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a b s t r a c t

The aim of the paper is the description of fractional-order differential equations in terms
of exact mechanical models. This result will be archived, in the paper, for the case of linear
multiphase fractional hereditariness involving linear combinations of power-laws in relax-
ation/creep functions. Themechanicalmodel corresponding to fractional-order differential
equations is the extension of a recently introduced exact mechanical representation (Di
Paola and Zingales (2012) [33] and Di Paola et al. (2012) [34]) of fractional-order integrals
and derivatives. Some numerical applications have been reported in the paper to assess the
capabilities of themodel in terms of a peculiar arrangement of linear springs and dashpots.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The use of differential equations with non-integer powers of the differentiation order, namely fractional differential
equations [1–5], is nowadays accepted in many fields of physics and engineering [6–11]. Indeed as soon as different
kinds of experimental tests as creep/relation set-ups, diffusion/advection measures, voltage/current observations among
others, need power-law fitting of date [12,13], fractional-order operators are involved [14–19]. Fractional-order differential
equations have been reported in more detail, i.e. in the context of heat conduction [20–22], of material hereditariness
[14,15,23,24], of non-local mechanics [25], of control of dynamical system [4,26,27].

One of the main drawbacks in the use of fractional-operators has been related to the lack of a proper physical picture of
thismathematical operator and, therefore, to the representation of the phenomena ruled by fractional differential equations.

In recent studies the authors introduced some mechanical pictures of the presence of fractional-order operators in non-
local mechanics [28–30] as well as in the context of non-local heat transfer [31,32] and in hereditary materials [33,34]. The
correspondence among fractional operators and mechanical, chemical or electric analogues has been investigated since the
mid of the nineties of the last century. In this regard we mention, i.e. for fractional hereditariness, some studies by Bagley
and Torvik [35,36], Schiessel et al. [37], Heymans and Bauwens [38] among others. Similar considerations hold for other
fields of physics and engineering applications. In more detail in [33] a mechanical model of hereditariness corresponding,
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exactly, to a fractional-order rheologic stress–strain relationwith any real exponent 0 ≤ β ≤ 1 has been proposed, whereas
a numerical assessment has been reported in [34]. The mechanical model is represented by a massless plate resting on
massless Newtonian fluid restrained by means of independent dashpots. The authors termed this rheological model as
Elasto-Viscous (EV), as far as 0 ≤ β ≤ 1/2, and the corresponding material as Elasto-Viscous one since the elastic phase
prevails over the viscous one at the beginning of the load history. Instead 1/2 ≤ β ≤ 1 themechanical model is represented
by amassless shear-type indefinite column resting on a bed of independent dashpots. In this case the authors termed Visco-
Elastic (VE) this kind of materials since the viscous phase prevails on the elastic one.

In this paper the mechanical model describing fractional hereditary material will be used to solve the fractional
differential equations involved in the analysis of multiphase fractional hereditary materials. Indeed, in this case the
relaxation/creep functions involve linear combinations of power-laws with different exponents yielding a rheological
description in terms of linear combination of Caputo’s fractional derivatives. The presence of multiple order fractional
differential operators will be related to a proper mechanical model that corresponds, exactly, to the original fractional
differential equation. Discretization of the continuous models lead to a set of ordinary differential equations that may be
easily solved by means of the proper tools of dynamical system. Some numerical applications will be reported to assess the
validity of the models.

2. Multiphase fractional hereditary materials (FHM)

The time dependent behavior of viscoelastic material may be introduced starting from the so-called relaxation function
G(t) that is the stress history σ(t) for an assigned strain γ (t) = U(t) being U(t) the unit step function. Alternatively
viscoelasticmaterialmay be characterized by the creep function J(t) namely the strain history for the assigned stress history
σ(t) = U(t). In virtue of the Boltzmann superposition principle the stress–strain relations is expressed as

σ(t) = G(t)γ (0) +

 t

0
G(t − τ)dγ (τ) = G(t)γ (0) +

 t

0
G(t − τ)γ̇ (τ )dτ (1)

or in its inverse form

γ (t) = J(t)σ (0) +

 t

0
J(t − τ)dσ = J(t)σ (0) +

 t

0
J(t − τ)σ̇ (τ )dτ (2)

where γ (0) and σ(0) are the strain and the stress in t = 0, respectively.
In the remainder of the paper it is assumed, without loss of generality, that γ (0) = 0, σ (0) = 0. Creep and relaxation

function are related to each other by the following relationship in the Laplace domain [39]:

Ĝ(s)Ĵ(s) =
1
s2

(3)

being Ĝ(s) and Ĵ(s) the Laplace transform of G(t) and J(t), respectively.
Let us now suppose that from experimental relaxation test G(t) is well fitted by

G(t) =

m
j=1

C(βj)

0(1 − βj)
t−βj; 0 ≤ βj ≤ 1 (4)

where 0(·) is the Euler gamma function and C(βj), βj are parameters depending on the material at hands. Introducing
Eq. (4) in Eq. (1) we obtain

σ(t) =

m
j=1

C(βj)

0

1 − βj

  t

0
(t − τ)−βj γ̇ (τ )dτ =

m
j=1

C(βj)

CD

βj
0+γ


(t) (5)

where

CD

βj
0+γ


(t) is Caputo’s fractional derivative of order βj. In the case ofm = 1 the creep function, according to Eq. (3),

is readily found in the form

J(t) =
1

C(β1)0(1 − β1)
tβ1 . (6)

It follows that, by inserting Eq. (6) in Eq. (1), we get

γ (t) =
1

C(β1)

1
0 (1 − β1)

 t

0
(t − τ)β1 σ̇ (τ )dτ =

1
C(β1)


D−β1
0+ σ


(t) (7)

where

D−β1
0+ ·


(t) is the Riemann–Liouville fractional integral.
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(a) Elasto-Viscous model (0 ≤ β ≤ 1/2). (b) Visco-Elastic model (1/2 ≤ β ≤ 1).

Fig. 1. Continuous fractional models.

The creep function for the more general case m > 1 in Eq. (4) is not so simple [40,41]. In order to illustrate difficulties
emerging in the evaluation of the inverse relationship (5) for m > 1 the simple case is briefly illustrated. Let the relaxation
function G(t) give in the form

G(t) = G∞ +
C(β)

0(1 − β)
t−β (8)

in which the elastic phase is characterized by G∞ and the viscous phase is represented by the second term in Eq. (8).
By performing Laplace transform and taking into account Eq. (3) the creep function corresponding to G(t) expressed in

Eq. (8) is found in the form [4,6,24]

J(t) =
1
G∞


1 − Eβ


−

G∞

C(β)
tβ


=
1
G∞


1 −

∞
k=0


−G∞/C(β)tβ

k
0(βk + 1)


= −

1
G∞

∞
k=1


−G∞/C(β)tβ

k
0(βk + 1)

(9)

where Eβ(·) is the one-parameter Mittag-Leffler function. By inserting Eq. (9) in Eq. (2) we get

γ (t) =
1
G∞


σ(t) +

∞
k=0


G∞

C(β)

2k+1 
D−(2k+1)β
0+ σ


(t) −


G∞

C(β)

2k 
D−2kβ
0+ σ


(t)


. (10)

Inspection of Eq. (10) reveals that even in the simpler case in which the relaxation function assumes the form expressed in
Eq. (8) the inverse relationship of Eq. (5) is very cumbersome and involves Riemann–Liouville fractional integrals of every
order.

In the next section the extension of the mechanical model proposed by Di Paola and Zingales [33] is presented for the
general casem > 1.

3. Exact mechanical model of multiphase viscoelastic systems

In this section the exact mechanical model of multiphase fractional viscoelastic system is presented. For the sake of
completeness first the casem = 1 is treated and with this result the casem > 1 is really extended.

3.1. Exact mechanical model for m = 1

The stress–strain relation for the viscoelasticmaterials is expressed by fractional law in Eq. (7) or by its inverse expression

σ(t) = C(β1)

CDβ1

0+γ


(t) (11)

where

CDβ1

0+ ·


(t) is Caputo’s fractional derivative.

In a previous paper [33] it has been shown that exact mechanical models of fractional viscoelasticity may be found for
the two intervals of β : 0 ≤ β ≤ 1/2, β : 1/2 ≤ β ≤ 1. In the former case the material was labeled as Elasto-Viscous (EV)
and the mechanical model is depicted in Fig. 1(a). While in the latter the material was labeled as Visco-Elastic (VE) and is
depicted in Fig. 1(b).

The Elasto-Viscous case (0 ≤ β ≤ 1/2) is a massless indefinite viscous shear layer with a viscosity coefficient cE(z)
resting on a bed of independent springs characterized by an elastic coefficient kE(z). In contrast the Visco-Elastic case
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(1/2 ≤ β ≤ 1) is a massless indefinite elastic shear layer characterized by a shear modulus kV (z) resting on a bed of
independent viscous dashpots characterized by the viscosity coefficient cV (z). The subscripts E and V in k(z) and c(z) are
introduced in order to distinguish the predominant behavior (E stands for Elasto-Viscous, while V stands for Visco-Elastic).
Moreover we define G0 and η0 the reference values of the shear modulus and viscosity coefficient.

As soon as we assume

kE(z) =
G0

0(1 + α)
z−α

; cE(z) =
η0

0(1 − α)
z−α (12)

with 0 ≤ α ≤ 1 and β = (1 − α)/2, and

kV (z) =
G0

0(1 − α)
z−α

; cV (z) =
η0

0(1 + α)
z−α (13)

with β = (1 + α)/2, the stress σ(t) at the upper lamina and γ (t) the corresponding normalized displacement (that is the
corresponding strain) revert to a fractional law expressed in Eq. (4) form = 1, β1 = β .

The governing equation for 0 ≤ β ≤ 1/2 of the mechanical model depicted in Fig. 1(a) is

∂

∂z


cE(z)

∂γ̇ (z, t)
∂z


= kE(z)γ (z, t). (14)

The solution of the governing equation (14) in the Laplace domain involves the modified first and second kind Bessel
functions; indeed we have

γ̂ (z, s) = zβ


BE1Iβ


z

√
τE(α)s


+ BE2Kβ


z

√
τE(α)s


(15)

where γ̂ (z, s) is the Laplace transform of γ (z, t), while Iβ(·) and Kβ(·) are themodified first and second kind Bessel functions
and τE(α) = −η00(α)/(0(−α)G0). The integration constants BE1 and BE2 are obtained by imposing the following boundary
conditions:lim

z→0
cE(z)

∂γ̇ (z, t)
∂z

= σ(0, t) = σ(t),

lim
z→∞

γ (z, t) = 0.
(16)

In this way the fractional constitutive law in Eq. (7) is obtained from the model depicted in Fig. 1(a) for z → 0 (between
the applied stress σ(t) and the displacement of the top lamina γ (0, t) = γ (t)); indeed by performing the inverse Laplace
transform with a simple algebraic manipulations, we get

γ (t) =
1

CE(β)


D−β

0+ σ


(t) (17)

where C(β) = CE(β) is defined as

CE(β) =
G00(β)22β−1

0(2 − 2β)0(1 − β)
(τE(α))β ; 0 ≤ β ≤ 1/2 (18)

with β = (1 − α)/2.
The equilibrium equation of the continuous model depicted in Fig. 1(b) is written as

∂

∂z


kV (z)

∂γ (z, t)
∂z


= cV (z)γ̇ (z, t) (19)

and it represents the governing equation of exact VE model. Proceeding in a similar way to the previous case we obtain the
following solution in Laplace domain:

γ̂ (z, s) = zβ

BV1Iβ


z


τE(α)s


+ BV2Kβ


z


τE(α)s


(20)

where τV (α) = −η00(−α)/0(α)G0. Eq. (20) can be solved by imposing the following boundary conditions:lim
z→0

kV (z)
∂γ (z, t)

∂z
= σ(0, t) = σ(t),

lim
z→∞

γ (z, t) = 0.
(21)
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Fig. 2. Fractional multiphase viscoelastic material.

The solution of such differential equation for z → 0 shows that the stress σ(t) at the top is related to the normalized
displacement γ (t) by means of a fractional derivative of order β = (1 + α)/2. In fact we obtain

γ (t) =
1

CV (β)


D−β

0+ σ


(t) (22)

where the coefficient C(β) = CV (β) in the stress–strain relation reads

CV (β) =
G0 0 (1 − β) 21−2β

0 (2 − 2β) 0 (β)
(τV (α))β ; 1/2 ≤ β ≤ 1 (23)

with β = (1 + α)/2.
We observed that by knowing G0 and η0 and for fixed value of β , both the coefficients CE(β) (for 0 ≤ β ≤ 1/2) and CV (β)

(for 1/2 ≤ β ≤ 1) may be calculated according to Eqs. (18) and (23), respectively. Vice-versa if CE(β) (or CV (β)) is known
there exist ∞

1 possible choices of G0 and η0 that exactly restore CE(β) (or CV (β)). In more detail, if we fix G0, then for the
EV case we get

η0 =


CE(β)0(2 − 2β)0(1 − β)

G1−β

0 0(β)22β−1

1/β 
−

0(−α)

0(α)


; 0 ≤ β ≤ 1/2 (24)

while for the VE case

η0 =


CV (β)0(2 − 2β)0(β)

G1−β

0 0(1 − β)21−2β

1/β 
−

0(α)

0(−α)


; 1/2 ≤ β ≤ 2. (25)

From Eqs. (24) and (25) we realize that provided η0 is selected in Eq. (24) (for the EV case) or in Eq. (25) (for the VE case)
the constitutive law σ(t) = C(β)


CDβ

0+γ


(t) is exactly restored on the top lamina of the two different models depicted in
Fig. 1. Obviously both γ (z, t) and σ(z, t) depend on the selection of G0 (or η0) but the equilibrium on the top lamina does
not depend on the particular choice of G0 (or η0) provided that G0 and η0 fulfill Eq. (24) or (Eq. (25)).

This issue will be reconsidered in the numerical examples.

3.2. Exact mechanical model for m > 1

With the previous results we now may find the mechanical model whose constitutive law is expressed in Eq. (5). We
order βj in such way that

0 ≤ β1 < β2 < · · · βr ≤ 1/2 ≤ βr+1 < · · · < βm ≤ 1. (26)

For such a material characterized by coefficient βj we have that the massless lamina on the top is sustained by r columns
of massless Newtonian fluid resting on a bed of independent springs andm − r shear type elastic columns resting on a bed
of independent dashpots how it is described in Fig. 2.
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At this stage we have r EV liquid columns sustained by external independent springs and m − r shear type columns
sustained by external dashpots. All these elements share a common displacement γ (t) at the top of each column and then
the load at the each lamina on the top has to be calibrated in such a way that the displacement on the top is equal for
each column (compatibility condition) and σ (j)(t), the stress at each column, has to be such that

m
j=1 σ (j)(t) = σ(t)

(equilibrium of the top lamina). So for this case the governing fractional differential equation representing stress–strain
relation in multiphase materials becomes

C(β1)

CDβ1

0+γ


(t) + · · · + C(βr+1)

CDβr+1

0+ γ


(t) + C(βr)

CDβr

0+γ


(t) + · · · + C(βm)

CDβm

0+γ


(t) = σ(t). (27)

The inverse relationship of such equation, obtained by mathematical tools, involves a series of Riemann–Liouville fractional
integrals of order greater than 1, how it is shown in Eq. (10) for the simple case of relaxation function expressed in Eq. (8). On
the contrary with the mechanical model depicted in Fig. 2 the inverse relation may be obtained without losing the physical
meaning (0 ≤ βj ≤ 1).

For example if we considered a fractional Kelvin–Voigt model in which we have a purely elastic phase in parallel with a
fractional viscoelastic phase, we have a biphasic material; in fact m = 2, β1 = 0 and 1/2 < β2 ≤ 1. The elastic phase is
characterized by elastic modulus G∞ and the VE phase is characterized by coefficient C(β2) and exponent β2; the relaxation
function is given in Eq. (8) with β2 = β and the stress–strain relation is expressed by

G∞γ (t) + C(β2)

CDβ2

0+γ


(t) = σ(t). (28)

By using the exact VE mechanical model previously described, the field of strain γ̂ (z, s) in Laplace domain is identical to
Eq. (20), but this equation must be solved by imposing different boundary conditions accounting for the response of the
elastic phase, that is to saylim

z→0


G∞γ (z, t) − kV (z)

∂γ (z, t)
∂z


= σ(0, t) = σ(t),

lim
z→∞

γ (z, t) = 0
(29)

from Eq. (20) by imposing boundary conditions in Eq. (29) and for z → 0 we obtain the exact Laplace transform of Eq. (28)

γ̂ (s) = γ̂ (0, s) = lim
z→0

γ̂ (z, s) = σ̂ (s)
1

CV (β2)sβ2 + G∞

. (30)

It follows that the exact mechanical model for multiphase viscoelastic materials is that described in Fig. 2 and this enables
us to properly discretize the mechanical model in order to get the inverse stress–strain relation. This issue will be reported
in the next section.

4. Discretization of multiphase FHM

The mechanical representation of fractional order operators discussed in the previous section may be used to introduce
a discretization scheme that corresponds to evaluate fractional derivative. How it has been shown in the previous section
the multiphase FHM has a mechanical equivalence of r EV columns (β ∈ [0, 1/2]) andm − r VE columns (β ∈ [1/2, 1]).

4.1. The discretized model of EV column

By introducing a discretization of the z-axis as zj = j△z into the governing equation of the EV material in Eq. (14) yields
a finite difference equation of the form

△

△z


c(i)
E (zj)

△γ̇ (i)(zj, t)
△z


= k(i)

E (zj)γ (i)(zj, t); i = 1, 2, . . . , r (31)

so that denoting k(i)
Ej = k(i)

E (zj)△z and c(i)
Ej = c(i)

E (zj)/△z the continuous model is discretized into a dynamical model consti-
tuted by massless shear layers, with horizontal degrees of freedom γ (i)(zj, t) = γ

(i)
j (t), that are mutually interconnected by

linear dashpots with viscosity coefficients c(i)
Ej resting on a bed of independent linear springs k(i)

Ej .

The stiffness coefficient k(i)
Ej and the viscosity coefficient c(i)

Ej of the i-th column reads

k(i)
Ej =

G(i)
0

0(1 + αi)
z−αi
j △z; c(i)

Ej =
η

(i)
0

0(1 − αi)

z−αi
j

△z
(32)

with αi = 1 − 2βi.
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Fig. 3. Discretized counterpart of the continuous model Fig. 1(a): EV column.

The equilibrium equations of the generic shear-layer of the i-th model read
k(i)
E1γ

(i)
1 (t) − c(i)

E1△γ̇
(i)
1 (t) = σ (i)(t),

k(i)
Ej γ

(i)
j (t) + c(i)

Ej−1△γ̇j−1(t) − cEj△γ̇
(i)
j (t) = 0, j = 1, 2, . . . ,∞, i = 1, 2, . . . , r

(33)

where γ
(i)
1 (t) = γ (t) and△γ̇

(i)
j (t) = γ̇

(i)
j+1(t)− γ̇

(i)
j (t). By inserting Eqs. (32) in Eqs. (33), at the limit as△z → 0, the discrete

model reverts to Eq. (14). The discretized model presented in Fig. 3 represents a proper discretization of the continuous EV
counterpart. As soon as z increase γ (i)(z, t) decay and limz→∞ γ (i)(z, t) = 0 it follows that only a certain number, say n,
of equilibrium equation may be accounted for the analysis. It follows that the system in Eq. (33) may be rewritten in the
following compact form:

p(i)
E A(i)γ̇ (i)

+ q(i)
E B(i)γ (i)

= vσ (i)(t) (34)

where

p(i)
E =

η
(i)
0

0(1 − αi)
△z−(1+αi); q(i)

E =
G(i)
0

0(1 + αi)
△z1−αi . (35)

The vectors γ (i) and v in Eq. (34) are

γ (i)T
=

γ

(i)
1 (t) γ

(i)
2 (t) · · · γ (i)

n (t)

; vT =


1 0 0 · · · 0


(36)

where the apex T means transpose. The matrices A(i) and B(i) are given as

A(i)
=


1−αi −1−αi · · · 0

−1−αi 1−αi + 2−αi · · · 0
0 −2−αi · · · 0
...

...
. . .

...

0 0 · · · (n − 1)−αi + n−αi

 (37)

B(i)
=


1−αi 0 0 · · · 0
0 2−αi 0 · · · 0
0 0 3−αi · · · 0
...

...
...

. . .
...

0 0 0 · · · n−αi

 . (38)

The matrices A(i) and B(i) are symmetric and positive definite (in particular B(i) is diagonal) and they may be easily con-
structed for an assigned value of αi (depending on the derivative order βi) and for a fixed truncation order n. Moreover
Eq. (34) may now be easily integrated by using standard tools of dynamic analysis how it will be shown later on.

4.2. The discretized model of VE column

As the fractional order derivative of the s-th column (r < s ≤ m) is β(s)
= β

(s)
V ∈ [1/2, 1] the mechanical description of

the material is represented by the continuous model depicted in Fig. 4 and ruled by Eq. (19).



M. Di Paola et al. / Computers and Mathematics with Applications 66 (2013) 608–620 615

Fig. 4. Discretized counterpart of the continuous model Fig. 1(b): VE column.

By introducing a discretization of the z-axis in intervals △z in the governing equation of the VE materials in Eq. (19)
yields a finite difference equation of the form

△

△z


k(s)
V (zj)

△γ (s)(zj, t)
△z


= c(s)

V (zj)γ̇ (s)(zj, t); s = r + 1, r + 2, . . . ,m (39)

that corresponds to a discretized mechanical representation of fractional derivatives. The mechanical model is represented
by a set of massless shear layers with state variables γ (s)(zj, t) = γ

(s)
j (t) that are mutually interconnected by linear

springs with stiffness k(s)
Vj = k(s)

V (zj, t)/△z resting on a bed of independent linear dashpots with viscosity coefficient c(s)
Vj =

c(s)
V (zj, t)△z. Springs and dashpots are given as

k(s)
Vj =

G(s)
0

0(1 − αs)

z−αs
j

△z
; c(s)

Vj =
η

(s)
0

0(1 + αs)
z−αs
j △z (40)

with αs = 2βs − 1.
The set of equilibrium equations reads

c(s)
V1 γ̇

(s)
1 − k(s)

V1△γ
(s)
1 = σ (s)(t),

c(s)
Vj γ̇

(s)
j + k(s)

Vj−1△γ
(s)
j−1 − k(s)

Vj △γj = 0, j = 1, 2, . . . ,∞, s = r + 1, r + 2, . . . ,m,
(41)

so that, accounting for the contribution of the first n shear layers the differential equation system may be written as

p(s)
V B(s)γ̇ (s)

+ q(s)
V A(s)γ (s)

= vσ (s)(t) (42)

where

p(s)
V =

η
(s)
0

0(1 + αs)
△z1−αs; q(s)

V =
G(s)
0

0(1 − αs)
△z−(1+αs) (43)

while γ (s), v and thematrices A(s) and B(s) have already been defined in Section 4.1. The compatibility condition of the upper
lamina reads γ (s)(0, t) = γ (t), ∀s : r + 1 ≤ s ≤ m, while equilibrium equation reads

m
s=r+1 σ (s)

= σ(t) being σ(t) the
external stress of the upper lamina.

5. Examples

The observations reported in the previous section lead to conclude that, whatever the class of FHMmaterial is considered,
the time-evolution of the system may be obtained by the introduction of a proper set of inner state variables, collected in
the vector γ(t) and ruled by a set first-order linear differential equations. In this perspective the mechanical response of the
FHMmay be obtained in terms of the vector γ(t) by means of eigenvectors of the differential equations system reported in
Eq. (33) for EV materials or in Eq. (41) for VE materials.

In this section three examples are reported, one is a fractional Kelvin–Voigt model with EV Spring-Pot (β = βE = 0.4),
the second case consists in a Kelvin–Voigt model with VE Spring-pot (β = βV = 0.6), and then the last case is the fractional
Kelvin–Voigt model with a critical value of β = 0.5. The stiffness of the elastic spring is denoted with G∞. The following
numerical examples are obtained for σ(t) = U(t).
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(a) Fractional Kelvin–Voigt model. (b) Kelvin–Voigt with EV
phase.

(c) Kelvin–Voigt with VE phase.

Fig. 5. Biphasic materials.

Fig. 6. Discretized fractional EV Kelvin–Voigt model.

5.1. The case of Kelvin–Voigt with EV Spring-Pot

In this section the fractional Kelvin–Voigt model depicted in Fig. 5 is investigated. In particular the Spring-Pot connected
in parallel with the spring is of Elasto-Viscous type, for which the coefficient β ∈ [0, 1/2]. The discretizedmodel is reported
in Fig. 6. The governing equation is reported in Eq. (34). However, taking into account the presence of elastic spring connected
in parallel with the EV Spring-Pot, the matrix B = B̃ becomes

B̃ =


1−α

+
G∞

qE
0 0 · · · 0

0 2−α 0 · · · 0
0 0 3−α

· · · 0
...

...
...

. . .
...

0 0 0 · · · n−α

 . (44)

Therefore the differential equations system governing the equilibrium is rewritten in the following compact form:

pEAγ̇ + qE B̃γ = vσ(t). (45)
As customary we first solve the homogeneous case, that is as σ(t) = 0. We introduce a coordinate transformation in the

form

B̃1/2γ = x (46)

and premultiplying by B̃−1/2 a differential equation for the unknown vector x is obtained as

pED̃ ẋ + qEx = ṽσ(t) (47)
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where ṽ = B̃−1/2v and D̃ is the dynamical matrix D̃ = B̃−1/2A B̃−1/2 given as

D̃ =



qE
qE + G∞

−


qE2α

qE + G∞

· · · 0

−


qE2α

qE + G∞

1 +


2
1

α

· · · 0

0 −


3
2

 α
2

· · · 0

...
...

. . .
...

0 0 · · · 1 +


n

n − 1

α


(48)

where D̃ is symmetric and positive definite and it may be obtained straightforwardly once n and α are fixed. Let 8̃ be the
modal matrix whose columns are the orthonormal eigenvectors of D̃ that is

8̃
T D̃ 8̃ = Λ̃; 8̃

T
8̃ = I (49)

where I is the identity matrix and Λ̃ is the diagonal matrix collecting the eigenvalues λ̃j > 0 of D̃.
In the following we order λ̃j in such a way that λ̃1 < λ̃2 < · · · < λ̃n. As we indicate y(t) the modal coordinate vector,

defined as

x(t) = 8̃ y(t); y(t) = 8̃
T x(t) (50)

and substituting the Eq. (50) in Eq. (47) we obtain a decoupled set of differential equation in the following form:

pEΛ̃ ẏ + qEy = v̄σ(t) (51)

where v̄ = 8̃
T ṽ = 8̃

T B̃−1/2v = 8̃
Tv. The jth-equation of Eq. (51) reads

ẏj + ρj yj =
φ̃1,j

pE λ̃j
σ(t); j = 1, 2, 3, . . . , n (52)

where ρj = qE/(pE λ̃j) > 0 and φ1,j is the jth element of the first row of the matrix 8̃. The solution of Eq. (52) is provided in
the form

yj(t) = yj(0) e−ρjt +
φ̃1,j

pE λ̃j

 t

0
e−ρj(t−τ)σ(τ) dτ (53)

where yj(0) is the jth component of the vector y(0) related to the vector of initial conditions γ(0) as

y(0) = 8̃
T B̃1/2γ(0). (54)

The solution of the differential equation system in Eq. (45) may be obtained as the modal vector y(t) has been evaluated
by solving Eq. (53) with the aid of Eqs. (46) and (50) as

γ(t) = B̃−1/28̃y(t). (55)

We are interested to a relation among the shear stress and the normalized transverse displacement of the upper lamina
(first element of vector γ(t)) that is obtained as

γ (t) = vTγ(t). (56)

For quiescent system at t = 0 and forcing the model with σ(t) = U(t) the solution γ (t) obtained from Eq. (56) becomes

γ (t) =

n
j=1

φ̃2
1,j

qE + G∞


1 − e−ρjt


. (57)

5.2. The case of Kelvin–Voigt with VE Spring-Pot

In this section the fractional Kelvin–Voigt is characterized for the presence of VE Spring-pot connected in parallel with
elastic stiffness. The discretized model is depicted in Fig. 7. Modal analysis of the differential equations system representing
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Fig. 7. Discretized fractional VE Kelvin–Voigt model.

the behavior of this fractional model is quite similar to the previous section. In this case the equilibrium equation system in
the compact form becomes

pVBγ̇ + qV Âγ = vσ(t) (58)

where the matrix B is defined in Eq. (38), while the matrix Â becomes

Â =


1−αi +

G∞

qV
−1−αi · · · 0

−1−αi 1−αi + 2−αi · · · 0
0 −2−αi · · · 0
...

...
. . .

...

0 0 · · · (n − 1)−αi + n−αi

 . (59)

In this case we substitute γ = B−1/2x in Eq. (58) and we perform premultiplication by B−1/2:

pV ẋ + qV D̂ x = ṽσ(t) (60)

where D̂ = B−1/2ÂB−1/2 is the dynamical matrix defined as

D̂ =



qV + G∞

qV
−


2
1

 α
2

· · · 0

−


2
1

 α
2

1 +


2
1

α

· · · 0

0 −


3
2

 α
2

· · · 0

...
...

. . .
...

0 0 · · · 1 +


n

n − 1

α


. (61)

The dynamical equilibrium equation in modal coordinate reads

pV ẏ + qV 3̂ y = v̄σ(t) (62)

so that equilibrium of jth Kelvin–Voigt represented by Eq. (62) is given as

δj ẏj + yj =
φ̂1,j

qV λ̂j
σ(t); j = 1, 2, 3, . . . , n (63)

where δj = pV/(qV λ̂j) > 0.
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Fig. 8. Creep test of EV and VE Kelvin–Voigt models: comparison between the exact and approximate solution.

The solution in terms of modal coordinates are obtained in the integral form as

yj(t) = yj(0) e−t/δj +
φ̂1,j

δj qV λ̂j

 t

0
e−(t−τ)/δjσ(τ) dτ . (64)

The stress–strain relations between shear stress σ(t) and normalized displacement γ (t) may be obtained as in the
previous section (see Eqs. (53) and (56)).

For the quiescent system at t = 0 and forcing the model with σ(t) = U(t), the solution γ (t) becomes

γ (t) =

n
j=1

φ̂2
1,j

qV λ̂j


1 − e

−
t
δj


. (65)

The particular case in which the fractional Kelvin–Voigt model consists of perfect spring and Spring-Pot with β = 0.5
may be studied either starting from Eq. (57) or from Eq. (65).

In Fig. 8 the results for σ(t) = U(t),G0 = η0 = 2, G∞ = 20G0, n = 750, 1z = 0.05 and different values of
β = 0.4, 0.5, 0.6 are contrasted with solution reported in Eq. (9) evaluated byMathematicaTM.

Then the same example is performed by selecting G0 = 1 and η0 = 25/2, 22, 25/3 (respectively for the three different
considered values of β) in this way C(β) coalescewith that obtained by G0 = η0 = 2. The results of the two differentmodels
lead match the exact solution and then we conclude that whatever is the choice of G0 provided η0 is evaluated from Eq. (24)
(for 0 ≤ β ≤ 1/2) or from Eq. (25) (for 1/2 ≤ β ≤ 2) the results in terms of displacement of the upper lamina do not
change.

With these results we may conclude that the mechanical models with different values of G0, but valuated each other in
such a way that C(β) remain constant leading to an identical stress–strain relation on the upper lamina.

6. Conclusions

One term fractional differential equations may be easily solved in terms of the known functions. Indeed the inverse
relation of fractional hereditariness σ(t) = C(β)


CDβ

0+γ


(t) is readily found in the form γ (t) = C(β)−1

D−β

0+ σ


(t).
A different scenario is involved as soon as we consider the case of multiple-term fractional differential equations

whose solution is a hard task that has been solved in some specific case only. As an example, the inverse relationship of
σ(t) =

m
j=1 C(βj)


CD

βj
0+γ


(t) is an open problem, unless m = 2 involving a convolution integral with two-parameter

Mittag-Leffler kernel. Asm > 2 no exact solutions exist and only numerical schemes, based on fractional differencemethods
and/or fractional finite element representation, may be found. Recently it has been shown that exact mechanical models of
σ(t) = C(β)


CDβ

0+γ


(t) is represented by indefinite mechanical models constituted by massless fluid resting on a bed
of springs (0 ≤ β ≤ 1/2) or by massless shear type column resting on a bed of dashpots (1/2 ≤ β ≤ 1). Springs and
dashpots decrease with power-law related to the fractional order derivative β . With the aid of these mechanical models
the problem of finding the strain history for an assigned stress history may be faced by using standard tools of dynamic
analysis of mechanical systems. It is shown that in the general case σ(t) =

m
j=1 C(βj)


CD

βj
0+γ


(t) the mechanical model

is massless plate interconnecting m columns r of them are fluids sustained by independent springs. While the remaining
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m − r are shear type columns resting on a bed of independent dashpots. Discretization of the two kind of columns and
eigenanalysis of each column lead to a set of uncoupled, first-order differential equations that may be solved by classical
methods of numerical analysis. Some numerical examples for the fractional Kelvin–Voigt model have been reported in the
paper.

It is noted that the concepts explained in the paper may be extended for other cases that involve higher order fractional
derivatives as for superconductors, visco-inertial systems, fractional diffusion equations, fractional controllers, and so on.
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