovianity [41, 118, 119, 120] diverge for any
non-zero value of the atom-field coupling constant. This is due to the integral performed over
the whole time axis and the fact that, not being damped, s-TJC periodically shows signatures
of memory e↵ects of the same magnitude. In this case, then, one expects the measure (5.40)
to be always one (maximal disagreement between ensemble and trajectory entropies) except
for the point ⌫ = 0. This has been verified by some numerical simulations on the model and
these results, being of no particular interest, are not reported here. On the other hand, the
measure (5.41) may show a wide range of di↵erent behaviours depending on the time span of
the process and on the initial atomic state. These considerations are in agreement with the
behaviour shown in Fig. 5.3.

In Fig. 5.2 the quantity NX , defined in Eq. (5.40), is plotted against the parameter ⌫
describing the atom-field interaction for the VJC model. Its predictions are in agreement with
the expected behaviour. Fig. 5.3 shows, on the other hand, the quantity PX for the VJC (left
panel) and the s-TJC (right panel) for di↵erent nonequilibrium protocols.

It is important to stress here that the connection of these results to the other known
measures of quantum non-Markovianity, such as [41, 118, 119, 120], is still an open issue. There
are two main reasons for such an interesting question to be unanswered. Firstly, the general
properties the rates Rba(t) in Eq. (4.31) (as well as the rates �i(t) in Eq. (5.1)) must obey in
order to guarantee that Eq. (5.1) is a CPT-map are not known. It is then unclear how to deal,
in general, with the characterisation and the structure of any quantity depending on these rates.
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Moreover, the general connection of the entropy production to the commonly employed trace
distance, quantifying the distinguishability of states, is still an open problem. These issues, if
solved, may throw light not only on the connection between di↵erent non-Markovianity measures,
but also on general properties of open quantum system dynamics and on the interplay between
information fluxes and quantum thermodynamics.

Figure 5.2: NX plotted against the atom-field interaction ⌫ for a resonant VJC model with � = 3. The maximum
in Eq. (5.40) is achieved for the pure excited atomic state ⇢i = |eihe|. Inset A shows the behaviour
of NX in the vicinity of the ⌫-threshold for non-Markovianity, ⌫c = �/2. NX is sensibly di↵erent
from zero slightly after such a threshold, and this feature is explained in inset B where ṠX is plotted
against time for ⌫ = 1.55: ṠX , despite being di↵erent from zero for ⌫ > ⌫c, assumes very small values
up to ⌫ ⇠ 2

Figure 5.3: Left panel: PX plotted against the atom-field interaction ⌫ for a resonant VJC model with � = 3, for

three di↵erent nonequilibrium processes of duration T and with initial state | (x)i =
q

x�1
x

|ei+ 1p
x
|gi:

x = 1010 and T = 4 (blue dots); x = 102 and T = 1 (green dots); x = 3 and T = 2 (red dots).
Right panel: PX plotted against the atom-field interaction ⌫ for a detuned s-TJC model with
temperature � = 10, single mode energy spacing ! = 3 and detuning � = 10, for three particular

nonequilibrium processes with initial states | (x)i =
q

x�1
x

|ei+ 1p
x
|gi and duration T : x = 102 and

T = 10 (red dots); x = 3 and T = 10 (blue dots); x = 3 and T = 2 (green dots).
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5.2 Entropy production and information fluctuations along quan-
tum trajectories

The second Section of this Chapter is devoted to the presentation of a new approach to entropy
production and FTs which I developed in collaboration with Dr. A. Napoli, Prof. A. Messina
and Prof. H.-P. Breuer. These results, published in [73], manage to reconcile the two alternative
ways by which quantum fluctuation theorems have been so far tackled. In Chapter 4 I briefly
commented on these two classes of methods, one of which has also been employed in the previ-
ous Section to derive a non-Markovian version of the standard FT. Such an approach has the
advantage to represent single repetitions of nonequilibrium processes as pure state trajectories,
and as such it is as close as possible to the classical concept of single phase space trajectories.
However, as already highlighted, the transitions characterising these trajectories are not directly
connected to a well-defined flux of energy/information between system and environment. In par-
allel, the approach based on characteristic functions and two-point measurement statistics has
the advantage of representing quantities such as work or entropy in a direct, experimentally
clear way, but it is limited by the drawback of describing the evolution between measurements
through a master equation and, as such, within an ensemble framework. This method is there-
fore not able to fully account for the stochasticity implicit in a single trajectory description.
These two approaches have then, for di↵erent reasons, never been able to take fully into account
quantum features in the derivation of a fluctuation law.

In my work, employing the so-called stochastic wave function method (SWFM) (see for
example Refs. [3, 124] and references therein), I studied quantum features of stochastic entropy
production in purely quantum nonequilibrium processes of open systems. I demonstrated that
a purely quantum trajectory, obtained as a conditioned pure state evolution generated by con-
tinuous measurements on the environment, introduce an additional, non-thermal contribution
to the entropy flux, which is shown to be a direct consequence of quantum fluctuations. These
features lead to a quantum definition of single trajectory entropy contributions, which accounts
for the di↵erence between classical and quantum trajectories and results in a quantum correction
to the standard form of the integral fluctuation theorem.

Since these results are heavily based on the features of quantum unraveling through the
SWFM, in the next subsection such a method and its consequences on stochastic thermodynam-
ics are introduced and discussed in details.

5.2.1 Stochastic wave function method and quantum nonequilibrium pro-
cesses

The stochastic wave function approach to Markovian quantum systems, whose ensemble evo-
lution is given by the TCL master equation in Eq. (5.1) in the Markovian regime, describes
single realisations of a dissipative process by means of quantum trajectories representing pure
state evolutions of the open system which are conditioned on certain records of continuous mea-
surements on the environment. In particular one imagines to perform, almost continuously, a
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set of measurements on the state of the reservoir with (in the idealised case) unit e�ciency.
By each of these measurements, the external observer looks for a particular set of e↵ects of
the system-environment interaction (as, e.g., photons emitted or absorbed by an atom (open
system) in the radiation field which it is embedded in (environment)). Such a set is fixed a
priori by the observer will and/or practical availability of measuring apparata, and is referred
to as measuring scheme. The single measurement step leads either to discontinuous, random
transitions of the knowledge of the state of the open system (referred to as quantum jumps or
simply jumps) when one of these e↵ects is detected, or to a continuous time evolution resulting
from the no-jump events (referred to as drift contribution or simply drift) when no e↵ects are
detected by the measuring apparatus.

These pure state dynamical evolutions conditioned on the measurement outcomes are,
mathematically speaking, piecewise deterministic processes (PDPs) [3] characterised by jumps
described by the action of the Lindblad operators Ai introduced in Eq. (5.1). Note that the
set of Lindblad operators (and of associated relaxation rates �i) characterising a particular
master equation is not unique, each set corresponding, in the SWFM formalism, to a partic-
ular measuring scheme. Each jump happens at a random time and along a random channel
{�ik , Aik}. By random here I mean that they are not predictable a priori but are detected by
the measurement itself. In between two jumps at times ts and tf , the system’s wave function
undergoes a nonunitary deterministic time evolution given by an e↵ective time evolution oper-

ator U
e↵

(tf , ts) = T exp
n

�i
R tf
ts

H
e↵

(t)dt
o

, where H
e↵

(t) = HS(t)� i
2

P

i �iA
†
iAi.

A single quantum jump along the channel Aik corresponds to the transition

|�i ! | iki =
Aik |�i

||Aik |�i||
, (5.42)

while a drift is described by

| (tf )i = U
e↵

(tf , ts)| (ts)i
||U

e↵

(tf , ts)| (ts)i|| . (5.43)

The normalisation of the state in Eqs. (5.42) and (5.43) is necessary since the action of a Lindblad
operator and of U

e↵

on a normalised states yields, in general, an unnormalised state. The norm
of the target states is interpreted as the probability that the particular transition (or drift) takes
place. Jumps occur then, within a small time interval �t, with probability �t�ik ||Aik | i||2, while
the probability that, after jumping at time tk, the system performs no further transitions up to
time tk+1

is ||U
e↵

(tk+1

, tk)| i||2.
The fundamentally unpredictable set of jump channels and times for a single trajectory is

the reason for which the wave function of the system becomes by all means a stochastic variable.
Because of this, at each time instant one associates to it a probability density P [ , t]. The
meaning of such a density is that the product P [ , t]d expresses the probability for the wave
function of the system to lie, at time t, within the volume element d around the state | i.
Given any function F [ ] characterising a physical property along a single trajectory described
by the vector | i, its expectation value is evaluated as E[F [ ]] =

R

d F [ ]P [ , t]. In particular,
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the density matrix is given by the expectation value of | ih | as

⇢(t) = E[| (t)ih (t)|] =
Z

d | ih |P [ , t]. (5.44)

The time evolution of the probability density, from t
1

to t
2

, is generated by a propagator
T [�, t

2

; , t
1

] such that P [�, t
2

] =
R

d T [�, t
2

; , t
1

]P [ , t
1

]. The relation of this formulation to
the one in terms of density operators and master equations is illustrated in Fig. 5.4 (see also
Ref. [3]).

Figure 5.4: Diagram showing the connection between the probability density, the density matrix and their dy-
namics generated, respectively, by the propagator T [�, t2; , t1] and by the dynamical map ⇤(t2, t1).

Fixing a particular trajectory from time t
0

to time T amounts to specifying a number of
jumps N and a set of time instants {tk} (k = 1, . . . , N) such that t

0

< t
1

< · · · < tN < T ⌘ tN+1

,
at which the wave function jumps along the channels {�ik , Aik}. It is important to stress here that
these single, random and discontinuous events can not be accounted for within a density matrix
formalism, because this latter describes the ensemble evolution of a collection of independent
identical quantum systems or, which is the same, describes the lack of knowledge about the
evolving system before a measurement is performed on it. Indeed, if a system evolves from time t

0

to time t under the e↵ect of the interaction with an environment, and one decides not to perform
any kind of measurements before t, no information about the state of the system is extracted
along the dynamics and all one can do is to describe the state in terms of generally mixed density
matrices. This is formally and somehow conceptually analogous, as already commented, to the
introduction of ensemble state and ensemble dynamics in classical frameworks, where a lack of
information is assumed about the microstate of a thermodynamic system.
On the other hand, if the evolution of a system is continuously monitored through measurements
on its environment, information about single quantum events are collected all along the dynamics
(and not just at the final time t) and one has at his disposal more information about the
state of the open system. This information, which clearly depends on the measuring scheme
employed to monitor the environment, is the core of the physical di↵erence between the density
matrix formalism and the stochastic wave function method, which is nothing but the theoretical
description of such a continuous measuring process on the environment and is therefore the
closest analogue to following a microstate evolution of a classical system since, because of the
fact that one measures the environment only and thanks also to the Markovian regime, the
backaction of measurements on the state of the open system is, so to say, as weak as possible in
a quantum context.
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Results based on this method provide then new insight into the dynamics of a system, and
do not trivially just reproduce the knowledge available through the density matrix. The choice
of a measuring scheme generates a certain class of possible trajectories for the open system and
corresponds then to the choice of a particular set of pure states into which to decompose the
density matrix (see Eq. (5.44)) - and such a set does not even need to be orthogonal. In both
classical and quantum contexts, choosing a pure state decomposition of a mixed state naturally
leads to quantify the information content of such a decomposition by employing the so-called
Shannon entropy, which is well known to be di↵erent from the von Neumann entropy and to
depend on the decomposition itself.

The definition of a backward trajectory associated to a certain set of forward measurement
records depends on what one chooses to look at as the physical quantity to extract information
about, since in the context of the SWFM one extracts information about the system by only
measuring the environment and one thus only detects transitions of the open system, which
may supply (possibly partial) information about many di↵erent fluxes between system and
environment. In FTs contexts it is common to define a backward trajectory as the dissipative
process generated by a time inversion of the Hamiltonian which, in turn, means that any energy
exchange between system and environment gets reversed. One can therefore characterise the
backward trajectory by the requirement that the open system performs transitions at the same
time instants as the forward one, but along the channels Bik = A†

ik
with corresponding relaxation

rates �bik .

The reason is that the Lindblad operators in the Markovian master equation (5.1) and in
the weak coupling limit can be divided into two classes {A+

i } and {A�
i }, such that A+

i = (A�
i )

†,
satisfying the conditions [HS , A

±
i ] = ±✏iA±

i [3], and they thus describe jumps in which an energy

quantum ✏i is absorbed (Ai, e.g. in the forward trajectory) or emitted (A†
i , e.g. in the backward

trajectory) by the open system from/into the environment (see subsection 5.2.4 later on for
explicit examples). This is the case in many important experimental setups such as, e.g., the
many photodetection schemes often employed. On the other hand, the action of the nonunitary
operator U

e↵

(tf , ts) on a state during the drift interval [ts, tf ] reduces its norm in time, describing
the decrease of probability of the no-jump event. Therefore, as the backward process itself is a
physical dissipative process detected by measurements, its associated drift operator U

e↵

(tf , ts)
has to describe such a decrease of probability along the backward drifts, taking into account
that a backward drift propagates the state of the system from time tf to time ts such that
tf > ts. Therefore, the Hermitian part of the operator generating backward evolutions has to
be unchanged, but its nonhermitian part has to be sign-reversed: This is achieved if one defines
U
e↵

(tf , ts) = U †
e↵

(ts, tf ). Note that this backward drift operator can be obtained rigorously
when one decomposes a backward drift interval into very many measuring steps, each of which
leading the no-backward-jump result. This means, however, that the final state of the backward
process may be di↵erent from the initial state of the forward one, as in general A†

iAi 6= I and
U
e↵

(tN , T )U
e↵

(T, tN ) 6= I.

To fix notation, I denote hereafter by |�f(b)
k i the normalized state of the forward (backward)

process right before the jump at time tk, and by | f(b)
k i the normalized state of the forward
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(backward) process right after the jump at time tk. Exemplary trajectories are schematically

depicted in Fig. 5.5, where the forward process starts in the state | f
0

i and ends in | f
⌧ i, while the

final state of the associated backward trajectory is | b
⌧ i. By definition | f

⌧ i ⌘ | b
0

i (i.e., the initial
state of the backward process is by construction the final state of the forward one) but in general

| f
0

i 6= | b
⌧ i due to the fact that, as already remarked, A†

iAi 6= I and U
e↵

(tN , T )U
e↵

(T, tN ) 6= I.

With these definitions and notations, the goal is to derive formulae for entropy flux and
production along these purely quantum trajectories and to exploit them to derive an integral
FT for entropy production along nonequilibrium processes of this kind. Therefore, the aim is to
give explicit expressions for entropy contributions along quantum PDPs.

Figure 5.5: Pictorial representation of a forward quantum trajectory (dark blue states) and its backward coun-
terpart (light green states) consisting of N = 3 jumps (vertical red arrows). The backward process
is characterised by jumps through the channels {�b

ik
, Bik = A†

ik
} and by deterministic evolutions

according to Ue↵(tk, tk+1) = U†
e↵(tk+1, tk).

5.2.2 Entropy

A single quantum trajectory (either forward or backward), being a nonequilibrium process, is
characterized by a nonzero entropy production. In the ensemble picture, the entropy of a system
is given by its von Neumann entropy S

vN

= �Tr(⇢ ln ⇢). However, as commented in Section 5.2.1,
employing a quantum unraveling procedure amounts to describing a single realisation of the
system dynamics under a particular, fixed measurement scheme.

Therefore, one has to quantify the amount of information extractable about a particular
system when its environment is monitored or, which is the same, the amount of information
available in a particular pure state decomposition of a density matrix. In quantum contexts, a
natural way to quantify the information content of such a decomposition is the so-called Shannon
entropy S = � R

d P [ , t] lnP [ , t]. Such an entropy, which clearly depends on the chosen
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decomposition, has been used in various contexts [120, 181] to quantify information beyond the
standard von Neumann one: it is worth stressing here again that a given decomposition yields
more information on the system than the one available in the density matrix only [3]. Note that
S has the form

R

d F [ ]P [ , t], with F [ ] = � lnP [ , t]. Consequently, the single trajectory
contribution to the entropy of the system is defined as S[ ] = � lnP [ , t]. In what follows,
I will refer to such a quantity as quantum entropy. Note that its mathematical definition is
formally analogous to the one employed for entropy in classical stochastic processes [164]. On
the ensemble level the time derivative of the open system entropy S is

Ṡ = �
Z

d Ṗ [ , t] lnP [ , t]. (5.45)

Such a definition is the natural quantum extension of the one employed in many previous works
on entropy FTs [26, 62, 164], but it has no classical analogue as it does not reduce to the usual
form of entropy in the classical limit and the information extracted along a quantum trajectory
can not in general be given any classical interpretation. Exploiting the explicit form of the
time propagator for P [ , t] [3], it is possible to show that the single trajectory contribution to
Eq. (5.45) can be written as Ṡ[ ] = Ṡj [ ] + Ṡd[ ], i.e. as the sum of two terms, one arising
from the drift part of the PDP (describing the conditioned no-jump evolution of the open
system) and one due to the open system jumps. Since both quantum jumps and drifts are
detected by measurements, each of these terms describes a change in knowledge of the external
observer about the open system. In particular, detecting no jumps is conceptually di↵erent from
performing no measurements and, therefore, the drift part contributes too to the rate of change
of entropy. In addition, it is shown in what follows that both the jump and the drift entropic
terms contribute to entropy production along a nonequilibrium process.

5.2.2.1 Entropy production

As
R

Ṡj [ ]dt and
R

Ṡd[ ]dt only take into account the di↵erence of entropy between initial and
final states, but not the features of the transition connecting them, these terms do not fully
describe the information content of unraveling measurements. The SWFM provides indeed not
only information about, say, initial and final states along a jump, but also about the particular
decay channel the system jumps through. The knowledge about the particular decay channel is
detected, as said, in the state of the environment which is modified in di↵erent ways depending
on the jump channel used by the system. There are thus two corresponding terms describing
information about features of each transition, which correspond to the entropy flowing from the
open quantum system to its reservoir and producing a modification of the bath state. The full
system being out of equilibrium, the changes in open quantum system entropy and the flux to
the bath are not the same in absolute value. Their di↵erence is interpreted as a net total entropy
production along a trajectory and, as in the standard case, it is written as

� = �S[ ]��Se[ ], (5.46)

�Se[ ] being the total entropy flux to the bath and �S[ ] =
R T
t0
dtṠ[ ]. In addition, one

can define a single trajectory jump entropy production and a single trajectory drift entropy
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production (with self-evident notation) as, respectively,

�j =
R T
t0
dtṠj [ ]��Se

j [ ], (5.47)

�d =
R T
t0
dtṠd[ ]��Se

d[ ]. (5.48)

The aim is therefore to give an explicit expression for the entropy production along a generic
quantum trajectory, being thus valid both for what has been defined as forward trajectory and
for its backward counterpart.

5.2.2.2 Jump entropy production

Along a generic trajectory, a transition |�ki ! | ki = Aik
|�ki

||Aik
|�ki|| is characterized by a rate

RD
ik [�k] = �ik ||Aik |�ki||2. (5.49)

In what follows, I refer to such a transition as direct jump. A direct jump is nothing but the
transition experimentally detected within an unraveling approach while following a particular
nonequilibrium process (which can, in turn, either be a forward or a backward trajectory). In

contrast to a direct jump, I define also a reversed jump as | ki ! |⇠ki =
A†

ik
| ki

||A†
ik
| ki||

, which

represents the reversed transition associated to the k-th direct jump, and which is a fictitious
transition as it is not detected in the trajectory: it represents a tool to introduce a “direction”
of a single jump and, as a consequence, its entropy production and as such it is intrinsically
di↵erent from the backward process previously introduced. The di↵erence is that the backward
trajectory, as exemplified in Fig. 5.5, does not go through the same states composing the forward
process, while the source state of the reversed jump is a state of the forward trajectory.

It is easy to evaluate the rate associated to a reversed jump, obtaining

RR
ik [�k] = �bik

h�k|
�

A†
ik
Aik

�

2|�ki
||Aik |�ki||2 . (5.50)

In analogy with classical systems [167], the jump entropy flux along a single full quantum

trajectory is defined as �Se
j [ ] = �PN

k=1

ln
RD

ik
[�k]

RR
ik
[�k]

. Note that this definition, despite being

formally analogous to the one usually employed in FT contexts when considering pure jump
processes [62, 72, 172] (see e.g. Eq. (4.42)), di↵ers from it because of the structure of transition
rates in Eqs. (5.49) and (5.50). The total change of the open system entropy along the process,

due to jumps only, is �Sj [ ] = �PN
k=1

ln P [ k,tk]
P [�k,tk]

. As a consequence, one obtains the total jump
entropy production along a full quantum trajectory consisting of N jumps as

�j = ln
N
Y

k=1

RD
ik
[�k]

RR
ik
[�k]

P [�k, tk]

P [ k, tk]
. (5.51)
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5.2.2.3 Drift entropy production

In order to obtain a time local entropy balance equation for the drift contribution, one can
subdivide each finite drift interval

⇥

tk�1

, tk
⇤

into many small steps of size �t. This is physically
motivated since a finite drift interval actually originates from a number of measurements, sepa-
rated by small time steps. In each of these small time intervals the monitoring of the environment
yields the result that no jump with any of the Lindblad operators Ai occurs. Conditioned on
these events, the state vector undergoes small changes which lead in the limit �t ! 0 to a smooth
time evolution describing the drift process. The formulation is thus analogous to the one given
for jump entropy contributions, provided one uses the correct expression for the drift probabili-

ties. The latter are given by DD(R)

�t [ ] = 1 � �D(R)[ ]�t, where �D(R)[ ] =
P

iR
D(R)

i [ ] is the
total direct (reversed) jump rate for the state | i. The bath entropy contribution for one of these

no-jump events is thus �Se
d[ ] = � ln 1��

D�t
1��

R�t
. In this formulation, �t is the time interval between

two subsequent measurements on the environment. Moreover, since unraveling approaches cor-
respond to continuous measuring processes, it is justified to assume such a time interval to be
very small (usually lower bounded only by the resolution time of the measuring apparatus),

such that �D(R)�t ⌧ 1. Under this approximation one has �Se
d[ ] ⇠

R T
t0
dt
⇣

�D(t) � �R(t)
⌘

.

Exploiting Eqs. (5.49) and (5.50), one can easily prove that

Z tk

tk�1

dt�D(t) = � ln ||U
e↵

(tk, tk�1

)| k�1

i||2, (5.52)

Z tk

tk�1

dt�R(t) = � ln ||U
e↵

(tk�1

, tk)| ki||2, (5.53)

so that �Se
d[ ] = � ln

QN+1

k=1

||Ue↵(tk,tk�1)| k�1i||2
||Ue↵(tk�1,tk)| ki||2 . The total drift-induced change of open quan-

tum system entropy is �Sd[ ] = �PN+1

k=1

ln P [�k,tk]
P [ k�1,tk�1]

and finally

�d = ln
N+1

Y

k=1

||U
e↵

(tk, tk�1

)| k�1

i||2
||U

e↵

(tk�1

, tk)| ki||2
P [ k�1

, tk�1

]

P [�k, tk]
(5.54)

is the single trajectory drift entropy production. With the use of Eqs. (5.46), (5.51) and (5.54)
it is straightforward to show that

� ⌘ �j + �d = ln

✓

P [ 
0

, t
0

]

P [�N+1

, tN+1

]

N
Y

k=1

RD
ik
[�k]

RR
ik
[�k]

N+1

Y

k=1

||U
e↵

(tk, tk�1

)| k�1

i||2
||U

e↵

(tk�1

, tk)| ki||2
◆

. (5.55)

Such an equation describes the total entropy production along a single quantum trajectory: In
particular, since a quantum trajectory is monitored by measuring the environment, � is the total
information the external observer acquires about the system through the knowledge of initial
and final states of the process (�S) minus the information extracted by measurements of all
intermediate steps connecting them (�Se), detected in the bath. Note that Eq. (5.55) is fully
characterised by the knowledge of a single trajectory, contrarily to the single trajectory contri-
bution to von Neumann entropy which would require the solution of the full master equation of
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the system (analogously to what happens also with classical-like unravellings, see for example
Eq. (4.41) which requires the knowledge of density matrix populations).

5.2.2.4 Entropy flux and quantum fluctuations

To fully understand the physics described by the entropy flux terms introduced above, analyse
for instance its jump contribution in Eq. (5.51). In the case of a jump |�ki ! | ki the entropy
flowing into the environment is given by

�Se
jk = ln

�bik
�ik

+ ln
�ikR

R
k

�bikR
D
k

. (5.56)

On average the process has a preferred direction if the two rates are not equal. Since, in a weak
coupling Markovian master equation with a thermal environment, �bik/�ik = e��✏ik (✏ik being
the energy QE exchanged between system and environment during the transition Aik) [3], the
first term on the r.h.s. of Eq. (5.56) is a standard thermodynamic entropic flux of the form �QE

T .
The second term on the r.h.s. of Eq. (5.56) describes, on the other hand, how much information
is produced by the system jumping through the particular decay channel Aik . I refer to such
an additional term as nonthermal entropy flux �Snt. One can characterise such a nonthermal
flux by introducing the parameter ⌘k = 1 � �ikR

R
k /�

b
ik
RD

k . According to its definition, ⌘k = 0
if the bias of the associated direct transition to the corresponding reversed one is only due to
the direction of heat flux. Introducing the operator ⇤ik = A†

ik
Aik and exploiting the explicit

expression of RR and RD one obtains

⌘k =
h�k|⇤ik |�ki2 � h�k|⇤2

ik
|�ki

||Aik |�ki||4 = �Var[�k]

1

(⇤ik)

||Aik |�ki||4 , (5.57)

where Var
1

(Q) =
R

d P [ ]
⇣

h |Q2| i � h |Q| i2
⌘

, introduced in [127], is known to measure

the average intrinsic quantum fluctuations of an operator Q during a dynamic process, and

Var[�k]

1

(Q) = h�k|Q2|�ki� h�k|Q|�ki2 is its single trajectory contribution due to the k-th jump.
From the structure of ⌘k one infers that during the jump |�ki ! | ki, the exchange of information
between system and environment goes beyond the standard thermodynamic form if and only if
the operator ⇤ik has nonzero purely quantum fluctuations in the source state of the direct jump:
The nonthermal entropic contribution has indeed the form �Snt

jk
= ln(1� ⌘k).

The additional, nonthermal contribution to the jump entropy flux is directly linked to
the quantum fluctuation of the operators ⇤ik , which shows the nonclassical character of these
results. Note that, thanks to the same formal structure of the jumps and the drifts transition
rates, these results hold true also for the drift parts of a quantum trajectory. In particular, during
a drift there is no standard thermodynamic entropy flux as the heat flux vanishes. However,
thanks to the purely quantum fluctuations of the operator ⌦k = U †

e↵

(tk, tk�1

)U
e↵

(tk, tk�1

) in
the state | k�1

i, the generic k-th drift part of the full process is also associated to a purely
quantum information flux between system and environment. It is worth stressing however that
the non-thermal drift entropy flux is of the order of �t2 (�t being the time interval between two
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subsequent measurements), while the corresponding jump term does not depend on �t. In order
to avoid here the presentation of complicated formulae, and to keep the focus on the physics of
these results, the non-thermal drift term is analysed in more details in the Appendix A.

5.2.3 Integral fluctuation theorem

It is now possible to investigate the statistical properties of � ⌘ �f in Eq. (5.55) along a
forward process. To simplify the notation, in what follows I introduce the symbols DD

k [ k] =
||U

e↵

(tk, tk�1

)| k�1

i||2 and DR
k [ k] = ||U

e↵

(tk�1

, tk)| ki||2. Moreover, rates along forward or
backward trajectories will be denoted by specifying the trajectory directly in the functional

dependence of the rates on the wave function, so that for example RR(D)

k [�f(b)
k ] is the reversed

(direct) k-th jump rate of the forward (backward) trajectory. With these notations, the mean
value of e��f (commonly considered in FTs contexts) can be evaluated as

⌦

e��f
↵ ⌘

Z

d fP [ f ]e��[ 
f
]�
�

�[ f ]� �f
�

=

Z

d bP [ b]
N
Y

k=1

RR
ik
[�f

k ]

RD
ik
[�b

k]

DR
k [ 

f
k ]

DD
k [ b

k]
(5.58)

and, since P [ b] is by construction a normalised probability distribution, one obtains

⌦

e��f
↵

=

*

N
Y

k=1

RR
ik
[�f

k ]

RD
ik
[�b

k]

DR
k [ 

f
k ]

DD
k [ b

k]

+

= 1 + ⇣f , (5.59)

where h·i stands for an average over all possible realisations of a nonequilibrium process. Equa-
tion (5.59) shows that, in the case of quantum trajectories, he��f i is not a universal constant:
The r.h.s. is indeed, in general, di↵erent from 1 and depends on the set of Lindblad operators
characterizing the unraveling scheme, resulting in a quantum correction ⇣f to the classical result.
This is illustrated in Section 5.2.4, where the predictions of Eq. (5.59) are numerically studied
for several model systems.

In particular, the correction ⇣f originates from the fundamental di↵erence between a back-
ward process (which is a real dissipative process) and “reversed” processes (which is the collection
of all reversed jumps and drifts and, as such, is fictitious). This di↵erence is nothing but the con-
sequence of the measuring scheme employed to characterise trajectories: information acquired
about the system by the external observer is not symmetric under time reversal, and such a
broken symmetry of knowledge produces di↵erent states in forward and backward transitions.
Indeed, if one considers a “cyclic-like” process composed of a forward trajectory followed by its
backward counterpart, the open system does not get back to its initial state since, despite the
energy fluxes being reversed, a certain amount of additional information is stored by the external
observer and is not completely erased along the backward process. This physically results in
the presence of the nonthermal quantum entropic flux (5.56), which does not obey a standard
FT. Indeed it has recently been shown [64] that, if only thermal energy exchanges during jumps
are taken into account along quantum trajectories of an open two-level system, the standard
universal form of FT holds. In addition, a recently published work [65] showed that the choice
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of a particular measuring scheme can lead to a standard entropic FT. As a matter of fact, in
a “standard”-like limit the nonthermal entropy flux vanishes both for drifts and jumps due to
the fact that the operators ⌦k and ⇤ik have vanishing quantum fluctuations, and in this case
⇣f = 0, recovering the universal standard form of FT.

5.2.4 Examples

In this subsection I present some results on particular systems exemplifying our findings. The
first example shows a particular limiting case in which the quantum correction ⇣f vanishes. In
the second example I discuss how the choice of a particular measuring scheme a↵ects entropic
quantum fluctuations resulting in di↵erent deviations from the standard FT.

5.2.4.1 The standard case: jumps between free Hamiltonian eigenstates

As an example of the standard limit of these results consider an open system without driving
whose Lindblad operators and decay rates remain constant in time. In the Markovian and
weak coupling limit, its Lindblad operators satisfy [HS , A

±
k ] = ±✏kA±

k . If now one assumes the
free Hamiltonian HS to have nondegenerate energy gaps in its spectrum (this assumption is
typically employed when studying, e.g., quantum thermalisation processes [182]), the emission
of an energy quantum ✏i is in a one-to-one correspondence with a transition between two well
defined energy levels |ni and |mi such that !n �!m = ✏k, !i being the energy associated to the
eigenstate |ii of HS . Assuming the spectrum of HS to be composed of N discrete levels (|1i
being the ground state) of increasing energy, a natural choice for the set of Lindblad operators
is then

A
N(i�1)+j� i(i+1)

2
= |iihj| for 1  i < j  N, (5.60)

A†
N(i�1)+j� i(i+1)

2

= |jihi| for 1  i < j  N. (5.61)

Note that, thanks to the assumption of nondegenerate gaps in HS and the form of the opera-
tors in the set {Ak}, it is not necessary for the system to start its trajectory in an eigenstate
of HS since after the first jump any wave function | i is projected to a well defined energy
eigenstate. One can therefore assume, without loss of generality, that the system starts its tra-
jectory from a generic yet fixed energy eigenstate |ni. The action of a jump operator |mihn|
on such a state is then nothing but the transition |ni ! |mi. The system performs jumps only
between eigenstates of its free Hamiltonian. Exploiting Eqs. (5.60) and (5.61), one notices that

A†
N(i�1)+j� i(i+1)

2

A
N(i�1)+j� i(i+1)

2
= |jihj|, so that the drift non-Hermitian Hamiltonian becomes

H
e↵

= HS� i
2

PN
i e�i|iihi|, where e�i =

PN
j �

N(i�1)+j� i(i+1)
2

is the total relaxation rate associated

with the energy level |ii. The drift operator U
e↵

(tk, tk�1

) is then diagonal in the eigenbasis of
HS and introduces nothing but a phase factor to any evolving energy eigenstate: any trajec-
tory of this kind is equivalent to a pure jump process between eigenstates of HS . Note now
two things: on the one hand, since the emission or absorption of an energy quantum always
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connects the same two states, and since drifts have no e↵ects on the trajectory, backward and
reversed processes are the same and the backward trajectory connects the same states as the
forward one, but in reversed order. This in turn means that the quantum correction ⇣f in
Eq. (5.59) vanishes, and one recovers the standard form of fluctuation theorems. On the other
hand, as expected, this is due to the fact that nonthermal entropic fluxes are zero, since it can
be straightforwardly shown that neither the operators ⇤

N(i�1)+j� i(i+1)
2

= |jihj| nor the opera-

tors U †
e↵

(tk, tk�1

)U
e↵

(tk, tk�1

) =
PN

i e�e�i(tk�tk�1)|iihi| have purely quantum fluctuations in any
energy eigenstate, as they are diagonal in such a basis. The process is thus, in this respect, fully
classical.

5.2.4.2 Driven two-level atom

As a more interesting example of the results obtained above, one can unravel the dynamics of
a driven two-level atom (|ei and |gi being, respectively, its excited and ground state) under
two di↵erent unraveling schemes somehow analogous to, respectively, the one describing a direct
photodetection of emitted light and the so-called homodyne photodetection [3, 58], the only
di↵erence being here that the bath is assumed to be in a generic state, while standard photode-
tection schemes require the field to be in its vacuum state. Assume that the atom interacts with
a reservoir of field modes at nonzero temperature. The atomic master equation, written in the
TCL form of Eq. (5.1), is given by

⇢̇(t) = �i
!(t)

2
[�x, ⇢(t)]+�1(t)

⇣

��⇢(t)�+� 1

2

�

�
+

��, ⇢(t)
 

⌘

+�
2

(t)
⇣

�
+

⇢(t)��� 1

2

�

���+, ⇢(t)
 

⌘

,

(5.62)

where !(t) accounts for the applied external driving, �� = �†
+

= |gihe| is the lowering op-
erator of the atom and the rates �

1

(t) and �
2

(t) depend on the atom-field coupling param-
eter, on the structure of the state of the field and on its spectrum. Note that, as long as
�
1

(t), �
2

(t) � 0 8t, Eq. (5.62) always implements a time-dependent Markovian dynamics. The
“direct photodetection-like“ unraveling yields two jump operators of the form

A
1

= ��, (5.63)

A
2

= �
+

= A†
1

, (5.64)

which amounts at probing the photon statistics of the field to detect single photons emitted (��)
or absorbed (�

+

) by the atom, with relaxation rates �
1

(t) (emission) and �
2

(t) (absorption).

On the other hand, another suitable set of Lindblad operators similar to the ones describing
the ”homodyne” photodetection process, is given by

A�
1

(�) = �� � i�, (5.65)

A+

1

(�) = �� + i�, (5.66)

A�
2

(�) = �
+

� i�⇤ = A+

1

(�)†, (5.67)

A+

2

(�) = �
+

+ i�⇤ = A�
1

(�)†, (5.68)
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for any � 2 C. This corresponds to the detection of the statistics of the field, after it interacts
through beam splitters with a local oscillator field of amplitude |�|2. The associated relaxation

rates are �±
1

(t) = �1(t)
2

and �±
2

(t) = �2(t)
2

. Note that the transformation of Lindblad operators
leading to the set (5.65)-(5.68) produces no changes in the Hamiltonian part thanks to the
fact that A�

1

(�) + A+

1

(�) = 2A
1

and A�
2

(�) + A+

2

(�) = 2A
2

. It is easy to check that the
master equation obtained using the four operators (5.65)-(5.68) reduces, for any �, to Eq. (5.62),
therefore describing the same physical process on the ensemble level. Fixing � one fixes a
particular measuring scheme and, therefore, a particular set of Lindblad operators. In this way
one is able, just by switching between the two sets (5.63), (5.64) and (5.65)-(5.68) and/or by
tuning �, to investigate the dependence of ⇣f in Eq. (5.59) on the unraveling scheme employed.

I present here simulations for the “direct photodetection-like“ scheme and for the
“homodyne-like“ scheme with di↵erent values of �, with fixed measurement step �t and total
duration T , choosing

!(t) = !
0

⇣

1� e�
t
⌧

⌘

, (5.69)

�
1

(t) = g
1

e
� t

⌧1 , (5.70)

�
2

(t) = g
2

⇣

1� e
� t

⌧2

⌘

. (5.71)

The parameters have been fixed such that �t
⌧1

= 1.3 · 10�3, �t⌧2 = 10�3, �t⌧ = 2.7 · 10�3 and
�t
T = 8 · 10�4. The initial atomic wave function is of the form | f

0

i = ce|ei + cg|gi and, for
each trajectory, the complex values for ce and cg have been chosen randomly out of a uniform
distribution of real values in [0, 1] for their moduli, and of a uniform distribution of real angles
in [0, 2⇡] for their relative phase. Note that such a distribution does not correspond to a
uniform distribution of pure states over the Bloch sphere. It is important to stress that, at
least in principle, any distribution of state vectors can be generated by appropriate preparation
measurements.

The results of these simulations are shown in Fig. 5.6, where
⌦

e��f
↵

, evaluated as an
average over 104 quantum trajectories, is shown for 10 di↵erent sets of values of rates and
driving such that �t!

0

= 8k · 10�4, �tg
1

= 8k · 10�5, �tg
2

= 4.8k · 10�4 for k = 1, . . . , 10 (“direct

photodetection-like“ scheme, left panel) or 10 di↵erent values of � = ke
i3⇡
5 , k = 1, . . . , 10 and

�t!
0

= 5.6 · 10�4, �tg
1

= 4 · 10�4, �tg
2

= 2.4 · 10�4 (”homodyne-like” scheme, right panel).

Finally, I present simulations for the more familiar case in which the values of decay rates are
determined by environmental properties only, i.e. the case of a thermal bath weakly interacting
with the system: Fig. 5.7 shows results for time independent relaxation rates �

1

/ hNi + 1
and �

2

/ hNi, hNi being the average photon number in the field state. Note that in this case
the explicit functional dependence of �

1

and �
2

on the properties of a thermal bath (such as,
for example, its spectrum or its temperature) can be obtained through the theory of Einstein’s
coe�cients. Indeed the dependence of �

1

and �
2

on hNi describes the e↵ects of atomic absorption
and of both spontaneous and stimulated atomic emissions [124].

This further run of simulations, consisting of 3 · 104 trajectories for each point in the plot,
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Figure 5.6: Left panel:
⌦
e��f

↵
(black dots), evaluated over 104 quantum trajectories for the “direct

photodetection-like“ scheme for a driven two-level atom interacting with a reservoir of modes, for 10
di↵erent values of driving amplitude and relaxation rates �t!0 = 8k · 10�4, �tg1 = 4.8k · 10�4, �tg2 =
8k · 10�5 for k = 1, . . . , 10 and having fixed the other parameters as �t

⌧1
= 1.3 · 10�3, �t

⌧2
= 10�3, �t

⌧
=

2.7 · 10�3 and �t
T

= 8 · 10�4. The red full line is a quadratic function of k roughly interpolating
numerical data and their increasing trend.
Right panel:

⌦
e��f

↵
(black dots), evaluated over 104 quantum trajectories for the ”homodyne-like”

scheme for a driven two-level atom interacting with a reservoir of modes, for 10 di↵erent values of

� = ke
i3⇡
5 , k = 1, . . . , 10 and with fixed system parameters as �t!0 = 5.6 ·10�4, �tg1 = 4 ·10�4, �tg2 =

2.4 · 10�4, �t
⌧1

= 1.3 · 10�3, �t
⌧2

= 10�3 and �t
⌧

= 2.7 · 10�3. The red full line is a 4th degree polynomial
function of |�| roughly interpolating numerical data and their increasing trend.

Figure 5.7:
⌦
e��f

↵
(black dots), evaluated over 3 · 104 quantum trajectories for the “direct photodetection-like“

scheme for a driven two-level atom interacting with a thermal reservoir of modes, for 8 di↵erent values
of temperature such that the average thermal photon number is hNi = 0.2 + 0.3k, k = 0, . . . , 7 and
having fixed the other parameters as �t

⌧
= 2.7 · 10�3,!0�t = 8 · 10�4 and �t

T
= 8 · 10�4. The red full

line is a quadratic function of hNi roughly interpolating numerical data and their increasing trend.

has been performed analogously to the one reported in Fig. 5.6 for the direct photodetection-
like scheme, keeping all the parameters fixed at the same value characterising the left panel of
Fig. 5.6, with the only exception of !

0

which has been fixed such that !
0

�t = 8 · 10�4 and, of
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course, the rates �
1

and �
2

. The simulations have been performed for 8 di↵erent values of hNi
such that hNi = 0.2 + 0.3k, k = 0, . . . , 7. Note that, tuning hNi in these simulations corre-
sponds to tuning the temperature of the field with which the two-level atom interacts (provided
its spectrum stays constant).
Two interesting features emerge from these simulations: first of all, the mean value

⌦

e��f
↵

can be substantially di↵erent from 1 both for “direct photodetection-like“ and “homodyne-like”
schemes, resulting in a nonzero quantum correction ⇣f . Therefore, even for such a simple sys-
tem the di↵erence between backward trajectory and reversed processes becomes nonneglegible.
Secondly,

⌦

e��f
↵

shows a clear dependence on the set {!
0

, g
1

, g
2

}, on the average bath photon
number hNi and on |�|, i.e. on the driving and the decay amplitudes, on the bath tempera-
ture and on the unraveling scheme employed. In particular, in the “direct photodetection-like“
scheme

⌦

e��f
↵

is very close to 1 in the case of a weakly decaying and driven system (k = 1) and
increases smoothly with k with a power-law like shape. Also in the case of the homodyne-like
scheme a clear increasing trend is detected which suggests a monotonic increase of

⌦

e��f
↵

with
|�|, properly described by a quadratic function of |�|2. Finally, it is interesting to note that,
in the case of a thermal bath,

⌦

e��f
↵

increases quadratically with the average photon number
hNi but does not tend to 1 for hNi ! 0 since, also in the case of a zero temperature bath, the
system can perform quantum jumps and undergoes nontrivial drifts, resulting in a nonvanishing
nonthermal entropy flux. These features may reasonably be employed to properly engineer a
class of nonequilibrium processes with particular stochastic properties of entropy production.

5.2.5 Remarks

It is worth, in order to properly fix ideas and take-home messages, summarising again the results
presented in this section. An expression for the stochastic entropy production along a purely
quantum trajectory of a driven open system has been obtained, defined through continuous mea-
surements on the environment only. The quantum entropy thus defined, which is fundamentally
di↵erent from the commonly employed von Neumann entropy, describes the observer’s gain/loss
of information about the open system along single realisations of quantum nonequilibrium pro-
cesses and, contrarily to previous approaches to quantum FTs, does not require any knowledge
on the ensemble dynamics of the open system given by the solution of the master equation (5.1).
I showed that the flux of such an entropy is not only associated to energy flux from/into the bath,
defying common classical thermodynamic expectations. The additional information term results
from purely quantum fluctuations of the transition operators along a trajectory. Due to this
additional term, the quantum entropy of a stochastic trajectory does not obey the usual form
of integral fluctuation theorem: The quantum correction ⇣f in Eq. (5.59) depends on the set of
jump operators employed to unravel the master equation, and ultimately describes the di↵erence
between the physical backward trajectory and the fictitious reversed processes. In other words,
such a correction is due to the lack of symmetry between forward and backward processes, which
in turn originates from the existence of an external observer performing measurements on the
bath to detect transitions.
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Chapter 6

Conclusions

The results presented in this thesis, which represent a broad part of the work I performed during
my PhD studies, belong to the general topic of quantum thermodynamics. They comprise the
characterisation of concepts, such as phase transitions, many-body physics and nonequilibrium
fluctuations, whose classical formulation is given within a (possibly stochastic) thermodynamic
framework. In pursuing such a characterisation I fully took into account the non-classical nature
of the systems of interest, thus supplying conceptual and technical contributions to the quantum
description of certain phenomena.

The framework I moved in has consisted of the physics of an open quantum system interact-
ing with a structured environment and possibly driven, adiabatically or not, out of its stationary
state by an external force. Such interactions produce, inside the open quantum system, certain
stochastic behaviours which have been accounted for by a probabilistic description of its phys-
ical properties: if one word should be given to characterise as a whole the results presented
in this thesis, that would be fluctuations. Indeed, as a response to any external perturbation
of its state, any system fluctuates around its equilibrium state or, when the perturbation is
not adiabatic, strongly fluctuates along its nonequilibrium evolution. Also without considering
any externally applied driving, already the simple case of an interaction with a thermal bath
generates a lack of knowledge about the state of an open system (whose origin can be traced
back, in the quantum realm, to the existence of non-classical system-bath correlations) which in
turn implies fluctuations in the information available through measurements. This is true in a
classical case, and even more strongly evident in the quantum case when additional sources of
fluctuations (lack of knowledge) are structurally present. The work presented throughout the
previous Chapters can be divided into two vast conceptual areas, namely, quantum equilibrium
and nonequilibrium thermodynamics.

In the results concerning the equilibrium part, I dealt with thermalised systems either
driven or not. In the driven case [142, 143, 144], I considered an adiabatic change of some
parameters characterising the Hamiltonian of the system and showed that, when along the
driving a certain class of quantum critical points is met at low enough temperature (generating,
in particular, a first order quantum phase transition), the quantity known as heat capacity
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undergoes a characteristic oscillating behaviour as a consequence of the general two-level physics
obeyed by any such system. In addition, by exploiting a recent result connecting the structure
of an equilibrium Gibbs state to the presence of entanglement between a thermalised system and
its bath [31], I showed a second general feature of the heat capacity, i.e., that it vanishes any time
the bipartite thermal entanglement inside a system tends to be maximal. Both these features
are consequences of equilibrium and/or adiabatic quantum fluctuations. I commented, and
showed by some examples, that the existence of these two universal behaviours of a measurable
parameter supplies researches with a way to probe the existence of a critical point at finite
temperature on the one hand (despite the fact that, strictly speaking, quantum phase transitions
happen at vanishing temperature since usually thermal fluctuations dominate over quantum
ones), and to witness sharp transitions and plateaus of thermal bipartite entanglement on the
other.

In the non-driven case, I showed with my results [145] that a widely employed approxima-
tion to study 1-dimensional many-body thermodynamics has structural limitations and predicts
unphysical behaviours in a broad range of temperatures. I showed that such an approxima-
tion, being based on a central limit theorem and on a Gaussian approximation for statistical
distribution of energy, can not reproduce the equilibrium fluctuations at the tails of the actual
distribution and fails when predicting the zero-temperature and the intermediate-temperature
physics. In particular, any result based on this method violates the third law of thermodynamics
and predict a thermal phase transition for 1-dimensional systems, in striking contrast with the
general result that such transitions can not exist because the energetic term always dominates
over the entropic one. I also showed how such a method can be improved (despite all its draw-
backs still being present) when applied to the evaluation of certain measurable quantities such as
the free energy of the system, and that its predictions are reliable only in the high temperature
limit.

Driven open quantum systems have also been the subject of my work on quantum nonequi-
librium thermodynamics, where I studied out-of-equilibrium entropy fluctuations generated by
a (non-adiabatic) driving applied on an open quantum system. I obtained two main results on
such a topic. On the one hand, I showed [72] that the interaction with a non-Markovian reser-
voir, introducing memory e↵ects in the dynamics and generating information backflows into the
open system, modifies the definition itself of entropy production along single processes. Indeed,
along a non-Markovian single realisation of the driving process one has to take into account also
the strong correlations between di↵erent pure-state trajectories the system may follow or, which
is the same, the correlations shared between system and environment. I showed, employing a
classical-like formulation of pure-state dynamics, that the existence of these correlations intro-
duces an additional entropic term, and that a standard fluctuation theorems is obeyed only by
the total entropy production in which such an additional term is included. The second part
of my results [73] on fluctuation theorems, on the other hand, managed to reconcile the two
main approaches so far employed for Markovian quantum fluctuation, by formalising single re-
alisations of quantum driving processes as being based on the so-called stochastic wave function
method which describes purely quantum trajectories and, in parallel, which allowed me to di-
rectly associate these trajectories to well defined fluxes on information-based entropy between
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system and environment. Such a method has a clear experimental connection [3, 125] since
the trajectories on which it is based are produced by experimental measurements performed on
the environment only, thus generating a formulation of single nonequilibrium dynamics as close
as possible to the classical concept of phase space trajectories. I showed that, already within
a Markovian approximation, quantum fluctuations strongly a↵ect the entropy produced along
these processes introducing a non thermal contribution due to fluctuations of the information
extracted by the external observer measuring the environment. Moreover I showed that, since
such an information is not reversed when the system evolves backward, a fluctuation theorem
does not exist and the correction term to its standard form depends, among other things, on
the measuring scheme employed to continuously monitor the reservoir.

The importance of my results is manyfold. On the one hand, indeed, they contribute to the
topical and timely research about the microscopic and nanoscopic limits of thermodynamics and,
in parallel, about the possibility to formulate stochastic thermodynamics by exploiting quantum
features only. This is becoming in these years a topic of greater and greater interest also in
view of the technical possibility to experimental address the physics of nanosystems, on whose
exploitation quantum technologies are founded. On the other hand, my research runs along the
border line between thermodynamics and information theory. The connection of entanglement
to measurable thermal parameters, the introduction of memory e↵ects into nonequilibrium en-
tropy production, the description of purely quantum driving processes and, within them, of the
role of measurements, open a broad range of possibilities to exploit the potentialities of quantum
thermodynamic systems in quantum information and quantum computation contexts. Finally,
last but not least, my results give a new insight into the structure itself of micro and nanoscopic
world by connecting their underlying quantum dynamics to the statistical distribution of mea-
surable quantities. This is an issue of paramount importance in exploring the extent to which
quantum features are involved in the structure of macroscopic physics and of the macroscopic
limit of quantum theory.
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Appendix A

Nonthermal drift entropy flux along
quantum trajectories

It has been shown in subsection 5.2.2 that nonthermal contributions to jump entropy flux origi-
nate from purely quantum fluctuations of operators A†A, and it has been argued that the same
would hold for drift entropy production when considering fluctuations of the operator U †U . Here
the structure of these fluctuations along nonunitary evolutions is analysed.

During a drift interval [tk�1

, tk], information is extracted by measuring the environment
at a constant rate 1

�t . Therefore the total information extracted is given by a sum of small

contributions, each of which originates from one of the tk�tk�1

�t measuring processes and originates
from the quantum fluctuations of the operator U †(�t)U(�t). Assume here the most general
situation, in which H

e↵

(t) depends on time and
⇥

H
e↵

(t
1

), H
e↵

(t
2

)
⇤ 6= 0, so that the use of the

time-ordering operator T is needed.

Since in the stochastic wave function method one always assumes �t to be very small
(
P

iRi�t ⌧ 1), one can keep only terms up to the order of �t2 in the Dyson expansion of the drift

operator. For the sake of simplicity, introduce the Hermitian operator ⌦(t) =
P

i �i(t)A
†
i (t)Ai(t)

so that H
e↵

(t) = HS(t)� i
2

⌦(t), and the operators

I(1)�t (t) =

Z t+�t
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1

)dt
1

, (A.1)
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With these notations one obtains

U(�t) = T exp

⇢

�i

Z t+�t

t
H

e↵

(t
1

)dt
1

�

⇠ 1� 1
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dt
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dt
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(A.6)

and, up to order �t2,

U(�t)†U(�t) ⇠ 1� I(1)�t (t)� T�t2(H1

, H
2

) +
1

4
V�t2(⌦1

,⌦
2

) +
i

2
J�t2(⌦, H) (A.7)

and
⇣

U(�t)†U(�t)
⌘

2 ⇠ 1� 2I(1)�t (t) + I(2)�t2 (t)� 2T�t2(H1

, H
2

) +
1

2
V�t2(⌦1

,⌦
2

) + iJ�t2(⌦, H). (A.8)

With simple calculations one can now evaluate Var[ ]
1

(�t) ⌘ Var[ ]
1

(U(�t)†U(�t)) on a generic
state | i. It results

Var[ ]
1

(�t) = h |
⇣

U(�t)†U(�t)
⌘

2| i�h |U(�t)†U(�t)| i2 = h |I(2)�t2 (t)| i�h |I(1)�t (t)| i2. (A.9)

The nonthermal entropy flux of the k-th drift depends on

k = �Var[ k]

1

(U(�t)†U(�t))

||U(�t)| ki||4 (A.10)

and is then generated, up to second order in �t, only by the quantum fluctuations of the operator

I(1)�t (t) on the state of the trajectory. It is worth stressing that, in Eq. (A.9), the first non
vanishing contribution is of order �t2, while the term ||U(�t)| ki||4 has also contributions of
order �t0 and �t: This means that the drift entropy flux can be made vanishingly small by
choosing a very high measurement rate, such that all terms of order �t2 become negligible. Note
however that there are at least two lower bounds to �t: one is given by the time resolution of the
experimental apparatus, which is not infinite. The other one is given by the requirement that
the dynamics is not frozen due to the Zeno e↵ect [183]: therefore �t has to be always greater
than the Zeno time of the total system. These two limitations, in some cases, may lead to a
nonvanishing drift entropy flux, which is then a quantity of real physical interest.
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Part of the results of this thesis have been published in the following articles:

1. B. Leggio, Heat capacity and entanglement, Il Nuovo Cimento C, 35, 65 (2012).

2. B. Leggio, A. Napoli and A. Messina, Entanglement and heat capacity in a two-atom
Bose-Hubbard model, Physics Letters A 376, 339 (2012).

3. B. Leggio, A. Napoli, H. Nakazato and A. Messina, Heat capacity and entanglement mea-
sure in a simple two-qubit model, Journal of Russian Laser Research 32, 362 (2011).

4. B. Leggio, O. Lychkovskiy and A. Messina, On the Merit of a Central Limit Theorem-based
Approximation in Statistical Physics, Journal of Statistical Physics 146, 1274 (2012).

5. B. Leggio, A. Napoli, H.-P. Breuer and A. Messina, Fluctuation theorems for non-Markovian
quantum processes, Physical Review E 87, 032113 (2013).

6. B. Leggio, A. Napoli, A. Messina and H.-P. Breuer, Entropy production and information
fluctuations along quantum trajectories, Physical Review A 88, 042111 (2013).
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[91] C̆. Brukner, M. Żukowski and A. Zeilinger, Phys. Rev. Lett. 89, 197901 (2002).

[92] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer
and A. Zeilinger, Nature 434, 169 (2005).

[93] V. Vedral, Rev. Mod. Phys. 74, 197 (2002).

[94] L. Amico, R. Fazio, A. Osterloh and V. Vedral, Rev. Mod. Phys. 80, 517 (2008).

[95] M. B. Plenio and S. Virmani, Quant. Inf. Comput. 7, 1 (2007).

[96] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).

[97] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).

[98] M. Horodecki, P. Horodecki and R. Horodecki, Phys. Rev. Lett. 80, 5239 (1998).

[99] G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 (2002).

[100] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner and P. Zoller, Phys. Rev. Lett. 81, 3108
(1998).

[101] I. Bloch, Nature Physics 1, 23 (2005).

[102] C. K. Law, H. Pu and N. P. Bigelow, Phys. Rev. Lett. 81, 5257 (1998).

[103] A. Imambekov, M. Lukin and E. Demler, Phys. Rev. A 68, 063602 (2003).

[104] H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958); C. Chin, R. Grimm, P. Julienne and E.
Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).

[105] G. G. Batrouni, V. Rousseau, R. T. Scalettar, M. Rigol, A. Muramatsu, P. J. H. Denteneer
and M. Troyer, Phys. Rev. Lett. 89, 117203 (2002).

[106] M. Rizzi, D. Rossini, G. De Chiara, S. Montangero and R. Fazio. Phys. Rev. Lett. 95,
240404 (2005).



114 BIBLIOGRAPHY

[107] U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 2008).

[108] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).

[109] M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. Souto Ribeiro
and L. Davidovich, Science 316, 579 (2007).

[110] Y.-S. Kim, J.-C. Lee, O. Kwon and Y.-H. Kim, Nature Physics 8, 117 (2012).

[111] S. Maniscalco, A. Messina, A. Napoli and D. Vitali, J. Opt. B: Quantum Semiclass. Opt.
3, 308 (2001).

[112] F. Shibata, Y. Takahashi and N. Hashitsume, J. Stat. Phys. 17, 171 (1977); S. Chaturvedi
and F. Shibata, Z. Phys. B 35, 297 (1979).

[113] V. Gorini, A. Kossakowski and E. C. G. Sudarshan, J. Math. Phys. 17, 821 (1976); G.
Lindblad, Commun. Math. Phys. 48, 119 (1976).

[114] E. Andersson, J. D. Cresser and M. J. W. Hall, J. Mod. Opt. 54, 1695 (2007).
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word is the one not spoken). Being Sicilian, I am not immune from this attitude: had I followed
my instinct, these acknowledgments would have consisted of a meaningful yet silent nodding.
Notwithstanding, given the fact that nodding around requires more spare time than one may
think, I believe words deserve in this case to be written.
Let me then devote a few lines to share this dissertation with the people I had the luck to work
and/or walk with - metaphorically, when not literally - during these three years of PhD studies.

I begin by thanking my two supervisors, Ninni Messina and Heinz-Peter Breuer, for their
priceless and long-lasting support, for the countless scientific exchanges and for the deep human
link developed over years. Their guidance along my studies has been of fundamental importance.

Durante il mio dottorato ho avuto la fortuna di condividere momenti, idee, preoccupazioni
e risate con moltissimi amici. Grazie ai ragazzi della “stanza” (in rigoroso senso orario) Matteo,
Antonio, Federico, Salvatore, Pasqualino, Sam, Saro, Bruno e Salvo, e grazie ai ragazzi del
“pranzo” Valeria, Michele, Federica, Francesco, Giorgio, Eleonora, Matteo. Grazie a chi non
rientra in queste due categorie, Daniele, Rosanna, Anna e Lucia. Come ho già avuto modo di
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