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We derive the general form of a master equation describing the reduced time evolution of a sequence of

subsystems ‘‘propagating’’ in an environment which can be described as a sequence of subenvironments.

The interaction between subsystems and subenvironments is described in terms of a collision model, with

the irreversible dynamics of the subenvironments between collisions explicitly taken into account. In the

weak coupling regime, we show that the collisional model produces a correlated Markovian evolution for

the joint density matrix of the multipartite system. The associated Lindblad superoperator contains

pairwise terms describing cross correlation between the different subsystems. Such a model can describe a

broad range of physical situations, ranging from quantum channels with memory to photon propagation in

concatenated quantum optical systems.
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The dynamics of the open dynamics can be described
either in terms of maps and Kraus operators or in terms of
master equations and Lindblad operators, the correspon-
dence between such two descriptions being not always
straightforward. In general, determining if a given quan-
tum transformation is compatible with a Lindblad structure
is a computationally hard problem [1]. Furthermore, for a
multipartite system a Lindbladian structure for the global
system S in general may introduce non-Markovian ele-
ments in the dynamics of the subsystems that compose it,
which also are far from trivial to characterize [2]. In the
study of quantum channels, the description in terms of
maps is the natural choice, as one is interested in the
consecutive interaction of a series of quantum subsystems
acting as information carriers with an environment. For
memoryless channels, the assumption that each subsystem
interacts with its own local environment, i.e., that the
channel acts independently on each separate carrier, is
made. In recent years, however, the study of correlated
(or memory) channels has shown that interesting new
features emerge when one makes the realistic assumption
that the action of the noise acting over consecutive carriers
is correlated (e.g., see [3–9], and references therein). Such
correlations have been phenomenologically described in
terms of a Markov chain which gives the joint probability
distribution of the local Kraus operators acting on the
elements of S [3]. Alternatively, they have been effectively
represented in terms of local interactions of the carriers
with a common multipartite environment which is origi-
nally prepared into a correlated (possibly entangled) initial
state [7] or with a structured environment composed by
local and global components [4–6].

The aim of the present Letter is to provide a continuous
time description of correlated quantum channels in terms
of a joint master equation (ME) [10,11] for S. This will

lead us to identify the structure of the Lindblad generators
which are responsible for the arising of specific correla-
tions among the carriers. They are apt to describe those
scenarios where a structured, multipartite quantum system
interacts with a large environment characterized by (rela-
tively) slow reaction times. As an example, think of a string
of particles characterized by some internal degree of free-
dom (say, spin) that fly into an ionization chamber, exciting
the gas that fills it while passing through. If the speed of the
particles is sufficiently high, one might expect that, thanks
to the mediation of gas, excitations from one particle could
be passed to the next one, modifying its internal state. The
net result of course is the creation of delocalized excita-
tions over the whole string of particles. The master equa-
tions we derive here are perfectly fitted to describe the
resulting dynamics.
In our analysis we will adopt a rather pragmatic ap-

proach, deriving the dynamical evolution of S from a
collisional model [12,13] in which dissipative effects origi-
nate from a sequence of weak but frequent interactions
with a collection of uncorrelated particles which mimic the
system environment. Consider hence a multipartite quan-
tum system S, consisting of M—not necessarily identi-
cal—ordered subsystems S1; S2; . . . ; SM (the information
carriers of the model). In what follows, each subsystem is
supposed to interact with a multipartite environment E
consisting of a large number of subenvironments
E1; E2; . . . via an ordered sequence of pairwise interactions
(for a pictorial representation, see Fig. 1). As in
Refs. [12,13], the pairwise collision between the subsystem
Sm and the subenvironment En is described by a local
unitary USmEn

¼ exp½#igHSmEn
!t$ characterized by a col-

lision time !t and by the intensity parameter g and gen-
erated by the Hamiltonian coupling HSmEn

, which (without
loss of generality) we write as
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HSmEn
:¼

X

‘

Að‘Þ
Sm

' Bð‘Þ
En
; (1)

with Að‘Þ
S ; Bð‘Þ

E ! 0 Hermitian. Accordingly, the mth carrier
interacts with the first n elements of the environment E
through the joint unitary

UðnÞ
SmE

:¼ USm;En
USm;En#1

. . .USm;E2
USm;E1

(2)

(the presence of a local free Hamiltonian evolution oper-
ating between the collisions can be included in the model
by passing into the interaction picture representation and

replacing Að‘Þ
Sm

with the corresponding evolved operators).

Finally, to account for the internal dynamics of the environ-
ment, we assume that between two consecutive collisions
each subenvironment evolves according to a completely
positive, trace-preserving (CPT) map M. Operationally,
M acts as a ‘‘damper’’ for the information that percolates
from one carrier to the subsequent one. It mimics the
relaxation processes that may take place within the envi-
ronment alone (e.g., originating from the mutual interac-
tions between its various parts) and which in principle
involve time scales different from those that define the
rate of the collisional events.

Consider then the case where theM subsystems of S are
initially in a (possibly correlated) state !ð0Þ while the
subenvironments of E are all prepared into the same input
state" (which, as in Ref. [12], represents some equilibrium
state of the particles of the reservoir). For the sake of
simplicity, in the following we will work under the hy-
pothesis that

hBð‘Þ
E Mmð"ÞiE ¼ 0 8 ‘;m; (3)

where we use the symbol h. . .iX to represent taking the
expectation value with respect to the system X and Mm to
represent the channel obtained by applying m times the

mapM. The assumption (3) allows us to rigorously define
the continuous limit of the model. It is worth noticing,
however, that it does not imply any loss of generality, as it
can always be enforced by moving into an interaction
representation with respect to a rescaled local
Hamiltonian for the system S.
After the interactions with the first n elements of E, the

global state RðnÞ of the system and of the environment
is obtained from the initial state !ð0Þ ' "'n as RðnÞ ¼
W ðn;MÞ½!ð0Þ ' "'n$, where W ðn;MÞ is the superoperator
which describes the collisions and the free evolutions of E.
As schematically shown in Fig. 1, it can be expressed as a
composition of row superoperators stacked in series one on
top of the other:

W ðn;MÞ ¼ RðnÞ
SM;E

(RðnÞ
SM#1;E

( ) ) ) (RðnÞ
S2;E

(RðnÞ
S1;E

; (4)

where RðnÞ
Sm;E

:¼ M'n (UðnÞ
Sm;E

. Here, given a unitary

transformation U, we define Uð. . .Þ ¼ Uð. . .ÞUy. Also
we use the symbol ‘‘(’’ to represent the composition of
superoperators and M'n to represent ME1

( ) ) ) (MEn
,

MEj
being the map M operating on the jth element Ej of

E. The transformationRðnÞ
Sm;E

describes the evolution of Sm
in its interaction with E plus the subsequent free evolution
of the latter induced by the maps M. Alternatively, by
exploiting the fact that for m0 ! m, n0 ! n the operators
USm;En

and USm0 ;En0
commute, W ðn;MÞ can also be ex-

pressed in terms of column superoperators concatenated
in series as follows:

W ðn;MÞ ¼ CðMÞ
S;En

( CðMÞ
S;En#1

( ) ) ) ( CðMÞ
S;E2

( CðMÞ
S;E1

; (5)

where, for all j ¼ 1; . . . ; n,

C ðMÞ
S;Ej

:¼ MEj
(USM;Ej

( ) ) ) (MEj
(US1;Ej

: (6)

Thanks to Eq. (5), we can now write the following recur-
sive expression for RðnÞ:

Rðnþ 1Þ ¼ CðMÞ
S;Enþ1

ðRðnÞ ' "Þ: (7)

The master equation.—For a particular class of interac-
tion unitaries, the authors of Ref. [13] have shown that the
collision model leads to a dynamics which can be de-
scribed by a Lindblad superoperator via direct integration
of the equation of motion. Here we introduce an alternative
approach which allows one to derive a ME for the reduced
dynamics of the many-body system S in our generalized
multipartite collision model. The details of the derivation
can be found in Ref. [14]. We simply assume a weak
coupling regime where we take a proper expansion with
respect to the parameters g and !t which quantifies the
intensity and the duration of the single events. In particular,
we work in the regime in which g!t is small enough to
allow for the expansion of the dynamical equation (7) up to
Oððg!tÞ2Þ, i.e.,

FIG. 1. Schematic of the process. The horizontal lines describe
an ordered set of carriers S1; S2; . . . which interact with an
ordered set of (possibly infinite) identical local subenvironments
E1; E2; . . . via local unitaries USmEn

(" being the initial state of
the Ejs). Between collisions, each subenvironment evolves
according to a map M. The overall dynamics can be described
as an ordered sequence of row or of column superoperators
(visualized by the rectangular sets in the figure).
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Rðnþ 1Þ ¼ ½IS;Enþ1
þ C0S;Enþ1

g!tþ C00S;Enþ1
ðg!tÞ2$

+ ½RðnÞ ' "$ þO½ðg!tÞ3$; (8)

where IS;Enþ1
is the identity superoperator while C0S;Enþ1

and C00S;Enþ1
are the first and second expansion terms in g!t

of the superoperator CðMÞ
S;Enþ1

, respectively. Tracing over the

degree of freedom of the environment, the resulting equa-
tion defines the incremental evolution of the density matrix
!ðnÞ :¼ hRðnÞiE of S when passing from the nth to the
(nþ 1)th collision. The continuous limit is finally taken by
sending!t to zero while g and n explode in such a way that
n!t and g2!t remains finite, i.e.,

lim
!t!0þ

n!t ¼ t <1; lim
!t!0þ

g2!t ¼ #<1: (9)

Notice that, while the first condition is necessary to prop-
erly define the axis of time, the second is needed to
guarantee that S fills the interactions with E. Indeed, one
easily verifies that the linear terms in g do not enter in the
dynamical evolution of S since hC0S;Enþ1

ðRðnÞ ' "ÞiE ¼ 0

due to the assumption (3).
Defining hence !ðtÞ ¼ lim!t!0þ!ðnÞ the reduced den-

sity matrix of S at time t and _!ðtÞ :¼ lim!t!0þ
!ðnþ1Þ#!ðnÞ

!t
its time derivative, from Eq. (9) we get the following ME:

_!ðtÞ ¼
XM

m¼1

Lmð!ðtÞÞþ
X

m0>m

Dð!Þ
m;m0ð!ðtÞÞ: (10)

This is mathematically equivalent to the standard deriva-
tion of a Markovian ME for a system interacting with a
large environment, in which one assumes that the overall
system-environment density operator at any given time t of
the evolution factorizes as in !ðtÞ ' ", where " is the
environment density operator. The two scenarios are, how-
ever, different. In the standard case, the reason for which
the environment state is unchanged is because it is big. In
our scenario, consistently with the collisional model, the
environment state is constant because, as we said, each
subsystem collides briefly with a sequence of subenviron-
ments all initially in the same state. Of course, one expects
a strongly non-Markovian behavior if a given subsystem
interacts repeatedly with the same subenvironment [15].

The ME (10) contains both local Lindblad terms (i.e.,
Lindblad terms which act locally on the mth carrier)
and two-body nonlocal terms which couple the m carrier
to the m0 >m. More precisely, the mth local term is the
superoperator

Lmð. . .Þ ¼
1

2

X

‘;‘0
#ð‘;‘0Þ
m ½2Að‘0Þ

Sm
ð. . .ÞAð‘Þ

Sm
# Að‘Þ

Sm
Að‘0Þ
Sm

ð. . .Þ

# ð. . .ÞAð‘Þ
Sm
Að‘0Þ
Sm

$; (11)

where the non-negative matrix #ð‘;‘0Þ
m is given by

#ð‘;‘0Þ
m :¼ #hBð‘Þ

E Bð‘0Þ
E Mm#1ð"ÞiE; (12)

with # as in Eq. (9). Equation (12) defines the correlation

matrix of the subenvironment operators Bð‘Þ
E and Bð‘0Þ

E
evaluated (for the infinitesimal time interval !t) on the
density matrix Mm#1ð"Þ, which describes the state of the
subenvironment after m# 1 free evolution steps [16]. For
m0 >m the cross terms of Eq. (10) are defined instead as

Dð!Þ
m;m0ð. . .Þ ¼

X

‘;‘0
#ð‘;‘0Þ
m;m0A

ð‘Þ
Sm
½ð. . .Þ; Að‘0Þ

Sm0 $# #
X

‘;‘0
½#ð‘;‘0Þ

m;m0 $,

+ ½ð. . .Þ; Að‘0Þ
Sm0 $#A

ð‘Þ
Sm

(13)

with ½. . . ; . . .$# being the commutation matrix and #ð‘;‘0Þ
m;m0

being the complex matrix [17]

#ð‘;‘0Þ
m;m0 :¼ #hBð‘0Þ

E Mm0#mðBð‘Þ
E Mm#1ð"ÞÞiE: (14)

The coefficients #ð‘;‘0Þ
m;m0 introduce cross correlation among

the carriers and depend upon their distance m0 #m.
Furthermore, similarly to the terms of Eq. (12), they also
depend on m# 1 due to the fact that the model admits a
first carrier. However, if we assume that for large m the
sequence Mmð"Þ converges to a final point "0, then we
can reach a stationary configuration where (for m - 1)

#ð‘;‘0Þ
m;m0 depends only upon the distance m0 #m while #ð‘;‘0Þ

m

becomes constant in m, i.e.,

#ð‘;‘0Þ
m;m0 ’ hBð‘0Þ

E Mm0#mðBð‘Þ
E "0ÞiE; (15)

#ð‘;‘0Þ
m ’ hBð‘0Þ

E Bð‘Þ
E "0iE: (16)

A similar behavior is obtained also if we assume " to be a
fixed point forM (a reasonable hypothesis if E is supposed
to describe an environment in its stationary configuration).
In this case, Eqs. (15) and (16) hold exactly for all m and
m0, with "0 being replaced by ". Finally, a case of par-
ticular interest is the one in whichM is the channel which
sends every input state into " (this is the extremal version
of the last two examples). Under this condition, the
‘‘damping’’ action of M is extremely efficient (the envi-
ronmental subsystems are immediately reset to their initial
state after each collision), and one expects that no corre-
lations between the various carriers can be established.
Indeed, in this case we have Mð$Þ ¼ h$iE" for all

operators $, which, thanks to Eq. (3), yields #ð‘;‘0Þ
m;m0 ¼

#hBð‘0Þ
E "iEhBð‘Þ

E "iE ¼ 0 and hence Dð!Þ
m;m0 ¼ 0.

Correlations.—Equation (13) obeys proper time-
ordering rules which guarantee that the dynamical evolu-
tion of Sm is not influenced by the subsystems that follow it
in the sequence, while it might depend in a nontrivial way
on the carriers that precede it. Indeed, when traced over the
degree of freedom of the second carrier Sm0 , the cross term

Dð!Þ
m;m0 nullifies, i.e.,

hDð!Þ
m;m0ð. . .ÞiSm0 ¼ 0; (17)
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while in general it does not disappear when tracing over Sm
(it does disappear, however, if all the coefficients #ð‘;‘0Þ

m;m0 are

real; see below). The evolution described by Eq. (10) is
thus nonanticipatory [18] or, in the jargon introduced in
Ref. [19], semicausal with respect to the ordering of the
channels used. To see this explicitly, consider the evolution
of the reduced density matrix !1;2ðtÞ of the first two carriers
obtained by taking the partial trace of Eq. (10) over all
elements of S but S1 and S2. Noticing that hLmð. . .ÞiSm ¼ 0
and exploiting Eq. (17), we get

_!1;2ðtÞ ¼ L1ð!1;2ðtÞÞþL2ð!1;2ðtÞÞþDð!Þ
1;2 ð!1;2ðtÞÞ: (18)

The resulting dynamics is purely Markovian in full agree-
ment with the fact that S1 and S2 couple weakly and
sequentially with subenvironments E which have not inter-
acted yet with other carriers. Tracing over S2, we can then
derive the dynamical equation for S1, i.e., _!1ðtÞ ¼
L1ð!1ðtÞÞ, which again is Markovian. Vice versa, the dy-
namics of S2 cannot be expressed in terms of a close
differential equation for !2ðtÞ alone. Indeed, by taking
the partial trace of Eq. (18) over S1, we get

_!2ðtÞ¼L2ð!2ðtÞÞ#2i
X

‘;‘0
Im½#ð‘;‘0Þ

1;2 $½A‘0
S2
;hAS1ðtÞ;!1;2ðtÞiS1$#;

(19)

where the last term explicitly depends upon the joint
density matrix of S2 and S1 [20]. This formally shows
that in general S1 acts as a controller for S2, while no
backaction is allowed in the model.

A case of special interest is represented by those situ-

ations in which the matrices #ð‘;‘0Þ
m;m0 are real. When this

happens, also the partial trace over Sm of Dð!Þ
m;m0 nullifies,

i.e., hDð!Þ
m;m0ð. . .ÞiSm ¼ 0. Accordingly, the evolution of any

subset of S is independent from the evolution of the
remaining carriers. In this case, hence our model becomes
nonanticipatory with respect to all possible ordering of the
carriers, describing hence a nonsignaling evolution [19] in
which the reduced density matrix of each carrier evolves
independently from the others. For instance, in Eq. (19),
the second term disappears, yielding a Markovian equation
also for !2ðtÞ, i.e., _!2ðtÞ ¼ L2ð!2ðtÞÞ.

Example.—As an application, we focus on the case in
which the carriers and E form two sets of independent
bosonic modes. In particular, defining am and bn to be
annihilation operators of the modes Sm and En, respec-
tively, we consider the Hamiltonians HSm;En

¼ am ' byn þ
aym ' bn. We also take " as the vacuum state of En andM
as a lossy bosonic quantum channel of transmissivity %.

Notice that with these choices the Hermitian operators Að‘Þ
Sm

and Bð‘Þ
En

entering in Eq. (1) are just quadrature operators of

the fields and that Eq. (3) is automatically verified for allm
since Mð"Þ ¼ ". The resulting model describes a corre-

lated quantum channel analogous to that of Ref. [9], which
mimics the transmission of a sequence of optical pulses
along an attenuating optical fiber characterized by finite
relaxation times. The corresponding local Lmð. . .Þ and

cross term Dð!Þ
m;m0 entering in the final ME (10) become,

respectively, #2 f2amð. . .Þam # aymamð. . .Þ # ð. . .Þaymamg and
#%m0#m=2f½amð. . .Þ; aym0$# # ½ð. . .Þaym; am0$#g, which ex-
hibit an attenuation of the signals and an exponential

decaying in the correlations [in particular, Dð!Þ
m;m0ð. . .Þ co-

incides with the cross term derived in Ref. [21] for a
collection of QED cavity modes coupled in cascade].
Conclusions and perspectives.—In deriving the ME (10)

, we assumed a specific ordering for the carriers of the
model which implies that each element in the sequence
S1; S2; . . . ; SM can influence only the dynamical evolution
of those which follow. This assumption was specifically
introduced to account for the causal correlations that are
present in many memory quantum channel models [18].
The collisional model, however, can be generalized to
include more general correlations. For instance, cyclical
correlations can be accounted by identifying S1 with the
(Mþ 1)th element of the set of carriers in such a way that
SM can influence its dynamics. To do so, it is sufficient to
add an independent set F of subenvironments
F1; F2; . . . ; FN which couple to S following a new ordering
in which (say) all the carriers are shifted by one position
(i.e., the element of F first interacts with S2, then with
S3; S4; . . . ; SN, and finally with S1). Apart from the new
ordering, the new couplings are assumed to share the same
properties of those that apply to E [in particular, we require
that identities analogous to those in Eqs. (3) and (9) hold].
Under these conditions (and by assuming no direct inter-
action between E and F ), the ME (10) will acquire new
extra terms which directly couple each carrier to all the
others. Specifically, given m0 >m, we will have both a

standard contribution of the form Dð!Þ
m;m0 as in Eq. (10) but

also a contribution in which the role of m and m0 are

exchanged (i.e., something like Dð!Þ
m0;m) that originates

from the couplings with F . From this example, it should
be clear that, by increasing the number of subenvironmen-
tal sets and by properly tuning their interactions with S,
any sort of correlations can be built in dynamical evolution
of the system.
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In this section we give the detailed derivation of Eq. (10) of the text and discuss its generalization to the case of non uniform
collisional events. Subsequently we show how to include free evolution terms induced by local Hamiltonians operating on the
carriers in the derivation of the ME.

Derivation of Eq. (10) of the main text

The starting point of the derivation is Eq. (9) of the text which under partial trace over E yields the identity

ρ(n+ 1) = ρ(n) + (g∆t)
〈

C′
S,En+1

(

R(n)⊗ η
)

〉

E
+ (g∆t)2

〈

C′′
S,En+1

(

R(n)⊗ η
)

〉

E
+O

(

(g∆t)3
)

(1)

In this expression we need to specify the super-operators C′
S,En+1

and C′′
S,En+1

obtained by expanding C(M)
S,En+1

up to the second
order in g∆t. To do so we notice that for each m and j, the super-operators USm,Ej

admit the following expansion,

USm,Ej
= ISm,Ej

+ (g∆t) U ′
Sm,Ej

+ (g∆t)2 U ′′
Sm,Ej

+O
(

(g∆t)3
)

, (2)

with ISm,Ej
being the identity map and with

U ′
Sm,Ej

(· · · ) := −i
[

HSm,Ej
, (· · · )

]

−
, (3)

U ′′
Sm,Ej

(· · · ) := HSm,Ej
(· · · )HSm,Ej

−
1

2

[

H2
Sm,Ej

, (· · · )
]

+
,

where [· · · , · · · ]− and [· · · , · · · ]+ represent the commutator and the anti-commutator brackets respectively. From Eq. (6) of the
text it then follows that

C′
S,Ej

:=
M
∑

m=1

MM−m+1
Ej

◦ U ′
Sm,Ej

◦Mm−1
Ej

, (4)

C′′
S,Ej

:= C′′,a
S,Ej

+ C′′,b
S,Ej

, (5)

with

C′′,a
S,Ej

:=
M
∑

m=1

MM−m+1
Ej

◦ U ′′
Sm,Ej

◦Mm−1
Ej

,

C′′,b
S,Ej

:=
M
∑

m′=m+1

M−1
∑

m=1

MM−m′+1
Ej

◦ U ′
Sm′ ,Ej

◦Mm′−m
Ej

◦ U ′
Sm,Ej

◦Mm−1
Ej

. (6)

Replacing this into Eq. (1) we first notice that due to Eq. (3) of the text the linear term in g∆t nullifies. Indeed we get

〈

C′
S,En+1

(

R(n)⊗ η
)

〉

E
= −i

∑

m

〈

[

HSm,En+1
, R(n)⊗Mm−1

En+1
(η)

]

−

〉

E

= −i
∑

m

∑

!

〈

[

A
(!)
Sm

⊗B
(!)
En+1

, R(n)⊗Mm−1
En+1

(η)
]

−

〉

E

= −i
∑

m

∑

!

[

A
(!)
Sm

, ρ(n)
]

−

〈

B
(!)
En+1

Mm−1
En+1

(η)
〉

En+1

= 0 . (7)
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Vice-versa for the second order terms in g∆t we get two contributions. The first is
〈

C′′,a
S,En+1

(

R(n)⊗ η
)

〉

E
=

∑

m

〈

HSm,En+1
(R(n)⊗Mm−1

En+1
(η))HSm,En+1

−
1

2

[

HSm,En+1
, R(n)⊗Mm−1

En+1
(η)

]

+

〉

E

=
1

2

∑

m

∑

!,!′

〈B(!)
E B

(!′)
E Mm−1(η)〉E

[

2A(!′)
Sm

ρ(n)A(!)
Sm

−A
(!)
Sm

A
(!′)
Sm

ρ(n)− ρ(n)A(!)
Sm

A
(!′)
Sm

]

=
1

γ

∑

m

Lm(ρ(n)) , (8)

with Lm as in Eq. (11) of the main paper. The second term instead is
〈

C′′,b
S,En+1

(

R(n)⊗ η
)

〉

E
=

∑

m′>m

〈

U ′
Sm′ ,En+1

◦Mm′−m
En+1

◦ U ′
Sm,En+1

(

R(n)⊗Mm−1
En+1

(η)
)

〉

E

= −
∑

m′>m

〈

[

HSm′ ,En+1
,Mm′−m

En+1

([

HSm,En+1
, R(n)⊗Mm−1

En+1
(η)

]

−

)]

−

〉

E

=
∑

m′>m

∑

!,!′

{

〈B(!′)
E Mm′−m(B(!)

E Mm−1(η)) 〉E A
(!)
Sm

[

ρ(n), A(!′)
Sm′

]

−

−〈B(!′)
E Mm′−m(B(!)

E Mm−1(η)) 〉∗E

[

ρ(n), A(!′)
Sm′

]

−
A

(!)
Sm

}

=
1

γ

∑

m′>m

D(→)
m,m′(ρ(n)) , (9)

with D(→)
m,m′ as in Eq. (13) of the text. Replacing all this into Eq. (1) gives

ρ(n+ 1)− ρ(n)

∆t
=

g2∆t

γ

{

∑

m

Lm(ρ(n)) +
∑

m′>m

D(→)
m,m′(ρ(n))

}

+O
(

g3∆t2
)

, (10)

which enforcing the limit (9) of the paper yields the ME (10) of the main text.
It is worth noticing that the above derivation still applies also if the collisional Hamiltonians described by Eq.(1) of our paper

are not uniform. For instance suppose we have

HSmEn
:=

∑

!

A
(n,!)
Sm

⊗B
(m,!)
En

, (11)

where now the operators acting on the carrier Sm are allowed to explicitly depends upon the n index which label the collisional
events, and similarly the operators acting on the sub-enviroment are allowed to explicitly depends upon the index m which
labels the carriers. Under these conditions one can verify that Eq. (10) still apply. In this case however, to account for the non
uniformity of the couplings, the condition (3) of the main text needs to be generalized as follows

〈

B
(m,!)
E Mm−1

E (η)
〉

E
= 0, ∀m, $ . (12)

Furthermore both Lm and D(→)
m,m′ entering in Eq. (10) become explicit functions of the carriers labels and of the in-

dex n which plays the role of a temporal parameter for the reduced density matrix ρ(n). Specifically the new super-
operators are still defined respectively as in Eqs. (8) and (9) with the operators A

(n+1,!)
Sm

instead of A
(!)
Sm

and with the co-
efficients 〈B(!)

E B
(!′)
E Mm−1(η)〉E and 〈B(!′)

E Mm′−m(B(!)
E Mm−1(η)) 〉E replaced by 〈B(m,!)

E B
(m,!′)
E Mm−1(η)〉E and

〈B(m′,!′)
E Mm′−m(B(m,!)

E Mm−1(η)) 〉E respectively.
The continuos limit of Eq. (9)of the main text can also still be defined by identifying lim∆t→0+ A

(n+1,!)
Sm

with the element
A

(!)
Sm

(t) of a one parameter family of operators. As a result we get a time-dependent ME characterized by a Lindblad generator
which explicitly depends on t.

Including local free evolution terms for the carriers

Assume that between two consecutive collisions, the carriers undergo to a free-evolution described by a (possibly time-
depedent) Hamiltonian HS(t) :=

∑

m hSm
(t) which are local (i.e. no direct interactions between the carriers is allowed).
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Under these conditions Eq. (10) of our paper still holds in the proper interaction picture representation at the price of allowing
the generators of the ME to be explicitly time dependent. To see this we first notice that under the assumption that the collision
time ∆t is much shorter than the time interval that elapses between two consecutive collisional events (i.e. ∆t ' τn − τn−1),
the unitary operator which describes the evolution of the m-th carrier in its interaction with E is now given by

U
(n)
SmE := USm,En

VSm
(τn, τn−1) USm,En−1

· · · VSm
(τ2, τ1) USm,E2

VSm
(τ1, 0) USm,E1

, (13)

where USm,En
are the collisional transformations, τn is the time at which the n-th collision takes place, and where

VSm
(τn, τn−1) := T exp[−i

∫ τn
τn−1

dt′hSm
(t′)] is the unitary operator which describes the free-evolution of Sm between the

(n− 1)-th and the n-th collision (in this expression T exp[· · · ] indicates the time-ordered exponential which we insert to explic-
itly account for possibility that the hSm

will be time-dependent). Define hence the operators

Ā
(n,!)
Sm

:= V †
Sm

(τn, 0) A
(!)
Sm

VSn
(τn, 0) , (14)

and the Hamiltonian

H̄Sm,En
:= V †

Sn
(τn, 0) HSm,En

VSn
(τn, 0)

=
∑

!

Ā
(n,!)
Sm

⊗B
(!)
En

, (15)

which describes the coupling between Sm and E in the interaction representation associated with the free evolution of Sm. Notice
that the operators Ā(n,!)

Sm
are explicit functions of the index n which labels the collisions as in the case of Eq. (11) (here however

the terms operating on E are kept uniform). Observing that for all $ one has VSm
(τ!, τ!−1)VSm

(τ!−1, τ!−2) = VSm
(τ!, τ!−2) we

can now write Eq. (13) as

U
(n)
SmE := VSm

(τn, 0) Ū
(n)
Sm,E , (16)

where Ū (n)
Sm,E is the unitary that defines the collisions of Sm with the sub-environments in the interaction representation, i.e.

Ū
(n)
Sm,E := ŪSm,En

ŪSm,En−1
· · · ŪSm,E1

, (17)

with

ŪSm,En
= exp[−ig H̄Sm,En

∆t] . (18)

Similarly we can express the super-operators W(n,M) as

W(n,M) = VS(τn, 0) ◦ W̄(n,M) , (19)

W̄(n,M) := C̄(M)
S,En

◦ · · · ◦ C̄(M)
S,E1

, (20)

C̄(M)
S,Ej

:= MEj
◦ ŪSM ,Ej

◦ · · · ◦MEj
◦ ŪS1,Ej

, (21)

with VS(τn, 0) being the super-operator associated with the joint free unitary evolution obtained by combining all the local terms
of the carriers, i.e. VS(τn, 0) := VS1

(τn, 0) · · ·VSM
(τn, 0). Defining hence R̄(n) the state of S and of the first elements of E

after n collisions in the interaction representation induced by VS(τn, 0) as

R̄(n) = V †
S (τn, 0) R(n) VS(τn, 0) , (22)

we get a recursive expression analogous to Eq. (7) of the main text with C(M)
S,En+1

replaced by C̄(M)
S,En+1

, i.e.

R̄(n+ 1) = C̄(M)
S,En+1

(R̄(n)⊗ η) . (23)

More precisely this expression formally coincides with that which, as in the case described at the end of the previous section,
one would have obtained starting from a collisional model in which no free evolution of the carriers is allowed but the collisional
events are not uniform. Indeed the generators of the dynamics H̄Sm,En

do have the same form of the Hamiltonians (11).
Following the same prescription given there, we can then get an expression for the reduced density matrix ρ̄(n) = 〈R̄(n)〉E
which represents the state of the carriers after n collisions in the interaction picture with respect to the free evolution generated
by HS(t). Enforcing the limit (9) of the main text under the condition (12), one can verify that ρ̄(t) obeys to a ME analogous to
Eq. (10) of our paper with the operators A(!′)

Sm
being replaced by the time-dependent operators Ā(!)

Sm
(t) := lim∆t→0+ Ā

(n,!)
Sm

.


