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Abstract dglars is a public available R package that implements the method
proposed in Augugliaro, Mineo and Wit (2013) developed to study the sparse
structure of a generalized linear model. This method, called dgLARS, is based
on a differential geometrical extension of the least angle regression method
(LARS). The core of the dglars package consists of two algorithms imple-
mented in Fortran 90 to efficiently compute the solution curve; specifically
a predictor-corrector algorithm and a cyclic coordinate descent algorithm.

Key words: generalized linear models, dgLARS, predictor-corrector algo-
rithm, cyclic coordinate descent algorithm, sparse models, variable selection

1 Introduction

Nowadays, high-dimensional data sets, namely data sets where the number
of predictors, say p, is larger than the sample size N, are becoming more
and more common. Modern statistical methods developed to study this kind
of data sets are usually based on the idea to use a penalty function to esti-
mate a solution curve embedded in the parameter space and then to find the
point that represents the best compromise between sparsity and predictive
behaviour of the model. Recent statistical literature has a great number of
contributions devoted to this problem: some important examples are the L1-
penalty function [8], the SCAD method [5] and the MC+ penalty function
[9], among others.
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Differently from the methods cited above, in [3] the authors propose a new
approach based on the differential geometrical representation of a GLM. The
derived method, that does not require an explicit penalty function, has been
called differential geometric LARS (dgLARS) method because it is defined
generalizing the geometrical ideas on which the least angle regression (LARS),
proposed in [4], is based. Using the differential geometric characterization of
the classical signed Rao score test statistic, dgLARS gains important theoret-
ical properties that are not shared by other methods. From a computational
point of view, the dgLARS method consists essentially in the computation of
the implicitly defined solution curve. In [3] this problem is satisfactorily solved
by using a predictor-corrector (PC) algorithm. In [2] is proposed a much more
efficient cyclic coordinate descend (ccd) algorithm to fit the dgLARS solution
curve when we work with an high-dimensional data set.

In this paper we present the dglars package that implements both the
algorithms to compute the solution curve implicitly defined by dgLARS. The
object returned by these functions is a S3 class object, for which specific
methods and functions have been implemented. The package dglars is avail-
able under general public licence (GPL-2) from the Comprehensive R Archive
Network at http://CRAN.R-project.org/package=dglars.

2 The dglars package

The dglars package is an R [6] package containing a collection of tools related
to the dgLARS method. In the following of this section we describe the main
functions available with this package. For a complete description of the all
functions implemented in the dglars package the reader is referred to the
manual of the package.

The function dglars() is the main function of the proposed package. It
can be called with the following arguments

dglars(X, y, family = c("binomial", "poisson"), control = list())

where X is the design matrix of dimension n× p, y is the n-dimensional re-
sponse vector and family is the error distribution used in the model. Finally
control is a named list of control parameters. For a complete description of
this list, the interested readed is refereed to the corresponding help page.

To gain more insight on how to use the dglars() function we consider a
simulated data set. We simulate a data set from a logistic regression model
with sample size equal to 100 and p = 5 predictors. We also assume that only
the first 2 predictors influence the response variable. The used R code is

R> n <- 100; p <- 4; s <- 2; X <- matrix(rnorm(n * p), n, p)
R> bs <- rep(1, s); Xs <- X[ , 1 : s]
R> eta <- drop(1 + drop(Xs %*% bs))



The dglars R package 3

R> mu <- binomial()$linkinv(eta); y <- rbinom(n, 1, mu)
R> out_dglasso_pc <- dglars(X = X, y = y, family = "binomial")

dglars() returns a S3 class object

R> class(out_dglasso_pc)
[1] "dglars"

As shown in the following R code, the method function print.dglars()
can be used to print out the basic information contained in a dglars object.

R> out_dglasso_pc

Call: dglars(X = X, y = y, family = "binomial")

Sequence g Dev %Dev df
+x1 3.67566 134.6 0.00000 1

3.06853 130.5 0.03080 2
+x2 3.04937 130.3 0.03171 2

0.21800 109.0 0.19047 3
+x4 0.20859 109.0 0.19055 3

0.05396 108.8 0.19188 4
+x3 0.03199 108.8 0.19194 4

0.00010 108.8 0.19198 5

Algorithm pc ( method = dgLASSO ) with exit = 0

The column Sequence shows that the dgLARS method first finds the true
predictors and then includes the other false predictors. The column g reports
the value of the parameter γ used in the dgLARS method to select the trade-
off between sparsity of the estimated model and prediction behaviuor [3]. To
be more specific, at the starting step the predictor x1 makes the smallest
angle with the tangent residual vector and then is included in the active set.
The predictor x2 is included in the active set at γ(2) = 3.04937, this means
that β̂2(γ(2)) is equal to zero and then the number of non-zero estimated
coefficients is equal to 2. The predictor x4 is included at γ(3) = 0.20859 and
so on.

More information about the estimated sequence of models can be obtained
using the method function symmary.dglars(). The output printed out by
summary.dglars() is divided in three different sections. The first section
completes the basic information printed out by print.default() showing
the sequence of the Akaike Information Criterion (AIC) [1] and the sequence
of the Bayesian Information Criterion (BIC) [7]. The ranking of the estimated
models obtained by these two criteria are also showed and the corresponding
best model is identified by an arrow. The last two sections show the estimated
coefficients of the two best models. For the sake of brevity, the following R
code shows only the first section printed out by summary.dglars():
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R> summary(out_dglasso_pc)

Call: dglars(X = X, y = y, family = "binomial")

Sequence g Dev Complexity AIC Rank.AIC Rank.BIC BIC

+x1 3.67566 134.6 1 136.6 8 6 139.2

3.06853 130.5 2 134.5 7 8 139.7

+x2 3.04937 130.3 2 134.3 6 7 139.5

0.21800 109.0 3 115.0 2 2 122.8

+x4 0.20859 109.0 3 115.0 1 <- -> 1 122.8

0.05396 108.8 4 116.8 4 4 127.2

+x3 0.03199 108.8 4 116.8 3 3 127.2

0.00010 108.8 5 118.8 5 5 131.8

3 Conclusion

In this paper we have described the R package dglars. This package imple-
ments the differential geometric extension of the LARS method proposed in
[3] and called dgLARS. The use of this package is shown by means of a sim-
ulated data set. The output of the functions are presented in a way that is
easy to interpret for people familiar with standard lm, glm or gam output.
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