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Abstract 

The need to reduce energy consumptions and to optimize the processes of energy production has 

pushed the technology towards the implementation of hybrid systems for combined production of 

electric and thermal energy. In particular, recent researches looks with interest at the installation of 

hybrid system PV/T. To improve the energy performance of these systems it is necessary to know 

the operating temperature of the photovoltaic modules. Furthermore, when photovoltaic (PV) 

systems replace the traditional building envelope materials and they are fully integrated (Building 

Integrated Photo-Voltaic, BIPV), it is very important to correctly assess their thermal behaviour. 

The determination of the operating temperature cT  is a key parameterfor the assessment of the 

actual performance of photovoltaic panels. In theliterature, it is possible to find different 

correlations that evaluate the cT  referring to standard test conditions and/or applying some 

theoretical simplifications/assumptions. Nevertheless,the application of these different correlations, 

for the same conditions, do not lead to unequivocal results.  

In this work an alternative method, based on the employment of Artificial Neural Networks 

(ANNs), was proposed to predict the operating temperature of a PV module. This methodologydoes 

not require any simplifications or physical assumptions: on the contrary, the ANN is a black box 

that learn from actual data, allowing to obtain good results. 

In the paper is described the ANN that obtained the best performances: a Multi-Layer Perception 

network. The results have been compared with experimental monitored data and with some of the 

most cited empirical correlations proposed by different authors. 
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1. Introduction 



In the world energy scenario affected by the reduction offossil fuels supply used for the production 

of the electrical and thermal energy, the potential offered by renewable energy sources (RES) is 

strategic for the industrial countries [1]. The exploitation of RES has promoted several thermal and 

electric technologies, improving the overall energy conversion efficiency [2]. The development of 

PV systems and of solar thermal technologyare playing an important role in the building 

integration, to cover the electricity and thermal needs for the production of heat water and the 

internal heating. 

In recent years,several researches haveled to the installation and the study of hybrid devices [3]: 

hybrid photovoltaic/thermal collector or hybrid (PV/T) system. 

The temperature of PV module increases when it absorbs solar radiation; this temperature raising 

provokes a decrease in electrical conversion efficiency; a PV/T system is capable to partially avoid 

this undesirable effect.The hybrid technologiespermit to control the temperature system; the 

presence of a water/air circulationsystem cools the PVmodule helping to increase the electrical 

output, and furthermore the hot water can be afterword exploited, improving the overall efficiency 

of the whole system [4].Furthermore, the operating temperature of the PV modules have a 

significant importance when used in Building Integrated Photovoltaic energy System (BIPV).  

Many authors have pointed how the operating cell temperature must be evaluated for the optimal 

sizing of BIPV system [5-9].The assessment of Tc can therefore give important results in term of 

indoor thermal quality in the sustainable building field, especially in the application of BIPV as 

smart windows [10]. 

For these reasons, the evaluation of the PV temperature is essential to ensure high performances.  

As described by Sloplaki et al. in[11], many correlations for predicting the electrical performance of 

a photovoltaic module have been proposed and used by different authors. This report highlights the 

role of the temperature of the silicon as the main parameter that affects the conversion efficiency.  

However, as better explained in the following, the equations that describe the energy balance of a 

PV system make not simple the determination of the operating temperature of a PV module. In fact, 

because of the different nature of the variables present in the balance (physical, thermo-electrical, 

environmental) and the uneasy determination of many key parameters (e.g. overall heat transfer 

coefficient, optical properties, etc.), the evaluation of the cell temperature, by using an empirical 

correlation, could lead to not reliable results. 

In this work, the authors explore the possibility to offer an alternative method, to assess the 

operating temperature of PV devices by using adaptive techniques. Adaptive systems, such as ANN 



should allow predicting, in a fast and reliable way, the temperature of the PV module varying all the 

boundary conditions. To validate the reliability of the proposed ANN, were tested two different 

modules and the results were compared with experimental monitored data.  

 

2. The cell temperature of a PV module 

In general, the performance of a photovoltaic module is defined according to the “peak power”, 

which identifies the maximum electric power supplied by aPV system when it receives a solar 

irradiance of 1 kW/m2  refG at the cell temperature is of 25°C  refT . These conditions are only 

nominal because the solar irradiance has a variable intensity and the module is subjected to 

considerable temperature changes [12]. 

Indeed, in actual conditions it is essential to evaluate the operating condition under all 

possiblecircumstances of solar irradiance G , cell temperature cT , wind speed W , air temperature 

airT  and electric load LR . 

 

Fig. 1. Working point of a generic PV panel at constant irradiance (1000W/m2) varying temperature and electric load.  

 

InFig. 1, it is possible to observe how the intersection between the load line LR and I-V 

curvesidentifies the working point;with the same graphical method, it is possible to identify the 

working point in terms of electric power; the red circles identify the maximum power points. As it 



is easy to understand, the 
cT is a key parameter that affects the energyconversion efficiency of a PV 

module:increasing the temperature decreases the delivered power. 

In the literature, there are several available empirical correlations that employs the PV module 

operating temperature, as the expression proposed by Evans [13] that describes the module‟s 

efficiency  in correspondence of given values of the cT and G : 
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where ref is the efficiency at Standard Test Conditions (STC) and the temperature coefficient   

and the insolation coefficient   have values of 0.004 K-1 and 0.12, respectively for crystalline 

silicon modules [14]. Other authors [15-17], instead, proposed the use of empirical constants, whose 

values are only referred to few models of PV panels.  

The most common procedure to determine the cell temperature cT consists in using the Normal 

Operating Cell Temperature NOCT[18-20]. The value of this parameter is given by the PV module 

manufacturer: cT is then dependent on the air temperature airT and on the solar irradiance G

according to Eq.(2): 
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This very simple method yields satisfying results only if the PV modules are not roof- integrated.  

However, the NOCT approach estimate cT basing only on the passive behaviour of the PV, not 

taking into account at the same time the actual weather variables and the electricity production 

regimes of the PV module. This approach neglects the fact that not all the absorbed solar irradiance 

is converted into electricity: generally, only 15-18% is converted into electricity; the remaining part 

of the insolation is transformed into heat contributing to increase the temperature cell.  

The heat transfer between the PV panel and the surrounding environment is driven by a global heat 

transfer coefficient, which describes the radiative and convective exchange processes. 

For these reasons, in this work after a simplified description of the energy balance of a PV, which 

highlights the dependence of the operating temperature by some environmental parameters and by 

the thermo-physical properties of a PV system, the authors underline how the determination of cT

using conventional calculation procedures is often complex and difficult to solve. On the other 

hand, the use of any empirical relationship, typically characterized by some assumptions and or 



simplifications, often affect the results. In the following, the application of the ANN approach, to 

predict the operating temperature of a PV module is proposed. 

Recently, this methodology have received attention and increased their use very successfully in the 

implementation for MPP searching [21-30]. As above already written, this method do not need 

exact mathematical models, can work with vague inputs and can handle nonlinearities [31].  

 

3. The energy balance of a PV module 

As already noted, the efficiency of a photovoltaic panel depends mainly on the intensity of the solar 

irradiance and cell temperature. Considering a genericPVsystem the energy exchanges can be 

depicted by Fig. 2: 

 

Fig.2 Energy balance in a PV system 

 

In heat transfer analysis, some body can be observed to behave as a “lamp” whose interior 

temperature remains essentially uniform at all times during a heat transfer process. The temperature 

of such bodies can be taken to be a function of time only [32]. Applying this approach at the energy 

balance of a photovoltaic panel, the lumped system analysis permits to describe the heat exchange 

as follows: 

    sol ele c ariP P dt CdT AU T T dt     (3) 

where: 

eleP is the electrical power product of the module [W]; 
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solP is the absorbed solar power [W]; 

C is the thermal capacity of the PV system (glass, silicon and plastic layers) [J]; 

A is the surface of the panel [m2]; 

U is the global heat exchange coefficient between the module and the surrounding environment 

[W/m2K]; 

t is the time [s]. 

Assuming that: 

 solP G A    (4) 

and 

 eleP I V   (5) 

where is the transmission coefficient of the glass,  is the absorption coefficient of the silicon, 

V is the voltage [V] and I is the current [A] produced by the panel. Generally, a PVcell is 

represented as a current generator, connected in parallel with a diode and two resistances sR and shR  

connected in series and a parallel respectively, and theI-V characteristic can be described by the 

following equation: 
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where LI is the photocurrent, 0I is the diode saturation current and n is the ideality factors of the 

diode. Applying the definition of the electric power as describe in Eq.(5)and considering the one 

diode approach, represented by Eq.(6), the eleP can be stated as: 
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Knowing the electric power and the absorbed solar power is possible to evaluate the thermal power 

that contributes to heat the PV panel: 

      thermal sol eleP P P G A I V          (7) 



In this way the Eq.(3)can be rewritten as: 

  thermal c airP dt Cdt U T T dt    (8) 

Moreover: 
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Assuming that: 
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If at the time dt we assume constant airT , the C of the system, the coefficient U  and the 

quantity thermalP it is possible to write: 
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integrating: 
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If the values of the thermo-physical variables are known,the expression of the temperature of the 

PVsystem is: 
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As it is possible to observe, also in this simply lumped parameters approach, the evaluation of the 

cell temperature is not immediate and it strongly depends from the solar irradiance and air 

temperature. Furthermore, the presence of exponential terms and implicit expression of electric 

power complicates the resolution procedure, not allowing the direct mathematical calculation. In 

addition,the determination of the global heat transfer coefficientUmust be taken into account. 

Unfortunately, the case study of hot inclined rear surfaces is still an open problem [33]. 

If we give up the idea to analytically solve the problem, as previously described in Section 2, in 

literature it is possible to find different correlation about the cT value [11,17, 34-37]. However,each 



correlation is characterised by same simplifications and/or assumptions that not represented 

accurately the complexity of the PV energy balance. 

 

4. Definition of ANN 

ANNs are computational intelligence architectures based on emulating biological neural networks 

and have the capability of “learning” the behaviour of input data.The basic unit of an ANN is a 

neuron. An artificial neuron (AN)acts in the same way as a biological neuron; each has a set of 

inputs and produces an output based on these inputs.A biological neuron produces an output by 

comparing the sum of each input to a threshold value ; based on that comparison it produces an 

output. In addition, it is able to vary the weigh for each input according to the priority of the input. 

The inputs and outputs of a biological neuron are called synapses; they may act as inputs to other 

neurons or as outputs. Thus, the set of neurons and synapse creates an interconnected network, 

which produce an output based onweights, sums and comparisons [22].  

Generally, an artificial neural network consists of multiple interconnected artificial neurons, 

arranged in several layers; Fig. 3 shows a schema of a typical arrangement of neurons in an ANN. 

 

Fig. 3 generic schema of an ANN 

 

The use of ANNs often makes possible to identify correlations between data that are very complex 

to assess. 
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5. Experimental setup 

To apply a neural approach it is necessary to have a large database of specific data that represents 

the analysed system. For this reason, to build and trained a specific ANN, a specific test facility  

situated on the roof of the Energy Department of University of Palermo (38° 1070N, 13° 1220E) 

has been made up. The experimental device was built up to permit to acquire the thermo-electrical 

parameters of photovoltaic modules and the weathers variables that define the energy balance of a 

PV system. The test facility consists of two silicon panels (Kyocera KC175GHT-2 and Sanyo HIT 

240 HDE4) connected with a precision resistance set (Fig.4).The technical data of the two panels 

provided by the manufacture are showed in the following Tabs. 1 and 2. 

 

Table.1 Datasheet of the Kyocera KC175GH-2 module 

 KYOCERA KC 175 GH-2 
MAXIMUM POWER Pmax [W] 175 

MAXIMUM VOLTAGE Vmp [V] 23.6 
MAXIMUM CURRENT Imp [A] 7.42 

OPEN CIRCUIT VOLTAGE VOC [V] 29.2 
SHORT CIRCUIT CURRENT ISC [A] 8.09 

THERMAL VOLTAGE COEFFICIENT Voc [V/°C] -0.109 
THERMAL CURRENT COEFFICIENT Isc [mA/°C] 3.18 

 
Table.2 Datasheet of the Sanyo HIT 240 HDE-4 module 

 SANYO HIT 240 HDE-4 
MAXIMUM POWER Pmax [W] 240 

MAXIMUM VOLTAGE Vmp [V] 35.5 
MAXIMUM CURRENT Imp [A] 6.77 

OPEN CIRCUIT VOLTAGE VOC [V] 43.6 
SHORT CIRCUIT CURRENT ISC [A] 7.37 

THERMAL VOLTAGE COEFFICIENT Voc [V/°C] -0.109 
THERMAL CURRENT COEFFICIENT Isc [mA/°C] 2.21 

 

The measurements were performed with a data acquisition module Nat ional Instruments NIUSB-

9221 and a Delta Ohm pyranometer (mod. LPPYRA 02 AV)linked to an Advantech ADAM 6024 

module. A DavisVantage PRO 2 Plus Weather station was used to collect the measurements of air 

temperature and relative humidity, wind speed anddirection, horizontal global solarirradiance and 

atmospheric pressure.The temperature of the panels was measured using some thermocouples 

(typeT, copper-constantan) put in three different points of each panel [34]. 

 



 

Fig.4 Experimental Set up 

 

In this way, in addition to the weather data climate collected by the weather station and to the cell 

temperature measured by the thermocouples, it was also possible to measure and collect electric 

data related to the operation panel: the power delivered, the short circuit current SCI and the open 

circuit voltage OCV . 

 

6. Preliminarily analysis of data collected  

To correct apply the neural approach, all data must be subject to a pre-processing step that consists 

in a preliminary analysis that permits to identify possible outliers, to remove uncorrected values, to 

carry out a statistical analysis and to perform a correlation analysis. The analysis of the common 

current-voltage curves given by manufactures at constant temperature or constant solar irradiance 

does not allow a correct evaluation of the thermo-electrical behaviour of a photovoltaic panel 

because in actual conditions, the temperature and the solar irradiance change simultaneously. 

Indeed to predict the yield of a photovoltaic system, it is essential to evaluate the operating 

condition under all possible circumstances of solar irradiance , cell temperature, wind speedW, air 

temperature and electric load LR , when the photovoltaic elements are working and producing 

electricity.To identify the operation regimes of the panel as a function of electricity production 

regimes, the authors have chosen to compare the operating voltage V  with the maximum power 

point voltage ,mpp panelV for given solar irradiance and cell temperature (Fig.1). In this way, the ratio 

,/ mpp panelV V easily allows to identify the operating regimes of the panel: 
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 when the ratio between the working voltage V and the voltage of maximum power 

,mpp panelV is less than 0.95, the I-V characteristic is almost horizontal, and the power output 

is proportional to the incident insolation; 

 when the ratio ,/ mpp panelV V is greater than 1.05, the I-V characteristic of the panel decreases 

much more rapidly and the influence of insolation becomes less significant (saturation 

conditions); 

 the regimen identified by a ratio 0.95 < ,/ mpp panelV V <1.05, characterises the state of a PV 

panel connected to a maximum power point tracking system (MPPT) in which the load 

dynamically adapts to generate the maximum power.  

The evaluation of the maximum voltage was carried out by using the following correlations: 
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where the constant a and b  were determined by a logarithmic interpolation and applying the least 

squares technique between the values of the power output at difference solar irradiance and by a 

linear interpolation and applying the least squares technique at difference temperature respectively.  

In this case,the two couples of constantspertaining the two modules have been evaluated using the 

Tab.3 and Tab.4 for the Kyocera module and Tab.5 e Tab.6 for the Sanyo module. 

 

Table 3:Characteristic data values of Kyocera KC175GHT-2 at constant temperature (25°C) varying solar irradiance 

 Solar Irradiance [W/m
2
] 

1000 800 600 400 200 40 
Pmpp [W] 175.112 138.418 102.236 66.7111 32.1507 5.8841 

Vmpp[V] 23.6 23.3241 22.977 22.501 21.7091 19.9224 
Impp[A] 7.41999 5.93455 4.4495 2.9648 1.48098 0.295351 

 

Table 4:Characteristic data values of Kyocera KC175GHT-2 at constant solar irradiance (1000 W/m2) varying temperature 

 Cell Temperature [°C] 

25 50 75 
Pmpp [W] 175.112 156.099 137.09 

Vmpp[V] 23.6 20.975 18.4243 
Impp[A] 7.41999 7.44215 7.44069 

 

For the Kyocera module, the mathematical interpolations of the data collected in the previous tables 

permitted to evaluate the following values: a =1.1395 and b =26.172. 

 

Table 5: Calculated characteristic data values of Sanyo HIT240HDE-4 at constant temperature (25°C) varying solar irradiance  

 Solar Irradiance [W/m
2
] 



1000 800 600 400 200 40 

Pmpp [W] 240.335 189.975 140.323 91.5759 44.1493 8.08932 
Vmpp[V] 35.4998 35.0848 34.5641 33.8511 32.6691 30.0095 

Impp[A] 6.77004 5.41475 4.0598 2.70526 1.35141 0.269559 

 

Table 6: Calculated characteristic data values of Sanyo HIT240HDE-4 at constant solar irradiance (1000 W/m2) varying temperature 

 Cell Temperature [°C] 

25 50 75 

Pmpp [W] 240.335 222.492 204.759 
Vmpp[V] 35.4998 32.7991 30.1697 

Impp[A] 6.77004 6.78349 6.78691 

 

For this last module, the mathematical interpolations of the data collected in the previous tables 

permitted to evaluate the following values: a =1.7007 and b =26.153. 

In this way filtering the data for the operating regimen represented by a ratio

,0.95 / 1.05mpp panelV V   it was possible to identify the data close to the maximum power points. 

Filtering the data collect for both modules, two dataset, indicated in Tab.7, have been created;the 

15% of the filtered data will be used as a test dataset (not used for the ANN training phase): 

Table 7.Datasheet and dataset vectors 

 Kyocera panel Sanyo panel 

Original datasheet vectors 3832 2310 

Filtered dataset vectors 333 205 

Test dataset vectors 50 31 

 

The correlation analysis for the two different PVmodules (Figs.5 and 6) permits a first evaluation of 

the mutual relationships between cT and all the other features.The preliminary correlation analysis 

has identified a strong correlation between cT and the solar irradiance G , the short circuit current

SCI , the open circuit voltage OCV and the electrical power eleP ;on the other hand,a moderate 

correlation with air temperature and wind speed. 

 

 
Fig. 5.Correlat ion analysis between operating temperature and all input data for Kyocera module. 

 



 

Fig. 6.Correlat ion analysis between operating temperature and all input data for Sanyo module. 
 

A statistical analysis permitted to assess the maximum (Max), mean (Mean), minimum (Min) 

values and the standard deviation (StDev) of all considered features (Tabs. 8 and 9). 

Table 8.Statistics evaluation of Kyocera panel. 

 Tair [°C] P[W] G [W/m
2
] W [m/s] ISC[A] VOC[V] 

Max  27.27 165.56 1078.20 7.20 8.73 30.24 

Min  9.90 22.17 126.41 0.00 1.01 26.50 

Mean  19.57 110.21 729.30 2.32 5.91 28.13 

StDev 2.39 48.35 293.22 1.231 2.38 0.74 

Sample 333 333 333 333 333 333 

 

Table 9.Statistics evaluation of Sanyo panel. 

 Tair [°C] P[W] G [W/m
2
] W [m/s] ISC[A] VOC[V] 

Max  30.93 222.27 1044.33 5.23 3.84 64.44 

Min  17.87 23.14 129.89 0.00 0.48 62.11 

Mean  25.83 156.63 725..44 2.509 2.77 63.75 

StDev 1.89 58.25 259.68 1.14 0.95 0.47 

Sample 205 205 205 205 205 205 

 

7. Application of ANN 

According to the type and nature of data that have been collected from the experimental set, it was 

possible to chooseseveral topologies of neural networks. Different simulations relating to several 

topologies of ANNs have been tested, but in this work, only the best ANNwill be described. 

 

7.1 One Hidden layer MLP  

A Multi-Layer Perception (MLP)is a kind of ANN consisting of multiple layers of ANsin which each 

layer is fully connected to the next one. Except for the input ANs, each node is a neuron with a non-

linear activation function. MLP utilizes a common supervised learning technique for training the 

network. This topology is one of the simplest available for ANNs and our MPL is composed by: two 



input sources, two function block, two weight layer, one hidden weight layer and one error criterion 

block. In Fig.7 is schematized our One Hidden layer MLP topology to evaluate the cell temperature.  

 

 

Fig. 7. Schema of One hidden layer MLP topology for the cell temperature evaluation  

 

The input source represents all the available data that can be used for training or testing; in this case 

contains the total vectorsobtained after applying the filter (Tab.7): 85%of the total filtered vectors 

were used for the training phase and 15% of the total filtered vectors were used for the testing 

phase.  

The Function blocks can be seen as non- linear thresholds for the propagation of the signals. They 

give the adaptive system its non- linear computing capabilities and those used in the following 

proposed network have a sigmoidal function. 

The weights layer represents the long-term memory of the system and are adjusted during the 

learning phase. Finally, the error criterion is a block that takes two signals and compares them 

according to a specific criterion; the signals terminates to flow across the system. The training phase 

has been optimised concerning the number of epochs to avoid over-fitting. 

In Table 10 are reported the number of epochsin order to avoid the over-fitting for the two different 

PV panel. 

Table 10. Number of epochs and learning time. 

 Kyocera panel Sanyo panel 
Learning Time [s] 6.00 1.56 

Epochs  3,326 1,542 
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After the training, for each ANN the post-processing phase evaluate the Mean Error (ME) and the 

Mean Absolute Error (MAE) that represents the quantity used to measure how close forecasts or 

predictions are to the eventual outcome. Furthermore, was evaluated the standard deviation 

(StDev)that shows how much variation or "dispersion" exists from the average (mean, or expected 

value) 

Figures 8 and 9 shown the ME distribution for the Kyocera and Sanyo modules respectively in 

terms of cell temperature. 

Fig. 8. Error distribution over 50 vectors of Tc with One Hidden layer MLP topology for Kyocera module 

 

Fig. 9. Error distribution over 31 vectors of Tc with One Hidden layer MLP topology for Sanyo module 

 

Figures 10 and 11 shown the MAE distribution for the Kyocera and Sanyo modules respectively in 

terms of cell temperature. 



 
Fig. 10.Absolute Error distribution over 50 vectors of T c with One Hidden layer MLP topology for Kyosera module.  

 

 

 
Fig. 11.Absolute Error distribution over 31 vectors of T c with One Hidden layer MLP topology for Sanyo module.  

 

In Table 11 the values of ME, MAE and StDv of cT  cases, for the two different PV panels are 

reported: 

 

Table 11.  Mean Error and Mean Absolute Error of the One Hidden layer MLP topology. 

 Kyosera module  Sanyo module 

 T [°C] StDv (T) T [°C] StDv (T) 

ME - 0.21 0.22 -0,06 0,16 

MAE 0.23 0,20 0,11 0,13 

 

Furthermore, it was evaluatedthe confidence plot that gives an estimated range of values, which is 

likely to include the calculated cell temperature with a probability of 95%. Due to the physics of the 

analysed problem, the confidence plot was evaluated only for daylight hours neglecting the 

temperature trend during the night. In Fig. 12the confidence plot of cT for Kyocera module is ± 

0.23 °C and in Fig.13 the confidence plot of cT for Sanyo module is ± 0.74 °C. 



 
Fig. 12. Confidence Plot of calculated output versus Tc measured data for Kyocera module  

 

 
Fig. 13. Confidence Plot of calculated output versus Tc measured data for Sanyo module 

 

In these figures the range of the confidence plot was indicate by the red (high ) and blue (low) lines, 

while the measured data are indicated by the black line and those obtained from the ANN by the 

purple line. As it is possible to see the output data coincide perfectly with the desired data with a 

very narrow confidence band. 

 

8. Results and discussion 

Based on analysis of the results obtained, it is clear as the proposedANN approach, for 

evaluatingthe operating temperature gives very good performances, characterized byan extremely 

narrowconfidence band that not exceeding ± 0.7366°C. This methodology is characterised by a 

great flexibility and reliability providing excellent results for any kind of modules: mono-crystalline 

and/or polycrystalline.Furthermore, this approach does not consider any simplifications nor 

assumptions; finally, the learning time is very short.  



To validate the ANN methodology, a comparison between ANN results and the 
cT calculated with 

same of the most cited empirical correlations was carried out extracting the MAE values. 

In this work were chosen the following correlations: 

Servant correlation [35]: 

    1 1 1 1.053c air aT T G T W         (13) 

where ,   and   are the constants, defined by the model of the author.  

Duffie-Beckman correlation [36-38]: 

   / 1 /c airT T G U      (14) 

where is the efficiency and /U is defined constant by the model of the authors.  

Hove correlation [39]: 

   /c aT T G U     (15)  

where is the efficiency and /U is determined experimentally. 

The following results were obtained applying the previously correlations at the same modules 

(Kyocera and Sanyo) for the same data set (filtered data) and calculating the Mean Absolute Error 

between the measured data and calculated data: 

Table 12.  Mean Absolute Error results for different Tc correlations. 

Correlation Mean Absolute Error 

[°C] 

    Kyocera      Sanyo  

Note 

ANN 0.23 0.11 MLP topology 

Servant 4.62 4.01  =0.0138,  =0.031,  =0.042, W =1m/s 

Duffie and Beckman  16.36 14.38 /U taken as a constant 

Hove  16.09 16.32 /U determined experimentally 

 

9. Conclusion 

In this paper, an artificial neural network approach has been proposed to determine the operative 

temperature of PVmodules. As previously described, the energy balance of a generic PV system,  

because of the different nature of the parameters (thermo-electric, environmental, physic) and the 

complex mathematical formulation, it is no easy to solve. Different authors proposed several 

empirical correlations should permit to obtain directly the PV module operating temperature, 

developed from common geometries and weather conditions. Generally, if the correlations are in 



implicit form an iteration procedure is necessary for the calculation; if thecorrelations are in explicit 

form, can be referred only to references conditions or consideringsame constant values and/or 

assumptions that could affect the results. The application of the ANNapproach, instead, represents a 

simple and fast solution to correctly evaluate the operative regimen of a PV module varying all the 

boundary conditions. 

In this work the authors proposeda one hidden layer MLP to determine the cT  of a generic PV  

panel. The ANNhas been tested and trained with experimental data consisting in: air temperature, 

wind speed, solar irradiance, power output, open circuit voltage, short circuit current and cell 

temperature. The results obtained of the ANN issued a reliable tool to forecast the cell temperature 

of the PV panel. Comparing the performances of this network with some of the most cited empirical 

correlations, the ANNresults presents a significant lower MAE. Furthermore, the very short time 

requested for the training phase, suggests that the ANN could be integrated in a software for run-

time evaluation of the cell temperature. 
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