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Entanglement control in hybrid optomechanical systems
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We demonstrate the control of entanglement in a hybrid optomechanical system comprising an optical cavity
with a mechanical end-mirror and an intracavity Bose-Einstein condensate. Pulsed laser light (tuned within
realistic experimental conditions) is shown to induce an almost sixfold increase of the atom-mirror entanglement
and to be responsible for interesting dynamics between such mesoscopic systems. In order to assess the advantages
offered by the proposed control technique, we compare the time-dependent dynamics of the system under constant
pumping with the evolution due to the modulated laser light.
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Over the last few years we have witnessed a constant-pace
advance in the control of mesoscopic systems at the quantum
level. Examples range from quantum-interference experiments
with large organic molecules [1] to the preparation and
detection of multiparticle entanglement in superconducting
devices [2]. All these efforts are contributing very significantly
to the exploration of the quantum-to-classical boundary and
the ascertainment of the existence of actual limitations in
the enforcing of genuinely quantum-mechanical behavior in
mesoscopic systems. From a more applied viewpoint, these
advances contribute to the quest for the manipulation of
information encoded in open systems operating beyond the
microscopic scale.

Cavity quantum optomechanics has preponderantly
emerged, recently, as a very interesting arena for the study
of quantum features at the mesoscale. Its aim is to control the
quantum state of mechanical oscillators by their coupling to
a light field [3]. Recent advances in this context include the
realization of the quantum-coherent coupling of a mechanical
oscillator with an optical cavity [4], where the coupling rate
exceeds both the optical and the mechanical decoherence rate,
and the laser cooling of a nanomechanical oscillator to its
ground state [5]. When microwave radiation is used instead of
optical fields, an analogous sideband cooling of the motion of
a microscopic cantilever has been demonstrated, leading to a
mechanical thermal occupation of ∼1 [6].

Such new technologies open unprecedented possibilities in
the design of hybrid quantum architectures whose elementary
building blocks are physically implemented by systems of
different natures. Achieving accurate control at their interfaces
is quickly becoming of technologically and foundationally
paramount importance. In this respect, the coherent coupling
of a superconducting flux qubit to a spin ensemble has been
recently reported [7], while architectures for the interac-
tion between ultracold atoms and mechanical systems have
been demonstrated [8]. Furthermore, recent experiments have
reached the regime of strong coupling between a Bose-Einstein
condensate (BEC) and an optical cavity [9,10], simulating
optomechanical effects where the mechanical system is em-
bodied by quantum phononic waves of the BEC.

Here we consider a hybrid situation where we combine
technology coming from the traditional optomechanical set-
ting with the potential of the BEC-cavity experiments and

propose a hybrid BEC-optomechanics apparatus. The original
idea [11] is founded on the insertion of a BEC in an externally
driven optical cavity whose end-mirror oscillates around an
equilibrium position. For a small number of mechanical
phonons, the composite system made of the cavity field, the
BEC phononic mode, and the vibrating mirror is endowed
with genuine multipartite entanglement that can in principle
be revealed by all-optical measurements [12]. We propose the
active driving control of such a hybrid system realized by
time-modulating the intensity of the driving field. Inspired
by recent works on the control of optomechanical devices
[13,14], we show that by using a monochromatic modulation,
entanglement between two mesoscopic systems, the mirror
and the BEC, can be created and controlled [15]. Furthermore,
by borrowing ideas from the theory of optimal control [16] we
show that, with respect to the unmodulated case, a sixfold
improvement in the degree of generated entanglement is
in order. We interpret such performance in terms of the
occurrence of a special resonance at which the building up of
entanglement is favored. Our results demonstrate the viability
of the optimal control-empowered manipulation of open
mesoscopic systems for the achievement of strong quantum
effects, even in the hybrid context, of which the system that
we study is a significant representative.

I. THE PHYSICAL MODEL

We start describing the hybrid optomechanical setup at hand
[11,12], which consists of a Fabry-Perot cavity with a vibrating
end-mirror. The cavity is pumped by a laser that couples to the
mechanical mirror and an intracavity BEC. The Hamiltonian
of the system (in a frame rotating at the frequency ωL of the
pump field) reads

Ĥ = ĤC + ĤA + ĤM + ĤAC + ĤMC. (1)

The Hamiltonian of the mirror is

ĤM = 1
2
mω2

mq̂2 + p̂2

2m
, (2)

where m is the effective mechanical mass, ωm is the free
mechanical frequency, and q̂ (p̂) is the position (momentum)
operator of the mirror. The Hamiltonian of the driven cavity is

ĤC = h̄(ωC − ωL)â†â − ih̄η(â − â†), (3)
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where ωC is the cavity frequency, â is the cavity field’s
annihilation operator, and η =

√
2κR/h̄ωL accounts for the

laser pumping (R is the laser power and κ is the cavity
decay rate). The BEC is taken to be weakly interacting,
allowing the separation of the atomic field operator into
a classical component (the condensate wave function) and
a quantum one (the fluctuations), expressed in terms of
Bogoliubov modes. The cavity is strongly coupled to the
mode with wavelength λc/2, where λc is the cavity-mode
wavelength [9,11]. We callωb the frequency of the Bogoliubov
mode and ĉ (ĉ†) the corresponding annihilation (creation)
operator. As the condensate is at low temperature, any thermal
fluctuation of the atoms is negligible. The free Hamiltonian
of the Bogoliubov mode is given by ĤA = h̄ωbĉ

†ĉ, while the
atom-cavity coupling is [9,11]

ĤAC = h̄g2N0

2%a

â†â + h̄
√

2ζ Q̂â†â, (4)

where g is the atom-cavity coupling strength, N0 is the
condensate population, and %a is the atom-cavity detuning.
In the second term, the atom-cavity coupling rate is denoted
by ζ . The complete derivation of its form can be found in
Ref. [11]. The position and momentum quadratures of the Bo-
goliubov mode are Q̂= (ĉ + ĉ†)/

√
2 and P̂ = i(ĉ† − ĉ)/

√
2,

respectively. Finally, the mirror-cavity interaction is given by
ĤMC = − h̄χ q̂â†â, with χ = ωC/L being the mirror-cavity
coupling rate (L is the length of the cavity). As can be
seen by comparing ĤMC with the second term of Eq. (4),
the BEC dynamics is analogous to a mechanical oscillator
under the action of radiation pressure. As no direct coupling
term HAM is present in Eq. (1), the interaction between the
atomic mode and the mirror is mediated by the cavity. The
relevant degrees of freedom of the system are grouped in the
vector φ̂T = (x̂,ŷ,q̂,p̂,Q̂,P̂ ), where the cavity position and
momentumlike quadrature operators are x̂ = (â + â†)/

√
2 and

ŷ = i(â† − â)/
√

2, respectively. Under intense laser pumping
the operators can be linearized and expanded around their
respective classical mean values φs,i such that φ̂i → φs,i +
δφ̂i , where δφ̂T = (δx̂,δŷ,δ ˆ̃q,δ ˆ̃p,δQ̂,δP̂ ) is the vector of
zero-mean quantum fluctuations for each operator in φ̂.
Here, the mirror position and the momentum operators have
been rescaled to dimensionless quantities as q̂ =

√
h̄/mωm

ˆ̃q
and p̂ =

√
h̄mωm

ˆ̃p. In the hybrid optomechanical system
considered here, two sources of noise should be taken into
account. The first comes from photons leaking out of the cavity,
while the second is due to the mechanical Brownian motion
performed by the mirror, which is typically in contact with a
thermal bath at temperature T . The open-system nature of the
problem at hand allows for the establishment of a stationary
state. In fact, the classical values φs,i can be calculated by
solving the steady-state Langevin equations [17], which leads
to the new equilibrium positions for the mechanical mirror
and the harmonic oscillator embodied by the Bogoliubov
mode qs = h̄χ |αs |2/mω2

m and Qs = −ζ |αs |2/ωb. Here we
have introduced the mean intracavity field amplitude |αs |2 =
η2/(%2 + κ2) and the total cavity-pump detuning (modified by
the radiation pressure mechanisms and the shift of the cavity
frequency due to its off-resonant coupling with the atomic

medium)

% = ωC − ωL + g2N0

2%a

− χ ′qs + ζQs. (5)

As the last three terms in % are typically very small compared
to the bare detuning ωC − ωL, we neglect any bistability effect
and assume % to be an independent control parameter.

As for the fluctuations, their dynamics can be described by
the following vector equation:

∂tδφ̂ = Kδφ̂ + N̂ , (6)

where we have introduced the input-noise vector N̂ T =
(
√

2κδx̂in,
√

2κδŷin,0,ξ̂/
√

h̄mωm,0,0). The drift matrix K,
given below, depends on the scaled coupling parameter χ =
χ ′√h̄/mωm and the mirror dissipation rate γ = ωm/Q (where
Q is the mechanical quality factor):

K =





−κ % 0 0 0 0

−% −κ
√

2χ ′αS 0 −
√

2ζαS 0
0 0 0 ωm 0 0

√
2χ ′αS 0 −ωm −γ 0 0

0 0 0 0 0 .

−
√

2ζαS 0 0 0 −. 0





.

(7)

The photon-leakage from the cavity is accounted for by the
input-noise operators

δx̂in = δâ
†
in + δâin√

2
and δŷin = i

δâ
†
in − δâin√

2
, (8)

with 〈δâin〉 = 〈δâ†
in〉 = 0 and 〈δâin(t)δâ†

in(t ′)〉 = δ(t − t ′). The
Langevin force operator ξ̂ in N̂ models the effects of the
mechanical Brownian motion. In the limit of a high mechan-
ical quality factor, such noise can be faithfully considered
as Markovian, as entailed by the asymptotic form of the
autocorrelation function 〈ξ (t)ξ (t ′)〉 ( h̄γm/βBδ(t−t ′), where
βB = h̄/2kBT and kB is the Boltzmann constant.

We consider a viable detection scheme to observe entan-
glement between the various bi-partitions. Our proposal is
linked to the method put forward in Ref. [12], i.e., on the
mapping of atom-field or mirror-field entanglement (and thus
the atom-field one) into fully accessible all-optical quantum
correlations by means of two extra fields that interact (locally)
with the abovementioned subsystems. Both the operations are
within reach of state-of-the-art experiments and, in fact, have
been recently implemented [18,19] with high efficiency. Our
revelation scheme will thus be affected by the limitations
of such methods, which embody the forefront of weakly
disruptive detection schemes in such mesoscopic scenarios.

II. ENTANGLEMENT DYNAMICS

In Ref. [12], the stationary entanglement within the hybrid
optomechanical system has been considered. Here we focus on
the dynamical regime where the evolution of the entanglement
is resolved in time. We consider the fully symmetric regime
encompassed by equal frequencies for the Bogoliubov and
mechanical modes (i.e., ωb = ωm) and identical coupling
strengths in the bipartite cavity-mirror and cavity-atom
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subsystems (that is, we take ζ = χ ). We are particularly
interested in the emergence of atom-mirror entanglement at
short interaction times. The analysis conducted in Ref. [12]
has shown it to be absent for t → ∞. The linear nature of
Eq. (6) preserves the Gaussian nature of any initial state
of the overall system. This allows us to fully characterize
the entanglement evolution through the covariance matrix
Vij = 1

2 〈{δφ̂i ,δφ̂j }〉−〈δφ̂i〉〈δφ̂j 〉. Using this definition and
Eq. (6), the dynamical equation regulating the evolution of
the covariance matrix can be written as

V̇ = KV + VKT + D, (9)

where we have introduced the noise matrix D =
diag[κ,κ,0,γ (2n̄+1),0,0], with n̄ = [exp(2βBωm)−1]−1 as
the thermal mean occupation number of the mechanical mode.
In Eq. (9) we assume that the mean values of the mechanical
and optical quadratures reach their stationary values much
faster than the fluctuation dynamics (this is always verified
in our calculations). Such an inhomogeneous first-order
differential equation is solved assuming the initial conditions
V(0) = diag[1,1,2n̄ + 1,2n̄ + 1,1,1]/2, which describe the
vacuum state of both the cavity field and the BEC mode
and the thermal state of the mechanical system. Physicality
of the covariance matrix has been thoroughly checked by
considering the fulfillment of the Heisenberg-Robinson un-
certainty principle and checking that the minimum symplectic
eigenvalue ν = min eig(iωV) is such that |ν| ! 1

2 . Here used
the 6 × 6 symplectic matrix ω = ⊕3

j=1iσy , with σy as the
y-Pauli matrix. The entanglement measure that we use here
to quantify entanglement between any two modes α and β is
the logarithmic negativity [20], defined as Eαβ = −ln|2νmin|,
where νmin is the smallest symplectic eigenvalue of the matrix
VTβ
αβ = PVαβP , for α,β = C,A,M [the latter being the labels

for the cavity, atomic, and mirror modes, respectively]. The
reduced covariance matrix Vαβ contains the entries of V
associated with modes α and β while, by inverting the
momentum quadrature of β, matrix P = diag(1,1,1, −1)
performs the partial transposition in phase space. The atom-
mirror entanglement EMA(t), whose time evolution is shown
in Fig. 1(a) for different values of the effective detuning
%, gradually develops and reaches its peak value as the
cavity-atom entanglement and cavity-mirror entanglement
drop to a quasistationary value. As no direct atom-mirror
interaction exists in this system, mediation through the cavity
mode essentially results in a delay: quantum correlations
between the atoms (the mirror) and the cavity mode must
build up before any atom-mirror correlation can appear. This is
clearly shown in Fig. 1(b), where ECM (t) = ECA(t) reach their
maximum well before EMA(t) starts to grow. The atom-mirror
entanglement is nonzero only within a very short time window,
signaling the fragility of quantum correlations resulting from
only a second-order interaction between the BEC and the
cavity end-mirror. These results go far beyond the limitations
of the steady-state analysis conducted in Ref. [12] and prove
the existence of a regime where all the various reductions
obtained by tracing out one of the modes from the overall
system are inseparable, a situation that, within the range of
parameters considered in our investigation, is typical only of
a time-resolved picture.
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FIG. 1. (Color online) (a) Entanglement EMA(t) between mirror
and atoms against κt and %/ωm. (b) Same as panel (a) for ECM (t) =
ECA(t). Parameters: ωm/2π = 3 × 106 s−1; T = 10 µK; Q = 3 ×
104; m = 50 ng; R = 50 mW, cavity finesse F = 104; ζ = χ ; and
cavity length is L = 1 mm from which κ = πc/2LF (c is the speed
of light). All plotted units are dimensionless.

A. Optimal control of the early-time entanglement

We now consider the effects of time-modulating the external
pump power R, which is now considered a function of time.
In turn, this implies that we now take η → η(t) and study the
time behavior of the entanglement EMA set between the atoms
and the mirror. We show that a properly optimized η(t) can
increase the maximum value of EMA(t) for values of t within
the same time interval τ where atom-mirror entanglement has
been shown to emerge in the unmodulated case. We assume
to vary η(t) slowly in time, so that the classical mean values
φs adiabatically follow the change in η(t). This approximation
is valid as long as the number of intracavity photons is large
enough to retain the validity of the linearization procedure
and the time variation of η(t) is slow compared to the time
taken by the mean values to reach their stationary values.
For all cases considered here we have verified the validity
of such assumptions. The dynamics of the covariance matrix
is thus still governed by Eq. (9) with the replacement K →
K(t). In the following, we use the value of % = 2.7ωm, which
maximizes the short-time entanglement EMA.

Inspired by the techniques for dynamical optimization
proposed in Ref. [16], we call η0 the unmodulated value of
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FIG. 2. (Color online) Entanglement dynamics EMA(t) (dashed
line) with the optimal laser intensity modulation η(t) (solid line). The
entanglement EMA(t) for constant η(t) = η0 is also shown (dashed-
dotted line). All plotted units are dimensionless.

η and take

η(t) = η0 +
jmax∑

j=1

[Aj cos(ωj t) + Bj sin(ωj t)], (10)

where ωj = 2πj/τ + δj are the harmonics and δj is a small
random shift. The coefficients Aj and Bj are chosen in a way
that the total energy brought about by the time-modulated
field is the same as the one associated with the unmodulated
case. We then set the time window so that τ = 3.4κ−1, when
we observe the maximum value of EMA in the unmodulated
instance. The other parameters are as in Fig. 1. We then look
for the parameters Aj and Bj that maximize the value of
EMA(τ ) for a given set of random shifts δj . We use standard
optimization routines to find a (local) maximum of EMA(τ ).
We repeat the search of the optimal coefficients for different
values of δj and take the overall maximum. The corresponding
results are presented in Fig. 2, where we show the optimal
modulation η(t) and the optimal EMA(t). These findings are
also compared to the case without modulation. The maximum
value attained in the interval [0; τ ] is EMA(t) ( 0.05 which
is 2.5 times larger than the case without modulation, thus
demonstrating the effectiveness of our approach.

B. Periodic modulation: Long-time entanglement

In the two situations analyzed so far [constant laser
intensity η and optimally modulated η(t)], the atom-mirror
entanglement EMA(t) is destined to disappear at long times.
A complementary approach based on a periodic modulation
of the laser intensity η(t) was used in the pure optome-
chanical setting [13] to increase the long-time light-mirror
entanglement. Here we use a similar approach by assuming
the monochromatic modulation of the laser-cavity coupling
η(t) = η′′

0 + η′
0 [1 − sin(4t)], where 4 is the frequency of

the harmonic modulation and η′
0 = 4η′′

0 = η0/2, η0 being
the same constant coupling parameter taken before. These
choices ensure that the approximations used in the dynamical
analysis are valid. After the transient dynamics, the covariance

matrix and, in turn, EMA(t) become periodic functions of
time. In order to achieve the best possible performance at
long times, we compute the maximum of EMA(t) after the
transient behavior, scanning the values of 4. The result is
shown in Fig. 3(a) (inset) revealing a sharp resonance with
a maximum value of EMA ( 0.12 for 4 = 4̄ ∼ 0.79κ (no
further peak appears beyond this interval). This arises as a
result of the effective interaction between the atoms and the
mirror mediated by the cavity field. As shown in Fig. 1(a)
the entanglement dynamics strongly depends on the effective
detuning giving rise to such optimal behavior. Similar results
have also been observed in Ref. [13]. The analysis of the
evolution of ECM(CA) and EMA, shown in the main panel of
Fig. 3(a), reveals that while ECM(CA) develops very quickly
due to the direct cavity-atoms and cavity-mirror couplings,
EMA grows in a longer time lapse, during which the cavity
disentangles from the dynamics. The quasiasymptotic value
achieved by EMA reveals a sixfold increase with respect to
the unmodulated case. This behavior is worth commenting
on as it strengthens our intuition that any atom-mirror

0 50 100 150 200 250
0

0.05

0.1

tκ

0.5 0.75 1
0

0.05

0.1

E
M

A

/

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

η
/η

0

2πt/Σ̄

Σ κ

FIG. 3. (Color online) (a) Dynamics of the cavity-mirror and
cavity-atoms entanglement ECM,CA (solid) and atoms-mirror entan-
glement EMA (dashed) for4 = 4̄ ∼ 0.79κ . Inset: Maximum EMA for
long times with a periodic modulation as a function of the frequency
4. (b) Optimal periodic modulation η(t) (solid line) for one period
of time 2π/4̄ compared to the monochromatic modulation (dashed
line). All plotted units are dimensionless.
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entanglement has to result from a process that effectively
couples such subsystems, bypassing any mechanism giving
rise to multipartite entanglement within the overall system.
Finally, we discuss the results achieved in the long-time case by
adopting an optimal-control technique similar to the one used
for enhancing the short-time entanglement. We have consid-
ered the periodic modulation of the intensity at the frequency
4̄ given by

η(t) = η′′
0 + η′

0

[

1 −
nmax∑

n=1

An sin(n4̄t) + Bn cos(n4̄t)

]

(11)

and looked for the coefficients {An,Bn} optimizing EMA(t) at
long times with the constraint

∑nmax
n=1(A2

n + B2
n) " 1, ensuring

that no instability is introduced in the dynamics of the overall
system. In our simulation, nmax = 8 has been taken to limit
the complexity of the modulated signal. The resulting optimal
coefficients give the periodic modulation shown in Fig. 3(b)
and a maximum entanglement EMA ( 0.17 which is about
30% larger than the results obtained for the monochromatic
modulation. This demonstrates the powerful nature of our
scheme. Our extensive multiple-harmonic analysis is able to
outperform quite significantly the single-frequency driving
scheme addressed above and discussed in Ref. [13], proving
strikingly the suboptimality of the monochromatic modulation,
both at short and, surprisingly, at long times of the system
dynamics. This legitimates experimental efforts directed to-
wards the use of time-modulated driving signals for the optimal
control of the hybrid mesoscopic systems addressed here and
similar ones based, for instance, on the use of a vibrating
membrane [21] or a levitated nanosphere [22] instead of the
BEC.

It should be noted that an adiabatic approach is used in
Ref. [13] to find an effective Hamiltonian. When performed
in our hybrid optomechnical scheme, such a technique would
remove the dynamics of the Bogoliubov modes of the atomic
subsystem.

We consider the robustness of our protocol with respect to
inaccuracy in the control of the value χ = ξ as follows: after
finding the best periodic modulation assuming χ = ξ , we ran

again the simulations with the same modulation withχ = 1.1ξ
and χ = 0.9ξ . These values correspond to a 10% inaccuracy
in the nominal values of χ and ξ . We found that the maximum
entanglement is at most only 3% less than the original value,
thus confirming the stability of our result. Notice also that
if the imbalance between χ and ξ is known, for example,
by a calibration measurement, we can in principle run the
optimization including the actual values of χ and ξ , therefore
aiming at a larger entanglement value.

III. CONCLUSIONS

We have demonstrated that the modulation-assisted driving
of a hybrid optomechanical device gives rise to interesting
and rich entanglement dynamics, surpassing the limitations
associated with a steady-state analysis and a constant pump. A
significant improvement in the genuinely mesoscopic entan-
glement between the mode embodied by the atomic system and
the mechanical one can be achieved by pumping the cavity with
a modulated driving field, in both the short-time case and the
long-time case. We have shown the existence of modulations
that are able to beat the performance of simple monochromatic
driving in terms of the maximum entanglement created
between the mirror and the atomic system, thus favoring the
creation of entanglement at long times.

Our study strengthens the idea that important advantages
are in order when optimal control techniques are imple-
mented in the open-system dynamics of mesoscopic devices.
This contributes to the current quest for the grounding of
such approaches as valuable instruments for the control of
mesoscopic (and multipartite) systems of various realizations,
including interesting configurations of current experimental
interest [21,22] to which our framework can be fully applied.
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