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Abstract— In this paper a procedure for the identification of the parameters of Jiles-Atherton (JA) model is 

presented. The parameters  of JA model of a material are found by using a neural network trained by a 

collection of hysteresis curves, whose parameters are known. After a presentation of Jiles-Atherton model, 

the neural network and the training procedure are described and the method is validated by using some 

numerical as well  as experimental data 

 

Index Terms—Hysteresis modelling, magnetic materials, electric machines.  
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INTRODUCTION  

A general problem for every hysteresis model is its identification. The identification of a model consists in 

guessing the right parameters to be used in the model in order to describe the hysteresis curve of a given 

material. As a result, in the Jiles Atherton (JA) model (1-3) of a given material, as well as in any analytical 

model of hysteresis, the parameters of the model are assumed to be known. However, this could not always 

be true and especially for new materials can be difficult to guess the right parameters.  

In this paper, I present an approach that allows to identify the parameters of JA model on the basis of some 

known magnetic behavior. The fundamental idea of this method is to identify the parameters  of a material 

by using a neural network trained by a collection of hysteresis curves, whose JA model is known.  

Artificial Intelligence techniques have been largely used in many technical fields: such as control 

technology, diagnostics, pattern recognition etc., see (4) for references.  Approaches that use neural 

networks to obtain the numerical parameters of given distribution function in classical, dynamic and 

vectorial Preisach model are known in literature (5-7), on the contrary the identification of JA model has 

been based mainly on least squares methods, genetic algorithms as well as fuzzy logic technique (7). In this 

paper Neural Networks are used to identify JA model for various types of materials. 

The proposed identification procedure can be divided into three steps: A) network training; B) submission 

of test set ; C) output of the results. 

A suitable network is used on the basis of physical consideration.  

The network is trained by some hysteresis data, which are generated from a set of well  identified JA 

models. The set of training data consists of the magnetization values and the used parameters in JA model. 

The output of this process is a trained neural network able to identify a JA model, this network uses as input 

an hysteresis curve and yelds the parameters of JA model which best describe the submitted curve. 

In order to validate the approach, a comparison between numerical loops and experimental data is reported.  

is shown 
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The trained network showed that it was able to identify the parameters of JA model of the experimental 

curves used. 

 

THE JILES-ATHERTON MODEL 

The J-A model has the following form: 
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Where: M is the magnetization, H is the applied  magnetic field, c is the coefficient of reversibility of the 

movement of the walls, Mirr is the irreversibile magnetization, He is the effective field (He=H+αM ), Man is 

the anhysteretic magnetization, α is linked to hysteresis losses. 

Man can be calculated through the Langevin’s equation: 
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where Ms is the saturation Magnetization, a is a form factor and Mirr is defined as follows: 
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where t is time and k describes interactions between Weiss’ domains. As a result, J-A model is a five-

parameter model 

 

IDENTIFICATION  

The identification procedure consists of three steps: A) training; B) submission of data ; C) output. The step 

A is executed separately from steps B and C. 

 

Training 
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Training phase aims to build a network, whose input is the hysteresis curve and the output consists of the 

parameters of  J-A Model  that better reproduces the hysteresis cycle loop which had been submitted to the 

network. 

The neural network used consists of a three layer neural network: the first layer consists of  25 linear 

neurons, the second layer of 40 neurons with hyperbolic tangent sigmoid function, and the output layer of 5 

linear neurons. The input is made up of a 32-component vector.  The first layer makes a linear reduction 

from the high dimension input space to a slightly lower 25-dimension space. The output of the first layer is 

therefore the feature vector that sums up the most relevant characteristics of the input space and is strictly 

connected to five relevant properties of the hysteresis loop. The 40 neurons of the second layer neurons 

allows to store a number of parametric curves equal at least equal to 1000. The output layer is made up of 5 

neurons which are the free parameters of J-A model that most suitably permits to produce the inputs. In 

Fig.1 it is shown shows how the network works. 

The training set is made of 243 vectors. Each input vector has 32 coordinates, while the target vectors are 

defined on a 5D space. The 32 coordinates are the ordinates of a first order reversal hysteresis curve 

obtained under sinusoidal excitation. The excitation amplitude is the same in all cases and all the transients 

have died out. Each input vector was computed by inserting in eqs 1, 2 and 3 a unique set of parameters. 

In the end The the Levenberg-Marquadt algorithm has been used for the training phase. 

 

Submission of data. 

Each input vector belongs to a 32D space and is made up of the the ordinates of a hysteresis loop. 

Hysteresis loop data must spans the same interval spanned from the vectors used in the training phase. 

 

Output of the results 

The output of the network consists of five parameters. They represent the parameters of the J-A model that 

is associated to the presented loop. These numbers are the interpolation of the network to the best value that 

it is able to output to describe the presented hysteresis loop.  

 

Validation and experimental verification . 

In order to validate the approach here presented two types of numerical tests were performed: the first one 

aimed to verify the ability of the method to obtain the correct numerical parameters used in JA model to 

build a numerical hysteresis loop, the second one verified the capability of the approach to identify the 

numerical parameter of an experimental hysteresis loop. 
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In order to verify the reliability of the model,  the 2-norm of the difference between the input and the output 

curve was chosen as test index of the tests above presented. The mathematical expression of the index reads 

as follows:  
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where i is the index, t labels the points of the hysteresis loops, Φ(t) is the ordinate of t-th point of the output 

loop and φ(t) is the ordinate of t-th point of the input  loop, φav is the average between Φ(t) and φ(t) . 

As far as the tests aimed to verify the ability to re-obtain the numerical parameters used to build a numerical 

hysteresis loop is concerned, several numerical curves were elaborated by the trained network. All the 

curves were different from the ones used in the training phase. In table 1 is reported the error recorded on 

the parameters and  the test index used. Fig. 2 compares the experimental curve to the reconstructed one. 

Table 1 

Error on recorder on the curve of fig. 2 

Parameter Input Output 

α 0.0001 0.000107 

a 34 34.1 

c 0.11 0.12 

k 50 50.5 

Ms 1.5 1.51 

i 0.03  

 

 

A comprehensive analysis was performed by submitting several numerical curves to the network. These 

curves had a saturation field between 0.5 and 1.5 T, a coercive field between 5 and 1000 A/m, a remanent 

field between 0.1 and 1.1 T. In table 2 the maximum errors recorded are shown. 

 

Table 2 

Maximum errors 

Parameter Errors 

α 10% 

a 11% 

c 13% 
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k 8% 

Ms 5 % 

 

As far as the experimental verification is concerned, the hysteresis curves of  NiFe 20-80 and the virgin 

curve of the hard axis of 3.2% Wg FE-Si Magnetic steel samples were used. 

As far as NIFe 20-80 is concerned, the curve used for the test had a saturation flux density Bmax=0.81 T,  a 

saturation magnetic field Hmax= 20A/m, a coercive field  Hc=0.91 A/m and a remanent induction Br=0.35 

T. In table 3 these parameters are confronted with the parameters obtained by the neural networks. It can be 

seen as the error as well as the test index are quite low. 

Table 3 

Error on an experimental hysteresis curve 

Parameter Error 

Bsat 0.8% 

Hmax 3.0% 

Hc 3.5% 

Br 0.6% 

i 1.8 

 

As far as  the virgin curve of the hard axis of 3.2% Wg FE-Si Magnetic steel samples is concerned,  fig.3 

shows how it can be reconstructed by a trained network. 

  

CONCLUSIONS 

This paper presents a novel method for the determination of J-A model. 

The proposed method uses neural networks and is able to identify models that were non presented to the 

network. The neural network used consists of a three layer network and the input vector belongs to a 32D 

space. The method has been applied to identify experimental hysteresis curve and it has shown a good 

numerical accuracy.  
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LIST OF FIGURE CAPTIONS 

Fig. 1 Schematic representation of the proposed identification method. From a hysteresis loop an one 32 

component vector is built. This vector is the input of a previously trained neural network. The outputs are 

the parameters of the J-A model. 

 

Fig. 2 Comparison between a numerical hysteresis curve. Continuous line is the input curve, diamond the 

output line.  The parameters used to obtain the output curve were those obtained from then network when 

the input was the input curve. Input and output curve are almost indistinguishable. 

 

Fig.3 Plot of the virgin curve of hard axis of 3.2% Wg FE-Si Magnetic steel samples. The squares are the 

measured points, the continuous line is the fitting curve 

 


