

Frequency dependence of the microwave surface resistance of MgB₂ by coaxial cavity resonator

A. Agliolo Gallitto^a, P. Camarda^a, A. Figini Albisetti^b, G. Giunchi^b, M. Li Vigni^a

DIS SIJ

University of Palermo

Rhodes (Greece) 21-26 September 2013 ^a Dipartimento di Fisica e Chimica, University of Palermo (Italy) ^b EDISON R & D, Milano (Italy)

Abstract. We report on the frequency dependence of the mw surface resistance, R_s, of MgB₂ by coaxial cavity resonator. We have determined the temperature dependence of R_s of a cylindrical MgB₂ rod prepared by the reactive liquid Mg infiltration technology at EDISON SpA., at fixed frequencies, and the frequency dependence of R., at fixed temperatures.

MgB₂ material

The bulk MgB₂ rod have been prepared by the reactive liquid Mg infiltration technology, which consists in the reaction of pure liquid Mg and a preform of B powder in a sealed stainless steel container. In particular, crystalline B powder (99.5% purity, original chunks mechanically grinded and sieved under a 38 µm sieve) and thermal annealing at 850 °C for 3 h.

Experimental results

Figure 1. Hybrid Cu/MgB2 coaxial cavity and the modified SMA connector (inset), prepared to match the cavity's ends.

The resonant cavity has been characterized measuring its frequency response in the range 1 – 13GHz by an hp-8719D Network Analyzer, in the temperature range 4.2K - 50K. The cavity exhibits 8 resonant modes, shown in Figure 2.

We have manufactured a coaxial cavity with a Cu tube as outer conductor and a MgB₂ rod as inner conductor.

External Cu tube: 105.4 mm long inner diameter 10.2 mm

MgB₂ rod: diameter 3.8 mm length 94.3 mm

R_c vs. T

From Q_u, one can determine R_s of the MgB₂ material by which the inner rod is done: $R_s = \frac{1}{Q_s} \left[a\mu_0 \omega \ln\left(\frac{b}{a}\right) \right]$

Figure 3 shows:

R_s **vs. T** of the MgB₂ (right axis)

We obtained the highest quality factor $Q_{ij} = 17000$ at T = 4.2K; it remains of the order of 10⁴ up to about 30K and reduces by a factor of about 20 when the SC rod goes into the normal state. The correspondent values of R_s go from $R_s = 0.1 m\Omega$, at T = 4.2K, up to $R_c = 20m\Omega$ at $T = T_c = 38.5K$.

Frequency dependence of R_s

To determine the frequency dependence of R_s, the temperature was set at desired values, then the resonance curves for the different modes were acquired and analyzed to obtain the curves of R_s vs. T shown in Figure 4.

For each temperature, the deduced R_c vs. f curves plotted in a log-log scale have highlighted a linear behavior indicating a fⁿ law; two examples of $R_{c}(f)$ curves, one at low T and one near T_c, are shown in Figure 5.

f (GHz)

Figure 5. R_s vs. frequency.

Discussion and conclusion

Our results show that the $R_s(f)$ curves follow a fⁿ law, where the exponent n decreases on increasing T, from $n \cong 2$, at T = =4.2 K, down to $n \cong 0.7$ at $T \cong T_c$.

Figure 6.

1.0 The temperature dependence of the exponent n is shown in 20 Temperature (K)

Figure 6. Temperature dependence of n.

The double-gap nature of MgB₂ manifests itself in the presence of a wide low-T tail in the R_s(T) curves, which can be ascribed to the quasi-particles thermally excited through the π -gap even at relatively low temperatures.

References

- ✓ M.J. Lancaster, Passive Microwave Device Applications of High-Temperature Superconductors, Cambridge 1997
- ✓ G. Giunchi, G. Ripamonti, T. Cavallin, E. Bassani, Cryogenics 46 (2006) 237; G. Giunchi, Int. J. Mod. Phys. B 17 (2003) 453
- A. Agliolo Gallitto, P. Camarda, M. Li Vigni, A. Figini Albisetti, L. Saglietti, G. Giunchi, arXiv:1307.7525 (2013)
- A. Agliolo Gallitto, G. Bonsignore, M. Li Vigni, A. Maccarone, SuST 24 (2011) 095008

Contact: Aurelio Agliolo Gallitto, Dipartimento di Fisica e Chimica, University of Palermo (Italy), email: aurelio.agliologallitto@unipa.it